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5.4 Rank (in)equalities

Exercise 5.41 (Two zero blocks, rank)
{a) For any two matrices A and IJ (not necessarily square), show that

O D

(b) For any two matrices B and C' (not necessarily square), show that

1k (A 0) = 1k(A) + k(D).

k (g g) = tk(B) + tk(C).

Solution
{(a) The rank of a matrix is equal to the number of its linearly independent columns. Let

-3 2). 4~ (3) - (3)

Leta := (a/,0')" and d := (0',d’) be two nonzero columns of A and D, respectively.
Then @ and d are linearly independent, because if

~ T a 0 o /\1(.1 _
A]_G"‘)Qd"-/\]_ (0) +/\2 (d) = (/\Zd) —0,
then Ay = Az = 0 (since @ and d are nonzero). This implies that rk(ﬁ : 15) = rk(ﬁ) +

rk( D} and hence that rk(Z) = rk( A) + rk(D).
(b) The rank does not change if we interchange columns. Hence,

rk (O B) = 1k (g g) ~ tk(B) + 1k(C),

using (a).

Exercise 5.42 (One off-diagonal zero block, rank) Consider the matrices

A B A O
Zl = (O D) and Zz = (C D) .

Show that it is not true, in general, that tk(Z)) = rk(A) + rk(D) or that tk(Z) =
rk(A) + k(D).

Solution
Take A = O and D = O. Then rk(A) = rk(D)} = 0, but rk(Z,) = rk(B) and
rk(Zs) = rk(C), which are not zero, unless B = O and C = O.

Exercise 5.43 (Nonsingular diagonal block, rank)  Consider the matrices Z, and Zo
of Exercise 5.42. If either A or D (or both) is nonsingular, show that

rk(Z)) = rk(Za) = rk(A) + rk({D).

Is this condition necessary?
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Solution
First, if A = I,,, and D = I,, then both Z; and Z; are nonsingular (their determinant is 1
by Exercise 5.25). Now assume that | A| # 0. Then,

(6 56 %"= 5)-(e 2)E o)

and the result follows from Exercise 4.24. Similarly, if || # 0, we have

I, -BD\/A BY (A O\ (A O I, O

o I o p/ \0o D/ \Cc D)\-D'C I,
The condition is not necessary. For example, if B = O and C = O, then rk(Z,) and
rk(Z) are both equal to rk(A) + rk(D) whatever the ranks of A and D.

oy

Exercise 5.44 (Nonsingular off-diagonal block, rank) Consider again the matrices
Z, and Z5 of Exercise 5.42. Show that

rk(Z1) = rk(B) + tk(DB ' A)
if B is square and nonsingular, and
rk(Z;) = tk(C) + tk(AC™! D)

if C is square and nonsingular.

Solution
The results follow from the equalities

If‘,’}, 0 A B 0 Ip
-pB~! 1,J\0 DJ\I, -B'A

0 I, A O\ (I, -C7'D
I, -Ac~'J\C D/\O I,

Exercise 5.45 (Rank inequalities, 1)
{a) Prove that

rk (é g) > tk(A) + k(D) rk(

(b) Show that it is not true, in general, that

rk (é g) > rk(A) + k(D).

i

B O
O -DB'A

C 0]
0O -AC'D}’

and

I

A O

c D) > rk{A) + tk(D).
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Solution
{a) Let

A B
28 5)

where the orders of the matrices are: A (m x p), B (m x ¢), and D (n x q). Suppose that
r = rk(A) < pand that s := rk(D) < ¢. Then A has r linearly independent columns,
say ai,...,@r, and D has s linearly independent columns, say ds, ..., d;. Let b; denote
the column of B directly above d; in the matrix Z. Now consider the set of 7 + s columns

06000

We shall show that these r + s columns are linearly independent. Suppose they are linearly

dependent. Then there exist numbers o1, ..., a, and 31,. .., 3., not all zero, such that
T a 5 b
) i ) VA -
>e(5) Lo (3) -0
i= J=

This gives the two equations

™ 3 &
Z o a; + Zﬁjbj =0, Zﬁjdj =0.
i=1 J=1 i=1

Since the {d;} are linearly independent, the second equation implies that 3; = 0 for all j.
The first equation then reduces to ¥ ._, o;a; = 0. Since the {a;} are linearly independent
as well, all «; are zero. We now have a contradiction. The matrix Z thus possesses (at
least) r + s linearly independent columns, so that rk(Z) > r + s = rk(A) + rk(D).

The second result can be proved analogously. Alternatively, it can be proved from the
first result by considering the transpose:

A O A oY A C
rk(C D)—rk(c D) =rk(0 D’)

> rk(A") + tk(D') = tk(A) + k(D).

A B I, I,
Z = (C D)_(Im Im)'

Then rk(A) = rk(D) = rk(Z) = m, so that the inequality does not hold.

(b) Consider

Exercise 5.46 (Rank inequalities, 2) Consider the matrices

A B O B
Z1 = (C O) and Zg.: (C D)
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(a) If either B or C (or both) is nonsingular, then show that
tk(Z1) = rk(Zs) = tk(B) + rk(C]).
(b) Show that
tk(Z)) = rk(A) + tk(C A~ B)
if A is square and nonsingular, and
rk(Z;) = rk(D) + tk(BD™'C)

if D is square and nonsingular.
{c) Show that

k(Z)) > tk(B) + 1k(C), rk(Zs) > tk(B) + rk(C).

Solution
Since the rank does not change if we interchange columns, we have

rk(Zl)zrk(g ‘é) rk{Zg}zrk(g g)

Results (a)—(c) now follow from Exercises 5.43-5.45.

Exercise 5.47 (The inequalities of Frobenius and Sylvester)
(a) Use Exercise 5.46 to obtain the following famous inequality:

tk(AB) + rk(BC) < rk(B) + rk(ABC),
if the product ABC exists (Frobenius).
{b) From {a) obtain another famous inequality:
rk(AB) > rk(A) +1k(B) - p

for any m x p matrix A and p x n matrix B (Sylvester’s law of nullity).
(c) Show that AB = O implies that tk(A) < p — rk(B) for any m x p matrix A and
p x n matrix B. (This generalizes Exercise 4.8.)

Solution
{a) Consider the identity

I. -A\/O AB\[/I, O\ [-ABC O
o 1,/\Bc BJ)\-c b7\ o B

Of the four matrices, the first and third are nonsingular. Hence,

rk( 0O AB

BC B ) = tk(ABC) + rk(B).
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Also, by Exercise 5.46(c),

O AB
rk (BC B ) > tk(AB) +rk(BC},

and the result follows.
{b) From Frobenius’s inequality we obtain

tk(AX) +rk(XB) <1k(X) +rk{(AX B)
for any square matrix X of order p. Setting X = I, gives the result.

(c) Since AB = O, Sylvester’s inequality gives 0 = tk(AB) > rk(A) + rtk(B) — p.

Exercise 5.48 (Rank of a partitioned matrix: main result) Let

(6

Show that

k(Z) =rk(A}+ k(D - CA'B) (if |[A| #0)
and

rk(Z) = rk(D) + k(A — BD™'C) (if |D| # 0).
Solution

If A is nonsingular we can write

I, O\[A B\ /I, —-A"B\ /(A o)
—cAat' 1,J\c Dj/\oO 1, J\0o D-cA'B/)

Similarly, if IJ is nonsingular, we can write

I, -BD'\fA B I, O\ (A-BD7'C O

0 I, c D/\-D'Cc I,] 0 D;
Since for any matrix Z, rk(Z) = rk(EZ F) whenever E and F are nonsingular, the re-
sults follow.

Exercise 5.49 (Relationship between the ranks of I, —- BB and I, — B'B) Show
that

rk Im,’ By _ m+r1k(I, — B'B) = n +rk(I,, — BB').
B I,

Solution

From Exercise 5.48 we obtain

rk (I.Brr: ?) = rk(I) + k(I — B'B) = m + 1k(I, — B'B)
L
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and also

rk (IB": ?) =rk(I,) + rk{l,, — BB') = n + rk(¥,, — BB').

Exercise 5.50 (Relationship between the ranks of I, - BC' and I,, - CB)
(2) Let B and C be square n x n matrices. Show that

tk(I, — BC) = rk(I, ~ CB).

(b) Now let B be an m x n matrix and C' an n x m matrix. Extend the result under (a) by
showing that

k(1,, — BC) =tk(I, - CB) +m — 1.

Solution
(a) We have

I, -B\ (I, B\(I, O\ (I,-BC O
o I,/)\c¢ J\-¢c 1,)°\ o©O I,

I, O\(I, B\ (I, -B\ (I, 0
-¢c 1,J\c ,J\o 1,) \0o I, -CB)

This proves {a) and shows in addition that

and

I, B
rk(I, - BC) = tk(I, — CB) = rk (c Iﬂ) .

(b) The argument is identical to the argument under (a), except for the order of the identity
matrices. Thus, we conclude that

y (In—BC O\ _ | (In o
r 0 I,)  ™\o I, cB
and the result follows.

Exercise 5.51 (Upper bound for the rank of a sum)  Let A and B be matrices of
the same order. We know from Exercise 4.14 that

rk(A + B} < rk(A) + rk(B).

Provide an alternative proof, using partitioned matrices.

Solution
The argument builds on the two matrices

A O A+B B
Zy = (0 B) and Z2:=( B B)'
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The matrices Z; and Z5 have the same rank, because

I, I.\fA O\/I, O\ (A+B B

O I,/\O B/\I, I} B B/
Clearly, tk(Z1) = rk(A) + rk(B). Also, since A + B is a submatrix of Z, we must have
rk(Z,) > rk(A + B) (Exercise 4.17). Hence,

tk(A 4 B) < rk(Z,) =k(Z;) = tk(A) + rk(B).
Exercise 5.52 (Rank of a 3-by-3 block matrix) Consider the symmetric matrix Z
of Exercise 5.19. Show that

tk(Z) = rk(D) + 1k(E) + k(A - BD™'B' - CE~'C")

if I and E are nonsingular.

Solution
Let

A=A B=(B:.C), ¢=(B:C), f)::(g g)

Then, using Exercise 5.48,
k(Z) = rk(D) + 1k(A — BD™'C)
=rk(D) + tk(E) + 1k(A -~ BD™'B' - CE'C".

Exercise 5.53 (Rank of a bordered matrix) Let
Z = (0 A,) .
o a

'K(Z) = rk(A) (@ = 0 and a € col(A")),
| tk(A)+1 {otherwise).

Show that

Solution
If o # O thenrk(Z) = rk(A) + 1 by Exercise 5.46(a). If &« = 0 thenrk(Z) = rk(A’ : a).
If a € col(A’) then

tk(A' : a) = rk(A’) = rk(A).
Ifa ¢ col(A') then
tk(A':a) =1k(A") + 1 =1k(A)+ 1.
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5.5 The sweep operator

Exercise 5.54 (Simple sweep) Consider the 2 x 2 matrix

A:—(Z Z).

(a) Compute A1) := SWP(A, 1) and state the condition(s) under which it is defined.
(b) Compute A := SWP{AY, 2) and state the condition(s) under which it is defincd.
(c) Show that 412 = — A1,

Solution
{a) By dcfinition, we have

AD — SWP(A,1) = (;}{f d _b/bi/a) ’

provided a # 0.
(b) Applying the definition to A gives

2) (1) a (-edpe 4 b -1 (d —b
A = swp(a® 2) = A .
(47,2) ad—bc( s 1) ad — be (c a)’

provided a # 0 and ad — bec # 0.
(c) We recognize — A®) as the inverse of A or, if we don't, we can verify that AA) =
-I.

Exercise 5.55 (General sweep)

(a) Let Abe a3 x 3 matrix. Compute SWP(A, 2) and state the condition{s) under which
it is defined.

(b} Let A be an n x n matrix. For 1 < p < n, compute SWP (A, p) and state the condi-
tion{s) under which it is defined.

Solution
(a) Let
1] arz  dpy
A= 91 oy an3
3] (450 (251
Then, applying the definition,
ajy — aieagi/aze  aizfase @iz — a12023/022
SWP(A,2) = a1 /a ~1/ag a3/ a2 ;
asy — aspazi/az  asp/azy  ass - asaazs/azy

provided az2 # 0.
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(b} More generally, if
Ayl ap Ap
A:=1{ay axm ayy],
A3zl azz  Ajss
where A1) has order p — 1, gy is a scalar, and Ass has order n — p, then we obtain in the
same way
Al —anzay fan  aip/axn Az — areahg/an
SWP(A,p) = @y, /agz ~1/ags g,/ a22 ,
Az —amay /azn  am/azn  Asz — azagg/ag

provided as is nonzero.

*Exercise 5.56 (The sweeping theorem) Let Abeann x nmatrixandletl < p < n,
Define A recursively by A®) .= SWP(A®-1 &) for k = 1,...,p with starting value

AD = A
(a) If A is partitioned as
P Q
A=
(= §)
where P is a p x p matrix, show that
-1 -1
Aw_ (P P7Q
RP' S-RPQ

(b) Hence show that A = — A1,

Solution

(a) We prove this by induction on p. The result is true for p = 1, because AN =
SWP(A,1) and the definition of the sweep operator or Exercise 5.54(a). Next, assume
that the result holds for p — 1, and let A be partitioned as

A ap A
A=|ay axn ay ],
Az azx Ag
where A1 has order p — 1, aso is a scalar, and Agy has order n — p. Then, by the induction
hypothesis, we have
—Ay Ajlar; A Ay
A1 — a;zlAl_lll @22 — ""21‘41_111‘112 as — a'21A1_111A13
A3 AT] ap - AnAjjany Az — ApnAj] A
We now use Exercise 5.55(b); this shows that SWP( AP~ p) is equal to
—Bu —b1a Bi1Ars + biaa,

*5’21 —bag b§1A13 + 522‘1’23 )
Az B+ agbly;,  Aszbio + assboo Az — D
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where
B =AY + Afflanay Ay /8,
biz = —Ajlan/8, by = —ah AT /B,
bee :=1/8, B:=a2 - ayAjan,
D = Az AT Aiz + (am - Az Ajf ann)(ay; - ay; AT Aw)/B.

Noticing that
-1
(Au 012) _(Bu bl2)
ay a2 by, b2/’

using Exercise 5.16(a), and that

By b\ Az
D= (As: a:
(As aﬂ)(b’zl '522) (053 ’
the result follows.

(b) This follows directly from (a). The inverse of A can thus be computed by n sequential
sweep operations, a very useful fact in numerical inversion routines.

Exercise 5.57 (Sweeping and linear equations)

(a) Show how the sweep operator can be used to solve the linear system PX = Q for
nonsingular P.

(b) In particular, solve the system 2z, + 32 = 8 and 4x; + 52 = 14 using the sweep
operator.

Solution
(a} We know from Exercise 5.56 that

(P Q w_(~P' PQ
A= (R S) = AT _(RP” §-RP'Q)

Hence, the solution P~1(Q) appears as the (1, 2)-block of AP where p denotes the order
of the square matrix P.
{(b) Denoting irrelevant elements by *s, we deline

2 3 8
A =14 5 14
* ® *
This gives
~1/2 3/2 4
AN = swp(A® 1) = 2 B

* * *
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and
5/2 -3/2 1
A% —swpAV y=|-2 1 2],
* X *

so that the solutionis ¢y = 1, 9 = 2.

Notes

A good survey of results with partitioned matrices can be found in Chapter 2 of Zhang
(1999). The inequalities in Exercise 5.47 were first obtained by Sylvester in 1884 and
Frobenius in 1911. Sylvester’s inequality is called the “law of nullity”, because it implies
that

dim(ker(AB)) < dim(ker(A)) + dim(ker(B)),

and the dimension of the kernel of a matrix is known as its “nullity”. The sweep opera-
tor (Exercises 3,54-5.57) plays a role in inversion routines. It was introduced by Beaton
(1964); see also Dempster (1969).



