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1. Introduction

Let us begin by briefly surveying the ‘“state of the art” regarding the Arrow—
Debreu model of a Walrasian economy consisting of a finite number of agents
and commodities, where we assume perfect information, complete markets, no
market imperfections such as externalities, public goods, or non-convexities in
consumption or production, firms are price-taking profit maximizers and
households are price-taking utility maximizers. In such a world, the basic
properties of the classical Arrow—Debreu model consist of the existence of
competitive equilibria, the first and second welfare theorems, the computation
of equilibria and the local uniqueness and finiteness of equilibria.

For the purpose of this chapter it is useful to adopt Walras’ original
conception of a competitive equilibrium as a solution to a (non-linear) system
of equations. There are two general methods for solving non-linear systems of
equations. The first method consists of converting the problem into an equiva-
lent fixed point problem and then invoking the appropriate fixed-point theorem
such as Brouwer’s fixed-point theorem or its generalization, the Kakutani
fixed-point theorem. This was the approach used by Gale (1955), Nikaido
(1956), McKenzie (1954) and Arrow and Debreu (1954) in the 1950s to
establish the existence of a competitive equilibrium. The convexity assumptions
in their models were crucial for the fixed-point arguments used in their proofs;
in particular, the assumption that firms’ production sets are convex. Convexity
also appears to be crucial in the establishment of the second welfare theorem
where the principal tool of analysis is the separating hyperplane theorem; see
Arrow (1951) and Debreu (1951). The culmination of the research on the
existence and optimality of competitive equilibria during this period is De-
breu’s Theory of Value, published in 1959.

The existence proof in Theory of Value is non-constructive. The first
constructive proof of the existence of a competitive equilibrium was given by
Scarf (1967). Shortly thereafter, Scarf (1973) published his influential mono-
graph, Computation of Economic Equilibria. Scarf’s constructive proof first
consisted of giving an algorithm for computing an approximate fixed-point of a
continuous map of the simplex into itself. Following Debreu, he defined a
conttnuous map from the price simplex into itself, derived from the excess
market demand function for the given economy; the fixed points of this map
are the equilibrium prices. They are then computed using the algorithm.

Convexity plays an essential role in Scarf’s analysis, both in the derivation of
the market excess demand function from optimizing behavior on the part of
agents and in the existence of a fixed-point which follows from Brouwer’s
theorem. Scarf’s algorithm and its generalizations are the primary means of
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doing comparative statics in general equilibrium models. Computable general
equilibrium models have replaced activity analysis and input-output analysis as
the basic method of analysing tax policy in national economies or trade policies
between nations [see Scarf and Shoven (1984) or Shoven and Whalley (1984)].

In a seminal paper, Debreu (1970) introduced the techniques of differential
topology into equilibrium analysis to resolve the question of the uniqueness of
equilibrium prices in an exchange economy. Using Sard’s theorem and the
inverse function theorem, he was able to show that almost all exchange
economies — parameterized by individual endowments — have a finite number
of locally unique equilibrium prices. In addition to the standard convexity
assumptions on tastes, we now require that agents’ characteristics are smooth
[see Debreu (1972)]. Debreu’s paper on the finiteness and local uniqueness of
equilibrium prices inspired a number of other applications of differential
topology to problems of equilibrium analysis.

First, Dierker (1972) gave a degree-theoretic existence proof, using index
theory. Then in a series of papers published in the Journal of Mathematical
Economics over a two year period from 1974 to 1976, Smale used the methods
of global analysis to establish all the properties of the Arrow—Debreu model of
a Walrasian economy, i.e. existence, optimality, computation, local uniqueness
and finiteness of the set of equilibrium prices. He assumed that both house-
holds and firms have smooth characteristics, i.e. smooth utility and production
functions. Smale’s research on existence and optimality differs in a fundamen-
tal way from previous work in that he eschews fixed point methods and
resurrects the discredited method of counting equations and unknowns, origi-
nally used by Walras in his “proof” of existence. This technique properly
formulated within the theory of global analysis (differential topology) is a
powerful tool for analysing the existence and uniqueness of solutions of
non-linear systems of equations. In particular, we have in mind degree theory
as our second method for proving the existence of a competitive equilibrium
and for “counting” the number of equilibria.

For expositional reasons, we wish to distinguish between fixed-point argu-
ments requiring convexity and degree-theoretic proofs which do not assume
convexity.

Smale defines extended price equilibria as a solution to a system of equations
consisting of the first-order conditions for profit maximization, the first-order
conditions for utility maximization subject to a budget constraint and the
market clearing conditions. Moreover, he assumes neither convexity of the
utility or production functions and shows that for an open, dense family of
economies — parameterized by endowments, utility functions and production
functions — the set of extended price equilibria is locally unique [see Sections 5
and 6 in Smale (1974a)] and is finite if the set of attainable allocations is
compact. Smale’s results appear to have gone unnoticed by those working on
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the properties of general equilibrium models with non-convex production sets.
Although he does not prove the existence of extended price equilibria in this
paper, in an earlier paper on pure exchange — where again he does not assume
convexity of utility functions — he shows that extended price equilibria exist,
and presumably this proof can be extended to the case with production. It is
interesting to notice that his proof for the pure exchange case rests on a
degree-theoretic argument [see the appendix to Smale (1974b)]. Also by
restricting utility functions to be convex, but only requiring production sets to
be submanifolds, Smale gives a first-order characterization of Pareto optimal
allocations in terms of marginal cost pricing [see Proposition 2, Section 4, in
Smale (1976a)].

An important application of degree theory to equilibrium analysis is the use
of the homotopy invariance theorem as a means of proving constructive
existence theorems. Homotopy methods for solving fixed-point problems were
introduced by Eaves (1972) and are the basis for the second generation of Scarf
algorithms. The homotopy methods for solving non-linear systems of equations
do not transform the given non-linear system of equations into an equivalent
fixed-point problem, instead they construct a simple system of equations which
are trivial to solve and continuously deform this simple system into the given
system. By following the solution of this parameterized family of equation
systems, one is led to the solution of the original system of equations. The
homotopy invariance theorem states that (under certain conditions) if the
simple system has an odd number of solutions then the original system, which
is homotopically equivalent, also has an odd number of solutions. For a general
discussion of homotopy or path following methods for solving non-linear
systems of equations or equilibrium systems of equations for economic models,
see Garcia and Zangwill (1981).

Having completed our survey of the basic properties of the Arrow—Debreu
mode]l of a Walrasian economy, we now turn to the central topic of this
chapter: the normative implications of non-convex production sets on the firm’s
pricing policy. Non-convexities in production can arise from indivisibilities,
fixed costs or increasing returns to scale.

The non-convex firms in the model that we shall consider can be thought of
as privately owned public utilities, which are regulated. This type of market
structure is common in the United States but less prevalent in Europe, for
example, Electricité de France is a state-owned public utility. Since we discuss
public utilities which are privately owned, any pricing rule imposed by the
regulator must produce a fair rate of return on capital or normal economic
profits. Consequently these firms cannot run at a loss; see Brown and Sibley
(1986) for a partial equilibrium analysis of public utility pricing. The origins of
the pricing rules that we shall study for regulated public utilities may be found
in the marginal cost pricing controversy of the 1930s.
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This controversy begins with Hotelling’s classic article on optimal railroad
and utility rates [see Hotelling (1938)]. He argues that marginal cost pricing
together with income taxes is Pareto superior to average cost pricing. This
controversy and its welfare antecedents are ably surveyed and analysed by
Ruggles (1949) and (1950) in two companion pieces. As Ruggles points out in
her second paper, the basis of the marginal cost pricing principle is that
marginal cost pricing meets the marginal conditions for Pareto optimality; see
the summary and evaluation section of her article. Ruggles then asks the
following two questions: (1) Is meeting the marginal conditions a sufficient
basts for recommending a pricing system? and (2) Does the marginal cost
pricing system meet these conditions?

She observes that the first-order conditions are only necessary conditions for
a maximum of welfare and that the marginal cost pricing principle does not
meet these conditions if the means for raising the subsidies necessary to cover
the losses incurred by firms, with decreasing average cost technologies, are
taken into account. This criticism applies in particular to Hotelling who
advocated income taxes as a superior alternative to excise taxes in raising the
necessary subsidies, but, as Ruggles points out, Wald had demonstrated that
income taxes are an excise tax on leisure, hence they are not lump sum taxes,
as Hotelling suggested. Moreover, Wald (1945) shows in some instances,
depending on the relevant elasticities, income taxes are inferior to other excise
taxes for raising the necessary revenue.

Finally, Ruggles considers other pricing principles such as average cost
pricing, multi-part pricing or two-part tariffs and price discrimination, all of
which have been suggested as alternative pricing systems because of the need
to raise revenue to cover the losses incurred by marginal cost pricing in
decreasing average cost firms. In the remainder of this chapter we will discuss
the existence, optimality, computation, finiteness and local uniqueness of
equilibria for three representative pricing rules, for privately owned regulated
public monopolies, in a general equilibrium model. We have chosen as our
representative pricing rules, marginal cost pricing, average cost pricing and
two-part tariffs. Not only are these pricing policies the subject of much
normative discussion in the public utilities literature, but they are also the most
commonly observed instances of regulatory pricing policy. Before discussing
explicit models, let us survey what we know about these various pricing rules.

The major methodological innovation in the general equilibrium analysis of
firms with pricing rules has been the introduction of the methods of non-
smooth analysis, as an alternative to both global analysis (differential topology)
and to convex analysis, for investigating the existence and optimality of
equilibria. These methods were introduced by Guesnerie (1975) in a seminal
paper on Pareto optimality in general equilibrium models with non-convex
production sets.
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Non-smooth analysis extends the local approximation of manifolds by
tangent planes, and the analogous local approximation of convex sets by
tangent cones to sets which are neither smooth nor convex. Here the local
approximation is also by cones; in the case of Guesnerie, it is the cone of
interior displacements [see Dubovickii and Miljutin (1965)]. Subsequently
Cornet (1982) introduced Clarke’s tangent cone as the appropriate local
approximation for economic analysis. To appreciate Cornet’s contribution, we
must consider the polar cones of these generalized tangent cones, called
normal cones. The normal cone to a point on the boundary of a production set
represents the marginal rates of transformation at that point. In non-smooth
analysis, the normal cone is a formal extension of the notion of normal vector
to a hypersurface and the notion of cone of normals to a convex set. The
Clarke normal cone has a number of desirable properties. First, its polar cone,
the Clarke tangent cone, is always convex; second, if the production set is
non-empty, closed and has free disposal, then the Clarke normal cone is always
non-empty and closed {see Cornet (1982)]. Finally, Clarke has shown that if a
price vector maximizes profits at an efficient production plan then this price
vector must lie in the (Clarke) normal cone at that point. Hence in the recent
economic literature the Clarke normal cone is used to describe the necessary
marginal conditions for profit maximization. For a detailed discussion of
non-smooth analysis, see Clarke (1983) or Rockafellar (1981).

In contrast, the cone of interior displacements need not be convex at “kinks”
(Figure 36.1), hence Guesnerie was forced to exclude this family of tech-
nologies from his analysis. Moreover, when the normal cone of Dubovickii and
Miljutin is convex, closed and upper hemi-continuous, as assumed in Beato

d Output

Input 0

Figure 36.1. The cones of interior displacements at the production plans (a) and (c) are convex,
e.g. at (a) it is the cone generated by the vectors ad and ab shifted to the origin. But at the “kink”,
production plan (b), it is the whole production set, which is not convex.
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(1982), then it coincides with the Clarke normal cone [see Cornet (1987)]. It is
the convexity of the tangent cones, which replaces the convexity of the
production sets, that is crucial for equilibrium analysis. See Khan and Vohra
(1987b) for additional discussion of the cone of interior displacements and the
Clarke tangent cone in economic models.

Using the normal cone of Dubovickii and Miljutin and focusing only on cases
where it is non-empty and convex, Guesnerie was the first to extend Smale’s
necessary conditions for Pareto optimal allocations from economies with
smooth non-convex production sets to those with non-smooth production sets.
His welfare analysis has recently been extended to models with non-convex
technologies and pure public goods in a paper by Khan and Vohra (1987b); see
also the extension of Guesnerie’s model to infinite dimensional commodity
spaces by Bonnisseau and Cornet (1988b). Both papers use the Clarke normal
cone. Guesnerie also presented the first examples of general equilibrium
models with non-convex production sets where all of the marginal cost pricing
equilibria fail to be Pareto optimal.

Subsequently, other examples were given by Brown and Heal (1979). The
intuition underlying all of these examples is clear. As illustrated by Brown and
Heal, if the aggregate production set is non-convex then the community
indifference curve defined by a marginal cost pricing equilibrium may ‘“‘cut
inside the production possibility set” (see Figure 36.2). Simply put, satisfying
first-order conditions, in general, will not suffice for global optimality in the
presence of non-convexities —a point already made by Ruggles in 1950.
Continuing our discussion of the optimality of marginal cost pricing, Beato and
Mas-Colell (1983) in an influential paper presented the first example of

1)
)
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-
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Production Possibility Set
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Figure 36.2. The community indifference curve which is tangent to the production possibility
frontier at the production plan A “cuts inside the production possibility set.”
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marginal cost pricing equilibria which were inefficient, i.e. inside the social
production possibility set. Dierker (1986) and Quinzii (1991) have both given
sufficient conditions for a marginal cost pricing equilibrium to be Pareto
optimal. Their conditions are in terms of the relative curvature of the social
indifference curve, at equilibrium, with respect to the boundary of the aggre-
gate production possibility set, i.e. the social indifference curve does not “cut
inside” the aggregate production possibility set.

Returning to Guesnerie’s paper, we can interpret his fixed structure of
revenues condition, in a private ownership economy, as a means of imposing
lump sum taxes to cover losses incurred by marginal cost pricing, without
disturbing the marginal conditions for Pareto optimality. In the Arrow—-Debreu
model of a private ownership economy, the shareholdings of households are
exogenously specified and carry limited liability. Of course, in the classical
model, all firms are profit maximizers with convex technologies containing the
zero vector. Hence profits are always non-negative and the assumption of
limited liability is unnecessary. With non-convex production sets and firms
regulated to satisfy the first-order conditions for profit maximization — the
modern formulation of the marginal cost pricing principle — the assumption of
unlimited liability is of some import. By dropping the assumption of limited
liability, fixing the income distribution exogenously by giving each agent a fixed
proportion of net social wealth (the fixed structure of revenues condition), and
assuming positivity of net social wealth, we can cover all losses and maintain
the first-order conditions for optimality.

Brown and Heal (1983), by assuming both a fixed structure of revenues and
homothetic preferences, prove the existence of at least one Pareto optimal
marginal cost pricing equilibrium. Their result is an immediate consequence of
Eisenberg’s aggregation theorem. The existence of at least one Pareto optimal
marginal cost pricing equilibrium for a much larger class of economies follows
from Jerison (1984), where he gives necessary and sufficient conditions for
aggregation of preferences, if the income distribution is independent of prices,
e.g. a fixed structure of revenues.

We now give a formal definition of a marginal cost pricing equilibrium. A
marginal cost pricing equilibrium (MCP equilibrium) is a family of consump-
tion plans, production plans, lump sum taxes and prices such that households
are maximizing utility subject to their budget constraints and firms’ production
plans satisfy the first-order conditions for profit maximization, i.e. at the given
production plans the market prices lie in the Clarke normal cones; lump sum
taxes cover the losses of all firms with non-convex production sets; and all
markets clear. It is important to point out that if all firms have convex
technologies which include the zero vector, then the notion of a MCP
equilibrium reduces to the notion of a Walrasian equilibrium in the classical
Arrow—Debreu model. The first existence proof of a MCP equilibrium for a



Ch. 36: Equilibrium Analysis with Non-Convex Technologies 1971

private ownership economy with a single firm with a non-smooth technology
was given by Cornet (1982). His theorem was extended by Brown, Heal, Khan
and Vohra (1986) to private ownership economies with a single non-convex
firm and several convex firms. Independently, Beato and Mas-Colell (1985)
proved existence for a private ownership economy with several non-convex
firms and several convex firms. Both the theorems of Beato and Mas-Colell
and Brown, Heal, Khan and Vohra are special cases of the Bonnisseau—Cornet
existence theorem which is discussed in the next section. Khan and Vohra
(1987a) have recently extended the notion of a MCP equilibrium, where the
price system consists of marginal cost pricing and Lindahl prices to non-convex
economies with public goods.

All of these theorems are proven by invoking the Brouwer or Kakutani
fixed-point theorems and rely on assumptions which guarantee that the rele-
vant portion of each firm’s efficiency frontier is homeomorphic to the simplex.
This fact was first exploited in proving the existence of marginal cost pricing
equilibria in economies with a single firm by Mantel (1979) and independently
by Beato (1982), where the firm’s technology is a smooth hypersurface. For
smooth technologies, the Clarke normal cone at a point reduces to scalar
multiples of the normal vector. Later, Brown and Heal (1982) gave an
index-theoretic proof of existence for Mantel’s model, using the fixed-point
index theorem introduced by Dierker (1972). Their theorem is a special case of
Kamiya’s general equilibrium existence theorem which he proves using a
degree-theoretic argument, reminiscent of Smale’s existence proof for extend-
ed price equilibria for smooth exchange economies. Kamiya’s proof has a
number of important implications, such as local uniqueness and computational
algorithms, and his theorem is discussed in Section 3.

There is another family of existence theorems for economies where com-
modities are divided into the classical dichotomy of factors and products. The
most important, for the purposes of this chapter, is MacKinnon’s article
(1979), in which he gives the first extension of Scarf’s computational algorithm
to general equilibrium models with non-convex production sets. Also see
the non-constructive existence proof of Dierker, Guesnerie and Neuefeind
(1985).

Hence we now have the beginnings of a significant literature on marginal
cost pricing equilibria that extends the equilibrium analysis of the classical
Arrow—Debreu model in terms of existence, optimality, computation, finite-
ness and local uniqueness to general equilibrium models with non-convex
production sets.

As with marginal cost pricing, the modern literature on average cost pricing
begins with a seminal article on optimality. We have in mind Boiteux’s paper
on second best Pareto optimality for public utilities. Boiteux (1956) derives the
necessary conditions for Pareto optimality in a general equilibrium model,
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where firms with increasing returns are constrained to break even. Prices
solving these first-order conditions are now called Boiteux—Ramsey prices,
since Ramsey (1927) derived similar conditions for a single agent economy.
The optimal excise taxes which result from Boiteux—Ramsey pricing have the
intuitive property, for independent demands, that the taxes are inversely
proportional to the elasticities of demand, e.g. inelastic demands are highly
taxed — a result anticipated by Ruggles in her discussion of price discrimination
as an alternative to marginal cost pricing. Existence of a Boiteux—Ramsey
pricing equilibrium was first demonstrated by Dierker, Guesnerie and
Neuefeind (1985) in a model with factor and product markets and non-convex
technologies. Of course, a Boiteux—Ramsey pricing equilibrium only satisfies
the first-order conditions necessary for second best Pareto optimality; analo-
gous to marginal cost pricing equilibria satisfying the first-order conditions
necessary for Pareto optimality. Dierker (1989) has extended his analysis of
sufficient conditions for a marginal cost pricing equilibrium to be Pareto
optimal to include sufficient conditions for a Boiteux—Ramsey pricing equilib-
rium to be second best Pareto optimal.

An average cost pricing equilibrium, ACP equilibrium, is formally defined as
a family of consumption plans, production plans and prices such that house-
holds are maximizing utility subject to budget constraints, firms with convex
technologies are maximizing profits, firms with non-convex technologies are
breaking even, i.e. making zero profits; and all markets clear. The existence of
average cost pricing equilibria follows from both Kamiya’s theorem and the
existence theorem of Bonnisseau—Cornet. The conventional wisdom is that
average cost pricing equilibria, since they violate the first-order conditions
necessary for Pareto optimality, are Pareto inferior to marginal cost pricing
equilibria. This intuition is challenged in an important paper by Vohra (1988a),
in which he gives examples of economies possessing second best average cost
pricing equilibria that are Pareto superior to marginal cost pricing equilibria.
Of course, this could only be true in an economy with non-convex production
sets, where marginal cost pricing equilibria may not be Pareto optimal.
Kamiya’s constructive existence proof provides an algorithm for computing
marginal cost pricing equilibria and average cost pricing equilibria for general
non-convex technologies. Rutherford (1988) also has constructed computable
general equilibrium models with increasing returns to scale, that compute MCP
and ACP equilibria, for economies where the utility and production functions
can be represented as members of a “nested” family of CES functions.

Both marginal cost pricing and average cost pricing are linear pricing rules,
but in markets where resale is impossible, non-linear prices are a viable
alternative to linear pricing systems. Non-linear pricing schemes abound, e.g.
quantity discounts, bundling of commodities and multipart tariffs, see Phlips
for a discussion (1983). In his important contribution to the marginal cost
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pricing controversy, Coase (1946) proposed discriminating two-part tariffs as a
means of covering individual specific overhead costs.

There is an extensive partial equilibrium literature on two-part tariffs [see Oi
(1971), Brown and Sibley (1986) and their references). This literature suggests
that if firms with decreasing average costs use a discriminating two-part tariff,
where each potential customer is charged a “hook-up” fee for the right to
consume the natural monopoly’s output (this fee may differ from household to
household) and a per unit charge equal to the marginal cost of production,
then the resulting equilibrium is Pareto optimal. If we formally define a
discriminating (or non-uniform) two-part marginal cost pricing equilibrium
(TPMCP equilibrium) as a family of consumption plans, production plans,
prices and hook-up fees such that households are maximizing utility subject to
their non-convex budget sets, defined by prices and their hook-up charge; firms
with convex technologies are marginal cost pricing; firms with non-convex
technologies are marginal cost pricing and recovering any losses by charging
non-uniform hook-up fees, thus making zero profits, then Vohra (1988b) has
shown the partial equilibrium intuition concerning the optimality of dis-
criminating two-part tariffs fails in general equilibrium models, in the sense
that the first welfare theorem does not hold even for discriminating two-part
marginal cost pricing equilibria. Quinzii (1991), in the first general equilibrium
discussion of the optimality of two-part marginal cost pricing, demonstrates
that the second welfare theorem fails for this equilibrium notion, if there is
insufficient willingness to pay on the part of consumers. It is clear that the work
of Dierker and Quinzii on sufficient conditions for optimality of a MCP
equilibrium also provides sufficient conditions for a TPMCP equilibrium to be
Pareto optimal.

Existence of a non-uniform two-part marginal cost pricing equilibrium has
recently been established by Brown, Heller and Starr (1989), using the model
of Beato and Mas-Colell (1985). The basic assumption in the Brown—Heller—
Starr paper is that the aggregate willingness to pay, in equilibrium, exceeds the
losses incurred by pricing the monopoly good at marginal cost. They also show
that any Pareto optimal allocation, where the aggregate willingness to pay
exceeds the losses incurred by pricing the monopoly good at marginal cost, can
be supported as a two-part marginal cost pricing equilibrium. There are no
algorithms for computing two-part marginal cost pricing equilibria, to our
knowledge, nor are there any results on finiteness or local uniqueness of
equilibria.

The existence of equilibria for linear pricing rules other than marginal or
average cost pricing is discussed in a recent special issue on increasing returns
edited by Cornet (1988). In particular, we recommend Cornet’s introductory
essay which is a survey of the general equilibrium literature on increasing
returns. This completes the introduction and in the next two sections we shall
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discuss in detail the existence, computation, finiteness and local uniqueness of
MCP, ACP and TPMCP equilibria. The optimality of marginal cost pricing is
the subject of the final section of this chapter.

2. Existence

One of the first proofs of existence of a MCP equilibrium is due to Mantel
(1979) [see also Beato (1982)]. Mantel considers a private ownership economy
with / goods, m consumers and a single firm. The production set, Y, of the firm
is a subset of &', The firm’s pricing rule ¢ is a mapping from 9 Y, the boundary
of Y, into the price simple of ', denoted S. The consumption set X; of the ith
consumer is the positive orthant %',. Each consumer has a utility function U,,
an endowment vector w, and a share 6, in the firm. Given a production plan y
of the firm and market prices p €S, then the income of household i is
r{p,y)=p-w,t6p-y.

Mantel makes the following assumptions.

(A1) For all i:

(i) U, is continuous, strictly quasi-concave and locally non-satiated;

(ii) o = 6w, where 0 € R',, and >0, L, 0, =1.

(A2) (i) Yis closed, 0€ Y, Y — R, C Y (free disposal);

(i) Y is a smooth hypersurface of %', i.c. there exists a smooth function, f,
from %' into & such that Y = {x € R'| f(x) <0}, 0 is a regular value of f, and
aY = f1(0);

(iii) for all y€aY, y(y) =Vf(y)/||VA(»)|l, where Vf(y) is the gradient of f at
y and || - ||, is the /,-norm;

(iv)if Y=(Y+w)NR', and y + © €Y then y(y)E R, ,;

(v) Y is bounded.

Before proving the existence of a MCP equilibrium, let us discuss these
assumptions. Al(i) is standard and guarantees the existence of demand
functions, given strictly positive prices and positive income. A1(ii) implies
Guesnerie’s fixed structure of revenues condition, i.e. r,(p, ¥)=p - w, t 6,p-
y=6p-(y+w). A2(i) is also standard, but notice that we do not assume
convexity of Y. A2(ii) and (iii) define the marginal cost pricing rule for a firm
with a smooth technology. A2(iv) can be weakened to ( y) € R', [see Brown
and Heal (1982)]. A2(v), in this model, is equivalent to assuming that the set of
feasible allocations is compact.

The two central ideas in Mantel’s proofs are the basis of most of the
subsequent existence proofs of equilibria in economies with non-convex tech-
nologies where firms follow pricing rules. The first idea is that oY is
homeomorphic to the simplex, §. The second idea is to use this homeomorph-
ism to construct a continuous map of Y into dY whose fixed-points are the
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desired equilibria. We now give Mantel’s existence proof for a MCP equilib-
rium, where the lump sum taxation to cover the losses of the firm is implicit in
the formulation of the budget constraint, i.e. r,(p, y) = 6,p - (y + w) should be
interpreted as “after-tax” income.

Theorem 1 [Mantel (1979)]. Given assumption Al and A2 there exists a MCP
equilibrium, i.e. there exist consumption plans x,, a production plan y and
marginal cost prices p such that each consumer is maximizing his/her utility at x,
subject to his/her budget constraint; p =Vf(y)/||VA(y)|, and L7, x, =y + w.

Proof. That ¥ is homeomorphic to the simplex is obvious from Figure 36.3,
where the homeomorphism is simply the intersection of a ray through the
origin and the given y € ¥ with the simplex S. Given y such that y + w € ¥, let
p = ¥(y). Then for each i, x,(p, y), the demand of household { at prices p and
given production plan y, is well defined since p € %', , and r,(p, y) > 0.

The aggregate demand, x( p, y), is 7", x,(p, y) and x(p, y) € R'.. Denote
by £( p, y) the projection of x( p, y) onto 8 Y through the origin, Le. %(p, y)is
the intersection of the ray through the origin and x(p, y) with dY. We now
define the continuous map I'" : 9 ¥— o ¥ which is a composition of these maps,
i.e. I'(y + w) = %(p, y). By Brouwer’s fixed-point theorem, I' has a fixed-point
y + w. By construction, we need only show that x(p, y)=y + w, where
p =y(y), to complete the proof. Since I'(y + w) =y + w, we know that
X(p,y)=y + w. Moreover, X(p, y)=1yx(p, y) for some positive scalar 7.
Hence yx(p, y)=y + w, but by Walras’ law p-x(p, y)=L", p-x(p, y) =
Lrr(p,y)=L",0p-(y+w)=p-(y + ). Therefore, y=1, completing

the proof.
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Figure 36.3. The images of the efficient production plans y, and y, under the homeomorphlsm
between the production possibility frontier and the simplex are the points y] and y).
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We next prove the existence of an ACP equilibrium in Mantel’s model. For
each y €9Y, we define the average cost pricing correspondence AC(y)={p €
S| p-y=0}. We will need the additional assumption that 9Y N (- %", ) = {0}.
The following lemma is due to Kamiya.

Lemma 1 [Kamiya (1988a, Lemma 12)]. If A2(i) holds, then AC:0Y— Sisa
lower hemi-continuous correspondence with non-empty, closed convex values
for all y€ aY\{0}.

Following Kamiya (1988a, Lemma 13), we can invoke the Michael selection
theorem, given our assumption that 9Y is smooth at the origin, to prove the
existence of a continuous function p:3¥— S such that if y + w €9Y, y#0
then p(y) € AC(y). See Hildenbrand and Kirman (1989), Appendix IV, for a
discussion of the Michael selection theorem. Given the selection p, we now
assume that the underlying exchange economy is a regular exchange economy,
hence has only a finite number of locally unique equilibrium prices, which are
smooth functions of the individual endowments. Then, generically, p(0) is not
an equilibrium price for the underlying exchange economy. A non-trivial ACP
equilibrium is defined as an ACP equilibrium where the equilibrium production
plan is not the zero vector.

Theorem 2. Given assumptions Al and A2, if 3Y N (—R',)={0}, 0 E R, ,
and Y N R', = {0}, then generically there exists a non-trivial ACP equilibrium,
i.e. consumption plans x;, a production plan y and average cost prices p such
that each consumer is maximizing his/her utility at x; subject to his/her budget
constraint, p- y=0and L' | x, = y + w.

Proof. The argument is exactly the same as in the proof of Theorem 1 with
the marginal cost pricing rule ¢(y) =Vf(y)/||Vf(y)||, replaced by the average
cost pricing rule p(y). The no free lunch assumption, Y N %', = {0}, guaran-
tees that p(y) #0. Since generically p(0) is not an equilibrium price vector, we
see that the equilibrium production plan y # 0.

If there are several non-convex technologies in the economy then a different
construction is needed to formulate equivalent fixed-point problems for prov-
ing the existence of MCP or ACP equilibria. The first such argument, for MCP
equilibria, is due to Beato and Mas-Colell (1985). The intuition underlying
their proof is easily explained. Suppose the boundary of the attainable set for
each firm is contained in the interior of a compact set, and the boundary of the
firm’s attainable production set is homeomorphic to the simplex. Also suppose
that each firm’s boundary is smooth, hence the marginal cost pricing rule is
simply the function mapping an efficient production plan into the normalized
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marginal rates of transformation. Now imagine an auctioneer who announces
both market prices and an efficient production plan for each firm. Consumers
respond to prices with their utility maximizing consumption plans; and firms
respond to demand with their marginal cost prices, i.e. normalized marginal
rates of transformation. In this story housecholds are quantity-setting price-
takers and firms are price-setting quantity-takers. The auctioneer uses the
excess demand to adjust the market prices, which are then normalized to the
price simplex, and uses the announced marginal cost prices of the firms to
adjust the production plans that are then normalized to their respective
simplices, which are homeomorphic to the relevant portions of the boundaries
of the production sets. This process defines a continuous map of the (n +1)-
fold product of the simplex into itself — there are n firms in the economy — and
hence has a fixed-point by Brouwer’s fixed-point theorem. This fixed-point is
shown to be a free-disposal marginal cost pricing equilibrium, by the usual
arguments. Of course, for a single firm economy this argument reduces to that
of Mantel.

The model of Beato and Mas-Colell is given next along with their existence
proof for marginal cost pricing equilibria. The consumption side of their model
is represented in reduced form, i.e. aggregate market demand is represented as
a continuous function of market prices p, and production plans y=
(y,»...,y,) into R',, that satisfies Walras’ law when aggregate wealth is
non-negative. Hence they implicitly assume that every consumption set is a
subset of %', . There are n firms in the model characterized by production sets
Y, and pricing rules g, :8Y,— S, where each g; is a correspondence. Let
oY =9Y, X --- xaY,, then a pair (y, p) EdY X § is a production equilibrium
if y, €9Y; and p € g,(y,), for all j. It is a feasible production equilibrium if
Y0, y;=0.If (y, p)EJY X S, then define M(y, p)=p-L/_, y;. We are now
ready to state their three basic assumptions.

(H1) For all j:

(i) Y,=K, - R'., where K; is compact;

(ii) let e=(1,1,...,1) then 3r>0 s.t. K; is in the interior of [{—re} +
R'.], where r>0.

(H2) For all j:

(i) g; is upper hemi-continuous and convex-valued;

(ii) if y;, <—r and p € g,(y;) then p, =0 (see Figure 36.4).

(H3) At every production equilibrium (y, p), M(y, p)>0.

The reader should think of the K as the attainable production set of firm j.
Also Beato and Mas-Colell have embedded the social endowment into the
production sets. It is H1 that allows them to assume 8Y, N [{—re} + R is
homeomorphic to the simplex, S. Again, see Figure 36.4. The interpretation of
H2 is that g; is the marginal cost pricing rule for a non-smooth production set.
Bonnisseau and Cornet (1988a) have shown in their Lemma 4.2(c) that if g; is
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Figure 36.4.

defined by the Clarke normal cone and HI1(i) holds, then the boundary
condition H2(ii) is satisfied. Unfortunately, this boundary condition need not
hold for the average cost pricing correspondence. Hence the Beato and
Mas-Colell model does not readily extend to this case. H3 is the important
survival assumption and implies that at equilibrium the profits of the competi-
tive sector, i.e. profit maximizing firms with convex technologies, plus the
value of the social endowment exceeds the aggregate losses incurred by firms
with decreasing average costs, i.e. firms with non-convex technologies, who
price at marginal cost. The importance of H3 is underscored by an example of
Kamiya (1988b) with three goods, two firms, and an arbitrary number of
consumers where the survival assumption does not hold and a marginal cost
pricing equilibrium does not exist.

Formally the consumption side of their model is given by a continuous
function f: Y x S— R',, where p- f(y, p) = M(y, p) whenever M(y, p)=
0.

A free-disposal equilibrium in the Beato—Mas-Colell model is a pair
(y, pP)E3Y X S such that (y, p) is a production equilibrium, f(y, p)<
Z;.’-:l y;; and p- f(y, p)=p-Li_, y,, i.e. goods in excess supply have zero
price.

Theorem 3 [Beato and Mas-Colell (1985)]. Given assumptions H1, H2 and
H3, a free-disposal equilibrium exists.
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Proof Let n; be the homeomorphism of the simplex S onto 9Y; N [{—re} +
R',] for each j. Unlike in the Mantel model, dY, need not be smooth Hence g;
is a correspondence. Moreover, g, need not be lower hemi-continuous and
therefore we cannot invoke the Mlchael’s selection theorem, as did Kamiya for
the average cost pricing correspondence. Instead Beato and Mas-Colell rely on
the clever trick of using Cellina’s theorem on the approximation of an upper
hemi-continuous correspondence by the graph of a continuous function; see
Hildenbrand and Kirman (1988), Appendix IV, for a discussion of Cellina’s
theorem and some of its applications. Hence, g; is assumed to be a function in
the proof. To be completely rigorous we would have to show that the limit of

‘“approximate equilibria” is an equilibrium, but these arguments are well
known. Beato and Mas-Colell define the continuous map ¢:S5""' — §"*!
where for (x, p) € §""" and n,(x;) =y, let

(xjh +max{0, p, — gjh(yj)})

@u(x, p) = , forjsnand 1=sh=<],

!
+ /121 max{0, p, — gjh(yj)}

(ph + maX{O, flysp) = 2 y,-h}>
Purin(Xs P) = ; ’_i , forh=l.

1+ Z,l max{O, 5Ly, p)— Ztl yjh}

This map has a fixed point (x, p) by Brouwer’s fixed-point theorem. The
fixed point of the first family of equations, using the boundary condition
H2(ii), x; = ¢(x, p) gives that p = g,(y,), i.e. (y, p) is a production equilib-
rium. Hence by H3, p- f(y, p)=p- (X, y;); this fact and p=¢,, (y, p)
yield that f(y, p) <X}_, y;, completing the proof.

Although the model of Beato and Mas-Colell may not be a natural model for
investigating average cost pricing, it is excellent for outlining the recent
existence proof of Brown, Heller and Starr (1989) for a two-part marginal cost
pricing (TPMCP) equilibrium. In their model, there is a single firm with a
non-convex technology that produces a single good (the “monopoly good™)
which is not produced by any other firm, and the social endowment of this
good is zero. The remaining n—1 firms in the economy possess convex
technologies and comprise the competitive sector of the model, i.e. these firms
are price-taking profit-maximizers. We shall view the firm producing the
monopoly good as a regulated public monopoly. Regulation takes the form of
marginal cost pricing with discriminating (or non-uniform) ‘“hook-up” fees
charged for the right to consume the monopoly good. All firms, including the
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regulated natural monopoly, are privately owned and all shareholdings carry
limited liability. Hence losses of the regulated firm can only be recovered
through the hook-up fees, thus there are no taxes in this model, lump sum or
otherwise. The hook-ups are required to just recover the losses that the
regulated firm incurs by marginal cost pricing. Hence in equilibrium, the
regulated public monopoly makes zero economic profits.

Brown, Heller and Starr define TPMCP equilibrium as a family of consump-
tion plans x;, production plans y;, market prices p and hook-up fees g;, such
that consumer i is maximizing his/her utility at x; subject to his/her budget
constraint:

or

G+p-x<p-w+28py ifx,>0;

i

p = g,(y,), where the g; are the marginal cost pricing rules in the Beato-Mas-
Colell model, X,., g, =min(0, —p- y,), where 0 is the set of consumers who
purchase the monopoly good; and L7, X, <X, y, + w, where w is the social
endowment, X | w,.

The basic idea underlying the existence proof of Brown, Heller and Starr is
the notion of willingness to pay and the assumption that, in equilibrium, the
aggregate willingness to pay exceeds the losses of the regulated monopoly
resulting from marginal cost pricing.

More formally, they assume that the set of feasible allocations is compact;
hence X, the attainable set of the ith consumer is compact. Let X, be a convex
compact set which contains X, in its interior. Suppose also, in addition to the
standard assumptions on utility functions, that we assume U, is strictly quasi-
concave for all i. Let r,(y, p)=p-w,+X7_, 6,p-y,. We can now calculate
each household’s “reservation level of utility,” i.e. the maximum utility level
she could obtain if the natural monopoly good were unavailable:

Vily, p)=max U(x;) s.t.p-x;<r(y, p), x; =0, xiEXi .

The income necessary to obtain this utility level at prices p if the monopoly
good is available is given by

E(p,V(y,p)=minp-x,, Ulx,)=V{(y, p), xieX .

Each household’s “willingness to pay” for the monopolist’s output, given
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(¥, p), is sy, p)=ri(y, p) = E(p,V,(y, p)). Notice that s; is an ordinal
concept, i.e. it is independent of the utility representation. s,(y, p) is the
amount of income at given prices, p, that must be subtracted from income,
r(y, p), to reduce utility to its value, V,(y, p), when the monopoly good was
unavailable. As such, it is akin both to the compensating variation of adding
the monopoly good and to Dupuit’s notion of benefit arising from the
introduction of a public good. ,

The principal assumption in the Brown—Heller—Starr model is that the
aggregate willingness to pay, s(y, p) = L7, 5,(y, p) exceeds the losses of the
natural monopoly at every production equilibrium (y, p), i.e. s(y, p)>
—p y,- Given this assumption, they define hook-up fees, ¢,(y, p), as continu-
ous functions of (y, p) on the set of production equilibria. The ¢,(y, p) have
the following properties:

(i) L2, g,(y, p) =min(0, —p - y,);

(i) if 5,(y, p) >0 then g,(y, p) <s,(y, p); and

(iii) if 5,(y, p) =0 then g,(y, p)=0.

We see that if 5,(y, p) >0 then consumer i will choose to pay the hook-up
fee, since it is less than the maximum willingness to pay. If s,(y, p) =0 then
q:(y, p) =0 and consumer i will not choose to consume the monopoly good.
Hence in all cases the consumer’s budget set is convex and therefore the
demand correspondence is convex-valued. Assuming strict quasi-concavity of
the utility function, we define the individual demand function x,(y, p). Letting
f(y, p)=LE, x,(y, p) be the market demand function and extending it con-
tinuously but arbitrarily over Y X S, we now have reduced the TPMCP model
to the MCP model of Beato—Mas-Colell. A fixed-point (¥, p) of the Beato—
Mas-Colell map ¢ : $™*'— §”*" is a production equilibrium, hence f( 7, p) is
the true aggregate demand. Moreover, the hook-ups, ¢,(y, p) will, by con-
struction, just cover the losses of the monopoly. The remaining step, to show
that the resulting allocation is a free-disposal equilibrium, is the same as in
Beato and Mas-Colell.

The final topic in this section is the existence theorem of Bonnisseau and
Cornet (1988a, Theorem 2.1) where firms follow bounded losses pricing rules.
This remarkable theorem provides a general existence result for a wide class of
general equilibrium models including the existence of Walrasian equilibria in
the classical Arrow-Debreu model, the existence of MCP equilibria in the
Beato and Mas-Colell model, and the existence of ACP equilibria in general
equilibrium models with several non-convex firms. Unfortunately, their proof
is too technical for a survey of this kind. Instead, we will discuss the main ideas
and structure of their argument. The model of Bonnisseau and Cornet is
defined as follows.

The economy has / goods, m consumers and 7 firms. The social endowment
w is a vector in &' Each firm’s production set, Y, is a subset of R' The
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consumption set, X;, of consumer i is also a subset of %". Tastes are defined by
complete, transitive, reflexive binary relations >, on X,. Finally, the wealth of
the ith consumer is defined by a function r;:8Y X R', — R where 0Y =
Y, X ---X4aY,. A special case of this wealth structure is r,(p, Viseoos Vo) =
p-w+Xi_ 6.p-y for6,=0, L, 6,=1 which holds for a private ownership
economy. The behavioral assumptions are that houscholds are maximizing
their preferences subject to the standard budget constraint and that firms are
following pricing rules. The pricing rule ¢, of the jth ﬁrm 1s characterized by a
correspondence from 9Y;, the boundary of Y, to 92 where z//( y;) is a cone
with vertex 0. The jth ﬁrm is in equilibrium given (y p) if pe ¢ (y;) and
y=( Yis oo Y,.)- Pricing rules subsume profit maximization, since PM,(y,) =
(peR|p- y,=p-y; for all y;€Y;}. Assuming free disposal, PM (y,)C
®',. A Bonnisseau—Cornet ethbrium is a family of consumption plans
production plans y; and prices p, such that consumers are maximizing utility at
x;, subject to their budget constraints; firms are in equilibrium, i.e. for all j,
pE y(y,); and all markets clear, i.e. X7, x, =%}, ¥, + w. A free disposal
equilibrium is defined in the standard way. Their principal existence theorem,
Theorem 2.1, is a consequence of the following assumptions:

(C) (i) Standard assumptions on consumptions sets and preferences, say as
in Debreu (1959); (ii) r,(y, p) is continuous, satisfies Walras’ law, i.e.

rr r{y,p)=p" (Z, | ¥; T @) and is homogenous of degree 1 in prices.

(P) For all j, Y, is non-empty, closed and Y, — R'.C Y, (free dlsposal)

(B) For every o' = w, the set A(w')= {((x) (y]))EH, XX, Y |

Y, x, <X, y,+ ') is bounded.
Given the homogeneity assumptions on r; and ¢;, and the local non-satiation of
preferences, the equilibrium prices will lie in the price simplex §. The
normalized pricing rule ¢, is the correspondence from Y, to S defined as
z//(y]) (y;)NS. The ﬁnal definition is that of a production equilibrium:
(¥, p) is a production equilibrium if y€Il7_,3Y;,, pES and for all j, pE
¢(Y;). PE, a subset of II7_, 3Y, X §, is the set of production equilibria. The
remaining assumptions are:

(PR) for all j, the normalized pricing rule, z//j, is upper hemi-continuous w1th
non-empty, convex compact values;

(BL) (bounded losses assumption) for all j, there exists a real number «;
such that for all (y,, P)EJY, XS, p€E z//(y]) implies p - y] = a;

(SA) (survival assumption) (v, p) EPE implies p- (X7, y, + w) > inf,
p-Ll x;

(R) (y, P)EPE and p-(Xi_, y,+tw)>infp X7 x, imply r(y, p)>
inf{p-x,|x,€X,} for all i.

Assumptlons (C) and (P) need no discussion. (B) is implied by
AR, Y)N (AL, Y;)={0}, where A(X]_, Y,) is the asymptotic cone of
(X%., Y}) [see Hurwicz and Reiter (1973)].

(PR), the pricing rule assumption is satisfied by a profit maximizing firm j
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with convex technology, if y;( y;) = PM(Y)); a firm following the marginal cost
pricing rule where ,( y;) is the Clarke normal cone at y;; and a firm following
average cost pricing where ¢,(y;) = AC(y,), if Y;N R’ ={0}.

Before discussing the remaining assumptions, we now give the formal
definition of the Clarke normal cone, denoted N,(y). First, we need the notion
of the Clarke tangent cone. For a non-empty set YC %' and yE€dY, the
tangent cone of Y at y is Ty (y) = {x € R'| for every sequence y* €Y, y*— y
and every sequence t* € (0, »), t“— 0, there exists a sequence x* € &', x* — x,
such that y* +t*x* € Y for all k}. For any AC R, the polar cone of A,
A"={z€R"'|x-2<0 for all x€ A}. Then N,(y)=[T,(y)]". See Figure
36.5 for examples of the Clarke normal cone.

Assumption (SA) simply states that at a production equilibrium there is
sufficient income to cover all losses (through lump sum taxation) and still
provide consumers with the necessary income to purchase their subsistence
consumption bundle. (R) asserts that aggregate income (net of lump sum taxes
to cover any losses of firms) is distributed in such a manner that each consumer
has sufficient income for subsistence. As Bonnisseau and Cornet point out,
special cases of (SA) and (R) are (i) the private ownership models of
Arrow-Debreu and (ii) models with the fixed structure of revenues assumption
and positive net social wealth at each production equilibrium.

With the exception of (BL), all of these assumptions — albeit with less
generality — have appeared in one guise or another in the work of Debreu
(1959), Dierker, Guesnerie and Neuefeind (1985), Brown, Heal, Khan and
Vohra (1986) and Kamiya (1986a). Hence the major conceptual innovation of
this paper is the notion of bounded losses pricing rules. This condition holds
for all of the models cited above, together with the model of Beato and
Mas-Colell. Notice that (BL) is not needed for economies with a single firm,

Output

Input 0

Figure 36.5. The shaded cones at points (a), (b) and (c) are the Clarke normal cones. The Clarke
normal cone at (d) consists of all non-negative scalar multiples of the normal vector at (d).
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e.g. Mantel (1979) or Cornet (1982). But the most surprising consequence of
(BL) is in the case of marginal cost pricing, where the pricing rule is in terms of
the Clarke normal cone. In this instance, the (BL) assumption is equivalent to
assuming that the production set of the firm is strictly star-shaped; see Lemma
4.2 in their paper.

Star-shaped production sets were introduced by Arrow—Hahn in their discus-
sion of monopolistic competition. These sets are a particularly well-behaved
class of non-convex sets, e.g. compact strictly star-shaped sets in &' are
homeomorphic to the 1-ball in ' [see Arrow and Hahn (1971, Appendix B)].
The relevant literature on the properties of these sets for equilibrium analysis
appears to be the geometry of numbers; this connection is suggested by the
interesting and important work of Scarf (1986) on indivisibilities in production;
and non-smooth optimization [see Dem’yanov and Rubinov (1986)].

Subsequent to the paper under discussion, Bonnisseau and Cornet (1988c)
were able to drop the (BL) assumption and still prove the existence of a MCP
equilibrium. Of course for average cost pricing, (BL) holds trivially.

Returning to Bonnisseau and Cornet (1988a), we see that the existence proof
rests on another fact about production sets with free disposal. They show that
if a production set Y is a non-empty subset of %' such that Y — ®, C Y and
Y # %', then the boundary of Y, aY, is homeomorphic to a hyperplane in &'
(see Lemma 5.1 in their paper). This lemma, together with (BL) and the
compactness of firms’ attainable production sets, which follows from (B),
allows them to define compact, convex subsets of the hyperplanes correspond-
ing to each 9Y;. The interiors of these sets contain the homeomorphic images
of the relevant portions of dY;, analogous to the construction of Beato and
Mas-Colell regarding the 9Y;. The final step is to use a suitable convex compact
ball defined from the sets above: products of the price simplices, one for each
firm, as proxies for the range of the pricing rules; a price simplex for market
prices; and convex, compact sets which contain the attainable consumption sets
in their interior. This ball is then the domain and range of a continuous map,
F. The fixed-points of F, which are shown to exist by Kakutani’s theorem,
constitute free-disposal equilibria. Bonnisseau and Cornet give several exten-
sions of the basic result, Theorem 2.1, but the outline given above conveys the
structure of all of their proofs.

In the next section, we consider another method for establishing existence of
equilibria in economies with non-convex technologies.

3. Local uniqueness and computation

The non-linear system of equations which define an equilibrium in an economy
with non-convex technologies, where firms follow pricing rules, consists of the
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first-order conditions for utility maximization subject to a budget constraint,
the equations defining a production equilibrium, and the market clearing
equations. In the previous sections, these equations were shown to have a
solution by converting the system into an equivalent fixed-point problem and
the existence of a fixed-point was established by using the Brouwer or
Kakutani fixed-point theorem. But the arguments used give no indication of
the number of equilibria or how to compute an equilibrium. In this section, we
consider the path-following or homotopy method for solving a given system of
equations; this will allow us to derive both a uniqueness theorem and an
algorithm for computing equilibria.

The principal papers in this area are all due to Kamiya [see Kamiya
(1986a, b, 1987, 1988a)]. The assumptions in Kamiya’s proof of existence
[Kamiya (1988a, Theorem 1)] differ from those of Bonnisseau and Cornet in
two important respects. Instead of assuming (B), Kamiya assumes (B'):
co A(X7., Y;)N —co A(Z}_,, Y;) = {0}, where co(D) is the convex hull of D;
and instead of (BL), he assumes (L): for all sequences {( p®, y7)} CS X dY,,
such that ||y||.— + and, for all a, p® €¢,(y]), it is the case that
lim, . p“-(y*/|l¥$]l..)=0. Hence his assumption on the losses incurred by
firms is weaker than the bounded losses assumption of Bonnisseau—-Cornet, but
his assumption on boundedness (B’) is stronger than their assumption (B).
Kamiya also assumes that consumption sets are subsets of R' . The essential
difference between the models of Kamiya and that of Bonnisseau—Cornet is
not the existence theorems, per se. In fact, Bonnisseau (1988) has been able to
derive Kamiya’s result from his theorem with Cornet by constructing a new
economy with different production sets and changing the pricing rule so that it
satisfied (BL). The important difference between the two models is the method
of proving existence.

Kamiya’s path-following or homotopy proof of existence, given the previous
work of Dierker (1972), Smale (1987b), Scarf (1973) and Eaves (1972),
naturally suggests two results. First, a condition for uniqueness of equilibria
and second, an algorithm for computing equilibria. Conditions for local
uniqueness and uniqueness can be found in Kamiya (1988a, Theorem 3).
Algorithms for computing equilibria (in principle) can be found in Kamiya
(1986b, 1987). Unfortunately, all of the arguments in these papers are too
technical for this survey. Hence we will illustrate the main idea in his existence
theorem by showing that Mantel’s model for MCP equilibria has an odd
number of equilibria. Our proof will be based on path-following and the
homotopy invariance theorem, the essential elements of Kamiya’s argument.
This result on Mantel’s model was originally proved by Brown and Heal
(1982), using the fixed-point index introduced by Dierker (1972). As Dierker
shows, if each of the finite equilibria in an exchange economy has the same
index then the equilibrium is unique. This condition, of course, implies
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uniqueness of Mantel’s model and Kamiya’s model and is the condition used by
Kamiya to guarantee uniqueness. Roughly, the index at an equilibrium is the
sign of the determinant of the excess demand at the equilibrium prices.

The computational algorithm in Kamiya (1986b) is a simplical path-following
method based on Scarf’s original simplical algorithm for computing equilibrium
prices [see Scarf (1973)]. The degree of computational complexity is of the
order (/ — 1)(n), where n is the number of firms and / is the number of goods.
This is quite large relative to the degree of computational complexity of Scarf’s
algorithm applied to classical Arrow—Debreu economies, which is of order
(I —1). This increased complexity arises from the need to treat each firm’s
production possibilities separately in the non-convex case; whereas in the
convex case, one can aggregate the technologies or in well-behaved cases only
consider market excess demand functions that depend on /—1 prices. In
Kamiya (1987), using results in differential topology, he gives a second
algorithm which “generically” has the same order of computational complexity
as in the convex case, i.e. ({ —1).

We shall need to make several additional assumptions concerning Mantel’s
model for marginal cost pricing in order to prove there are an odd number of
MCP equilibria. If z € R, let 7€ R be the first (/ — 1) components of z.
For notational convenience, when y + €Y we shall simply say that “y €
aY”. If y €Y then denote VA(y)/||VA(y)ll, as p(y). The aggregate demand at
these prices will be denoted x(p(y)). Finally, we define the homotopy
H:9Y x[0,1]—> R where H(y, )= (1-0)(3, ~ ¥) + (Z(p(y)) = ¥), yo €
aH and x( p(y)) is defined as in the proof of Theorem 1. ¥, is chosen to
guarantee assumption A4, the boundary-free condition. In this model, this is
not a realistic condition and is only intended to be illustrative. Guaranteeing
that the path defined by the homotopy does not run into the boundary for r <1
is the crucial part of the path-following methodology. We now assume:

A3 (i) 0 is a regular value of H(y, ),

(i) O is a regular value of H(y,1).

A4 For all t€(0,1) and all y€aY, (1—10)(y, - ) + €& p(y)) — y) #0.

Theorem 3 [Brown and Heal (1982)]. Given assumptions A1-A4, Mantel’s
model for marginal cost pricing has an odd number of equilibria.

Proof. The proof is an immediate consequence of the homotopy invariance
theorem, which is stated below. First, suppose F is a smooth function from a
compact subset of ®", with non-empty interior, into #", t.e. F: D—> R". If 0
is a regular value of F and F~'(0) N aD =0, then we define the degree of F to
be the integer, deg(F) =X, -1, sgndetF'(x), where F’ is the Jacobian of
F.
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Homotopy Invariance Theorem [Garcia and Zangwill (1981, Theorem 3.4.3)].
Suppose D is a compact subset of R", with non-empty interior; H : D X
[0,1]—= R" is a regular homotopy, i.e. O is a regular value of H; 0 is a regular
value of H(x,0) and H(x,1). If H is boundary-free, i.e. if H(x, t) =0 implies
xZaD, then deg(H(x, 0)) = deg(H(x, 1)).

Applying this theorem to Mantel’s model we see that H( y, 0) has the unique
solution y,; hence at H( y, 1) we must have an odd number of solutions. Since
by Walras’ law, all solutions of H(y, 1) = 0 are marginal cost pricing equilibria,
this completes the proof.

Of course, the above theorem proves the existence of a MCP equilibrium,
but we now give a third proof of existence which is the basis for the
computational algorithm in Kamiya (1986a).

Theorem 4. Given assumptions Al-A4, Mantel’s model has a MCP
equilibrium.

Proof. Since 0 is a regular value of H, we see that H '(0) is a one-
dimensional manifold. Because of the boundary-free assumption, A4, and the
uniqueness of the solution at H( y, 0), there is a “path” from y =y toy=y,,
where H(y,, 1) =0 (see Figure 36.6).

Path-following algorithms are simply numerical schemes for computing this
one-dimensional manifold. Garcia and Zangwill give an explicit differential
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Figure 36.6. In this figure, D is the compact interval [a, b]. H ' consists of the two paths A and B.
A is the path from y,, a solution of H(y,0)=0, to y,, a solution of H(y,1)=0.
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equation whose solution is the manifold in question [see Garcia and Zangwill
(1981, Theorem 2.1.1)]. The path following approach for computing equilibria
in economic models consists of solving a differential equation which traces out
a one-dimensional manifold to an equilibrium, was introduced into equilibrium
analysis by Smale (1976b). Smale’s method is not explicitly a homotopy
method and is known in the literature as the Global Newton’s method.

Returning to Kamiya’s work, we ask what makes his proof so complicated?
First, there is the issue of several firms which cannot be aggregated by the use
of a market supply function and, in addition, there is the difficulty of finding at
least one production equilibrium to begin the homotopy. Finally, he must find
an economically meaningful boundary condition to guarantee that his
homotopy is boundary-free. These problems are resolved in an ingenious
fashion and the reader is invited to read the first chapter of Kamiya (1986a) for
an informal discussion of his model and proof of existence.

4. Optimality

In this final section of the paper, we present two examples which illustrate the
inefficiency of marginal cost pricing. Also we prove the second welfare
theorem for marginal cost pricing equilibria in an economy with a single
non-smooth technology. That is, we show that every Pareto optimal allocation
can be supported as a marginal cost pricing equilibrium where the marginal
rates of transformation at each efficient production plan are defined by the
Clarke normal cone and households are minimizing expenditure. Of course,
our result is a special case of the necessity of marginal cost pricing, in terms of
the Clarke normal cone, for Pareto optimality as shown by Quinzii (1991). But
the basic intuition that the separation argument depends only on the convexity
of the appropriate tangent cone and not the convexity of the production set is
due to Guesnerie (1975).

Our first example of inefficiency is taken from Brown and Heal (1979),
where they give an example of an economy having only three MCP equilibria,
all of which are inefficient. The non-convex production possibility set Y is
illustrated in Figure 36.7. There are two households, and only three production
plans are candidates for MCP equilibria, t.e. points A, B and C in the figure.
But plan C is inefficient since the relevant Scitovsky community indifference
curve is clearly below feasible production plans. Hence only A and B are
candidates for efficient MCP equilibria. But suppose the Scitovsky community
indifference curves through A and B look as they do in Figure 36.7; then points
A and B are also inefficient. Another way of making the same point is to draw
the Edgeworth boxes for distribution at these points. if we then plot the
corresponding contract curves in utility space, we find that A’ and B’ in utility
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space, corresponding to A and B, lie inside the utility possibility frontier, i.e.
are inefficient (see Figure 36.8). The interested reader is referred to Brown and
Heal (1979) for a numerical example with these properties. Please note that
the first example of this kind is due to Guesnerie (1975).

A more striking example of the inefficiency of MCP equilibria is found in
Beato and Mas-Colell (1983). In this example there are only three MCP
equilibria, and aggregate production efficiency fails to obtain in each case.

There are two goods in their economy, denoted x and y. x is used as an input
to produce y. There are two firms, one with constant returns to scale, i.e.
y, =x, and the other with increasing returns, i.e. y, = & (x,)>. There are two
consumers. One consumer has a utility function U (x,, y,)=y,, who is
endowed with w, = (0, 50) and owns both firms, i.e. profits and losses are paid
by the consumer. The second consumer has a utility function U,(x,, v,)=
min{6x,, y,} and is endowed with w, = (20, 0).

See Figure 36.9 for descriptions of the individual technologies and the
aggregate technology. Here we give only the intuition for their result, the
reader interested in the details should consult either the above cited reference
or Beato and Mas-Colell (1985). It is clear that p, the price of output, cannot
be 0 in equilibrium, since the first consumer’s utility function is U,(x,, y,) =
y,- Hence we choose output as numeraire and set p, =1. If the first firm
produces in equilibrium then p_ =1, since the first firm produces with constant
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Figure 36.8. The contract curves 0A and 0B in (a) correspond, respectively, to the curves MN and
PQ in (b). The utility possibility frontier is the outer envelope of MN and PQ.

returns to scale, where the constant marginal rate of transformation is 1. In this
case, if the second firm is also producing in equilibrium then it must be at a
point where the marginal rate of transformation is also 1. Checking the
first-order conditions for profit maximization, utility maximization and market
clearing, we see that this is a MCP equilibrium. But we see from the figure for
the aggregate production possibility set that it is never efficient for both firms
to produce.

The other two cases are when one firm produces and the other firm is
inactive. In both cases the active firm produces inside the production possibility
set.

Finally, we prove the second welfare theorem in an economy with a single
non-smooth technology. This model allows us to follow the traditional separat-
ing hyperplane argument, but in our proof the convex sets are the (Clarke)
tangent cone at the efficient production plan and the sum of the sets of
consumption plans that each consumer strictly prefers to her given Pareto
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Figure 36.9. Figures (a) and (b) are the technologies of the two firms. V(z) = max[f,(z,) + f,(z,):
z,+ z,=z] and (c) is the aggregate production function, V(z).

optimal consumption plan. The standard argument, say in Debreu (1959)
separates the latter set from the (convex) aggregate production set. First, we
recall some notions from non-smooth analysis.

Let Y be a closed non-empty subset of %', then the cone of interior
displacements at x, denoted K,(x), ={z€ R'|3In>0, 6>0, s.t. VT €[0, 5],
{x}+7B,(2) CY}. Again, K,(x) need not be convex.

In contrast, the Clarke tangent cone, T,(x), is always convex. For a
comparison of these two cones, we consider the interior of T (x): Int T (x) =
{(zeR'|An>0,0>0,1>0,s.t. YT €[0, 0], Vx' ECI(Y)NC1B,(x), {x'} +
7B,(z) C Y}. Clearly, Int T\ (x) C K, (x).

We consider a private ownership economy with / goods, m consumers and a
single firm. We make the same assumptions on the characteristics of house-
holds as we did in our discussion of Mantel’s model in Section 2. But we only
assume that the firm has a non-smooth technology, Y (this terminology is a bit
confusing since smooth technologies are special cases of non-smooth tech-
nologies, see Section 1). The pricing rule (y) is the Clarke normal cone
(normalized to the price simplex). To guarantee that ¥(y)# 0 for all y €3Y,
we assume 0E Y, Y — R, C Y (free disposal) and Y is closed.
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Second Welfare Theorem. If (x,,...,y,,y) is a Pareto optimal allocation
and X7 x,=y+wER',,, then there exists a p € Yy(y) such that x, is the
expenditure minimizing consumption plan for agent i at prices p and utility level
U;=Uix,).

Proof. lLet B,={z€R' |U,(2)>Ufx,)}, then B, is non-empty and convex
for each i. Let B=1X]., B,, then B is also convex. Let x =X | x,, then x € B,
the closure of B. Define B’ = ¥, B, — x. Now consider B’ and Int T,(y). These
are non-empty, convex sets (the non-emptiness of Int 7,(y) following from
free disposal) and O belongs to the boundary of both sets. Moreover,
Int T,(y) N B’ = 0. Suppose not, i.e., there exists z € B’ NInt Ty (y). The fact
that z € Int T ( y) implies that there exists at € (0, 1) such that y + £z € Y. Let
y —ytizand x’=x+1z. Since x =y + w, we have x' = y' + 0, i.e., (x', )
is feasible. The fact that z € B’ implies that there exist x € B such that
z=(x—x). Thus x' =x + t(x — x)=(1 — t)x + &x. By local non-satiation and
convexity, this yields an allocation which Pareto dominates (x, y)—a contradic-
tion. Now we know that 0 belongs to the boundary of the convex sets
Int 7,(y) and B’ and these sets have an empty intersection. By the separating
hyperplane theorem, there exists p # 0 such that p -z =<0 for all z € Int T,(y)
and p - z =0 for all z € B’. The first condition yields p € N,( y) and the second
one yields expenditure minimization.

This proof is due to R. Vohra.
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