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Thus paper provides an analytical study of linear regressions involving the levels of economic time
senes. An asymptotic theory is developed for regressions that relate quite general integrated
random processes. This includes the spurious regressions of Granger and Newboid (1974) and the
recent cointegrating regressions of Granger and Engle (1985). An asymptotic theory is developed
for the regression coefficients and for conventional sigmficance tests. It is shown that the usual -
and F-ratio test statistics do not possess limiting distributions in this context but actually diverge
as the sample size T 1co. The limitng behavior of regression diagnostics such as the Durbin-
Watson statistic, the coefficient of determination and the Box-Pierce statistic is also analyzed. The
theoretical results that we present explain many of the earlier simulation findings of Granger and
Newbold (1974,1977).

1. Introduction

In an important, influential and frequently cited article in this Journal,
Granger and Newbold (1974) examined some of the likely empirical conse-
quences of nonsense or spurious regressions in econometrics. Many of the
points made by Granger—-Newbold center on the classic textbook warning
about the presence of serially correlated errors invalidating conventional
procedures of inference in regression. The failure of conventional test proce-
dures in this context was given dramatic demonstration by the Monte Carlo
evidence reported in their article. More discussion and further evidence of the
danger of spurious regressions can be found in their subsequent monograph,
Granger and Newbold (1977, pp. 202-214), and in related work by Plosser
and Schwert (1978).

A focal point of the Granger—Newbold study is the specification of regres-
sion equations in terms of the levels of economic time series. Granger and
Newbold argue persuasively that: the levels of many economic time series are
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non-stationary; their sample paths are well represented by integrated processes
of the ARIMA type popularized by Box and Jenkins (1970); and often they
appear to be near random walks. It is further argued that regression equations
which relate such time series frequently have high R? yet also typically display
highly autocorrelated residuals, indicated by very low Durbin-Watson statis-
tics. In such situations they rightly contend that the usual significance tests
about the regression coefficients are very misleading. The sampling experi-
ments they conduct provide strong evidence that the conventional significance
tests are seriously biased towards rejection of the null hypothesis of no
relationship and hence acceptance of a spurious relationship, even when the
series are generated as statistically independent random walks.

The failure of the conventional significance tests in the Granger—Newbold
experiments has attracted a good deal of attention in econometric research
and teaching programs. Yet, surprisingly, no analytical study has been made
of what exactly goes wrong with the conventional tests in their Monte Carlo
set-up. Granger and Newbold themselves emphasize the inappropriateness of
the usual tests, given the heavily autocorrelated residuals. They point to the
difficulty of the distribution problem involved. But they provide no further
analysis. Subsequent researchers appear to have ignored the problem.

The present paper develops an asymptotic theory for regressions that relate
quite general integrated random processes. This includes spurious regressions
of the Granger—Newbold type as a special case. It turns out that the correct
asymptotic theory goes a long way towards explaining the experimental results
that these authors obtained. In many cases their findings are quite predictable
from the true asymptotic behavior of the relevant statistics. Thus, our theory
demonstrates that in the Granger-Newbold regressions of independent
random walks the usual r-ratio significance test does not possess a limiting
distribution but actually diverges as the sample size T 1 co. Inevitably, there-
fore, the bias in this test towards the rejection of no relationship (based on a
nominal critical value of 1.96) will increase with T. (In fact, T =50 in the
Granger-Newbold experiments.) We also show that the Durbin—Watson
statistic actually converges in probability to zero, while the regression R? has
a non-degenerate limiting distribution as T ?oo. These and other related
results are given in section 2 of the paper.

Section 3 extends the theory to multiple regressions in which the variables
are generated by a very general vector integrated process. This framework
allows for cointegrating regressions of the type recently advocated by Granger
and Engle (1985). The latter authors work under a null hypothesis of no
cointegration in the series. Under this null, the relevant asymptotics for such
regressions are given by the general theory that we develop in this section of
the paper. Some discussion is also provided of the appropriate distribution
theory under the alternative hypothesis that there is cointegration in the series
in question (i.e., some linear combination of the series is stationary).
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Some concluding remarks are made and some further extensions of the
theory are discussed in section 4 of the paper. A mathematical appendix is
provided which contains proofs of results which appear in the body of the
paper together with some related material on functional central limit theory
and the multivariate Wiener process that is needed in our mathematical
derivations.

2. Large-sample (T 1 o0) asymptotics for spurious regressions

Granger and Newbold (1974) take the following stochastic environment as
their prototype of a spurious regression. The variate y, is regressed on a
constant and another variate x, giving the least squares regression

y,=é&+pBx,+a, t=1,.,T. (1)
In fact, y, and x, are generated by the independent random walks
yl=yt-'1+vI’ xt=xt—l+w17 t=1’2""9 (2)

in which v, is iid(0, 6?) and w, is iid(0, 6?). In their simulations Granger-
Newbold set initial conditions as y, = x, = 100 and draw v,, w, from indepen-
dent N(0, 1) populations.

For our own theoretical development we shall make much weaker assump-
tions about the innovations in (2). It will be convenient for our purpose here
and for our analysis in the next section to work at quite a general level. Thus,
we introduce a sequence {§,}¥ of random n-vectors defined on a probability
space (2, &, P). Let S,= 2;_1£J be the partial sum process and set S;=0.
We require:

Assumption 1.

(a) E(§,)=0 for all t;

(b) sup, E|§,,|f*¢ < o for some B>2 and e > 0;

(¢) T=limq,_, T 'E(S;S7) exists and is positive definite;

(d) {£,)7 is strong mixing with mixing numbers ., satisfying Lol %% < co.

If we now set n=2 and §, = (v,, w,), then the conditions implied by Assump-
tion 1 on the innovations of (2) are quite weak. In effect, they permit y, and x,
to be rather general integrated processes (of order one) whose differences are
weakly dependent and possibly heterogeneously distributed innovations. This
includes a wide variety of possible data-generating mechanisms, such as the
ARIMA( p,1,q) model, under very general conditions on the underlying
errors. Note that condition (b) of Assumption 1 controls the allowable
heterogeneity of the process, whereas (d) controls the extent of permissible
temporal dependence in the process in relation to the probability of outlier
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occurrences. Thus, the summability condition (d) is satisfied when the mixing
decay rate is a,, = O(m~?) for some A > B/(B —2). As B approaches two and
the probability of outliers rises [under the weakening moment condition (b)]
the mixing decay rate thereby increases and the effect of outliers is then
required under (d) to wear off more quickly.

Note that if {£,} is weakly stationary then

S=E(£8) + L E(5ii+ &b, €)
k=1

and the convergence of this series is implied by the mixing condition (d)
[Ibragimov and Linnik (1971, theorem 18.5.3)]. Moreover, when £, = (v, w,)
and v, and w, are independent, as in the spurious regressions context, we have

5 l:o,,z 0 ]’ @)

where

and

We denote the standard errors of & and f in the regression (1) by s, and sp.
The customary ¢-ratios are then ¢,=&/s, and t3=B/s3. Let DW be the
usual Durbin—Watson d-statistic and R? be the coefficient of determination.
The Box-Pierce statistic is

k
Qk= TZ ’32’

swm]

where

Theorem 1 below provides the correct (T 1 o0) asymptotic theory for the
least squares regression estimates in (1), the associated t-ratios and the
commonly used regression diagnostics DW, R? and Q,. The following lemma
is useful in the derivation of this theorem and our other results:

Lemma 1. Suppose { y,}7 and {x,}7 are generated by (2). If the innovation
sequences {v,}° and {w,)¥ are independent and if {(v,w,)}¥ satisfies
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Assumption 1 then, as T 1 oo,

(a) r-s/z;rx,mwjo‘u/(z)dr,
T"/’Z::y,=%folV(t)dt;

() T‘zéx?w&folW(t)zdt,
T"erly,2=w,?j:V(t)2dt;

(c) T-2>lf(x,—fc)’=a3{folw<r)’dr-{jo‘W(z)dx}z],
T-Z;T(y,—y)’mf[ [vieyar-{ /Olm)d,}’];

@) T Eysmao [ VOW(r
1 0

r

T
(e) T 'Lyn(—n)=(r/2{eV(1)+2,}+ X (r-j)Q,,

J=1

T r
T Y x,(x,—x,_,) = (r/D{62W(1)* + 2,0} + L (r—/)Qu,;

J=1

T T
(f) T_lzyx(xl—xr—r) + T‘lzx:()’,")’r-,) = rauowV(l)W(l);

where W(t) and V(t) are independent Wiener processes on C[0,1) and where

T
2,,= lim T' ¥ E(vp,_,), j=0,1,...,

T—oo J+1

T
Q,,=1tmT'Y Eww,_)  j=01,...

wJ
T-x J+1

Moreover (a)—(f) hold irrespective of the initial conditions assigned to y, and
Xqe
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In the statement of Lemma 1 C[0,1] denotes the space of all real-valued
continuous functions on the interval [0,1]. The Wiener processes W(¢) and
V(t) that occur in the lemma are stochastically independent. Their sample
paths lie in C[0,1]. Results (a)-(f) of the lemma establish that suitably
standardized sample moments of the sequences { y,}¥ and {x,}T converge
weakly to appropriately defined functionals of the Wiener processes W(t) and
V(¢). Each of these functionals has a well-defined non-degenerate distribution.
The notation ‘=’ in the lemma is used to denote weak convergence of the
relevant probability measures. Thus, in the case of (a) we deduce that
T-32%¥Tx, converges in distribution to the distribution of the functional
a, IO‘W(t)dt of the Wiener process W(z) on C[0,1). Since W(¢) is Gaussian
with mean zero and independent increments [see, for example, Billingsley
(1968)] we further deduce that the limiting distribution of 7-3/2X7x, is
normal with zero mean and variance given by

ajs{fo‘];‘w(z)w(s)dzds} =2ajjo‘fo'1=,{w(r)w(s)}dsdr

=202 ! rsdsdr= 273,

S o2/

Lemma 1 and the subsequent results of this paper are proved in the mathe-
matical appendix using functional central limit theory. An introductory dis-

cussion to this form of asymptotic theory and references to the recent
literature on the subject are given there.

Theorem 1. Suppose (1) is estimated by least squares regression and the
conditions of Lemma 1 are satisfied. Then, as T 1 o0,

ov{j:V(t)W(t)dt-j;lV(t)dtj;lW(t)dt}
- ow{j:W(t)zdt—(j:W(t)dt)z}
(b) T‘1/2&=oav{j;1V(t)dt—$’j;1W(t)at};

¢ T Y%, = u/v'/2  where
8

p=j;IV(t)W(t)dt—j;lV(t)dtj:W(t)dt,

y= {folV(t)zdt— (folV(r)dt)z}{folW(')zd" (folw(’)d’)z}

—{j;lV(t)W(t)dt—j;IV(t)dtj;lW(t)dt>2;

= (ov/aw)g;
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(d) T“/zta--'»{j:V(t)dt—{j;lW(t)dt}
x{j:W(t)2dt— (j;lW(t)dt)z}/[vj:W(t)zdt]m;

{2{]:W(t)2dt— (]:W(r)dt)z} .
LIV(t)zdt—(j:V(t)dt)z ’

(e) R*=

(f) bDw-o,
P
TDW = {(2,0/02) + t*(2,0/02)} [folV(t)zdt— (j:V(z)dt)2

- {2{L1W(t)2 dr - (I:W(t)dt)z}};

(g)  forallfixeds>1,
T(r,—1)= —A/B and r,=1+0,(T'), where

A= (s/Z)[{V(l) —tw(1)} - {fO‘V(z)dz— gj;‘W(z)dz}]z
+(s/2){j:V(t)dt— ;jO‘W(t)dt}z

+ {sﬂvo/zof + i (s —j)ﬂ.,,/ouz}

J=1

2
+§2{s9w0/2¢3+ Y (s —j)ﬂw,/owz},

J=1
B= fo‘V(r)2 dr— (j:V(t)dt)z— {2{_[01W(t)2dt- (j;lW(t)dt)z};

k
(k) T-le": Z'}z‘;k;

s=1

where W(t) and V(t) are independent Wiener processes on C[0,1].
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Theorem 1 goes a long way towards explaining the Monte Carlo results
reported by Granger and Newbold. In the first place, parts (c) and (d) of the
theorem show that the conventional r-ratios, , and tg, that are used to assess
the significance of the coefficients in regression analysis do not have limiting
distributions in this context. In fact, the distributions of ¢, and ¢4 diverge as
T 1 o0, so that there are no asymptotically correct critical values for these
conventional significance tests. We should expect the rejection rate when these
tests are based on a critical value delivered from conventional asymptotics
(such as 1.96) to continue to increase with the sample size. The high rejection
rate that Granger and Newbold found in their experimental investigation
(where T = 50) therefore comes as no surprise. Indeed, it is predicted by the
correct asymptotic theory. From their experimental results, Granger and
Newbold (1974, p. 115) suggest the use of a new critical value of 11.2 (rather
than the usual value 1.96) when assessing the significance of the coefficient of
x, in the regression at the 5% level. Our results now show that this suggestion
has no foundation in asymptotic theory. On the contrary, if asymptotics were
to be used in this context then the correctly standardized statistic is 15 = 15/ VT,
whose limiting distribution is given by the functional defined in (c) rather than
the standard N(0, 1) distribution that is used in conventional asymptotic tests.
Note that after such standardization the critical value suggested by Granger
and Newbold transforms as 11.2 = 11.2/, 50 = 1.58. This transformed value
is, in fact, an approximation to the percentage point of the asymptotic
distribution given in (c).

However, conditions (a) and (b) of Theorem 1 show that, in contrast to the
usual results of regression theory, the coefficients & and B do not converge in
probability to constants as T 1 oo. In fact, 8 has a non-degenerate limiting
distribution as T 1 o0 and the distribution of & actually diverges as T 1 0.
Thus, the uncertainty about the regression (1) that stems from its spurious
nature [y, and x, being generated by (2)] persists asymptotically in these
limiting distributions. The contrast with usual regression theory extends
further to the case where y, and x, are generated by independent stable
autoregressive processes. In that case both @ and 8 converge in probability to
zero.

The reason for the distinctive nature of the present results is that the
processes y, and x, are non-ergodic. In fact, the sample moments of y, and x,
and their joint sample moments do not converge to constants, as they do for
ergodic processes. As showr by the results of Lemma 1 quite different limiting
behavior occurs. Upon appropriate standardization the sample moments of y,
and x, actually converge weakly to random variables. Theorem 1 demon-
strates that, when the regressors are non-ergodic, we obtain limiting behavior
for regression coefficients which is also quite different from that predicted by
conventional theory.

Theorem 1 also shows that DW -, whereas R? has a non-degenerate
limiting distribution as T 1 co0. Low values for the Durbin—Watson statistic
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DW and moderate values of the coefficient of determination R? are therefore
to be expected in spurious regressions such as (1) with data generated by
integrated processes such as (2). The asymptotic distribution of the stan-
dardized statistic TDW is also given in part (f) of the theorem.

From part (g) of the theorem we see that the serial correlation coefficients of
the regression residuals converge in probability to unity. The limiting distribu-
tion of the standardized coefficient T(r,— 1) is also given in part (g) of the
theorem. From part (h) we deduce that the distribution of the commonly used
Box-Pierce statistic O, diverges as T 1 o0. All of these results differ from the
conventional theory of regression with stationary processes.

3. Extensions to multiple regressions with integrated processes

The results of the previous section are readily extended to the multiple
regressions of the form

y=a+pBx+#, t=1,...,T, (5)

where y, (a scalar) and x, (an m-vector) are quite general integrated processes
of order one. It is not necessary to require that y, and x, be independent. In
fact, the main requirement is that the vector time series (y, x,) is not
cointegrated in the sense of Granger and Engle: that is, there does not exist a
linear combination of (y,, x;) which is integrated of order zero (i.e., is a
stationary process). When (y,, x}) is cointegrated, different results apply as we
shall indicate below. The reader is referred to Phillips and Durlauf (1985) for
the theory in this case.

For our development here we set z,=(y, x;) and suppose that z, is a
vector integrated process of dimension n=m+ 1 whose generating mecha-
nism is

z,=z,y+§, t=1,2,.... (6)

The process {£,}T in (6) is required to satisfy Assumption 1 and we allow
either of the commonly used initial conditions: (i) z, = const. with probability
one, or (ii) z, is random with a certain specified distribution.

Our main result is the following:

Theorem 2. If (5) is estimated by least squares regression, if z, is generated by

(6) and if the innovation sequence {§,}¥ satisfies Assumption 1, then, as
T 1 oo,

(a) B=A3lay;

(b) T Y%a=b —byA5la,;
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2 - .
(¢) R*=ayAd3'ay/ay;

(d) T 'By=(1/m)ayAz'ay/{ay —anAnlay};
(e) T Vy= (Aleazx)./{(au - ayAz'ay) l/2(['4 1/2}§

(f) TDW=°1|'E€11/{011 —ayAp'ay };
where
1 m
4= an|l
a, Ayp|m

(7
=>:1/2{]°‘z(t)z(t)'d:—jolz(x)drjo‘zo)'dt}zl/z,

| 12 (1
b—[bz]m=2 j;Z(t)dt,

7” = (1’ _a,ZlAil)’

Z(t) is a vector Wiener process on C*", X is defined in Assumption 1 and
T
Z= lim T E(££).
T—w 1

In part (d) of Theorem 2, F; denotes the customary regression F-statistic
for testing the significance of £ in (5), and, in part (€), t; represents the
conventional t-statistic for assessing the significance of 8,. We observe that the
distributions of both F, and 15 diverge as T oo and so there are no
asymptotically correct critical values for these statistics. As in the case of the
t-ratio statistics considered in the previous section, the use of conventional
asymptotics in setting the critical values of these tests leads to a rejection rate
which increases with the sample size. We note that the divergence rate of the
distribution of Fj is O(T'). This is greater than the divergence rate of o(TV?)
for the individual t-tests (and that of the t-ratio statistics #, and #; in the
simple regression context). In a regression with many regressors, therefore, we
might expect a noticeably greater rejection rate for the block F-test than for
the individual r-tests or for a test with fewer regressors. This is, in fact,
precisely what we do observe in the Granger and Newbold experiments. For
regressions involving independent random walks their table 2 [Granger and
Newbold (1974, p. 116)] reports a rejection rate of 76% when m=1 (one
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regressor) and a rejection rate of 96% when m = 5 (with T = 50 in both cases).
For regressions involving independent ARIMA(0,1,1) series the correspond-
ing rejection rates are 64% and 90%. Thus, asymptotic theory is again helpful
in explaining these simulation findings. )

As in the case of simple regression, the regression coefficients & and B do
not converge in probability to constants as T foo. Once again S has a
non-degenerate limiting distribution while the distribution of & diverges as
T 1 o0. From part (f) of Theorem 2 we see that DW 5 0, and, from part (c),
that R? has a non-degenerate limiting distribution, both as in the case of
simple regression. Again, low values for the Durbin-Watson statistic and
moderate values of R? are to be expected in regressions such as (5) that
involve integrated processes.

It is worth emphasizing that in the present case y, and x, are, in general,
correlated time series. In the previous section we retained the Granger-
Newbold hypothesis of independent y, and x, to underscore the spurious
nature of the regression. However, it is clear from the results of Theorem 2
that the major conclusions of the present theory continue to hold irrespective
of whether y, and x, are independent or not. Of course, the correlation
properties of these time series do have quantitative effects on the limiting
distributions. These effects are introduced through the parameters of the
limiting covariance matrices 2 and Z,. Under the conditions of the Theorem,
however, these effects do not interfere with the main qualitative results of the
theory: viz. that the regression coefficients & and B do not converge in
probability to constants, that the distributions of test statistics such as F, and
tg, diverge as T 1o, and that the Durbin-Watson statistic converges in
probability to zero whereas R? has a non-degenerate limiting distribution as
T 1 o0.

There is, in fact, one case of major importance where the correlation
properties of y, and x, do interfere with these qualitative results. Assumption
1(c) requires that the limiting covariance matrix 2 be non-singular. If we allow
the matrix 2 to be singular, then the asymptotic theory of Theorem 2 no
longer holds as stated. We may suppose, for example, that 2 has rank
m=n—1 and the submatrix Z,, has full rank m in the partition

1 m
oy oy |1
= .
["n Ezz] m

Then o0y, = 05,23,'0,, and 2y =0 where v’ =(1, —a’) and a’ =05, %5;". The
singularity of 2 is, it turns out, a necessary condition for (y, x,) to be
cointegrated in the sense of Granger and Engle (1985). In this case, the
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cointegrating vector is y and under weak additional conditions (it is sufficient
that y’z, satisfy Assumption 1) we find that the regression coefficient B in (5)
is a consistent estimator of a=2X3's;. Thus, the asymptotic theory of
regression for cointegrated series is quite different in certain respects from that
given in Theorem 2. The reader is referred to Phillips and Durlauf (1985) for a
detailed investigation of the regression theory in this case.

In developing tests of cointegration Granger and Engle (1985) prescribe as
their null hypothesis that the series in question are not cointegrated. The
asymptotic distribution theory under this nuil of the cointegrating regression
(5) is then given directly by Theorem 2. To test this null hypothesis against the
alternative that the series are cointegrated Granger and Engle (1985) suggest a
number of different statistics. One of these is the Durbin-Watson statistic,
DW, constructed from the residuals of the cointegrating regression. As we
have seen above, under the null of no cointegration, DW — 0 as T 1 .

Moreover, the limiting distribution of TDW given by part (t)Pof Theorem 2
may be used to construct an asymptotic critical value for the Granger-Engle
test, thereby approximating the critical values reported in tables II and III of
Granger and Engle (1985) for this test.

This DW-test was earlier suggested by Bhargava (1984). By virtue of its
construction, it would seem to be an intuitively appealing test for discriminat-
ing between stationary and non-stationary alternatives or, in the present
context of regression residuals, between cointegration and no cointegration.
However, as Granger and Engle (1985) remark, the correct critical value for
this test is parameter dependent upon the dynamics of the errors. Our result
makes this dependency explicit and shows how the limiting distribution of the
statistic TDW, and hence the implied asymptotic critical value for DW,
depends on the serial correlation and heterogeneity characteristics of the
innovation sequence {§,}7.

4. Some conclusions and further extensions

To the extent that the levels of economic time series are non-stationary and
non-ergodic, regressions that relate such variables will typically require the use
of asymptotic methods and results that are quite different from those that are
well established in current econometric theory and practice. The present paper
has developed an asymptotic theory of regression which is applicable when the
variables are quite general integrated processes. This includes the spurious
regressions of the type considered in the simulation studies of Granger and
Newbold (1974,1977). When the correct asymptotic theory is brought into
play in this context we have found that the simulation findings of Granger and
Newbold offer no surprises. In many respects these findings are well predicted
by the relevant theory.
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The asymptotic theory of regression that we have developed here also
applies to the cointegrating regressions that have recently been introduced by
Granger and Engle (1985). Interestingly, the essential characteristics of the
regression theory in this case are the same as they are for spurious regressions
which relate independent time series. Some major differences in the theory do
arise when the time series in question are cointegrated. However, methods
similar to those that we have employed here may be used to analyze such
regressions. For a detailed treatment of this case the reader is referred to
recent work by Phillips and Durlauf (1985) and some related work by Stock
(1985).

The theory derived in this paper is based on large sample (T 1 o0) asymp-
totics. An alternative asymptotic theory may be developed which works in
terms of the time interval (h) between sampled observations. As 7 [0 we
obtain a continuous record of observations over a finite time span. Such
continuous recording of data has been a feature of statistical data collection in
certain physical and medical sciences for many years. Trends in this direction
for economic and financial statistics are now well established. For example,
with the electronic monitoring of activity in certain financial and foreign
exchange markets it is now possible to work with data recorded at very high
frequencies (daily, hourly or even minute-by-minute in some cases). It is,
therefore, of natural interest to study the asymptotic behavior of statistical
procedures when h |0 as well as when T 1 oo for a given fixed 4. Continuous
record asymptotics of this type were first developed rigorously by the author in
a recent paper (1985a). The regressions considered in the present paper may
also be analyzed using continuous record asymptotics. When the innovation
sequence {§,} is iid, some especially interesting and intuitively appealing
results are obtained by this approach. For example, we find that the regression
coefficient ,é in (1) has the same limiting distribution in this case as & | 0 over
a fixed span of data as it has when T 1t oo (with 4 fixed) over an infinite span.
Thus, the same limiting distribution theory applies in two different directions.
One might therefore expect the asymptotic distribution of this regression
coefficient to yield an unusually good approximation in finite samples. The
reader is referred to an earlier version of the present paper [Phillips (1985b)]
for a detailed analysis along these lines.

It is also possible to gain insight into the adequacy of the asymptotic theory
presented here by means of higher-order asymptotics. Since the limiting
distribution theory in the present paper is non-normal and relies on functional
central limit theory the mathematical development of such expansions is quite
difficult and is of a very different character from the conventional theory of
Edgeworth expansions. In another paper the author (1985c) has developed the
theory of such higher-order asymptotics in a general setting which extends to
the present case. It may be shown from these results, for example, that the
error on the asymptotic distribution of 8 given in Theorem 1 is of OP(T“)
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under quite general conditions. This gives us another reason for expecting the
asymptotic theory of the present paper to work well, at least in certain cases.

Mathematical appendix

A.1. Functional limit theory and the Wiener process

Define the partial sums P,= Xy, Q,=X{w, and set Py=Q,=0. In view
of (2) we may write y,=P,+y, and x,= Q,+ x,. In what follows we shall
permit either of the commonly proposed initial conditions: (i) y, (respectively
Xo) = ¢, a constant, with probability one, or (i) y, (x,) has a certain specified
distribution. We construct the standardized sums

1 (j-1)/T<st<j/T,
YT(’)—_ﬁ%Pm]‘ ﬁuvpj—l’ j=1,...,T,

1 1 (j‘-l)/TSt<j/T9
Xr(t)= ﬁo Q[T‘]= ﬁo Q-’_l’ j=1,.-~) T’

1 1
Yr(l) = mpra Xr(l) = F;Qr»

v

where [a] denotes the integer part of a.

We shall also have occasion to work with the more general sequence {§,}7
of random n-vectors satisfying Assumption 1. Using the partial sum process
S, =Xt (S =0), we construct

i—-1)/T<t<j/T,
ZT(1)=T’l/zz—l/zslnl=T—-l/22—1/2_s}-1, (‘J )/ T<st<j/
j=1,...,T,
z,(1) = T3V,

When £, = (v,, w,) and the sequences {v,} and {w,} are independent, we have

002 0 _ YT(')
2=[0 oj]’ ZT(t)—[XT(t)].
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X7(2) and Yp(t) are random elements of the function space D[0,1], the
space of all real valued functions on [0,1] that are right continuous at each
point of [0,1] and have finite left limits. Similarly, Z(¢) is an element of the
product space D" = D[0,1] X --- X D[0,1] (n copies). We endow D" with the
metric

dn(f9g)= mta'x{do(-fl’ gt):i=1""’n;.fl’gtED[0’1]}’

where d,, is the modified Skorohod metric [Billingsley (1968, p. 112)]. With
this metric D" is a separable and complete metric space. Under quite general
conditions on the underlying process {£,}] we may establish a central limit
theory for Z,(¢) on the function space D", We shall, in particular, make use
of the following result which is proved in Phillips (1985c, theorem 2.2):

Lemma A.1. Let {£,}7 be a sequence of random n-vectors satisfying Assump-
tion 1. Then, as T too, Zy(t)= Z(t), a multivariate Wiener process on
C"=C[0,1] X - -+ XC{0,1].

The notation ‘=’ in the statement of Lemma A.1 is used to signify the
weak convergence of the probability measure of Z,(¢) w0 the probability
measure (here, multivariate Wiener measure) of the random function Z(t).
The result is a multivariate functional central limit theorem (CLT), i.e., a CLT
on the function space D”. It may also be described as a multivariate invariance
principle following early (univariate) work by Donsker (1951) and Erdos and
Kac (1946). Univariate results similar to Lemma A.1 were obtained by
McLeish (1975a) and Herrndorf (1984). The reader is referred to Billingsley
(1968), Hall and Heyde (1980) and Pollard (1984) for an introduction to the
subject and excellent reviews of the literature.

The limit process Z(z) in Lemma A.1 is popularly known as the vector
Wiener process or as vector Brownian motion. The sample paths of Z(¢) lie
almost surely (Wiener measure) in C"= C[0,1} X --- X C[0,1] (n copies),
were C[0,1] is the space of all real-valued continuous functions on [0,1].
Moreover, the vector random function Z(r) is Gaussian, with independent
increments {so that Z(s) is independent of Z(¢) — Z(s) for 0 <s<t< 1] and
with independent elements [so that Z,(¢) is independent of Z (1), i #].

In the case where n=2, §, = (v,, w,) and the sequences {v,} and {w,} are
independent we obtain

Xr(1)=w(), Y(£)=V(t) as T1oo,

where W(t) and V(t) are independent Wiener processes on C[0,1].
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A.2. Proof of Lemma 1

To prove (a)-(d) we write each statistic as a functional of X,(¢) or Y;(¢) or
both as is appropriate. Thus, in the case of (a) we have

T T
T332 x, =T (Qi_y+w,+xo)
1

=]
T T
=0, T 'L (1/VT0,)Q,_ 1+ T2 L (w,+ x,)
1 1
T /T
» / Xr(1)de+0,(1)
1 a-1/T
=o,,/0‘x,(z)dt+o,(1)

=>0w/1W(t)dt as T1oo.
0

The third line of the argument follows since T~'/2x,=0,(1) [under either of
the initial conditions (i) or (ii)] and T~'X}w,— 0 as. as T 1 oo by the strong
law of McLeish for weakly dependent (a-mixing) sequences [McLeish (1975b,
theorem 2.10) or White (1984, corollary 3.48)). The final line of the derivation
follows from Lemma A.1 and the continuous mapping theorem [e.g.,
Billingsley (1968, pp. 30-31)). Note that the result holds irrespective of
whether the initial condition x, is prescribed to be a fixed constant or a
random variate with a specified distribution. Since the same point applies in
all the derivations that follow (at least for large T asymptotics) we will set
Xg =y, = 0 without loss of generality to simplify derivations.

Arguments entirely analogous to those of the proof of (a) yield results
(b)—(d). For example, in the case of (d) we have

T T
T2 yx,=T %s,Y.(1/VTe,)P,_,(1/VTs,)Q,_,
1 1

T
+ T’ZZ(v,x,_l +Yy,_w,t v,w,)
1

T
=00, [T ¥r(0) Xelr) i+ 0,(1) (A1)
1 70-1)/T

= o,,owEYT(t)XT(t) dr +0,(1)

=>0v0wj:V(t)W(t)dt as T 1oo.
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The final line of-the argument follows once again from Lemma A.1 and the
continuous mapping theorem. The second line of the derivation is a conse-
quence of the fact that

B T T T
T Lox =00, X [7 Xr(1)d¥r(r)
1 1 Ye-y/T
=0, [ Xp(1)dY,(1) (A2)
0
1
=’ovowf W(t)dv(:s) as T too,
0

as in Lemma 3.1(e) of Phillips and Durlauf (1985). The integral in (A.2) is, of
course, a stochastic integral. Similarly, we have

T
T Ly, w, =00, [ V(1)dW(1) as Ttoo,
1 1]
and by the strong law of McLeish for weakly dependent (a-mixing) sequences,
T
T-'Y uw,—0 as.
1

This verifies the 0,(1) error on the right side of (A.1). Thus, (d) is established.
To prove (e) we first consider the case r = 1. We shall demonstrate the result
for y,, writing

T T
Tt Z)’;()"-}"-l) =T! Zytvl
1 1
(A.3)
T T
= T_lzvtz + T'IZ)’qur
1 1

We note that the process {v?— E(v?)) T is a measurable function of (a finite
stretch of) {£,}T and is, therefore, strong mixing with mixing numbers that
satisfy the summability condition (d) of Assumption 1 [e.g., White (1984,
theorem 3.49)]. Set 8= 2r with r>1 in this summability condition and note
that, in view of Assumption 1(a), sup, E|v,|>"** < oo for some & > 0. Thus, by
the strong law of McLeish for a-mixing sequences we have

T T
T'Y 02— lim TP E(v?) =2, as T 1. (A4)
1 1

as. T—w
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Taking the second term of (A.3) we write
T T ) T T
T-IZ)’:—M: %{T—IZ(yt—l + U,) - T—lzytz—l - T—lzvtz}
1 1 1 1

T T
=(e22) T [¥r (1, 7 /2T 02
i=1 1 (A.5)

T
= (a2/2) ¥, (1)* - (1/2T))12v3

5(002/2)V(1)2_%900 as T too.

(A.5) follows by Lemma A.1 and the continuous mapping theorem (applied to
the first term) and the strong law of large numbers (A.4). Combining (A.3),
(A.4) and (A.5), we deduce that

T
T! Zyl(yl = V- 1) = (002/2) V(1)2 + Jz"ﬂuo as T too, (A6)
1

which is the stated result with r=1,
Suppose () holds for some r > 1. Write

T T T
T Z }’r(y:—yt-r-l) =T! Z yt(yr—yt-r) +T°1 Z YiVi—ps

r+1 r+1 r+1
(A7)
and

T T T ¢
Tt Z Y= Tt Z Yi—r+)Vr—r T T z Z V0,

r+1 r+1 r+l jme—r

T r T
= T_l Z yt—(r+1)v -r+ z T—l 2 vt-tvt—' (A.S)

r+1 1=0 r+1

r
= (a2/2)V(1)’ - 12,0+ L 2, as T1too.
=0

The first term of (A.8) follows in the same way as (A.5) above. The second
term follows from the strong law applied to T™'L7, [ {v,_,v,_,— E(v,_,,_,)}
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for i=0,1,..., r. In particular, it is easily verified that the sequence {(v,_,v,_,
- E(v,_,v,_,))} %, satisfies the moment condition

sup E|v,_,v,_, - E(U,_,U,_,)V“‘ < o0,
4

in view of Assumption 1(b) with 8=2r, r>1and =26 > 0; and (v,_,v,_, —
E(v,_,v,_,)) is a measurable function of a finite stretch of the process £,, so
that it is also strong mixing with mixing numbers that satisfy the summability
condition (d) of Assumption 1. It follows by the strong law of McLeish that

T
T! Z (v,_,v,_,— U V-» )) "0 as T too,

r+1

or

T_ ZU, ll-—r—.) hmT“ ZE(UU )=va j="—i.

r+l as. T—ow J+1

This proves (A.8). Combining (A.6), (A.7) and (A.8), we obtain

T
T Y 3 (3= 2-r-) = ((r+ 1) /2)(02V(1)* + 2,4)

r+1

r+1
+ L (r+1-/)2, as Ttoo,
=1

proving (e) by induction on 7.

To prove (f) we first consider the case r = 1. Write

Lo, L wi o+ z(zwk

J=1 k- J=1\k=1

v+ Z (kilv)wk,

=1

from which we deduce that

T T
T“):y,-;(x,- X))+ T—lzxr—l(y:_yn—l)
1 1

T
=00,Yr()X;(1)-T ' Low, =00 V(1)W(1) as T 1too,
1

by Lemma A.1 and the continuous mappmg theorem (applied to the first term)
and by the strong law applied to 7" 'XJv,w, since E(v,w,) =0 all 1.
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Suppose (f) holds for some r > 1. We write

T T
T—-l Z yr(xt_ xr—r—l) + T_l Z xt(yt_yt—r—l)

r+1 r+1
T T
=7! Z yl(xl— X+ W,_,) +T7! 2 'xt(yt-yr-r+ vt.—r)‘
r+1 r+1

Now consider

T T
T—l Z ytwl—-r+ T—l Z xt”!’r

r+1 r+1

T T
=71 -1
=T Z YemrtWi—r t T Z Xi—r—1Vi—r

r+1 r+1

r T T
2 Eowe T Ewa)

=0 r+1 r+1
T
= 7-1
=T 2 (yt—r—lwt—r+ xl—r—lvt—r) + Op(1)9
r+1
since v, and w, are independent. This summation converges weakly to

6,0, V(1)W(1) as in the case r=1 considered above. (f) now follows by
induction on r.

A.3. Proof of Theorem 1
ﬁ" Zy,(x,—f)
Z(x:_)—‘)z
_ T—ZZ}’:J‘,‘ T—l)_’i
- TL(x-%)

o,,o,,{folV(t)W(t)dt- ]:V(t)dtj:W(t)dt}
u,flfolW(t)2 dr - {j:W(x)dt}Z]

=

as T too,
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by Lemma 1 and the continuous mapping theorem. We define
flV(t)W(t)dt—le(t)dtle(t)dt
0 0 0
]
['w(e)ar~ {le(t)dt}
(] 0

’

as in the statement of the theorem, so that B = (o,/0, )¢, proving (a).
Again by direct application of Lemma 1, we have

T-V%&=T3"2}y,~Br YL x,
1 1
=>ou{j(; V(-5 [ W(t)dt} as T1oo,
proving (b). Define s?= T~ 'LT(y,— & — Ax,)? and then
T-lsz = T~22 {(yt_i) - B(xt—x)}z
=T2Y(y-5)-B*T*L(x,~ %)

= a.,z[j:V(t)zdt— (folV(t)dt)z (A9)

—e2l i 24, * 2
g{jﬂ W(t)" dr (fo W(t)dt) }] as T 1oo,
once again by Lemma 1. Now

B B

-1/2, — _
Ty /(L (x,-2))

BT L (x,-3))”
- T(T V%)

- {j:W(t)zdt—(j:W(t)dt)z}m
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v (froa)
—:2{fO‘W(t)’dt—(/()‘W(r)dt)z}]vz as Tteo
= [Vw(a- [Va [ woa
~[rora(froa)
{fwer-([ron)

—{j;lV(t)W(t)dt—— _/:V(t)dtj(;IW(t)dt} ]

=p/v'/?,

proving (c). Next

n, & _HTEG-DY”
ty= TI/ZS& - Tlﬁs(zxf)l/z

1/2

_@NT)1? L (x-%))
(s/WT)(1T2Ex2)”

~{[ra-¢['wia)

X {fOIW(t)2 dr— (fOlW(t)dt)z}V2

= [folV(t)zdt— ([O‘V(x)dt)z-gz{fo‘w(:)2 dr

_(j:W(t)dt)z}]m(j:W(t)zdt)Vz as Ttoo
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={[var—¢['w(yar)
x{ [ Wy a-('w) d,)’}
i “{fol"(‘fdt ~(froa))
x{ [ W a-(['we) d,)’}
{[rowoa- froawou)]”
(fwora)?|

as required for (d)‘-
The coefficient of determination is

Rie LG9 _ BT2E(x -3
Y(-3¢ TZ(h-y)

KZ{[:W(I)zdt— ([O‘W(:)cu)z}
- folV(t)zdt-—(j:V(t)dt)z

as T too,

proving (€).

Next we consider the Durbin—Watson statistic

T T
Z(;‘t-ﬁt—l)z 1 T-IZ('):—&W:)Z
2 2
DW= F =

L |
Lif d T (-5 - Bs, = 2))

Now
I 2
T Y (o= Bw,) = 8,0+ 048,0/0} as T1oo,
2
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whereas

T-Z;r(y.—y—ﬁ(x.—m)’wz[ [vera-( v

—fz{j;lW(t)zdt— (]:W(t)dt)z}]

as T too.
Thus, DW s 0 proving the first part of (f). The asymptotic distribution of the
standardized statistic, TDW, is given by

TDW = {(8,0/02) + £*(2,0/02))

/ [ [y a-| jo‘v(t)dr)z
- gﬂ{folW(t)2 dr - (j:W(t)d‘)z}]’

as required for the second part of (f).
To prove (g) we first write

T T
T("s"' 1) =-T! Z ﬁ:(ﬁ:— a:«—:)/T—.ZZﬁ:Z
1

s+1

{rte) o)

Then, in view of (A.9), we have

r-Z);::az:af[jo‘V(t)zdz— (j;lV(t)dt)z

—V{folw(:)’dr— (fOIW(t)dt)z}] as T 1o,
(A.10)

and since s is fixed,

T—l$ﬁ12=T_l {y‘—:v‘—,é(x,—f)}z

--Mu

] (A.11)
=>so,}{j(;lV(t)dt—q:W(t)dt} as T too.
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Finally,

T
Tt Z at(ﬁl - ﬁr—s)

s+1
T
=T! E {yt—y_ﬁ(xt_i)}{yl_yl—s—ﬁ(xl_xt—s)}’
s+1
and by Lemma 1 we have, as T 1 co,

T s
T Yy (n =) = (/) {02V (1)* + 2,0} + X (s—/) 2,
s J=1

(A.12)

T Yk, (5= 50_,) = (/D {2 () + 2,0} + 3 (s - 7).,

=1

(A.13)
T T
T—l le(yt -yI—S) + T-l Zy’(xl - x'_S) = saDoWV(l)W(l)
as T1too. (Al4)

Moreover, y,—y,_,=X'_ v, and x,—x,_, =X,  ,,w depend only on a
finite stretch of the process {£, = (v,, w,)} and thereby satisfy the moment and
mixing conditions of Assumption 1. It follows that, as T 1 o,

T .

T2 (3= y,-,) = s,V (1) =N(0, s%}), (A15)
T

T-172Y (x,-x,_,) = sa, W(1) = N(0, s%?). (A.16)

Combining (A.10)-(A.16) we deduce, after a little simplification, that

T(r,~1)=> —A',/B'= -A,/B,
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where

A,=o? [(s/z){ VY +8,0/02) + X (s —f)ﬂv,/of]

=1

+o,,2:2[(s/2){W(1)’ +Q,0/02} + il (s —j)ow,/az]

- soXV()W(1) - 5o [V (1) - $W(1)]

x[ [rae-g [ wnal
+sa,,={j0‘v(1)d,_gjo‘w(,)d,}z

= (so2/2)[ (v = swaa)} - { [ ae-x [ o ar)|
+ (a2 [ @ ['wiar)

+002 [{3900/2002 + i (S —j)Q"J/avz}

J=1

+ §z{sﬂwo/2q§ + ZS: (s —j)ﬂw,/ﬂf}}’

J=1

B = a,,z[j:V(t)2 dr— (j:V(t)dt)2

—-g‘Z{EW(t)2 de— (j;W(t)dt)z}],
and

A=A'/s, B=B/o.

This proves part (g) of the theorem. Part (h) follows immediately.
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A.4. Proof of Theorem 2

We shall make use of the following result, which is proved in Phillips and
Durlauf (1985, lemma 3.1):

Lemma A.2. If {z,}¥ is generated by (6) and if the innovation sequence
{£,)Y satisfies Assumption 1, then, as T 1 o0,

,
T3 2,=3['Z(1)d, (A17)
1 0
T 1
T-2Y 2,2, = 312 f Z(t)Z(r) des'7?, (A.18)
1 0

T
T-2Y (z,~7)(z,~ 3) = zl/l{f‘z(z)z(t)'dz
1 0
—f‘z(:)dtf‘Z(t)'d:}zl/z,

(i (i}

(A.19)
where Z(t) is a vector Wiener process on C".
To prove part (a) of Theorem 2 we simply note that

S O T Y]

\

and by appealing to (A.19) and the continuous mapping theorem, we deduce
that

8- ([ fzwzeya- fzwafzuyalz] )

X [21/2{](‘)120)2([),‘1[_ LIZ(t)dtj;xZ(t)'d,}zl/z]

21

=A3la, a T1too, (A.20)

as required. To prove (b) we have

a=y-xB,
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so that using (A.17) and (A.20), we obtain
T 2 =b,—byAn'a,, as T toeo,

as required. Now
. T T )
R%*= B,T—ZZ(xt_ J_C)(X,“' E)IB/T—ZZ(.V:_';)
1 1

’ -1
=ayApay/a; as T1oo,

proving (c). Next

4 =1
1 a'yApay
= ————— as Tfo,
may, —ayAnay

proving (d). To prove (e),
tg,= B/sg,:
where
T -1
s=s|{L-Rw-9) |-
l 11
Now, as T 1 0,
B,=(A3)ay),.
T 's?= ay, - aydyplay,

and

t,,'=ﬁ, {\/7(5/\/7:)T'1

T —~1 1/2
[{T‘Z‘?(x,—i)(x,—i)'} ] ) },
so that

TV, = (Az-zlazl):/{(an - a'zxA{zlazl)l/z([Az_zI] ”)1/2>Y
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as required for (e). Finally,
TDW

T T
= T"‘fz_:{y,—y,_l _ﬁ/(x’_x’_l)}Z/T—z§(y'_}—,_B‘,(x’_x)}z

T T
_—_b’(T"Zg,ﬁ;)b b’(T'ZZ(z,— Z)(z,— 2)’)b, b=(1,-8).
2 1
Now, by the strong law of McLeish,

T T
T 'Y 88> 3,= Jim T 'Y E(¢,4),
Z as - o0 1
and

r
T‘zg(z,—i)(z,—f)’

=zl/2{f12(z)z(t)'d:—f‘z(:)dtf‘z(z)'dt}zl/z,

(i (i 0

as T 1 oo by (A.19). Moreover, b=1n as T 1 o in view of (a) above. Thus,
TDW = y/'Zn/n'An=nSn/{ay, —ayAp'ay )},

as required for (f).
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