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A ZERO-ONE RESULT FOR THE
LEAST SQUARES ESTIMATOR

DonaLD W. K. ANDREWS

Yale University

The least squares estimator for the linear regression model is shown to converge
to the true parameter vector either with probability one or with probability
zero. In the latter case, it either converges to a point not equal to the true
parameter with probability one, or it diverges with probability one. These
results are shown to hold under weak conditions on the dependent random
variable and regressor variables. No additional conditions are placed on the
errors. The dependent and regressor variables are assumed to be weakly depen-
dent—in particular, to be strong mixing. The regressors may be fixed or random
and must exhibit a certamn degree of independent variability. No further as-
sumptions are needed. The model considered allows the number of regressors
to increase without bound as the sample size increases. The proof proceeds by
extending Kolmogorov’s 0-1 law for independent random variables to strong
mixing random variables.

1. INTRODUCTION

The linear regression model is the most widely used tool of econometrics.
The least squares (LS) estimator of this model is optimal under certain model
assumptions, and in consequence, is utilized extensively. The simplifying
assumptions used for optimality may not hold in economic applications,
however, so the statistical properties of the LS estimator under more general
model assumptions are of great importance. In response, there has been
considerable interest in extending the results for strong consistency of the LS
estimator, These results are more or less complete for the case of independent
identically distributed L? errors and fixed regressors. (See Lai, Robbins, and
Wei [17, 18], and Drygas [9].) For more general error processes and random
regressors, however, the results are more piecemeal (see Anderson and Taylor
[1]; Chen, Lai, and Wei [7]; Christopeit and Helmes [ 8]; Eicker [ 10]; Nelson
[19]; and Robinson [21]). In this note we prove a simple result for the LS
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estimator that yields a synthesis of results concerning strong consistency and
inconsistency of the LS estimator.

Simply stated, we find that the LS estimator converges to the true parameter
vector either with probability one or with probability zero. Further, in the
case of inconsistency, the LS estimator either converges to a parameter value
different from the true value with probability one, or it diverges with prob-
ability one. Thus, different stochastic environments can be categorized
trichotomously according to whether the LS estimator is strongly consistent,
whether it converges almost surely to a parameter vector that is not true,
or whether it diverges almost surely. This shows that known results for strong
consistency and inconsistency are incomplete; a more complete categoriza-
tion is possible. The 0-1 result is also, of independent theoretical interest,
since it may be found useful in proofs or in suggesting results to be proven.
With regard to the latter, it delimits the alternative possibilities in situations
where strong consistency is at issue,

The regression model considered here is quite general. The regressors may
be fixed or random, and the number of regressors may increase without
bound as the sample size increases. Allowing this flexibility in the model
seems appropriate for economic applications. In such applications, some
regressors are necessarily fixed, e.g,, dummy variables, while other regressors
are random and may be treated as such, or may be conditioned on and
treated as fixed. Further, it is often the case that the number of regressors
chosen to be included in an economic regression model is limited by the
statistical problem of degrees of freedom, rather than by a belief motivated
by economic theory that only a fixed number of regressors belong in the
model. In such cases, the number of variables included in the regression
model is usually related to the sample size. The possibility of such a relation-
ship is incorporated in the model considered below. (Also see Huber [11, 12]
and Yohai and Maronna [22] for the specification of regression models
where the number of regressors is related to the sample size.)

For the 0-1 result, the dependent variable and regressors must be weakly
dependent (more explicitly, strong mixing is assumed). That is, the “depen-
dence” between variables is assumed to die out as the difference in time
subscripts of the variables become infinitely large. Further, the regressors
must exhibit a certain degree of independent variability. No assumptions of
independence, identical distribution, or normality of the errors are made. In
fact, no assumptions at all are made on the errors except that of weak depen-
dence (which follows from the assumption of weak dependence of the variables
in the model). Exogeneity of the regressors is not imposed. Thus, the true
parameter vector may or may not be identified.

The LS estimator 0-1 result is obtained by first proving a 0-1 law for
sequences of strong mixing random vectors. This law is an extension of
Kolmogorov’s classical 0-1 law for sequences of independent random vari-
ables (see Kolmogorov [15] or, for example, Billingsley [5]).
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2. A ZERO-ONE LAW

First we define the concept of strong mixing. Strong mixing is an assumed
property of the regression model variables. It implies that realizations of
variables at a particular date in the past have an impact on current variables
that dies out as time passes. This is a realistic assumption for many economic
situations.! It is considerably weaker than other assumptions, such as inde-
pendence, m-dependence, or auto-regressive moving average structure (see
Chanda [6], but cf. Andrews [2, 3]) that are often utilized in statistical mod-
els. Moreover, strong mixing does not imply stationarity.

Let (Z,> denote a sequence of random vectors Z,,i = 1, 2, .. ., of arbitrary
(possibly infinite) dimensions. Let %,, denote the o-field generated by the
random vectors Z,, Z, 4, .. ., Z;. That is, %;; is the collection of all events
determined by Z,,Z,,,, ..., Z, <{Z,) is called strong mixing if a(s) | 0 as
s — o0, where
ofs) = sup sup |P(4 ~ B) — P(4)P(B)|. )

121 AeBni.BeBi+s, o
Note, if (Z,> are independent, then a(s) =0, Vs> 1, and if {Z,) are m-
dependent, then af(s) =0, V s > m.

The following 0-1 law for strong mixing random vectors is an extension of
Kolmogorov’s 0-1 law for independent random variables. It is known that
Kolmogorov’s 0-1 law applies to ¢-mixing random vectors (see Iosifescu
and Theodorescu [14]). But ¢-mixing is a much stronger assumption than
strong mixing. For example, Gaussian random variables are ¢-mixing only
if they are m-dependent (see Ibragimov and Linnik [13], ¢f. Kolmogorov
and Rozonov [16]). A simple first-order autoregressive Gaussian sequence
is not ¢-mixing. The extension of the 0-1 law to strong mixing random vectors
has not been noted in the literature. Bartfai and Révész [4] prove that 0-1 law
for sequences which they call 5-mixing and -mixing in mean. It can be shown
that strong mixing sequences are J-mixing in mean. Hence, the 0-1 law holds
for strong mixing random vectors. Below we give an alternative proof of this
result. The proof avoids Bartfai and Révész’s use of the powerful machinery
of the Martingale convergence theorem. Thus the proof is more direct, and
hopefully, more clear.

Define the tail o-field, 7, generated by the random vectors {Z,) as

8

ej‘- =
1

gl, 0" (2)

1

An event in J is called a tail event. Tail events are determined by random
vectors arbitrarily far out in the sequence <Z;>. Examples for scalar Z,
inciude:

(i) {Z, > b for infinitely many i}, for some constant b,
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(ii) {1—15 Z,ela, b]}, for some constants g and b,

(ii1) {Z Z, converges as n — oo},
1=1
(iv) {Z,i=1,2,...converges as i - o0}.
The 0-1 law concerns the probabilities of different tail events.

THEOREM 1. If the sequence of random vectors {Z;> is strong mixing,
and A € T, where J is the tai o-field, then P(A) equals O or 1.

The proof of Theorem 1 is in Section 4.

3. RESULTS FOR THE LEAST SQUARES ESTIMATOR

In this section we use the strong mixing 0-1 law to prove that the LS estimator
in a regression model converges to the true parameter vector with probability
0 or 1. The regressors may be fixed or random and their number may increase
with the sample size. The model is written as

Yin = Xlnﬁr(n) + Uy, n= 1’ 25 LRI (3)

where y,, is the n-vector, with ith element y,, of the first n values of the depen-
dent random variable; X, , is the n x k, matrix, with (1, j)th element x7,, of the
first n values of the k, regressors; B is the unobserved R*"-valued true pa-
rameter vector (for the model with k, regressors); and u,, is the n-vector of
the first n (unobserved) random errors. Let x, be the vector with elements
X j=1,...,k,n=12_..., and let {y,x,> ={(y;, x,)i=1,2,...} de-
note the infinite sequence of dependent and regressor variables corresponding
to observations i, fori=1,2,....

Since regression models with increasing numbers of regressors are some-
what novel, we motivate their consideration by providing an example that
generates the model of (3) as the true model. The results of general equilibrium
theory imply that many economic variables depend, more or less, on “every-
thing else” in the economy. Thus, for a regression model with a dependent
variable which is economic in nature, the number of relevant explanatory
variables may be infinite. Of course, certain variables will have large ex-
planatory power while most will have only minute power. In this situation,
the true model can be written as

1n = X5 + diy, C)
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where y,, is as in equation (3), X{, is the (n x oo0) matrix of regressor vari-
ables corresponding to the first n observations on the infinite number of re-
gressors, B is the (co x 1) true parameter vector, and #,,, is the (n x 1) vector
of mean zero (say), strong mixing errors. It is impossible to estimate the entire
infinite-dimensional vector B° with a sample of finite size. Hence, depending
upon the available sample size, a greater or lesser number of variables is in-
cluded in the regression in practice. The remainder are lumped in with the
error term. The model actually estimated, then, is given by equation (3), which
includes k, regressors. X, is given by the first k, columns of X3, B9 is given
by the first k, elements of §°, and uy, equals the sum of i,, and that part of
the regression function that is ignored when the sample size is n. Within this
framework, the parameter 2 is “true” in a clear and meaningful sense. Notice
that the LS estimator of 82 is biased in this model if the included and excluded
regressors are collinear, as is likely. It still may be strongly consistent, how-
ever, since the small sample bias may be reduced as more and more regressors
are included in the model.

For most economic applications, asymptotics based on an increasing num-
ber of regressors mimic reality closer than do conventional asymptotics. For
consistency results, this makes increasing regressor asymptotics preferable.
Such asymptotics also allow one to explore the effects of different ratios of the
number of regressors to the number of observations, and the effects of lumping
part of the regression function in with the error (see Huber’s discussion,
pp. 16470 of [12], especially with respect to bias). On the other hand, it is
not necessarily the case that increasing regressor asymptotics yield better
distributional approximations for statistics than do conventional asymp-
totics, and such approximations constitute the most important use of asymp-
totic theory. Thus, both increasing regressor asymptotics and conventional
asymptotics have a role to play in econometric theory.

We now return to the analysis of the model given by equation (3). This
model may be generated by a model of the type given in equation (4), or it may
arise in some other manner. We assume

(A1) {y,,x,» is a strong mixing sequence.

The distance between an estimator and its estimand is measured by the
supremum norm, denoted |||, of their difference. The supremum norm of a
vector or matrix is simply the greatest modulus of any of its elements.

The regressor variables are assumed to satisfy conditions that ensure a
certain degree of independent variability:

(A2) For any given m > 1, X/, X, is nonsingular for n sufficiently large,
almost surely (a-s.),

(A3) K (XX 1) 7Y 2= Oaas,
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(A4)supk leul<ooas Vi=1,2...,

nJ=1

where k, is the number of regressors when the sample size is n, and X, is
the (n — m + 1) x k, matrix of regressors for observations m, m +1,...,n
when the sample size is n. In the case of a fixed number of regressors, (A4)
1s redundant, and (A2) and (A3) reduce to a condition commonly used 1n
consistency proofs, viz., that (X},X,,) "' exists and converges to the 0 matrix
a.s. (See Anderson & Taylor [1] and Lai, Robbins, & Wei [17, 18].) Note
that this assumption eliminates the possibility of lack of identification due
to deficient rank of the regressor matrix.
The LS estimator [3,, 1s defined as

Bo= (XX 1) "X Y1m forn=1,2,.. ..

We consider the convergence to zero of the difference between [?,, and vectors
B, in R*, for n=1,2,.... Of course, the vectors {f,} of most interest are
the true regression parameter vectors {B°}.> We consider arbitrary vectors
{B,} (which could be taken to be the true parameter vectors {$°}), however,
because in the case where the LS estimator is not strongly consistent, we are
still interested in its behavior. Does it converge to the true parameter vector
with probability between zero and one? Does it converge to some incorrect
parameter vector with positive probability? Or, does it diverge with positive
probability? To answer these questions, we need to know the probability
that [|B, — B,]| == 0, both for the true parameter vectors {2}, and for
arbitrary vectors {f,}.

The vectors {f,}, which we consider, are assumed to be sufficiently well
behaved as n — oo that the corresponding “regression function” for the ith
observation, viz., x;"f, (where x; = (x}},...,x} )), does not blow-up as
additional regressors are added:

(A5) sup|x¥'B,| <ooas, Vi=12....

nz1l

If the number of regressors is fixed, then AS is redundant.
We now prove the main result for the LS estimator §,.

THEOREM 2 Let {B,} be any sequence of vectors (in R* for all n) that
satisfies AS. Then, under assumptions A1-A4,

1B, = Bl >0 )

with probability zero or probability one. In consequence, if {B2} is the sequence
of true parameter vectors, then P, is strongly consistent for {B%} (e,
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||,Bn Bl === 0 as), or B. converges to some other sequence of parameter
vectors {BL} with probability one (i.e., ||B, — BY| > 0 as.), or B. diverges
with probability one (i.e., for all sequences {B,}, Hﬁn Bal| 252 0 with
probability one).

The proof of Theorem 2 is in Section 4.

Theorem 2 may be viewed as a possibility theorem. The result of the
theorem states that it is possibie to categorize the convergence properties of
the LS estimator into just three categories. The underlying stochastic environ-
ment determines which category obtains. The first category is that of strong
consistency. Numerous papers are devoted to establishing conditions which
ensure that the LS estimator falls in this category (see the Introduction for
references). The second and third categories describe the only possible incon-
sistent behavior of the LS estimator, viz., either almost sure convergence to
some sequence of parameter vectors {f3} which is not true, or almost sure
divergence. This categorization provides immediate information about the
behavior of the LS estimator under misspecification. It also may be useful
in extending known results for strong consistency, since the demonstration
that f5, converges to the true parameter sequence with some positive prob-
ability, combined with Theorem 2, yields strong consistency.

The three categories of Theorem 2 can be exemplified quite easily if we
consider a fixed number of regressors. Suppose the true model is given by
(3) with k, = k and B2 = B°, for all n. Assume the regressors are indepen-
dent of the errors, both are independent identically distributed (iid), the errors
have finite mean, and A3 holds. In this case, it is well known that the LS
estimator 1s strongly consistent. Alternatively, suppose the true model is as
above, but the underlying regressors X ,, are measured with error. That is,
the observed regressors are X;, = X, + V,, where X,, and V;, are (n x k)
matrices of ud, finite mean random variables which are independent of xy,,.
In this case, the LS estimator ,B,, = (X, X,,) 'X\.v.. converges with prob-
ability one to B° — (E(1/mX,,X )" E((/mX,Vi)B® # B°. This illus-
trates the second category of Theorem 2. The third category arises, for
example, if the model is as above (with X,, observed) but the errors have
infinite mean. Then,

A 1 _11
1B = (3 X00) % K +

1 -1 n—>oo _
(; ,lnX1n> (EXIIXII)

n-o0

a.s. by the strong law of large numbers (SLLN), and ||(1/m)X",uy,|| — o0
a.s. by the converse to the SLLN. Hence ﬁ diverges almost surely.
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We mention that the results of Theorem 2 may be of particular interest
in models with unidentified parameters, perhaps due to endogeneity of some
regressors. In such models it might be thought that the LS estimator converges
to different points in the set of observationally equivalent, true, parameter
vectors with nontrivial probabilities. The theorem implies that this is in-
correct—the probability of convergence to any such parameter value 1s either
0 or 1. This phenomena is nicely illustrated by a result of Phillips [20].
Consider a simultaneous equation that is unidentified due to the lack of
association between the imcluded endogenous variables and the excluded
exogenous variables. (Note, this situation is quite similar to our second exam-
ple.) The LS estimator of the endogenous variables coefficients falls in cate-
gory two, that is, almost sure convergence to the wrong parameter vector,
unless there is no simultaneity present (i.e., unless the true endogenous vari-
ables parameter vector equals zero). In the latter case, the LS estimator con-
verges to the true parameter vector almost surely. Interestingly, as Phullips
[207] shows, LIML and 2SLS do not exhibit the same performance in the
latter case—their distributions are invariant with respect to the sample size
(under the assumption of normal errors).

4. PROOFS

PROOF OF THEOREM 1. Let 4 be the o-field generated by the whole
sequence of random vectors {(Z,). We will show

P(4~B)—P(A)PB)=0, VAeT and¥ BeA. (6)

If true, take B = 4 (¢ 7 < %) to get P(4) = P(4)?, and P(4) equals 0 or 1,
as desired. .

To show (6), let B € #,, and 4 € 7. Then the strong mixing of {Z,> and
the observation that 4 € B, ,, imply

|P(4 ~ B) — P(A)P(B)| < ofs). )
(7) holds for all s, and afs) | 0 as s — oo, hence
|P(A n B)— P(A)P(B)| =0, forAeJ and Bep,, for all I ®

Let /4 = {Ce B:P(4 A C)— P(A)P(C) =0,V 4 e T}. By (8)

M D U B
1=1
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Now, the monotone class theorem applies because (i) | )i, %#,;, being an
increasing union of fields, is a field, and (ii) the continuity of P implies that
A is closed under increasing unions (and by simple algebra .# is closed
under complements as well). Thus

%)

=1

./i{Da(

where o(| )2, 4,)) is the o-field generated by | Ji2; 4, But, o({ 2, B,) =
B, s0 M = B and (6) follows. [

Before proving Theorem 2, we state a lemma. Let v" = y, — xp,, and
= (),...,t}),for1 <r < s < n Define G to be the set of sample paths @
for which the conditions defined in A2—-AS5 hold. Note, P(G) = 1. Let S; =
({)io:H(XanX 1) X0 2225 0}, and Sy = {0 | (XX o) ™ Xpethi| 2755

LEMMA 1. For all positive integers m,G N S; = G N S,,,.

PROOF OF THEOREM 2. Let H = {w:||f, — B,|| === 0}. It is easy
to see that GN H=G N S,. Lemma 1 gives GNH=Gn S,, for m=
1,2,...,where S,,, € B, the o-field generated by (y,,x,),i=mm+ 1,....
Further, G n H = G N lim,,,, S,,,, where lim,,_, S,,, = lim,_ , ()2 S
€7 = (2, B, Since P(G) =1, we get P(H) = P(lim,,_, S,,), and the
latter is 0 or 1 by Al and Theorem 1, since lim,, .., S;,, is a tail event. m

PROOF OF LEMMA 1. Define S5, = {2 [[(X1X 1) ™ X ptli]] 222> 0}
We show (i) G S; = G N S3,,, and (ii) G N S5, = G N S,,,. To show (i) it
suffices to show, for any fixed m,

n—=w

||(X/1,IX1”)_lX';,mv'{(m_l)” I 0 fOI' au w e G, (9)

where X1, is the (m — 1) x k, matrix of regressors for observations 1,...,
m — 1 when the sample size is n. Let C = X},X,,, ¢” be the (i,j)th element
of C™1, and #, be the rth element of the k,-vector (X},X,,) ' X7, 0 gm-1)-
Then,

kn m—1
maxln,| =Y ¥ Xy, — xB,)
r<kn I=1i=1
1 m—1 1 kn , oo
<kl 1S (2 ) 2= 0, (10
=1 n I=1

for all w € G, using (A3)—(AS). This gives (9), and (i) is proved.
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To show (ii), we introduce the following notation: 4 = X/, X,,,, B = X"

mn> 1m>
d= X, Vo, g=C 'd, and Q=(I,,_, — BC 'B)™!, where I,_, is the
(m — 1)-dimensional identity matrix, and the dependence on n of each of the

quantities is suppressed for notational simplicity. First we show:
lgll == 0 imphes |47d| =0, VoweG. 1)
Assume |jg|| " 0, for all ® € G. By (A2) we can take n sufficiently large

that 47! exists. Then, a well-known (and easily verified) equality for matrix
inverses yields

A '=(C-BB '=C'+C'B(,.,—BC 'B)"'BC™!, 12)
and so,
l4=1d] < [lc=2d] + ||c~ B QBC1d]. 13)
Also,
kn k,
[[BC™'B||=max | > x,c"x,
rs<mil=1)=1

= 1 kn n— o
<ol max (o 8 l)( i) =20 qo

for all w € G, by assumptions (A3) and (A4) where x,, is the (r, ))th element
of B and ¢ is the (I,j)th element of C™!. Ths, plus the fact that Q has a
fixed number of elements for all n, mphes ||Q|| — 1, for all w € G. Thus,
we have

m=1m—
e B os <max $"FS § e amal
<@lc-lol - (S g Skl) =m0 a9

for all w € G, where g, 1s the (i, ))th element of Q, g is the sth element of g, and
the convergence to zero follows using (A3), (A4), the result ||Q|| -"==, I,
and the assumption that ||g]] =~ 0. Equations (13)and (15) yield the desired
result (11).

The converse of (11) follows by the same argument as used to prove (11),
noting that

C'=A+BB '=A4"'-A'B(,., + BA 'B) B4, (16)
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n—=o

and provided kZ||A™Y|| — 0, for all w € G. The latter follows using (12),
the triangle inequality, and the result ||C™*B'QBC™!|| == 0 as shown by
an argument analogous to that of (15). [ |
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NOTES

1 Note, if one views the economy as evolving via some mfinite sequence of events each of
which alters, irrevocably, the future course of the economy, then the strong mixing assumption
is not appropriate

2. For the true parameter vectors {#7} of equation (3) to be meaningful, either the model of
(3) must be mterpretable m terms of a more complete model, such as that of (4), or some
assumptions need to be placed on the errors u;,—for example, assumptions of mean zero,
median zero, or identical distribution If the model of (3) or the model which generates (3) 1s
misspecified, then {80} may lose 1ts meaning, but we are still mterested in the behavior of the
LS estimator (since the behavior of estimators under misspecification 1s an 1mportant property
m general) For increased generality, then, no assumptions are placed on the errors in (3), and
the results below hold whether or not the model 1s correctly specified
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