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Exercise 2.12 (Order of matrix) What are the orders of the matrices that guarantee that
ABC is defined?

Solution

Let A (m x n), B (p x g), and C (r x s). Then ABC is defined whenn = pand g =7,
butalsowhenm =n=1andg=r,whenp=g=landn=r,orwhenr =5 =1and
n = p. Itis also defined when any two of A, B, C are scalars.

*Exercise 2.13 (Generalization of z° = 0 <= = = 0) For real matrices 4, B and
', show that;
() A’A = Qif and only if A = O;
M AB =Qifandonlyif AAB = O;
(c) AB = AC ifand only if A’AB = A'AC.
{d) Why do we require the matrices to be real?

Solution

(2) Clearly, A = O implies A’A = O. Conversely, assume A’ A = O. Then, for all j, the

j-th diagonal element of A'A is zero, that is, }_; af; = 0. This implies that a;; = 0 for all

i and j, and hence that A = O. Contrast this result with Exercise 2.8(b).

(b) Clearly, AB = O implies A’AB = O. Conversely, if A’AB = O, then
(ABY(AB)=B'A'AB=0

and hence AB = O, by (a).

{c) This follows by replacing B by B — C in (b).

(d) Consider @ = (1 +1,1 —iY. Then a’a = (1 +1)? + (1 — i)? = 0, even though a # 0.

Hence, the above statements are, in general, not true for complex matrices. However, they

are true if we replace ’ by *.

Exercise 2.14 (Multiplication, 3)
(a) Show that (AB)C = A(BC') for conformable A, B, C.
(b) Show that A(B + C) = AB + AC for conformable 4, B, C.

Solution
(a) Let D := AB and F := BC' Then,

(DCYi, = Y _dijeje =Y (Z azhbhj) Cjk
J

i h

= ain | D bases | = D ainene = (AB)ik.
h J

h
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Hence, DC = AE.
(byLet D := B + C. Then,

(AD); = Z aiptp; = Z ain (bag + cpy)
h h

= Zaihbhj + Zaihchj = (AB)ij -+ (AC}”
h h

Exercise 2.15 (Transpose and products)

{(a) Show that (AB) = B'A’,

{(b) Show that (ABC)Y = C'B'A’.

(c) Under what condition is (AB)' = A'B’?

Solution
{a) We have

(B'A)i; = > (B)in(A)n; = > (B)ni( A)jn

h h
=Y (A);n(B)ni = (AB);:.
h

(b) Let D := BC. Then, using (a),
(ABC) = (AD) = D'A’ = (BC)A' =C'B'A’".

(c) This occurs if and only if AB = B A, that is, if and only if A and B commute.

Exercise 2.16 (Partitioned matrix) Let A and B be 3 x 5 matrices, partitioned as

1 3 -2 1 2 1 -3 -2 4 1
A=]16 8 0 -1 6|, B=|6 2 6 2 09,
00 1 | 4 1 1 0 2 | 0 1
and let C be a 5 x 4 matrix, partitioned as

1 0 5 1

0 2 0 0

c=| -1 0 3 1

3 5 0 2

2 -1 3 1

Denoting the submatrices by

An A]Q) (Bll BIZ) (Cu Cl?)
A = ) B = ] C - 1
(AZI Agp By, By Can Coxn
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show that

A+ By
Axn + By

A1Cn + ApCy
AC =
(Azlcll + A22C3

A+B=(

Az + BlQ)
Aoy + By

and

1
AQ]

A,
A’ == ( 11
Aéz

i)
Solution

(1+1
(6+6

(3-3)
(8 + 2)

(-2-2) (1+4)

A+B= (0+6) ‘ (=1+2)

A Ci2 + A12Ca
A Cha + ApCy

27

),

{24 1)
(64 0)

(0+0)
—4 5
1

1+2) | (@+0)

3
6
2

)
)
0+ 1)
0

(
( _ (Au + By,

| 1 Az + By

AC =

|

Az + By
Ag+ By

(1+1)

)

(11 K uw I R am]
G | O o

o

_ (Allcll + A12Co
Ag1Ch1 + ACyy

and

[mrRe s 2]

SN~ i B )

Exercise 2.17 (Sum of outer products) Let A :=
{a) Show that AA' =3, a;a;.
(b) Show that A’ A = (ala;).

((].1,(12,...,

il ] =

Ap1Cr12 + A12Cy
A21Cg + A Co

I
A21

)

22

).

a. ) be an m x n matrix.
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Solution
We write
! !
a a,
, A
AA ={aj,az,...,a,) | |, AA=| "[(a1,a2,...,a4),
al al

and the results follow.

*Exercise 2.18 (Identity matrix)
(a) Show that I't = x for all &, and that this relation uniquely determines I.
(b) Show that TA = AI = A for any matrix A, and specify the orders of the identity
matrices,

Solution

(@) If A = I, then Az = = holds for all . Conversely, if Az = z holds for all z,
then it holds in particular for the unit vectors @ = e;. This gives Ae; = e;, so that
a;; = e;Ae; = ele;, which is zero when i # j and one when i = j. Hence, A = I.

{b) Let A be an m x n matrix, and let @), a4, . .., a,, denote its columns. Then,

ImA = (Imﬂ.l,Imﬂ.g, . ,Iman) - (al, as,... ,an) = A,
using (a). Since I, A = A for every A, it follows that I, A’ = A’ for every A, and hence
that AT, = A.

Exercise 2.19 (Diagonal matrix, permutation)
(a) Is the 3 x 3 matrix

0O 0 «a
A=10 b 0
c 0 0

a diagonal matrix?
(b) With A defined in (a), show that AA’ and A’ A are diagenal matrices.

Solution

(a) Although one might argue that a square matrix has two diagonals, only the diagonal
(@11, 92, ..., Gnn) is called the diagonal. So, the matrix A is not a diagonal matrix, unless
a=c=10

(b) We have
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and, similarly,

¢ 0 0
AA=10 ¥ 0
0 0 a*

Exercise 2.20 (Diagonal matrices, commutation) Let A and B be diagonal matri-
ces. Show that AB is also diagonal and that AB = BA.

Solution
Let A := diag(ay,as,...,a,) and B := diag(by, bo, ..., b,). Then,
AB = diag(aiby, ..., anb,) = diag(hay,. .., bpa,) = BA.
A diagonal matrix is the simplest generalization of a scalar, and essentially all properties of

scalars also hold for diagonal matrices.

Exercise 2.21 (Triangular matrix)
(a) Consider the lower triangular matrices

1 0 0 1 0 0
A=1(1 1 0 and B=|0 1 0
0 0 1 o -2 1

Show that AB and B A are lower triangular, but that AB # BA.
(b) Show that the product of two lower triangular matrices is always lower triangular.

Solution
(a) We have
1 0 0 1 0 0
AB=]1 1 0 and BA=—1{ 1 1
0 -2 1 -2 =2 1

(b) Let A = (a;;) and B = (b;;) be lower triangular . x n matrices. Consider the j-th
element of AB. We will show that (AB),;; = 0 for: < j. Now,

Tt 1 b
(AB)ij = Y awbey = > oicbis + Y asbey.
k=1 k=1 k=141
In the first sum, bg; = O forall k < 7 < j; in the second sum, a;z = 0 for all k£ > 4. Hence,
(AB);; = 0fori < j, thatis, AB is lower triangular.

Exercise 2.22 (Symmetry) Let A be a square real matrix.

(a) Show that A + A’ is symmetric, even if A is not symmetric.

(b) Show that A B is not necessarily symmetric if A and B are.

(c) Show that A’ B A is symmetric if B is symmetric, but that the converse need not be true.
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Solution
(a)Since (A+ B) = A'+ B, wehave A+ A) = A"+ (AY=A"+ A=A+ A
Hence, A + A’ is symmetric.

(b) For example,
1 1 0 1
A_(l 0) and B—(l 1).

(c) We have (A'BA) = A'B’(A’) = A’BA. To prove that the converse is not neces-
sarily true, let e; and e; be unit vectors and define A := ez-e;-. Then, for any matrix B,
A'BA = eje;Beie;» = bye;€;, which is symmetric.

Exercise 2.23 (Skew-symmeiry) Let A be a square real matrix.

(a) Show that A — A’ is skew-symmetric.

(b} Hence, show that A can be decomposed as the sum of a symmetric and a skew-
symmetric matrix.

(c) If A is skew-symmetric, show that its diagonal elements are all zero.

Solution
(a)Wehave (A - A)Y =A"-A=-(A- A).
(b) We write
A+A A-A
+ .

2 2
The first matrix on the right-hand side is symmetric; the second is skew-symmetric.
(c) Since the diagonal elements of A’ are the diagonal elements of A, the defining equation
A’ = — A implies that a;; = —ay; for all . Hence, a; = 0 for all 4.

A=

Exercise 2.24 (Trace as linear operator) The trace of a square matrix A is the sum
of its diagonal elements, and is written as tr(A) or tr A. Let A and B be square matrices
of the same order, and let A and u be scalars. Show that;

(a) tr(A + B) = tr(A) + tr(B);

(bytr(AA + uB) = Atr{A) + ptr(B);

(c)tr(A’) = tr(A);

(d) tr{AA") = tr(A'A) =3, az;;

(e) tr(aa’) = a’a = ¥, a? for any vector a.

Solution
(a)}~(b) This follows by direct verification or by noting that the trace is a linear operator,
(c) In the trace operation only diagonal elements are involved; what happens outside the
diagonal is irrelevant.
(d) We have

rAA =) (AA) =) > af=) > o}, =) (AA);; =trA'A.

1 T 7 7 i ¥

(e) This follows from (d) because tr a’a = a’a, since a’a is a scalar.
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Exercise 2.25 (Trace of A’A)  For any real matrix A, show that tr A’A > 0, with
trA’A=0ifand only if A = O.

Solution

Since tr A’A =} af-j and A is real, the resuit follows.

Exercise 2.26 (Trace, cyclical property)
{a) Let A and B be m x n matrices. Prove that

tr(A'B) =tr(BA') = tr(AB') = tr(B’A).

(b) Show that tr{ Aaa’) = a’ Aa for any square A and conformable a.

(c} Show that tr(ABC) = tr(CAB) = tr{ BC A) and specify the restrictions on the
orders of A, B, and C.

(d) Is it also true that tr(ABC) = tr(ACB)?

Solution
(a) In view of Exercise 2.24(c) it is sufficient to prove tr{ A’B) = tr( BA’). We have

tr(A'B) = Z(AfB)jj == Zzaijbij = Z Zbijaij = Z(BA’)M = tr(BA’).
J i o i i

(b) This follows from (a).
() Let A (m x n), B (n x p), and C (p x m), so that ABC' is defined and square. Then,
using (a),

tr(ABC) = tr((AB)C) = tr(C(AB)) = tr(CAB),

and similarly for the second equality.
(d) No, this is not true, The expression AC B is not even defined in general.

Exercise 2.27 (Trace and sum vector} Show that
VYA =14 (dg A)e +tr (' — I,)A)

for any n x n matrix A,

Solution
We write

tr (12 — In)A) = tr(2d/ A) — tr(I, A) = tr(2/ Az) — tr(A) = ¢/ Ar — o/(dg A)e.

Exercise 2.28 (Orthogonal matrix, representation) A real square matrix A is orthogo-
nalif AA=AA =1.
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(a) Show that every orthogonal 2 x 2 matrix takes one of the two forms

A = (cosG —smﬂ) or Ay im ( cos B — sin F)) |

sin & cos § —sinfd —cosé

and describe its effect on a 2 x 1 vector x.
{b) Show that, if a matrix A is orthogonal, its rows form an orthonormal set,
{c) Show that, if a matrix A is orthogonal, its columns also form an orthonormal set.

Solution
(a) This is essentially a generalization of the fact that any normalized real 2 x 1 vector =
has a representation & = (cos 8, sinf)’, Let

a b
om0

The equations A'A = AA' = I yield
a2+ =1, a*+cf=1, VPid=1, F+d®=1,

and
ab+ed=0, ac+bd=0,
implying
dd=d? b=, dP+b'=1, ab+ed=0.
This gives

a=cosf, b= -—sinf, c==xsinf, d=tcosé.

The matrix A; rotates any vector & := (z,y)’ by an angle & in the positive (counterclock-
wise) direction. For example, when ¢ = /2,

we= (e ) ) =G0 9) 6= ()

The matrix A5 satisfies
1 0

Agx = (0 _1> Az,
s0 that @ is rotated counterclockwise by an angle 4, and then reflected across the x-axis.
(b)Letal,, ..., a}, denote the rows of A. From AA’ = I, it follows that a!,a;. = 1 and
al,a; =0 (i # j). Hence, the rows form an orthonormal set.
(c) Let a.1, ..., Q., denote the columns of A. Then, from A’A = I, it follows that
al.a,; = land a/;a.; =0 (i # j). Hence, the columns also form an orthonormal set.

Exercise 2.29 (Permutation mafrix) A square matrix 4 is called a permutation ma-
trix if each row and each column of A contains a single element 1, and the remaining
¢lements are zero.
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{a) Show that there exist 2 permutation matrices of order 2.

(b) Show that there exist 6 permutation matrices of order 3, and determine which of these
transforms the matrix A of Exercise 2.19(a) into diag(a, b, ¢).

(c) Show that there exist 2! permutation matrices of order .

(d) Show that every permutation matrix is orthogonal.

Solution
{(a) The permutation matrices of order 2 are

o) = (o)

The latter matrix permutes (or swaps) the axes by premultiplication, since

o)) -()

(b)Y The permutation matrices of order 3 are

1 00 100 0190 010 0 01 001
010], 001], 100}, 001], 100}, 010
001 010 0 01 100 01¢ 100

To write the matrix A of Exercise 2.19 as diag{a, b, ¢), we need to swap the first and third
columns. This is achieved by postmultiplying A by the last of the six displayed matrices;
premultiplying would have swapped the rows instead.

(c) We proceed by induction. Suppose there are (n — 1}! permutation matrices of order
n — 1. For each (n - 1) x (n — 1) permutation matrix there are precisely n ways to form
an n x n permutation matrix. Hence, there exist ! permutation matrices of order n.

(d) Each row p!, of the permutation matrix P contains one 1 and (n — 1) zeros. Hence,
p;.pi» = 1. Another row, say p},, also contains only one 1, but in a different place. Hence,
p..pj. = 0 # 7). Thus P is orthogonal.

Exercise 2.30 (Normal matrix) A real square matrix A is normal if A’A = AA’,
(a) Show that every symmetric matrix is normal.
(b} Show that every orthogonal matrix is normal.
(c) Let A be a normal 2 x 2 matrix. Show that A is either symmetric or has the form

la" 1
A—)\(_l a) (A 0).
Solution

(@ IfA=Athen A/A=AA=AA"
(b)If A/A = AA" = I, thenclearly A/A = AA'

(c) Let
a b
et ).
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The definition A’A = A A’ implies that
aZ+e2  ab+cd _ a4+ 12 ac+bd
ab4ecd B +d° ac+bd &+ d?

and hence that b2 = ¢* and (a — d)(b — ¢) = 0. This gives either b = ¢ (symmetry) or
b=-c¢#0anda =d.

Exercise 2.31 (Commuting matrices) Consider the matrix

1 2
()

Show that the class of matrices B satisfying AB = B A is given by
1 0 0 2
B = .

Solution
Let

o=(0 Y)

Then the equation AB = B A gives

a+2¢ b+2dY [fa+3b 2a+4b
3a+4c 3b+4d) \e+3d 2e+4d)’

which leads to
3b-2c=0, 20a+3b-2d=0, at+c—-d=0.
Hence,
c={3/2)b and d=a+(3/2)b,

and the result follows.

Exercise 2.32 (Powers, quadratic’s solution)  Consider a real square matrix A of or-
der 2.

(a) Show that A2 = O has a unique symmetric solution, namely A = O.

(b) Show that, in general, A = O has an infinite number of solutions, given by A = pqg’
with p'q = 0.

Solution
(a) Again, let
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The equation A2 = O can then be written as

a®+be  bla+d) {00

cla+d) be+d>/ \O 0
with general solution @ = —d, a® + be = 0. If A is symmetric, then b = ¢, and hence all
elements are zero. (This also follows from Exercise 2.13.)

(b) If A is not symmetric, then the solution is given by @ = —d, a2 + be = 0,6 £ ¢ If
a = {, the solutions are

A:(g g):(é)(o b) and A:(S g):(?)(c 0).

If @ # 0, then all elements of A are nonzero and

A (~a%/b —ba) :(i/b) @ 8).

All three cases are of the form A = pq’ with p'g = 0. Conversely, if A = pq’ then
A? = pq'pq’ = p(q'p)qd’ = O, whenever p'q = 0.

Exercise 2.33 (Powers of a symmetric matrix) Show that AP is symmetric when A
is symmetric.

Solution
We have

(AP) = (AA. . Ay =A'A A =AA .A- A"

Exercise 2.34 (Powers of the triangle) Consider an n x n triangular matrix A. Show
that the powers of A are also triangular and that the diagonal elements of AP are given by
ab, fori=1,...,n.

Solution

Assume that A is lower triangular, It suffices to prove the result for p = 2. Exercise 2.21(b)
shows that the product of two lower triangular matrices is again lower triangular. Let
B = A2, Then its i-th diagonal clement is given by b; = >, aiwak: = a2, since ei-

12!
ther ag; = O ora;x = 0 when &k # 4.

Exercise 2.35 (Fibonacci sequence) Consider the 2 x 2 matrix
1 1
A= ().

An — xn $n—1
Tn-1 T2

Show that
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withw = 0,29 :=1,and &, := Zp_1 +xn_o (n > 1). (This is the Fibonacci sequence:
1,2,3,5,8,13,...)

Solution
Since A is symmetric, we know from Exercise 2.33 that A™ is symmetric. Let

b
At o= (T On)
Then,

AT (1 1) (xn bn) _ (-'En +by by +Cn) — [ T+l bn+1
1 0 b en Tn by bny1 g1/

Hence, b,y = @n, €y = by = pg.and 401 = 2, + by, = T + Zneq. The condition
bny1 = by + ¢y, is then automatically fulfilled. Thus,
An+1 _ (In + Ln-1 Tn )

Ly En-1

Exercise 2.36 (Difference equations) Consider the 2 x 2 matrices

1 -1 0 -1
A—-(l 0) and B—(l 1).
(a) Show that B = A% and B? = — A.
(by Compute A2 A%, ., . AS,
(c) Conclude that A% = I and B® = T.
(d} What is the relationship between the matrix A and the second-order difference equation

Ty = Tn-1 — ER,Q?

Solution
{a)~(c) We find

A2

I

1 -1 1 -1 0 -1
(1 0)(1 0)_(1 1)‘3’
and further A* = —J, A* = —A, A> = - B and A% = I. Hence, B2 = A* = — A and

B}=A'=1
(dyLet 2z, == (xn, p1) forn=0,1,.... Then,

- Tn \ (1 =1\ {xpa\ _ {an1-Tpoa
mmane o ()= (0 0) G)= ()

sa that the first-order vector equation z,, = Az, _; is equivalent to the second-order differ-
ence equation &, = ®,—] — Tp—2. Hence, the solution z, = A™z; of the vector equation
also solves the difference equation.
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Exercise 2.37 (Idempotent) A square matrix A is idempotent if 42 = A.
(a) Show that the only idempotent symmetric 2 x 2 matrices are

{10 _ {0 0 o P
A_(O 1), A_(O 0), A=aa (a'a=1).

(b) Recall that » := {1,1,...,1), denotes the n x 1 vector of ones. Show that the matrix
I, — (1/n)w’ is idempotent and symmetric. What is the intuition behind this fact?
(c) Give an example of an n x n idempotent matrix that is not symmetric.

Solution
{a) The 2 x 2 matrix A is symmetric idempotent if and only if

G a6 )= 2

A+ =a, bat+d)=b d*+b*=d

We distinguish betweena+d # landa+d=1.lfe+d # 1, thenb=0anda=d =1
ora=d=0. Ifa+td=1,then b* =a(l —a),sothat0 < a <1,0<d<1,and
b= =£+/a(l -- a). Then,

that is, if and only if,

a by a +y/a(l —a)) _ va Va '
b d)  \E+ a(l—a) 1-a T AEVT T \ VT —a)
which is of the form aa’ (a’'a = 1). Conversely, (aa’)(aa’) = a(ad'a)a
a'a=1
(byLet M := I,, — (1/n)a’. Then,

1 1 1 1 1
M2= (I, - -0\, - ~w) =1, ~u - —u+ —gzz’m'
n n n n n

2 1 2 1
=I, - ~u'+ ey = I, - —w' + —u' = M.
n n n n

To understand the intuition, consider the vector equation y = Mx. We have

y=Mz= (I, — %u’)m =x- %t(z’m) =z - T1,

where T = (1/n)?'x (the average). Hence, y;, = x; — T, and the transformation M thus
puts & in deviations from its mean. Now consider z = My and note that 7 = (. Hence,
z = y, that is, M2z = M=z for every x. This gives M? = M. Associated with an
idempotent matrix is an idempotent operation (in this case: “put the elements of a vector in
deviation form™). Once the operation has been performed, repeating it has no further effect.
(c) In econometrics most idempotent matrices will be symmetric. But the matrix A = ab’
with ¥a = 1 is idempotent but not symmetric (unless @ = b or one of the vectors is the
null vector).
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Exercise 2.38 (Inner product, matrix)  For two real matrices 4 and B of the same
order, the inner product is defined as (A, B) := 3, 3, ai;b;; = tr A'B. Prove that:

(a) (A, B) = (B, A);

(A, B+C)={(A B)+ (A C),

{c) ()\A B) = M(A, B);

(d) (A, A) > 0, with {4, Ay =0<+<= A=0.

Solution

We need to show that tr A’B = tr B’A,tr A'(B+C) = tr A’B+tr A'C, tr(AA)'B =
MrA'B,trA’A > 0,and tr A’A = 0 —< A = 0. All these properties have been
proved before.

+*Exercise 2.39 (Norm, matrix) For a real matrix A, we definc the norm as

1 2 _
Al = (4, 4)" ,/ZZ 5=
Show that:

@ [[AA] = [A]- [|IAlL
{b) ||A|| > 0, with || A]| = 0 if and only if 4 = O;
(c) |A + B < |Afl + || B|| (triangle inequality).

Solution
{a) We have

M| = VIrOAY(AA) = VATtr A4 = [\|Vir A4 = |} | 4].

(b) Further, |A|| = vtr A’A > 0, with ||A|| = 0if and only if A = O, according to
Exercise 2.25.

(c) Finally, let A := (a;;) and B := (b;;) be m x n matrices, and define mn x 1 vectors @
and & such that a contains the elements of A in a specific order and b contains the elements
of B in the same order. For example,

li
= (an,agl, e Q1 A1y e ey Am2y 0 v ,&mn) ,

which we shall later write as vec A; see Chapter 10. Then,
trA'B = Zaijbij =a'b
and similarly, tr A’A = a’a and tr B'B = b’b. Hence,
|A+B| =tr(A+B)Y(A+B)=+/(a+b)(a+b)=|a+b]|

< |lall + Ib] = Va'a + Vb'b= Vi A’A +Vir BB = |A| + | B,

using the triangle equality for vectors (Exercise 1.10(c)).




