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Matrix calculus

Let us first cstablish the notation. This is imporlant, because bad notation is a scrious
obstacle to elegant mathematics and coherent exposition, and it can be misleading. If f is
an m x 1 vector function of an n % 1 vector &, then the derivative (or Jacobian matrix) of
f is the m x n matrix

of (z)
D = 13.1
fay =22, (130
the elements of which are the partial derivatives df;(z)/0z;, i =1,...,m,j = 1,...,n.

There is no controversy about this definition. Tt implies, inter alia, that when ¢y = Az, then
dy/0x’ = A (when A is a matrix of constants). It also implies that for a scalar function
(), the derivative dp(2)/dx’ is a row vector, not a column vector,

Now consider an m x p matrix function F of an i x ¢ mairix of variables X. Clearly,
the derivative is a matrix containing all mpng partial derivatives. Also, (13.1) should be a
special case of the morc general definition. The most obvious and elegant definition is

__ Ovec F'(X)
DF(X) := Brve Xy (13.2)

which is an mp x ng matrix. As a result, if F' is a function of a scalar z (n = g = 1), then
DF(x} = 8 vec F(x)/0xz, an mp x 1 column vector. If @ is a scalar function of a matrix
X (m =p = 1), then Dp(X) = d¢(X)/0(vec X ), a1 x ng row vector. The choice
of ordering in (13.2) is not arbitrary, For example, the derivative of the scalar function
@(X) =tr(X) is not De(X) = I, but Dp(X) = (vecl,).

For practical rather than theoretical reasons, the treatment of matrix calculus is based on
differentials rather than derivatives. An important advantage is the following. Let f(x) be
an m X 1 vector function of an n x 1 vector &. Then the derivative Df(x) isan m x n
matrix, but the differential d f(x) remains an m x 1 vector. The advantage is even larger
for matrices: dF(X) has the same dimension as F, irrespective of the dimension of X,
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352 13 Matrix calculus

Unless specified otherwise, ¢ denotes a scalar function, f a vector function, and F a
matrix function. Also, x denotes a scalar argument, & a vector argument, and X a matrix
argument. For example, we write

() =2% pl@)=dz, ¢X)=tXX,

f(:IZ) = (Ivmz)’v f("E = AC[:, f(X) = Xa,
F(z)=2°I,, F(z)=zz', F(X)=X'

There is a possibility of confusion between the ' sign for derivative and transpose. Thus,
the vector f{z} will denote the transpose of f(), while f'(x) will denote its derivative,
and the same for scalar and matrix functions. However, we try and avoid the use of the ’
sign for derivatives of vector or matrix functions.

Note carefully that all functions and variables in this chapter are real; that is, we only
constder real-valued functions i, f, and F defined on a subset of B, R", or R™*9, Special
care needs to be taken when differentiating complex functions or real functions of complex
variables, and we will not deal with these problems in this chapter,

In the one-dimensional case, the equation

L @t )~ gla)

u—0 T

= ¢'(z)
defines the derivative of  at . Rewriting the equation gives

Pz +u) = p(@) + ¢ (2)u + rz(u),
where the remainder term r,(u) satisfies 7. (u)/u — 0 as u — 0. We now define the
(first) differential of ¢ at x (with increment ») as dp(z;u) = ¢'(x)u. For example, for
w(x) = 22, we obtain dyp(x;u) = 2zu. In practice we write dz instead of u, so that
dg(z) = ¢'(z) dr and, in the case ¢(x) = z?, dp(z) = 2z dz. The double use of the
symbol “d”’ requires carelul justification, which is not provided in this chapter.
In the vector case we have

flz+u)=f@)+ Df(@))u+ ra(u)

and the {first) differential is defined as d f(=x; u} = (D f{@})u. The matrix case is obtained
from the vector case by writing f := vec F and & := vec X.

We need three crucial results: two idenlification results and one invariance result. The
first identification result shows that the first derivative can be obtained (identified) from the
[irst differential. We have

df(z)= A(z)der < Df(zx) = Alz),
where A (), as the notation indicates, will in general depend on x. More generally,
dvec F{(X)=A(X)dvec X < DF(X)= A(X). (13.3)

For example, when ¢(z) = @’Az (A = A'), then dp = 22’ Adx. Hence, Dp(z) =
2x'A.
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The second identification result shows that the second derivative can be obtained (iden-
tified) from the sccond differential. We have

&o(z) = (dz) B(z)de «— Hp(z) = w;;(B(m)+B(m)’), (13.4)

where Hp(2) denotes the Hessian matrix with typical element 8%¢/8z;0x;. Notice that
we present (13.4) only for scalar functions. It is possible to extend the result to vector
functions and matrix functions, but this is seldom required. For example, when p(x} =
x'Ax (A = A'), thendy = 2&’ Adx and

d’p = 2d(z' Adx) = 2(dz) Adz + 22’ A d’z = 2(dx) Ade,

because d*x& = 0, since ¢ (trivially) is a linear function of 2. Hence, Hy(x) = 2A. In this
case the matrix B = 2.A is symmetric but this need not be the case in general. The Hessian
matrix, however, must be symmetric, so we have to make it symmetric, as in (13.4).

The invariance result is essentially the chain rule. The chain rule tells us that the deriva-
tive of a composite function A{x) = g(f(x)) is given by

Dh(x) = Dg(f(x)) Df ().
The equivalent result for differentials is called Cauchy’s rule of invariance, and states that
dh(z;u) = dg(f(z}; df(z; u)).

This looks more complicated than it is. For example, when ¢(z} = sinz”, we can take
g(y) = siny and f{x) = 22, so that Dg(x) = (cosz?)(2z). The differential is

2

dyp = (cosz?) da? = (cos 2?)(2z dz).

Cauchy’s rule thus allows sequential determination of the differential.

Special care needs to be taken when dealing with the second differential and the
Hessian matrix of composite functions. Cauchy’s invariance result is not applicable here,
For example, if (y) = siny, then dp = (cosy) dy and

d%p = d((cos y) dy) = (deosy) dy + (cos y) d’y = —(siny)(dy)®,

because dzy = . However, if we are now told that y = x2, then it is still true, by Cauchy’s
invariance rule, that d = (cosy) da? = 22(cos %) dr, but for the second differential we
have d%p # —(siny)(da?)? = —4z%(sinx%)(dz)?. The reason is that dy is no longer
zero. There exists a chain rule for Hessian matrices, but in practice the simplest and safest
procedure is to go back to the first differential. Then,

d* = d{(cosy) dy) = —(siny)(dy)* + (cosy) d*y
= —(sinz?){(d2?)? + (cos z?) d*2? = —4(sin z2) (2 dx)? + 2(cos 2*)(dz)*
= (—de?sinz? + 2cos 2%) (dx)*.

This works in precisely the same way for vector and matrix functions.
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A major use of matrix calculus is in problems of optimization. Suppose we wish to
minimize a scalar function {X'). We compute

dy

where A will in general depend on X, unless the function is linear. The first-order condi-
tion is thus A{X) = O. In order to verify that the solution is a (local or global) minimum,
various conditions are available. We only mention that if dch > 0, then ¢ is convex,
and hence ¢ has a global minimum at the point where dy = 0; and, if d2g0 > (O for all
d X # O, then  is strictly convex, so that  has a strict global minimum at dy = 0.
More difficult is constrained optimization. This usually takes the form of minimizing
(X'} subject to a matrix constraint G(X') = O. We then define the Lagrangian function

¥(X) = p(X) - tr L'G(X),

where L is a matrix of Lagrange multipliers. (If G(X) happens to be symmetric, we may
take L symmetric too.) If 4 is (strictly) convex, then i has a (strict) global minimum at the
point where dy = 0 under the constraint G(X') = O. The simplest case where this occurs
is when o is (strictly)} convex and all constraints are linear.

In the first seven sections of this chapter we practice the use of the first differential and
the first derivative. First we practice with the use of differentials (Section 13.1), then we
discuss simple scalar, vector, and matrix functions (Sections 13.2-13.4), and then some
more interesting functions: the inverse (Section 13.5), the exponential and logarithmic
function (Section 13.6), and the determinant (Section 13.7).

The next two sections contain two important applications of matrix calculus. First, the
evaluation of Jacobians. If Y is a one-to-one function of X, then .J := 8 vec Y /8(vec X )’
is the Jacobian matrix of the transformation and the absolute value of det(.J) is the
Jacobian. In Section 13.8 we show how matrix calculus can be used to obtain Jacobians,
also (and in particular) when the matrix argument is symmetric. A second application is
sensitivity analysis. Here we typically ask how an estimator or predictor changes with
respect to small changes in some of its components, for example, how the OLS estima-
tor 3 := (X’'X)"1X'y changes with (“is sensitive t0”) small perturbations in X. In
Section 13.9 several examples demonstrate this approach.

Up to this point we did not need the second differential and the Hessian matrix. These
are developed in Section 13.10.

Two further applications of matrix calculus are presented in the final three sections. Our
third application is (constrained) optimization, which we demonstrate with least-squares
problems, best linear (and quadratic) unbiased estimation (Section 13.11), and some sim-
ple maximum likelihood cases (Section 13.12). Finally, we consider inequalities. Every
inequality can be considered as an optimization problem, because showing that (x) > 0
for all x in S is equivalent to showing that the minimum of ¢({x) over all « in S is equal
to zero. Thus, matrix calculus can often be fruitfully applied in proving inequalities (and
even equalities, see Exercise 13.69).
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13.1 Basic properties of differentials

Exercise 13.1 (Sum rules of differential) Let c be a constant, A a matrix of constants,
and let F and G be two matrix functions of the same order. Show that:

(a)dA = O,

(b) d(aF) = adF;

Vd(F+G)=dF +dG,;

()d(F - G)=dF —d&G;

(e)dtr F = tr{(dF) (F square).

Solution

(a) Let p(x) := o be a constant scalar function. Then its derivative ¢’ () is zero, and hence
dyp = ¢'(z) dz = 0. The same holds for the matrix function, because the differential of a
matrix is a matrix of differentials.

(b) This follows from the scalar result that d{ap(z)) = ade(z).

{c) Let us formally prove the case of a scalar function of a vector. Let p(x) := f(x)+g(x).
Then,

dip(wiu) = > u;Dyp(@) = 3 u; (D;f(@) + Djg(a))

= Zuijf(a:) + ZUijg(E) =df{z;u) +dg(a;u).
J J

The matrix case then follows immediately.
(d)—(e) These are proved similarly. Since the derivative of a sum is the sum of the deriva-
tives (linearity), the same holds for differentials.

Exercise 13.2 (Permutations of linear operators) For any matrix function ¥, show
that;

(2) d(F') = (dFY;

(b) d(vec F) = vec(dF).

Solution
Both results follow from the fact that the differential of a vector (matrix) is the vector (ma-
trix) of differentials.

Exercise 13.3 (Product rules of differential) For any two conformable matrix func-
tions F' and G, show that:

(@ d{FG) = (dF)G + F(dG);

OdFeG)=(dF) G+ F&(dG).
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Solution
(a) We have

(d(FG))ij = d(FG)i; = dZ fikgr; = Zd(fikgkj)
% %
= Z ((dfix)gn; + fiw dgr;) = Z(dfik)gkj + Z fir dgr;
% 3 k

(b) For a typical element of F' ® G, say fi;¢s. we have
d(fijgse) = (dfij)gse + Jij dgst,

and the result follows.

13.2 Scalar functions

Exercise 13.4 (Linear, quadratic, and bilinear forms, vectors) Let a be a vector of
constants and A a matrix of constants. Obtain the differential dy and the derivative Dy of
the following scalar functions:

(a) p(x) = d'x;

(b) () = ' Ax;

(¢) p(x1, @) := x| Axy, a bilinear form in ©; and ;.

Solution

(a) From dyp = a' d=z, it follows that Dy = a'.

(b) We have dp = {(dz) Az + ' Adxz = '(A + A')dx, and hence Dy = z'(A + A').
In quadratic forms there is no loss in generality if we take the matrix to be symmetric. If
A is symmetric, the derivative reduces to Dy = 2z’ A, which agrees with the scalar case
p(z) 1= ax? with derivative Dy = 2az. (In general, it is a good idea to check vector
and matrix derivatives with the scalar case.) The reason why we present also the derivative
for the general, nonsymmetric case is that it is sometimes unpractical to first rewrite the
quadratic form in its symmetric version.

(c) Let x := {x}, =) . Then,

dp = (dzy) Az + 2] Adey = 2, A de) + 2| Adas

R, o A dz, o . ) A
= (2], @3) (A’ O) (dﬂ:g) =z'Cda, whereC ;= (A’ O) ,

implying that
Dy = dp/ox' = 2'C = (zhA' - x| A).

Exercise 13.5 (On the unit sphere) If @’c = 1 on an open subset S in R™, show
thatz’dz =0on S.
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Solution
If 2’2z = 1 at 2 and in a neighborhood of x, then

0=d(z'z) = (dz)z + ' dz = 22’ dx,

and the result follows,

Exercise 13.6 (Bilinear and quadratic forms, matrices) ILet a and b be two vectors
of constants. Find the differential and derivative of the following scalar functions:

(a) ¢{X) = a’ X b, a bilinear form in a and b;

by p(X)=a'XX'a;

©)p(X)=adX'Xa.

Solution
(a) The differential is simply d¢ = a’(dX)b. To obtain the derivative we have to write
dy = (vec A) dvec X for some matrix A. Hence, we rewrite d as

dg=a'(dX)b= (' ®a)dvecX

with derivative

Dp(X) = 5o ~ b a).
(b) We have
de=a'(dX)X'a+a'X(dX)a=2d(dX)X'a
=2(a'X @a')dvec X,
s0 that
Dp(X) = 5?‘(;%))—, =2(X'aga).

{c) Similarly,
de=a(dX)Xa+a'X'(dX)a=2a'X'(dX)a=2{a' ®a' X )dvec X,
yielding Dp(X) = 2{a ® Xa)'.

Exercise 13.7 (Differential and trace) For a scalar function ¢ with differential dp =
tr( A’ d X)), show that De( X} = (vec A).

Solution
This is a very useful property, and simple to prove:

dp=trA"dX = (vecA) dvec X = Dy(X) = (vec AY.
Exercise 13.8 (Trace of powers, 1)  Use Exercise 13.7 to obtain the differential and

derivative of:
(@) p(X) =tr X;
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(b) p(X) = tr X?;
(©) (X)) :=tr XP

Solution
{a) First,
dy =d(tr X) = tr(dX) = tr(IdX) = D¢ = (vecI).
{b) Next,
dp=dtr X* = tr(dX)X + tr X dX = 2tr X dX = Dy = 2(vec X').

(Notice the transpose of X . This corresponds to the rule in Exercise 13.7 and also to the
fact that & tr X2/ = 2xj;.)

(c) Finally,
dp = tr X? = tr{d X) XP L+ tr X(dX)XP 2 oo tr XPH(AX)
=ptr XP71dX,
implying that

Dy = p(vec(X')P1Y.

Exercise 13.9 (Trace of powers, 2) Find the differential and derivative of:
(a) (X)) = tr X'X;

(b} p(X) == tr(X'X)P;

(€) p(X) == tr( X X")P.

(d) What is the difference between the derivatives in (c} and (b)?

Solution
{a) From

de=tr(d X)X + tr X'dX =2tr X'dX

it follows that Dy(X) = 2(vec X ).
(b) More generally,

de = tr(d( X' X)HX' XY+ (X' X)PHA(X'X)
=ptr(X' X1 A(X'X) = ptr( X' X )P 1A X)X + ptr( X' X)X dX
= 2ptr( X' X" X' dX,
with derivative
Dy (X) = 2p(vec X (X' X)P~1)".
(c) Similarly,
de = ptr( XXV HdX X") = 2ptr X' (X X')P~1d X
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implies
Dy(X) = 2p(vec( X X")P71 XY
{d) There is no difference between the two derivatives, because
tr( X' XP =tr(X'X) - (X' X)=tr X'(XX') . (X X)X = tr(X X')?
and
XX'XP1=X(X'X) (XX)=(XX")- (XXX = (XX'P1X.

Exercise 13.10 (Linear and quadratic matrix forms) Let A and B be two matrices
of constants. Find the differential and dertvative of:

@ p(X):=trAX;

(X)) =tr XAX'B,

©e(X):=tr XAXB.

Solution
(a) Fromdy = tr AdX, we tind Dp(X) = (vec A’Y, in accordance with Exercise 13.7.
(b} From

dg=tr(dX)AX'B+ir XAWdX)YB =trAX'BdX +tr A’X'B'(d X)
=wr(AX'B+ A'X'B")dX,

we obtain
Dy(X) = (vec(B'X A"+ BX A))".

(c) And,

dp=tr(dX)AXB +tr XA(dX)B=tr(AXB + BXA)dX

yields

Dy(X) = {vec(AXB + BX A))".

Exercise 13.11 (Sum of squares} Let ¢(X) be defined as the sum of the squares of
all elements in X, Obtain dy and Dy,

Solution
The trick here is to work with the matrix X rather than with the individual elements of X.

Thus we write
w(X) = szﬁf =tr X'X
(I

and hence dyp = 2tr X' d X, and Dg(X) = 2(vec X)'.



360 13 Matrix calculus

Exercise 13.12 (A selector function) Let (X)) be defined as the ¢j-th element of X 2.
Obtain d¢ and Dig.

Solution
As in Exercise 13.11, we want to work with the matrix X, rather than with its elements.
Let e; denote the i-th unit vector, having 1 in its ¢-th position and zeros elsewhere. Then,
o{X) = e/ X?e; and

dy = e/(dX)Xe; + e, X(dX)e; = tr(Xese; + ejel X)d X,
so that the derivative takes the form

Do(X) = (vec(ei(Xe;) + (X'e;)e])) = (vec(ex); + xi.e])) .

13.3 Vector functions

Exercise 13.13 (Vector functions of a vector, 1)  Obtain the differential and derivative
of the vector functions:

(a) f(x) := Az (A constant);

(b) f(z) :== Ag(x) (A constant).

(c) What happens in (a) if the elements of A also depend on x?

Solution
(a) Sincedf = Adz, wehave Df(x) = A.
(b} Now we have

df = Adg(z) = A(Dg(z))dz,
so that
Df(z) = ADg().
©If f() = A(x)x, then
df = (dA)e + Ade = ('@ I)dvec A + Adx

- ((a:’ ® I)age:,A +A> dz,

implying that
Of(x) dvec A

_ (!

Exereise 13.14 (Vector functions of a vector, 2)

(a) Let f(x) := (x'z)a, where a is a vector of constants. Find the differential and deriva-
tive.

(b) What happens if @ also depends on a?
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Solution
(a) From d f = (22’ da)a = 2ax’ dz, we obtain D f(z) = 2ax’.
(b) If @ = a(z), then

df = (de'z)ae + (z'z)da = (22’ dz)a + 2'2(Dalx)) dx
= (2az’ + 2’zDa(x))dz
so that
Df(z) = 2az’ + 'zDa(z).

Exercise 13.15 (Vector functions of a matrix) Let a be a vector of constants. Find
the differential and derivative of the vector functions:

(@) f(X):=Xa;

(b} f(X) = X'a.

Selution
{a) We have
df = (dX)a = (¢’ @ INdvec X,
and hence
of (x) '
D = = .
f (=) O(vec XY awl

(b) Similarly,
df = (dXYa = vec ((dX) a)
=vee(a'dX) = (I ®a')dvec X,
so that
DfX)=I®d.

13.4 Matrix functions

Exercise 13.16 (Matrix function of a vector)  Obtain the differential and derivative of
F(x) :=ax'

Solution
Since dF = (dx)z’ + x(dx)’, we find

dvec F = (x @ Ildvecx + (I@x)dvece’ = (e @ I + I ® z) d=z,

so that
_ Ovec F(x)

DF
dx'

=221 +IQwx



