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COMPUTING EQUILIBRIA WHEN ASSET MARKETS
ARE INCOMPLETE

By DoNALD J. BROWN, PETER M. DEMARZO, AND
B. CurTis EAVES!

Existence of equilibrium with incomplete markets is problematic because demand
functions are typically not continuous. Discontinuitics occur at prices for which a mar-
keted asset suddenly becomes redundant. We show that this discontinuity disappears if we
allow an agent in the economy to introduce a new asset when such redundancies occur.
This enables us to prove existence with incomplete markets using a standard path-follow-
ing argument. Hence, available algorithms for path-following in R* can be applicd to
compute equilibria in the GEI case. We demonstrate this by computing equilibrium for a
numerical example.

Keyworps: General equilibrium theory, incomplete markets, path following, homo-
topy.

1. INTRODUCTION

IN THIS PAPER WE INVESTIGATE the existence and computation of general
equilibrium for economies with incomplete asset markets. The general equilib-
rium with incomplete markets (GEI) model follows the standard Arrow-Debreu
model in most of its methodological assumptions: agents optimize based on
rational expectations, there is perfect competition, and markets clear. But the
GEI model is much richer in its ability to describe and analyze important
economic phenomena, such as financial innovation, the relevance of corporate
control and financial policy, and the potential positive role for government
intervention. Moreover, this generality is achieved by dropping perhaps the most
disturbing and patently invalid assumption of the Arrow-Debreu framework—
that agents can trade today assets that allow for every possible contingency that
might occur tomorrow.

There are many reasons why asset markets may be incomplete, including
asymmetric information, moral hazard, and transaclions costs (see Geanakoplos
(1990) and Magill and Shafer (1991) for an excellent discussion). Of the many
consequences of this incompleteness, perhaps one of the most important is that
general equilibrium outcomes are no longer Pareto efficient.” Not only does this

" This is a revised version of an earlier paper entitled “Computing Equilibria in the GEI Model.”
We wish to thank Guy Laroque, Michael Magill, Karl Schmedders, and the referees for their
comments. The rescarch of D. J. Brown and B. C. Eaves is supported in part by NSF Grants
SES-9212769 and DMS-9207409, respectively. The research of P. M. DeMarzo is supported in part
by the National Fellows Program of the Hoover Institution. D. J. Brown and P. M. DcMarzo also
acknowledge the support of the Deutsche Forschungsgemeinschaft and Gottfried-Wilhelm-Leibaitz
Forderpreis.

*1In fact, Geanakoplos and Polemarchakis (1986) show they are no longer even constrained
Parcto efficient in the sense that a social planner restricted to the sume set of available assets can
achieve a Parcto improvement.
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result illustrate the fact that a perfectly competitive market process need not
imply market efficiency, it also calls into question the usefulness of standard
representative agent and/or single commodity models in policy analysis.

These limitations, together with the empirical failure of the representative
agent model, have recently led economists in these areas to consider heteroge-
neous agent models with incomplete markets—see Den Haan (1993) for a
recent discussion of this literature. In both the public finance literature (e.g.,
Newberry and Stiglitz (1981)) and the trade literature (sce Eaton and Grossman
(1985)) there has been a discussion of the role of taxes in improving efficiency
when markets are incomplete. The GEI model and its extensions to stochastic
exchange economies and stock market economies offer a class of models rich
enough to accommodate the concerns of macroeconomists studying short-term
interest rates in incomplete asset markets; trade theorists investigating commer-
cial policy when markets are incomplete; and public finance economists consid-
ering commodity price stabilization or optimal commodity taxation in the
presence of market incompleteness, as in Diamond and Mirlees (1992).

Unfortunately, despite its importance there has until very recently been
relatively little attention given to the computation of equilibria in these models.
Hence economists have had to rely on highly parameterized models with
restrictive functional forms for their comparative statics analyses. Such analyses,
because of the strong assumptions needed for analytical tractability, fail to
capture the rich complexity of dynamic stochastic models with rational expecta-
tions and heterogeneous agents. Not only are computational techniques needed
for those macro/finance models but they are also needed for the counterfactual
analysis necessary for evaluating tax policy in the public finance or trade
literature. In this paper we present a computational existence proof for equilib-
ria in the GEI model.

In the Arrow-Debreu model, equilibrium can be formulated as the zero of the
market excess demand function on the interior of the price simplex. Importantly,
the market excess demand function is smooth (or at least continuous) on this
domain. By contrast, in the GEI model market excess demand need not be
continuous since for some prices the assets can have redundant returns, causing
the agents’ budget sets to shrink suddenly. This problem of the drop in rank of
the asset returns matrix was first pointed out by Hart in his seminal paper
(1975), in which he showed that equilibria may fail to exist.

Duffie and Shafer (1985) overcome this problem and establish the generic
existence of equilibria in the GEI model by reformulating the equilibrium
notion and expanding the domain to include both prices and the Grassmannian
manifold of N dimensional subspaces of R®. The Grassmannian is used to
represent the span of the returns of the N available assets. This approach gives
rise to a smooth market excess demand, but its domain is no longer convex, nor
a Euclidean space. Thus, the current proofs of existence are based on abstract

3 See, however, Den Haan (1993), Judd (1991) and Lucas (1994) for computational methods for
somewhat different models than considered here.
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degree-theoretic arguments which do not require convexity of the domain of the
equilibrium equations; e.g., see Husseini, Lasry, and Magill (1990), Geanakoplos
and Shafer (1990), and Hirsch, Magill, and Mas-Colell (1990).

In this paper we propose an alternative approach. The difficulty of the GEI
model stems from the discontinuity which occurs when assets become redundant
and the return matrix consequently drops rank. We show that a solution to this
problem is to allow one agent in the economy to introduce a new asset for trade
when such redundancies occur. Intuitively, this “auxiliary asset” maintains the
rank of the asset returns matrix available for trade, and thus enlarges the set of
prices for which aggregate demand is continuous. We then show formally that
this is sufficient to establish the generic existence of an equilibrium via a
standard homotopy argument in Euclidean space.

Additionally, we then use this homotopy argument to construct a “path
following” algorithm for computing equilibrium.* The algorithm can be de-
scribed intuitively as follows: We begin with an equilibrium for a single agent
economy. We then gradually increase the relative size of the remainder of the
economy, adjusting prices to maintain equilibrium. If we begin to approach
prices for which one of the assets is redundant, that asset is removed and
replaced by a new asset chosen by our original agent. Once we have “passed by”
the potential redundancy, we then switch back to the original set of assets. We
continue this procedure until we reach an equilibrium for the full economy.

Of course, no claim of a computational algorithm is complete without an
example. We therefore test our method on an economy for which the disconti-
nuity problem is a serious one. In addition to successful computation of an
equilibrium, the numerical results also reveal several insights into the nature of
these models.

The paper is organized as follows. Section 2 presents a basic description of the
GEIl model and the definition of equilibrium. Section 3 gives an intuitive
presentation of the diffieulty in computing an equilibrium for the GEI model,
and our solution to it. This intuition is formalized in Section 4, in which we
define the homotopies that describe our solution path. Finally, Section 5
discusses the computational implementation of our results.

2. THE GE! MODEL

The basic modcl consists of a two period exchange economy with uncertainty.
In each period a finite number of commodities are available and uncertainty in
the second period is characterized by a finite number of possible states. There
are a finite number of real assets marketed, where in each state an asset’s payoff
is a bundle of available commodities. Each state defines a real spot market and
agents may transfer income between periods by purchasing portfolios of assets

* Continuation or path following methods for solving nonlinear systems of equations defined on
open subsets of R¥ are well known and have been used to solve for equilibria in the Arrow-Debreu
model—see Kehoe's survey (1991).
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in the first period and realizing returns in the second period spot markets.
Markets are said to be incomplete if the number of marketed assets is less than
the number of states.

We adopt the following notation:

H = number of houscholds,

S = number of states in the second period,
N = number of assets,

L = number of commodities (per state),

M = number of prices/commodities (M = L(S + 1)),

and we assume S > N. In addition, let AY, ={peRM: p>0, I, p, = 1} be the
interior of the price simplex in R, Also let BX = {0 & R¥: §- =1}, the set of
unit vectors in R¥.

Given prices p € AY,, let p, be the L vector of prices for time 0 consump-
tion, and p;, be the L vector of prices for time 1 consumption contingent on
state 5. Additionally, we will define

0 py 0 0
o L N B
0 0 0 - p

The assets in the economy are represented by the M by N matrix A, where
the payoffs of the jth marketed asset in each commodity in each state are the
elements of the. jth column. Given our definition of P, the state-by-state
nominal return of asset j is given by Py A, an § vector. Thus, we define the
nominal return matrix for the economy as

R(p) =P A€ RN,

Additionally, the time 0 dividend of each asset is given by Ry(p)=
[po 014 € RY. We suppose these assets are available for trade at time 0 at some
prices w € RV,

The economy can be characterized via the excess demand function of cach
household. An agent’s consumption plan consists of a consumption vector for
the first period and a state contingent consumption vector for the second period.
We assume that agents choose their plans to maximize utility over their budget
sets where agents face a budget constraint in each state of the world. Given
utility function U, and endowment e,, houschold /& chooses excess demand z
and a portfolio ¢ to solve:

(D max U, (e, +z), subjectto
z, ¢

Pozg+ TP <Ry(p)d,
P-z<R(p)d.
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Of course, under standard montonicity assumptions, this problem will have a
solution only if the assets prices 7 do not admit an arbitrage opportunity.
Because the absence of arbitrage is equivalent to (see Ross (1977))

(2) 7=Ry(p)+4qR(p) forsome gqe€RS,,

we could equivalently define excess demand in terms of commodity prices p and
“state prices” g. Since the budget constraint in (1) is homogeneous in p,,
however, it is even simpler to embed the state prices ¢ in the price vector p by
rescaling each p, by g,. Using this notion of prices it is possible to restate (1) as
follows:

(3) max U, (e, +z), subject to
P4

pz=0,
Pi-:z=R(p)¢ forsome ¢.

We let Z"(p, R(p)) in RM denote the excess demand of household # which
solves (3). We do not derive, but merely state the following properties of these
excess demand functions under standard preference assumptions:®

1. Walras’ Law: pZ"(p, R(p)) = 0.
2. Market Span Constraint: P,Z"*(p, R(p)) € span R(p).
3. Smoothness: Z* is a smooth function of p when R(p) has full rank N.

Walras® law follows as wsual from the agent’s budget constraint. The market
span constraint is the consequence of our incomplete markets model; only
certain income transfers across states are feasible given the available assets. The
set of feasible transfers are those which can be financed by an appropriate
portfolio of assets. This feasible set is equal to the span of the return matrix
R(p), which is referred to in this literature as the “market span.” Finally, the
smoothness condition follows from the fact that when R(p) has full rank, it has
full rank in a neighborhood of p, and thus in this neighborhood the market span
is an N-dimensional subspace which varies smoothly with p. If some of the
assets’ returns become redundant with the others and R(p) drops rank, how-
ever, the market span suddenly collapses by a dimension (or more), resulting in
a discontinuity in the budget set and hence in excess demand.

Unfortunately, the rank of the asset returns matrix is not a continuous
function of the spot prices. Hence, individual excess demands and consequently
aggregate excess demands are, in general, not a continuous function of market
prices for commodities. It is this lack of continuity that distinguishes the
problem of existence of equilibria in incomplete market cconomies from the
problem of existence of equilibria in complete contingent market economies.

Given the excess demand functions (Z*) and the parameters for the economy
(e, A) e RMM X RM*N = W, we define an equilibrium for the economy

* We also remark that Z" is easily computed as the solution to a concave optimization problem
with lincar constraints.
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(Z", e, A) as a price vector such that aggregate excess demand equals zero:
(€] Y Z"(p,R(p)) =0.
h

This definition of equilibrium, while correct, is inconvenient for two reasons.
First, it exhibits indeterminancy in prices: one can change the price levels across
states of the world without changing budget sets or excess demand.® Second,
aggregate excess demand need not be proper in this formulation—reducing a
price in state s to zero does not necessarily lead excess demand to diverge.
Properness (the divergence of excess demand when prices converge to the
boundary of the simplex) is typically an important property in establishing
existence of an equilibrium.

Fortunately, both of these difficulties can be resolved via an alternative
definition of equilibrium. The so-calted “Cass trick” is to allow one agent in the
economy to be unconstrained by the available assets; that is, we allow this agent
to act as though s/he were facing complete markets. Call this unconstrained
agent u. Then define

ZY(p)=Z"(p,Isxs) and Z(p,R(p)y= Y Z"(p,R(p)).
h+u
That is Z* is the excess demand of the unconstrained agent facing prices p
(and complete markets), and Z¢ is the aggregate excess demand of the remain-
ing constrained agents. Given this definition, we rewrite the equilibrium condi-
tion (4) as follows:

5 Z(p)+Z(p,R(p)) =0.

To see that (4) and (5) are equivalent, note that when (4) holds, (5) holds if we
rescale price levels in each state according to the marginal rates of substitution
for the unconstrained agent. Second, when (5) holds, the fact that Z¢ is in the
market span implies that Z* is also in the market span, so that (4) holds as well.
Moreover, this definition solves the two problems previously mentioned. Price
levels are now determined by the marginal rates of substitution of the uncon-
strained agent. Properness follows from the fact that the unconstrained agent’s
excess demand diverges at the boundary of the simplex, and the excess demand
of the constrained agents is bounded below.” The remainder of the paper
explores the existence and computation of a solution to (5).

3. AN INTUITION

Homotopy, or path following, methods offer one natural approach to finding a
price vector solving the equilibrium condition (5). This method involves defining

® Note that the indeterminancy is strictly nominal. Essentially, the problem stems from the fact
that with incompletc markets, there exist multiple state prices that satisfy (2).

"See Geanakoplos (1990) for a further discussion of the “Cass trick.” A referee points out that
the trick and the associated ‘concept of equilibrium were introduced by Magill and Shafer in 1984-85
and subscquently published in Magill and Shafer (1990).
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a family of equations H(p,t) indexed by 1 such that when r =0 there exists a
known, unique solution to H(p,0) =0, and which is smoothly deformed until
t =1 into the equilibrium condition of interest. Under appropriate regularity
conditions, standard path following techniques can then be used to follow the
path from the known solution to an equilibrium of the original problem.

Given our problem, a natural candidate homotopy on which to apply path
following is the following:

(6) H(p,t)=Z“(p)+tZ°(p,R(p)).

Note that for 1= (), this system reduces to a single agent economy, whose
equilibrium price is uniquely given by the supporting prices p* at the first
agent’s endowment. Starting from this initial solution (p*,0), a path of solutions
to H(p,t) =0 (i.e., a path in H'(0)) can be computed by numerically solving
the basic differential equation (BDE) defined by

(M Hp+Hi=0.

If one tries to follow this approach for the GEI model, however, one quickly
rcalizes that it is inadequate. The problem, of course, is that the excess demand
of the constrained agents is discontinuous at prices for whicli the return matrix
R(p) is singular. Thus, the homotopy H defined above can only be smooth on
the domain of prices for which R(p) is nonsingular.

Nevertheless, one could pursue this approach and hope that singular prices do
not arise in practice. Indeed, it is not difficult to show the following:

PROPOSITION: For generic economies, H™'(0) contains a smooth path from
(p*,0) to either an equilibrium (p*, 1) or a point (p,t) such that R( p) is singular.

We will not prove this result here, but simply discuss it to provide some
intuition for the approach we will take subsequently. On the domain of prices
for which R(p) is nonsingular (an open subset of the price simplex), one can
show H~'(0) is (generically) a smooth one-dimensional manifold via an applica-
tion of the implicit function theorem. Thus the path containing (p“,0) must
terminate on some other boundary of the domain. Since the solution for t = 0 is
unique, the path cannot return to this boundary. Also, if prices converge to the
boundary of the simplex, excess demand for some good must diverge, ruling out
this possibility. Thus, the only remaining alternatives are that the path converges
to a “bad” price for which R(p) is singular, or to the boundary ¢ = 1, yielding an
equilibrium for the original economy. See Figure 1.

Naturally, then, this approach is practical only if there is some way of
guaranteeing that hitting a “bad” price is nongeneric. Though it might appear
that a small perturbation of the economy would perturb the path away from a
bad price, this is in fact not the case. The reason for this is that when R(p) is
singular, nearby points imply drastically different market spans, and hence lead
to large changes in the excess demand of the constrained agents. Thus, it will in
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t=1

Given Bad Case
Economy

Good Case

Bad Prices

FIGURE 1.—Path following with the “naive™ homotopy.

general not be possible to perturb the path “around” a bad price. We shall
elaborate on this point in the context of an example.

3.1. A Numerical Example

In order to understand the nature of the problem, and our solution to it, it is
useful to examine a simple example. For clarity, we take the simplest parameter-
ization necessary to produce an interesting discontinuity “problem” for the
algorithm to resolve. In particular, we suppose that there are three future states
(8§ =3), there are two available assets (N = 2), and there are two commodities
(L = 2). In addition, there are two types of agents, A4 and B, each with utility of
the following form (h = A, B):

s L 2
ljh(x) = Z As(1<_ [I_] (xsl)alh) .
s=0 =1
Types A and B differ in terms of their relative preferences for each commodity
(determined by a*) and their endowments (e”). Specifically, we let K=35.7,
A=11,1/3,1/3,1/3), a” =[1/4,3/4], «® =[3/4,1/4], and endowments ¢” =
[2,2;.5,1;1,1; 1.5,1] and €% =1[1,1;25,2;2,2;1.5,2].

The two assets are simply chosen as forward contracts for each good. That is,
asset 1 delivers one unit of good 1 in each state, and asset 2 delivers one unit of
good 2 in cach state. Thus, these two assets become redundant if and only if
relative prices are constant across states.

Finally, we suppose that in the actual economy of interest there are twice as
many agents of type B as there arc of type A. Note that if there are equal
numbers of agents of each type, aggregate endowments are constant and
symmetric, so that if markets were complete relative prices would indeed be
constant in equilibrium.

We compute the path for this economy defined by the BDE (7). In this case it
is natural to let the homotopy parameter represent the relative number of type
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FIGURE 2.—Period 2 prices (p, ) versus T (L p = 100).

B in the economy; hence we let type A be unconstrained and allow 7 €[0,2]
Figure 2 plots period 2 prices versus ¢ along the computed path.

In this case, the path converges to a bad price at ¢ = 1. At this point, with
constant period 2 prices, unconstrained type A would like to “insure” against
state 1. In fact, if we compute A's desired income transfers at these prices, A
would like to purchase a security with payoffs proportional to [1.5,1.0,0.5] across
the 3 states. On the other hand, because prices are constant, the constrained
type B is restricted to trade only riskless assets. Thus, excess demand jumps
discontinuously and H is suddenly far from zero.

For another view of this scenario, let Y* = P,Z* and Y° = P, Z¢ denote the
desired income transfers of the unconstrained and constrained agents. Then
along the path, Y" + tY° = 0 and Y* &4, the market span defined by the return
matrix R(p) for assets 1 and 2.

Consider what happens as we approach f = 1. Almost everywhere along the
path the market span .# is the two-dimensional plane within which the asset
returns lie (Figure 3a). As the returns of the two assets cross each other and
become redundant, however, the asset return matrix is singular and the market

1 i

_<t".

(a) (b)

FIGURE 3.-—Lxample configurations along a path.
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span suddenly drops from the two-dimensional plane to a one-dimensional line
(see Figure 3b). At this point, the constrained agents’ expenditure vector is
forced to lie in this line. Thus aggregate excess demand is suddenly far from
zero.

This example also makes clear the fact that a simple perturbation is not
sufficient to solve the problem. One could perturb the two asset returns so that
rather than crossing each other, they go around each other (by leaving the plane
of the page). The trouble, of course, is that as they go around each other, the
market span rotates from the two-dimensional plane of the page up to a
two-dimensional plane perpendicular to the page and then back down to the
plane of the page. Because the expenditures of the constrained agents must
follow the market span as it leaves the page, whereas Z* is unaffected,
aggregate excess demand again necessarily moves far from zero. This suggests
that the problem is robust to our particular parameterization.®

Thus our attempt at path following gets “stuck” at ¢= 1. Since our target
economy has ¢ = 2, we have failed to compute an equilibrium.

3.2. A Proposed Solution

The approach of the prior literature on incompiete markets has been to
introduce the Grassmannian manifold of N-dimensional subspaces of R® as a
means of representing the market span separately from the asset returns
themselves.” Constrained excess demand is then taken as Z°( p, %), a function
of prices p and the market span, %, an element of the Grassmannian. Excess
demand is thus a smooth function on its domain, which now includes the
Grassmannian manifold. Finally, in order to be sure that % remains consistent
with the true asset returns, it is necessary to add an additional set of equations
that ensures the span of R(p) is contained in #. Thus R(p) can drop rank
without affecting the market span. But while this approach has proved success-
ful in establishing the existence of an equilibrium, it is not directly amenable to
computation.!” Thus we seek an alternative approach that avoids the computa-
tional complexity of the Grassmannian.

® This may seem surprising since it may seem as though we exploited symmetry in our example to
get constant relative prices at 1 = 1. The intuition provided here is correct, however. We will verify
this robustness in Section 5.

® See the special issue of the Joumal Of Mathematical Economics on GEI (1990).

* This is not to say that computing on the Grassmannian is impossible, only substantially more
complicated; the current paper demonstrates that this added complexity is not necessary in the GEI
model. However, readers interested in the issues which arise when computing with the Grassman-
nian may wish to see Brown, DeMarzo, and Eaves (1993), where we present a computational
exislence proof of the subspace fixed-point thcorem. This theorem states, approximately, that a
continuous map of the Grassmannian in RX has a fixed point, i.c., there exists a subspacc in the
Grassmannian such that the image of that subspace under the given map lics in the subspace. (Both
the Brouwer fixed-point theorem and the Borsuk-Ulam theorem are corollaries of the subspace
fixed-point theorem.) A discussion of the relationship between the existence of cquilibria in the GEI
model and the subspace fixed-point theorem can be found in Husseini et al. (1990) or Hirsch et al.
(1990). See also DeMarzo and Eaves (1994) for a computational implementation applied to the GEI
model.
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FIGURE 4.—Adding Y as a new asset.

The intuition of our approach can be seen by returning to Figure 3. What is
needed is a way of recovering the two-dimensional market span at the bad price.
Just before and just after the two assets cross, the market span is equal to the
plane of the page. If we could recover this plane at the bad price, excess demand
would not jump away from zero. Qur observation is that this market span can be
recovered by selectively introducing a new asset for agents to trade. In particu-
lar, note that if we replace one of the assets with the excess demand of the
unconstrained agent, the market span again becomes the full plane of the page.
See Figure 4. 5

Thus, if we think of the market span as being formed by the return matrix R
of assets and 1 and Y rather than by R, the price above is no longer “bad.”
Excess demand with respect to this alternative set of assets is smooth in this
neighborhood. (Recall in our example that at the bad price both securities are
riskiess but the unconstrained agent would like to trade a risky security with
payoffs [1.5,1,.5])

Naturally, defining the market span in terms of asset 1 and excess demand Z*
is only satisfactory as long as these two vectors remain independent. If they
become dependent it is necessary to switch back to defining the market span via
assets 1 and 2.

More formally, one can think of the condition H =0 as equivalent to the
following combination of conditions:

1. R(p) determines the market span .

2. Expenditures Y* and Y* lie in .£.

3. Z"+1Z2°=0.

We propose the following modest generalization of these conditions as
follows: Let R_,(p)be R(p) with the ith column deleted. Then these conditions
could alternatively be written:

1. R_,(p) and Y* determine the market span #.

2. R(p)and Y° lic in .#.

3. Z"+1Z°=0.

One can see that most of the time these sets of conditions are equivalent (see,
for example, the first configuration in Figure 3). They differ precisely when one
has reached a “bad” price with respect to one of the definitions of the market
span. At such points it is convenient and natural to resort to a definition of the
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market span for which this is not a “bad” price; i.e., choose the definition that
leads to a market span of full dimension N.

Introducing the unconstrained agent’s cxcess demand as a new asset when
other assets are redundant is 2 means of smoothly moving through a bad price.
The final issue that must be considered is whether this one potential new asset is
sufficient. What happens if even after adding the new asset, the asset return
matrix is still singular? We must argue that such cases are sufficiently rare; that
is, that such cases are nongeneric and can be avoided by a small perturbation of
the economy.

In Figure 5, casc (a) depicts the problematic configuration in which even
adding Y* is not sufficient to restore the two dimensional markct span .#.
Hiustration (b) demonstrates, however, that it is possible to perturb the payoffs
of the assets slightly so that they do not both cross Y* simultaneously. Unlike
the perturbation contemplated in the case of Figure 3, this perturbation docs
not require the market span to lecave the plane of the page. Thus, at least
intuitively, it should be possible to avoid such “doubly bad” prices.

This completes the intuitive description of our results. In the next section, we
formally define the family of homotopies corresponding to this intuition. We will
define N + 1 different homotopies, each corresponding to a different choice of
N asset returns from the set of N+ 1 available asset returns [R(p), Y*(p)l.
Each of these homotopies is smooth on the domain of prices for which its asset
return matrix has full rank. We then show that each of these homotopies defines
a one dimensional path in (p,t), and that these paths coincide except at bad
points. Finally, we show that generically, this path never converges to a point
which is bad with respect to every homotopy. This implies that, by switching
homotopies when necessary, this path must eventually lead to t=1 and an
cquilibrium price vector. We then apply this technique to resolve the discontinu-
ity problem of our previous example, and compute a true equilibrium for the
economy.

4. A FORMAL PROOF

As discussed in the previous section, we wish to consider the excess demand
of the unconstrained agent as a potential marketed asset in the economy. Thus

(a) (b

FIGURE 5.—Perturbing a “doubly bad” point.



COMPUTING EQUILIBRIA I3

we define an augmented asset return matrix as follows:
R*(p) = P[A. Z(p)] = [R(p),Y*( p)] € RO +D,

and let R*,(p) be the S by N matrix formed by deleting the ith column of R*.
It is natural to define u = N + 1 so that we can write R*, =R* ., ,,=R(p).
We will now construct a family of homotopies indexed by { for i =1,2,...,u
= N + 1. Each homotopy H, is defincd based on the market span determined by
R*;, when that matrix has full rank. In this case we can reformulate the

homotopy (6) as
Z(p) +1Z2°(p, R*,(p)).

Recall that one of our equilibrium constraints is that the deleted asset return
R;, should also liec in the market span. Equivalently, we require that the
augmented return matrix R* have at most rank N. This is represented by the
constraint

R*(p)o=0,

for some unit vector € BN+t = {9 RV g-0=1).
Let X=A4Y x{[0,1]x B¥*!, a smooth manifold of dimension M + N. Next
we define the manifold E; of “good” points with respect to R*; as follows:

E,={(p,t,0,w) e X xW: R* (p) has full rank N},

where w = (¢, A) in W represents the parameterization (endowments and assets)
of the cconomy.

Notc that E; is an open (dense) subset of X X W (and thus is a smooth
submanifold of Euclidean space). Finally, we can then define the family of
homotopies H;: E; - RM*S by

Z"(p) +1Z(p,R*,(p))
8 1, ) =
® g0 R*(p)0

Each H, is well-defined and smooth on its domain E,. We refer to the first set of
cquations, which depends on i, as H,,;, and the second set, which is the same for
all i, as H,.

4.1. Existence of Equilibrium in the GEI Model

Our method of proof proceeds in several steps. First, we show that for generic
w and for each ¢, the solution set H;'(0) defines a one-dimensional manifold on
its domain. Then we show that these manifolds can be overlaid to form a path in
X. Finally, we argue that given the unique solution for ¢ =0, this path must
continue until it reaches ¢ = 1, yielding an equilibrium price vector.

We begin with a characterization of H;'(0). As usual, such a characterization
relies on the implicit function theorem. In the usual application of this theorem,
one is faced with a set of k independent equations, and (subject to regularity
conditions) concludes that the solution set has co-dimension & in the domain.
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The problem with a direct application of this theorem to general equilibrium
theory is that the equilibrium conditions as usually formulated are not indepen-
dent. In particular, excess demand always satisfies Walras’ Law, implying that
the excess demand for cach good is not independent. The GEI model exacer-
bates this, since in addition we know that expenditures must lie in the market
span. These constraints imply further dependency across our equilibrium equa-
tions. Because this situation is prevalent in economics, we first develop a useful
generalization of the implicit function theorem to deal with Walrasian type
dependencies across equations. Qur result is as follows:

THEOREM L: Let F: U — R™ be a smooth function on the manifold u € U. Let
II: U->R"™*™ and G: U—- R"™" be smooth functions such that, for all p€ U,
() and G( p) have constant rank t and n respectively. If:

1. F =0 implies rank DF is at least k =m + n —t, and,

2. H(u)F(p) € span G(u) for all p,
then F~'(0) is a smooth submanifold of U with co-dimension k. In addition, rank
DF =k on this set.

Proor: Condition 2, together with the rank conditions on IT and G, imply
that F lies in a linear subspace of R™ of dimension k. Thus, F € span B for
some full rank m X k matrix B. Moreover, it is casy to show that B( u) can be
constructed smoothly on a neighborhood V of w.!! Define p=(B'B)"'B'F € R*.
Then F(u)=B(u)p(wr) on V. Note that F =0 if and only if p= 0. Also, when
F =0, by the chain rule DF =DBp+ BDp=BDp. Hence condition 1 implies
rank DF =rank Dp=k. The proof is complete since we can now apply the
Implicit Function Theorem (see Appendix) to show that p~'(0)=F~(0) is a
smooth submanifold of 1 of co-dimension &. Q.ED.

This theorem adjusts for the dependencies in the system in equations implied
by the restriction that [IF € span G. Note that since n is less than or equal to ¢,
this always has the effect of reducing the co-dimension (the system is less
restrictive). Finally, note that Walras’ Law is represented by the case [1=p and
G=0.

This result allows us to establish the following characterization:

THEOREM II: H;'(0) is a smooth submanifold of E, of dimension W+ 1.

PROOF: We consider separately the cases i <N and i =u =N+ 1.
Casei=1,2,...N:

Y'The matrix B can be construcied as follows. Let [T+ be a full rank (m —1) X m matrix
orthogonal to [T, Note that IT* can be constructed smoothly on a neighborhood V. (To see this,
suppose w.lo.g. [T=[A Clwhere A is ¢ X¢ and full rank; then [ * =[~(A~'CY I]is smooth in
the neighborhood on which 4 maintains full rank.) Thus we can wrile F = [T'¢+ IT *'¢. But then
condition 2 implies FIF = [IfT' — Gz for some z. Hence, ¢=(/111')"'Gz and therefore F=
IT'(IH"Y "1 Gz + H *'¢. Clearly, then, we can take B =[IT'(IHI')~'G IT '], which is smooth on
V.
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Step 1: H; =0 implies that rank DH, is at least M + N — 1.

First note that H; =0 implies that 6; is nonzero by the definition of E,. This
plus p > 0 implies that D, H, has full rank S. Note also that D, H; =0. Thus,
to completc this step it is sufficient to show that D,H, has at least rank
M+N-S~-1L

Suppose the M-vector v is such that pv =0 and P €span R* (p). Then
consider perturbing the unconstrained agent’s endowment to e, + Av for some
scalar A. Because the agent’s income is not changed, demand is also unchanged,
and so the agent’s excess demand Z" is reduced by Av. Because P,Av is in the
current market span, this change to R} does not change the market span for A
small. Thus, excess demand Z° is not affected by this perturbation. Hence.

H(p,t,8;e,+Av) = —Av.

This implies that D, H,v = —v. Because there are M —(S—N)~—1 indepen-
dent vectors v, this implies that rank D,H,, is at least M+ N - S — 1.

Step 2: Construction of IT; and G,

Define

0

H_:[P O]ER(S+1)X(M+S) and Gi=[R*_

(S+ XN
i P1 0 }ER .

Note that these matrices have full rank § + 1 and N respectively. By Walras’
Law plus the fact that

P H, =R} +tP,Z°(p, R*,) € span R*

we have [I,H; € span G,
Step 3: Apply Theorem 1 with m=M+ S8, n=N, t=8+1, and k=M+
N-1.

Case i = u:

Step 1: H, =0 implies that rank DA, is at least M + N — 1.

Because R(p) has full rank N, D,H, also has rank N. Next note that D, H,,
has rank M — 1, since any change v in the endowment of the unconstrained
agent that does not affect income (pv =0) leads to a direct change in the
agent’s excess demand by the amount —wv. This confirms the fact that DH, has
at least rank M+ N~ 1.

Step 2: Construction of IT, and G,.

Note that by definition, P H,, = R} +tP,Z°(p, R(p)) = R + R(p)a for some
vector a. Also, H, = R%6, + R(p)6_,. This suggests a restriction on the value of
H, in addition to that imposed by Walras’ Law. In particular, define

P
.= [9,, P, -1

ER(S+1)X(M+S) and Gu - [ ] ER(Sfl)XN.

0
R(p)
These have full rank and from the above discussion, I1,H, €span G,.

Step 3: Apply Theorem 1 with m=M+ S, n=N, t=85+1, and k=M +
N-1.
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Finally, we remark that the same arguments apply on the boundary of E,
(t =0 and ¢ =1). Thus the boundary of H;'(0) coincides with its intersection
with the boundary of E,. Q.E.D.

Thus far, we have taken the underlying paramcters of the economy, w, as
variables in defining the homotopy and its solution set. At this point, however,
we would like to consider the characteristics of the solutions to H; =0 for a
fixed economy w. First define the following notation for a set Q CX X W

Q¥={xeX:(x,w)eQ].
We can then state the following characterization for fixed w:

TueoreM NI For generic w, o = H7W0) is a smooth one-dimensional
submanifold of E}".

Proor: Consider the projection map p: H'(0) » W. By Sard’s Theorem (see
Appendix) and the properness of p, the set of regular valucs w of p is open with
full measure. For such a regular value w, the Implicit Function Theorem implies
that p~'(w) is a smooth submanifold of H;'(0) of co-dimension W. Therefore,
H;'(0)* is a one-manifold. Q.E.D.

This establishes that each homotopy in the family generically defines a path
within its domain. The next step is to show that the paths associated with
altcrnative homotopies in the family coincide in the overlap of their respective
domains. This implies that these paths can in fact be overlaid to form a single
onc-dimensional manifold.

THEOREM 1V: For generic, w, " = U ;0" is a smooth one-dimensional sub-
manifold of E¥ = U E}".

Proor: We show that H;'(0) and H;'(0) coincide on E,NE, Suppose
(p,t,0,w) €E,NE;nH'(0). Then H,=0 by definition. But this implies R*
has rank N, so that span R* =span R*, =span R Therefore, H;; = H, = 0.
Hence, (p, 1, 6,w) € H'(0). Q.E.D.

Note that £ is the set of points for which the augmented return matrix has
at least rank N. The above proposition states that the homotopies we have
defined determine a path in this set. The path must terminatc on some boundary
of E™. But the boundary of this set includes not only the boundary of X but
also those “doubly bad” points for which R* has rank less than N. Our next
result establishes that generically, these doubly bad points will not lic on the
path, which can therefore only terminate on a boundary of X.

THEOREM V: Forgenericw, ¢ is a smooth, compact one-dimensional subman-
ifold of X. Moreover, the boundary of o coincides with its intersection with the
boundary of X.



COMPUTING EQUILIBRIA 17

PrOOF: We need to show that the closure of ¢" is in E™. Suppose there
exists a sequence (p,t,0)€ o;” converging to a point (p*,t*,0*) not in E*,
Because excess demand diverges at the boundary of the price simplex, this
implics that p* > 0. Thus, it must be the case that rank R*(p*) <N, We will
now show that this does not occur generically.

Because R* has rank N along the sequence, its span must converge to some
N-dimensional subspace of R*. Therefore,

span R*( p) — span d’[ II/},

for some permutation matrix @ and V€ R®~"*~ Then from the continuity of
Z we have

(9) Z”(p*)+I*ZC(p*,(I>[II/]) -0.

Because R*(p*) has rank less than N, there cxists at least one further column
J # i that is redundant. Consider the case i, j # u. Then the following equations
must also hold:

(10) [_V I]q)—lR_,J(p*)201
(11) R* (p*)a=0,
(12) R (p"B=0,

for some vectors a, B€ BY with a; and B, nonzero. Together, (9)-(12) are a
system of M —1+(§ —N)N—2)+2S equations that the unknowns (p,(,V,
o, B) must satisfy, where we have dropped the last equation of (9) by Walras’
Law. These unknowns belong to a manifold of dimension M+ (S - N)N +
2(N ~ 1). Taking the derivative of equations (11) and (12) with respect to A;
and A, respectively shows them each to have rank S. Taking the derivative of
equation (10) with respect to A_;; yields rank (S — N)(N —2). Finally, taking
the derivative of equation (9) with respect to ¢, shows it to have rank M ~ 1.
Thus this system of equations has rank M — 1+ (5~ N)XN —2) +28. Applying
the parametric version of Sard’s Theorem (see Appendix), the set of solutions is
generically a manifold of dimension

IM+(S-=NIN+2IN=-D]-[M-1+(S-NXN=2)+285]=—1.
That is, generically these equations have no solution and this scenario does not
oceur,

The case in which one of the redundant columns i or j equals u (the
augmented column) is handled similarly. Without loss of generality let j=u. In
this case the following equations must be satisfied in addition to equation (9):
(13) [-V I]&7'R_,(p*) =0,

(14) R*,(p*)a=0,
(15) R(p*)B=0.
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Again, a, B€ B" with a, and B; nonzero. We will show that the system (9),
(13)-(15) is also overdetermined and hence cannot occur generically. First, the
derivative of equation (15) with respect to A; yields rank S. Also, the derivative
of (9) with respect to ¢, has rank M — 1+ N — S (due to Walras’ Law and thc
market span constraint—see Theorem II for a similar calculation). Next, the
derivative of (14) with respect to e, yields rank S. Finally, the derivative of (13)
with respect to A_; has rank (S~ N)N—1). Thus the entire system of
equations has rank M — 1+ (§ — N)N —2) + 2§ as before. This system there-
fore also has no solution generically.

Thus we have examined all of the cases in which (p*,*, 6*) & E" and have
shown that they cannot occur generically. Q.E.D.

Having established that our homotopies define a path in X, existence of an
equilibrium follows naturally. We simply need to show that generically, there
exists a unique starting point (p*,0, 8*) for this path at ¢t = 0. Then, since the
path cannot return to this boundary, nor cscape at a boundary of the price
simplex (excess demand would diverge), it must be the case that the path
continues until ¢ = 1. The price vector at this terminal point is an equilibrium
for the economy.

THEOREM VI: For generic w, there exists an equilibrium price vector p* for the
GE! model. Moreover, if multiple equilibria exist, they are locally unique and odd in
number.

Proor: The manifold ¢" is a collection of “paths” in X. From the homo-
geneity of H,, note that (p,t,0) € ¢* implies (p,t, — ) € ¢*. Thus, for any
path in ¢" there is a corresponding “mirror image” path in ¢ with the sign
of 6 reversed. Also, since 6 is a unit vector, § # — 6 and therefore each path
and its mirror image are distinct. We can therefore partition ¢* into ¢} and
o, each containing one of each mirror image pair.

When =0, H,; =0 implies p=p* such that Z“(p*)=0. For generic w,
R(p*“) has full rank N. Define 68" =1{0,...,0,1]". Then H, =0 implies 6 = + 6,
Without loss of generality suppose (p*0,0") € ¢¥. This point is then the
unique intersection of ¢} with the boundary ¢=0. By the Classification
Theorem for one-dimensional manifolds (see Appendix), this path must con-
tinue until another boundary of the domain. Because excess demand diverges at
the boundary of the simplex, this implies the path must tcrminate at a point
(p*, 1, 0%). This is by definition an equilibrium for the economy as long as it is in
EY. To see that this is the case generically, note that if it were not true we would
have a solution to (9), (13), and (15) with the additional restriction ¢* = 1. An
argument similar to that in the proof of Theorem V establishes that this cannot
occur generically.

Finally, local uniqueness follows from the fact that all equilibria are endpoints
of the manifold defined by the o}. Oddness follows from the fact that any other



COMPUTING EQUILIBRIA 19

t=1
Given
Economy

FIGURE 6.—Generic picture of the manifold o* = U H; '(0)".

equilibrium must belong to a path which both begins and ends on the boundary
t = 1. See Figure 6 for a generic picture of the solution manifold in (p, 1) space.
Q.E.D.

5. COMPUTATIONAL IMPLEMENTATION

In this section we give a brief discussion of how standard path following
techniques can be adapted to solve for a solution of our model. Various
numerical procedures for path following in RX have been developed (see
Allgower and Georg (1990, 1992)). Rather than develop the detailed theory of
such algorithms here, we instead focus on the practical issues involved in
implementing a path following algorithm for the GEI problem.

The basic idea of numerical path following is to think of the solution to the
homotopy, H, as defining a path which is a solution to the following differential
equation on E:

(16) D, . o H;(x(s)x(s) =0,

an ()l =1,

with the initial condition x(0)=(p%0,6") and i =u. Equation (16) has a
one-dimensional family of solutions, since D, , ,H; has rank M + N — 1, whereas
x has dimension M + N. Equation (17) normalizes the parameterization to arc
length. For a given s and x(s), the system thus has two solutions, +i(s). At
s =0, we choose the solution with f > 0 and move interior to X (this is always
possible genericatly). From then on, we continue moving in the same direction
along the path. In practice this cannot be done exactly, but methods such as
Predictor-Corrector proceed by taking small but discrete steps in the tangent
direction, and then correcting for error to relocate the path.

One difference between our model and standard applications is that we have
redundant equations in the system H,;. This plus the fact that the required
derivatives are not analytically tractable in general makes solving the above
system computationally tedious. Thus, rather than solve (16) exactly, we instead
approximate the path’s direction based on the secant defined by the previous
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two points. We then correct this approximation using a standard Gauss-Newton
algorithm to find a solution to H;=0 in the planc perpendicular to the
predicted direction. Sce Figure 7.

Of course, the above procedure thus far ignores the critical distinction
between our model and the usual path following problem: our path is defined by
a set of N + 1 homotopics rather than a single homotopy. Therefore, we need to
outline a method by which a path following algorithm can decide which
homotopy to follow. Most of the time, the choice of homotopies is irrelevant
since they define coincident paths. The choice only becomes retevant when the
path is approaching a singular point with respect to one of the homotopies. In
that case, that homotopy becomes numerically unstable, and an alternative
homotopy should be used.

Recall that our path starts based on H,. If we arc lucky, this path will
continue until ¢ = 1. In general, however, this path may converge to a point for
which R(p) drops rank. In this case we now know that the path can be
continued by switching to another homotopy H,. The question is determining
when and how to switch.

In our intuitive presentation in Section 3, we spoke of switching the homotopy
after reaching a “bad” point. This, of course, is not suitable from a computa-
tional perspective, since any numerical path following procedure would likely be
unstable in the vicinity of a discontinuity. Thus, we would like to have a means
of anticipating a bad point, and switching to a good homotopy before the bad
point is reached. Fortunately, there is a convenient method of anticipating a bad
point built into the homotopy itself.

THEOREM VII: If (p,t,0) € a¥, then (p,t,0) € EY if and only if §; + 0.

FIGURE 7.—A simple method for path following.
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PrOOF: Suppose (p,t, 8) is in E”. Then by definition R* ,(p) has full rank N.
But then R*(p)0 =10 implics 0, cannot be cqual to zero. Next suppose 0, is
nonzero. By assumption (p,7,6) is in £* and R*9=10, so R* has rank N.
Moreover, we can write RY = R*,0_,/0,. But this implies span R* =span R* ..

~iV—i

Thercfore, R*; has rank N and (p,1,0)isin EY. Q.E.D.

Thus, {6,] can be used as a “measure” of how far the path is from a bad point
in E”. Thus we can continue to use the homotopy H, until 6, becomes too
small. At that point, we switch to a homotopy #; for which 6; is large. In order
to define “small” and “large” in this context, note that ¢ is chosen from BY*!,
Thus there always exists j such that 62> 1/(N + 1). To avoid the possibility of
switching infinitely often, we therefore wait to switch until 02 < 8/(N + 1),
where 0 < 6 <1. We then switch to homotopy j, with j having the largest |6;].
The parameter & is chosen to tradeoff the computational inefficiency of switch-
ing with the potential for numerical instability near a bad point.

We illustrate this procedure in Figure 8. This path passes through a singular-
ity with respect to (=u (indicated by the small circle). The approaching
singularity is detecied several steps carlier when the path enters the ellipse
defined by the critical value for ,. The algorithm then switches to using H; for
some suitable j for remaining computations. Of course, H; may also have
singularities, but these are outside this neighborhood. Finally, once the path
leaves the critical area, the algorithm can again switch back to i=u, and
terminate at =1 with a solution.

FiIGURE 8.-—Example of a solution path.
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FIGURE 9.—~(p, 1, 8) per iteration (Lp = 4).

5.1. The Example Revisited

Recall the example of Section 3. In that example we attempted to follow the
homotopy path defined by equation (6), but the path got stuck at a singularity
for £=1. This was uninformative since for the example the actual economy of
interest has f=2. We now compute an equilibrium for this economy using the
algorithm described above. The computed path is plotted in Figure 9, where we
show the values of (p, 1, ) after each Predictor-Corrector step. The algorithm
stops with t=2 after 65 iterations. Note that the singularity encountered at

=1 causes no difficulty for the algorithm—the path evolves smoothly through
this point. At termination, the computed values'? are p* ={30.1,22.2;8.7,6.8;
9.2,6.6;9.8,6.5), and * ={—0.52,0.85, —0.08]. Since 6,* = —.08 # 0, the return
matrix R(p*} is nonsingular and this is a true equilibrium for the economy.

Below we look at several features of the computation of the path. First note
from Figure 10 that the approaching singularity at ¢ = 1 is indeed revealed by 0.
That is, 6, starts at 1 for 1=0 (when Z“=0), but then drops to zero as ¢
approaches 1. The graph also plots the critical value at which the algorithm
switches homotopies (corresponding to §=.25). The algorithm switches from
i=u toi=1 at approximately { = 0.6.

Figure 10 also reveals the robustness of the singularity encountered in this
example. A small perturbation of the economy should result in a small perturba-
tion to the path. Note, however, that because the path begins with 6, strictly
positive and ends with 0, strictly negative, along the perturbed path we must

2 Note that prices are subject 1o an arbitrary normalization; for convenicnce the stated values
are normalized to sum to 100. In Figure 9 they sum to 4.
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FIGURE 10.—8 versus ¢ along the path.

still cross 6, = 0. That is, the return matrix R(p) drops rank along the homotopy
path for any nearby economy as well.

Another view of this system can be given by computing det(R*;R*)) for i,
plotted in Figure 11a. This determinant equals zero if and only if an asset in the
return matrix is redundant. Again we note that for + = 0, the true return matrix
R =R*, has full rank, but is singular at ¢ = 1. Prior to reaching ¢ = 1, however,
it is possible to switch to either of the other nonsingular asset return matrices,
R*, or R*,.

-
(=]
o

o 05

FIGURE 11.—(a) det(R*; R* ;) vs. £. (b) Trade in assets 1 and 2 vs. &.
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Finally, Figure 110 reports the trades of the actual assets 1 and 2 by the
constrained agents along the path. Note again the effect of the singularity at
t=1 as agents inflate their portfolios to maintain their desired consumption
patterns. Clearly, an algorithm based on the conventional approach would
become numerically unstable in this region.

6. CONCLUSION

We have provided in this paper an alternative approach to proving existence
of equilibrium in economies with incomplete markets. The fundamental discon-
tinuity which occurs at prices for which asset returns become redundant can be
smoothed by allowing an agent in the economy to introduce a new asset. This
technique enables us to prove existence via a standard homotopy argument in
Euclidean space.

Additionally, we translate this proof into a path following algorithm for
computing equilibrium. The essence of the idea is as follows: We begin with an
equilibrium for a single agent from the economy. We then gradually increase
the relative size of the remainder of the economy, adjusting prices to maintain
cquilibrium. If we begin to approach prices for which one of the assets is
redundant, that asset is removed and replaced by a new asset chosen by our
original agent. Once we have “passed by” the potential redundancy, we then
switch back to the original set of assets. We continue this procedure until we
reach an equilibrium for the full economy.

Finally, we demonstrate this technique in the context of a numerical example.
First we show that for this economy, the standard approach for computing with
complete markets is inadequate and converges to a singularity. We also show
that this singularity is robust to small perturbations to the economy. Our
method of switching assets avoids the singularity, however, and allows us to
compute equilibrium without difficulty.

We remark that our approach may also be useful for eomputing comparative
statics for GEI ceonomies. Typically, once an equilibrium is found, it is of
interest to know how the equilibrium may change with changes in the undcrlying
parameters in the economy, such as preferences, endowments, or asset struc-
tures. Conceptually, one can view such comparative statics as following a path in
the equilibrium manifold. Naturally, we might again expect this path to pass
near or through singularities for the return matrix, so that a technique such as
ours will be necessary.

There are several natural extensions of this work to be considered. One
important extension is to the case of a multiperiod economy. In this case, even
with a single commodity, discontinuities can occur since first period asset returns
depend on second period asset prices. At the theoretical level, a straightforward
generalization of the current proof.should suffice. From a computational stand-
point, for short enough horizons the proposed algorithm is {easible. For suffi-
ciently long horizons, however, the dimensionality of the state space grows too
large for efficient computation. Hopefully, our ideas may potentially be com-
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bined with other techniques for infinite horizon models when potential asset
redundancies are a concern.

Another extension of the current model would be to incorporate production.
Again we anticipate that the theory and algorithm of this paper should extend to
that case as well. Of course, introducing production raises the issue of the
objective of the firm when markets are incomplete (see, for example, DeMarzo
(1988, 1993) for an analysis of alternative objectives and decision mechanisms
within the firm). A computational algorithm would allow for a comparison of
share prices and welfare corresponding to different decision mechanisms within
the firm. Additionally, a model with incomplete markets and production would
be useful for addressing various policy concerns in a more realistic environment
then the standard complete markets framework of the applied general equilib-
rium literature.
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APPENDIX

Below we state the following mathematical results for completeness:
DEFINITION: We say that y is a regular value of f: U — R* if rank Df(u) =k whenever f(u) =y.

IMPLICIT FUNCTION THEOREM: Let f: U — R* be a smooth function. If u € U is a regular value of
both [ and fioU (i.e., the restriction of f to the boundary of U), then [~'(y) is a smooth manifold with
co-dimension k. Moreover, 3f'(y) =f"1(y) N U.

REFERENCE: See Mas-Colell ((1985), page 38, H.2.2).

SARD’S THEOREM: Let r > dim U — dim V. Then the set of critical balues of the C" function {: U —» V
has measure zero in V.

REFERENCE: Sec Mas-Colell ((1985), page 42, L.1.1).

PARAMETRIC SARD’S THEOREM (Transversality Theorem): Suppose U and W are C" manifolds and
J:UXW R isa C* function with r > dim U — k. If y is a regular value of f, then for almost every w,
fCG,w) has y as a regular value.
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REFERENCE: See Mas-Colell ((1985), page 45, 1.2.2).

CLASSIFICATION THEOREM: Any compact one-dimensional manifold with boundary is equal, up to a
diffeomorphism, to a finite union of circles and closed segments. The boundary is formed by the union of
the endpoints of the segments, and is thus a finite set of even cardinality.

REFERENCE: See Mas-Colell ((1985), page 35, H.1.vi).
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