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Summary. We model the space of marketed assets as a Riesz space of commodities.
In this setting two alterntive characterizations are given of the space of continuous
options on a bounded asset, s, with limited liability. The first characterization
represents every continuous option on s as the uniform limit of portfolios of calls
on 5. The second characterization represents an option as a continuous sum (or
integral) of Arrow-Debreu securities, with respect to s. The pricing implications
of these representations are explored. In particular, the Breeden-Littzenberger
pricing formula is shown to be a direct consequence of the integral representation
theorem.

I. Introduction

The axiomatic elements of the modern theory of arbitrage are a set of marketed
assets and prices which can be combined in a linear fashion to produce portfolios
and their prices. The only behavioral assumption is that agents transacting in the
given markets prefer more to less and consequently the marketed assets with
semipositive pay offs have positive prices. By arbitrage these prices define a
- positive linear functional on the space of marketed portfolios.

When in addition derivative assets (options) on the marketed assets, such as
call options or put options, are also marketed, then some fundamental questions
arise:

1. Are certain derivative assets basic in the sense that all other derivative assets
in a large class are portfolios of these basic derivative assets?

2. Under what circumstances can prices on the marketed assets or basic derivative
assets be uniquely extended by arbitrage to prices on all derivative assets in a
large class and when is such an extension unique?
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These two questions are the subject of this paper.

An early answer to the first question was given by Ross in [18] for marketed
assets defined on a finite state space. Ross defined an asset as resolving if its
returns differed in every state of the world. He then showed that the set of call
options on a resolving asset spans the complete space of state-contingent claims,
i.e., if the state space is finite and a resolving asset is marketed then every state-
contingent claim can be expressed as a portfolio of call options on the given
resolving asset.

It is this result which we shall extend to assets which need not be resolving
and may be defined on an infinite state space. That is, we will characterize the
space of assets spanned by call options on a given asset. In our model we will
assume the existence of a bond. Given prices of the stock and bond, we will
investigate conditions for extending these prices to calls on the stock and to assets
which are the limits of portfolios of calls.

In any formal analysis of markets, the first issue is the nature of the commodity
space. In the early work on arbitrage pricing it was only assumed that the com-
modity space, i.¢. the set of marketed portfolios, was a linear vector space. This
was the model in Ross’s paper. Ross [16,17] recognized that arbitrage simply
exploited agents® preferences for more to less, but it did not influence the space
used to model the set of marketed assets.

The first explicit formalization of the essential behavioral assumption of the
modern theory of arbitrage, that agents prefer more to less, appears in [9]. In
this paper, Kreps models the space of assets as a partially ordered linear vector
space. These are simply linear vector spaces with a notion of positivity. The set
of positive vectors or the positive cone, E, , formalizes the notion that in some
states of the world an asset x has larger returns than asset y and in all states of
the world the returns of x are at least as great as those of y. Under the partial
ordering on the space of assets, denoted =, this is equivalent to saying x>y or
in terms of positive elements that x — y is positive, i.e. that x—y € E,. To say
that agents in these markets prefer more to less is to say that if the agent‘s utility
function 1s U and x 2y then U(x) > U(y).

The partial order is also necessary for formalizing the notion of positive price
system. These are linear functionals on the linear space of portfolios such that
positive vectors are mapped into positive numbers.

Perhaps the major contribution of this paper is to argue for modeling the
commodity space for options markets as a Riesz space (vector lattice). A Riesz
space E is a partially ordered linear vector space with the additional structure
that every pair of elements {x, y} in the space has a least upper bound, x v y, in
the space and greatest lower bound, x A y, in the space. If x € E, then x " =x v 0
and x” =(—x)v 0, and | x| =x v (—x). A basic identity is x=x" —x". x>0
is notation for x =0 and x#0.

The linear operations for forming portfolios together with the lattice opera-
tions of v and A allow us to express the basic derivative assets, i.e. calls and
puts, as nonlinear functions of the stock, bond, and striking price. That is, if a
stock, s, and a bond, b, are elements of a Riesz space E, then a call option on s
with striking price 4 is given by (s—b)" and a put on s with the same striking
price is given by (Ab—s)". Notice that the put-call parity relationship follows
immediately from the basic identity, Stock +Put=s+(Ab—s) =s+(Ab—ys)
+(Ab—s) =Aib+(lb—s) =Bond+Call
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Currently in the finance literature, there are four basic models used for the
space of assets, E: First, if 2, the state space, is a measure space with a probability
measure y, then either £ is the set of measurable functions on @ - see (6), (10)
- or Eis the set of L, functions on £, for 1 <p < 0, see [14].

Our paper is concerned primarily with a third class of models, which are
independent of any prior notion of probability. We assume that £, the state
space, is a compact Hausdorff space, and E= C(Q), the space of continuous
functions on 2. A special case is when @ is a finite set with the discrete topology
and hence C(£2)= R", for some finite n. This is the model in Ross. Finally some
models simply use E=R®, the space of real-valued functions on £, see [4].

In each case, if we define the linear vector space operations and the lattice
operations pointwise, e.g. (x v ¥)(w) =max {x(w), y(w)} for all w e 2, then each
of the above models is a Riesz space.

To illustrate our results, consider the special case where E= C[0, 1], the space
of continuous functions on the compact interval [0, 1]. We assume that the stock
s has limited liability, i.e. s € E, and that the bond b is the constant-one function,
b(w)=1 for all w € [0, 1]. Let [a, 8] be the range of s, i.e. [a, B] = s[0, 1], then
fo, B] is a compact subset of the real line. Ross defined a simple option on s as
a real-valued function whose domain is the range of s. Hence Ca, 8] is the space
of continuous options on s. Our first result characterizes Cla, 8] in terms of
portfolio of calls. ‘

We define .7, {s, b} as the smallest Riesz subspace in C[0, 1], containing {s, b}.
It is known that C[0, 1] is a Banach space w.r.t. the sup norm; moreover, the
lattice operations ar continuous w.r.t. the norm topology i.e. C[0, 1] is a Banach
Lattice. We show by the Stone-Weierstrass Theorem that %, {s, b1, the norm
closure of .Z,{s, b1, is lattice isometric to Cla, B]. By lattice isometric we mean
that there exist a bi-continuous bi-jection between .Z,{s, b} and C[a, 8] which
preserves the Riesz space structure. Moreover, we show that
Z,{s,b}=Span {s, b, C,}, where C,=(s—ab)"’. Hence C[a, f], the space of con-
tinuous options on s, = Span {s, b, C,} which answers our first fundamental ques-
tion.

Given prices of the stock, s, and bond, b, we turn to the second fundamental

question and ask can these prices be uniquely extended to .Z,{s, b]. In general,
the answer 1s no. But the degree of indeterminacy follows from our result that
Z,{s,b}=Span {s, b, C,}. The prices on {s, b} can be uniquely extended, by ar-
bitrage, to a positive linear functional on Span {s, b}. But there may be many
extensions of these prices to Span {s, b, C,} - the existence of at least one such
extension is guaranteed by a theorem of Kantorovi¢. Additional assumptions are
required to uniquely price Span {s, b, C,}. For example, continuous time trading
and the assumption that the price process of the stock is geometric Brownian
motion, produces the Black-Scholes pricing formula for each call option, C,.
Hence, by arbitrage, we can price out every asset in Span s, b, C,} = %, {s, b].
Moreover, the prices on ., {s, b} can be uniquely extended to its norm closure.
The given prices on .Z,{s, b} define a positive linear functional. Any positive
linear functional on a linear subspace of a Banach Lattice is continuous w.r.t.
the norm topology. By Kantorovi¢’s Theorem, the positive linear functional on
Z,{s,b} has a unique positive extension to .Z,{s, b}. Therefore given prices of

the stock, s, and the bond, b, the prices on %, {s, b} are completely determined
by the prices on C,.
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The basic elements in the above spanning and valuation theorems are calls,
C,, on the stock. We now give a spanning result in terms of Arrow-Debreu
securities. This representation allows us to interpret our prices as state space
prices, which in turn can be interpreted as marginal rates of substitution.

We begin with an alternative characterization of %, {s, b}, the space of con-

tinuous options on s. Each asset x € &, {s, b} can be represented as a Riesz space
valued Riemann-Stieltjes integral. This representation has a number of important
mplications, one of which is a generalization of the Breeden-Litzenberger (B-L)
pricing formula.

As anillustration of our approach, we first consider the case where E = B[0, 1],
the space of bounded Borel measurable functions on [0,1]. Any s € E, is com-
pletely determined by the sets 4, = {w € [0, 1]] s(w) < A} or equivalently by the
characteristic functions of these sets, x,. The family of partitions of [0, 1] can be
used to construct an approximating monotone sequence of step functions which
converge uniformly to s, from below. The sets which appear in the definition of
these step functions are simply differences of the 4,, i.e. a typical such set will
have a characteristic function y,, — x,, where 0< 1, < 1, < 1.

This limit of step functions can be interpreted as a Riesz space, E, valued
integral. Let s,(A)=D" (Ab—s)", the left derivative of the put, (Ab—s)", w.r.t.

its striking price A. It is easy to show that s,(1) =y,, the characteristic function
1

oftheset 4, = {w € [0, 1]] s(w) < A}. Hence we can denote the integral as g Ads,(4).
1 0
Freudenthal’s Spectral Theorem asserts that s= | Ads,(4).
0

" Luxemburg shows for any ¢ e C[0,1] that the Riesz space, E, valued
Riemann Stieltjes integral S(p(/l)ds,,(/l) exists. We show that 2, {s, b}

1 0
= {S p(N)ds, (1) ¢ € CI0, 1]}. This is our second spanning result. Here the basic

0
assets are the 5,(4). 4s,(4)=s,(12) —5,(4,) for 1, < 4, is analogous to an Arrow-
Debreu security.

In words, every continuous option on s can be expressed as either the uniform
limit of portfolios of calls on s or as a continuous sum of Arrow-Debreu securities.

Given the lattice isometry between %, {s, b} and C[0, 1], every positive linear
functional IT on %, {s, b} defines a positive linear functional I7 on C[0, 1]. The
Riesz Representation Theorem states that I7 can be respresented as a Riemann-
Stieltjes integral \l)v.r.t. a positive monotonic non-decreasing function @(1) on

[0,1], i.e. IT[g] = { @(A)dD(A) for every ¢ e C0, 1].
In this setting, the Breeden-Litzenberger pricing formula simply asserts that
SN =D (IT-(Ab—35"), the1 left-derivative of the value of a put on s with
1

striking price 4. Hence if x == S @(2)dA, (1), then IT - x =I[p] = S o (A)dd(A).
0 . 0
The rest of the paper is organized as follows: The model, definitions, and
statements of the propositions on Riesz spaces which are necessary for proving
our results are given in Sect. II; the theorems are stated in Sect. III; proofs of the
theorems are given in Sect. IV; the final section of the paper is a review of the
relevant literature.
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II. The Model

Our model for the space of marketed assets is a Riesz space, E.

If yeE and p#0, then the principal ideal generated by
¥, 4,, ={xe E||x| £A]y|, for some 1 >0}. 4, has a natural norm, || - | .,
where || x|| o =Inf{A >0||x| <]y} forall x e A4,.

A Riesz space, E, is said to be uniformly complete if (4, || « || ) is a Banach
space for all non zero y € E, C[0, 1] 1s an example of a uniformly complete Riesz
space.

We shall assume that the space of assets, £, is a uniformly complete Riesz
space; that the stock, s, and the bond, b, belong to £ ; and that s € 4,. The
limited liability assumption is made for ease of exposition, but the assumption
that the stock is bounded by some multiple of the bond is essential for our analysis.

Z,{s, b} 1s the Riesz space generated by {s, b}, i.e. the smallest Riesz subspace

of E containing {s,b}. .Z,{s, b} is the norm closure of .Z,{s, b} in 4, w.r.t. the
[+l .« norm on A,.

A call option on the stock with striking price 4, C;, = (s—Ab) ™. A put option
on the stock with striking price 4, P;, =(Ab—s)". The put-call parity identity is
(s—Ab)=(s—Ab)" —(Ab—s)".

Span {s, b, C,} is the vector space generated by {s, b, C,}, i.e. the smallest vector
subspace of E containing {s, b, C;}.

y is an upper bound for a subset F of E if x=<y for every y € F. A Riesz
space, E, is 0-Dedekind complete if every countable subset of E which has an
upper bound has a least upper bound. B[0, 1] is a g-Dedekind complete Riesz
space.

Every o-Dedekind complete Riesz space is uniformly complete, but the con-
verse need not hold, e.g. C[0, 1] is uniformly complete but not o-Dedekind com-
plete.

A Riesz space, E, is Dedekind complete if every subset of E which has an
upper bound has a least upper bound, L,[0, 1] for 1 <p < oo are examples of
Dedekind complete Riesz spaces as is R™. B[0, 1] is o-Dedekind complete but
not Dedekind complete.

A norm || -|| on a Riesz space E is a lattice norm if |x| <|y| implies
I x[| = [|y]] forall x,y e E.

A Banach lattice is a Riesz space with a lattice norm such that the norm
topology is complete.

A Banach lattice is an AM-space if for all x,y=0 we have ||xv y||
=max{|[x||, ||»]|]3.- An AM-space is said to have a unit ¢>0 whenever
[|x|] =inf{A > 0]|x| <le} holds for all x € E.

If £ and F are Banach lattices, then 7: E— F is a lattice isometry if T is a
linear map which preserves the lattice structure, is bi-continuous, and is one-to-
one and onto. In this case we shall say that E=F.

If E£'is an AM-space with unit, then E= C() for a unique Hausdor{f compact
topological space, where the unit corresponds to the constant-one function on
Q; see [1, Theorem 12.28, p. 94].

If E is uniformly complete, then A4, is an AM-space with unit; see
[1, Example 12, p. 198].

The following material is taken from Chap. 11 in [12].

If E is uniformly complete, then a map u:[0,1]—4, is of bounded
variation (w.r.t. b) if there exists a real number M s.t. for every partition
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n=[0=t<t, <..<t,=1]of[0,1], <M, where

)i: |p(te) — u(t— )|

[| + || » is the norm on 4,, and > 0.

If f 1s a real valued function on [0, 1],  is a function of bounded variation
on [0, 1], and w is a partition on [0, 1], then for every choice 7= 7(n) of nodes 7,
satisfying ¢, S i Sthlk=1,2,...,n) we assign the E-valued Riemann-Stieltjes

sum S(fim, )= D f(z)|u(te) —ulte—1)]|.
k=1

A real valued function f on [0, 1] is called Riemann-Stieltjes integrable w.r.t.
an E-valued function u of bounded variation if there exists an element x € E s.t.
(VO<ee R)YA0>0)(Vn € =[0, 1])(V1(n))

|nl <d=|||S(fim)—x|||e<e€&, where|n|=max]|t,—t,_,| .
k.

In this case x is uniquely determined and is called the Riemann-Stieltjes integral
1

of f w.r.t. u and will be denoted by S f(Aydu(h).

0
If u is an E-valued function of bounded variation on [0, 1] and if f is a real
1

valued continuous function on [0, 1], then g f(A)du(r) exists; see [12, Theo-
0

rem 1.3, p. 38].

If E is o-Dedekind complete - hence uniformly complete - s € 4, and
I s]] » <1, then the map s, : [0, 1]=4,, where s,(A)=D"[Ab—s]" is the left
derivative of [Ab—s]" w.r.t. 4, is of bounded variation; see [13, Exercises 40.10
and 40.11, p. 268]; and [12, Theorem 2.3, p. 44].

£S5(A)31 e 10, 17 1s called the spectrum of s (w.r.t. b).

1
Freudénthal’s Spectral Theorem asserts that s= S Ads,(1); see [12,

Theorem 2.4, p. 46]. 1 0
It is easy to see that | ds,(1)=>.
0
Moreover, T: C[0, 1] 4, is a lattice homomorphism, i.e. preserves the Riesz
1

space structure, where T[@(1)]= S @(A)ds,(1); see [12, Theorem 3.1, p. 50].
0 1
Finally, if p is a positive linear functional on 4, and x= S @(1)ds, (1), then
1 1 0
p-x={oA)d(p-s,(2)) where | @(2)d(p - s,(2)) is a real valued Riemann-
0 0
Stieltjes integral w.r.t. the real valued function of bounded variation
p Syt [0, 1] R; see {12, p. 55].
If IT is a positive linear functional on C[0, 1] then the Riesz Representation
Theorem states that there exists a positive monotone nondecreasing function @ (1)
1

on [0,1] such that I'[-x=§(p(/1)dq§(/1) for every ¢@e C[0,1], where
1 0

g(p(l)dqﬁ(/l) is the Riemann-Stieltjes integral of ¢ w.r.t. @; see [20, Theorem
0

18.6.2, p. 321].
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III. Theorems

In all of the following propositions, we will assume that the space of assets, E,
is a uniformly complete Riesz space; that the stock, s, has limited liability, i.e.
52 0; and that the bond, b > 0. Under these assumptions (4, || * || .} is an AM-
space with unit b. In addition, we assume x € 4, and w.o.l.o.g. that ||s]| . =1.

Theorem (1). .Z,{s, b} = Span (s, b, C,]1.
Theorem (2). %, (s, b} = C(0), where 0 is a compact subset of [0, 1].

Theorem (3). If I, is a positive linear functional on Span {s, b}, then Il, has a
positive extension, II, to £, {s, b}.

Theorem (4). If IT is a positive linear functional on .Z,{s, b}, then I has a unique
positive extension, I1, to £, {s, b}.

Theorem (5). If E is g-Dedekind complete, then the map T : C[0,1]— A,, where
1 —
Tle(A)]= S o(A)ds, (1) is a lattice isometry between C[0,1] and £, {s, b}.

]

1
Theorem (6). If E is a o-Dedekind complete; S @A) ds,(1) and ¢ € C[0,1]; and IT
1

]

is a positive linear functional on%,[s,b}. Then IT- x= S @(A)dP(1L), where
0
D(A)=D (IT- (Ab—s)") is the left-derivative of IT - (Ab—s)" w.r.t. A.

1V. Proofs

Theorem (1). Since E is uniformly complete, (4,, || « ||} is an AM-space with unit
b. Hence A, = C(£2), for some compact Hausdorff space, 2, let § be the image
of s under this lattice isometry, V, and §(2)=6, the range of §. Then # is a
compact subset of the real line.

§ induces a lattice homomorphism, R, from C(8) to C(Q), where R(f)=fo§
for all f e C(8); see [19, Theorem 9.1, p. 195]. Notice that R(e,) = e, where eg
and e, are the respective units (constant-one functions) of C(2) and C (). More-
over, R(iy)=3§, where iy(a)=qa for all a € 6.

If x, y € F, some arbitrary Riesz space, then .Z,{x, y} = Lattice generated by
Span {x, y}; see [7, Theorem 2.2.11, p.47]. Span {iy, ¢4} is the family of linear
functions on R, with domain 6. Hence .Z, {iy, e,] is the family of piecewise linear
functions on R, with domain 6. But the family of piecewise linear functions on
R, with domain @, is identical to Span {i,, eg,(ip— Aeg) 1, where (iy— dey) " is a
call on iy with striking price 4; see [5, Sect. 7.2, pp. 371-375].

Consequently, we have the following diagram:

C(6) —

C(2)

Ap
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T is a lattice homomorphlsm from C(0) to 4,, where T(ey)=5b and T(ip)=s.
Hence T((ig—Aey) )= (s—/lb) Since R is one-to-one and onto w.r.t. calls on
ip in C(#) and calls on § in C(Q) T 1s one-to-one and onto w.r.t. calls on i, in
C(0) and calls on s € 4,. Let £, {iy, e} = Span {iy, e,, (iy— Aey) 1. Operating
with T on both sides, we obtain .Z,{T(i,), T(eg)}~Span{T(zg) T(eg), (T(ip)
—AT(ep)) "} or Z,{s,b3=Span {s, b, C;} where C, = (s — Ab) .

Theorem (2). The proof that .Z,{s, b} = C(6) will follow from the Stone-Weier-
strass Theorem, which states that if F is a Riesz subspace of the Riesz space
C(L2), the space of continuous functions on a compact Hausdorff space £, which
contains the constant-one function, e, and F separates the points of Q, then F is
dense in C(2) w.r.t. norm topology; see [19, Theorem 7.3, p. 103].

We define C(0) as we did in the proof of Theorem (1), then we know
that there exist lattice homomorphisms U : Span {i,, ey, (i, — leg) 1— % s, by b}
and U : Z,{s,b}>C(6), where U= T|Span {ig, e, (ig—Aeg) '} and U~

'| %, (s.b}. Here we have used the Stone-Weierstrass Theorem since
Span {ig, eq, (ig— Aeg) ] = C(0) i.e. the pilecewise linear functions, with domain
6, are norm-dense in C(6). U and U™ " are positive transformations of vector
subspaces of Banach lattices into Banach lattices, hence they are continuous; see
[1, Theorem 12.3, p. 175]. Therefore, U has a unique contmuous extension (as a
linear map) to the closure of Span {zg,eg,(lg leg) "] denoted U; see [15
Theorem 4.6.2, p. 55]. Similarly U ™' has a unique continuous extensxon U~
to .Z,{s,b} (as a linear map). It is easy to show that U~ '=(U)"". Hence U is

one-to-one and onto, but T is a linear map from C(H) into .Z,{s,b} and
T|Span {iy, eg, (iy— Aeg) 7} = U. Therefore T= U, i.e. T is one-to-one and onto,

and is a lattice isometry between C(0) and .Z,{s, b}.

Theorem (3) Span {s,b} is a majorizing vector subspace of the Riesz space
Z,{s,b3, 1.e. if x € Z,{s,b] then for some A > 0, x < Ab, since s € 4,. Hence by
a theorem of Kantorovi¢, I, has a positive extension, I7, to .Z,{s, b}; see
[1, Theorem 2.8, p. 26].

Theorem (4). .Z,{s, b} is contained in A4, and &, {s,b] is a Riesz subspace of
(Ap, || * ] =); see [19, Corollary 1, p. 84]. %, {s, b} is a majorizing vector subspace

of the Riesz space &, {s, b}, hence again by Kantorovit‘s theorem, I7 has a
positive extension, I7, to .%, {s, b}. But since IT is norm-continuous, this extension

to the closure of &, {s, b3}, .Z,{s, b}, must be unique.
Theorem (5). We know from Theorem 3.1 in [12, p. 50] that 7 is a lattice hom-

omorphism. Hence we need only show that 7 is one-to-one and onto %, {s, b}.
The argument is the same as that in the proof of Theorem 2, and we omit it.
1

Theorem (6). If x € .Z,{s,b], then by Theorem 5 x= | @(1)ds,(1) for some
1

o(4) e C[0,1]. Hence IT - x= S @(L)d(IT - 5,(1)), see [12, p). 55]. Let x=(kb—3s)",
then (kb—s)" = i (k~,1)+dz,,(,1) and IT-(kb—s)" ~I§" (k—2)"d(IT - s,(2))

k 0 0 k
= | (k—2)d(I - 5,()). Integrating by parts, IT - (kb—s)"* = { IT- 5,(1)dA. Let
0 0

B(k)=D(UT - (kb—s)*), for 0=k <1, and S(1)=1IT - b, B(k)=IT - 5,(k) a.c.
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k k 1 1
Hence | @(k)dA={IT-s,(A)d) for all k, and S(k~/1)+dq§(/1):§ k—1)*
¢} 0 0 0
d(IT - 5,(1)) for all k, again by integration by parts. Since the positive linear
1

functional on C[0, 1], [H[¢]= | ¢(1)d®(1) for ¢ € C[0, 1] agrees with IT on the
0
puts on s, the bond, b, and the stock, s; it follows from Theorelm (1) and the put-

call identity that IT=1IT for all ¢ e C[0,1]. That is, if x= S @(1)ds,(1), then
1 0
IT- x={ o(A)d®().

0

V. Relationship to the literature

The work most closely related to the analysis in this paper considers the space
of marketed portfolios, M, as a linear subspace of the Riesz space of assets R®.
In general, the authors impose a measure-theoretic structure on M by endowing
Q with the o-algebra (M), the smallest g-algebra on Q s.t. each f e M is o(M)-
measurable. This model first appears in Green and Jarrow [6]. The basic question
is one of spanning, i.e. when are markets corplete in the sense that every o(M)-
measurable f € R is a member of M.

Green and Jarrow, in their Theorem (1), give the following necessary and

sufficient conditions for markets to be complete:

(i) M is a Riesz subspace of R”.

(11) b, the bond, in M.
(iil) M is closed under pointwise monotone limits of sequences. Hence, Green
and Jarrow characterize the set of measurable options on s and we characterize
the set of continuous options on s.

Green and Jarrow, in footnote [6], suggest that the methods of Breeden and
Litzenberger can be used to show that the first derivative of the value of a call
w.r.t. its striking price is the value of the characteristic function of the set
A,={w e Q|s(w) < A}, where 4 is the striking price. In fact, we have shown
that the Breeden-Litzenberger pricing formula is a consequence of Freudenthal’s
Spectral Theorem and the observation that the characteristic function of
A;_{w € Q|s(w) < 13 is the left-derivative of a put option on s with striking
price A.

In [14], Nachman extends Ross’s spanning result to infinite state space models,
using the theory of Banach Lattices, where the space of assets is a L, space for
some 1 Sp< o, say L.

Cox and Rubenstein [5] were the first to show for assets defined on the real
line, that Span {s, b, C,} = Set of piecewise linear options on s. Their result has
been recently extended to the model of Green and Jarrow by Lim in [10]. He has
shown that if M = {x} then every measurable option on x which can be expressed
as a portfolio of calls can be identified with a piecewise linear option on x. The
Cox-Rubenstein result is used in the proof of our Theorem (1).

The Stone-Weierstrass Theorem is implicit in the work of Cox-Rubenstein
where they construct upper and lower bounds of the values of continuous options
on s by valuing piecewise linear options on s, this is our second theorem.
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Both Jarrow [8] and Bick [2] in models where assets are random variables
derive the Breeden-Litzenberger pricing formula under assumptions on the
smoothness of the value of a call option, as a function of its striking price, which
are weaker than those of Breeden and Litzenberger [3]. The Breeden-Litzenberger
pricing formula and its extensions by Jarrow and Bick are special cases of our
Theorem 6, for continuous options. Moreover, our pricing formula is exact in
both the discrete state space and continuous state space models.

Lim has proven a version of Theorem (6) for E= B[0, 1]; see [11].
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