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STABILITY COMPARISONS OF ESTIMATORS
By DoNnaLp W. K. ANDREWS'

This paper investigates a property of estimators called stability. The stabihty exponent
of an estimator 1s defined to be a measure of the effect of any single observation in the
sample on the realized value of the estimator. High stability often is desirable for robustness
against misspecification and against highly variable observations.

Stability exponents are determined and compared for a wide variety of estimators and
econometric models. They are found to depend on the maximal moment exponent (i.e.,
the number of finite moments) of the estimator’s influence curve. Since 1t is possible often
to construct estimators with specified influence curves, estimators with different stability
exponents can be constructed
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1 INTRODUCTION AND CONCLUSION

THIS PAPER INVESTIGATES a property of estimators called stability. The stability
exponent of an estimator is a measure of the magnitude of the effect of any single
observation in the sample on the realized value of the estimator. A number of
reasons related to robustness suggest that often it is desirable for an estimator
to be relatively insensitive to any particular observation in the sample, i.e., to
have high stability. In addition, it is useful for diagnostic purposes to have
knowledge of the stability exponents of different estimators, in order to know
which estimators are likely to rely more heavily on some single observation.

The paper is organized as follows: Section 1 introduces the basicidea contained
in the paper, motivates it, and summarizes the results in an informal manner.
Section 2 presents definitions, assumptions, and the general results. For purposes
of illustration, the linear regression model with the least squares estimator is used
as a running example throughout this section.' Section 3 discusses numerous
additional applications of the general results. An Appendix contains proofs of
the results given in Section 2.

In words, the stability exponent of an estimator is the greatest normalization
factor such that the normalized deviation of the estimator, due to the deletion
of a single observation, converges to zero with probability one as the sample size
goes to infinity, for any sequence of deletions. More specifically, we make the
following definition.

DeriniTION: The stability exponent of an estimator 6 E{é"\,,: n=1,2,...} of
some R’-valued parameter 6 is defined to be

(1.1)  A(B, P)=sup {¢e R: n(8,— b, ) — 0 a.s. [P], V{k,}},
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where én,k,, is the estimator applied to the sample of size n with the k,th
observation deleted, 0 is a J-vector of zeros, a.s. abbreviates almost surely, P is
the underlying probability distribution generating the data, and {k,}=
{k.:k,<n,n=1,2,..}is any fixed sequence of indices of deleted observations,
one for each sample size.

Thus, the stability exponent of an estimator is an asymptotic measure of the
sensitivity of the estimator to observations actually in the sample? (rather than
to nonrandom hypothetical observations, as is measured by the influence curve;
see Hampel (1974)). Under fairly general conditions, stability exponents lie
between zero and one, with the extreme values being attained by certain estimators.
The results of this paper concern the determination of the stability exponents of
estimators in a fairly broad class, and for an extensive array of different
econometric models. Among others, models for which the results apply include:
linear and nonlinear regression (with fixed or random regressors), linear and
nonlinear simultaneous equations, panel data, and limited dependent variable
(such as logit, probit, truncated and censored regression, and self-selection).

The class of estimators considered in this paper is defined to include all
estimators that can be written as solutions (for 8) to a system of equations:

n

(12) ¥ n(Z,0)=0,

1=

where r,( -, -) is a specified function that defines the estimator, and Z, is a random
vector of observed variables comprising the ith observation (see Huber (1967)).
Note that Z, may include variables in Z; for I <i. For example, in time seried
regression and simultaneous equations models, Z, may include lagged variables.
The number of estimators that can be written in the form (1.2) is quite large. For
example, the following estimators are included: least squares, maximum likeli-
hood (including full-information (FIML) and limited information (LIML)
estimators of simultaneous equations models), instrumental variables, M-, and
various multi-stage estimators such as Zellner's (1962) seemingly unrelated
regressions estimator, Heckman’s (1979) estimator of censored regression and
self-selection models, two stage least squares (2SLS), and three stage least squares
(3SLS). These examples are discussed below in Section 3.

Under suitable regularity conditions (outlined below), it is possible to write
estimators in the class defined above in a linearized form:

A 1 n
(13) on—:oo_ln; Z A~lr1(Zla 00);
=1

2 The asympotics used here are analogous to the standard asymptotics based on weak convergence
(1 e, convergence in distribution), For example, suppose one has two estimators that can be normalized
to have standard normal asymptotic distributions. The fimite sample variabilities of these two estimators
usually are compared by comparing the relative magnitudes of the two normalization factors Similarly,
the finite sample stability properties of two estimators are compared by comparing the normalization
factors that are, by definition, their stability exponents.
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where 6, is the estimand, I, is a J x J random matrix equal to the identity matrix
plus a matrix of small order one as n—>o as., and A is a JxJ nonrandom
nonsingular matrix. If r,(-,-) is independent of i for i sufficiently large, then
A7'r(z, 8,) is the influence curve of 6,, evaluated at z, as defined by Hampel (1974).

It is shown that the stability exponent of 6, is directly related to the maximal
moment exponent (i.e., the number of finite moments) of r,(Z,, 6,), i=1,2,....
In particular, if ry and rp are stochastically greater than or equal to, and less
than or equaAl to, |r(Z, 8,)|, for all i=1,2,..., respectively, then the stability
exponent of 6, lies in the interval [1 —1/p, 1 —1/q], where ry and r; have maximal
moment exponents equal to p and g, respectively. If p equals g, the stability
exponent of 8, is established. Otherwise, the stability exponent of 8, is given by
a more complicated expression involving the tail probabilities of the random
vectors r,(Z,, 60,), i=1,2,....

Thus, the qualitative result is obtained that the stability exponent of an estimator
depends on the maximal moment exponent of its linearized form (or influence
curve)—the greater the maximal moment exponent, the greater the stability
exponent. Further, there is no upper bound beyond which additional moments
no longer increase the stability exponent of the estimator. Since r,(-, -) is chosen
by the investigator, it is often straightforward to obtain estimators with a specified
linearized form (e.g., see Krasker and Welsch (1982, 1985) and Stefanski, Ruppert,
and Carroll (1985)). Hence, estimators with different stability exponents can be
constructed.

It should be noted that stability results depend on the maximal moment
exponent of the linearized estimator, not on the maximal moment exponent of
the estimator itself. The latter has received considerable attention in the
econometrics literature, e.g., see Kinal (1980), since common estimators of simul-
taneous equations models have fewer than all moments finite even with normal
errors. These results have no clear implications for stability since they deal with
moments of the estimator rather than moments of its linearized form.

The examples of Section 3 provide a variety of models, estimators, and stability
characteristics of these estimators. We briefly summarize the results here: In the
linear regression model with fixed regressors, the least squares (LS) estimator
has stability exponent that depends on the maximal moment exponent of the
errors. On the other hand, Huber (1973) M-estimators have the maximum stability
exponent of one in this model, regardless of the distribution of the errors. In the
linear regression model with random regressors, the LS estimator has stability
exponent that depends on the maximal moment exponent of the errors and the
regressors, whichever is smaller. In contrast, Krasker and Welsch’s (1982)
bounded influence regression estimator has stability exponent equal to one for
all error and regressor distributions. Results for the LS estimator and M-estimators
in the nonlinear regression model parallel those in the linear model, except the
dependence on the maximal moment exponent of the regressors, when applicable,
is replaced by that of the derivative of the regression function (with respect to
the parameter vector) evaluated at the true parameter.

The instrumental variables (IV) estimator of a single equation from a system
of linear eauations has stability exponent that depends on the maximal moment
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exponent of the errors and the instruments. In comparison, Krasker and Welsch’s
(1985) weighted instrumental variables (WIV) estimator for this model has a
bounded influence function, and hence, has stability exponent equal to one—the
maximum—regardless of the distribution of the errors and instruments.

The stability exponents of maximum likelihood (ML) and pseudo-ML
estimators depend on the maximal moment exponents of their score functions.
In logit and probit models, this corresponds to the maximal moment exponent
of the regressors. In the censored regression model, it corresponds to the maximal
moment exponent of the errors and regressors. Heckman’s (1979) two-stage
estimator of this model has the same stability properties as the ML estimator.
Similarly, the ML estimator and Zellner’s (1962) feasible Aitken estimator for
the seemingly unrelated nonlinear regressions model have the same stability
properties. Their stability exponents depend on the maximal moment exponent
of the errors and the derivatives of the regression functions (with respect to the
parameter vector) evaluated at the true parameter. Following the examples of
Section 3, the calculation of stability exponents of other estimators for other
models is straightforward.

Clearly, if rn(Z, 6,), i=1,2,..., are uniformly bounded, then all of their
moments exist and the maximum possible value for the stability exponent is
attained regardless of the true distribution of the data. Bounded influence
estimators, referred to above, are characterized by this property. In contrast,
other estimators have stability exponents that depend on the true underlying
probability distribution, since the true distribution determines the maximal
moment exponent of r,(Z, 6,), i=1,2,.... This is illustrated by the examples
of Section 3.

For reasons discussed below, high stability often is a desirable property of
estimators. Hence, it may be of interest to determine whether an estimator has
high stability for a given problem. Two factors are pertinent here. First, the
stability exponent of an estimator generally depends on the true distribution of
the data, and second, in practice this true distribution (or a parametric family
containing it) is never known precisely. Thus, one can be certain that an estimator
has high stability in the context at hand, only if it has a high stability exponent
for all distributions close to the postulated true distribution or true parametric
family of distributions. This leads to the following definition.

DEFINITION: An estimator is stability-robust at a distribution P (with respect
to some given topology) if the infimum of its stability exponent over some
neighborhood of P is positive. Further, an estimator is strongly stability-robust
at P if its stability exponent equals one, the maximum, for all distributions in
some neighborhood of P.

Clearly, boynded influence estimators are strongly stability-robust. Conversely,
in independent identically distributed (i.i.d.) models it is not hard to show that
for any estimator of the form (1.2) (i.e., any M-estimator) and any distribution
P, there is a distribution P’ arbitrarily close to P (in terms of the weak topology
on the marginal distributions) for which the maximal moment exponent of
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r(Z, 8,) is less than or equal to one. (See Hampel (1971) for a justification of
the choice of the weak topology.) That is, the estimator has stability exponent
equal to zero at P’. Thus, an estimator is not stability-robust at any distribution,
if it has an unbounded influence function.

To extend this converse result to the case of models with independent nonidenti-
cally distributed (i.n.i.d.) observations is not too difficult. But for models with
dependent observations one needs to find an appropriate topology or measure
of closeness of distributions of the whole sequence of observations, Z,,i=1,2,....
This is much less straightforward than the ii.d. or i.n.i.d. cases, but several
possibilities have been explored in the robustness literature (see Andrews
(1984b, 1984c) and Papantoni-Kazakos and Grey (1979)). For the neighborhoods
considered by Andrews, the same converse result as above holds.

The above conditions for stability-robustness of an estimator can be compared
to Hampel’s (1971) classical qualitative robustness concept. In i.i.d. location and
linear regression models, estimators of form (1.2) are qualitatively robust if and
only if their influence function is bounded (and their estimating equations
have a unique solution in the limit). That is, the conditions for qualitative
robustness and stability-robustness are equivalent. Thus, we see that for M-
estimators the stability property considered in this paper is closely related
to the classical robustness properties of qualitative robustness and bounded
influence.

As mentioned above, several reasons related to robustness suggest that high
stability is often a desirable property for estimators. We now discuss these reasons.
First, economic data are rarely so “clean’ that it is prudent to put great weight
on a single observation. For example, the imprecisions of economic data are
manifested by the continual revisions made to macroeconomic time series, and
the subjective nature of some microeconomic survey data.

Several factors contribute to this imprecision: There is pure measurement error
at the data collection stage. The correspondence between observed or *“construc-
ted” variables and the variables that are relevant from the perspective of economic
theory is usually imperfect, and sometimes considerably so. The precise definitions
of variables may be problematic even from a theoretical perspective, as exemp-
lified by the money supply and market shares (in a nebulous market). Finally,
recording errors made in the stages of data collection, transmission, and analysis
are inevitable. Such errors are often beyond the control of the econometrician
who might not have any input into the collection and transmission stages. In
fact, the econometrician might have only scant knowledge of the degree of
imprecision of the data. In such cases, it is unwise to let any single observation
have great weight in determining an estimator’s value.

The imprecision of econometric models also adds to the desirability of high
stability. Economic theory cannot yield complete model specifications, so even
in the presence of a simple true model, a specified model is likely to be just an
approximation. Moreover, the existence of a simple true model is usually question-
able. In most cases, econometric models are approximations, at best, of much
more complicated socio-economic phenomena. In this context, an observation
that appears to be highly informative, may be so only because of a spuriously
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precise specification of the model. For example, in a linear regression model an
observation that is an outlier in the space of regressor variables can be highly
informative. That is, it can greatly reduce estimator variances. If it is recognized,
however, that the extension of the regression function to the outlying observation
may be nonlinear with unknown functional form, then the informative content
of the observation is reduced drastically. In such a case, the effect of the
observation on the computed variance of an estimator with low stability exponent
is spurious and deceptive. Such an observation also can cause a significant bias
for an estimator with a low stability exponent. An estimator with a higher stability
exponent is more robust to such specification difficulties because no single
observation is given excessive weight.

A third reason for interest in high stability is that, in some models, estimators
that are highly sensitive to a single observation perform quite poorly even if the
model is specified correctly and the variables are measured without error. This
phenomena may occur if the observations are highly variable. In this case, any
single observation is potentially a randomly generated outlier with little informa-
tive content, and hence, should not be given disproportionate weight. For example,
in a regression model or simultaneous equations model with fat-tailed errors, the
least squares (LS) estimator has a low stability exponent, because an outlying
error realization can dramatically alter the value of the estimator. As expected,
the relative efficiency of the LS estimator is quite poor in this situation. On the
other hand, various robust procedures have high stability, and consequently,
perform quite well even with highly variable observations. The statistical literature
on robustness has analyzed problems of this sort in some detail; see Huber (1981).

The above arguments for high stability are not always applicable, of course,
and so, estimators with high stability are not always preferable. For diagnostic
purposes, however, it still may be useful to know which estimation procedures
are more likely to weight some single observation heavily. Hence, even in this
case, estimaror stability is of interest.

Note that stability comparisons can be made between different estimators for
the same model or between estimators of different models. If an econometrician
is more familiar with one model than another, stability comparisons of the latter
sort may yield useful qualitative information about the second estimator’s sensitiv-
ity to single observations in the sample, based on knowledge of the first estimator’s
sensitivity.

The stability exponent of an estimator is based on the deviations é,,— 5,,,,(,
k=1,..., n In the literature these deviations have been found useful for other
related purposes. In analyzing the behavior of the least squares estimator in the
linear regression model, Cook (1977, 1979) and Belesley, Kuh, and Welsch (1980)
use these deviations to help detect influential observations. Also, these deviations
are proportional to the deviations of an estimator from its jackknifed pseudo-
values. Tukey (1958) has suggested a nonparametric estimator of the variance of
the original estimator, (3,,, based on the latter deviations (also see Miller (1974)).
The relationship between the stability exponent and the influence curve, a very
important tool of robust statistics, has been discussed above. A finite sample
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analogue of the influence curve suggested by Tukey (1970), viz., the sensitivity
curve, also is related to stability. If we denote the sensitivity curve of (3,, formed
using all n observations except the kth, by SC,,(z), then SC,,(z) evaluated at
the deleted observation Z, is proportional to the deviation 5,.—0,,,,(. That is,
Tukey’s finite sample sensitivity curve (constructed with an observation deleted)
evaluated at points in the actual sample is the basis of the stability exponent.

2. GENERAL RESULTS
2.1. Asymptotic Framework and Estimator Assumptions

The general asymptotic framework considered in this paper consists of an
infinite sequence {Z,}={Z:i=1,2,...} of random vectors of arbitrary
dimensions. A sample of size n corresponds to the observation of the first n terms
in this sequence. For increased generality, the ith term Z, is allowed to include
elements of the random vectors Z,, for I <i. Thus, Z, may include lagged variables.
The distribution of the sequence {Z,} is dencted P. All probabilistic statements
below are made for {Z,} distributed according to P. Thus, “almost surely” means
“almost surely under P.”

The sequence {Z,} is assumed to be weakly dependent over time. That is, the
dependence between random vectors dies out as the difference in subscripts of
the variables becomes infinitely large. (For the case of cross-sectional data, the
observations often are independent and this requirement is satisfied.) More
precisely, {Z,} is assumed to be strong mixing. This is a realistic assumption for
many economic time-series (and cross-section) situations. It is considerably
weaker than other assumptions, such as independence, m-dependence, or
autoregressive moving average (ARMA) structure (see Withers (1981), but cf.
Andrews (1984a, 1985a)), that often are used in econometric models. Moreover,
strong mixing does not imply stationarity or any assumption related to identical
distributions.

Strong mixing is defined as follows: Let {Q,:i=1,2,...} be a sequence of
random vectors. Let %, denote the o-field generated by Q,, Q.14 ..., Q for
1si<j<oo. That is, %, is the collection of all events determined by
Q. Qu1,---, Q. {Q} is strong mixing if a(s)] as s—>oco, where a(s) are the
strong mixing numbers of {Q,} defined by
(21)  a(s)=sup sup |P(An B)— P(A)P(B)|.

Jj=1 AeBy ;,BeEB 450
Note that if {Q,} are independent, then a(s) =0, Vs =1; if {Q,} are m-dependent,
then a(s)=0, Vs> m; and if {Q,} have ARMA structure with absolutely con-
tinuous innovations, then a(s) declines to zero at an exponential rate as s>
(see Withers (1981)). We make the following assumption.

AssUMPTION Al: {Z} is strong mixing with strong mixing numbers «a(s) that
satisfy a(s) = o(s™*/* V) as s>, for some a =1 (where a =1 requires a(s)=0
Jor s sufficiently large).
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We consider the case where the investigator postulates a model that purports
to describe some feature of the true distribution P of the data. This model is
assumed to depend upon an unknown parameter vector 6. An estimator 0, is
used by the investigator to estimate 6. It may be the case that the parametric
model is correctly specified, i.e., it correctly corresponds to some aspect of the
true distribution P. In this case, a “true” parameter vector 6, is unambiguously
defined. Alternatively, the parametric model may be misspecified. Depending
upon the type of misspecification, a “true” parameter vector 6, may or may not
be well-defined. Fortunately, the possible difficulties in defining a true parameter
vector can be disregarded in the present analysis, provided the estimator con-
sidered converges to some fixed point (which might depend upon the estimation
procedure itself).® Thus, the results allow one to determine the affect of different
forms of misspecification on the stability exponent of the estimator.

Once an estimator has been chosen, the parametric model specified by the
investigator has no impact on the analysis of the stability exponent. Hence, the
assumptions imposed below are stated in terms of the stochastic behavior of the
estimating equations under the true distribution P, and make no mention of the
parametric model. The assumptions we use are not the most primitive possible.
That is, we do not place separate assumptions on P and on the estimating
equations, but rather, on their interaction. Although the use of primitive assump-
tions is desirable in many contexts, their use in the present context would detract
from the main point of the paper and weaken its focus. More primitive assump-
tions than those given can be deduced in given examples either from the existing
literature or from first principles.

We now turn to two simple examples that we carry through this section to
illustrate the more general framework and results. Section 3 discusses other
applications of the results of this section. The first example considered here is
the classical linear regression (CLR) model,

(2.2) Yo =x0,+u, (i=1,2,...,n),

where y, is the observed dependent variable, x, is the observed R ’-vector of fixed
regressors, u, is an i.i.d., mean zero, unobserved error, and 6, is an R’-valued
unknown parameter vector. In this case, Z, =(y, x!)’. We suppose that the
regressors are uniformly bounded, and that the JxJ matrix H=
lim, . (1/n) ¥7_, xx, exists and is nonsingular. Note that this is only a partial
description of the true distribution P, since the exact sequence of regressors and
the error distribution are not specified. The parametric model specified by the
investigator may or may not correspond to the true distribution P described above.

The second example we consider is the random regressor linear regression
(RRLR) model. This model is identical to the CLR model except the regressors

? One solution to the problem of defining the estimand in a misspecified model is to take the
estimand 6, to be the a.s. limit of the estimator under P (e g., see Huber (1973), Bickel and Lehmann
(1975), Whate (1980, 1982), and Maronna and Yohai (1981)). That 15, 6, may be defined as the unique
solution to lim,_ . (1/n) Z;l Epr,(6) =0. Depending upon the circumstance, this solution may be
more or less satisfactory.
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are assumed to be random, not fixed. We assume the regressors are i.i.d. and
independent of the errors, and H.= Ex.x; is nonsingular. Clearly, Assumption
Al is satisfied in both of these models with @ = 1. Note that the rather restrictive
assumptions placed on these models are for purposes of exposition; the general
results given below allow them to be relaxed considerably.

The class of estimators considered for the general model includes all estimators
that can be written as (measurable) solutions for 8 to a system of equations of
the form

n

(2.3) Y r(Z,0)=0,
=1

for some R’-valued (measurable) functions r,(-,-),i=1,2,..., that are defined
on some neighborhood of the true parameter 6,. For notational convenience we
abbreviate r,(Z,, 8) by r,(8). The jth element of r,(9) is denoted r,(8). Section
3 shows that many well-known estimators of econometric models can be written
as such.

For the two models used as examples in this section, we consider the least
squares (LS) estimator. For this estimator,

(2'4) rl(Zu o)z(yl_x:o)xtgrll-s(o)~

Results concerning the stability of an estimator 6, are of interest only if the
estimator satisfies certain minimal conditions regarding its performance. One
such condition is the following.

ASSUMPTION Bi:(a) {r,(6)} is sufficiently well-defined that a (measurable)
solution 6, to (2.3) exists (though it is not necessarily unique) for n sufficiently
large a.s., and 6, -6, as n> as., for some 6.

(b) Further, én,kn -0, as n—>0 ass., for any fixed sequence of positive integers
{k,} with k,<n, Vn.

Conditions that imply almost sure convergence of the estimator 6, usually also
imply almost sure convergence of 6,, , the estimator that ignores the k,th
observation. Most estimators considered in econometrics satisfy these conditions
under fairly broad assumptions on the underlying model. Such assumptions can
be found in the literature. In particular, the LS estimator for the CLR and RRLR
models satisfies Bl; see Anderson and Taylor (1979), Lai, Robbins, and Wei
(1979), and White (1980).

We now state several definitions used below.

DEFINITION: The maximal moment exponent of a random variable (rv) X is
given by
(2.5) g=sup{8=0: F|X|* <co}.

If E|X|° =00 (<) for all §>0, the maximal moment exponent of X is defined
to be 0(c0).
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Thus, every rv has a unique maximal moment exponent g, and g [0, ]. For
examples, a normal rv has a maximal moment exponent equal to ©, and a ¢ rv
with d degrees of freedom has a maximal moment exponent equal to d.

DeFINITION: The maximal moment exponent of a random vector or matrix is
defined to be the smallest maximal moment exponent of any of its elements.

For a random vector or matrix X, let |X| denote X with all of its elements
replaced by their absolute values, and || X | denote the Euclidean norm of X.

DEFINITION: A 1v X is said to be stochastically less (greater) than or equal to
a rv Y, and we write X <%7Y (X =57Y), if Fx(x)= Fy(x) (Fx(x)< Fy(x)),
VxeR, where Fx and F, are the distribution functions (df’s) of X and Y,
respectively. The same term is applied to random vectors and matrices if the
above condition is satisfied element by element.

Next we construct a random vector, ry, that is stochastically greater than or
equal to |7,(8,)| for all i. Let Fy,(w) be a J-vector with Jjth element given by
inf,»; P(|r,(8,)|<w), for j=1,...,J and we R. Let r,, be a random J-vector
whose elements have univariate df’s given by the vector Fy(w).

DeriniTion: The maximal moment exponent of ry is denoted by p.

The maximal moment exponent p turns out to be the key determinant of the
stability exponent A(é; P) in many situations. It also arises in several regularity
assumptions that are used in deriving the results.

One of the more primitive assumptions usually needed for Assumption Bl(a)
to hold, i.e., for convergence of é, to 8o, is that the expectation of the defining
equations evaluated at 6, be zero, or approach zero, as the sample size increases.
We need to make this assumption explicit.

ASSUMPTION B2: n” ' 7| Er,(8,) >"~°0, Vv <1-1/(2A (p/a)), where “ »”’
is the minimum operator.

In the CLR and RRLR models Er;°(6,)=0, so B2 is satisfied. Crowder (1986)
has shown that if (1/n)Y.)_, Er,(8,) is uniformly bounded away from zero, and
the strong law of large numbers (SLLN) applies to {r,(8,)}, then 6, 5 6, a.s. Thus,
in the presence of B3 below (which guarantees that the SLLN applies), B2 is
almost an implication of B1(a).

The next assumption requires that |r,(8,)| for i=1,2,... are stochastically
dominated by an L**~" random vector (where a is a measure of the dependence
of the sequence {Z,}; see Al).

AsSUMPTION B3: E|ry[**™" <o, where o is a J-vector of infinities. Thus, p>
2a—1.
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Note that B3 rules out the case where some element of ry is point mass at
infinity. In general, if B3 does not hold, then either 8, is strongly cousistent, but
it is somewhat more difficult than usual to prove (e.g., see Hannan and Kanter
(1977)), or 8, is not strongly consistent (as exemplified by the LS estimator when
the errors in the CLR or RRLR model have undefined means). In consequence,
B3, or conditions that imply B3, is a common assumption in the literature (e.g.,
see Assumptions 3 and 5 of Burguete, Gallant, and Souza (1982, pp. 162 and 167)).

The LS estimator in the CLR and RRLR models satisfies B3 since
re? <57 |uy| - sup,=, |x| and Elu|<o in the CLR model, and ry <57 |u; - x4
and E|u, - x;| <0 in the RRLR model. Note that since p is not necessarily greater
than or equal to 2, 6, is not necessarily asymptotically normal.

We now construct a random matrix, Dr, that is stochastically greater than or
equal to |3r,(8,)/6| for all i. Let Fp,(w), we R, be a JxJ matrix with ([, j)th
element inf,.., P(|or,(6,)/86,|<w), for I, j=1,...,J. Let Dr be a J xJ random
matrix whose elements have univariate df’s given by the matrix Fp,(w). Dr is
used to state a uniform smoothness condition or r,(8) at 8,. We make the following
assumption.

AssUMPTION B4(a): A=lim,..(1/n)Y"_, E 8r,(8,)/88 exists and is nonsin-
gular.
(b) E| Dr|" <o, for some n satisfying n=2 and n> a.

(Note that the assumption n =2 can be relaxed in the results that follow.)
Assumption B4(a) is common in the literature (e.g., see Assumption 6 of Burguete
et al. (1982, p.169)) because it is necessary for asymptotic normality (with a
nonsingular covariance matrix) using the standard v'n normalization factor. The
estimators considered here are not necessarily asymptotically normal, but this
particular assumption still is used. It does restrict the form of heterogeneity of
the observations somewhat. For the LS estimator in the CLR and RRLR models,
B4(a) corresponds to the assumptions above that lim, .. (1/n) ¥, xx, and Exx/
exist and are nonsingular, respectively. B4(b) holds in the CLR model since the
x, are uniformly bounded, ar}d in the RRLR model if E(x}x;)* <.

The result (1/n)Y._, 9r.(8,)/30 >A as n>o0 as. commonly is used in the
literature when showing asymptotic normality of an estimator 6,. We also use
this result, and impose the following additional smoothness condition on r,(6)
to ensure that it holds.*

AsSUMPTION B5(a): sup,-; EW;*® <0, for some §>0, forj=1,...,J, where
62

e (1, (8)=1,(60))

W, = sup and

6@

4 Assumption B5 requires that r,(6) be twice differentiable in some neighborhood of 6. This 1s
not needed for asymptotic normality in general, but is needed for the stability results below (see
equation (4.14) of the proof of Theorem 2).
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6, is some neighborhood of 8, and
2

® L3

r, (6
n.= j( 0)

=0(1) as n->o, as, Vj=1,...,J.

a0 36’

For the LS estimator in the CLR and RRLR models BS5 is satisfied automatically,
since 3°r,(6)/06 36’=0, where 0 is a matrix of zeros.

2.2. Stability Results

First, we present a result that gives a linearized form of the estimator ,. It
also shows that the smoothness conditions on r,(6) are sufficient to yield almost
sure convergence of 0 and 0 .k, 10 6 at a faster rate of convergence than n°.

THEOREM 1.  Under Assumptions Al and B1-B5, (a) 6,, = 0y—
L(1/n)X_ A7'r(6,), where I, is a J xJ random matrix equal to the identity
matrix plus a matrix of small order one as n > a.s.; and (b) for all sequences of
positive integers {k,} with k,<n,

lim n (6,,,("—00) 0as,Vv<1-1/(2a(p/a)).

n-oo

CoMMENTs: 1. The linearized form of 6, viz. 8,—(1/n) Y, A7'r(6,), high-
lights the importance of the Vs T, (6p), i=1,...,n, in determining the stochastic
properties of the estimator 6 In particular, the hnearlzed form suggests that the
stability of b, may be related to the tail behavior of ,(8,), i=1, ..., n Itis shown
below that this is the case.

2. If r,(+,-) is independent of i for i sufficiently large, as is often the case,
then the 1nﬂuence curve of 0 is A7'r(z, 8,). Thus the linearized form of 0 is
determined by its influence curve.

3. Part (a) is a rather trivial consequence of Assumptions Al and B1-B3. It
is stated explicitly only because of the importance of the linearized form for
understanding the properties of the estimator. .

4. Part (b) of the Theorem shows that the rate of convergence of 8, to 8,
depends on the number of finite moments of r,(6,), i=1,..., n (as measured by
the maximal moment exponent p of the stochastically dominating random vector
ry). In addition, there is a tradeoff between the maximal moment exponent of
ry and the degree of dependence over time (as indexed by a; see Assumption
Al). Note that the dependence of the rate of convergence, », on the maximal
moment exponent p of ry and the degree of dependence, «, only exists below a
cut off point. If p=2aq, then the maximal rate of convergence is obtained, and
additional moments are of no consequence. This contrasts with the results
obtained below for the stability exponent of 0 In the latter case no such cut off
point exists.

5. In the CLR and RRLR models, the linearized form of the LS estimator is

~(1/n)Y"_, H'ux,, a equals one, and p equals the maximal moment



STABILITY COMPARISONS 1219

exponent of u, and ux,, respectively. In both models, if u, has two or more
moments, the maximal rate of convergence is obtained, i.e., the upper bound on
v is one-half.

6. The proof of Theorem 1 makes use of McLeish’s (1975) three series theorem
for strong mixing rv’s, and a result of Loeve (1955) (see the Appendix).

We now establish two lower bounds on the stability exponent of an estimator
6={6:n=1,2,..}.

THEOREM 2: Let Al and B1-BS5 hold. Then (a) A(é P)=1-1/p, and (b)
A(8, P)>sup{§eR Yo [I—-F¥(n'" %)<, Vj=1,...,J}, where Fk(x)=
min, ., F,(x), and F,(-) is the df of r,(6,).

CoMMENTs: 1. The lower bound of part (a) is more readily interpretable than
that of part (b), but part (b) is a stronger result. That is, the lower bound of part
(b) is greater than or equal to that of part (a).

2. The lower bound of part (a) is a linear function of the reciprocal of the
maximal moment exponent p of ry. The lower bound increases strictly and
continuously from 0 to 1 as p increases from 1 to 0. This result differs from rate
of convergence results for almost sure convergence (see Theorem 1). The latter
exhibit a cut off point beyond which additional moments do not increase the rate
of convergence.

3. For the LS estimator in the CLR model, p equals the maximal moment
exponent of the error u,. For example, if u, has a ¢t distribution with d degrees
of freedom, then the lower bound given by part (a) is 1—1/d, and it ranges
continuously from 0 for the Cauchy (d =1) to 1 for the normal (d =0). With
regard to part (b) of Theorem 2, F¥(n'~¢) = F,(n'"¢/(max,, |x,|)) in this case,
where F, (-) is the df of u,. Note, Zn_l [1 —F,,l(n1 ¢/(max,<, |%,)))1< o, Vj, if
and only if ¥ _, [1—F,(n' f)]<oo And,

(26) Y [1-F,(n"®1=3 P(u,|V"9>n)e[Elu|’"?, Elu,|""79 +1],
n=1 n=1

using Loeve’s (1955, p. 242) moments inequality. Thus, in this case, the lower
bound of part (b) reduces to 1—1/p, as in part (a).

4. In the RRLR model, p equals the maximal moment exponent of u,-x,. If
x, has as many or more moments than u,, then the situation is exactly as above
in the CLR model. If x; has fewer moments than u,, however, then the variability
of the regressors determines the value of p and the lower bound 1—1/p is less
than in the CLR model (with the same error distribution). For the RRLR model,
F¥(n'~%)=F,(n'"*), ¥}, and an argument similar to that of Comment 3 shows
that the lower bound of part (b) reduces to 1—1/p.

5. The condition =2 in Assumption B4(b) can be relaxed in this Theorem.
Specifically, (a) under the assumptions of Theorem 2 except that of n=2, for
any pe(2a—1,p), if n=2A(p/a), then A(8, P)=1-1/p, and (b) under the



1220 DONALD W. K. ANDREWS

assumptions of Theorem 2 except those of 7=2 and p>2a —1 (of Assumption
B3), for any p>0, if n=2A(p/a) and p>1, then A(4, P)=
sup{£éeR: Y, _ [1-F¥(n'%)]<oo and £<2(1-1/(2a (p/a))}.

6. The proof makes use of a Taylor expansion of ¥, r,(4,), the first Borel-
Cantelli Lemma, a moment inequality of Loeve (1955), and Theorem 1(b) (to
show various terms are o(1) as n->© a.s.).

The next result provides an upper bound on the stability exponent of an
estimator 6, in terms related to the maximal moment exponent of r,(8,), i=
1,2,.... Further, it shows that the stability exponent of é, actually equals the
lower bound of Theorem 2 part (b). This result requires a stronger condition on
the asymptotic weak dependence of the process {Z} than strong mixing, because
the second Borel-Cantelli (2BC) Lemma is used in its proof. The 2BC Lemma
usually is stated for independent sequences, but it also holds for some strong
mixing processes (see Lemma 4 in the Appendix). One might think that the 2BC
Lemma holds for all strong mixing processes, since strong mixing processes
satisfy a related result, viz., Kolmogorov’s zero-one law; see Andrews (1985b).
It is shown in Lemma 4, however, that this is not the case. Hence, we need to
strengthen the assumption regarding asymptotic weak dependence.

A sequence of random vectors {Q,} is ¢-mixing if ¢(s)]0 as s> o0, where ¢(s)
are the @-mixing numbers of {Q,} defined by

(2.7) o(s)=sup sup |P(An B)— P(A)P(B)|/ P(A)

=1 AeB, ; P(A)>0,BeB 1 0

=sup sup |P(B|A)— P(B)|,

J=1 Ae®B,, P(A)>0,BeB,,

where 3, , is the o-field generated by {Q,, Q41, ..., Q,}. Note that ¢(s)<1, for
all s. Sequences of independent and m-dependent rv’s clearly are ¢-mixing.
Billingsley (1968) provides additional examples. The ¢-mixing condition,
however, is considerably stronger than the strong mixing condition. For example,
stationary Gaussian sequences of rv’s are ¢-mixing if and only if they are
m-dependent; see Ibragimov and Linnik (1971), whereas they are strong mixing
under the weak condition that they possess a continuous, positive spectral density;
see Kolmogorov and Rozonov (1960). Thus, the ¢-mixing assumption may be
stronger than is reasonable for some economic applications.

For present purposes, we do not require the full strength of the ¢-mixing
assumption (i.e., ¢(s){0 as s> ) for {Z,}. We only require strong mixing and
the additional assumption that ¢(s) <1, for some s=1,2,.... This condition is
intermediate between strong mixing and ¢-mixing. Precisely how much more
general it is than ¢-mixing is undetermined as yet.

For the next result we make the following assumption.

AssUMPTION Al": {Z} are strong mixing with strong mixing numbers as in A1,
and ¢-mixing number ¢(s) <1, for some s=1,2,....
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For the upper bound on the stability exponent of b, given below, we need to
construct a random vector, r,, that is stochastically less than or equal to |r,(00)|
for all i. Let F,(w) be the J vector whose jth element is sup,-, P(|r,(8,)|<w)
forj=1,...,J and we R, and let r, be a random J vector whose elements have
univariate df’s given by the vector Fy(w).

DeriNITION: The maximal moment exponent of r; is denoted by g.

Note that the maximal moment exponent p of ry is necessarily less than or
equal to q.

TuEOREM 3: Let Assumption A1’ and B1-BS5 hold. Then, (a) A(é, Pys1-1/q,
provided p>2aq/(q+1), and

(b) A(é, P)=inf{§e R: OZ_O: [1-F¥(n'"*)]=c0, for somejin{l,... ,J}}

=sup{§eR: Y [I—Fi’,‘,(n“f)]<oo,Vj=1,...,J},
n=1
where F% is as in Theorem 2.

CoMMENTS: 1. Part (a) holds provided g <. If g =00, part (a) is shown to
hold provided 7, is not identically 0 (see the Appendix). In consequence, the
right-hand side in part (b) is less than or equal to one provided r; is not
identically 0.

2. In some cases (e.g., when the observations are identically distributed), p
equals g, and the stability exponent of an estimator is given by the maximal
moment exponent of the linearized form of the estimator—the more moments,
the greater the stability. In particular, there is no cut off beyond which the
existence of more moments is of no consequence. If p is less than g, then the
stability exponent of 8, lies in an interval determined by p and g, and its exact
value is given by the somewhat complicated expression of part (b).

3. For the LS estimator in the RRLR model, r, =5 |u, - x,| =T ry, and so,
g=p and the stability exponent of 6, is 1—1/p. In the CLR model,
r. =%T|uy| - min,~, |x,|. If the regression function has a constant term, for example,
then g is less than or equal to the maximal moment exponent of ||, which is
p. Hence, g = p and the stability exponent of 6, is4- 1/p. For example, if the
errors have ¢ distribution with d degrees of freedom, then the stability exponent
of 6, is 1-1/d in the CLR model. Further, the stability exponent of the usual
estimator

Z - xiéLs)z

of the error variance, o, is 1 — 2/ p in the CLR model. Thus, the variance estimator
is less stable than the LS estimator of the regression parameters. This corroborates
results found in the literature comparing the robustness of these two estimators.

4. The condition 7 =2 of assumption B4(b) can be relaxed in this Theorem.
Specifically, (a) the assumptions =2 and p>2aq/(q+1) can be replaced in
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Theorem 3 part (a) by =2A(j/a) for some pe(2aq/(q+1), p, and (b) un-
der the assumptions of Theorem 3 except those of n=2 and p>2a-1, if
n=2a(p/a) for some p>0, then A((),,,P)<1nf C, where C=
{€eR: Y, [1-F%(n'"*)]=0o for some j, and £<2(1-1/(2A(f/a)))}. (Note
that the infimum of a null set is defined to be infinity.)

3 EXAMPLES

This section contains a number of examples where the general results of Section
2 apply. The models and estimators are described as briefly as possible. In
consequence, sufficient conditions for strong consistency (Assumption B1) are
not always given in their entirety. Such conditions can be found in the references
cited. In all cases, the defining functions of the estimators, viz., ,(8), i=1,..., n,
are assumed to be chosen to satisfy the Assumptions B2-BS5.

It is possible to include some two and three stage estimators in the class
considered in Section 2, e.g., Heckman’s (1979) two stage estimator of the Tobit
model (Example 3.7), Zellner's (1962) feasible Aitken estimator for the seemingly
unrelated nonlinear regression model (Example 3.8), 2SLS, and 3SLS.

To see that many multi-stage estimators can be written in the form of (2.3),
proceed as follows: Suppose part of the parameter vector 8, (call the part A,) is
estimated in a first stage via the solution to 3.,_, r;,(A) =0, and (a not necessarily
dlS_]OlIlt) part (call it B,) is estimated in a second stage via the solution to
Y, r2(A,, B) =0, where 1, is the first stage estimator. In place of 6, considgr
an alternatiye parameter vector f,= (Ao, Bo)'. Now, a single stage estimator, 6,,
of the desired form can be defined by taking

= r(A) ) ~=(/\)
3.1) r.(8) (72;(/\,/3) , for 6 )

This estimator satisfies Assumption Al or Al’, and B1-BS, if the separate stage
estimators do. (The matrix E 6/60r(00) in B4(a) is triangular, and hence, is
nonsingular if the diagonal blocks are nonsingular.) Thus, the results of Section
2 apply. The extension for three stage estimators is straightforward.

In the examples that follow we assume independence of the observations,
because this is the usual assumption made in the references cited. In most cases,
this assumption can be relaxed by replacing it with an assumption of strong
mixing. Strong consistency is proved, then, using the strong law of large numbers
for strong mixing rv’s (see McLeish (1975)).

3.1. Classical Linear Regression (CLR) Model— Classical M-estimators (Refer-
ences: Huber (1973), Yohai and Maronna (1979)). The model is the CLR model
described in Section 2. We adopt slightly different notation from that of
Section 2:

(3.2)  y=xiBotu, (i=1,...,n),
ZI = (yu x:)la 0(): (B(’), UO)I'
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The estimator 8, is defined by

- ‘/f((}’x—x:B)/U')x. ) =(B>
e o= ) o o=(2)

where ¢ is a given constant, ¢ is a bounded, smooth, odd function, and the true
parameter o, solves Ey*(|u,|/ o) = c. The estimator 6, has the maximum stability
exponent, viz., one, whether or not the errors u, have any moments. This contrasts
sharply with the LS estimator; see Section 2.

3.2. Random Regressor Linear Regression (RRLR) Model—General M-
estimators (References: Krasker and Welsch (1982), Maronna and Yohai (1981)).
The model is the RRLR model described in Section 2 with the notation of Example
3.1. The estimator 0 is defined by

— (xu (yt _xlﬂ)/a)xl)
o no=("r )

where, for each x, a];(x,, -) is bounded, odd, and nonnegative on R*, y(-) is
nondecreasing and bounded, E|x,| sup, ||//(x,, u)| <, and the true parameter o
solves Ex(|u,|/o0)=0. The stability exponent of 6, depends upon the maximal
moment exponent of l//(x,, u,/0o)x,. If ¢ is taken such that this is bounded
uniformly for x, and u, (as in Krasker and Welsch (1982), for example), then
the general M-estimator is a bounded influence estimator, and has stability
exponent equal to one—the maximum.

3.3. Linear Limited Information Simultaneous Equations Model—Instrumental
Variables (IV) Estimator (References: Sargan (1958), Heiler (1979)). The model
is the same as the RRLR model but the regressors and errors are not necessarily
independent:

(3.5) Yo =X,0,tu, (i=1,...,n),
Z,=(y, x;, w1)',

where w, is a random vector of instrumental variables that is independent of the
error u, but not of the regressors x,. The estimator 0 is defined by

(3~6) r:(e)=(.}’;"xx9)wx-

The stability results for the IV estimator é,, are the same as for the LS estimator
in the RRLR model with the maximal moment exponent of the instruments
replacing that of the regressors. In particular, if the instruments or the errors

have fewer than all moments finite, the IV estimator has stability exponent less
than one.

3.4. Linear Limited Information Simultaneous Equations Model— Weighted
Instrumental Variables (WIV) Estimator (References: Krasker and Welsch
(1985)). The model is as in Example 3.3 with a slight change in notation:

x:BO+ut (i=1,...,n),
Zz = (yu x:, W:), 00= (B(’)’ a(’))l'

(3.7)
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The estimator 6,. is defined by

_ (min{1, ¢/[|(y.~x!B)/ 0| - (WiB'w)"?1} - (3, —xiB)w,)
(3.8) r(6)= ( Svec[y(c*/w!B™'w,) - ww,— B] ’
for 6= (B),
Y

where ¢ and o are given constants, the parameter vector a=Svec B, S is a
known [J(J +1)/2] x J? selection matrix such that S vec B is the vector obtained
by vectorizing the lower triangle of the symmetric JXJ matrix B, y(1)=
E min (n°, t) for n ~ N(0, 1), and the true parameter vector a,= S vec B, solves
By=Ey(c*/w.B3'w,)ww!. (Note that o can be estimated by adding it to the
parameter vector 6 and adding an element to r,(8).) As defined, r,(8) does not
satisfy our conditions for smoothness in 6. A version of r,(8) that is smoothed
at the corners, however, does satisfy our conditions and differs very little from
r.(9).

It can be seen that r,(8,) is a bounded random vector. Hence, 0 and the WIV
estimator of B,, given by the subvector B,,, have stability exponent equal to one.

3.5. Nonlinear Regression Model—Least Squares Estimator (References:
Jennrich (1969), Malinvaud (1970), Wu (1981), Bierens (1981), Domowitz and
White (1982)). The model is

yl=f(xUBO)+ul (i=1,...,n),

Zrz(yux:)'9 OOEBOa
where the errors u, are strong mixing, mean zero rv’s, the regressors x, may be
fixed or random but are independent of u and must satisfy conditions for “proper”
behavior as n - o gsee references), and the regression function (-, - ) is smooth.
The LS estimator 8, is defined by the function

(3.9)

(3.10)  1(8)=(3,—f(x, 0)) %f(x,, 0).

The stability exponent of b, depends on the random vectors |y, 3f(x,, 6,)/ 0|
in the manner described in Theorem 3. For examples, if the regressors are i.i.d.
random vectors or are fixed and uniformly bounded, then its stability exponent
is 1—1/p, where p is the maximal moment exponent of |u; 8f(x,, 6,)/96).

3.6. Nonlinear Regression Model—Classical M-estimators (References: Bierens
(1981), Burguete et al. (1982), Andrews (1983)). The model is as in Example 3.5,
except 8= (B¢, o)’ and the assumption of mean zero errors is replaced by t the
assumptlon that Ey(u,/o,) =0, for ¢ and o, given below.’ The estimator 0
(/3 d,) is defined by the function

W(=f (5, B))/) 2, B)
‘1’2((}': —f(xu B))/U')_'y ’

5 This altering of the assumption of mean zero errors only affects the definition of the constant
term, and hence, 1s relatively innocuous.

(311) r(9)= for 6=(B’,0),
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where v is a (known) constant given by y = | ¢*(s) d®(s) for ®(-) the standard
normal df,° o, is an unknown scale parameter defined by Ey?(w,/ o) =7, and ¢
is a bounded function as in Example 3.1.

Since ¢ is bounded, the stability exponents of 8, and B,, depend on the vectors
laf(x., 60)/ 36|. If the regressors are i.i.d. random vectors, their stability exponents
are 1—1/p, where p is the number of finite moments of |3f(x;, Bo)/36|. If the
regressors are fixed and uniformly bounded, their stability exponents equal one.

3.7. Censored Regression (or Tobit) Model—Heckman’s Two Stage Estimator
(Reference: Heckman (1979)). The model is

yi=(x;Bo+u)v0 (i=1,...,n),
Zl =(yl, x:)”

where “v” is the maximum operator, the regressors x, are i.i.d. random vectors,
the errors u, are independent, normal (0, o2) rv’s, and 8,= (B}, 0,)’. Heckman’s
two stage procedure uses an estimator of the form (2.3) at each stage:

First stage: The estimator A, is a maximum likelihood (ML) probit estimator
of Ao= B/ 0. Its defining function is

(3.12)

1[y,>o]_ @(xﬁ)\)
D(xA)(1-D(x;A))

(3.13) n)= $(xir)x,,
where ¢(-) and @(-) are the standard normal density and distribution functions,
respectively, and 1; ; denotes the indicator function.

Second stage: The estimator ([3 4,) is the LS estimator of (B4, o,)’ given A,,,
using only the uncensored observations. Its defining function is

(314) rZI(;\na Ba U') = (}’1 lB (¢ /¢ )a)(¢,/¢) ' l[y,>0]’

where ¢, = ¢,(x/A,) and &, = &,(x/A,).

This two stage estimator can be written as a smgle stage estimator of form
(2.3) by considering the estimator On—(A B,,, é,) of 00—(/30/00,[30, o)
defined by the function

rlt()‘) )
r2l()\" Bs 0’)
Smce the errors have all moments finite in this example, the stability exponent

of 0 under P depends on the maximal moment exponent p of the regressors
x,. In particular, the stab111ty exponent of 6, and of (/3 G,) is 1-1/p.

(3.15)  r(8) =(

¢ The normal df arises in the definition of the constant v, because with this definition if the true
error distribution is normal, then the scale parameter o equals the standard deviation of the errors.
Such a definition is not essential, but often is reasonable.
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3.8. Seemingly Unrelated Nonlinear Regression—Zellner’s Feasible Aitken
Estimator (References: Zellner (1962), Gallant (1975)). The model consists of
M equations:

ylmzfm(xlm,B0m)+ulm (mzl""aM;izly---,n),
l:(ylla""ylMax:Ia'-°ax:M),'

Under Gallant’s (1975) assumptions, the error vectors u, = (u,1, ..., U, )’ satisfy
Eu,=0, Euu,=2%,, and Euu;=0 for i # I, the variables x,,, are fixed; and the
regression functions f;,(X,, Bon) are smooth, have bounded first derivatives, and
behave like i.i.d. rv’s for n large. Let 0o= (B4, @), where Bo= (B4, - .., Bom),
ap=SvecX,, and S is the known M(M +1)/2x M? selection matrix such that
a, is the vector obtained by vectorizing the lower triangle of the symmetric
matrix X;.

The feasible Aitken estimator has three stages, each of which yields an estimator
that is the solution to a system of equations.

First stage: The estimator A, is an equation by equation LS estimator of S,.
Its defining function is

(3.16)

(Ya—filxa, B) %fl(x.l, By) B,
(G.17)  r.(B)= : al , for g=|:
(J’xM _fM(le’ BM)) —__fM(le’ ﬂM) Bum
0Bm

Second stage: The estimator &, of a, is based on the first-stage residuals. Its
defining function is

(3.18) (A, @)=Svec(Z—iil),

where @, = (31— fi(%1, Ain), - - > Yo =St (Xint, Aan))'s Z is an M XM matrix
defined by vec X = Da, and D is the known M* x M(M +1)/2 duplication matrix
defined such that 2 is symmetric and a is the vectorization of the lower triangle
of 3.

Third stage: The estimator ﬁ,. is a multi-equation weighted LS estimator of
Bo- Its defining function is

(319) 1@ B) = —£(B)Y ST %ﬁ(ﬂ),
where vecﬁnEDén, =u,--->»¥m), and f£(B)=(fi{x%1,B1),...,
S (X, Bu))'.

We write this multi-stage estimator in the single stage form of (2.3) by taking
(3.20)  r(8)=(r ), ra(A @), 13.(, B),

to yield an estimator 3,, =(i., &L, B.) of the parameter vector 6= (B, ab, BL).

In this example, the stability exponents of the estimators 8, and ( ﬁ,., &,) equal
1—2/p, where p is the maximal moment exponent of the errors u,. Since &, is
basically a LS variance estimator, it is not surprising that we get the same stability
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exponent here, as we got with the LS variance estimator in the linear regression
model (see Comment 3 following Theorem 3).

3.9. Maximum Likelihood (ML) and Pseudo-Maximum Likelihood Estimators
(References: Huber (1967), Hoadley (1971), Akaike (1973), Crowder (1976),
White (1982)). ML and pseudo-ML estimators (both defined as solutions to
likelihood equations) can be written in the form (2.3) for virtually all econometric
models, provided the log-likelihood (or pseudo-log-likelihood) function is
differentiable in its parameter 6. In the case of independent observations ML
estimators are defined by the score function

)
(3.21)  r(e) =5510g p(z,0),

where p(z,, 0) is the density of Z, with respect to some measure u. (See Crowder
(1976) for a treatment of maximum likelihood estimation with dependent observa-
tions.) Pseudo-ML estimators are defined identically, except p(z, 6) is some
specified density that is not necessarily assumed to be the true density of Z,. In
addition, an estimator defined by (3.21) is called a pseudo-ML estimator if the
observations are not independent, since in this case },"_, log p(z, 6) is not the
log-likelihood of the sample.

For the results of Section 2 to hold, all that is needed is that the observations
are strong mixing (with ¢-mixing number ¢(s) <1 for some s) and that the score
function satisfies the Assumptions B1-B5 on r,(8). Under quite general conditions,
ML and pseudo-ML estimators have been shown to be strongly consistent, so
Bl is not a problem. Further, Assumptions B2-B5 are easy to verify and are
satisfied in most econometric models.

The stability exponent of ML and pseudo-ML estimators depends on the
maximal moment exponent (and perhaps tail behavior) of their score functions,
as established in Section 2. Examples include:

(i) Binary logit model: The rv y, takes values 0 or 1. The probability that y;
equals 1 is P(8)=exp (x.0)/(1+exp(x,0)), where x, is a fixed or random
explanatory variable. The ML estimator is defined by

(3.22)  r(6)=[y,—exp (x:0)/(1+exp (x:0))]x..

The first multiplicand of r,(8) lies in (-1, 1), so the stability exponent of 6,
depends on the explanatory variables x,, i=1,...,n. If the x, are fixed and
uniformly bounded, the stability exponent of 8, is one. If the x, are i.i.d. with
maximal moment exponent p, the stability exponent is 1—1/p. (Note that the
extension to the multinomial logit model is straightforward.)

(ii) Binary probit model: The model is the same as the logit model, except
P,(0)= ®(x]0), where &(-) is the standard normal df. The ML probit estimator
0, is defined by

y.— P(x,0)

(3.23) 0= = o 0)]

¢ (x,0)x,.
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It is easy to see that the stability properties of the ML probit estimator are the
same as those of the ML logit estimator.
(iii) Censored regression (tobit) model (see Amemiya (1973)): The model is
the same as in Example 3.7. The ML estimator 8, = (ﬂ,,, G,)" is defined by
,(0)x,
¢ (4))(0) ly-ot— (J’- x1B)x, 11,01
(3.24) r(0)= ,

(0)x L[ (r—xBY’
lef(—iwlv-m*;[(y—fl) oo

where ¢,(8)=¢(x)B/0) and @,(0)= &(x!8/c). The form of r,(0) shows that
the ML estimator has the same stability properties as Heckman’s two stage
estimator (see Example 3.7).

(iv) Seemingly unrelated nonlinear regressions model: The model is the same
as in Example 3.8 where 6,= (B, a¢)’. The pseudo-ML estimator of 6, formed
using the multivariate normal (0, =) distribution for the errors u, = (u,,, . . ., #n)’
is defined by

O FB)Z™ 22 A(B)
B3 O svec1z-Gi-a@-se) O Om B
where @ =S vec3 and S is defined in Example 3.8. The pseudo-ML estimator
is very similar to the feasible Aitken estimator of Example 3.8. They both have
the same stability properties.

For brevity we have not included the 2SLS, 3SLS, LIML, and FIML estimators
of linear simultaneous equations models in the examples given above. 2SLS and
3SLS can be written in the form (2.3) via the method of Examples 3.7 and 3.8
(using Theil’s (1953) interpretation of 2SLS). LIML can be so written using its
interpretation as the FIML estimator of an incomplete system of equations (see
Godfrey and Wickens (1978), Phillips and Wickens (1978, pp. 276, 351). Finally,
FIML is trivially of the form (2.3) under the assumption of independent errors.

Cowles Foundation, P.O. Box 2125, Yale Station, New Haven, CT 06520, U.S.A.

Manuscnpt received October, 1984; final revision received December, 1985,

APPENDIX

The proofs of Theorem 1 and other results below use the following lemma:

LeMMA 1: Let {Y,} be a sequence of mean zero, strong mixing rv's with strong mixing numbers that
satisfy Assumption Al. Assume sup,., E|Y,|* <, for all k < c, for some c> 1. Then, for any sequence
of positwe integers {k,} with k,<n,

nt¥,, 50 as, V{<1-1/2n(c/a)),

where
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PROOF OF THEOREM 1: Let Z denote a summation over i from 1 to n with i# k,. Using
¥, r,,((i,,,,c )=0, a Taylor expansion of n* 'J r,,(o,,,k ) about 6, yields
2

(4.1) 0=n""1% r,(6)+— z[ 1,(80)+ (B, 1, — 0) —— g .,(o"k)] *(Bk, — 00),

o' 30 08’
and so,
(4.2) 0=0(1)+(a,+o(1))n*(6,, —6)) as, Vv<1-1/(2a(p/a)),
forj=1,.. ,J, where 6%, is a random vector on the line segment joining On_k and 6,, g, is the jth

row of A, and o(1) is a random vector of appropriate dimension which is of small order one as
n -0 as. (4.2) follows from (4.1) using (i) Lemma 1 and B3 to show n”™* ): [7,(8o) — Er,(8,)]1=0(1)
as n—>0 as., (ii) the Assumption B2 that n*™! Z Er,(8,)=o0(1) as n>0, (m) Lemma 1 and B4 to
show

%2[60 r,(80) - E (eo>]=o<1) as n-> as,

and (iv) equation (4.5) below and the strong consistency of 5,,‘,% to give
o A &
;; (0,,’,(” - 90)' W r,](o’,’:’k") =0(l) as n->o as.

Stacking equations (4.2) for j=1,. ., J to form a system of equations yields part (b) of the Theorem,
since A is nonsingular. Part (a) follows in a similar fashion from (4.1) and (4.2) by taking » =0 and
k,=n-1

It remains to show (4.5). By Lemma 1 and B5(a),

1. n-co 1.
(4.3) ;Z(WU—EWU)—>0 as., and ;ZEW,,=O(1) as n-o, VYy=1,...,J
1 t

Now, for any sequence of rv's {8,} such that 6, ik 6 as., 0, 15 1n 0, for n sufficiently large a.s.
(where @, is some neighborhood of 8,; see BS), and so, for n sufficiently large,

@4 %Z aoazo' ru(8)- ao;o' " (8) giz W,=0() as n>o as,

by (4.3). Hence, using B5(b),

(4.5) LT i ——r, (6. )“ O(1) as n->® as, Yj=1,...,J QED.
n ' llag a0’

PROOF OF LEMMA 1: First we show that under the assumptions of the Lemma

(4.6) nt?,750 as, Y{<1-1/(2A(c/a)).

We apply McLeish's (1975) Lemma 2.9 to the rv’s X, =Y, /n'"¢, where using his notation we set
d =1, Vn,  g(x)=|x"® for s(8)=(c—8)a2a, 5>0, and X,=X,lyxjq Since
g E'/ g.,(lX [)<co, provided {<1-a/s(8), we have ¥, (X,— EX,) converges as. by his
Lemma 2.9. Now, by the proof of Loeve’s Theorem 16 4.A (1955 p. 241),

(4.7) Z (EX,- EX,)<, provided |s(8)|=1.
Thus, provided (¢ —8) A2a =1 (which requires ¢>1 and § arbitrarily small and positive), we have
Z 1 X, converges as. Applying Kronecker's Lemma gives (4.6) for {<1—a/s(8). Since 8 is
arbntranly small, (4.6) holds for all { <1—a/s(0), as desired.

Now, simple algebra gives Y, - Y, wk, =(1/0) Y, ~(1/n)Y, , , and so,

. 1 _
(4.8) nlymkn<1 —;) =n'Y,—n*1Y, .
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Using (4.6) we have

- -1\ _ n->oo
(49) né=t y,,=nfy,,—nf(" )Y,,_,—»O as.
n

Thus, for any subsequence {k,} of {n} with k,<n, Vn,

n—->oo
(4.10) Y, <k Y, | — 0 as, Vi<1-1/(2A(c/a)).
Combining (4.6), (4.8), and (4.10) gives the desired result. Q.E.D.

The proof of Theorem 2 uses the following lemma:

LEMMA 2: Let {Y,} be as in Lemma 1 and assume |Y,| <5T'Y, V1, for some rv Y that satisfies
E|Y|* < for all k <, for some c=a. If

o
(4.11) Y [1-G¥(n'"")]<, forsome 7<1,
n=1 ’

where G¥(x)=min, .., G,(x) and G,(x) 1s the df of Y,, then for all sequences of positive integers
{k,} with k, <n,

lirg (Y, -Y,,)=0 as, Vi<r,
where Y, is as in Lemma 1.

PROOF OF THEOREM 2: We prove the results of Comment 5 following Theorem 2. These results
imply those of the Theorem. We prove Comment 5 part (b) first. It suffices to show: if

(4.12) T [1-F¥(n'"%)]<o, Vj=1,...,J, and
n=1

£<2(1-1/Q2n(p/2))),
then for all sequences of positive integers {k,} with k, < n, we have
(4.13) lim n¢d,-6,,,|=0 as., V{<g

Let

r, =

N |-

n 1
T n00),  Fur, =L r(6y),
1=1 n—-175
17 9 1 .9
A,==Y —r(8 A =——35 —r1,(6,).
n= L g (f), and A, w1250 (00

Using (4.1), (4.2), and Theorem 1 part (b), we have
(4.14) 0=F,~Fps + Au(8,~ 8)~ A, (8,1~ ) +0(n"?*) as.,

for ¥<1-1/(2A(p/a)). By definition of » and ¢ we can take v such that 2v= ¢{. This, plus
manipulation of (4.14), gives

(4.15) —n‘(é,,—5n_k_)=n‘A;‘(F,,—Fnk_)+n‘A;‘(A,,—A,,,,(")(é,,‘,‘"—00)+o(1) as.,

where A;! exists for n sufficiently large a.s., since A is nonsingular and A,, 2 Aas. by Lemma 1
and B4.
Forall [, j=1,2, ..,J,and r=1—1/9,

9
— r,,(6
60, rn]( 0)

o 0
(4.16) v P( > n'—f) < Y P(Dr}* "> n)< E[Dr]}/ " +1 <00,
n=1 n=1
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where the first inequality uses the definition of Dr, the second inequality follows by Loeve (1955,
Moments Inequality, p. 242), and the third inequality follows by B4(b) for all n satisfying n =2 A (p/a)
and 7> a. Lemma 2 applied element by element now gives

(417)  n*(A,-A,.)—>0 as, Vs<r(=1-1/7),
where 0 is a J X J matrix of zeros. Thus, using Theorem 1 part (b),
(4.18) n A (A, ~ Ay (6,0~ 0)=0(1) as n->o as,

provided {— 8§ —» =<0, Algebraic manipulation verifies this inequality.
For { <£ where ¥ [1- F¥(n'"¢)]<, Vj=1,...,J, Lemma 2 gives

(4.19) n‘(Fn—Fn,k")::O as.
Equations (4.15), (4.18), and (4.19), and the result A}’ R Al as. yield (4.13), as desired.
Now we show that Comment 5 part (b) implies Comment 5 part (a). For all j=1,...,J, and all
£<1-1/p,
(4.20) T [I-FX(n"H]l< ¥ P((ry)" " 9> n)<E(ry )V D +1<w,
n=1 n=1

where the third inequality holds for all ¢<1-1/p since ry; has maximal moment exponent equal to

p. the second inequality follows by Loeve (1955, Moments Inequality, p. 242), and the first inequality

holds by definition of ry. For fe (2a—1,p] and £<1—1/p, we can show £<2(1—-1/(2A(p/a))).

This and (4.20) give part (a) of Comment 5. Q.E.D.
PROOF OF LEMMA 2: Simple algebra gives

(4.21) (Y, =Y, )=n"1Y, —n'Y,, .

By assumption,

(422) L P(n™Y |=1< ¥ [1-Gi(n'")]<wo,
n=1 n=1

so the first Borel-Cantelli Lemma gives P( n"‘]Yknlzl 10.)=0, where i.0. abbreviates “infinitely
often.” Thus, V{ <,

(423 w7y, |30 as.

Lemma 1 and the assumption ¢ = a give

(424) w7, |50 as,
since {—1<0. Equations (4.21), (4.23), and (4.24) combine to give the desired result. Q.E.D.

The proof of Theorem 3 uses the following lemmas:

LEMMA 3: Let {Y,} be as in Lemma 2 with the further assumption that {Y,} has @-mixing numbers
{o(s)} with ¢(s)<1 for somes=1,2,....If

Y [1-G¥(n'"")]1=00, forsome <1,
1

where G}(-) is as in Lemma 2, then for some sequence of positwe ntegers {k,} with k,<n,

limsup n|¥,-¥,, |=© as, Vi>7,

n-co

where Y, is as in Lemma 1.
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LEMMA 4: (a) Let {X,} be a strong mixing sequence of random vectors with ¢-mixing number
@(5)<1 for some s=1,2,.. , and let {D,} be a sequence of events such that D, € B,, ¥Yn, where B,
is the o-field generated by X,,. If Z:‘;l P(D,) =0, then P(D, 1.0.) =1 (where i.0. abbreviates ““infinitely
often”).

(b) The assumption on the ¢-nuxing numbers in part (a) is not redundant.

COMMENT: Lemma 4(a) 1s a generalization of the second Borel-Cantelli Lemma. It generalizes
Cohn’s (1965) Theorem 1.2. Lemma 4(b) shows that Theorem 3 does not hold with the weaker
Assumption Al replacing Al'.

PROOF OF THEOREM 3: We prove the results of Comment 4 following Theorem 3. These resuits
(and Theorem 2) imply those of Theorem 3. Consider Comment 4 part (b) first. The result is trivial
if C is null, so assume C 1s nonempty. It suffices to show that for any ¢ € C, for any ¢ larger than
but arbitrarily close to £ and for some sequence {k,} with k,<n,

(4.25) lim n 16, 6,,,|=0 as.
does not hold. For ¢ ¢, and {k,} as above, (4.15) and (4.18) yield
(4.26) né16, 6, |=n¥|ATHF, ~F0 )+ 0(1)  as.

since £ <2(1-1/(2A(p/a))), and provided {— 6 —» <0 for some 8 <1-1/7, where A exists for
n sufficiently large a.s. Given the former condition on ¢, the latter condition holds if n =24 (p/a),
as is assumed.

Using a proof by contradiction we show that for some sequence {k,}

(4.27) lim sup né| AN (F, ~ P )| =00 as.,
n—->o "

where o' denotes a J vector with at least one element equal to . Let  denote a realization of the
process {Z,}. If (4.27) does not hold, then for all  in a set with positive probability we have

(428)  nf[(ADT'FR-Fa)<M©e Vn=1,2,..

for some scalar M“ <o, where e is a vector of ones and the superscript w indicates the particular
realization . For such w and n sufficiently large,

(4.29) 17, — s | = ¥ A AN F, — o IS M- |A,] - e< M- |A+ see’| - e <00?
where the superscript  has been omitted 1n (4.29) for notational convenience, 02 denotes a J vector
of infinities, the first inequality holds by simple algebra, and the second inequality holds for n

n—>oo
sufficiently large given £ >0 since A, — A as But, Lemma 3 implies lim sup,, o, 1|7, = F, ;| = 0"
a.s. for some sequence {k,}. This contradicts (4.29) and implies (4.27) is true. Equations (4.25) and
(4.27) combine to give the result of Comment 4 part (b)
Next we show Comment 4 part (b) implies Comment 4 part (a) For g <co, it suffices to show
¢=1-1/(g+¢)is in C for ¢ arbitrarily small and positive. For this £ E|r,,|7** = oo for some integer
Jjin{l,...,J}, and

© ©
(4.30) L [1-F(n'"9)]= L0 = Fyy (n*/* )] = E|r, |7 —1=00,
n=1 n=

where the second 1nquality follows by Loeve (1955, Moments Inequality, p. 242). In addition, algebraic
manipulation shows that p € (2aq/(g+1), p] and =2 A (f/a) implies £<2(1-1/(2A(p/a))), for
¢ sufficiently small. Hence, é€ C. R

For the case g =0, part (a) says A(6, P)=<1. The latter is true whether or not g =00, 1f r, # 0. To
see this, consider £ =1+ ¢ for ¢ arbitranly small and positive. For this

©

(431) Zlil—F:,(n‘-f)]a L [1-Fy(n)] =,

n=
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unless F;,(0)=1 Since r, =0, Vj, (4.31) holds for all £>0 and all j unless r, =0. Thus, part (a)
holds for g = 0, and more generally, A(6, P)<1, provided r, #0. QE.D.

PROOF OF LEMMA 3: It suffices to show the result for { € (7, 1]. Using (4.21), we have
(432)  Af|Y, =Y, =0t Y, -0t Y, L
Let {k,} be a sequence such that G, (n'"")= G¥*(n'""), Vn. Then,
(4.33) Y PV [>1)= % [1-G¥(n'"")]=co.
n=1 n=1
Lemma 4 now gives P(n"7'|Y, |>1i.0.)=1. Thus,
(4.34) limsup n¢"Y, |=0 as, V{e(s1].

Also, since { <1, n*"'|¥,,, | converges to zero as n -0 a.s. by Lemma 1 and the assumption ¢ = a.
Thus, (4.34) and (4.32) combine to give the desired result. Q.E.D.

PROOF OF LEMMA 4: To prove part (a), note that Cohn’s (1965) Lemma 1.1 shows that
P(D, i.0.)>0. The Kolmogorov 0-1 Law for strong mixing random vectors (see Andrews (1985b))
now implies that P(D, i.0.) =1, since {D, i.0.} is a tail event.

To prove part (b), we present a counterexample Let {¢,} be a sequence of independent Bernoulli
random variables with probability g, =n/(n+1) that ¢, equals zero. Let {X,} be a Markov chain
defined by X, = ¢, and for all n>1, X, =X, _, if X,_;=1, and X, =¢, 1f X,_, =0. The state 1 1s
an absorbing state for {X,}. Set D, ={X, =0}. We have

P(D,)=P(e,,=0,Ym=1,2,...,n)= [ m/(m+1)=1/(n+1),
m=1
so that Z:‘;l P(D,) =co. Further,
N
P(D,,l.o.)=P(X,,=0,Vn=1,2,...)=I]lim M g9.=0.
Rl |

Thus, Z‘::‘ P(D,)= 0 does not imply P(D, i.0.)=1. It remains to show that { X} is strong mixing.
Let %, denote the o-field generated by X,, ..., X,. Take A° to be any set in 4, ,, and B° to be
any setin 8B, Let A' and B denote the complements of A° and BP, respectively. Simple algebra

shows that
(4.35) |P(A° B®) — P(A®) P(B%)|=|P(A’ ~ B')~ P(A’)P(B")|, Vj=0,1,vI=0,1.
Define A and B by

+_JA® if A’c D¢, z_JB® if B°<D,.,,
A= {A‘ otherwise, and B= {B‘ otherwme,+

where the superscript ¢ denotes the complement of a set. Note that Ac Dy, and Be D, . (This
follows because B1,»(Bn-+s,0) does not contain any proper subsets of D, (D5, ,).) Since DS, and D, .
are disjoint, so are A and B. Hence, using (4.35),
| P(A° A B®) — P(A%) P(B%)| =|P(An B) - P(A)P(B)|= P(A)P(B)
<P(D,+)<P(D)=1/(s+1).

Since 1/{s+1)|0 as s>00, {X,} is strong mixing. Q.E.D.
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