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NONSTATIONARY BINARY CHOICE

By JooN Y. ParRk anp PeTER C. B. PHiLLipS'

This paper develops an asymptotic theory for time series binary choice models with
nonstationary explanatory variables gencrated as integrated processes. Both logit and
probit moedels are covered. The maximum likelihood (ML) estimator is consistent but a
new phenomenon ariscs in its limit distribution theory. The estimator consists of a
mixture of two componcnts, one of which is parallel to and the other orthogonal to the
dircction of the true parameter vector, with the latier being the principal component. The
ML estimator is shown to converge at a rate of »*/* along its principal component but has
the slowcr rate of #'/* convergence in all other directions. This is the first instance known
to the authors of mukiple convergence rates in models where the regressors have the
same (full rank) stochastic order and where the paramecters appear in lincar forms of
these regressors. It is a conscquence of the fact that the estimating equations involve
nonlincar intcgrable transformations of linear forms of integrated processes as well as
polynomials in these processes, and the asymptotic behavior of these elements is quite
different. ‘The limit distribution of the ML estimator is derived and is shown to be a
mixture of two mixed normal distributions with mixing variates that are dependent upon
Brownian local time as well as Brownian motion.

It is further shown that the sample proportion of binary choices follows an arc sine law
and therefore spends most of its time in the neighborhood of zero or unity. The result has
implications for policy decision making that involves binary choices and where the
decisions depend on economic fundamentals that involve stochastic trends. Our limit
theory shows that, in such conditions, policy is likcly to manifest streams of liitle
intervention or intensive intervention.

Krvworbs: Binary choice maodel, Brownian motion, Brownian local time, dual conver-
gence rates, integrated time series, maximum likelihood estimation.

1. INTRODUCTION

BINARY CHOICE MODELS ARE NOW A STANDARD TOOL of microeconometrics and
have been widely uscd in empirical research. While most of the empirical
applications have been to cross-section data, there are many situations in time
serics modeling where binary choice dependent variables arise. Ongoing eco-
pomic decisions by individual agents over time constitute primc cxamples:
consumers decide to buy ccrtain durable goods, firms choose to rctain or fire
employees, unions decide to strike or capitulate, women choose to join the
workforce, and so on. At the national level, monetary authorities decide to
intervene in the market for securities to change interest rates, or intervene in
the foreign cxchange market to influence exchange rates. One way of formally
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characterizing these situations is through a binary choice model with covariates
that are relevant to the choice being made. In such time series applications, the
covariates will often involve nonstationary data reflecting relevant economic
conditions. For instance, monetary authority decisions can be assumed to be
based on macroeconomic fundamentals, which will include such variables as real
output and its components, inflation, uncmployment rates, and other indicators
of economic conditions and performance. Many of these variables display
nonstationary characteristics. In such situations, wc may well expect the econo-
metric theory of binary choice models to be different from that of traditional
cross-section theory which relies heavily on the simplilying assumption of
independence across observations.

This paper secks to develop a new theory for binary choice regressions that
accommodates nonstationary data. In particular, we study binary choice models
with covariates that are integrated time series and develop a new limit theory for
the maximum likclihood (ML) estimation of such systems. Since ML estimation
in discrete choice models involves nonlinear optimization, the asymptotic thcory
in this paper involves asymptotics for nonlinear functions of integrated time
series. Some recent work by the authors (Park and Phillips (1998, 1999)) has
provided techniques for analyzing nonlinear regressions with nonstationary time
series, and this paper shows how to utilize some of those techniques in the
context of discrete choice models. The main theoretical contribution of the
paper is to derive an asymptotic theory for the ML estimation of nonlinear
discrete choice models with covariates that are integrated time series. Some of
the results obtaincd here are directly applicable in the wider context of M
estimation. They also lay the groundwork for the asymptotic analysis of index
models consisting of integrated time series.

One of the main findings of the paper is that there are dual rates of
convergence in binary choicc models with integrated rcgressors. There is a fast
rate of convergence of #** in a direction that is orthogonal to that of the true
coefficient vector B,. A slower rate of convergence of #'/* applics in all other
dircctions. Such dual convergence rates are unexpected in econometric models
where the covariates have the same full rank stochastic order, as they do here,
and the parameters appear in linear forms of these regressors. In fact, to the
best of our present knowledge, this is the first instance of the phenomcenon in
asymptotic statistical theory. The explanation for the phenomenon in the pre-
sent case is that the nonlinearity arising from the discrete choice probability
framework confabulates the signal from the regressors. Since the signal works
through the probability function, it involves sample moments of the covariates x .
in conjunction with scalar functionals of a distribution function cvaluated at the
linear form x;B,. These nonlinear sample moment functionals have stochastic
orders that depend on the direction in which they are evaluated. In effect, there
is more sample information about B in directions orthogonal to B3, than there
are in other directions and, in particular, along B,. Heuristically, the signal from
x, is attenuated along B, because large deviations of x! 8, contribute less to
the sample second moment since they are attcnuated by the scaling of a density
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function that is evaluated in the same direction and that, by its very nature,
downweights large deviations. Thus, by virtue of the formulation of the model,
and somewhat ironically, there is less information in the data in the direction of
the true parameter than there is in the orthogonal direction.

Another finding of the paper is that in nonstationary binary choice the sample
proportion of binary choices follows an arc sine law and therefore spends most
of its time in the neighborhood of zero or unity, just as a random walk spends
most of its time on one side of the origin or the other. This result has some
testable empirical implications for policy decision making. In particular, if policy
involves market interventions and these are influenced by any factor that
involves a stochastic trend, then the theory suggests that market interventions
will most likely occur in streams of little intervention or large numbers of
interventions.

The paper is organized as follows. Section 2 outlines the model, assumptions,
and gives some preliminary results. Section 3 gives the main results on the limit
theory of the ML estimator. Section 4 gives a brief numerical illustration of the
cffccts on nonstationarity on logit and probit estimates. Section 5 concludes.
Some useful lemmas are given in Appendix A, Appendix B gives proofs of the
main theorcms, and notation is summarized in Appendix C.

2. THE MODEL, ASSUMPTIONS, AND PRELIMINARY RESULTS

We consider the regression model given by
(1) Y:*:x.:ﬁo_gm

where x, is a vector of explanatory variables and &, is an error. The dependent
variable y* is assumed to be latent and thc observed variable is simply the
indicator

(2) y, = y* =0},

The modetl given by (1) and (2} is a standard binary choice model. As usual, we
assume that x, is predetermined, i.e., x,,, is adapted to some filtration (),
with respect to which &, is measurable.

The theory of the binary choice model in (1) and (2) when x, is a stationary
and ergodic process or short memory time secries is obtained by standard
methods. The simplc case where x, is iid is included in many econometrics texts
(e.g., Amemiya (1985)) and review articles (Dhrymes {1986)), while dynamic
cases with weakly dependent data arc covered in the theory in Wooldridge
(1994) and White (1994). The present paper looks, instead, at the case where x,
is nonstationary. In particular, we assume that x, is an integrated time series,
possibly of the ARIMA type. All the remaining features of the model are
identical to those of the standard parametric binary choice model. Thus, we let
g, be iid conditionally on % _, with distribution function F, which 1s assumed to
be known and standardized, the primary cases of interest being the standard
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normal (leading to the probit model) and the standard logistic (leading to the
logit model). Also, we let B, be an interior point of a subset of R” which we
assume to be compact and convex,

In this framework we have E(y,|.7_,)=My =11%_,)=F(x 8,). Then,
defining u, as the residual in

(3 Y =F(x,By) tu,

it is apparent that (u,,.5) is a martingale differencc sequence with conditional
variance

(4) E(u} |5} = c(x]B,),

where o *(z)}=F(z)X1—F(z)). If the conditioning set or the dynamics are
misspecified and E(y, |.%_ ) # F(x| By), then u, in (3) is no longer a martingale
difference and the theory developed here does not cover that case. Thus, the
present paper contributes to correctly specified dynamic binary choice models of
given (distributional) functional form.

The following assumption on the process generating x, underpins the asymp-
totic development. In particular, the lincar process structure and the moment
conditions on the innovations assist in the use of embedding arguments that
allow for stochastic process representations of key partial sum processes, as
shown in Lemma 1 below.

ASSUMPTION 1: Let x,=x,_, + v, with x, = 0, and where
v, =I(L)e,= ) IHe,_,,
i=0

with TI(1) nonsingular and T_ ) i|| IL| < . The innovations e, are iid with mean
zero and Elle ||” <= for some r > 8, have a distribution that is absolutely continu-
ous with respect to Lebesgue measure and have characteristic function ¢(t) which
satisfies lim,, . {[t["0(t) =0 for some x > 0.

LeMMA 1t Let Assumption 1 hold. Then there exists a probability space ( 2, 5. P)
supporting sequences of random variables U,, and V), satisfying the following:
(a) Jointly for all 1 <t <n,

(Urrt’ n.f ZH T
( Lugr B

(b} There exists a representation

T!’H‘
Um = U( ]
n

with standard Brownian motion U and time changes T,, in (2, F,P). Let T, =
i=17y and define Z, = o(UDe{",(V, Y1), Then E(z,1%, ,_ l)—E(u |
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F_)and Bl7 |5 )< c,_E(Iu,\zr | _ ) forall r > 1, where ¢, is some constant
depending only upon r.
(¢) Defining

i t~1 t
Kr(‘r): Z[/;xfl{ Sf'<—},
=1 n n
then V,—, . V in D[0,1]", the m-fold Cartesian product of the space D|0,1]
endowed with the uniform topology, where V' is Brownian motion in (Q,.7,P) with
variance matrix 2.

For the development of our theory, it is convenient to assume that 8, = 0 and
to rotate the regressor space using an orthogonal matrix H = (h,, H,) with
h, =B,/ B, B,)"*. We then define

(5) x,=Wx, and  x, =Hix,.
Conformable with this rotation, define
(6) Vi=hV and V,=HV,

which are Brownian motions of dimensions 1 and (s — 1), respectively.

Our subsequent theory involves the local time of the process V,, which we
denote by L,(¢,5), where ¢ and s are the temporal and spatial parameters.
Ly(t,s) is a stochastic process in time (f) and space (s) and represents the
sojourn density of the process V| around the spatial point s over the time
interval [0, t]. The reader is referred to Revuz and Yor (1994) for an introduc-
tion to the properties of local time and to Phillips (1998), Phillips and Park
(1998), and Park and Phillips (1998, 1999) for applications of this process in time
scries. In the representation of our limit theory it is especially convenient to use
the scaled local time of ¥V, given by

(7N Lft,s)=(1/0)))Ly (1,5},

where ¢, is the variance of V|. The process L.(7,s) is called chronological
local time in Phillips and Park (1998) because it measures the sojourn time in
chronological units that the process spends in the vicinity of the spatial point s.
[t is defined by the limit

L(t,5)= lim i f]{lV,(r) —s5| < e} dr.
=0 2& D

The notation in {6) and (7) will be used frequently in the paper without any

further reference.

Since we will be dealing with nonlinear functions of the integrated process x,,
it aids our theory to be more specific about the class of functions we will
consider. In the development that follows we draw upon the general approach of
Park and Phillips (1999) in studying nonlinear transformations of integrated
processes. Here we will concentrate on functions that typically arise in the
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context of binary choice models such as (3) above, viz. distribution functions,
probability densities and their derivatives. These functions play an important
role in the subsequent development of our theory.

A function f:R — R will be called regular if it is bounded, integrable, and
differentiable with bounded derivative. We denotc by Fy the class of regular
functions. We also consider the class F;, of bounded and integrable functions,
and the class K, of functions that are bounded and vanish at infinity. Clearly,
Fr CF, CF,. Further, we define f, by f (x)=x"f(x) for any function f. By
convention, f € Fg, F, or F; when f, € Fg, F, or F;, for all i =0,..., «. The first
and second derivatives of f are denoted, respectively, by f and f, when they
exist.

We now make some assumptions on the distribution function F of &,. We will
make extensive use of the following notation:

(8) G=F/F(1 -F); K=GF=G*(1-F).

ASSUMPTION 2: F is three times differentiable so that F, F, G and G all exist.
Further: (@) K, € F,, (b) F,, (GF),, (GF),, (GF'/*(1 — F)"/*), € F,, and (¢)
(GFl/g(l - )1/2)21 (GSF)4 S FU

For the logit model, F(x)=¢*/(1 +¢*) and we have G = 1. Consequently,
K=F and so K(x)=e*/(1+e')?, the density of the logistic distribution.
Condition (a) of Assumption 2 is therefore clearly satisfied. Moreover, since
G=0,itis simple to check the conditions in (b) and (c) of Assumption 2, all of
which hold trivially.

For the probit model, it is also not difficult to verify that the conditions in
Assumption 2 hold. Indeed, using Mills ratio we have

oo o(x) ) cp(x) ———[1+0(x2)] as x — oo,
T e -ew)) | X . L
]_¢(x)[1+0(x )] asx ,

where ¢ is the standard normal density function and @ is the corresponding
cumulative distribution function. It is apparent from these formulae that G(x)
= O(|x]) for large |x|, and that G is differentiable with a bounded derivative. It
further follows that

o(x)’

K(x) = GIFx) = Zrsm—a s

xe(x)
&(x)
—-xp(x)
1 —d(x)

[1+0(x %)] as x — x,

[1+0(x77)}] as x — —oo,
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and so K is regular and satisfies condition (a) of Assumption 2. Conditions (b)
and {c) of Assumption 2 follow upon some further routine calculations.

For each ¢, the conditional log likelihood of y, given #_, is y, log F(x' B) +
(I —yMogll — F(x; B)L. The implied (conditional) log likelihood for the model
(1) and (2) has the familiar form

H n
9) log L(B)= Y ylog F(x;B)+ Y (1 —y)logll — F(x, B)],
t=1 t=1
and this function is well known to be globally concave in the logit and probit
cases. For cxample, in the logit case we have (c.f. Amemiya (1985, p. 273)}

r?z ]0g LH EXL‘B

mn

(1{)) “‘W‘= —rg A,(l*:i,)x,x;, Ar:ifl(x:ﬁ)=1—+£m,
which is negative definitc for all 8, just as it is when the covariates comprise
cross-section observations,

The hessian (10) is a weighted sample second moment of the integrated
process x,. The weights are given by the logistic density at x| 8, viz.

p¥iB
All-A)=———,

(1+e%F)
and are nonlinear integrable functions of x,. In contrast to the case of cross-
section data that is studied in the litcrature, or the case where x, is a stationary
and crgodic time series, the normed hessian
1 4% log L, 1z

o LY A= Ay
n dpag n,-
does not converge in probability to a negative definite matrix when x, is an
integrated process. In fact, as we will show, the hessian matrix ¢° log L., /3B3B’
has elements with different stochastic orders in different directions and, when
appropriately normed to accommodate this divergence, the matrix converges
weakly to a random limit matrix, not a constant matrix. The random limit matrix
is negative definite almost surely and so the limit function is also globally
concave.

3. MAIN RESULTS
Let B, be the maximum likelihood estimator of By in (1). From (9) and using
the notation (8) we can write the score S,( 8) and hessian J,( 8} as

(11) $.(8)=% G(xB)x(y,— F(x.B),

=1

(12) "n(B) - Z K(X;B)xfx: + Z G(x;B)x:x;(yr —F(X;ﬁ))
=1

t=1
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As usual in ML limit theory, the asymptotic distribution of BA” will be obtained
from the expansion

(13) O = S”( én) = Sn( B()) +‘,n( Bn)( éra - ﬁﬂ)’

where S,(8,) and S,(B,) are the scores at B, and B, respectively, and J (8,)
is the hessian matrix with rows evaluated at mean values between ﬁn and ;. As
it stands, this is a conventional problem in extremum estimation. However, in
the present case, the limits of the score S,(3,) and the hessian J,(8,) arc
nonstandard and our first step is to characterize these limits.

To analyze the asymptotic behavior of S,( 3,) and J,{ 8,), we need to rotate
the coordinate system and reparameterize the modcl. Corrcsponding to the
transformation of x, in (5), let

a =h B and «, =H B,

and define a=(a,,a) =H'S and o,=(a,a)) =B B)/2,00 =H'B,.
Since maximum likelihood estimation is invariant with respect to reparameteri-
zation, if &, is the maximum likelihood estimator of «g, then &, =H'B, or
B, = Ha,. The score function §,{«) and hessian J,(«) for the parameter ¢ can
be obtained from thosc of « simply by using the relationships S,(a)=H'S,(8)
and J(a)=H'J (B)H. Furthermore, by premultiplying the expansion (13) by
H' it is apparent that the expansion remains valid for §,(&,), i.c.,

(14) 0 = Sn(&n) = Sn(aD) +JIT( an)( &n - at))ﬂ

where J{ B,) is replaced by J (e,)=H'J ( B,)H.

The next two lemmas provide a limit theory for samplc moments and
covariance functions which assist in analyzing the asymptotic behavior of the
score function (11) and hessian (12).

LEMMA 2: Let Assumption 1 hold, and [ :R — R be regular. Then we have:

1 n -
(a) 7—; 4§1 f(x,) =, LI(LO)I_J'(S) ds,

1 s
(b) D IFICIP S fU'VZ(r_) dL](r,D)fi Stsyas,

i1
L 1 _ x
(¢) 372 Ef(-?fu)xzrx,zl =y j[-] Vz(r)VZ(P’)' dLl(r,O)f f(q) ds,
=1 .
Jointly as n — =,
LEMMA 3: Let Assumption 1 hold, and assume o*f*, 0?g* € Fp, 0°f,0°g € F,
and o*f*,0°g* €F, for f, g : R — R. Then we have

nT A F e,

(15)
HF}MEL 1 g(xlr)leuf

-, M'2W(1),



NONSTATIONARY BINARY CHOICE 1257

where

L0 [Hs)ds fldLl(r,O)l/Z(r)’fx F(s)g. () ds
M _ B {} — =
j'»fz(r)dr,l(r,n)f 2, ()f, (s) ds f]Vz(r)Vz(r)’dL,(r,O)fc g2(s)ds
0 -* 0 — %
with f,= o f, g, = ag and W is m-dimensional Brownian motion with covariance
matrix I, which is independent of V.

REMARKS: 1. Let V,, =V, = oy,0,,'V,, where o, and o, are respectively
the variance of ¥, and the covariance of V; and V,. We have

ViR Ly 0) = [V, (DL, 0) as,
a 0

fle(r)Vz(r)’dLl(r,O) - flell(r)Vz_,(r)’dLl(r,D) 2.5
0 0

since [} V,(r)dL{r,0)=0 as., a result that is casy to deduce because {r:V(r)
— 0} is the support of the measure dL,(r,0) (e.g. Revuz and Yor (1994, Ch. V1)).
We may therefore regard V, as being independent of 1 (and hence of L;) in so
far as the process V, arises in the representations of the limit distributions in
Lemmas 2 and 3. The limiting distribution in Lemma 3 is mixcd Gaussian. The
mixing variates are dependent upon the local time L, of ¥, as well as 17,. We
denote the Timit distribution by MN(0, M ).

2. Note that the components in (15) are asymptotically dependent in general,
in spite of their differing rates of convergence. A special case in applications
when the conditional covariance matrix M is block diagonal is discussed below.

3. In part {a) of Lemma 2 the sample mean of f(x, ) is standardized by Vn
rather than the usual #. This rcduction in norming arises because the function f
is integrable and therefore attenuates contributions from large values of x,,.
The increase in the norming factor that appears in parts (b) and {(c) arises from
the presence of the integrated regressor x,, in the sample moment.

4. If x,, were replaced by a stationary variate (as it would in some directions
were x,, to be cointegrated), then the norming would return to Vi . Thus,
suppose Xx., is stationary, satisfies the same conditions as v, in Assumption 1 and
is independent of u,. Then, a simple derivation along the lincs of the proof of
Lemma 2 reveals that

1 H e
(16) = Y [ (x5 X qu,o)f F(s)ds 3y,
=1 -
where X,; = E(x;,x5,). Likewise, we find that

(17) n AN glx dxu, -y, MN(O, Ll(l,U)fDc g2(s) d5233].

=1
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Thus, the presence of stationary elements in the regressors does not aflect the Vi

convergence rate of the sample mean in Lemma 2(a) or the ?/E convergence
rate of the sample covariance in Lemma 3(a). Results (16) and (17) cnsure that
the coefficicnts of stationary regressors in binary choice madels where there are
also some integrated regressors behave in a similar way to the coefficients of x Iee

Using these results we are now able to characterize the limit forms of the
scorc function (11) and hessian (12).

THEOREM 1: Let Assumptions 1 and 2 hold. Then
DJIS”(QU) 4 QI/ZW(I) and Dn_—lju(a(l)Dr;l a T Qa
Jointly, where D, = diag(n"/", n?/*1 ),

L(1,00 " @K (als)ds [l 0wy [T sKabs) ds
. - ¥} - =
(18) Q: | e 1 w ’
sz(r)dL,(r.O)f sK(als) ds sz(r)Vg(r)’dL,(r,O)f K(als) ds
[} - n —m

af = (B} B)/?, and W is defined as in Lemma 3.

If £, has a symmetric distribution, as in the probit and logit models, K is an
even function. We therefore have

fT sK{s)ds =0.

In this case, the matrix Q given in Theorem 2 reduces to a block diagonal
matrix.

The asymptotic results for S,{a,) and J («,) presented in Theorem 1 aid in
deriving the limiting distribution of &,. Indeed, from the expansion (14) we may
expect that the normed and centered estimator satisfies

(19 D&, ~a)=—(D;70y)D; "Y' D; 'S, (ay) +0,(D).

Indeed, (19) is established in the proof of Theorem 2 below. This expansion is
cnough to deliver the form of the limit distribution of D (&, — «,).

THEOREM 2: Ler Assumptions 1 and 2 hold. Then, there exists a sequence of

ML estimators for which &, —, a,, and

D,(&, —a,) =, Q" W(1),

in the notation introduced in Theorem 1.

REMARKS: 1. As usual for local extremum estimation problems, Theorem 2
cstablishes the existence of a consistent root of the likelihood equation. The log
likelihood function is well known 1o be concave in the logit und probit cases
(and, indeed, in all cases where log F(x) and log(1 - F(x)) are concave func-
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tions; see Pratt (1981)), and in such cases the consistent root is unique and is the
global maximum.
2. Let &, =(a,,, &,,)". When [* _sK(s)ds =0, we have the limits

o —1/2
n'/"(&lnul)%d(Ll(l,O)I slx(s)ds) w(1),

. —12
&, =y (L]Vz(")Vz(”' dLl(r,O)fxszK(s)ds} w,(1),

where W= (W, W,) for W defined in Theorem 2. The limiting distributions of
&,, and &,, are therefore dependent only through their mixing variates given
by V. Consequently, in this case &,, and &,, become asymptotically indepen-
dent conditional on x,.

3. Tt follows from Theorem 2 that

Q0 D,H'(f,—By) ~a QW) =MNO,Q .
Setting E, =n"'/*D_ = diag(1,vnI,_,) we have
(D,H'n~ V"""~ HE™' - (h,,0)

so that

4

Vi ( B, = By) =4 U1, 0Q™2H(1) = MNQO. (hy,00Q~ " (£;,0)")
= MN(O, i1/ q1 ),

where

(21) {IHQ:‘IH_QQQEEI%U

which is expressed in terms of the elements of the partitioned matrix

gy O

with Q defined in (18). We formalize this result as follows.

(22) Q=(‘?n ql2)

COROLLARY 1: Under Assumptions | and 2, as n — =
4 A
‘/‘;‘?( B, — BU) =, Pz, MN(O, 42,
where q,, , is given by (21) and (22) and P, = B,( B;, Bo) 8.

According to this Corollary we have the asymptotic approximation

~

1
(23) 48:1 ~d MN( Bll’ ﬁpﬁuqlﬂlll)'
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A natural estimate of the (conditional) covariance matrix of B, is provided by
the hessian inverse —J,( B,!z) !, or the more commonly uscd alternative
_Jn( B.rt) o ’ where

1(B)=— L K(x;B)x,x

t=1

is the negative definite first component of J,( 8) in (12). The next result shows
that these matrices accurately represent the asymptotic covariance matrix of g,
in (23).

THROREM 3: Under Assumptions 1 and 2,

B e B0 s
as n — %,

It follows that the usual construction for asymptotic standard errors of én
applies, even though there are different rates of convergence in the componcnts
of the estimator. The situation is analogous to that considered by Park and
Phillips (1989) in regressions with cointegrated regressors. Moreover, by (20) the
limit distribution of B is mixed normal in all dircctions, albeit at different rates,
and this fact ensures that Wald tests of restrictions on g, have asymptotic
chi-squared distributions, so that statistical inference can proceed in the usual
manner.

COROLLARY 2: Let Assumptions 1 and 2 hold. If {7, sK(s)ds = 0, then

Bo
Byl

-1/2

(B =)~ L0 [ kGl as) )

where || Boll= (B B2, and W is univariate standard Brownian motion indepen-
dent of V.

[t 18 clear from Corollaries 1 and 2 that B\” is asymptotically dominated by the
component that converges slower. The overall convergence rate is thus given by
n'/*, but the limit distribution is singular. It is degencrate along the direction
that is orthogonal to the true parameter vector 8, and, in that direction, ,SA”
converges at the faster rate of n*/*,

Also of interest are the predicted probabilities F =F(x$,) and the estimated
marginal cffects f(x' 8,)8,, where f is the density function corresponding to F.
The limit theory for these functionals is given in the following result.

COROLLARY 3: Let Assumptions 1 and 2 hold. Given x,=x, the predicted
probability F = F(x'B,) and estimated marginal effect ¥, = f(x BH)BR have the
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Jollowing asymptotic distributions as n — =

A 1
(24) F(x’)gn) ~a MN(F(x’B,,), ﬁf(xfﬁﬂ)zxrpﬁoxqmz]a
and

(25) ~d MN(Y(X Bols 1/— [fCx"Bo) +f(x"By)x’ Ba] P dn. 2)1

where v(x'B,) = f(x"B,)By-

In both cases, the rate of convergence is n'/*. However, the limit distribution
of the estimated marginal effects is singular and the faster rate n*/* applies in
directions orthogonal to f3;. In the Probit case, the asymptotic variance has the
very simple form

1 - 2 ’ 212 —1
ﬁqo(x By) [1_(I Bo)] Fg, 112

The asymptotic variance formulae given in (24) and (25) correspond to those
given in the literature for the iid or stationary case (e.g. Greene (1997)),
although the singularity in (25) does not arise in that case. Notwithstanding the
singularity, one can ¢stimate the asymptotic variance matrix of the coefficient
estimator by the inverse of the hessian as indicated in Theorem 3, and it is
apparent that standard errors for the predicted probabilitics and the estimated
marginal effects may be computed in the usual manner. Thus, the main cffect of
nonstationarity is to siow down the rate of convergence in these estimates.

Finally, it is of interest to study the asymptotic behavior of the empirical
average r, =n_'L_, y,. The quantity r, is an aggregate proportion and mca-
sures the proportion of positive choices (i.e. y, = 1 outcomes) in the sample data.
Tt can also be used in a predictive manner to forecast the proportion of positive
choices for some given sequence of data on the covariates, say X ={X,:¢1=
1,...,n}. In this event, we can define y,(X)=1{XB,> ¢} Of course, in
pract1cal applications y,(X) is unobserved, and we would therefore use the
estimate F(X)=n"" f_lF(X) where F(X)=F(X/B,). Such estimates are
useful in policy situations in assessing the likely proportionate number of
positive choices arising in the cvent of the data {X,:r=1,...,n}. An example in
monetary policy would be the likely number of market interventions needed for
a given scenario of economic fundamentals.

The following result gives the limit theory for such quantities.

THEOREM 4: Let Assumptions 1 and 2 hold. Suppose the time series X = {X, 1t
=1,...,n} is drawn independently of x, from a process with properties equivalent to
those of x, as given in Assumption 1. Then the sample proportionr, =n"'LI_, y,,
the predicted proportion r{X)Y=n'LI_, y(X), and the estimated proportion
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FAX)=n"'Yr_ F{X!B,) all have the following limit behavior as 1 — w:

LR *n

(26) 1 (X)) =y [Li(L,s) d.
0

An elementary calculation shows that L ,(1,5)=; o 'L(1,s/0) where o=
olf? and L(L,s) is the local time of standard Brownian motion. Then

-] B $
f L(1,s)ds=, a'_lf L(1,—Ja’s
0 0 o

= [L.0di= ["Uw(r) >0} ar,
0 {}

a quantity that is well known (e.g., Revuz and Yor (1994, p. 232-233)) to be a
random variable that follows the arc sine law with probability density

1
@ mvx(l —x)
on [0,1]. We deduce that the empirical average r, and predictive averages
rdX), and 7,(X) all have the same limit distribution given by the arc sine law
{27). This result is decidedly different from the stationary case, where i
E[F(x| By)] and the expectation is taken with respect to the stationary distribu-
tion of x,.

The fact that r, follows an arc sine law in the limit means that the sample
proportion of positive choices spends most of its time in the neighborhood of
Zero or unity, just as a random walk spends most of its time on one side of the
origin or the other. To take the explicit example of a monetary policy interven-
tion, the theorem has the following implication. If the economic fundamentals
that determine monetary policy intervention include a stochastic trend, then the
likely number of markct interventions needed for any given scenario of funda-
mentals is determined by the arc sine law (27). Thus, the theorem tells us that it
is most likely that interventions will occur in streams giving periods where therc
is very little intervention or periods where there are a large number of interven-
tions. This result holds for any given trajectory of fundamentals and for any
particular policy determining mechanism, i.e., any linear form x; 8, provided it
has a stochastic trend.

4. ILLUSTRATION OF THE EFFECTS OF NONSTATIONARITY

This section reports a brief numecrical exercise that illustrates the effects of
nonstationarity on a binary choice regression, Data were generated from (1) and
(2) using both logit and probit formulations for F and with €xogenous covariates
x,, which were generated by a bivariate vector autoregression of the form

i) _ dyy 0 Xi—y i Uy
X2 0 a,yflx;, Uy 7
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FIGURE 1.—Logit model—densities of estimators of 87 = 1, B = 0; I(1) casc.
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with v, =(¢y,,v;,)" =iiN(0, I,). Both unit root {(a, =1, =1,2) and stationary
(a;=0.5,i=1,2) cases were examined. The parameter value was set at B, =
(1,0)". Thus, x; B, =B x;,=x,, and the direction orthogonal to B, is (0,1),

giving the coefficient B; =0 of x,,. The number of replications was 5,000.

Figures 1 and 2 show kernel cstimates of the sampling distributions of the
(correctly specified) logit and probit estimates of the coefficients 8 and g° in

14

density

04

0.2

FIGURE 2.—Frobit model—densities of estimators of 8" =1, 8% = 0; I(1) case.
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FIGURE 3.—Logit model—densitics of estimators of g7 = 1, g1 =0; stationary case.

the unit root casc {a,;=1,i=1,2) for sample sizes »n = 100, 250, 500. The
greater concentration of the estimates of B3 and the differing rates of canver-
gence between the two coefficients are quite apparent in the figures. Comparing
the probit results (in Figure 2) with those of the logit (Figure 1), reveals the
cffect of the longer tails of the logit distribution—the probit estimates have
substantially greater dispersion for both coefficients. The reason is simply that
the probit function attenuates the signal from the nonstationary regressors more
severely than the logit function because of the thinner tails of the normal
density. Interestingly, this rclationship between the logit and probit estimates in
a nonstationary regression (viz. that probit estimales are more dispersed than
logit estimates) is the opposite of the well known (approximate) scaling relation-
ship that applies in the standard case, viz. that the logit estimates tend to be
larger than the probit estimates by a factor of close to 7/ V3, a feature that
arises from the variance of the logit distribution being 7°/3, compared with
that of the normal being unity (c.f. Greene (1997)).

Figures 3 and 4 show the corresponding estimates for the stationary case
{a,;=05,i=1,2). There is much less difference between the densities for the
two coefficients in this case, just as asymptotic theory for the stationary case
indicates. However, estimates of 8, arc still somewhat more concentrated than
those of estimates of B/. Intcrestingly, there is a small but noticeable difference
between the probit and logit densities, with the probit estimates now being more
concentrated, as theory suggests for the stationary case, which is quite the
opposite of the relative behavior in the nonstationary case.
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FIGURL 4.—Probit model—densities of estimators of 8{ = 1, 85’ = 0; stationary case.

3. CONCLUSION

While binary choicc models have been a popular tool of microeconometrics
for several decades, time serics and panel data applications of these models are
also important and may well increasingly be so in the future. The present paper
provides an asymptotic theory for maximum likelihood estimation of these
models in time series contexts. Qur principal finding is that dual rates of
convergence operate in these models when there are multiple integrated regres-
sors, even though the regressors have the same (full rank} stochastic order. This
outcome is unusual and is the first instance of the phenomena in asymptotic
statistical theory that the authors have encountered. As we have seen, the
probability function formulation of conventional binary choice models serves to
attenuate the signal emanating from an integrated rcgressor by dint of the fact
that large values of x) 3, contribute little to the score and hessian because they
arise in these quantities by way ol a probability density that vanishes at infinity.
The effect is that significant signal attcnuation occurs in all directions except
those that are orthogonal to B,. It is further shown that the limit distribution
theory of the ML estimator is mixed normal and that conventional methods of
inference remain valid.

Another finding of some interest is that the sample proportion of positive (or
negative) choices follows an arc sine law and therefore spends most of its time in
the neighborhood of zero or unity, just as a random walk spends most of its time
on one side of the origin or the other. This result has some empirical implica-
tions for policy decision making, and in particular market intcrventions. Thus, in
a situation where any of the determining factors involves a stochastic trend,
market interventions will most likely occur in streams of little intervention or
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large numbers of interventions. This is obviously a testable empirical implication
of the theory that we hope to explore in later work.

There is scope for extending the results of the paper to some related models.
A partial list of extensions that seem valuable for empirical work includes
multivariate models, poly-chotomous choice, panel data situations and nonpara-
metric approaches, thereby covering the common extensions of binary choice
that arisc in the microeconometric context. As indicated ecarlier, it is also
possible to extend our theory to include cointegrated regressors (or combina-
tions of integrated and stationary regressors). In fact, the outcomes in this case
are anticipated in results (16) and (17) and so they have not been detailed here
as they involve little that is new beyond the results already provided.
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APPENDIX A: UseruL LEMMAS AND PrROOFS

LEMMA AlL: Let f R R and fe B,
(u} Let 2> 0 and define

L.00 = sup | flx +y)l.
I¥l= e

Then [ € F,.
(h) Ler KC R be compact, and define

felx) = sup|ftex),

c=K
Then f,, & F,.

Proor oF LEMMa AT; It is obvious that both f and £, defined in (a) and (b) are bounded. It
therefore suffices to show that they are integrable. To simplify the proofs, we assume that £ is a
symmetric and integrable function that is monotone increasing (decreasing) on R_(R, ). This causcs
no loss in gencrality. since any integrable function is bounded by such a function. To deduce part {u),
we only need to note that f,(x) =f(0) for |x| < &, and f,(x)=f(x — #) and f(x + &) respectively for
x> g and x < — & Clearly, f, is integrable it { is. To prave part (b), we choose an arbitrary ¢, € K,
¢y > 0, and its neighborhood N, =lc, — &,¢, + £] for some &> 0. Define f,(x) =flleg— €)x) und
JWeq + )x) respectively for x>0 and x < 0. By construction, we then have flex)y < F,(x) for all
¢ €Ny and x € R. It is obvious that f;, is integrable, and the stated result follows immediately from
the compactness of K, QED.
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LEMMA A2 Let Assumption 1 hold, and f:R — R. Denote by x5, the w-times tensor product of xy,
with itself. Define

Ft

- Zf(,r”)xé‘f and Ny= Zf(x“)xé‘lu,.

t=1 =1

(@) ForfeF,, M=o (n”"/z) Moreover, if f € Fy, then My = O (gt +277),

L

(b) i Ufel'n, then NK—O (n(i“'K)/z)

PrOOF oF LiMma A2: Let V= (¥, 13Y. Note that

=, sup V5, ("< sup [IFH0rH"+1 <= as.

D=r=l Oxr= |

Vn

for all large n. For f< Fy, we have 7' L/_ 1f(x),)l =, 0, as shown in Park and Phillips (1999).
fEF, it follows from Lemma 2 that n"“‘):f ]Ef(x“)l 0,(1), since [ is bounded by a rcgular
function. The stated results in part (a) therefore may casily bc deduced. To prove part (b), we notice
that

sup

l<tzn

R 1 2
r1[]+"]Ei|1\];|I_=E( T Z(U ’f* Wy Nxa /I K)

=1
<E(( sup J|V,(r)||~“+1)f (o fz){qu,,(r))dr)_,, ,

D=rat

by dominated convergence. OED

Lemma A3: Let Assumption | hold. Assume o°f*, a’g? € ¥, and o*f, a2g* €K, for f,g:R
— R. Define

PZ ~ 0 22 g and ,PE =n—3/2g2(x”)xz;x'2,u,2,

"t nt

TRt

and ;Q2, =EGP21%_ ) fori=1,2. Then we have for i =1,2

t

4
Zz Ry E Qnr

s=1

sup
l=t=n

asn —x,

PrOOF OF LEMMA A3: Notice first that
lQm 1/2(02]( )(xlr and ZQ:}=n_3/2(02g2)(x11)x21x!2{'

It tollows from Lemma 2 that

i

E NAEY Ll(I,U)jx (or?f2)(s) ds,

=1

n

Z rlr_) sz(")Va(r) dL (i‘ 0)[ (Uzgz)(\)d\

=1

and therefore, both are obwviously tight.
Now we show that

EE( m I)_)' 0

i=1
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for i =1,2. We may assume w.lo.g. that x,, is scalar by considering each component scparaicly. [t
follows that

E(u} 1% ) =g (1 =3F,+3F2),

where we write F, = F(x,,} and o, = F,(1 — F,} for short. We therefore have

1 M
ZF(I s 71)7”’ Z((Téfq)(]—3F+3F2)(—x|f)—&‘"0’
=1 =1

n i
Y EG P4|s=‘,,)fF Z(rr e =3F+3F ) x )xd, =, 0,

"t
r—1 f=

due to Lemma A2(a). The stated result now toflows from Theorem 2.23 of Hall and Heyde (1980).
Q.E.D.

LEMMA Ad; Lot Assumption | hold. Assume aif.alge F, and alf?, alg?eF, forf.e ' R=R.
Define

2 —3.4 2 : 2
(N2 =07 (x and  SNZ=n g0k, )0t

Then we have fori=1,2

T
Z N
ni

sup

f=<t<n

as n — %,

PROOF OF LEMMA Ad; We let . M2 =F(N?

Hf

F_)fori=1,2, s0 that

IJ‘W2 :,:1‘3/4(02/')(1',,) and ?.‘Muz.v:”_:H(Ugg)(xlr)xzr'

Hi

It follows from Lemma A2 that X7 |, M, —», 0 for i = 1,2. Moreover,

n L
YEGNMF D =n Y (a0 - 3F +3F)(x,,) -, 0,

=1 =1

"
Z EGNS 1% ) =05 Y (%) = 3F + 3F2)(x, )}, =, 0,

=1 t=1

where we assume that x,, is scalar, as in the proof of Lemma A3. The stated result therefore follows
as in Lemma A3, OED.

Lenmya AS: Ler Assumption 1 hold, Define
b {r) = 1{ks, < v ¥, (r) < (k+ 1)5,),
() =10 < Vi V,,(r) < 8,},
V) =10 < i Vy(r) < 8}

Then we haove

o

1 z ca,
E Jl;ib,lk(r)—z,,(r)idr] < V,(l+k8 log n)
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for all large n, where ¢ is some constant. Moreover,

[l = ldr=o,tn >
0

forany 8, zn '/,

Proor oF LEMMA A3: The stated result foltows from Akonom (1993), precisely as for Lemma 2.5
of Park and Phillips (1999). We may just apply his results to file,.(r) — o, {rY dr and il (r) —
() dr, instead of fi (s, (r) — o (r))dr and fi(s,(r)— "(r)) dr. Though not stated explicitly, it is
obvious that all his results are applicable for [lv, {r) — ¢, (F)dr and fJ1e,{r) — (PN dr as well as
fole, Ly — o (rD dr and (e, (r) — (D) dr. O.ED.

APPENDIX B: Proors or 1t MaIN THEOREMS
ProOF OF LEMMA 11 We show how to constiuct sequences (U7,,) and (V,,} satisfying conditions
{a)—(c}. In the subsequent construction, let { £2,.%, P} be any probability space rich enough to support

the Brownian motions {f and 1/ in addition to the other rundom elements that it includes. Also,
define the filtrations

g =olu,,%_)) and G= oW, F ),

and denote by - 1% the distribution conditional on a sub-o-field 5.

Let a be given and fixed. First, let V., be any random variable on (£2,.%, P), which has the same
distribution as n~ ' x|, ie., V,; = n~ 7?1, Second, let 7,; be a stopping time defined on (£2,.7, P),
for which U(7,, /n}1#,, =, n~'/?u,. Such a stopping time cxists, as shown in Hall and Heyde (1980,
Theorem Al). We then define a random variable on (£2,.%,P), denoted by V5, such that V,, —
Volg, = n~/20,1%,, and so on. It is obvious that we may proceed in this way to find (7,)"_ | and
(V. ), on (2,7 P} successively so thut

%)
n

in a zig-zag fashion. The equalities of the distributions in (a) and the representation of U/, in {b) are
tulfilled by construction. The moment conditions for the stopping times 7, follow from Hall and

L
Heyde (1980, Theorem Al). Moreover, if we define I, as in {c), then an invariance principle hotds
for 1, as in Phillips and Solo (1992}, In particular, it follows that ¥, converges weakly to V¥ in
D0, 11" endowed with uniform topology (see, e.g., Billingsley (1968, pp. 150-153} for the uniform
topelogy in D[0, 11). We may therefore redefine ¥, so that the distribution of {/,,,V/,,) is unchanged
and V, —, , V uniformly on [0, l]. This is possible due to the representation theorem in, ¢.g., Pollard
(1984, pp. 71-72} of weakly convergent probability measures by the almost sure convergent

sequences. Q.ED.

1 !
F and Vel Fu: =a \/E Z S

=1

T
Fy 1= ﬁ Yu
i=1

ProOF oF Lemma 2; Pari (a) follows dirgctly from Park and Phillips (1999, Theorem 5.1). To
prove part (h), we let ¥, ={V,, V3, ), where V, is given in Lemma 1. Define
Kﬂ

fay= Y FlksN{ks, sx<(k+1)8,),

k=—x

T

where &, and &, are sequences of numbers satistying conditions in the proof of Theorem 5.1 in
Park and Phillips (1999), In particelar, «, —= and &, — (. We may show using the notation in
Lemma A5 that

(28) i [ SRV dr = J;f(,lﬁ,(\/;l/l,,(r))l’/zﬂ(r) dr +a,(1)

- \/;k y f(krS”)J;Jla”k(r)Vzn(r)dr+op(l)

« N
= (fizfn(") d-‘)a_fu LW (rhdr + 0, (1),

i
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following the proof of Theorem 5.1, Park and Phillips {1999). Note that V,,, —,, ¥, uniformly and
therefore, V), is bounded uniformly in n. Also, we have

flank(r)Vz,!(r)dr _ flnn(r)Vzﬂ(r)dr
0 1]

< [Nl = 1 W e
0

I .
< (] +  sup |V2(r)|)J;] [e,1(F) — ¢, (F)] dr.

0<r=]
The stated result thercfore follows from Lemma AS exactly as in the proof of Theorem 5.1, Park and
Philtips (1999},
Wc have
(29) | Flsyds— | fs)ds.

Morcover, if we choose §,=rn"° with 0 <5< 1/8 and let 7, =8,/Vn, then n*®x — = We
thercfore have from Lemma AS that

1 ]_ l l "
(30) :"'I(.]Lﬂ(r)Vzn(r)dr=-€J;}t (rWy(r) dr+0,(1)

strce

‘flan(r) Vo, (r)dr - flc"(r)Vz(r) dr
0 0

s[lu,,(r) = O dr+ [TV, 0 = V(o dr
0 [¥]

5(]+ sup \Vz(r)|)f“l|c,,(r) S dr+ sup Vs, (r) = V().

O=r=t Drel

We may write
. I gl
an ?HJ;L"(r)Vz(r)dr=f0fUVE(r)dLl(r,m,S)ds

using the extended occupation times formula (see, e.g., Revuz and Yor (1994, Exercise 1.15, p. 222)).
Define

171 1
(32) Rn=fofnVg(r)dLl(r,frns)ds—fU V,o(r)dL (r,0).

Due to (28)-(31), it suffices to show that R, —, 0, which we now set out to do. Let ¢, be a
sequence of numbers such thut

. 1/2—¢
c,—+>* and ¢, 7, -0,

for some 0 < &< 1/2. Define

1(x) =f0]V2(r)dLl(r,x),

o i i+1 i
wo= 2ol o) -]

Then we have

|R”|$‘4n-+f% +'Cn=
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where

An = fl'I(WnS) - jlrr(”"'_ﬂs)| d,‘)',
0

B, = [l ms) — L) ds,
M

~ 1 _ .
c,,_jou,,m} H0) ds.

We will show that 4, B,, C, —,, 0,
It is obvious that C, —,_ 0 since /{0) exists. To show B, —, . 0, nofice that we have

(33) sup 1L,(r, ) — LG, < e |y s1'2 7% as,

r=[0,1]

for some constant x, due to the uniform Hélder continuity of the local time L(r,-) (see, eg.,
Revuz and Yor (1994, Corollary 1.8, p. 217D, Thercfore,
Cp .
i
CJ'I

]
|1r“(_'JT”S) *LI(U)Jﬁ ZKI(_ Z

"=

and consequently,

] (Vrr
B, _<,2KJC,,771,1/'_E(* >
c

mi=

as was to be shown.
Finally, we let

("” . . +l
oot e)

i=1 Ca

s0 that
1
I,J(x)=f Py dL,(r, x).
0

As s well known

(34) sup [Va(r) = V(e < ka0 ' 7?26 as,
Ozr=l

It follows from (33) and (34) that
1246 ! ,
| m,5) = Ltm ) < wpe V30 [dL ()
0
S Ky, ]-’“”(fl\dLl(r,O)l+ 2K1|ﬂ'ns|1/2_"),
0
and therefore,
E 3 2. (1 —&
A, < ryc, 1/“+”jl ldL (r, 0 + 2k, k0, /2! S l/e ”f sl 2% ds -, 0
0 0

The proof for part (b} is thercby complete.
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‘The proof for part {c) is analogous to that of part (b). We have

n

1
32 Zﬂxlr)xzrfh
n t=1
=V [ R, Wy de
{
= ‘,/.P—I_fIf"(\/;VM(TJ)VEH(F)VEH(I')’d}'+ Up(-l)
0

-y Y f(kb‘n)f kS, < v V() < (k+ D8IV, (), (r) dr + 0,(1)
k= —x,

—(5,, y f(kﬁn))?f!l{{lg./;TV,,,(r)<6}Vz,!(r)l/w (F) dr +0,(1)
k= — K, w0

1
(j f(s)ds) j‘l{n < V() < m (Ve ) dr +o,(D)
T, -0

H

(f_:f(” ds) j[-llf(,l VLWV, dL e ooy s ) ds + 0, (1)

= (f f'(s)ds]f]Vg(r)Vg(r)’dL](r,U) +0,(1).
— 0
Each step can be shown rigorously using the arguments in the proof of part (b). QED.

PrOOF OF LEMMA 3: We set m =2. This is just for notationul simplicity. The proot for the
general casc is essentially identical. For any ¢ = (¢),¢;) € R?, we let

‘A”(x“xz) =cn ")) Fean TO(x s,

and define

H

(35) M(r)—\/“}_:]A,,(\/"V,”)( ( ] U(;))

i=1

T ..
+\/17A,!(JEV.”}(UU) —~ U[T'))

for T, , /n<r<T,/n,where T, t=1,...,n, are the time changes introduced in Lemma 1. One

may casily see that M, is a continuous martingale such that

u I—P!H
(36) Y A x 0, = M, ( )
R

=1

for all n.
Let B,(xy, x,3 = o *{xYA2(x,, x;). The quadratic variation [ M, ] of M, is given by

-1 T ,
WJ(r)=n ZAH(\/_V;”)( —”j—l) +nAin an)( et ! )

H

" T
=y ,i(\/_V,,,)l{r>_'} +o,(1),
t=1
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uniformly in r &[0, 1], by Lemma A3. Conscquently, we have
(37) (M, ()=, c'M(r)e,

uniformly in r & [(, 1], where

o . (r, U)f_.xf(f(s) es j(-) dLI(S,(I)VE(S)'f_xj;,(s)gr,(s)d_\‘
] -

H

erz(.v)dLl(.s,D)fx 2, (3)f, (s)ds frVZ(s)Vg(s)'dLI(.s,U)fI g2 (s)ds
4] — = [} —x

due to the results in Lemma 2, and where the notation f,{s) = o(s)f(s) and g (s} =o(s)g(s) is
being uscd.
Morcover, if we let ¢, be the covariance of U and V and

Colay, x) =2 bA, (), x50,

then the quadratic covariation process [M,, V1 of M, and V is
-1

Hi l'f! ?-;! =
[ ,”V](:)f\/_ZA”(WP;J( - ‘) +J»TA,;<WV.”)(r—‘—‘)o.w

i=1 I

T,
=r,, Z (‘-ﬂ(‘/;Vm)l{’ = ———-} +o (1) -, O

=1
uniformly in r [0, 1], by Lemma A4. It follows, in particular, that
(38) (M, VI p,(r)) —, 0,

where p () =infls [0, 11:[M K¢} >r} is a sequence of time changes.
The asymptotic distribution of the continuous martingale M, in (35) is completely determined by
{37) and {38), as shown in Revuz and Yor (1994, Theorem 2.3, page 496). Now define

mr(r) = Mu( pu(r))'

The process W, is the DDS {or Dambis, Dubins-Schwarz) Brownian motion of the continuous
martingale M, (see, for example, Revuz and Yor (1994, Theorem 1.6, page 1730, It now follows that
(1, ,} converges jointly in distribution to two independent standard linear Brownian motions
(17, W), say. Therefore,

M(T) -, Wic' Me),

which, due to (36), completes the proof for the first part. Q.ED.

PROOF OF THEoREM 1: The limiting distribution of D718, () is derived by applying Lemma 3
with f{x) =xG(x) and g(x) = G(x). It is casy to check that the conditions in Lemma 3 hold. Note
that (G2F(1 — F)=K, for which K, € F, by Assumption 2(a). Also, we have GF(1 —F)=F and
F, € F, by Assumption 2(b). Moreover, G'F(1 — F} = G*F and we require G°F, € F, in Assumption
2(e). Thus, with o) ={ 8} B)"/? and using Lemma 3, we obtain

H
DS (ay) =D, ' Y GUx, B H x,(y, — F(x, By 1)
(-1

”_1/4 ” (—’(xlra'!)x!r”r

-3/
n "4Lj’=lG(x”al-)x2,u,

-3 "
n- 'ME?= | g(-xlr alo-)lzrux

y —1
(” Ve B e, e,

Sy MWD,
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with

M mll F?1|2
- my My

where

= (al) L0 Riadds,

m =@y [Ny, 00 [ 1, (salde, (saf) ds,
0 -

My = (a?)—] flV?_(r)dL,(r,O)fT g, (saf (saPrds,
1 — =

My, = fGIVE(r)Vz(r)’dL,(r,D)j_l gsalas,
and where
£ () =FGY 0 (0 =x2G(x) F(O[L — F(x)] = 2K (x),
g, (0 =g o (x¥ = GG F(oOlL - Flx)] = K(x),
Fdg, (x) =f(dgln)a () =xG(xY F()[1 = F(x)] =xK(x).
Thus,
L0 sK(afs)ds [ﬂ' dL,(r,U)Vz(r)'f_xsK(a{}s)ds

M=
flVg(r) dLl(r,O)f sK(als) ds fl Vz(r)Vz(f')’dL.l(r,U)f Klals)ds
9 — 0 —

and, with M =, we have the stated result for the limit of the score process D, 'S, (o).
To get the stated asymptotic result for J, {a,), we let G, = G{x,,) and observe that

L M Ft
n VY G n VY Goxxgu,, 7YY Gxa,xh,u, =o,(1).
=1 =1 =1
These follow from a direct application of Lernma A2(b) with f(x) = G(x), xG(x),, x> G(x) and using
the fact that [GF'/2(1 — F)'/2], € F, by Assumption 2(c). We therefore have

D (gD ay)
"

=Dy K(x al )V H x5 HD, + 0,(1)

]

(39) i=1
not/e ;’=]K(x|.’a{])xlzf nilz?--—lK(xlxalo)xhxér
I PR 0y . 325 0 .| Ho, (1
h e KCrpa oy, o PUEE K a0,
The statcd results ure now immediate from Lemma 2. OED.

Proor oF THEOREM 2: We employ a standard approach to local extremum cstimation. In
particular, Theorem 10.1 of Wooldridge (1994) allows for varying rates of convergence in the
components of the estimator and is well suited to the present problem. The idea is simply to show
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that equation (19) holds and that there is a consistent local solution to the likelihood cquation.
Conditions (1) and (i) of Wooldridge’s theorem hold trivially by our assumption about B, and our
Assumption 2, so it remains to verify conditions (iii) and (iv} of that theorem.

The likelihood equation for the ML estimator &, is

(40} §.0&,)=0,
which has the expansion
S d,) =8 (g} +J,(a,)(&, —0y)=0,
or
(41} Sulag) + 1 (ap)a, — ag) + [J,(a,) — L La)(&, — ay) =0,

where S,(&,) and S,(a,) are the scores respectively at &, and «,, and J,(a,} is the hessian matrix
with rows evaluated at mean valucs that lie on the line segment connecting &, and e, Then (41)
can be written as

U= D,;ISH((X”) + [Drr_l‘]n(aﬂ)Dn_l]Dn(&n - {IU)
+(Dn_][‘ln(an)_Jn(ﬂﬂ)]Dr:])Dn(.&uMQ’U)’
or
0=D;1S(ay) + [D;V(a)D; 1D, (&, — ay)
(42) )
+a 7O T () — S CagNC DG, — ay),

where C, =D,n~" for some 8> 0, so that C, D' =0(l) as n —=, as in condition (iii) (a) of
Woo]drldge ] Theorcm 10.1. Equation (19} now follows from (42) if the final term of (42) is o (1),
This will be so, if condition (iil) (b} of Wooldridge’s theorem holds.

To show this is so, we need to establish that

(43) sup I 14, (a) = 1(aNC; I = 0,(1).
{alt (a—ayll=z1)

Our proof involves looking at the compenents of the hessian. We therefore partition the hessian
conformably with « as

Ha) Jh(a)
J”(a)_(a':ﬂ(a) Iia) |

wherein, from (12),
(44) Jia) = - EK (a)xyx, - Z Ga)x, x, (Fla)—F) + Zo(a)x,, Xy,
t=1 i=1 =1

for i, j = 1,2 and where we define f(a)=f(x;,a, +x5, a;) for any function f:R — R and further
define f, to be the value of the tunction f at o, = (e, ad').
For (43) to hold it is sufficient that

A= PRI =T () >, 0,
(45) n e ~ TGl =, 0,
nTAERE I (a) — T (el -, 0,
uniformly for al! «; and «, satisfying

{(46) fay —lU<n™ 4% and  Jayllsn 27408
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for some & > 0, Now, from {44) we have

(47) Jila) = Fi(ay) =A% (a*) + Bfi(a*) + C/i{a®),

where

n
Ajrz;(ﬂ') == Z Kf(a)xirxﬂ(xlf(“l - (1{]) +x’21(a3 - ag)}*
=1

Bita) =~ Y (GF) o) x,(x, (o, — af) + x5, (e — ),

=1
"
Clia)= Y Gla)x, xuu,(x, (o) — a) + x5, (ay — af)),
[

and a* is on the line segment connecting & and o,. For f:R — R, define f by

flx)= sup sup |f{ax+b)

la—1lze lblze

tor £> 0 given. We denote j}=j_'(x“). As shown in Lemma Al, feF il feF,. Since
sup, i,5,,llxh\l/\/;:(')P(l), lay —aflgn™ "9 and fla,ll <n™**72 we have for any &> 0

£ ) +ay @) < flx, ) + o,(1},

for large #, uniformly in 1 <t <n.
By virtue of (46) we have

e f

A4z Calb<n™ 743 Y Kl e x|+ a3 8 K bl g L .

=1 f=1
Tt therefore follows from Lemma A2(a) that
() [ A5l = G4 2), AT )l = O™ * 7 0), L AG el = O™ ** ),

uniformly in o satisfying (46). Note that K= GF + GF and hence K, € F, by Assumption 2(h). We
may usc cxactly the same argument to deduce that

(49) B (a)ll=Q,(n' %%y, B adll= 0, %) IBY(a)l=0, (a7 7).

Finally, we have

n
ICiCa i <n™ 17448 Y GUE A — 10" Pl x|

£

"
LRI DN e ¢ SR o V| PO 1R

=1

since

(Bl iz W <EB(u? |5 ) =F(l - F),
by the conditional Jensen inequality. It follows directly from Assumption 2(b) and Lemma AX(a) that
(50) ICRali= 012y, UCH(@li= O n™/ 479y, [ICh el = Op(n® 4+ 3),

uniformly in « given by (46). If we let 0 <8 < 1 /12, we may now easily deduce (45} from (48), (49),
and (50) together with (47). Hence, {43) holds and therefore (19).
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It now follows as in the proof of Theorem 10.1 of Wooldridge (1944) that there exists a solution
to the Hkclihood cquation (40) with probability approaching one such that

D.(&, —ap) =0,(1).
From Theorem 1, we have the joint weak convergence
(51 (DS (ag), D7 (o)D)= Q2w (), —0),

where O is positive definite with probability one. Thus, condition (iv) of Wooldridge’s theorem holds.
The given limit distribution of D,{&, — a;) now follows directly from {42}, (43), and (51). O.E.D.

Proor oF THEORFM 3: Write

1B = —HHI BN 1

It

7H['In(&n)]_lH!

il

= —HD; '[D;'7,(&,)D7") "Dy 'H'
By Theorems | and 2 we have
*D,:]]”( &r:)fol = _Dr; lJrl(ﬂ‘U)Dr;l +0}J(.l.) _)cF Q

Partitioning the hessian matrix conformably with (22) and using (39), we have
Sy e D-!
In In )"

t i} 2 " [¢] ’
D'( fo1 KO a)xg, Liay Klxj o) }x 1),
— *n

R 0y _ i 1] !
P Klxg e day,xy, 00 KQx o)y, xh,

(52) D!

L

)Dn_' +()p(]).

Then

1.(&,) _]= LN Tt _1=‘/; Ik A i
Vi n\ RN Izt .

Next cbserve that

n "
a Vi, = (n"f’2 Y Kix,af i, +op('l)) - (n 'Y K(xy,al)x, 2y, +0P(l))

=1 t=1

n -1 H
-(n‘3/2 Y Ky 0 )xg,, 1, +0p(1)) (n_l Y K(xyai)x;,x, +op(l)]
t=1 =1
a4 4dn —q10%'0 = a1
1

Vi

1

GIg K= T D=3 20,07 =0 (a2,

R P IO

and

Vi iy
f =1 _ -3/1 = {] -1
FIJQE = ”3/2(?'1' J22) “()P(” )
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It follows that
- —1
(&) -, dun 0
v o of

_ -1
[D; 10,08, D; "] ‘w(q"'z U]'

and thus

0 0
Consequently,
. =1 _
~Val (8, = —HDTWu (D] I &)D; ') Dy
g an i = Bl Bo ) Baan
giving the stated result for — VnJ,( 8,07, The result for — i J,( 8,)7" follows from (52) using the
same argument. QED.
ProorF ofF Corourary 2: The stated result follows immediately, since

( éu - .Bﬂ) :]1( L/ilrl - “'t)ln) +12(&2r! - ﬂ‘g),
and

4 5 4 ]

‘/E( ﬁn - -B{l) = ‘/Ejl(aln - ﬂ\n) + ()_r}(n_ ]/_)’
for large n. Q.ED.

PROOF OF CorollARY 3: Use the following mean value expansions for F = F(x‘g,) and ¥, =

Fx BB,
F=F(x. B+ F(x B)x( B — Bo),

(53) ~
%\- = 'Y(X'B[]) + F(x,Brz)( Bn - BU)'
where
F(Xjﬁll) :f(x'ﬁn)lm +f’(.x’ﬁn)16nx"
Then
(54) V(= PO B = f' 8% B, — B/ ~, FOx'Bo)x" MNQO, By g7 )
=d MN(U,f(x’,B(])EX?P;;(,HH1.12)*
and

4 ~ .
Vi (5, =y BN =T (X' BB, — Bdnt/* ~, T(x' B )MNO, Py anh)
—i MN, (B By, 1B g5 ).
A simple calculation reveals that
F(x'Bl})Pﬁur(fﬁu)’ =(f(x'By) +f’(x1ﬁn)-"'180)zpﬁo’

and the stated results follow. QED.

Proor oF THEOREM 4: Since y, = F(x] 8,) +u, and «, is a martingale difference, we have

n n
r,=n"t E)’: =n ! Zf'{x; Bo} +0,(1).

-1 =1
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The function F(z) is a cumulative distribution function and is asympiotically homogeneous of
degree zero as z — > in the scnse that

F{az)=1{z> 0} + R(z, A),

and R(z, A) is dominated by a locally integrable function that vanishcs at infinity, Tt therefore
follows from Park and Phillips (1999, Theorem 5.3) that

” s P
no! ZF(x;B”)—g,f ][,9>()}L-1(I,s)d5:f L(1,s)ds,
x 0

t=1 :

as required.

The proof for the predicted proportion r{X)=r"'¥'_ y,(X) follows in the same manner. In
the estimated case, 7,{X)=n"'T | F(X), with F{X) = F(X;$,). By the mcan value expansion in
(54) and using Lemma 2 {a) and {b) we find that

FAX)=r(X)+n Y f'B (B, — By)
F—1
=r(X)+0,(n"/),

and thus #,(X) has the same limit as r,{X). GED,

APPENDIX C: NOTATION

=, . almost surely converge.

-, convergence in probability,
-, weak convergence.

a,(1) tends to zero in probability.
o, (1) tends to zero almost surely.
= distributional equivalence.
~4 asymptotically distributed as,
= equivalence.

W, V,,V, standard Brownian motions.
MN(0,7} mixed normal distribution with variancc V.
[ Eudlidean norm in R,

E, class of regular functions.
K, class of bounded integrable functions,
F, class of bounded functions vanishing at infinity,
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