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COMPUTING ZEROS OF SECTIONS OF VECTOR BUNDLES
USING HOMOTOPIES AND RELOCALIZATION

DONALD J. BROWN, PETER M. DEMARZO, aND B. CURTIS EAVES

An algorithm is described for computing fixed points on a Grassmannian manifold. The
method can be applied in the more general setting of solving equations on abstract smooth
manifolds into vector bundles. This development is part of a project to compute economic
equilibria in the presence of incomplete markets.

1. Introduction. There are many existence theorems for systems of equations
where the domain and range spaces are smooth manifolds as opposed to Euclidean
space. These theorems are cast in the vocabulary of a mathematical level where the
results are conveniently summarized, for example, with fixed points, index theory,
intersection theory, or homology. However, it appears to the present authors that
such results are invariably proved using homotopies though the homotopies are long
since buried in the development by the time the result is summarized as a theorem.
Given the ever increasing importance of computation these buried homotopies are of
greater interest. There seems to be considerable merit in bringing the homotopy to
the forefront to emphasize the avenue of computation. When homotopies are used in
an existence proof in differential (smooth) topology there seems to be a rather
evident avenue for computation. Namely, follow the route of zeros of the homotopy
by localizing the domain of the homotopies to Euclidean space wherein the computa-
tion can actually take place. Of course, localization of Euclidean space to obtain
global results is the basic vehicle in the subject of differential topology. Herein we
shall outline a relocalization method for route following to solve a system of
equations on the Grassmannian manifold, and then we show that the approach is a
special case of computing a zero of a section of a vector bundle of an abstract smooth
manifold.

Let G} be the set of k-planes passing through the origin in R”. The set G},
endowed with the obvious topology, is known as the Grassmannian manifold of
k-planes in R". The manifold is smooth, has no boundary, is compact, and has
dimension k(n — k). Let f: G} — R" for i = 2,..., k be continuous functions. It is
a fact that there is a fixed point of the functions f; in the sense that there exists a 7 in
G where

fi{(r)yer i=1,...,k

It is our purpose in this paper to indicate how a fixed point for the f;’s can be
computed. For the smooth methods to be employed herein, we shall require the
additional assumption that the f;’s are smooth. A homotopy is constructed so that a
one-dimensional manifold of zeros Z of the homotopy leads to a fixed point of the
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FIGURE 1. Relocalization.

fi’s. To follow this one-dimensional manifold of zeros on the cylinder G} X [e, 1], w
sequentially localize the computation to Euclidean space. D1ffeomorphlc segments in
R*#=k)*1 of the one-dimensional manifold Z are followed, and thereby, we are able, .
in effect, to follow Z in the cylinder to a fixed point of the f’s. We refer to this
process of sequentially following diffeomorphic copies of pieces of Z as relocaliza-
tion, see Figure 1.

The fixed point theorem considered in thls paper is the essence of the proof of
generic existence of an equilibrium of an economy with incomplete markets. How
does the Grassmannian manifold arise in this economic problem? Each economic
agent optimizes a utility while maintaining budget conditions; in particular, certain
budget vectors must be kept in a linear subspace of asset returns L( p) which has the
form

A,
p,A
L(p) = column span 2 C R",
pnAn
where p = (py, p,,..., p,), €ach p; is a row vector of prices, and the matrices A,

represent the traded assets. Generically L(p) has a constant dimension, say k;
however, for critical prices p the dimension of L(p) drops, which in turn, transmits
discontinuities to the optimal responses to prices. This caveat delayed knowledge of
generic existence of equilibria in this market for many years; see Arrow (1953) and
Hart (1975). The impasse was circumvented by Duffie and Shafer (1985) where the
subspace L(p) in R" was replaced by k-dimensional planes 7 in R”, that is, by
introduction of the Grassmannian manifold, and by adjoining the equation L(p) C 7.
The fixed point of the resulting system yields an economic equilibrium only when
L(p) = 7, which occurs generically. In the paper DeMarzo and Eaves (1993) the
algorithm given herein is fully extended for the computation of economic equilibria in
the presence of incomplete markets; a price simplex must be adjoined to the
Grassmannian manifold. This computational scheme together with that of Brown,
DeMarzo, and Eaves (1993) offers the first methods for computation of equilibria of
economic models with incomplete asset markets. For further discussion of the
relation of this fixed point problem on the Grassmannian to the economic problem,
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see Hirsch, Magill and Mas-Colell (1990), Chichilnisky and Heal (1993), and
Geanakoplos (1990). For k = 1 the Grassmannian G} specializes to n-dimensional
real projective space, and the fixed point theorem herein specializes to the Borsuk-
Ulam Theorem. Wright (1985) used relocalization on projective spaces in the compu-
tation of zeros of polynomials; however, the method was not proved and relocaliza-
tion was not suggested as a device with broad applicability.

In §2 needed projections are briefly discussed. In §3 the homotopy to be used is
introduced and the route of zeros of the homotopy to be followed is indicated. In §4
the atlas of the Grassmannian employed is described. In §5, using the atlas, the
equations are moved locally from the Grassmannian to Euclidean space. In §6
generic conditions are given for zero to be a regular value of the homotopy. In §7 the
existence of the route to be followed is settled. In §8 the sequential localization for
following the route of zeros to the solution is established. In §9 a broader perspective
is taken; indeed, the methods employed for the Grassmannian manifold are shown to
be a special case of computing a zero of a section of a vector bundle. Fundamental
terminology and results from differential topology as in Guillemin and Pollack (1974),
Hirsch (1976), and Milnor (1969) are adopted herein.

2, Projections. For each plane 7 in R" define the projection operator II,:
R" - 7. For x in R" the point II (x) is the point in 7 nearest to x and, in particular,
we have

x—I(x)ert

where 7+ is the orthogonal complement of 7 in R”, that is 7+ 7%= R" and
Tort= 0.
Define f;: G,)_, = R" by

fir) =IL(£i(+*))

for k= 1,..., k. Observe that fi(r) € r for all . We also observe that 7 is a fixed
point of the f;s if and only if 7+ is a zero of the f’s. Further for r in G and x in
R" the functions IT (x) are computable and smooth; this statement will be elaborated
on later. If the f;’s can be computed and differentiated the ﬁ’s can be computed and
differentiated also.

With these facts in mind we formulate, without loss of generality, a more conve-
nient but equivalent problem. First replace k by n — k. Let f: G} —» R" for
. =1,...,n — k be smooth functions with fi(r) € 7 for all 7 in G}. We seek a 7
which is a zero of the f, that is, f(r) =0 for i = 1,...,n — k. Define f: G} —
R"(" ) to be the vector of functions f=(f,,..., f,,_k) Let 7"7% denote 7X 7
X - X 7 where 7 is repeated n — k times. We have f(r) € "% for all = in G}
Our task is to find a zero of f. An example of such f and zero 7 is g, and 7, given in
the next paragraph.

Let a; for i=1,...,n — k be vectors in R" and let a = (ay,..., a,_,) be the
vector in R"(*=F), Let A be the set of a such that ay,..., a,_, are linearly
independent. The set A is open in R""~%). Define g: 4 X G — Rt("=5) by

g(a’T) = (Hf(al)""’nr(an—k))'

For all (a,7) in 4 X G; we have g(a, 7) in 7"7%. The function g is smooth. Let
8.()=g(a,-). Let 7, be the orthogonal complemcnt of the span of the vectors
@y .0es 0,y Clearly 7, is the unique zero in G} of g,, that is, 7, = 7 is the only
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solution of g, () = 0. We refer to g as the auxiliary function; it will be used to define
the top of the homotophy, to initiate the computation, to assure that there is a route
to follow, and to assure that the route leads to a zero of f at the bottom of the
homotopy.

3. The homotopy and route. Given the smooth function f: G} — R"""%) with
f(r) € 7% for all 7 in G} we seek a solution of f(r) = 0. In our quest for a zero of
f our plan is to begin with the unique zero 7, of the auxiliary function g, and follow
the route of zeros as g, is deformed, perhaps with retrogressions, to our function of
interest f. To this purpose we introduce a homotopy.

Select € as a small fixed positive constant in the open interval (0, 1). The domain of
our homotopy is the cylinder G} X [¢,1] = {(7, 8): 7 € G, 6 € [¢, 1]}. This cylinder
is a compact smooth manifold with boundary G} X {€,1}. We refer to G} X 1 and
G} X € as the top and bottom of the cylinder, respectively.

Define the homotopy

H: G} X [e,1] » R""™0
by
H(7,0) = 0g,(7) + (1= 6)f(7).

As g (1) € r"7* and f(r) € "% we have H(r, ) € "% forall 7 in G} and ¢ in
[€, 1]. The homotopy restricted to the top of the cylinder is g, and restricted to the
bottom is almost f,

H(,1) =g,
H(,e)=f+¢e(g.—f)

The function [le(g, — f)ll is bounded by eK where
K = maxlig, () = f(r)I < (n = k) (maxlla| + max) (7).

Thus if we solve H(r, €) = 0 approximately for 7, that is, say |[H(r, )ll < 6 then we
have solved f(7) = 0 approximately, that is, || f(7)ll < eK + 8. If we let € and § tend
to zero then we have solved f(r) = 0. We turn our attention to computing an
approximate zero of H(:, €).

The purpose of the e versus zero for the interval [e, 1] is simply that we are
perturbing the function f by the auxiliary function g,. With a generic choice of a we
shall show that the zero set of H is well behaved; however, if € were replaced by
zero, this conclusion would be lost. Nevertheless, € can be selected as small as one
chooses, except at some point, depending upon f, one may invite numerical difficul-
ties.

Define the set Z = H™'(0) of zeros of H by

Z={(r,0) € G} x[e,1]: H(7,0) = 0}.

Define ~Z~ to be the connected component of Z which contains (7, 1); we plan to
follow Z with relocalization. Recall that H(r,,1) = g, (r,) = 0.

Define a route and a loop to be a (nonempty) one-dimensional manifold which is
diffeomorphic to a convex subset of R' and to a circle in R?, respectively. A route
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may have 0, 1, or 2" boundary points, whereas a compact route has exactly two
boundary points. A loop is compact and has no boundary points. Every connected
one-dimensional manifold is either a route or loop, and not both. Every compact
one-dimensional manifold is a finite disjoint collection of loops and compact routes.

Let 9H be the restriction of H to the boundary G} X {e,1} of the cylinder
G} X [ €, 1]. For almost all @ in A we will show that zero is a regular value of H and
§H. For such a, the zero set Z = H~*(0) of H is a neat smooth compact one-dimen-
sional submanifold in the cylinder G} X [¢,1]. In particular,

(1) 9Z =Z N (G} X {€,1) and Z is transverse to G§ X {¢,1}.

(2) Z is a finite disjoint collection of loops and compact routes.

As 0Z = Z N (G} X {€,1}) we see that (7,,1) is a boundary point of Z and that Z is
a route. If we follow the route Z beginning at the top of the cylinder at (7., 1), the
route will not return to the top as Z meets the top in only one point, namely, (7,, 1).
Thus the compact route Z leads us to the bottom of the cylinder, that is, to a point in
Z N (G} X €), that is, to a zero of H(, €), thereby completing out task. We shall not
directly follow the route Z on the cylinder, but rather, we shall follow a sequence of
diffeomorphic localizations of Z in Euclidean space.

4. An atlas for the Grassmannian G}. To follow the route Z we shall need an
atlas of GJ. Let | -| be the maximum norm for a vector, that is, |x| = max,|x,|. Select r
in the range 1 < r < + and define X by

X={xeR" M |xl<r+1}.

For the vector x in X define wrap(x) to be the ((n — k) X k)-matrix

X, X,
Xk+1 Xk,
Xr(n—k)—k+1 " Xe(n-k)

Let B be the set of all subsets of {1,..., n} of size k. Given B8 in B let v be the
complement of B in{l,..., n}. We take the order of the elements in both 8 and v as
the natural order.

For B in B let [1g: R" - R select the k rows indexed by B; we apply II, to
matrices also. For B in B and x in X define the (n X k)-matrix F(x) by

N F(x) =1,
I1, F3(x) = wrap(x).

That is, the rows of Fg(x) indexed by B form the identity matrix and the rows of
Fg(x) indexed by v is the ((n — k) X k)-matrix wrap(x).
EXAMPLE. For n = 4, k = 2, B = {1, 3}, and x(x, x,, x5, x,) we have

1 0
X2

X X x
wrap(x)=(x: xj) Fy(x) = 01 (| C

X3 X,
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For B in B define Sg(x) to be the vector space spanned by the columns of Fz(x),
that is,

Sg(x) = span Fg(x) € R".

Observe that a vector y € Sy(x) is completely determined by its B coordinates,
that is,

y = (Fp(x))gy.
Observe that Sg(x) = S4(y) implies x =y. The projection II;: Sg(x) — R¥ is a
linear bijection.
Define the multifunction A: Gy 3 BbyA(r) ={BeB: 7= Sﬂ(x), Ix|] < 1}. Given
vectors spanning 7, a B in A(7) can be effectively computed; see Eaves (1993). The

multifunction is called a locator and its purpose is to “center” a chart at 7. For 8 in
B define the open subset U of Gy by

Uy = {S5(x): x e X}.

The Uy for B in B yields a finite open cover of the manifold Gy.
For B in B let S‘;1 be the inverse of S, that s,

S‘;I(T) =x,

where S4(x) = 7. The collection of ¥ = {(S;1, Up): B € B} forms a finite atlas for
the manifold G§. In particular, for 8 in B,

Us € Gy

S"T

Xc Rk(n - k)

is a diffeomorphism.
For B in B and x in X define P,(x) to be the n X n matrix which projects R" to
S4(x). That is,

Py(x)y =1I1(y),

where 7= S;(x). The matrix Ps(x) is given by

-1
Fy(x)(Fy(x) Fy(x)) Fy(x)".
The coordinates of Pz(x)y relative to the frame F,(x) are given by

Hg(Ps(x)y) = HgFp(x)y
= Hﬂ(Fﬂ(x)((Fﬂ(x)TFﬂ(x))ulFﬂ(x)Ty))
- HgFa(x)((FB(X)TFﬂ(X))~1Fﬁ(x)ry)

= (R0 B()) By (1),



32 D. J. BROWN, P. M. DEMARZO AND B. C. EAVES

as [z F;(x) = I. In particular, we see that rows I P;(x) of Fy(x) indexed by B are
linearly independent. Also observe that

Vx((HﬁPﬁ("))y)
can be computed analytically (however, such can be avoided).
5. Localizations Hj of the homotopy H. Local coordinates are established for
the homotopy H with the purpose of understanding and following a route in the
zeros Z = H~1(0) of H. Our understanding of Z is first local then global.

Select a B in B. Such B indexes the open set Uy = {S5(x): x € X} of the manifold
G}. Define the projection operator IT5~*: R"*74) — R¥"=) by

Hg—ky = (prls HByZ’ e Hﬁyll—k)
where y = (y,,..., y,_,) and each y, is in R". For each x in X observe that
n—k. n—k n—
M=% Sg(x)" ™" > RKH
is a linear bijection. Note the superscript n — k indicates a cross product n — k
times. For all x in X and y in Sﬂ(x)""‘ we have II;™*y = 0 if and only if y = 0.
Let iota « represent the identity map on [e, 1], that is «(8) = 0 for 8 in [€, 1]. For
B in B we shall understand and compute zeros of
H:U; X [€,1] » R0
by understanding and computing the zeros of the
Hy: X X [€,1] > RK"~0)
where H, is defined by
Hy(x,0) = IIF™*H(S; X 1)(x, 6)
= Hg“kH(SB(x), 0).
Pictorially we have the commutative diagram in Figure 2. As S5 X ¢ is a diffeomor-
phism and as H;;‘kH(T, ) = 0if and only if H(r, 6) = 0, the zeros of the composite
function Hy on X X [€,1] are diffeomorphic to the zeros of H on Us X [€,1]. The

advantage of the function H, over the function H is that the range and domain are
R¥n=K)*1 and R*"~%) instead of U, and R™" %) The computational task for

H

Uﬁx [&,1] > R0
n-k
Sﬁx 1 1'[B
H
X X [8,.1] B - Rk(n-k)

FIGURE 2. Localized homotopy Hj.
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following the route of zeros of the homotopy Hj is in Euclidean space and is well
formulated.

6. Generic « for regularity of zero. Our purpose in this section is to show that
for almost all a in A for all B in B zero is a regular value of Hy; and dHy,. Our
vehicle for this result is the Transversality Theorem; see Guillemin and Pollack (1974,
p- 68). We apply the theorem locally and then use the local results to get global
results.

For B in B consider the map Hy: X X [€,1] = R*"~%) where for the moment we
also consider & in A as an argument of the function H,.

The derivative of H, = II;7*H(S, X 1) with respect to a at the point (a, ¥, 6) is
given by

n—-k
V.Hy(x,8) = Va( TTH(S, x )(x, 0))

v,,('ij‘ega(sﬂu)))

Pﬂ(x)al

n—k Pﬂ(x)an

It
S
—
RS

Pﬂ(x)an—k

I;IP;?(X)
I;IPﬂ(x)

nPﬁ(X)
B

where 6 in [e,1] is positive. We have previously shown that 1, P;(x) has rank k.
Thus the rank of the derivative V, H, for all (x, ) in X X [¢,1]is k(n — k).

For B in B let Z, be the set of zeros of Hy in X X [e,1]. Recall that X ={x &
R¥=k): |x| < r + 1}, and temporarily increase » by 1. Now applying the Transversal-
ity Theorem we may conclude that there is a set 4; €A where 4\ A, has measure
zero and for all a in A, the following statement 7 is true.

Tp: If (x, 6) is in Zg, then the rank of

Vir,0yHp (%, 0)
is k(n — k). If (x,0) is in Z; and 6 = € or 6 = 1, then the rank of
V.Hy(x, 8)
is k(n —k). o
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Let A, be the intersection of all 4, as B varies over B. As B is finite we see that
A, is generic in A, in particular, 4\ A, has measure zero. We conclude that for all
@ in A, the statement T is true for every 8 in B.

Apply the implicit function theorem at the points (x, 8) in Zz. Upon decreasing r
by 1 to its original value, it follows that Z, is a neat smooth one-dimensional
submanifold in X X [e, 1]. In particular,

(1) 0Z5=2Z, N (X X {e,1)) and Z; is transverse to X X (e, 1},

(2) Each connected component of Z; is a route or loop with finite arc length.

(3) Only a finite number of the loops and routes meet both [x| < 1 and |x| > 7.

Note, Zz could have an infinite number of connected components. For a discussion
of arc length on one-manifolds see Milnor (1969). (It seems unlikely that Z, could
have infinite arc length, but whatever the case, we do not require such conclusion
herein.)

7. Global route of zeros Z. We take our local results for the zeros Z, of H‘3 in
X X [e,1] and transfer them all to the domain G} X [€,1] to obtain the zero set
Z of H.

For all @ in A, and B in B zero is a regular value of Hﬂ and dHg on X X [e,1]
Recall that U for B in B is a finite open cover of Gy, that Sg: X > U is a
diffeomorphism, and that Hy(x, 6) = 0, if and only if H(Sy(x), 8) = 0 where

n—k

Hy(x,0) = TTH(S; X )(x,0).
B
The zero set Z of H is given by the union of the sets

(S X% )(Z5),
as B varies over B. Furthermore, for 8 and y in B the sets
(Sg X )(Z;) and (S, X )(Z,),
agree exactly on
(Us nU,) X [e,1];

see Figure 3.

As zero is a regular value for the Hy and ¢H, for all B in B it follows that zero is
a regular value of H and ¢H. In particular, Z is a neat smooth compact one-dimen-
sional submanifold in the compact manifold G} X [, 1}; in particular,

(1) 0Z = Z N (G} X {¢€,1)) and Z is transverse to G} X {e,1}.

(2) Z is a finite disjoint union of loops and compact routes,

THEOREM.  There is a solution 7 in G} to f(1) = 0.

PROOF. Let Z be the component of Z which contains {r,,1). As Z N (G} X 1)
contains the single point (7,,1) and ¢Z = Z N G} X {¢,1} we see that Z is a
compact route. The second boundary point (7., 6) of Z can only be in G} X e. Thus

we havg an approximate solution to f(7) = 0. As mentioned before G} is compact,
hence, if we let € tend to zero we obtain an exact solution to f(r) = 0. o

8. Following the route Z by relocalization. Using a predictor-corrector method
we follow certain routes Z

s In the zero sets Zg € X X [€,1] of the homotopies H,
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G, x [e1]
U.Xx [&1] U x(s1]

X x [&1] X x [el1]
FIGURE 3. Assembling Z.

for certain B in B. Using the diffeomorphisms Sz X ¢ these routes are transferred to
Gi X [¢,1] to form the route of zeros Z of the homotopy H. At the end of the route
Z, at the bottom of G} X [e,1], we find an approximate solution of the system
f(x)=0.

The prediction-corrector method now has an extensive development with many
safeguards and refinements. Some pertinent references include Allgower and Georg
(1992), Davidenko (1953a), Kellogg, Li, and Yorke (1976), Morgan (1987), Rheinbolt
(1986), Watson (1989), Watson, Billups, and Morgan (1987), and Zangwill and
Garcia (1981). The papers of Scarf and Hansen (1973), Eaves (1972), Kellogg, Li, and
Yorke (1976), and Smale (1976) also form part of the economic, mathematical, and
computational background for this effort. It is not our intention here to develop the
predictor-corrector method as such but rather to apply it to solve problems on
non-Euclidean manifolds, and, at the moment, on the Grassmannian manifold GJ.
Let us begin by giving a brief description of a typical version of a predictor-corrector
iteration but couched in our framework, namely, in the domain X X [¢, 1] for a
function Hy. Recall X = {x € R": |x| <r + 1} where r > 1. Also we assume that
is a vector of A, and hence Zg is a one-dimensional submanifold in X X [e, 1].

_ Predictor-corrector iteration. Assume we have a point (x(i), 6(i)) on or near
Zgiy C L gX.X [e‘, 1). The derivative V, 4,Hg;), or approximation thereof, is
computed at (x(i), 6(i)) and the system

Ve, sy Han (2 (1), (D)) (2(0), 8()) =0 (i), 8(i))ll =

is solved or approximately solved for (#(i), 6(i)). As the derivative is k(n — k) X
(k(n — k) + 1)-matrix of full row rank the exact (%(i), 8(i)) is unique up to sign.
We now take a predictor step by moving in the line L = ((x(i), () + ¢(%(i), 8()):
t € R}. The predictor step moves in L N (X X [¢, 1)) in the direction (%(i), 8(:)) or
direction —(%(i), 6(i)) so as to move away from the previously generated point. One
way to accomplish this is to choose the sign of (£(i), 6(i)) so that (i — 1), (i — 1)) -
(x(i), () > 0 where ¥(i — 1), 8(i — 1)) was the direction of movement for the
previous iteration. Assuming the movement is in_the direction (%(i), 6(i)), the
predictor step is to some point (x(i), 6()) + #(%(i), 6(i)) where 7 > 0. Basically the
choice of the step size  is related to how straight Zg(i) is at (x(i), 6(i)). Much has
been written about particular choices for ¢ and we will say little more about it here.
Now for the corrector step. The purpose here is to move in the orthogonal

complement L* of L in X X [e,1] at (x(i), 6()) + #(%(), 6(/)) and return to Zﬂ(,),
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7 L Inilial Poin
B of Ireralion
(x(1).601))
X X [g,1] /
Final Point Predictor Step
of Iteration
(x(i+1),8(+1))

(x(1),801)) + H((X(i).8(1))

Corrector Step

Z

()
FIGURE 4. Predictor-corrector iteration following ZB(:‘)'

see Figure 4. For the corrector step Newton’s method, or a variation thereof, is used
to find an approximation of a zero of Hy, in the translated space L* beginning with
the point {(x(i), 8(i)) + #(x(i), 6(i)). If the convergence here is satisfactory, ¢ remains
unaltered, and perhaps, in this case, the initial # is increased in future iterations. If
the convergence Newton’s method is not satisfactory, 7 is repeatedly reduced until
convergence In the corrector step is satisfactory; and in this case, perhaps the initial ¢
is decreased in future steps. Following satisfactory convergence in the corrector step,
this iteration of the predictor-corrector method is complete. By the iterate generated
by the predictor-corrector iteration, we mean that point (x(i 4+ 1), 6(i + 1)) where
the corrector phase is terminated. Set 8(i + 1) = B(i). Unless we have made an exit,
a matter discussed shortly, the next iteration begins with a predictor step at (x(i +
1), (i + 1)), etc. This completes our discussion of a typical predictor-corrector
iteration. O

We have described a typical predictor-corrector iteration, however, in the present
application there are a number of special considerations to be addressed.

The derivative of H, with respect to (x, 8) is given by

n—k
V(x,e)HB(x’ ) = V(x,e)( l;[ (9ga53(x) +(1- O)fSB(x)))
n—k n~k
- (o5 Teuss oo + 0= 0w T o,

n—k n—k
f;[gQSB(x) - l;[fSB(X))-

We address the four summands appearing in the bracketed pair just above. The first

and third terms V(TT3™*g, S )(x) and T3 *g, Sg(x) can be computed analytically. If
we can evaluate the f; then the fourth term

n—k
]-;[fSB(x)
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can be evaluated. To say that the f; are smooth implies, essentially, that the second
term

n—k
Vx( l;[fSB)(X)

exists. To say the f; can be differentiated analytically is essentially to say the fourth
term can be differentiated analytically. We require that the derivatives Vi, , H, are
available, either analytically or approximately by numerical methods.

To initialize the computation procedure calculate & linearly independent vectors
Py P With pjray=0fori=1,...,kand j = 1,..., n — k. The Gramm-Schmidt
procedure can be used for this purpose. Pivot on the matrix (p, ..., p,) to compute a
B(1) in A(r,) and an x(1) in X with [x(1)] <1 where 1, =span(p,,..., p,) =
851y (x(1)). Setting 6(1) = 1 we have solved

Hg ), (x(1),6(1)) =0.

Let ZB(D be the route in Zg,, which contains the point (x(1), 6(1)). Towards
following the route Zg,), using the predictor-corrector method, we compute
(2(1), 6(1)) solving

Ve oy Hp(x(1), 6(1)) (B(1), 8(1)) =0 I(E(1), 8(1))l = 1.
As the rank of
V. Hyo(2(1), 6(1))

is k(n — k) we know that 6(1) # 0; scale (2(1), 6(1)) by +1 so that 6(1) is negative.
The predictor-connector method commences with a predictor step in the direction
(x(1), 6(1)) from (x(1), 6(1)).
_ Advance the computation forward and assume that we are following the route
Zgiy € Zgiy in X X [€, 1) where ZB(i) is the zero set of the homotopy Hg,,. We
continue with predictor-corrector iterates until an iterate (x(i), 6(i)) is generated
which is about to leave X X [e,1], that is, (i) =1, 6(i) = ¢, or |x(i)} > r with
€ < 8(i) < 1; we refer to these three cases as a top, bottom, or side exit, respectively.
See Figure 5. Let us consider each exit possibility.

Top exit.  If we are following Zg;, closely enough, the top exit will not occur as
zero is a regular value of H and as Z N (G} X 1) is a singleton. O

Borrom ExiT. A bottom exit is the signal for the algorithm to terminate. That is,
if (x(i),003i) Zyiy O (X X €) then HB(i)(x(i), €)=0 and SB(i)(x(i)) =T iS an

Xx1 A

Top Exit
(does not occur)

- —
Side Exit Side Exit
(relocalize) (relocalize)

Bottom Exit
(termination signal)
Xx¢g Y

FIGURE 5. Exits from X X [e,1].
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Xx1
T = | i 1

S Zgiy ' (A

= | I1E
I I I I
! N ! (x(0).8(1)
! (. )
} v } | Side Exit
| |5 GI | Relocalize
! t 2| I
XXe

FIGURE 6. Relocalization signal.

approximate solution to f(r) = 0. The corrector step might encounter some difficulty
for 6 near ¢, in which case one should try to perform the corrector step in the plane
6 = ¢ instead of the translate of L* . Assuming success here one should try setting e
to zero and executing Newton’s method, or a variant thereof, with the hope of
improving the approximate solution of f(r) = 0. O

SipE EXIT. The condition |x(i)| > r is the signal that we have a side exit and that
we should relocalize; see Figure 6. Let (X(7), 6(:)) be the direction that the predictor
iteration would use at (x(i), 6(:)). Pivot on Fp;(x(i)) to compute B(i +1) in
A(Sﬁ(,-)(x(i)) and x(i + 1) with |x(i + 1)| £ 1 so that

Fﬁ‘i)(x)(ﬁ(l;[nFB“')(x))— = Fgupp(x(i + 1)).

Set 6(i + 1) = 6(J).

We now have a solution (x(i + 1), 0(i + 1)) to HB(,H)(x(z +1),0G+1)=
Define Z4 ;4 1, to be the route of Zg;,;, which contain the point (x(i + 1), 8G + 1))
And now with respect to the function Hg;,, on the domain X X[e, 1] the
predictor-corrector method continues as before but now following Z,,,,,, and in
particular, being prepared to terminate with a bottom exit and to execute side exits.

There is, however, a remaining matter to be addressed here. After the new
direction (¥(i + 1), 6(i + 1)) is computed for the predictor step by solving

Voo, o Haisny (x(i + 1), 60 + D)(2(i +1),0(i + 1)) =0

I(2(i + 1), 0 + D)) =1,
does the movement take place in the direction (¥(i + 1), 8(i + 1)) or —(%(i + 1), 6
+1))? If (i) is (numerically sxgmflcantly) positive or negative, one merely sets the
sign of (¥(i + 1), 6(i + 1)) so that the signs of 6(i + 1) and 6(;) agree. If 6(i) is

(numerically essentially) zero we must examine x(i). We want to approximate the
movement of

Spiy(x(i) + 2(i)) with that of Sz, (x(i + 1) + &(i + 1)),

in G} for small ¢. Let A(¢) be the function defined by

Fpion(i 1) +1(0) = B () + 60){ TT Fao) + ()
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that is,

wrap(x(i + 1) + h(£)) = ﬂg@¢nn+aun&r%@muu)+mnﬂ_.

v(i+1) i+
The sign of (¥(i + 1), 8(i + 1)) is chosen so that
VA(0) -E(i + 1) > 0.

Although A(t) might be a nuisance to compute, the direction VA(0) is computed using
the chain rule for differentiation as B(i) is transformed to B(i + 1) one element at
each step. The sign of (X(i + 1), 6(i + 1)) is chosen so that the direction *(i + 1)
approximately equals the direction VA(0) as the latter corresponds to (i) except in a
different coordinate system. O

ExaMpLE. We exhibit operation of the locator A; see Eaves (1993). For n = 4,
k=2 pBG)=1{1,3}, and r =2 suppose x(i) = (x;(9), x,(i), x5(), x,(i)) = (0, —
1,2,1) € X. As |x;())] = 2 = r = 2 we have a side exit. FB(,-)(x(i))T is the matrix:

11 0 2
0 -1 1 1)
Pivot on any element exceeding one in absolute value, namely 2 here, to get:

~1/2 =372 1 0
12 172 0 1)

Pivot on any element exceeding one in absolute value, namely, —3/2 here, to get:

13 1 =273 0
13 0 173 1}

As 1o element exceeds one in absolute value we take this matrix as Fy; ;) (x(i + 1))7
to get BU + 1) = {2,4} € A(Sy(x(), x(i + 1) = (1/3,1/3,— 2/3,1/3), |x(i + D)
< 1,and Sp;. (G + 1)) = Sp;(x(@). o

Our definition of the algorithm is now complete; however, we have a few remarks
to be made about the algorithm. We first turn our attention to a particular point
concerning finite termination.

The zero set Z, of Hy; on X X [¢, 1] can have an infinite number of connected
components. This situation in turn appears to admit the possibility that the algorithm
would be required to change the g(i) in B and infinite number of times in order to
complete the route following task. That is, due to the burden of changing B(i) the
computation would never terminate. However, each route or loop in Z; in X X [e, 1]
has finite arc length. As there are only a finite pumber of routes in Z; which meet
both |x] < 1 and |x| > r and as B is finite there is only a finite amount of arc length
to be followed. For each B(i) the algorithm begins with |x| < 1 and does not change
B() until there is a bottom exit, in which case the algorithm terminates, or there is a
side exit, in which case |x]| = r. Thus, if we have a side exit we have traveled at least
r — 1 units of arc length. That is, for each selection of a B(i) the algorithm travels a
distance of at least r — 1 units, and as there is only a finite amount of arc length to be
followed the B(i) will change only a finite number of times. (One can also speak of
inherent arc length on the cylinder G} X [¢, 1], using the metric there, and base the
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argument on the arc length there, but this avenue is not followed here. In more
general situation$ such might be necessary.)

Clearly, if enough care is not exercised in the predictor-corrector step the move-
ment could fall off of the route of interest. However, the viability of the predictor-
corrector method, with suitable safeguards, has been supported both theoretically
and empirically, see Allgower and Georg (1992) for a discussion and references.

Preparations are being made to implement the algorithm described herein on a
computer, first for a mathematical fixed point problem as described in §1 and then
extended for the economic model with incomplete assets where a price space must be
adjoined.

9. Generalization and perspective. The present section offers a perspective of
the foregoing development. We step back from the “fixed point” problem on the
Grassmannian manifold and briefly indicate how the ideas can be used to compute
zeros of equations mapping an abstract manifold into a vector bundle. See Hirsch
(1976) for a definition of vector bundle.

Let M be an abstract (smooth) compact m-manifold (without boundary) with atlas
¥ and let (E, M, p, ®) be a (smooth) vector bundle with vector bundle (total space)
E of vector dimension m, base space M, projection p: E — M, and atlas &. In
particular, for each chart (¢, U) in @, the set U is open in M and

¢:p ' (U) »UXR"

is a diffeomorphism where ¢: p~'(x) = {x} X R™ for all x in U. The U’s cover M.
The set p~'(x) is called the fiber over x. Define the map ¢,: p~'(U) - R™ by
ey(y) =z where @(y) = (x, z). If (¢',U’) is a chart of ® with x also in U’, then
@@, 't R™ —» R™ is linear and smooth in x. For convenience and without loss of
generality, we assume that for each chart (¢, U) in ¥ there is a chart in ® of form
(o, U).

We call a function f: M — E a section if f(x) is in the fiber p~'(x) over x for all x
in M. The zero section 0: M — E is defined by 0(x) = ¢~ '(x,0) where (¢,U) is a
chart of ® with x in U. It might be helpful to notice that 0(M) is a copy of M in E.
Let f: M — E be a (smooth) section and we consider the task of computing a zero of
f, that is, of solving f(x) = 0(x).

ExaMPLE. We indicate how these notions correspond to those of the previous
sections, that is, of solving f(r) = 0 where f: G} —» R™*~%) and f(r) € "% for all
7. M is the manifold G} with dimension m = k(n — &) and atlas ¥ = {(S;, Uj):
B € B}, just as before. The vector bundle (total space) is E = {(1, y1,..., ¥, ¢ ):
T€ GE, y; € 7, Vi} with projection p~!(r) = {r} X r"*~*. The atlas of the vector
bundle is {(¢5, U;): B € B} where

N (Us) = {(Sﬁ(x),y): y € 85(x)" , x EX}
and @ is defined by
n—k
a(5,(.) = [5,60. T

The function f: M — E is defined by f(r) = (r, f(r)) and we want to solve f(r) =
0(r) = (r,0), that is, f(r) = 0. i
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Let A be an open set in R" and g: 4 XM — E be a (smooth) function; let
g, =&(a,-) and g, = g(-, x). Assume that for each a in A, the function g, is a
section. As before g is an auxiliary section used to define the top of the homotopy, to
initiate the computation, to assure that there is a route to follow, and to assure that
the route leads to a zero of f at the bottom of the homotopy. We require two
properties of g, namely, unique zero and transversality.

Unique zero of g,. For each « in A the map g, has a unique zero. That is, for
each a in A there is a unique solution x in M of g _(x) = 0(x). 0

Transversality of g,. For each chart (¢,U) of ® the derivative V(o8 Xa):
R" - R™ of the function ¢ g, at each (@, x)in A X M is onto. m]

AL pv )y SR

As each g, and f are sections we can form the section homotopy H: M X [¢,1] —» E
by
H(x,0) = ¢! [0¢,8,(x) + (1 — 8) ¢ f(x)]

where (¢, U) is a chart of ® and x is in U. As the functions ¢, ¢! are linear and
smooth it follows that H is well-defined and smooth. Notice that H(x, 8) is in p™'(x)
for all (x, 8) in M X [€,1].

Again, let ¢ be the identity function on [€,1]. For almost all @ in A we see that H
and dH is transverse to the zero section. That is, for almost all « in A4 we see that

zero is a regular value of the maps H, = o, H(yy~!, 1) and §H,, for each chart (i, U)
of ¥ and chart (¢, U) of .

-1

(2N
U)X [e,1] = UX[e,1] 5 p=1(U) 2 R,

It follows that the zero set Z = {(x, 8); H(x, 6) = 0(x)} is a neat disjoint collection
of loops and routes in M X [e, 1] and transverse to M X {e, 1}.

As before the plan is: beginning at the point of Z N (M X 1) follow the corre-
sponding route Z of Z. The computation is carried out locally, using predictor-cor-
rector methods, on the maps H,= o H(y™', z): ¢"'(U) X[e,1] » R™ in Eu-
clidean space. When a side exit occurs, relocalize. When a bottom (or top exit)
occurs, terminate,

Let us again direct our attention to the matter of relocalizing. Towards organizing
relocalization to assure desired convergence properties we use a locator. In R™ with
norm |-|let B(0,r) = {x € R™: |x| < r} be the closed ball centered at the origin with
radius r. Let A: M 3 ¥ be a multifunction from the manifold M to the atlas ¥ and
let r be a number exceeding 1. The multifunction A is defined to be a locator if
A(M) is finite and if for each x in M and chart (,U) in A(x) we have (x) in
B(0,1) and B(0, r + 1) a subset of (U). The idea is that the charts are “centered” at
x by the locator. We note that a manifold is compact if and only if it has a finite
locator.

If in following the route Hy;, in B(0, r) X [e, 1] using chart ((i), U(i)) one makes
a side exit at (x(i), 8()), that is |x(i)} = r and 0 < 6(i) < 1 in direction ((i), 6(i)),
one relocalizes with a chart (y(i + 1), U(i + 1)) and continues at the point

(x(i +1), 8(i + 1)) = (¥(i + Dy () 7' (x(0)), (i)
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in B(0,1) X [€,1] in the direction

(%(i + 1), 80 + 1)) = (V(w (i + Do (D) ) (x(D)(£(3)), B(i))-

The finite convergence argument employed for the Grassmannian manifold applies
here as well, and we do not repeat it. As the section g, has a unique zero, in
following Z through the localizations one will make a bottom exit from M X [e, 1],
and thereby compute an approximation solution of f(x) = 0(x). Letting e go to zero
we obtain a zero of f.

We have given a constructive proof of the following result which is usually stated in
terms of degree, intersection number, or Euler characteristic, see Hirsch (1976,
Chapter 5), for example.

THEOREM. If a section g with the unique zero and transversality properties exists, then
any section has a zero. i

To compute, that is to follow the route Z with relocalization it is necessary, of
course, to be able to evaluate the various expressions involved, for example, to select
a chart in A(x) for x in M. Whether or not these evaluations are feasible is a
determination that cannot be made until the particular manifold, vector bundle, and
section are in hand. For the Grassmannian manifold G} problem treated earlier we
have m = k(n — k), manifold M = G}, vectorbundle E = {(r, x;,..., x,_,): 7€ G},
X, € T,..., X, €7}, section 7~ (7, f(r)), auxiliary function g, and locator A.
Whether or not the computation. is feasible in the Grassmannian setting depends only
upon characteristics of the function f, as all else is manageable.
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