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Abstract

We investigate methods of testing the proposition that the unconditional variance of a time series is
constant over time. Motivated by the observation that many financial datasets are “heavy-tailed,”
we focus on the properties of statistical tests of covariance stationarity when unconditional fourth
and second moments of the data are not finite. We find that sample split prediction tests and cusum
of squares tests have nonstandard limiting distributions when fourth unconditional moments are
infinite. These tests are consistent provided that variances are finite. However, the rate of divergence
under the alternative hypothesis and hence the power of these tests is sensitive to the index of tail
thickness in the data. We estimate the maximal moment exponent (which measures tail thickness) for
a number of stock market return and exchange rate return series, and conclude that fourth
unconditional moments of these series do not appear to be finite. In our formal tests of covariance
stationarity, we reject the null hypothesis of constancy of the unconditional variance of these series.
This raises questions about the nature of the observed volatility in economic time series, and about
appropriate methods of statistically modeling this volatility.

1. Introduction

An interesting feature of many empirical time series of stock market and
exchange rate returns data is the apparent volatility or nonstationarity in their
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sample variances. Motivated by the observed serial dependence in volatility
patterns, it has become common practice in finance to model conditional
variances as functions of past conditional variances and past squared innova-
tions, say as ARCH and GARCH processes (Engle (1982), Bollerslev (1986)).
However, these models do impose restrictions on the properties of unconditional
moments of the data. Stationary GARCH series, for instance, require constancy
of the unconditional first and second moments: and IGARCH series (Engle and
Bollerslev (1986)) allow only for special types of drift of the unconditional
second moments (Nelson (1990)).

Constancy of the unconditional second moments of a time series is rarely
implied by models of optimizing behavior of economic agents. Indeed, the
efficient markets hypothesis is typically formulated either in terms of restrictions
on the conditional mean of the data - e.g., expected excess returns on an asset
given only public information should be zero - or in terms of relationship
between conditional mean and conditional variance, as in the CAPM model.
One may reasonably expect that unconditional second moments would not be
constant over long periods of time. The speed at which information reaches
traders, their ability to interpret this information, and the availability of sophis-
ticated tools such as computerized trading mechanisms are all subject to
temporal evolution and can be hypothesized to affect the unconditional variance
of financial assets such as stocks, stock market aggregates, and foreign exchange.

Notwithstanding these reasonable empirical expectations, the assumption of
covariance stationarity is convenient in time series analysis, and it is an assump-
tion that is frequently employed, whether explicitly or implicitly, in much
applied research. Indeed, covariance stationarity is often assumed more for
statistical convenience rather than for good economic reasons. In the case of
wide-sense stationary ARCH and GARCH models it is the byproduct of
the specification of the dynamics of the conditional second moments, as we re-
marked above. Models of “switching regimes” (Hamilton (1988, 1989)) assume
that each economic regime is characterized, inter alia, by a different variance of
the relevant variables: integrating over all possible regimes, one finds that this
class of models also implies constancy of the unconditional variances. Given the
role of covariance stationarity in these important lines of empirical research, it
would seem that testing the maintained hypothesis of covariance stationarity in
empirical time series analysis is important in itself and relevant to the debate
how best to model the volatility that is observed in the markets for common
stock and foreign exchange.

Pagan and Schwert (1990a, 1990b) have recently presented some persuasive
evidence that the unconditional variance of U.S. stock market returns data
cannot be assumed to be constant over long periods of time. The testing
methodology of Pagan and Schwert (1990a) relies on an auxiliary maintained
assumption that fourth unconditional moments of the data are finite. This raises
the natural question whether their rejection of covariance stationarity is caused
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by a failure of this auxiliary assumption; i.e., whether their finding is merely the
byproduct of a “thick tail” phenomenon in the data generating process, or is
indeed due to failure of covariance stationarity. Most asymptotic distribution
theory used in econometric research relies on moment conditions which care-
fully control outlier occurrences. It is not unusual in time series analysis to see
conditions of the type “let all required moments exist.” However, in financial
and commodity market time series the extent of outlier activity casts doubt on
the suitability of such generic moment conditions. Mandelbrot (1963) provided
suggestive evidence that even second moments may not exist for this type of
data, and he proposed stable distributions with infinite variance as an alterna-
tive to finite-variance statistical models. Subsequent research (Blattberg and
Gonedes (1974), Fielitz and Rozelle (1982). Akgiray and Booth (1989)) has
generally reached the conclusion that second moments of most datasets appear
to be finite. The existence of higher-order, especially fourth, moments has been
studied less extensively. As we shall show below, the empirical evidence from the
monthly stock market return data used by Pagan and Schwert (1990a, 1990b)
suggests that fourth moments are infinite; and hence, their maintained hypoth-
esis is not supported by their data. However, their conclusion that U.S. stock
market returns are not covariance stationary over long periods of time is
strongly supported even under a more general maintained hypothesis.

In this paper, we provide an asymptotic theory of tests of covariance station-
arity which are based on estimated sample variances. Specifically, we examine
properties of moments-based tests of the null of constancy of the unconditional
variance; our methods could easily be extended to study constancy of uncondi-
tional autocovariances as well. We consider a sample split prediction test, the
cusum of squares test, and the rescaled range test. All of these tests were
employed in the Pagan—Schwert studies cited above. While our focus is on tests
of covariance stationarity, we remark that there are other applications of our
theory, for instance, to LM tests for ARCH and GARCH effects which also
routinely rely on fourth moment conditions.

The paper is organized as follows. Section 2 presents an overview of the
theory of various tests of covariance stationarity for heavy-tailed time series.
Moment condition failure is introduced explicitly through the assumption that
the tails of the innovation distribution are of the asymptotic Pareto-Lévy type.
The conventional theory for sample moment based tests of covariance stationar-
ity, which applies when fourth moments are finite, involves standard-normal
and Brownian bridge asymptotics. When fourth moments fail we show that the
new limit theory involves asymmetric stable distributions. The correct critical
values in these situations are typically smaller than in the standard case, so that
tests based on normal asymptotics are conservative. We further show that when
unconditional second moments are infinite the tests are inconsistent, i.e., that
they do not diverge under the alternative of changing dispersion over time.
When second moments are finite the tests are consistent but diverge at a slower
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rate than \/n. The tests are robust to serial dependence and conditional
heterogeneity in the data generating process.

In Section 3 we propose a method of estimating the maximal moment exponent
(i.e., the maximal degree to which moments exist) of a time series directly. Our
proposed estimator is simple to compute and possesses a standard-normal
limiting distribution. In Section 4 we summarize the results of Monte Carlo
experiments which we conducted to obtain the critical values of moment based
tests of covariance stationarity. In Section 5 we consider the empirical properties
of monthly and daily U.S. stock market return series and of several daily
exchange rate return series. Estimates of the maximal moment exponents of
these series strongly indicate that fourth moments are infinite but that second
moments are finite. In order to test covariance stationarity of these series,
critical values based on the new asymptotic theory in Section 2 must be
employed. Using this theory, we reject the null that unconditional variances are
constant over time for all the series studied. Section 6 offers some concluding
comments and suggestions for further research.

2. Overview of the theory of testing the covariance stationarity of heavy-tailed
time series

To make this paper self-contained we present here a brief overview of the
theory of testing for covariance stationarity, and focus on the consequences of
failure of fourth moment conditions for the resulting limit theory. The results
given here were derived in an earlier paper by the anthors (Phillips and Loretan
(1990)), which is available on request. The first subsection below defines termin-
ology and states the asymptotic convergence results that we need; the second
subsection gives the limit theory for several types of tests of covariance station-
arity.

2.1. Preliminaries

Let {¢}7-, be an iid sequence of innovations whose tail behavior is of the
asymptotic Pareto-Lévy form, viz.

Prie > x) = pC*x*(1 + a1(x)), x>0,

(C1)
Prie > — x) = gC*x *(1 + a(x)), x>0,

where o;(x) > 0 (i = 1, 2) as x > co. The symmetry parameters p and ¢ satisfy
p=20,4=20,p+ qg= 1. The parameter C > 0 is a scale dispersion parameter.
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The most important parameter in determining the tail shape in (C1)is «, which is
the maximal moment exponent of the distribution. Absolute moments of ¢ of
order less than o are finite, while all higher-order moments are infinite, i.e.,
a=sup{a >0:E|e] < oo }. When 0 < « < 2, condition (C1) ensures that ¢ lies
in the normal domain of attraction of a stable law with characteristic exponent a,
and we shall write ¢ € #"D(«) to signify this fact. When o > 2, ¢ is in the domain
of attraction of a normal distribution, so that standardized partial sums of
¢ converge in distribution to a normal distribution. When 2 < x < 4 it is
important to note that ¢* € #/'D(/2) and «/2 < 2, so that partial sums of &2,
properly standardized, no longer converge weakly to a normal distribution. This
will be of relevance for tests which do not rely on finite fourth moments.
We add the following centering condition, which applies when « > 1:

If o > 1 then we require E(g) = 0. If o = 1 we require ¢ =, — ¢

(i.e., € is distributed symmetrically about the origin). (C2)

No centering is required when o < 1.
Suppose that the observed time series is generated by the linear process

Yo=Y Citjs (1)
j=o

where ¢, satisfies (C1) and (C2). Then the series representation for y, is conver-
gent a.s. provided the coefficients ¢; satisfy a snitable summability condition. We
shall employ the condition

jlejP <o for O<p<ap<l1. (C3)
ji=1
Note that (C3) holds whenever y, is generated by a stationary ARMA process
because then the coefficients in equation (1) decline geometrically and thus
trivially satisfy (C3) (see, e.g., Brockwell and Davis (1991)). In what follows it will
be convenient for us to explicitly work with the AR(p) process

)4
W= z Giye—i + &, (2)
i=1
where the roots of 2# — ¥ | @277 = 0 all lie inside the unit circle.

Assumption (C3) is convenient for the development of the asymptotic theory
given in the following subsection. While a wide class of time series are covered
by (1) and (C3), the main limiting requirement as far as financial time series
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applications are concerned is the use of iid innovations in (1). This assumption is
not as restrictive as it may appear. As shown in Loretan (1991. ch. 1) for the case
of finite fourth moments the same limit theory as that given below applies also
when the innovations are martingale differences, which allows the data to be
conditionally heterogeneous and weakly dependent under the null. The results
stated below therefore apply to a fairly wide class of stationary time series.

Under (C1) and (C2) with 0 < « < 2, the appropriate scaling factor for partial
sums of ¢ is given by a,, = Cn'/®. Note that when o = 2 this leads to conventional
ﬁ asymptotics. We shall employ the following limit theory (wherer, 0 < r < 1,
represents a certain fraction of the overall sample):

n

arrl z gt_}dUa(l)a (3)

=1

[nr]
a; ' Y e—aUlr), )
=1

{nr] [nr] r
(an‘ PIENCEDY 8,2>—>4<Ua(r), L (dUa)2>. (5)

Here U,(r) is the Lévy a-stable process on D[0, 1], the space of CADLAG
functions on the [0, 1] interval, and [§(dU,)* = [U,], is its quadratic variation
process. See Ibragimov and Linnik (1971, ch. 2), Resnick (1986) and Phillips
(1990) for further details on these concepts and results. The symbol “—;”
denotes weak convergence on D[, 1] of the associated probability measures
(Billingsley (1968)). The symbol “— 4~ will be used below when only the
finite-dimensional distributions converge, i.e., when (4) and (5) only apply for
a finite number of values of r (taken jointly) rather than on the function space
D[0, 1] itself.

When 2 <« <4 we have n™'Y e, —, 0 and n™ 'Y 1e? >, 0. But since
&2 € /" D(«/2) we also have a stable limit distribution theory for the centered
sample second moments. We find

0723 (62 — )4 Ups(l), ®)
an_2 (8:2 - 0'52) 4 Ua/Z(r) 5 (7)

[nr] [nr] r
(anz (Stz - 0'52)7 0;4 Z (8t2 - 0'52)2> —4 (Ua/z("), L (dUa/2)2>~ (8)
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The stable process U, ,(r) in equation (7) is asymmetric with maximal positive
skewness. Finally, we observe that if y, is generated by the AR (p) process (2) the
coeflicients are estimated consistently by the OLS regression

w=Y b+, ©

irrespective of the value of « (see Kanter and Steiger (1974) and Hannan and
Kanter (1977)). Correspondingly, the OLS residual &, is consistent for ¢, for all
a > 0. We may therefore use these residuals in place of ¢ in the limit theory
above.

2.2. Asymptotic theory for tests of covariance stationarity

There are several ways of testing for homogeneous unconditional variances.
Those we shall consider are based on the behavior of the sample second
moments of either the observed time series y, or of the residual series & which are
obtained from a consistent autoregression as in equation (9).

When testing for constancy of the unconditional variances over time, it is
natural to start by splitting the sample into two eras according to n = n; + n,
with n; = k,n, and to consider the null hypothesis

Ho: EpV=Ep®,  where

ni

n
~(1 —1 2 A (2 —1 2
/1(2)2711 Zyt’ .U(z)znz Z yi.

t=1 t=n+1

(We shall use the affixes “‘*” and “®” throughout this paper to signify quantities
that pertain to the first and second subera, respectively.) Putting 2 = a4 — g,
the null hypothesis can be restated as Hy:Ez = 0. To determine whether %
is “significantly” different from zero we must estimate its variation. Define a
kernel-based estimate of the “long-run” variance of the squared observations of

Y as

1
? =9 +2 Y (1—jll+ 1),
=1

J

where 9; is the j-th serial covariance of y? and [ is a suitable lag truncation
number. When « > 4 this estimator of the long-run variance of y? is consistent
provided that [ » 0o as n— oo in such a way that [*/n — 0 (see, e.g., Newey and
West (1987) and Andrews (1991)).
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Suppose that k, — k > 0. Then k/(1 + k) (respectively, 1/(1 + k)}is the fraction
of the overall sample in the limit that is spent in the first (second) era. The
limiting sample variance of 7 is therefore given by (1 + k)v?, and we have for
o >4 that n'?1 -, N(0,(1 + k)v?). We now define the sample split prediction
test as the standardized statistic

Vidt) = (1 + k) 02) 12 nif22,

The limit theory for this test depends critically on whether « >4 or « < 4.
Specifically, we have:

Proposition 1 (Phillips and Loretan (1990), Theorem 3.1). Assume that
(C1)—~(C3) hold and that k,— k > 0 ( fixed) as n— . Then

s Ifa>4, Vi(t)->4N(©,1).

s If0<a< 4,

1 -1/2
Vk(f)—*d<k Jo (dUa/2)2> x((1 + k) Ua/z(k/(l + k)) — kUa/Z(l))
= V,, say. (10)

The random element U,y (r) is a maximally asymmetric stable process with

characteristic exponent o/2.
s If0<a<dand k=1,

1 —1/2
mm( j (duz/z>2> X Uspy(1). (11)

The random element Uy, (r) is a symmetric stable process with characteristic
exponent o/2.

Remarks: (i) When 0 < a < 4 the limit distribution of the sample split prediction
test is described by the variate V,, which is a ratio of dependent stable variates,
(1)) Comparing equations (10) and (11), the choice of k = 1 leads to a substantial
simplification of the limiting distribution. Phillips and Loretan (1990) further
show that the expression in (11) reduces to a standard normal law when « > 4.
(iii) The limiting distributions given by (10) and (11) are the same as the limit
distribution of a “self-normalized sum” or f-ratio statistic (see Logan et al.
(1973)). We provide plots of its density for the cases of /2 = 1.5 and /2 = 1.05
in Figures 1a and 1b.! A striking feature of these limit laws is their bimodality,

'Methods of obtaining estimates of the density and associated quantiles by Monte Carlo
simulation are discussed in Section 4.



M. Loretan and P.C.B. Phillips, Testing covariance stationarity 219
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Fig. 1.

which becomes more pronounced as o | 2. (iv) The same limit distribution for
V,(z) obtains when the long-run variance of )7, i.e., v*, is estimated as a weighted
average of the long-run variances in the respective suberas, ie., as
9% = 0*" + k,52”. (v) Finally, the use of the consistent residuals &, in place of y,
leads to the same limiting distribution of V,(t) as that stated in Proposition 1.
This means that the properties of the test are not affected by applying a linear

filter such as (9) to the data.

Under the alternative hypothesis, measures of the unconditional dispersion
are unequal in the two subperiods. For the finite variance case (x > 2) we may
express the alternative as

) 2)
Hy: 62" #02".

£

For the infinite variance case (« < 2) we introduce heterogeneity through the
scale dispersion coefficient C in (C1):

Hy: CW#C?,

The following theorem from Phillips and Loretan (1990) describes the consist-
ency properties of the sample split prediction test V().

Proposition 2 (Phillips and Loretan (1990), Theorem 3.5). Assume that
(C1)—(C3) hold and k > 0. Two cases apply:

o«>2 Under H,, the statistic V(t) diverges as n— oo . The rate of diver-
gence is given by

Vi) = 0,(n'?) for o >4 (12)

Vi(t) = 0,(n' 72" for 2<a<4 (13)
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0 < a<?2 Under HY the statistic V(1) is inconsistent. Specifically, as n — oo
Vi(r) = 0,(1). 14

These results also hold when the estimator 1? is replaced by #* or if the consistent
residuals &, are used in place of y,.

The inconsistency of the sample split prediction test in the infinite variance
case is not surprising: the test relies on a comparison of sample second moments
across suberas — when variances are infinite, the sample second moments are
naturally poor measures of the population dispersion. The intermediate case
(2 <a<4) is of particular interest: The test is consistent, but its rate of
divergence is slower than in the standard (« > 4) case. The presence of large
outliers in both suberas therefore makes it less likely that “significant” differ-
ences between the subera estimates of y, will be found in finite samples. We shall
refer to this finding again in Section 5 below, where we need to interpret the
findings from an application of this test to time series of stock market and
exchange rate returns.

The cumulative sum (cusum) of squares test offers an alternative way of testing
the null of covariance stationarity. The test is based on the cumulative sums
of y? — f,, where i, =n~' ¥ 37 is the unconditional mean of y7, and is
defined as

{nr]

Ynlr) = (n0*)"112 3 (y7 — f1z) -

t=1

This test is a studentized version of the cusum of squares test originally
proposed by Brown, Durbin and Evans (1975), since it standardizes the partial
sums of (y? — fi,) by a sample-based estimate of v? rather than by its expected
value under normality. Ploberger and Kramer (1986) originally analyzed this
modification. Pagan and Schwert (1990a) also use this form of the cusum of
squares statistic. Using the consistent residuals &, instead of y,, we define the
analogous statistic

2—12['"] 2 2
Yilr) = (n62)" 12 3 (& — 62),

t=1

where 62 = n! "¢ is the sample variance of the residuals and 67 is a kernel-

type estimate of the long-run fourth moment of & defined analogously to 9.
Since k = r/(1 — r) and r = k/(1 + k), we note the following correspondence

between the sample split prediction test V,(t) and the cusum of squares test ¥,(r)
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for fixed r € [0,1] and k > O:
Vea=n(@) = (r(1 = 1)) 4,(r)
Yulk/(1 + k) = (K2/(1 + k) Vila) .

For o > 4 and n— o0, the cusum of squares statistic converges weakly to
a Brownian bridge (a tied-down Brownian motion or Wiener process) on
C[0, 1], the space of continuous functions on the interval [0, 1] (see Billingsley
(1968)). The limit law is again quite different when « < 4. We give the following
result:

Proposition 3 ( Phillips and Loretan (1990), Theorem 3.6). Assume that
(C1)—(C3) hold. Then
s Ifo>4

Yulr), Yr(r) > o Wir) — v W(1) = B(r), (15)

a standard Brownian Bridge on C[0, 11, W(r) is a standard Wiener process on
clo, 17].
c Ifa< 4

1 1/2
W, (r) = fdd Ka/?.(")/(f (dUa/z)z) = L, (r), say (16)

0

l//i(r)_)dLa/Z(r)a (17)
where K, (r) = Uy (r) — rU,, (1) is a stable-Lévy bridge on D[0, 1].

Remarks: (1) The limit distribution of the cusum of squares statistic is given by
a standardized tied-down stable-Lévy process when a < 4; this is the natural
generalization of the Brownian bridge result for the case of finite fourth
moments. (i) For « < 4 weak convergence only obtains for the statistic i/ (r) but
not for ¥, (). Serial dependence in y, under the null can lead to complications in
function space convergence, and only the finite-dimensional distributions of
¥, (r) converge in general. (See Avram and Tagqu (1992) for a discussion of this
difficulty.) Note that the problem does not arise with ;(r). For this cusum
statistic we have both finite dimensional and function space convergence.
Inference may be conducted in several ways. First, one may use the finite-
dimensional distributions (fdd’s) of the cusum of squares, ie, consider the
behavior of the statistic for fixed values of r, and compare the test values against
the applicable critical values (these are computed in Section 4). This procedure
generalizes the use of the sample split prediction test discussed above. It suffers
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from the disadvantage that inferences may be sensitive to the choice of r: the
finite-dimensional distributions of i, (r) may lie outside the confidence bands for
some values of r but not for others, leading to inconclusive outcomes.

Instead, one may proceed by considering the trajectory of the cusum of
squares over the whole sample, i.e., for all values of r, and derive the probabilities
that the test will exceed any given value somewhere on the [0, 1] interval. For
this type of analysis, one needs to work with the statistic yZ (r), since the statistic
Y.(r) does not converge weakly on D[0, 1] in general when o < 4 as discussed
above. One may construct scalar-valued test statistics such as sup,({¥5(r)),
sup,|¥5 (1), or sup,(¥i(r)) — inf,(Y5(r)). The second of these statistics is also
known as the Kolmogorov—Smirnov test, and the third is often referred to as the
rescaled range test or “R/S statistic” (Hurst (1951), Mandelbrot (1972), Lo
(1991)). From Proposition 3 and the continuous mapping theorem, we find
immediately that

SUD(WA(0)) ~45up L),
S‘fpwfﬁ(f')l 4 sep | Ly2(r)|, and

sup(Yi(r)) — inf(yr;,(r)) =4 Sup L5 (r) — inf L,5(r) = Ry, say .

Critical values of these tests are also provided in Section 4 below.

The consistency properties of the cusum of squares test ¢/(r) may be studied
in the same way as the sample split prediction tests. The rates of divergence of
the test are comparable to those given in Proposition 2 above. The cusum of
squares test has decreasing power as « | 2 and is inconsistent for 0 < a < 2:

Proposition 4 ( Phillips and Loretan (1990), Theorem 3.7). Suppose (C1)—(C2)
and (1) hold. Then we have

o>2 Under H; tests based on /(r) are consistent with the following rates of
divergence:;

yi(r) = 0,(n'?), for a>4, (18)

Yi(r) = 0,(n'"%"), for 2<a<4. (19)

0 < a < 2 Under H), tests based on yi(r) are inconsistent and we have as n - o0
Yar)=0,1). (20)

We close this section by pointing out that these propositions do not depend
critically on the assumption that the innovations are iid or that the observables
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are generated by a linear process from these innovations. The propositions can
be extended to allow for conditional heteroskedasticity and more general
weakly dependent sequences of random variables under the null (Loretan (1991)
provides some extensions along these lines). What matters for purposes of
testing constancy of the unconditional variance is the maximal finite moment of
the data, denoted by « here, and in particular whether it exceeds 4, lies in the
interval (2, 4], or is less than or equal to 2.

3. Direct estimates of maximal moment exponents

The preceding section demonstrates that it is important to assess tail shape
characteristics if we are to understand the properties of tests such as those of
covariance stationarity in practice. Estimating tail shapes is of course an
empirical issue. One way to proceed is to attempt to estimate the maximal
moment exponent directly from the data. A convenient and easy to implement
method of estimating the parameters « and C in the Pareto-Lévy model (Cl) is
available and proceeds as follows. Let {3}/, be the residuals from (9) and let
By S & < -+ < &, be the order statistics corresponding to this sample of
residuals. Define the estimators

s =1
&s = <Sl Z 1nén,n*j%—l - 1nén,nﬂs) ’ (21)

i=1

Co=sn" (60, 9", (22)

for some integer s. It is assumed that # is large enough and s/n small enough so
that &,,, ;>0 and thus & and C, are well defined real quantities. These
estimators were originally proposed by Hill (1975) as conditional maximum
likelihood estimators of the maximal moment exponent « and the scale disper-
sion coefticient C in (C1). The asymptotic theory for these estimators in the
general case of a distribution whose tails have the asymptotic Pareto-Lévy form
(C1) is due to Hall (1982), who shows that it is optimal, at least in terms of
asymptotic bias and variance of these estimators, to choose the integer s = s(n)
so that it tends to infinity with n and is of order n*"/*”*® when o;(x) = O(x "~ ?) in
(C1). (If the tails of the distribution are exactly Pareto we may set y = o0 .)

There is some advantage in choosing s(n) so that s/n*"?** 5 0asn— oo.
For, in this case we have from Theorem 2 of Hall (1982)

sY2 (@ — ) >4 N(0,0%), and (23)

s12(In(n/s))~ (€, — C) >4 N(0, C?). (24)



224 M. Loretan and P.C.B. Phillips, Testing covariance stationarity

These asymptotics have the advantage that the limit distributions (23) and (24)
involve only scale nuisance parameters which are easily eliminated in statistical
tests. Notice that these estimates pertain to the right or upper tail of the
distribution of &; to estimate the parameters of the left or lower tail, one simply
multiplies the order statistics by — 1 and repeats the computations.

These formulae provide a method of estimating the parameters « and C and of
computing their asymptotic standard errors. They also lead to the following
statistical tests of the hypothesis that the parameters are constant across sub-
periods. Consider the null hypotheses

Ho, aV=a®=a and Hoe: CP=C?=C.
Suppose that we split the sample such that n; = n, = n/2. Let & and €9, i = 1,

2 denote the subsample estimates of « and C, and put %, = &" — & and
ey = C{V — C?. Define the sample split prediction tests

17(1:«1) =s'? 'fa,s/(&(sl)z + &§2)2)1/2 P and (25)
P(tc) = s2-(In(nfs) 1-te J(CV* + CP*)12. (26)

We have the following limit theory for these tests under the null and under the
alternative hypotheses

Hy,: P #a® and Hj: CW#CP.

Proposition 5 ( Phillips and Loretan (1990), Theorems 3.8-3.10). Let(C1),(C2)
and (1) hold and suppose that k, — k = 1 as n — . Assume that a;(x) = O(x™7)

for i=1,2in (C1) for some y > 0. Let s~ oo and s/n*"'*'"® -0 as ny - 0.
Then
V(t,) »aN(0,1) under Hy_,, (27)
V(tc)—aN(0,1) under Hy ¢, (28)
V(t,) = O,(s'?) under Hy ,, (29)
V(tc) = 0,(s"/In(n,/s)) under Hj . (30)

The limit distribution of both sample split prediction tests is thus very simple.
They are consistent irrespective of the value of « and would thus appear to enjoy
certain advantages over the moment based tests ¥ (7) and ;,(r) discussed above.
The cost of this consistency is that their rate of divergence is potentially quite
slow, given the dependence of s on the secondary tail shape parameter y. The
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tests should therefore not be employed to test for structural breaks when fourth
moment condition failure is not a feature of the data. (Notice, however, that if the
tails are exactly Paretian (y = o0 ), the rate of divergence of both tests is O,(n'/?).)

In finite samples, the choice of the nuisance parameter s, i.e., the number of
order statistics included in the computations, may affect the point estimates and
standard errors, and hence the inferences drawn from the data. Loretan (1991,
ch. 3) reports the results from an extensive simulation study which was designed
to assess the influence of the choice of s on statistical inference. He considered
values of o = {0.5,1,1.5,2,2.5, 3, 3.5, 4, 10, 100}, sample sizes n = {1,000, 4,000,
10,000} and s = {100, 125, 150, 175, 200} for the case of n; = n/2 = 500. (He let
s grow more slowly than # in the other two cases.) We summarize his results as
follows:

* The integer s should generally not exceed about 0.1-#n,; larger choices of
s typically involve including more than just tail observations in equations (21)
and (22), which severely biases point estimates of o and C.

* The estimator (21) has good centering and size properties for all values of
o that were considered.

* The estimator (22) has good centering properties but its simulated variance is
larger than its asymptotic variance (C?) for all but the largest sample sizes.

« The test ¥(z,) has very good empirical size properties under the null, ie., its

actual rejection frequency is close to the nominal size of the test given

asymptotic N (0, 1) critical values. This finding does not seem to depend on the
precise value of «.

The test F(z¢), on the other hand, tends to overreject the corresponding null

hypothesis (H}) for all nominal sizes; this size distortion decreases only very

slowly when larger sample sizes are considered. However, this tendency can be
corrected by heuristically adjusting the required nominal size.

* The empirical power of the tests, even for small variations of « and C across
the suberas, was satisfactory in the simulations. This seems to be due in part to
the large sample sizes that were employed.

In any case, and especially when the precise distributional properties of the
tails of the data are unknown in an empirical application, it is advisable to
estimate o for a variety of trial values of s. This is also the procedure suggested
by Dumouchel (1983).

In Section 5 below we shall see that the unconditional distribution of the tails
or “outlier observations” of many stock market and exchange rate return series
are very well described as being of the Pareto—~Lévy type. Direct estimates of the
maximal moment exponents of the series yield point estimates which are less
than 4 and greater than 2, which indicates that variances of the data are finite
but also that there is still enough outlier activity to cast into doubt the existence
of fourth moments in the population.
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4. Monte Carlo simulations of tests of covariances stationarity

In Section 2 the limiting distributions of three types of tests of covariance
stationarity were given for all « > 0. For o < 4 the limit laws of these statistics
are given by functionals of stable processes. Closed form expressions for these
distributions are unknown, so that we resort to Monte Carlo simulation to
characterize their properties and to obtain appropriate critical values. Of par-
ticular interest is the extent to which the new distributions differ from those that
apply in the standard case of finite fourth moments (& > 4). Only cases of o« > 2
will be considered here, since for o < 2 the tests are inconsistent and thus of no
interest to empirical research.

To perform the simulations, we need to generate stable random variates and
from these construct sample trajectories of the appropriate stable processes.
Exact algorithms for generating stable random numbers have been proposed by
Kanter and Steiger (1974) for the symmetric case and by Chambers, Mallows
and Stuck (1976)* for the general asymmetric case. We consider values of
o= {2.1,2.5,3.0, 3.5 3.8}, and set n = 1,000 as the “large” sample size, except for
the asymmetric case when o = 2.1, where we found that it was necessary to set
n = 2,500 to approximate the asymptotic distributions adequately. We per-
formed 50,000 repetitions of all experiments. To increase efficiency, the sym-
metry and skew-symmetry of the distributions were exploited in computing
critical values and densities. All simulations and estimations were carried out in
the GAUSS programming language.?

We first study the large sample distribution of the sample split prediction test
statistic V(7). We performed the following simulation experiment. For fixed a,
draw n iid symmetric stable random numbers x; of index /2, set y; = n~2*. x;
—note that by self-similarity y; ~,dU;, —and compute the ratio (3 y;)/
(X7 y)'?, thereby simulating the quantity Uj,(1)/(f}(dU32)*)"?. Critical
values, at the usual levels of significance, are shown in Table 1, together with the
standard normal critical values which apply when o > 4. The new critical values
for typical test sizes are all lower than the conventional ones. For a two-sided
test of size 5%, say, the applicable critical value declines from 1.96 (for o > 4} to
1.73 (for « = 2.1). Thus, use of the conventional critical values in cases where the
true parameter o is less than 4 leads to conservative tests.

‘Nonparametric kernel estimates of the density of the V(t) statistic, for the
cases of o = 3 and o = 2.1, were computed from the simulations and are graphed
in Figures la and 1b. These densities are quite different from the standard

2We used the formula (2.3) in Chambers et al. (1976). We did not use the algorithm proposed in
their equation (4.1), which is based on a modified skewness parameter f', since we are only interested
in generating maximally skewed stable variates, and (2.3) is faster to compute than (4.1). Note that
when 1 < o/2 < 2 one must set the skewness parameter § = — 1 in (2.3) to obtain stable variates
with maximal positive skewness.

3 Copies of the programs are available on request.
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Table 1

Critical values of the sample split prediction test statistic V(7).

o

N, 1)
PrX < o) 21 2.5 3.0 3.5 3.8 [ > 4]
90% 1.26 1.28 1.28 1.29 1.28 1.282
95% 1.51 1.55 1.59 1.63 1.62 1.645
97.5% 1.73 1.79 1.85 191 1.93 1.960
99% 1.99 207 215 2.24 228 2.326
99.5% 217 2.26 2.34 248 2.51 2.576

Remarks: For a < 4, critical values are based on 50,000 simulations of the test statistic, with a sample
size of n = 1,000. For « > 4, standard normal critical values apply.
Note: In Tables 1-4, all critical values are for one-sided tests of the respective null hypotheses.

normal density. They are bimodal and platykurtic: the modes are located at — 1
and + 1, and the tails are thinner than that of the standard normal pdf. This
reflects the fact that their critical values at the 1% and 5% levels are smaller
than those of the standard normal distribution. Further Monte Carlo-based
estimates of densities of ¢-ratio statistics when o/2 < 2 are given in Phillips and
Hajivassiliou (1987). Logan et al. (1973) computed the asymptotic densities of
the t-ratio statistic when o/2 < 2 through numerical integration of the asso-
ciated characteristic functions.*

We turn to the empirical distribution of the limit law L, (r) of the cusum of
squares statistics yr,(r) and (7). To this effect, we draw n iid asymmetric stable
variates x; of index «/2, set y,=n"?*.x;, and compute (Y™ y;, —r- 37 y,)/
(Y7 y?)Y? as the large sample approximation to (Uy,(r) —r-U,(1))/
(1 (dU2))? = Lyyp(r), for r = {0.1,02,. . ., 0.9}. The resulting critical values
for typical test sizes as well as the median of the finite dimensional distributions
(fdd’s) of L,,»(r) are given in Tables 2a—2e; the exact critical values for the fdd’s of
the Brownian Bridge process B(r) are shown in Table 2f for comparison. Only
the upper confidence contours are provided; the lower confidence contours are
obtained from the skew-symmetric relationship L, (r) =4 — Ly2(1 — 7). In Fig-
ures 2a—2f we graph the upper and lower confidence contours corresponding to
(two-sided) 95% and 99% confidence levels.

These tables and figures present a complex picture, which we shall discuss in
steps. First, whereas the fdd confidence contours of the process B(r) are symmet-
ric about zero in the vertical axis (Table 2f and Figure 2f), the contours become
increasingly asymmetric as « | 2. In comparison to the standard case of a > 4,
for o < 4 the upper confidence contours increase faster when r is close to 0,

“Logan et al. (1973) further show that the density of the t-ratio statistic is finite and continuous if
1 <a/2 <2 buthaspolesat —1and + 1ife/2 <1
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Table 2
Critical values of the finite dimensional distributions of the cusum of squares test statistics y,(r) and
Walr).
r

Pr(X < o) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(Cay =21

50% - 0.10 —0.13 - 0.11 — 0.06 000 006 011 013 0.10
90% 0.39 0.61 0.66 0.63 059 053 046 036 023
95% 0.66 0.78 0.75 0.74 0.70 0.63 0.54 0.43 0.27
97.5% 0.84 0.85 0.86 0.84 0.78 0.71 0.61 0.48 0.30
99% 0.91 0.98 0.98 0.95 089 080 069 054 034
99.5% 0.98 1.07 1.07 1.02 0.96 0.87 0.74 0.58 0.36
(2b) & = 2.5

50% —0.09 —0.11 — 0.09 —0.05 000 005 009 011 0.09
90% 0.43 0.62 0.68 0.66 064 059 052 042 028
95% 0.67 0.79 0.81 0.80 077 072 063 051 034
97.5% 0.83 0.90 0.94 093 089 083 073 05 040
99% 0.93 1.05 1.08 1.07 103 096 0.84 069 046
99.5% 102 1.14 1.19 L18 113 105 093 075 0.5
(2c) = 3.0

50% —0.06 - 007 —0.06 - 0.03 000 003 006 007 006
90% 0.41 0.58 0.65 0.65 064 061 054 045 032
95% 0.61 0.76 0.80 0.81 079 075 067 055 039
97.5% 0.78 0.88 0.94 0.95 093 088 078 065 045
99% 0.90 1.02 1.10 1.11 1.08 103 091 076 053
99.5% 0.99 1.12 1.21 1.22 1.19 1.12 1.00 0.83 0.58
(2d) o = 3.5

50% —0.04 - 0.04 —0.03 —0.02 000 002 003 004 004
90% 0.40 0.55 0.62 0.64 064 061 057 048 035
95% 0.55 0.72 0.79 0.81 0.81 0.77 0.71 0.61 0.44
97.5% 0.69 0.85 093 0.95 095 091 084 071 052
99% 0.85 1.00 1.10 1.13 112 1.07 0.99 0.84 0.61

99.5% 093 1.10 1.20 1.25 123 118 1.09 092  0.67
(2e) o = 3.8

50% —0.01 - 0.01 —0.01 —0.01 000 001 001 001 001

90% 0.39 0.52 0.60 0.64 0.64 0.63 0.58 0.50 0.37
95% 0.52 0.68 0.77 0.81 082 080 074 064 047
97.5% 0.63 0.81 0.91 0.96 097 095 088 076 0.56
99% 0.77 0.96 1.08 1.13 115 112 103 089 0.66
99.5% 0.86 1.06 1.20 1.24 1.27 124 115 099 073
(2f) o > 4.0

50% . —0.00 - 0.00 — 0.00 —0.00 000 000 000 000 000
90% 0.38 0.51 0.59 0.63 064 063 059 051 038
95% 0.49 0.66 0.75 0.81 0.82 0.81 0.75 0.66 0.49
97.5% 0.59 0.78 0.90 0.96 098 096 090 078 059
99% 0.70 0.93 1.07 1.14 .16 114 107 093 0.70
99.5% 0.77 1.03 1.18 1.26 1.29 1.26 1.18 1.03 0.77

Remarks: The critical values in Tables 2a—2e are based on 50,000 simulations of the test statistics,
with a sample size of n = 1,000 (except Table 2a: n = 2,500). The critical values in Table 2f are the
exact critical values of the Brownian Bridge statistic, calculated from B(r) =4 N(0, r{1 — 1)).
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attain a smaller maximal height, and returns to 0 more slowly as r approaches 1.
Second, the medians of the fdd’s of L, (r) also depend on r: the medians are
negative for r < 0.5 and positive for r>0.5 The fdds of L,,(r), for
a = {2.1,3.0,4.0}, are further contrasted in Figures 3a and 3b, in which we
graph their 97.5% and 99.5% (one-sided) upper confidence contours, respect-
ively. Third, for o < 4, tests based on the (nominal o > 4) upper fdd critical
values are conservative for r 2 0.5, but become increasingly liberalasr | 0. E.g,
forr = 0.5, the (2-sided) 99% critical value decreases from 1.29 (for & > 4)to 1.19
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(o0 = 3) and further to 0.96 (x = 2.1): use of the conventional critical value leads
to conservative inference in the latter cases. But for r = 0.1, the 99% upper
critical value increases from 0.77 (« > 4) to 0.99 (x = 3) and 0.98 (a = 2.1),
whereas the corresponding lower critical value decreases (in absolute value) from
— 077 (0 >4)to — 0.58 (« = 3jand — 0.36 (o = 2.1). Figure 4 summarizes the
dependence of the shape of the confidence contours of the fdd’s on o in
a three-dimensional graph, for 225 < o< 4and 0<r< L.

To complement the information on the fdd critical values given in Tables
2a-2e, we provide the asymptotic critical values for the statistic sup, (¥ (r)),
delivered from simulating sup,(L,(r)), in Table 3. The critical values of the
statistic inf, (/;(r)) are obtained by applying the skew-symmetric relationship
Pr(inf,(L,/»(r) < — ¢) = Pr(sup,(Lyz(r) > ¢), ¢ > 0. As discussed in Section 2,
use of these critical values does not lead to the size distortions that may result
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from considering only the fdd’s of L, (r). The dependence of the critical values
of sup,(L,,(r)) on o is easily described: they decrease monotonically as «
decreases from 4 to 2, so that use of a > 4-based critical values will again lead to
conservative tests.

Evaluation of an empirical cusum of squares statistic is best based on both
criteria, with the cusum trajectory showing behavior throughout the sample as
well as points of maximum deviation, and critical values for the latter being
delivered by the sup,(L,;,(r)) and inf,(L,,(r)) statistics. Further, « is usually not
known in empirical applications and must be estimated in advance: if & cannot be
estimated with high precision, the cusum of squares statistic should be evaluated
using the critical values for a range of values of a around the point estimate.

Finally, critical values of the rescaled range statistic R, = sup,(¥:(r))
— inf,(y; (r)) are given in Table 4, together with critical values of the conven-
tional (« > 4) range statistic R. As was the case for the statistic sup,(L,,(r))
above, critical values of R decrease as a declines from 4 to 2, so that & > 4-based

Table 3

Critical values of the supremum statistic sup, (/5 (r)).

o

N@©, 1)
Pr(X < ¢) 2.1 25 3.0 35 3.8 [ > 4]
80% 0.67 0.83 0.85 0.86 0.87 0.897
90% 0.89 0.97 1.00 1.02 1.04 1.073
95% 0.98 1.09 113 1.17 1.19 1.224
97.5% 1.10 1.24 1.29 1.33 1.36 1.358
99% 1.18 1.34 1.40 1.44 1.48 1.517

Remarks: For critical values are based on 50,000 simulations of the test statistics for a < 4, with
a sample size of n = 1,000 (except for o = 2.1: n = 2,500). For o > 4, the exact critical values ¢ solve
the equation Pr(sup(B(r})) > ¢) = exp(— 2¢?), ¢ > 0 (Billingsley (1968), equation (11.40)).

Table 4

Critical values of the range statistic R;.

o

N, 1)
Pr(X < ¢) 2.1 2.5 3.0 3.5 38 [o > 4]
80% 1.13 1.27 1.32 1.37 1.41 1.473
90% 1.23 1.39 145 1.51 1.55 1.620
95% 131 1.50 1.57 1.63 1.68 1.747
97.5% 141 1.63 171 177 1.83 1.863
99% 1.48 172 1.80 1.87 1.93 2,001

Remarks: For critical values are based on 50,000 simulations of the test statistics for a < 4, with
a sample size of n = 1,000 (except in the case of « = 2.1:n = 2,500). For o > 4, the exact critical
values solve the equation Pr(Rp < c) =1+ 23" | ((1 — 4k%c?)-exp( — 2k%c?)) (Lo (1991), equa-
tion (3.9)).
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critical values are again conservative when the true value of a is less than 4. For
a one-sided test of size 5%, say, the appropriate critical value decreases from
1.75 (o« > 4) to 1.57 (&« = 3) and further to 1.31 (a« = 2.1).

5. Empirical application: Some properties of stock market and exchange rate
returns series

5.1. The data

In this section, we analyze the outlier behavior and the null of covariance
stationarity for two stock market return series and five exchange rate return
series. The two stock market series are (i) monthly returns to a broad index of
U.S. stocks® from January 1834 to December 1987 (n = 1,848) and (ii) daily
returns to the “Standard and Poors 500” stock market index, from July 1962 to
December 1987 (n = 6,405); the latter data were obtained from the 1988 CRSP
tape. The exchange rate returns are based on daily closing spot market prices
measured relative to the U.S. dollar. The following countries were selected:
France, Germany, Japan, Switzerland, and the United Kingdom.® The exchange
rate series were extracted from the EHRA dataset compiled by the Board of
Governors of the Federal Reserve System, and span the period from December
1978 to January 1991. The number of observations is 3,140 in all cases except for
Japan, where we have n = 3,134.7

We are interested in answering the following questions: (i) What are the point
estimates of the maximal moment exponent a of these seven time series, and is
there evidence of fourth moment or even second moment condition failure in the
data? (i) Does the hypothesis of Pareto-like tails fit the data well, with a tail
parameter o which is the constant over time? (ii1) Can we support the finding of
Pagan and Schwert (1990a) who strongly rejected the null hypothesis of
covariance stationarity for their series of monthly returns, when we perform tests
that use the modified critical values which apply when fourth moments are infinite?

Since our statistical theory assumes that the series to be tested for variance
constancy have zero mean, we must estimate and filter out the conditional mean
of our datasets before we can perform the tests. Thus, prior to the analysis of the
data presented below, all series were demeaned as follows: we regressed the data

5The construction of this dataset is discussed in Schwert (1989).

®These five series are a subset of the 18 exchange rate series analyzed by Loretan (1991, ch. 3). The
present selection is made purely in order to concentrate on the properties of some “major” and
frequently studied exchange rate series. The conclusions reached from using the other exchange rate
series are quite similar to the ones presented here.

"This minor difference in number of observations is due to a different coincidence of national
holidays between the United States and Japan on the one hand and the United States and the
European countries on the other.
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on five weekday dummies (daily-frequency data only) and (in a second step) on
twelve monthly dummies to eliminate potential day-of-week and seasonal ef-
fects, and passed the residuals from these regressions through a long AR filter to
remove any linear serial dependence.® The residuals from these transformations
are used in the computations reported below. We tested for and found evidence
of serial dependence in the second moments of the residuals. However, these
pretests did not indicate that the fitted parameters from a GARCH model would
lie on the IGARCH boundary. Since the estimated amount of serial dependence
in the higher moments did not rule out covariance stationarity, we did not
eliminate it from the residuals. As discussed in Section 2, the use of the long run
variance estimator of v? leads to test statistics which are robust to serial
dependence in the conditional second moments under the null and alternative.

5.2. Point estimates of maximal moment exponents

We first study the tail behavior of our series informally, by plotting the tails of
their empirical distribution functions in double-logarithmic coordinates. (More
precisely, we graph log,ox against Pr(X > log;, x), for x > 0.} In these coordin-
ates, Pareto-like tails of the distributions form straight lines with a slope equal
to — a. As can be seen from Figures 5a-5g, about 5% to 10% of the observa-
tions fall into the right tail of the corresponding distribution. In all cases the
“outliers” of the respective series seem to be very well described as being
distributed according to a Pareto law. (The left tails of the data, while not
presented here, also appear to follow a Pareto law.)

We formally estimate the maximal moment exponents using formula (21)
above. We computed « for a variety of choices of s, the number of included order
statistics. Following the Monte Carlo-based evidence presented in Section 3
above and the suggestions by Dumouchel (1983), s was set so as not to exceed
ten percent of the sample size. We report the point estimates of « in Tables 5a—5g
for the seven series, separately for the right and left tails. The associated
asymptotic standard errors are delivered from equation (23) above, and were
computed under the assumption that s = o(n?"?**®), for some y > 0. (The
standard errors could be sharpened considerably if we assume that the tails were
exactly Pareto and thus assumed s = o(n).)

The point estimates are almost all less than 4; they range from 2.5 to 3.2 for
the monthly stock market return series, from 3.1 to 3.8 for the daily stock market
return series,® and from 2.4 to 3.7 for most of the exchange rate return series.

8 A detailed description of all preliminary data transformation is given in Phillips and Loretan
(1990) for the stock market series and in Loretan (1991, ch. 3) for the exchange rate series.

Since the daily and monthly stock index series cover different time horizons, and are defined
differently, we would not expect their respective point estimates of « to be close.
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Exchange Rate Returns, Germany
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Exchange Rate Returns, United Kingdom
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(The only exceptions occur for Switzerland at s = 20 in the left tail and for the
United Kingdom at s = 20 in the right tail (cf. Tables 5f and 5g).) Notice that for
several of these series the point estimates of o are remarkably insensitive to the
choice of s: e.g., for the right tail of the German exchange rate returns (Table 5d)
the point estimates fluctuate between 2.97 (s = 20) and 2.79 (s = 100). Except in
a few cases — which only occur for small values of s, i.e., when the standard errors
are very large - these point estimates are all more than two asymptotic standard
deviations below 4.

The point estimates of o are also greater than 2, implying that infinite variance
is not a feature of these datasets. While the tails of the two empirical distribu-
tions are certainly heavier than those of the normal distribution, they do not
seem to be heavy enough to fall into the domain of attraction of a stable law with
a characteristic exponent « < 2. These direct estimates of the maximal moment
exponent of the distributions contribute new evidence that relates to the long
standing debate as to whether to model stock returns as realizations of stable
laws. Mandelbrot’s (1963) seminal work studied the behavior of price fluctu-
ations of commodities such as cotton. He considered several pieces of evidence,
among them recursive variance plots and graphs of the tails of the distributions
in double-logarithmic coordinates, and argued that these were all strongly
suggestive of the stable law behavior. Subsequent work by other researchers has
generally concentrated on stock returns and foreign exchange rate data, e.g.,
Fama (1965), Blattberg and Gonedes (1974), Fielitz and Rozelle (1982), and
more recently Akgiray and Booth (1988) and Hall, Brorsen and Irwin (1989).
The general conclusion to emerge from this literature is that empirical distribu-
tions in economics, especially aggregate series such as stock market prices and
returns, do not follow stable laws and are better modeled by finite variance
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Table 5

Point estimates of maximal moment exponents.
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(5a) Monthly-frequency U.S. stock market returns

left tail right tail
(n = 992) (n" =914)

s 50 seld ay sel?
20 3.55 (0.79) 2.95 (0.66)
40 312 0.49) 2.46 (0.39)
60 3.22 (0.42) 2.45 (0.32)
80 3.00 (0.34) 2.61 0.29)

100 295 (0.29) 2.66 0.27)

(5b) Daily-frequency U.S. stock market returns

left tail right tail
(n® = 3,197) (n" = 3,207)

s a¥y ’ sed a se”
50 3.80 (0.54) 3.37 (0.48)

100 3.79 (0.38) 3.86 (0.39)
150 3.59 (0.29) 3.44 (0.28)

200 3.68 (0.26) 3.17 0.22)

250 3.44 0.22) 3.08 (0.19)

(5¢) Exchange rates: France

left tail right tail
n® = 1,551) (7" = 1,559)

s a¥ s.edd aln sel”
20 285 0.64 2.86 0.64
30 3.00 0.55 2.38 043
50 2.73 0.39 229 0.32
75 242 0.28 2.60 0.30

100 239 0.24 2.52 0.25
(5d} Exchange rates: Germany

left tail right tail
(1 = 1,586) (1" =1,524)

s a9 sed ay s.e.d
20 3.11 0.70 2.97 0.66
30 3.70 0.68 2.90 0.53
50 3.44 0.49 2.70 0.38
75 3.03 0.35 2.80 032

100 3.16 0.32 2.79 0.28
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Table 5. (continued)

(5¢) Exchange rates; Japan

left tail right tail
n? = 1,533) (n" = 1,571)

s o‘cg”r 7 sed ;ﬁ” s:e.y’
20 3.09 0.69 3.59 0.80
30 3.03 0.55 438 0.80
50 3.09 044 3.64 0.51
75 3.05 0.35 3.73 0.43

100 2.83 0.28 3.30 0.33

(5f) Exchange rates: Switzerland

o left tail right tail -

n" = 1,592) (n" = 1,518)

s a® s.edd ar sel”
20 5.13 1.15 3.30 0.74
30 3.69 0.67 3.03 0.55
50 341 048 297 0.42
75 3.35 0.39 271 0.31

100 3.10 0.31 2.77 0.28

(5g) Exchange rates: United Kingdom

- - 7 7 left tail - rightwtail -

(n? = 1,528) (n'” = 1,582)

s gw seld an sel”
20 325 0.73 471 1.05
30 3.00 0.55 392 0.72
50 298 042 3.56 0.50
75 2.89 0.33 3.44 0.40
100 2.59 0.26 3.27 0.33

distributions. The point estimates of « presented here agree with this general

result, at least as far as aggregate series are concerned.

But the simple observation that the unconditional variances appear to be
finite obviously does not suffice as a characterization of the distributions’
tail behavior. In particular, it does not indicate the order of magnitude of
the tails, or how many higher-order moments of the distributions can be
assumed to exist. Since our point estimates of o are generally significantly less
than 4, fourth moment condition failure is an important feature of the data and
should affect the way tests of covariance stationarity are carried out for these

time series.
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We recognize that empirical distributions have finite support in practice and
therefore have finite sampling moments of all orders. It might therefore be
argued that moment condition failure is merely an artificial by-product of the
choice of distributional framework, here: the model of Paretian tails. But such
an argument would also preclude the use of any other distribution that has
infinite support, including the normal distribution, and does not provide
a framework for describing outlier activity present in the data. The “outliers” in
all series we consider here, as evidenced by the form of the cdf’s plotted in
Figures 5a-5g, are rather well described as being distributed according to
a Pareto law. Note that our plots too, by extrapolation, would assign a negli-
gible probability of observing changes of the daily-frequency series of, say, plus
or minus 100% per day: the Pareto-tail hypothesis is therefore not in conflict
with economic common sense. To summarize, saying that the support of an
empirical distribution is bounded says very little about the nature of outlier
activity that may occur in the data. In contrast, a model of Paretian tails not
only appears to provide an adequate model of observed outlier activity, but also
gives a predictive framework for the rate at which outliers appear. Finally, it
permits the development of an asymptotic theory of tests of covariance station-
arity when outlier activity plays a significant role empirically.

To assess the robustness of the finding that the tails of stock returns and
exchange rate returns are Pareto-like, we formally test the equality of point
estimates of o across the right and left tail and across time periods, using the
sample split prediction test statistic ¥(r,) given in equation (25) above. From
(27) the limit distribution of this test is standard normal, and the test is

Op(ﬁ)-consistent under the alternative if the tails are exactly Paretian. The test
results are reported in Tables 6a-6g.'® We cannot reject the null that the same
parameter o applies to both the left and right tails of the distributions (cf. the first
column of the Tables), and cannot reject constancy of « over time (cf. the second
column) for any of the series except for the Japanese exchange rate series. For
the latter series, we reject constancy of a in favor of the alternative that o has
increased over time, i.e., that the relative importance of outliers has decreased.
We interpret these findings as evidence in support of the assumption that « is
a useful summary parameter in describing the empirical distributions of these
series, and that any heterogeneity present in the data is therefore most likely to
be due to variation in the dispersion parameters (C or ¢?) alone.*

19To avoid clutter, we do not report the values of &9, i =1, 2, separately in the tables. The
estimates of &” which enter the V(z,) tests are reported in detail in Table 3(a)in Loretan (1991, ch. 3),
and are available on request.

'1Observe that when o changes, the variance of the series changes as well, unless an exactly
offsetting change in C occurs. Our moments-based tests of covariance stationarity reported below
are thus not affected directly by the issue of constancy of the tail shape parameter «. The only place
where o matters for moments-based tests is when one must decide whether these tests are “statist-
ically significant,” because their critical values do depend on o when o < 4.
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Table 6

Sample split prediction test V(z,) of constancy of the tail parameter «, across tails and over time.

(6a) Monthly-frequency U.S. stock returns

Constancy of o over time

s Constancy of o across tails

40 1.045 0.865

60 1.467 0.886
1.348

80 0.882

(6b) Daily-frequency U.S. stock returns

s Constancy of « across tails Constancy of « over time
100 —0.124 0.055

150 0.369 — 0477

180 1.385 —0.398

(6c)y Exchange rate returns: France

s Constancy of o across tails s Constancy of « over time
50 0.867 30 —0.408
75 — 0427 40 —0.839

100 —0.397 50 — 1.283

(6d) Exchange rate returns: Germany

s Constancy of « across tails s Constancy of o over time
50 1.192 30 — 1413
75 — 0489 40 — 1.550

100 —0.878 50 — 2.000%

(6e) Exchange rate returns: Japan

s Constancy of « across tails s Constancy of o over time
50 —0.821 30 — 2.303*
75 — 1216 40 — 2.893**

100 — 1.076 50 — 3.529

(6f) Exchange rate returns: Switzerland

s Constancy of o across tails s Constancy of « over time
50 0.692 30 — 0.883
75 1.297 40 — 1.699

100 0.807 50 — 2,680

(6g) Exchange rate returns: United Kingdom

s Constancy of « across tails s Constancy of a over time
50 — 04875 30 — 1.620
75 — 1.062 40 — 1.579

50 —0.731

100 — 1.643
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Recently, Jansen and de Vries (1991) have analyzed the tail shapes of stock
returns for several U.S. companies, and have obtained results which are quite
similar to those given here for our aggregate stock returns. Specifically, they find
that (i) the tails or outliers of individual stock returns are well described by
a Pareto law, (ii) constancy of the tail index « cannot be rejected for the series
and sample periods they consider, and (iii) variances appear to be finite but the
existence of fourth moments is more problematical. Our empirical work differs
from theirs in the following two points. First, we use Hall’s (1982) extensions to
Hill’s (1975) estimator of « because we do not wish to commit to a maintained
hypothesis that the tails are exactly Paretian; this leads to larger asymptotic
standard errors for our estimators. Second, we estimate o for a number of
choices of s; Jansen and de Vries (1991) only appear to have performed their
calculation for s = 100 (Table 2, p. 22). It is unclear from their discussion how
sensitive their findings are to this choice of s. However, these differences in
methodologies are minor, and our conclusions regarding tail shapes and mo-
ment condition failure for stock return series are remarkably similar.

5.3. Are stock returns and exchange rate returns covariance stationary?

Since all of our series appear to have finite variances but infinite fourth
moments, moments-based tests of covariance stationarity are consistent but
require the use of the new limit theory and the modified critical values presented
in Sections 2 and 4 of this paper. Since serial dependence is present in the higher
order moments of the data, it is important to choose the lag truncation
parameter [ (in the kernel estimator of v?) large enough. After some informal
data analysis, we set [ = 8 for the monthly stock return series,'? equal to 12 for
the daily stock return series, and equal to 20 for the exchange rate series.!?

Consider first the sample split prediction test V,(r) evaluated at k = 1, i.e., for
suberas of equal length. (The behavior of the test for other values of k can be
inferred from the trajectories of the cusum of squares tests discussed below.) The
estimated values of this test statistic are given in Table 7. With the exception of
the German exchange rate series, we reject the null of covariance stationarity for
all of the series. Since all statistics are negative, the null is rejected in favor of
increased unconditional variance from era 1 to era 2.

To assess how sensitive this conclusion may be to the choice of the break
ratio, we now turn to the cusum of squares statistics for the same series. We plot
the cusums in Figures 6a—6g, along with the corresponding 5% critical values of

!2This is also the value used by Pagan and Schwert (1990a).

13 A more sophisticated analysis would employ a formal data-based decision rule for the choice of
the lag truncation parameter. However, it is unlikely that this modification would lead to substan-
tially different results for the data considered here.
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Table 7

Sample split prediction tests of covariance stationarity.

Series Value of V(1)

Monthly Stock Returns — 3.34%%x*
Daily Stock Returns (S&P 500} — 2.06%*
Exchange Rates: France — 2.50%**
Exchange Rates: Germany —1.52
Exchange Rates: Japan — 3.33%%x
Exchange Rates: Switzerland — 3.04%%*
Exchange Rates: U. Kingdom — 3.04%**

Remarks: Statistics significant at the 95% and 99% levels of confidence are highlighted with two and
three asterisks, respectively. Critical values are obtained from Table 1.

fdd-based tests and of the infimum test.'* Observe that the trajectories of the
tests tend to lie outside the 95% fdd confidence contours for substantial portions
of the sample periods, and that the infimum of the tests almost always exceeds
the corresponding 95% critical value. The numerical values of the rescaled
infimum and range test statistics for all series are provided in Table 8. We reject
the null of covariance stationarity at the 99% level of confidence for all series on
the basis of the infimum statistics, with the exception of the German exchange
rate return series. Covariance stationarity is rejected for German exchange rate
returns at the 90% level of confidence. The same conclusion follows from
inspection of the range statistics. These results, as well as the ones presented
earlier on the sample split prediction tests, are all the more notable since the
tests for covariance stationarity, as shown in Section 2, have low power in finite
samples against the alternative of changing variance in the presence of fourth
moment condition failure.

Our empirical findings are thus twofold. First, all series considered here fail
one or more of our tests of covariance stationarity. This throws into question the
validity and robustness of studies that employ this assumption while analyzing
market volatility. Second, heavy tails are prominent features of the data and
these tails are well described as being of the Pareto form with a constant tail
exponent a. In the absence of formal economic models that provide plausible
mechanisms for generating such heavy-tailed series, we do not have a framework
to assess the theory content of this finding. However, the apparent stability of
this tail shape parameter over long periods of time is an interesting empirical
regularity or stylized fact that models of rational economic behavior should be
designed to accommodate and explain.

'4The plotted critical values are those which are appropriate when & >4. As discussed in
Section 3, these values are actually conservative when o < 4, i.e., the actual size of the test will be
smaller than the nominal size (here: 5%). Thus, if the test exceeds the plotted critical values, rejection
of the null is certainly warranted.
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_{d)  Exchange Rate Returns, Germany
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Exchange Rate Returns, United Kingdom
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Table 8

Cusum of squares tests of covariance stationarity.

Infimum statistic Range statistic

Series inf, Y i(r) sup, ¥i(r) — inf, i (r)
Monthly Stock Returns — 2.13%** 247xx*

Daily Stock Returns (S&P 500) — L61¥** 1.62*
Exchange Rates: France — LET*** 1.80%**
Exchange Rates: Germany —1.12% 1.51%
Exchange Rates: Japan — 1.97%** 2.08%**
Exchange Rates: Switzerland — 1.88%** 2.03%%*
Exchange Rates: U. Kingdom — 2.76%** 2.80%**

Remarks: Statistics significant at the 90%, 95% and 99% levels of confidence are highlighted with
one, two and three asterisks, respectively. Critical values are obtained from Tables 3 and 4.

6. Conclusion

This paper presents a limit theory for tests of covariance stationarity in the
presence of heavy tailed distributions. Sample split prediction tests and studen-
tized cusum of squares tests are based on estimates of second and fourth
moments of the data. When the usual fourth moment condition holds, standard
normal and Brownian bridge asymptotics apply. When fourth moments are
infinite, the limit laws of these tests are given by functionals of stable processes.
The tests are consistent as long as second moments are finite, but have low
power against the alternative of unconditional heteroskedasticity when the
maximal moment exponent of the distribution is close to 2. Critical values for
these tests are obtained through Monte Carlo simulation.
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Moments-based tests of variance constancy are thus insensitive or robust to
moment condition failure in a fairly limited way: while standard critical values
are incorrect, namely conservative, under the null when a < 4, the tests remain
consistent against the alternative of changing variance as long as o > 2. There
has been a movement in econometrics in recent years to develop and apply robust
methods of specification or diagnostic testing. Here, robustness refers to the fact
that the asymptotic properties of “robust tests” do not depend on potentially
strong auxiliary assumptions under the null; this distinguishes such tests from
standard LM tests of model misspecification (see, e.g., Godfrey (1988)). Instead,
they require only much weaker regularity conditions. Wooldridge (1990, 1991)
presents robust conditional moment tests for a wide variety of misspecifications of
regression functions, and lists further references on this subject. A challenging
topic for future research is to investigate methods of making tests of variance
constancy “robust” by requiring weaker regularity conditions, while simultan-
eously allowing for fourth moment condition failure under the null.

We also provide methods of estimating the parameters a and C of distribu-
tions with Paretian tails, and show how to construct simple tests of the null that
these parameters are constant over time. These tests have particularly simple,
viz. standard normal, asymptotics.

In an empirical application, we test whether several stock market and ex-
change rate series have covariance stationary returns. No series pass the tests, an
empirical finding that confirms earlier work by Pagan and Schwert (1990a) and
casts doubt on the validity and descriptive accuracy of econometric models that
assume the unconditional variances of these series to be constant. The tail shape
parameter a of the empirical distributions is found to be constant across tails
and over time for almost all series, indicating that even when fourth moments
conditions and covariance stationarity fail there are still interesting empirical
regularities in the series to be modeled.

We close by mentioning some possible extensions to our empirical analysis.
Much work beckons: Given that covariance stationarity fails over long periods
of time, how short must the intervals be chosen in order to apply models which
assume unconditional homoskedasticity? Can one detect discrete break points
in constant variance models? Do individual stocks behave similarly to the
aggregate stock market series we have considered here? Finally, which theoret-
ical models of rational economic behavior can plausibly explain and predict the
apparent constancy of the tail shape and outlier activity of the data? All these
issues seem worthy of further research.
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