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ASYMPTOTICS FOR SEMIPARAMETRIC ECONOMETRIC
MODELS VIA STOCHASTIC EQUICONTINUITY

By Donalp W. K. ANDREWS!

This paper provides a general framework for proving the 1/7 -consistency and asymp-
totic normality of a wide variety of semiparametric estimators. The class of estimators
considered consists of estimators that can be defined as the solution to a minimization
problem based on a criterion function that may depend on a preliminary infinite
dimensional nuisance parameter estimator. The method of proof exploits results concern-
ing the stochastic equicontinuity of stochastic processes. The results are applied to the
problem of semiparametric weighted least squares estimation of partially parametric
regression models. Primitive conditions are given for VT- -consistency and asymptotic
normality of this estimator.
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parameter, nonparametric estimation, semiparametric estimation, semiparametric model,
stochastic equicontinuity, weak convergence.

1. INTRODUCTION

SEMIPARAMETRIC MODELS AND ESTIMATION PROCEDURES have become increas-
ingly popular in econometrics in recent years. A large number of semiparamet-
ric estimators have been introduced and many have been shown to be V7-
consistent and asymptotically normal. The proofs of such results are given in the
literature on a case by case basis. No general results are available. The purpose
of this paper is to provide a general framework for establishing the v7-con-
sistency and asymptotic normality of a wide class of semiparametric estimators
for time-series, cross-section, and panel data models. The general results are
applied in the paper to establish the consistency and asymptotic normality of
semiparametric weighted least squares (WLS) estimators of partially parametric
regression (PPR) models.

The estimators considered in this paper are called MINPIN estimators. They
are estimators that MINimize a criterion function that may depend on a
Preliminary Infinite dimensional Nuisance parameter estimator. The criterion
function need not be differentiable. As it happens, many of the semiparametric
(and parametric) estimators in the literature are MINPIN estimators. Examples
are given below.

The method of proof used here employs a condition called stochastic
equicontinuity. This condition can be verified using empirical process results.
An important feature of the method used is its generality. The same method
can be used with a wide variety of estimators in different semiparametric
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models. The same method can be applied with independent identically dis-
tributed (iid), independent nonidentically distributed (inid), and dependent
nonidentically distributed (dnid) random variables (1v’s).?

A second feature of the method used is that the assumptions on the infinite
dimensional nuisance parameter estimator and on the random criterion func-
tion are separated. Thus, there is no need to use sample splitting procedures
and the results given below are flexible regarding the choice of estimator of the
infinite dimensional nuisance parameter.

A third feature of the method used here is the simplicity of the structure of
the proof. With the method used here, the key steps of the proof are highlighted
and compartmentalized. The results given here, however, do not provide a
complete proof of asymptotic normality except in the WLS /PPR application.
The main results of this paper are proved under a set of “high-level” assump-
tions. In particular, we take as basic assumptions certain properties, such as
consistency, of the infinite dimensional nuisance parameter estimator and the
fulfillment of a uniform weak law of large numbers (WLLN), a CLT, and a
stochastic equicontinuity condition for certain random variables. Verification of
the uniform WLLN and CLT conditions is relatively easy, because there are
numerous uniform WLLN and CLT results in the literature that are suitable
without alteration. In addition, this paper and Andrews (1991a, 1994a) provide
primitive conditions under which the stochastic equicontinuity condition holds.
The remaining “high-level” assumptions that require verification concern the
properties of the infinite dimensional nuisance parameter estimator. For kernel
regression and density estimators, Andrews (1994b) provides results that estab-
lish the requisite properties. When the nuisance parameter is estimated by some
method other than kernel estimation, the literature on nonparametric regres-
sion and density estimation can be exploited, although special tailoring of
existing nonparametric results may be required.

A fourth feature of the method used here is the flexibility it affords with
respect to the type of estimator considered. Many results in the semiparametric
literature apply only to one-step estimators because of their technical tractabil-
ity, among other reasons. The results of this paper apply to one-step versions of
estimators as well as to the pure minimization versions of the estimators. One
consequence of this is that LM and LR tests of parametric restrictions can be
constructed in semiparametric contexts; see Andrews (1989a).

On the other hand, a drawback of the method used here is that in some
examples it requires more smoothness conditions on certain underlying un-
known functions than are necessary for v7-consistency and asymptotic normal-
ity of the estimator in question.

A second drawback of the method used here arises in those examples where
trimming of nonparametric function estimators is required. In such examples,
the method used here places more restrictions on the form of trimming that can
be used than is necessary. This drawback and the previous one are conse-

2This is not to suggest that existing methods cannot be extended in such directions.
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quences of the stochastic equicontinuity results that are currently available. It is
possible that future developments of stochastic equicontinuity results will ame-
liorate these drawbacks.

A third drawback of the method used here is that, while the method is quite
general, it is not applicable to all semiparametric estimators that are v7-con-
sistent and asymptotically normal. Examples are given below.

The remainder of this paper is organized as follows: Section 2 introduces the
stochastic equicontinuity property, outlines how it can be used to establish the
asymptotic normality of semiparametric estimators, and provides a set of primi-
tive sufficient conditions for it. Section 3 defines the class of MINPIN estima-
tors, introduces the WLS /PPR application, and discusses which estimators fail
in the MINPIN class. Section 4 gives V7 -consistency and asymptotic normality
results for MINPIN estimators. Section 5 uses the results of Section 4 and the
Appendix to provide primitive conditions for the consistency and asymptotic
normality of the WLS estimator of the PPR model. The Appendix provides
consistency results for MINPIN estimators and proofs of the results given in the
paper.

This paper does not cover tests of nonlinear parametric restrictions nor tests
of model specification. See Andrews (1989a) and Whang and Andrews (1993),
respectively, for treatments of these testing problems.

Throughout the paper all limits are taken as the sample size, T, goes to
infinity. We let “wp — 1” abbreviate “with probability that goes to one as
T — ».” We let || All denote the Euclidean norm of a vector or matrix 4, i.e.,
| Al = (trace (4'4))!/2. For notational simplicity, we let 2 denote T’_, and
ElX|* denote E(}| X||%).

2. STOCHASTIC EQUICONTINUITY

In this section, we introduce the concept of stochastic equicontinuity, show
how it can be used in establishing the asymptotic normality of semiparametric
estimators, provide a set of sufficient conditions for it, and sketch a proof of the
sufficiency of the latter conditions.

2.1. Some Basics Regarding Stochastic Equicontinuity

Let {W,:t=1,2,...} be a sequence of #valued 1v’s defined on a probability
space (2, #,P), where #CR*. Let 7 be a pseudo-metric space with pseudo-
metric po(-, ). (Le., 9 is a metric space except that p,(r,,7,) =0 does not
necessarily imply that 7, = r,.) Let
21)  A={m(,7):7€ T}
be a class of R"-valued functions defined on # and indexed by 7 € 7. Define
an empirical process v,(-) by

1 T
(2.2) VT(T)=—‘/—T—Z(m(m,T)—Em(m,T)) for 1€ .97,

where Y7 abbreviates Y7_,. m(-, 1) could depend on ¢ in (2.2) if need be.
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For the applications considered in this paper, 7 is a vector-valued function
(defined on some Euclidean space) and 7 is an infinite dimensional set of such
functions. In particular, 7 often contains possible realizations of nonparamet-
ric regression or density estimators (viewed as estimators of entire functions, not
just of functions at a single point). The nonparametric estimators are prelimi-
nary nuisance parameter estimators that appear in the definition of a semipara-
metric estimator. In the applications considered here, the summand
(1/VT)LTm(W,,r) of the empirical process »(r) equals the normalized first-
order conditions for a semiparametric optimization estimator evaluated at the
true value of the parameter 6, € R? of interest and evaluated at the value 7 of
the nonparametric regression or density function. Examples of the pseudo-met-
ric pg are given below.

DerINITION: {v(+): T'> 1} is stochastically equicontinuous at t, if for all
£ >0 and n > 0, there exists 6 > 0 such that

(2.3) lim P* sup [y (1) —VT(TO)!>T]) <g
T fey,py('r,'ru)<5

where P* denotes outer probability.

(If the rv in parentheses is measurable, then P* can be replaced by P.)

As can be seen from its definition, stochastic equicontinuity is a stochastic
and asymptotic version of the concept of the continuity of a function. Essen-
tially, it requires that »,(-) is continuous at 7, at least with probability close to
one for T large.

An equivalent definition of stochastic equicontinuity at 7 is: {v;(-): T > 1} is
stochastically equicontinuous at 7, if for all sequences of random elements {7:
T > 1} that satisfy p (7, 7,) 5 0, we have v (77) —vy(7,) 5.

The concept of stochastic equicontinuity is not new. It has appeared in the
literature under various guises. For example, it appears in Theorem 8.2 of
Billingsley (1968, p. 55), which is attributed to Prohorov (1956), for the case of
C[0, 1] random elements.

The plausibility of the stochastic equicontinuity property can be demon-
strated as follows. Suppose {m(w, ). € J7} is a class of linear functions, i.e.,
m(w,7)=w'r for some 7€ R*, and p(-,-) is the Euclidean metric. In this
case, the left-hand side of (2.3) equals

_ 1z
(24)  lim P*| sup |—o= X (W,—EW,)(1—10)|>n
T pa(r,79)<8 ‘/T 1
_ 1z
<Im P||—= Y (W -EW)|>n/8|<
Jim \/_T';(' D>n/8|<e

provided (1/VT)LT(W, - EW,)=0,(1) and & is sufficiently small. In conse-
quence, stochastic equicontinuity holds in this case if the rv’s {W, — EW,} satisfy
an ordinary CLT.
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The stochastic equicontinuity property is substantially more difficult to verify
for classes of nonlinear functions than for classes of linear functions. Indeed, it
does not hold for all classes of functions. Some restrictions on the functions are
necessary. The following example illustrates why. Suppose {W,: ¢ > 1} are iid
with distribution P, that is absolutely continuous with respect to Lesbesgue
measure and . is the class of indicator functions of all Borel sets in 7. Let
denote a Borel set in # and let J~ denote the collection of all such sets. Then,
m(w,7)= 1w e ). Take po(r,,7,)=[[(mlw, 1) —mw,,))*dP,(w)]'/?. For
any two sets 7, 7, in J with finite numbers of elements, v ()=
(1/VDLT1W, € 1) and p (1, m,) = 0since P(W, €1,) =0 for j=1,2. Given
any 7> 1 and any realization w € (2, there exist finite sets 7,5, and 7,7, in I
such that W(w) €1, and W(w) & 1,;, Vi< T, where W w) denotes the
value of W, when w is realized. This yields v(r,7,) = VT, v;(r,7,) =0, and
SUPp o s lvr(r) —vlr )l = VT . Thus, {v7(+): T > 1} is not stochastically
equicontinuous. The class of functions considered is too large. Below we
provide one set of conditions that restricts the class of functions sufficiently such
that stochastic equicontinuity holds.

Although the stochastic equicontinuity property is used here in establishing
the asymptotic distribution of semiparametric estimators, its primary use in the
probability literature is in the proof of weak convergence results, including
abstract functional central limit theorems (CLTs). The following result indicates
how it is used to establish weak convergence: If (7, p.-) is a totally bounded
pseudo-metric space, {v(-): T>1} is stochastically equicontinuous, and
{(wp(r)),...,vp(r,)): T > 1} converges in distribution for all finite dimensional
vectors (1y,...,7.) of elements of 7, then {v;(-): T > 1} converges weakly to a
stochastic process on 7~ that has uniformly p. -continuous sample paths.
Conversely, if (7, p.) is a totally bounded pseudo-metric space and {v,(-):
T>1} converges weakly to such a process on 7, then (v, () T>1} is
stochastically equicontinuous. See Pollard (1990, Thm. 10.2) for details. (As the
above result indicates, stochastic equicontinuity and tightness are very closely
related properties.)

2.2. Sketch of the Proof of Asymptotic Normality of Semiparametric
Estimators via Stochastic Equicontinuity

We now give a heuristic description of how stochastic equicontinuity can be
used to establish the asymptotic normality of semiparametric estimators. For the
time being, suppose 6 is a consistent estimator of a parameter 6, € R? that
solves for @ the first order conditions

(25) VTmp(0,7)=0 wp—1,

where

1 T
mp(0,7) = T Y. m(W,,0,7) €RP.
1
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Here, 7 typically is some preliminary nonparametric estimator of regression or
density functions. The summand m(W,, 8,7) might depend on 7 through the
value of the regression or density function estimator at the rv X,, i.e.,, 7(X,),
where X, is a subvector of W,. Alternatively, m(W,, 8, 7) might depend on 7 in a
more complicated way, such as through integrals or derivatives of 7.

Suppose 7 lies in a pseudo-metric space .~ wp — 1 and is consistent for

7o € J with respect to the pseudo-metric p . (Le., p (7, 7o) % 0.) Assume the
population first order conditions, m5(6,, 7o) = Em(8,, 7,) = 0, hold.

We consider the case where m(W,, 8, 1) is differentiable in 6. If 7 was finite
dimensional one could establish the asymptotic normality of 6 by expanding
VT (6,7) about (8,,7,) using element by element mean value expansions.
Since 7 is infinite dimensional, however, mean value expansions in (8, ) are not
available. In consequence, we expand V7T ;T1T(5, 7} about 6, only (using element
by element mean value expansions) and use stochastic equicontinuity and an
asymptotic orthogonality condition to handle 7:

(2.6)  o0,(1) =VTm(6,7)=VT#ir(8,,7) + %m,(e*,?)ﬁ(é— 80),

where 6* lies on the line segment joining 6 and 6, (and takes different values in
each row of (8/06')m(6*,7)). Under suitable assumptions on {m(W,,6,):
t > 1}, one can show that

T
(900 )Tip(6%,7) > M = lim (1/7) LE(/96")m,(8,,70).
—® 1

Thus, provided M is nonsingular,
(27) VT (6-00) = (M +0,(1)WTr(0,7).

If # is replaced by 7, in (2.7), the right-hand side of (2.7) is asymptotically
normal, say N(0, $), under general conditions by a CLT, since VT i (8, 7,) is a
mean zero sample average normalized by V7 . Hence, if we can show that

(2.8) VT #p(00,7) = VT Tip(0,,7) = 0,

then we will have established that VT (6 — 6,) 4 N(0, M~1S(M~'Y). Note that
in tgis case the estimation of r, by 7 does not affect the asymptotic distribution
of 6.

Stochastic equicontinuity is useful in establishing (2.8). In particular, stochas-
tic equicontinuity of v(7) = VT (8, 7) — M3(6,,7)) (indexed by 1€ I7) at
9, consistency of 7 for 7, with respect to the pseudo-metric p,, and P(7
9)— 1 yield

(29)  vp(F) —vp(ry) > 0.
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This follows because given any n, £ > 0 there exists a 6 > 0 such that

(2.10)  ©im P(|vp(%) = vr(rp)| > )

T—o0

< lim P(lvp(7) = vi(ro)| > .7 € T, ps(F,1p) <8)

T— oo

+ lim P(7 & T or ps(7,74) > 6)

Tow
< lim P* sup IVT(T)—VT(To)|>77)
T—o 1€ T polr,rg)<d

<eg.

Since
(2.11) ‘/T”_H(Ooﬂc) - ﬁmT(OmTO) =vp(7) —vr(7g) — \/Tn_f;(ﬂo,?),

equation (2.8) now holds if and only if

(212)  VTTE(6,,7) = 0.

The latter is an asymptotic orthogonality condition between 6 and 7 that is
analogous to the block diagonality of the information matrix between 6, and 7,
in the case of ML estimation with finite dimensional 7. This condition is usually
satisfied by adaptive estimators of adaptive models, but is also satisfied by
numerous semiparametric estimators of nonadaptive models (for suitable esti-
mators 7), as discussed below.

2.3. Sufficient Conditions for Stochastic Equicontinuity

In this subsection, we provide a set of sufficient conditions for stochastic
equicontinuity developed in Andrews (1991a). These sufficient conditions are
employed in the WLS /PPR application in Section 5 below. Andrews (1994a)
gives several alternative sets of primitive sufficient conditions for stochastic
equicontinuity based on results in the probability literature.

The conditions considered here apply to classes of smooth functions and
underlying dnid rv’s that are strong mixing. First we define strong mixing. Let
&' denote the o-field generated by {W,,...,W,}.

DerinNtTioN: The 1v's {W: ¢ = 1 are strong mixing if a(s)}0 as s — o, where
(2.13)  a(s) = sup sup |P(ANB)—P(A)P(B)| forsx1.

=1 AE‘%[’BEZIS

The functions we consider are smooth on an open bounded set #* c # and
constant elsewhere. If #* = ¥ then the functions are smooth on their entire
domain. #* is required to be a set with minimally smooth boundary as
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defined, e.g., in Stein (1970). Examples of such sets include convex sets and
finite unions of convex sets with disjoint closures.

Smoothness of the functions on #* is defined in terms of the L?-Sobolev
norm. For an R-valued function f on #CR*, a k-vector w = (uy,...,u,) of
nonnegative integers, and a nonnegative integer g, define

gl

k
OWHLX - - Xaw”kf(w)’ where |ul= Z/.Lj, and
1 k

j=1

(2.14)  D*f(w) =

1/2
||f(-)|lq,7/*=( )» fy*(D”f(w))zdw) :

lul<q

ll-1l,, »+ is the L?-Sobolev norm of order g over #*.

By restricting the class of functions £ to contain functions whose L%
Sobolev norm (of some order g > k/2) is bounded by some constant, one can
obtain stochastic equicontinuity. The pseudo-metric that is employed is the
L*-pseudo-metric:

, 12
213) po(rim)=| [ (mOwm) =m(w,7,)V

The requisite assumptions are summarized as follows:

AssumpTioN SE: (@) sup, ¢ o llm(-, 7l 4 »+ < for some q > k /2.

(b) For some constant K, m(w,r) =K VYwe ¥— ¥* ¥Yre J.

©) #*c #and ¥* is an open bounded subset of R* with minimally smooth
boundary.

(d) {W,: t > 1} is a strong mixing sequence of rv’s with L7_ a(s) < .

Prorosition: Assumption SE implies that {v;(-): T>1} is stochastically
equicontinuous at each v, € 9 and I is totally bounded under ps (for po
given in (2.15)).

CommMenTs: 1. The Proposition is a slight variant of a special case of
Theorem 4 of Andrews (1991a) (discussed in Comment 1 to that Theorem). The
proof is given in Andrews (1991a).

2. The Proposition is employed in semiparametric applications by showing
that the nonparametric estimators 7 are such that m(w,8,,7) satisfies the
conditions of Assumption SE for all realizations of 7, at least wp — 1.

3. One undesirable feature of the Proposition is that the functions are
nonconstant only on a bounded set. This restriction is relaxed to a certain extent

in an extension given in Andrews (1989b, Thm. 7).
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3. MINPIN ESTIMATORS
3.1. Definition of MINPIN Estimators

The data are given by a sequence of random vectors (rv’s) {(W,: r=1,2,...}
defined on some probability space (.Q #,P). The observed sample is
W:t= ., T}. A MINPIN estimator 6 of an unknown p-vector 8, is defined
to mrnlmlze a criterion function d(7#,(8,7),9) over a parameter space ©. Here,
m(6,7) is a sample average of terms of the form m,(W,, 6, %), 7 is a preliminary
infinite dimensional nuisance parameter estimator, 9 1s a preliminary nuisance
parameter estimator (often an estimated weight matrix), and d(m,y) is a fixed
discrepancy function (such as a quadratic form m'ym /2).

DEFINITION: A sequence of MINPIN estimators {8) = (§: T> 1) is any se-
quence of rv’s such that

A

(31)  d(m(8,7),9) = inf d(7p(8,%),9) wp— 1,
0@

where (8, 7) = (1/T)ZIm(6,7), m(6,7) denotes m (W,,0,7), m,(, -, )is a
function from R¥ X ® X I to RY,® C R?, % is a random element of 9 wp -1,
v is a random element of I' (and # and 9 depend on T in general), Y and T
are pseudo-metric spaces, and d(-,-) is a nonrandom, real-valued function
(which does not depend on 7).

Note that 7 and ¥ are preliminary, possrbly infinite dimensional, estimators
used in the definition of 6. Usually, however, y is finite dimensional or does not
appear. Convergence in probability of 7 and ¥ means convergence in probabil-
ity with respect to the pseudo-metrics on 7 and I respectlvely Throughout
this paper, all functions that are introduced (such as 8, 7, v, m,(+,-,-), and
d(-,-)) are assumed to be %/Borel or Borel/Borel measurable. The only
exception is the stochastic process v,(-) defined below, which need not be
measurable. We note that one set of sufficient conditions for the existence of a
measurable sequence {6} is that d(m(0,7),9) viewed as a function from 2 X @
to R is continuous in 6 for each w (2 and is measurable for each fixed
6 € © and O is a compact subset of some Euclidean space (see Jennrich (1969,
Lemma 2)).

3The criterion functron d(mT(G 7),¥) is allowed to depend on two preliminary estimators, 7 and
y. We do not merge 7 and ¥ into one estimator, because the use of two preliminary estimators
allows one to simplify and weaken the assumptrons In particular, with two preliminary estimators,
vr(-) (defined below) only has to be indexed by 7 in Assumption N(e) rather than by (7, ).

The estimator 8 is required to solve (3.1) only wp — 1 to enable one to define the same estimator
using different m (6, 7) and d(m, y) functions for the purposes of (i) consistency and (i) asymptotic
normality.

The infinite dimensional estimator 7 is only required to lie in 9 wp — 1, because Z is taken
below to contain elements that satisfy certain properties, i.e., smoothness properties. In many cases,
not all realizations of 7 satisfy these properties, but the realizations in a set whose probability — 1
do satisfy them.
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3.2. WLS /PPR Application

In this subsection, we discuss a semiparametric weighted least squares (WLS)
estimator in terms of the above definition of MINPIN estimators. The model
considered is a partially parametric regression (PPR) model. This model is a
generalization of the partially linear regression (PLR) model that has been
considered in numerous papers, e.g., see Robinson (1988). The PPR model
allows the parametric part of the regression function to be nonlinear. The
model is

(3.2) Y,=h(Z,,6,) +g(X,) +U, when X, €,
E(U1Z,,X,)=0 as.,and
E(U?1Z,, X,)=719(X,) as.for t=1,....T,

where the real function A(-, -) is known, the real functions g(-) and 75,(+) are
unknown, Y,,U €R, 8,€R?, Z,€R', X,eR*, W,=(Y,,Z;, XY, and Z"* is
some bounded subset of R*. (Z°* is a trimming set.) Unlike most analyses in
the literature of the PLR model, we consider PPR models that may exhibit
conditional heteroskedasticity, nonidentical distributions, and temporal depen-
dence of the data. An interesting example of the latter is a dynamic sample
selection model in which the selection equation for period ¢ depends on Y,_;
and, in consequence, Y,_, is an element of X,. For example, a model of this
sort might be postulated in the context of time series observations on regulated
utility rate of return grants (which exhibit a selectivity feature because a grant
occurs only if a firm requests it); see Roberts, Maddala, and Enholm (1978) for
a parametric analysis of such data. The treatment of nonidentical distributions
allows one to cover data generated via stratified sampling schemes.

We consider a nonlinear WLS estimator of 8, that is an analogue of the
finear LS estimator of Robinson (1988). The WLS estimator is designed for the
case where the conditional variance of U, given (Z,, X,) depends on X,. To
motivate this estimator, we note that the PPR model with heteroskedasticity of
this form is generated by the following sample selection model:

(33)  Y.=h(Z,8,) +v,(X,.¢0) + U, D,=1(v,(X,,&)>0), and

(YtaDt’Zt’Xt) = (};tDt:DwZ‘tDt’XtDt)

are observed for t=1,...,7T,
where A(-, - ) is known, v,(+, - ) may or may not be known, v,(-, -) is unknown,
(0,¢,,Z,, X,) is identically distributed for ¢ > 1, and (U, 8,) is independent of
(Z,, X,) and has unknown distribution. By multiplying the first equation of (3.3)
by D,, one sees that the sample selection model (3.3) generates the PPR model
(3.2) with the unknown function g(*) of (3.2) given by g(x)=vx,d,) +
E(D,U,| X, =x) and with the error of (3.2) given by U, =D,U, — E(D,U, | X,).
Note that U, has conditional variance given (Z,, X,) that depends only on X, as
in (3.2). The sample selection-generated PPR model is particularly useful when
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there is incomplete observation of the selection equation regressor variables for
nonselected observations, as often occurs. In such cases, some other semipara-
metric estimators, such as Powell’s (1987) and Newey’s (1988) two-step estima-
tors, are not applicable.

For the PPR model of (3.2), define 7, = (7,, 75, T59), Where

(34)  1p(x)=E(Y,1X,=x) and 7,(x,0,) =E(h(Z,,0,)|X,=x).
The WLS estimator of 8, for the PPR model minimizes

17 R
(3:5) ;Xl‘,f(Xt)(Yt—ﬂ(Xt)“h(wa’)+TA2(X~0))/fs(Xt)

over @ CR? wp — 1, where é(X,) = 1(X,€ 2°*) and 7 =(#,,%,,%;) is a non-
parametric estimator of 7, (defined in Section 5 below). The WLS estimator is a
MINPIN estimator with

(3.6) d(m,y)=m and

m,(8,7) =£(X)(Y, — 7( X,) = h(Z,,6) +7,(X,,0))’/75(X,) or
(3.7)  d(m,y)=mm/2 and

m,(0,7) = (X )Y, — 7 X,) —h(Z,,0) +7,(X,,9))

/73(Xt)-

We use (3.6) when establishing consistency of 6 and (3.7) when establishing
asymptotic normality of 0.

Note that the WLS estimator 8 is defined using a trimming functioné(X,),
because the regression model (3.2) is only assumed to hold on the bounded set
Z7*. Even if the model holds for x in a larger set than 27*, there are two
reasons why we still define 8 using the trimming function £(X,). First, trimming
can eliminate observations from the computation of 6 for which the nuisance
parameter estimator 7(X,) is estimated with relatively large error in comparison
to the nontrimmed observations. Second, trimming makes it much simpler to
establish the consistency and asymptotic normality of 6, because one can obtain
uniform consistency of 7(x) for 7o(x) over a bounded set 2™* under suitable
conditions, but not over unbounded sets in general. On the other hand,
trimming using a single fixed set 2°* affects the asymptotic distribution of 6
and usually sacrifices some asymptotic efficiency if, in fact, the model holds for
X in a larger set than &7*.

d d
X ﬁh(Z,,()) — 3_0—72()(:’0)

3.3. Further Applications

In this section, we specify additional examples of estimators that fall within
the MINPIN class. Those marked with an asterisk are discussed briefly in a
supplement to the paper that is available from the author.
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The examples include: (1)* Generalized method of moments estimators of
models defined by conditional moment restrictions; see Newey (1990a) and
Robinson (1987). (2)* Semiparametric instrumental variable estimators for
regression models with unobserved risk variables; see Pagan and Ullah (1988).
(3)* Estimators of index regression models, such as Klein and Spady’s (1993)
efficient semiparametric estimator of the binary choice model and Ichimura and
Lee’s (1990) LS estimator. (4)* Two- and three-step estimators of the sample
selection model. For the former, see Powell (1987) and Newey (1988).
(5)* Adaptive estimators for regression models with errors of unknown distribu-
tion; see Bickel (1982) and Manski (1984) for one-step estimators for indepen-
dent error models. (6) Adaptive estimators of autoregressive moving average
models with innovations with unknown distribution; see Kreiss (1987) for
one-step estimators, (7) Profile likelihood estimators for semiparametric models;
see Severini and Wong (1987) and Lee (1989).

4. ASYMPTOTIC NORMALITY

In this section, sufficient conditions for the asymptotic normality of sequences
of MINPIN estimators {8} are given. Before stating these conditions, we define
the asymptotic covariance matrix of {6} and introduce some notation and
definitions used in the assumptions.

4.1. The Asymptotic Covariance Matrix of MINPIN Estimators

Let d(m,y) and m,(8, 7) be defined such that the dimension v of 7 (6, ) is
at least as large as the dimension p of 6. For example, for the WLS/PPR
application, we use (3.7), not (3.6). The asymptotic covariance matrix ¥ of {6} is
then defined by

1Z 9
(41)  S= lim Var, (VT m(60,,7,)), M= lim — 3} —Em,(8,,7,),
T— oo T T 1 30

2

3
D= d(m(8,79),70)s F=M'DM,  #=M'DSDM,

omaom
and
V=g lzgl
where (0% /0mdm’)d(-,-) denotes the matrix of second partial derivatives of
d(-,-) with respect to its first argument and m(6,, 7o) =

lim,_ . (1/T)X'Em(8,, 7). In the common case where p = v, the covariance
matrix V' simplifies to

(42) V=M'S(M).
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For example, for the WLS estimator of the PPR model, we have p =v and
(43) V=M'SM™', where

M=~ lim lZEg(X)[ h(Z,,0,) — ’ TQO(X,,()O)]

d
h(Z,,()O) 720( 0)]/730()(;)7 D=M"', and

T
S = hm Varl Y EE(X)U,
1

] ]
[ hZ,,0,) - 720( ,0) 730(Xz)”-

If W, is independent across ¢, S simplifies to M and V=M1

4.2. Asymptotic Normality of MINPIN Estimators

We now state Asspmption N that is sufficient for asymptotic normality of the
MINPIN estimator 6. Let @, be a subset of @(c R?) that contains a neighbor-
hood of 6,. Define

and

02
4.4 B,= sup N ——m,(0,7
(4.4) oo | 7090 A(6,7)
VT(T)=‘/_(mT(00’7)_m>;(0077))7

where

17
my(0,7) = ?ZEm,((),T).
1

AssumprioN N (Normality): (a) 8% 6,€ @ CR? and 6, is in the interior
of ©.

) PGe T)>1, 42D 1,, and $ 5 vy, for some 1y T and y,eT.

(© VT T (0/0m)d((6,, 7), 7)5 0.

(d) v(ry) S N, S).

(e) {vy(+)} is stochastically equicontinuous at .

() (8/dm)d(m,v) and (8*/dmdm’)d(m, y) exist for (m,y) € 4y X I, and are
continuous at (m,y) = (m(0,, 7,), v,), where #, and Iy are subsets of R” and I’
that contain neighborhoods of m(8,,7,) and vy, respectively (using the Euclidean
norm on RY and the pseudo-metric on I').

(g) m,(0,7) is twice continuously differentiable in 0 on @y, V1€ T, Vit > 1,
Yo € Q. {m(0,7)} and {(3/36'Ym (6, 1)} satisfy uniform WLLNs over @y X .
m(8,7)=lim,_, (1 /T)LIEm (6, ) and

M(6,7) = Tli_I)nm(l/T) éE(E)/E)B’)mt((),T)
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each exist uniformly over @y X I and are continuous at (8y,7,) with respect
to some pseudo-metric on Oy X 9 for which 0,5 (84, 7). lim 4 _,,,
(1/T)LYEB, < .

(h) M'DM is nonsingular.

TueoreMm 1. Under Assumption N, every sequence of MINPIN estimators {6}
satisfies

VT (8- 8,) 5 N(O, V).

The proofs of Theorem 1 and other results stated below are given in the
Appendix.

ComMENT: If d(m,y) is of the form m'ym /2, then Assumption N(g) can be
relaxed. In particular, m,(6, 1) only needs to be once, not twice, continuously
differentiable in 6 on @, and the condition on EB, can be dropped in
Assumption N(g). The proof of Theorem 1 in this case is altered along the lines
of the proof of Theorem 1 in Andrews (1993). That is, one does mean value
expansions of VT ,(6,%) about 6, rather than of \/_ T (0 /9m)d (76, %),7)
about 6.

4.3. Discussion of Assumption N

Assumption N(a) can be established by Theorem A-1 given in the Appendix
or some other consistency proof. Assumptions N(b), (¢), and (¢) are key
assumptions—they are discussed below. Assumption N(d) can be verified using
a CLT for a sequence of rv’s, such as the Lindeberg-Lévy CLT or one of the
CLTs given by McLeish (1975b, 1977), Hall and Heyde (1980, Chs. 3-5),
Herrndorf (1984), Gallant (1987), or Wooldridge and White (1988a,b). Assump-
tion N(f) usually is not restrictive and is easy to verify.

Assumption N(g) requires that {m (6, 1)} and {(3/96")m (6, 7)} satlsfy uniform
WLLNs over €y X 7 (i.e., SUpge g, ;e o 170, 7) — mT(() IS 0 etc.). These
conditions can be verified using stochastlc equicontinuity results, such as those
given in Andrews (1989b, 1991a, 1994a). Alternatively, it can be verified using
the generic uniform WLLN results of Andrews (1987, 1992), Pétscher and
Prucha (1989), or Newey (1991) combined with a pointwise WLLN, such as that
of Andrews (1988) or McLeish (1975a) for dnid rv’s. As a third alternative, it
can be verified using empirical process WLLN results; see Pollard (1984).

Assumption N(g) also requires continuity of m(6,7) and M(8, 1) with respect
to some pseudo-metrics on @, X Z for which (8,%)2 (8,,7,). The most
convenient choices of pseudo-metrics are

1
(4.5) P((01’71) (05,75)) = lim ‘NZE“mz(leﬁ) mt(02’72)” and
N—-x

1
(4.6) P((91,71) (02,72))— lim _ZE

’ o (02’72)
N—)oo 1 H 00 !

mt(01’71) 00
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for establishing continuity of m(6,7) and M(8,7) respectively.* With these
choices, continuity of m(8,r) and M(8, 1) automatically holds, so it suffices to
verify that p((@,‘?),(()o,‘ro))io for each choice of p(-, ). The latter usually
holds under similar assumptions to those used to verify the condition of
Assumption N(b) that p (7, 7,) % (). The requirement of Assumption N(g) that
m (6, 7) is twice differentiable in 6 can be relaxed, if necessary, and replaced by
the assumption that Em (6, 1) is twice differentiable in 8; see Andrews (1989a)
for details. Assumption N(h) is a standard condition that is often closely related
to the identification of 8,. It reduces to nonsingularity of the information matrix
in iid ML contexts.

The stochastic equicontinuity assumption, Assumption N(e), can be verified
using the Proposition stated in Section 2, using results given in Andrews (1991a,
1994a), or by using other results in the literature. To obtain stochastic equiconti-
nuity, the index set 9 needs to satisfy some conditions. This creates a tension
between Assumption N(e) and the first part of Assumption N(b), since the more
restricted is 7, the more difficult it is to show that P(7€ 9 )— 1. For
example, if 7 1is an infinite dimensional class of functions, the Proposition and
the stochastic equicontinuity results of Andrews (1991a, 1994a) require the
functions in 7 and in consequence the functions m(w, 6, ) to satisfy smooth-
ness conditions (as functions of w). When 9 is defined as such, one has to
show that 7 also satisfies these smoothness conditions wp — 1 to verify the first
part of Assumption N(b). It will if 7, is a function of x for x € &, 7 satisfies
the smoothness conditions of the Proposition or of Andrews (1991a, 1994a), and
7 and a suitable number of its derivatives converge in probability uniformly over
x € & to 7, and its corresponding derivatives. Note that uniform convergence
of nonparametric regression estimators and their derivatives generally requires
the domain &~ of the functions to be bounded and the absolutely continuous
components of the distributions of the regressor variables {X,} to have densities
bounded away from zero on &

Next we discuss the pseudo-metric p, on . There is a tradeoff between
Assumptions N(b) and (e) with regard to the choice of pg . The stronger is the
po, the easier it is to verify stochastic equicontinuity, but the more difficult
it is to verify that p,(#,7,) > 0. For the stochastic equicontinuity results of
Andrews (1994a), the following pseudo-metrics are considered:

N 21/2
41 o= 0| ST et m) <o and
= 1

, 1,2
(48 po(rim) = | [ ImOw, 00,7 = m(w. o) ]

The latter applies when m,(-,-,-) does not depend on T or ¢ and W, takes
values in a bounded set #. Consistency of 7 for 7, with respect to a pseudo-

4Here and below, pseudo-metrics p(-, - ) are defined using a dummy variable N (rather than T)
to avoid confusion when we consider objects such as plimy _, ,, p(, 7o). Note that the pseudo-met-
rics are assumed to be independent of the sample size 7.
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metric such as that of (4.7) or (4.8) (as required by Assumption N(b)) can usually
be reduced to LZ-consistency of 7 for some 2 < Q < when J is an infinite
dimensional class of functions, plus some moment conditions on certain func-
tions of W, and sometimes some uniform boundedness condition on 7y and 7
that must hold wp — 1.

Assumption N(c) is a key assumption. It is an asymptotic orthogonality
condition between the estimators 8 and 7. It is needed to show that preliminary
estimation of 7, does not affect the asymptotic distribution of 0. It d(m,vy)=
m'm/2 or mym/2 and ¥ = O,(1), then Assumption N(c) reduces to

p
(4.9)  VTmi(8y,%) > 0.
Note that m5(6,, 7,) = 0 because these are the population first order conditions
for the estimator § and 6, is an interior point. Thus, condition (4.9) requires
that the replacement of 7, by 7 in m%(6y,7) have an effect that is at most
(T71%)
0, .
Condition (4.9) (and hence, Assumption N(c)) is trivial to verify whenever

(4.10) m¥(0,,7) =0 Vr insome neighborhood of 7
for all T sufficiently large. The reason is, in this case,
(4.11) VT30, 7) = VT 500, 7)1(p5 (7, 7¢) < &)l
VT3 (80, F)L(p(F,70) > €)
=0+0,(1)

for some ¢ > 0, using (4.10) and Assumption N(b). It is easy to see that (4.10)
holds for the GMM estimator of the conditional moments restriction model,
which is not an adaptive model. Condition (4.10) also holds for most adaptive
estimators of adaptive models, such as Bickel’s (1982) and Manski’s (1984)
adaptive estimators of linear and nonlinear regression models with errors of
unknown distribution.

On the other hand, Assumption N(c) and (4.9) do not require (4.10) to hold.
For example, if m (6, 7) is of the form m, (6, 7(X,)) for 7(X,) € R*, then (by a
Taylor expansion) (4.9) holds under the following conditions:

(4.12)  Em,(64,74(X,)) =0 V1,

ad
E[g—m,(()O,TO(X,))Xt=x]=O Vx V¢, and
T

1z , @2
(413) 2 X [TVA(3(x) = 7o(x)) 55700, 7 ()T

X (#(x) = 70( %)) dP,(x) >0,

where 17°(x) lies between 7(x) and 7¢(x) and P, denotes the distribution of X,.
The WLS estimator of the PPR model satisfies (4.13), as do the estimators of
Klein and Spady (1993), Ichimura and Lee (1990), and Powell (1987) among
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others. Thus, if the estimators 7(x) of r,(x) satisfy the 7'/“-consistency
condition (4.13) in these examples, then Assumption N(c) holds.

When Assumption N(c) holds, a MINPIN estimator 6 has the same asymp-
totic distribution as the estimator that minimizes the same criterion function as
6 but with 7 replaced by 7,. If, in addition, the latter estimator is an asymptoti-
cally efficient estimator of 6, for the case where 6, is the only unknown
parameter in the problem, then 0 is an adaptive estimator. The latter condition
only holds in special cases and, in consequence, Assumption N(c) is a much
weaker requirement than is adaptability. In addition, as noted above, adaptabil-
ity is not a necessary condition for Assumption N(¢) to hold trivially via (4.10).

We now consider the case where Assumption N(c) fails and, hence, the
estimation of 7, has an effect on the asymptotic distribution of the MINPIN
estimator; also see the discussion of Newey (1990b, Sec. 4.4). Some examples
include Cox’s (1975) partial likelihood estimator of the proportional hazards
model, Han’s (1987) maximum rank correlation estimator of the generalized
regression model, Horowitz’s (1988) M-estimator of the censored regression
model, and Powell, Stock, and Stoker’s (1989) estimator of weighted average
derivatives and index regression models. To fit such estimators into the frame-
work developed here, one needs to present conditions under which VT 75(6,, 7)
is asymptotically normal jointly with »;(r,) rather than o,(1), when d(m,y) =
m'ym/2. This is done in Andrews (1991c) for the case where 7 consists of
nonparametric kernel density and/or regression function estimators and/or
their derivatives.

Lastly, we note that the principle difference between Assumption N and
assumptions commonly used to establish asymptotic normality of nonlinear
parametric estimators is the appearance of Assumptions N(c) and (e).

4.3. Covariance Matrix Estimation

We now gonsider estimation of the covariance matrix ¥V of the MINPIN
estimators {8}. We estimate V' by plugging estimates of D, M, and S into the
expression for V given in (4.1). Define

A 92 P 17 9 .
(4.14) D= Wd(mT(B,T),y) and M= — Z =5 m(0:%).
Under Assumption N, D and M are consistent for Q and M respectively.

Next, we discuss estimation of the matrix S. Let § be an estimator of S. If

{m[8,, )} is a sequence of independent or orthogonal rv’s, then we can take

. 1 X . a
(4.15) S=?Zm,(0,ﬂ?)m,(0,ﬂ?).
1

In this case, S is consistent for S if Assumption N holds with (3 /360 )m (0, 1)
replaced by m (0, 7)m,(0,7) in Assumption N(g).
If {m (6, 70)} is m-dependent, then the following estimator can be used:

. T m 1 T
(4.16) s— DYDY [ i, + 0,130,
1 v=1 1+u
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where ﬁt,=mt((§,ﬂ?). If {m/6,,7,)} is neither orthogonal nor m-dependent,
then a more complicated estimator of S is required. In particular, heteroskedas-
ticity and autocorrelation consistent (HAC) covariance matrix estimators that
have been defined for parametric models can be used; see White (1984,
pp. 147-161), Newey and West (1987), Gallant (1987, pp. 552, 553, 573),
Andrews (1991b), and Andrews and Monahan (1992). For semiparametric
models these estimators can be defined in exactly the same way as for paramet-
ric models, using {m ,(9, 7)} as the underlying 1v’s. The consistency of such HAC
estimators when 7 is infinite dimensional does not follow from the results given
in any of the papers above, however, because these results make use of mean
value or Taylor expansions in the estimated parameters, which rely on the finite
dimensional character of the parameters. Nevertheless, if 7 affects the sum-
mand mt((A),'?) only through the value of a finite dimensional random vector
#(X,), say, then the same mean value expansion method can be used to
establish consistency of the HAC estimator S.

5. WLS /PARTIALLY PARAMETRIC REGRESSION APPLICATION

In this section, we apply Theorem 1 of Section 4 and Theorem A-1 of the
Appendix to yield conditions under which the WLS estimator of the PPR model
is consistent and asymptotically normal. We consider strong mixing nonidenti-
cally distributed bounded rv’s. Kernel estimators are used to estimate 7,4(x),
To0(x, 8), and 755(x):

17T - X, N
T ZXKl[;_]/&lT)/fl(xL
1 i

(5.1)  Aux)=

17 N - X, N
72(x,0) ?Zh(Z,,())Kz[xaA_ ]/"A'sz)/fz(x)v
1 2T
17, . - X, .
T3(x) = ‘]:ZUtsz[xaA_ ]/&3T)/f3(x)’
1 3T
R 17  [x—X,
f,(x)=—]:ZK] < ]/‘fm
1 iT

A

l]t—_—)/t—é:l(Xt) _h(Zt’O*) +7’:2(Xt70*)’
K(x)= det“l/z(sj)K-(Sfl/zx),

J J

. 1 Z - —
2j=?;(X,—XT)(X,—XT), and

_ 1T
XT=?ZX, for j=1,2,3,
1
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where K;(-) and G, for j=1,2,3 are kernels and bandwidth parameters that
satisfy the conditions specified below and #* is the semiparametric LS estimator
of the PPR model that is defined in the same way as the WLS estimator except
that 7;(x) = 1.

We make the following definitions. Let @, be some neighborhood of 8. Let
©* be some open set that contains @. Let Z.* be an &-neighborhood of 27*
for some & > 0. For large B <« and small § > 0, let

(5-2) I= {(71772773): ”71( ) ” a1, 2F <B, ” 7'2(' > ) ”qzvg/:&@* <B,

7200 ) gy 2 < B, inf_|72(x)] >8]},
xel

where q,, g,, and g5 are positive integers that satisfy

(53) a,>(k+1)/2, q,>(k+max{p,[,2})/2, and ¢;>k/2

and k, [, and p are the dimensions of X,, Z,, and 6, respectively. (The
constants B and & above are chosen sufficiently large and small, respectively,
that (79, 759, T30) € ) Let 1§ = (144, 59, 1), Where o«(x) =1 for all x € R 7%
is the limit of the nonparametric estimator ¥ when #5(-) is replaced by «(-),

which occurs in the definition of the nonweighted LS estimator 6.
Next, define

1z
(54)  m07) = lim 2 LEE(X)
X (¥, = m(X,) = h(Z,,0) + 75( X,,8))}[rs( X,),
1 T
my(0,7) = Thinw? ;Em,((),f), and

17 4
M(@,T) = }1111 —T—ZEbymt(G,T),
« 1

where m, (0, 7) is as in (3.7).

Next, let p denote a k-vector of nonnegative integers and define x* = [TF_, x/
for x € R*. For nonnegative integers k, ¢, and o with o >g, we define the
following class of kernels:

(55)  Frgw= {K(-): Rk—>R|fK(x)dx= 1,
JxK(x)dx=0V1<lpl<w—g-1,

flx“K(x)|dx<00V,uwith lul=w —q,

DMK (x) — 0 as ||x]| > o Vu with |ul| <gq,
D"K( x) is absolutely integrable and has Fourier transform

Y.(r)= (ZW)kfeXD (ir'x) D*K(x) dx that satisfies
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f(l + Irll) sup [WM(br)|dr < oYy with |ul<q,
bz1

and sup |D* Y%K (x)|(llxllVv 1) <o Vu with |ul<q,

xERk

Vj=1,...,k, where ¢, is the jth elementary

k-vectorand i=v—1 }

For example, the following kernels considered by Bierens (1987) are in
Ko

R
(56) K(x)=Q@2m) * Y a,b  exp[-$x'x/b2],

r=1

where R is a positive integer greater than or equal to (w —¢q)/2 and {(a,, b,):
r < R} are constants that satisfy

R
(57) b,>0, Y a, =1, and Y a,b¥ =0 for [=1,...,R-1.

r=1 r=1

For w =q and R =1, this gives the standard normal kernel of dimension k.

Let %, ., be the class of kernels K(-) that (i) satisfy the conditions of
K00 €xcept (possibly) the condition on the Fourier transform of D*K(x) and
(i) are zero outside a bounded set in RX. For example, the kernel K(x)=
exp(l/(llxll2 — 1) for llxl]l <1 and K(x)=0 for [lx[[>11isin JA* for all
positive integers q.

When applied to a function g(x,8), we let D*> and D*¢ denote vectors of
derivatives with respect to x and 6 respectively. We say mixing numbers {a(s):
s > 1} are of size —B if a(s) = O(s #~¢) for some & > 0. A

The following assumption is sufficient for asymptotic normality of 6.

2,9+1

AssumptioN WLS /PPR: (a) O is bounded, 0 lies in the interior of O, and
Z°* is an open bounded subset of R* with minimally smooth boundary.

) (U, X,, Z,): t = 1} is a sequence of strong mixing rv’s with mixing numbers
of size —2.(Y,, X,) lies in an open bounded set with minimally smooth boundary
Vt>1.(Y,,Z,) and (X,, Z,) do likewise.

(c) m(8,7), m,(0,7), and M(0,7) exist uniformly over (6,7) in @ X I,
O, X T, and Oy x T, respectively. The matrices M and S exist.

(d) sup, e g+ SUp, e Hll D*:D*0h(z2, )| <o Y, pg with | | <q; and |p,l <
g, + 1, where 9 contains the z-values in the open bounded set of part (b) that
contains (X,, Z,) Vt.

(e) M is nonsingular and m (0, 1,) and m (0, 1{) are bounded away from zero
for all 0 outside any given neighborhood of 0.
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() The distribution of X, is absolutely continuous with respect to Lebesgue
measure with density f(x) Yt > 1, infy_ inf, ¢ ox (1/T)Ef(x) >0, D*f(x)
exists and is continuous on R* Yt > 1, and sup; . , sup, . g I(l/T)ZTD”f,(x)I <
Vu with |u| < max{w,, w,, q,}, where w, and w, are positive integers that also
appear in parts (g)-(i) below.

(@ 7,0(x) =E(Y,|X, =x), D*ory(x,0) = D"ENZ, 0)|X,=x), 73(x)=
EUA X, =x), and 7,(x,0) = E(h(Z,,0) — h(Z,,0,)"| X, = x) do not depend on
t Vi>1, V0 € O%, Yu, with lug <gq,. D*[7,o(x)f(x)] exists and is continuous
on R¥ ¥t =1, {1 /TYLIDH7,o(x)f (X)) T > 1} is uniformly equicontinuous on
RX, SUp, & g (1/TYZID 7o) f ()] < o, and sup, ¢ g+ |D*74(x)| < VY
with |ul < max{ql, w,}. D*xD¥e7(x, O)f,(x) exists and is continuous in x on R*

V0 € @ Vi > 1, supy. ;SUDge g+ SUD, e gk (1 /TILID*<D e 7,(x, 0) f,(x)]] < o0,
and SUPge g« SUD, e gx | D*eD#or0(x, 0) <o Vpu,, py with |pn,l<q, +1 and
Il < gy Sup, ¢ gxl D7 50(x, 8l < o VY, with || < w,. D*75(x,8) is contin-
uous in 0 at 8, uniformly over x € Z* Vu with |ul < g5 D*[7;0(x)f,(x)] exists
and is continuous on R* ¥t > 1, supy, ;sup, e gel(1/TIEIDH 730 x) f,(0)] < o0,
and Sup, ¢ g+ DF745(x)l <0 Y wzth Ip,l <q;+ 1. D¥7,(x, 0)f(x)] exists and
is continuous on R* Vo€ @, Vit >

sup sup sup l(l/T)ZD'L[Uo(x 9) fi(x)]l <,
T>1 00, xeZ*

D*7,(x, 8) is continuous at 8, umformly overx € Z™*, and
sup  sup |DHru(x,0)| <o Vu with|ul<gs+1.
00, xeZ*

h) K, ‘%/k,th,th N o, K2 € Fh grarrt N K00
sup [DHK,(x)| <o Vu with |ul<g, +q,.
x€R¥

K3 € K, 4e1 and sup, ¢ ge| DHK5(X)] < o0 VY with |pl < g

® For]—l 2,3,{0;: T > 1} satisfies C;, le<0 < Cpo,r wp = 1 for some

positive bounded constants {(o;,7, 0357): T > 1}, C;y, and C 12 that satisfy

and

(1) Opor = O(T_ 1/(4w1)) and Tmln(l/(2k+2q1) 1/(4k)) oy = %,
(2) Oy = 0(T—1/(4w2)) and Tmin(l/(3k+2q2+l),1/(4k))0.21T — oo, and
(3) oypr=0(1) and TV +2B)g - — w0,

() lim,_, (1/TXTEX, exists, lim,_,(1/T)LYEX, X, exists, and

1T ' — —_
Tli_r)I}n)tmin 7 ;E(X, — EX;)(X, - EX7) | >0.

We now comment on Assumption WLS /PLR. Regarding WLS /PPR(a), see
Stein (1970, pp. 181, 189) for the definition of minimally smooth boundary.
Examples of sets in R* with minimally smooth boundaries include open
bounded sets that are convex or whose boundaries are C'-embedded inR*.
Finite unions of sets of the aforementioned type with disjoint closures also have
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minimally smooth boundaries. The boundedness assumption on Z™* in
WLS /PPR(a) is convenient due to three aspects of the problem that cause
complications. First, nonlinearity of A(Z,,6) in 6 means that we need to
establish convergence of the nonparametric estimator 7,(x,#) and its deriva-
tives with respect to x and 8 uniformly over 8. Second, establishing consistency
of the estimator #,(x) of the weight function 7,,(x) involves establishing
uniform consistency of nonparametric regression estimators over a nonparamet-
ric class of functions (7,,7,), since the residuals U? depend on the nonparamet-
ric estimates (7,,7,). Third, the observations are allowed to possess strong
mixing temporal dependence.

Assumption WLS /PPR(c) holds automatically in the identically distributed
case given the moment assumptions. WLS /PPR(e) is an identification condition
that is used to obtain consistency of 6.

Assumption WLS /PPR(f) assumes that the regressors are continuous. This
assumption is made to obtain the desired uniform consistency properties of the
kernel estimators in a simple way. It can be relaxed along the lines given in
Andrews (1994b, Comment 5 to Thm. 1) if X, contains a subvector of discrete
rv’s with finite support and a subvector of continuous rv’s that satisfies the
conditions of WLS /PPR(f). For brevity, we do not treat this case explicitly here.
WLS /PPR(f) also requires the average density of {X,;: # <T} to be bounded
away from zero on the set Z.*. This condition could be relaxed, but not if one
wants to verify Assumptions N and C (given in the Appendix) using uniform
convergence of the nonparametric estimators, as is done here.

The use of bias-reducing kernels K,(+) and K,(-) (Assumption WLS /PPR(h))
is due to the need to establish T'/*-convergence of 7,(x, 8,) and (9/36)7,(x, 6,)
to 7,0(x, 8,) and (9/00)7,,(x, 8,) respectively. The latter results are needed in
order to verify the asymptotic orthogonality condition Assumption N(c).

For the case where h(Z,, 8,) is linear in 6,, the errors U, are conditionally
homoskedastic, and the observations are independent, Assumption WLS /PPR
is much more restrictive than the assumptions given by Robinson (1988) for
asymptotic normality of the nonweighted linear LS estimator of 8,. This is due
to two factors. First, Assumption WLS /PPR is designed for the more general
model for which the above three conditions are relaxed. Second, Assumption
WLS/PPR is formulated as a special case of the more general results given in
Theorems 1 and A-1, whereas Robinson’s assumptions are specially tailored to
the partially linear regression model. As often occurs, the results designed on a
case by case basis are sharper than those derived from a more general set of
results.

Asymptotic normality of the WLS estimator 6 is given in the following result.

Tueorem 2: Under Assumption WLS/PPR, the WLS estimator 0 satisfies
VT (0 —6,) % NQO, M 'SM~") for M and S as in (4.3).

CommenTts: 1. The nonweighted LS estimator 6* is consistent under As-
sumption WLS /PPR. If Assumption WLS/PPR holds with M and § defined
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with 74,(X,) replaced by 1, then VT (6* — 8,) 5 N(0, M~'SM~!) with M and S
so defined.

2. When the observations are iid and E(UZ,, X,) = E(U? X,) as. (but the
latter is not part of the prior restrictions on the model), then the WLS estimator
6 attains the semiparametric asymptotic efficiency bound given by Chamberlain
(1992) (provided the model is assumed to hold only for X, € 2™*).

3. The asymptotic covariance matrix M ~1SM~! of § can be estimated by
M~'SM~!, where

N ] . I N
M= T ;g(x,)(go-h(z,,o) - —Tz(Xt,H))

d N ad Y
X ﬁh(z,,a) - £72()(,,61))/73()(,)
and § is as defined in Section 4.3 depending on the dependence and hetero-
geneity properties assumed of

{E(X)U((3/00)h(Z,,8,) — (3/86)72(X,,00))/Ts0( X,): t > 1},
M is consistent for M and S is consistent for S under Assumption WLS/PPR
when the definition of § given in (4.16) or (4.17) is appropriate. When § is a
HAC estimator, consistency needs to be verified.

Cowles Foundation for Research in Economics, P.O. Box 208281 Yale Station,
New Haven, CT 06520-208281, U.S.A.

Manuscript received May, 1989; final revision received May, 1993.

APPENDIX
A.1. Consistency of MINPIN Estimators

We now provide sufficient conditions for the consistency of the MINPIN estimator 8. Let @/0,
denote the set of points 6 that are in @, but are not in &,

Assumption C (Consistency): (a) There exists a function m(-,-); @ X I~ RY such that m(0, )
5 m(8, ) uniformly over (0,7) €0 X I

(b) supy e pllm(8, ) — mB, 7 ) >0 for some o€ T, P(F€ T)—>1, and 3 Ly, for some
Yo € r.

(c) d(m,v) is uniformly continuous over # X Iy, where #={meER": m =m(0,7) for some
0€0, 7€ .9Y)and I'(CT') contains a neighborhood of vy.

(d) For every neighborhood @o(C @) of 8, infye g 0, dml8,7¢), o) > dml8g, 70), vo)-

TueorReM A-l: Under Assumption C, every sequence of MINPIN estimators {@} satisfies 85 B
under P.

The proof of Theorem A-1 given below is similar to. many other consistency proofs in the
literature.

We now ‘discuss Assumption C. The function m(8,7) of Assumption C(«) usually is given by
limy ., (1/TYETEm, (6, 7). Thus, Assumption C(a) holds if m(8,7)=limz_,, 1 /TTTEm (8,7)
exists uniformly over @ X I (i.e., sup(g e ox &Il (L /TIETEm (8,7) — m(8, 7)l| - 0) and {m (8, 7):
t < T, T > 1} satisfies a uniform WLLN over @ X .7 The latter can be verified in the same manner
as for Assumption N(g). The first part of Assumption C(b) specifies the manner in which 7 must
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converge to 7. The condition shows that 7 must estimate 7, well only in so far as m(8, 7) estimates
m(8,74) well uniformly over 6 € @ for large T. When 74 is a function, the latter usually requires L2
consistency of 7(-) for 74(-) for some 1< Q <. If 7 is a nonparametric regression or density
estimator, then consistency results in the literature can be exploited when verifying the first part of
Assumption C(b). In particular, the nonparametric kernel density and regression function estimation
results of Andrews (1994b) are designed especially for use in semiparametric models with dnid
observations.

Note that the establishment of the first part of Assumption C(b) may involve a step that is not
treated in the nonparametric literature (although it is treated in Andrews (1994b) for kernel
estimators). This step arises when 7 is based on estimated variables, such as residuals, rather than
the true variables themselves. In such cases, one has to show that the error introduced by
preliminary parameter estimation is 0,(1). This can be done directly on a case by case basis, or by
using the results of Andrews (1994b) when kernel estimators are employed, or by using a
discretization /contiguity argument as in Bickel (1982, p. 657) and Manski (1984, pp. 173-178).

The second part of Assumption C(b) requires that wp — 1 7 lies in the set .7~ over which
mi (8, T) converges uniformly to m(8, 7). There is a tension between this condition and Assumption
C(a), since the larger 7 is the easier it is to verify this condition, but the more difficult it is to verify
Assumption C(a) and vice versa. If Assumption C(a) is verified using a smoothness condition on all
T € 7, as is the case when the Proposition of Section 2 or the stochastic equicontinuity results of
Andrews (1989b, 1991a, 1994a) are used, then Assumption C(b) requires that 7 satisfy this
smoothness condition wp — 1. See the discussion of Assumption N(b) for further details. Again,
consistency results in the nonparametric literature or Andrews (1994b) can be used to verify such a
condition. The third part of Assumption C(b) often holds trivially since no estimator 9 arises. When
¥ does arise, it is almost always finite dimensional.

In almost all examples, d(m,y) =m, m'm /2, or m'ym /2. In these cases, a sufficient condition
for Assumption C(c) is supy < g, , « & llmM(8, Tl < 0, which is not oyerly restrictive. Assumption C(d)
is the uniqueness /idéntification assumption that ensures that {#: T > 1} neither converges to a
multi-element subset of ® nor diverges to “x.” The same condition is often used for nonlinear
parametric models. Sufficient conditions for Assumption C(d) are: @ is compact and d(m(8, 7,),v,)
is continuous in 6 on @ and is uniquely minimized at 8,,.

A.2. Proofs

For notational simplicity, we let 7i,(0) abbreviate #i;(8,7) and m(6) abbreviate m(6,7,) in the
remainder of the Appendix, except in those places where the dependence on T or 7, must be made
explicit for reasons of clarity.

The proof of Theorem A-1 uses the following lemma, which is similar to results in the literature.
The lemma appears in this form in P6tscher and Prucha (1989, Lemma 3.1) (with a different proof
than that given below) and perhaps elsewhere in the literature.

LeEmMmA A-1: Suppose 0 minimizes a random real function Q(8) over 0 €@ wp > 1, where @ isa
pseudo-metric space. If (a) supy< olQ7(8) — Q) >0 for some real function Q on @ and (b) for
every neighborhood O of 0y, infy . g 0, 0(8) > Q(8), then 8 5 6,

Proor oF LEmMMa A-1: By Assumption (b), given any neighborhood @, of 8, there exists a
constant § > 0 such that infy - g , ¢, Q(6) > Q(8,) + 6. Thus,

(A1) P(8€6/0,) <P(Q(8) - Q(8,) >5) -0,
where — 0 holds provided Q(8) % Q(8,). The latter follows from
(A2)  0<0(8) ~ Q(80) = 0(8) - 0r(B) + 01(B) — Q(8,)
<0(0) = 0r(B) + 0r(80) = (80) + 0, (1) 25D | 07(6) = 2(0)] + 0,(1) = 0.
Q.E.D.

Proor oF THEOREM A-1: We show that Assumption C implies that conditions (a) and (b) of
Lemma A-1 hold with Q(68) = d(7i(6,7),7) and Q(8)=d(m(8,1,),v,). Condition (b) holds by
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Assumption C(d). Condition (a) follows from
(A3) sup Id(mT(B,f),if)~d(m(9,‘ro),yo)|
0O

< sup |d(mir(6,7),9) —d(m(9,7).9)]
s

+ sup |d(m(6,7),9) — d(m(8,70),70)]
0O
< sup  |d(Fg(0,7),7) —d(m(0,7),7)| +0,(1)
8cO,7rc
yely

+ sup |d(m(6,7),7) —d(m(8,70),70)|
O

P
-0,
% 0” holds using Assumptions C(a)-(c). Q.ED.

P
where “

Proor oF THEOrREM 1: Element by element mean value expansions of VT (8/69)d(mT(§),§)
about 8, give: Vj=1,...,p

(A4) 0,(1) = ﬁ%d(mT(é),«y)

VT S d(ma(00),7) ¢ @) INT (5-85)-

36’ a8,
where 6* is a v that depends on j and lies on the line segment joining 8 and 64, and hence,
6* 5 8,. (See Jennrich (1969, Lemma 3) for the mean value theorem for random functions.) The
first equality holds because 8 minimizes d(m(8),7) and 8 is in the interior of @ wp —1 by
Assumption N(a). The second equality actually only holds wp — 1, since the mean value expansions
require 8 € 6.

Below we show that

2 2

(A5) ———d (T (8%),9) =

20 39, d(m(()o) 70) +0p(1)

ae’ 99;
where (92 /8 096" )d(m(8,), v4) = M'DM, and
d d
(A.6) ﬁ%d(mT(eo),y) 5 N(0, M'DSDM).
These results, equation (A.4), and the nonsingularity of M'DM give
N o, d d
(A7) VT (0-6,) = —(M'DM)™" 75 4(M1(80).9) +0,(1) > N(0.V).

To show (A.5), we proceed as follows:

2 2
(A8) 20,96, d( r(8%),7) = 30,96, mr(0 *)_d(mr(e ), 7)
3 2 N
+£“T( *)a am,d(mT(e*),y)a—mmT(G*).

By Assumptions N(a), (b), and (g),
(A9) I (6%) — m(8)|| <||Fip(6*,7) —m%(6*,7) |

(07, 2) = m(8% D) + (0%, )~ m(B, )] 0.
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Using this result the continuity of (3 /am)d(m v) at (m(8,), y,) (Assumption N(f)), the Assumption
N(b) that $ 5 vg> and the continuous mapping theorem, we get

ad p @
(A10) Ed(mT(ﬂ*)JA’) - Ed(”’(eo)ﬁ’o) =90,

where the equality holds by Assumptions N(b), (c), (f) and (g). Using Assumption N(g) and
Markov’s inequality, it is straightforward to show that (92 /98,067 (6*) = 0,(1). This result and
(A.10) imply that the first term of (A.8) is o, (1.

Slmllarly, the continuity of (32 /dm om’ )d(m v) at (m(8,), v4) (Assumption N(f)), equation (A.9),
¥ 5 Yo, and the continuous mapping theorem give

2 2

P ad
(A1) d(Fir(8%),9) > —rd(m(80).70) =D.

dmom'

It follows from Assumptions N(a), (b), and (g) that M = M(8,,7,) and

(A12) I M(8%,7) = M(8y,70)]| > 0.

ad
< ﬁmT(o*) —-M(0*,7)

Equations (A.11) and (A.12) imply that the second term of (A.8) equals [M’ DM, +0,(1), and
hence, (A.5) is established.
To establish equation (A.6), we write

d a ]
(A13) ﬁﬁd(mr(eo)’f’) = ﬁ[a_o,mr(eo)] a_,;d(mr(eo)’f’)

d
=M'ﬁ£d(mr(90)v§') +o,(1)

using N(g) provided \/_(a/am)d(mT(B(,) #) = 0,(1), as we now demonstrate.
By the mean value theorem, the jth element of \/_(a/am)d(mT(BO, 7),%) can be expanded about
mH(8,,7) to get:

a a
(A.14) VT —d(7(60,7),9) = VT —d(m3(00, %), 7)
am]- amj

62
am'am, d(m* FWT (g (60, 7) = m5(0o, 7)),

where m* is on the line segment joining 7 (8,,7) and M%(6,,7), and hence, m* 5 m(6,). (More
precisely, (A.14) holds wp — 1.)

The first term of the right-hand side of (A.14) is o,(1) by Assumption N(c). Also, using
Assumption N(f), (92 /am’ am)d(m*, ) =[D]; +0,(1), where [D]; denotes the jth row of D.
Hence, if VT (i (6,,7) ~ mT(BO,T)) 0, (1), the above results and (A 14) yield

a
(A.15) \/T—a;d(mT(oo, £),9) = DVT (7r(8,,7) - #5(00,7)) +0,(1).
The proof is complete once we show that

(A16)  vp(3) = VT (Mip(80,7) — 75 (00,7)) > N(0, 5),

since this implies that (A.15) and (A.13) hold, which establishes (A.6).
Using Assumption N(d), one sees that (A.16) holds if v 1(7) — »;(74) 2 0. The latter follows from
Assumptions N(b) and (¢) by (2.10). Q.E.D.
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Proor oF THEOREM 2: The proof uses the following properties, which hold under Assumption
WLS /PPR, of the nonparametric estimators 7,(x), 7,(x,8), and 75(x):

P
(A7) TV sup |F(x)—74(x)] =0,
ed*
P
(A.18) TY4 sup |7,(x,80) —70(x,8,)| — 0,
xe X
s a 3
(A.19) T sup -1'2(x,90)~a—1'20(x,00)
cegllo 0
P
(A.20) sup | DA (x) =~ DFrp(x)] =0 Yu with |pl<gy,
el
p
(A21) sup sup | DHrDHoR,(x,8) — D*<Dory(x,0)] >0 Yu,,u,

0O xe Z*

with |p l+ipgl<g,, and

P
(A22) sup [ D#7y(x)— DFryp(x)] >0 Vo with |ul<aqs.

e

Equations (A.17)-(A.19) are established using Theorem 1{b) of Andrews (1994b) by verifying its
Assumptions NP1-NP5. We note that (8/30)7,(x, 8,) is the kernel estimate of (3/36)h(Z,,0,) on
X,, so for (A.19) we verify NP1-NP5 with Y,=(3/00)h(Z,,8,). Under Assumption WLS/PPR,
(8/00)1,0(x,04) = (8 /00)E(W(Z,, 0)| X, = x) = E(8/80)h(Z,, 0y)| X, = x), so the result of Theorem
1(b) is the desired result for (A.19). (A.20) is established using Comment 4 following Theorem 1 of
Andrews (1994b) by verifying its Assumptions NP1, NP2', NP3, NP4, and NP5'. (A.21) is established
using Corollary 2 of Andrews (1994b) by verifying its Assumptions NP1*-D and NP2*-NP5*,

Equatlon (A.22) is established by writing sup,, « o+|75(x) — 73(2)| < A7+ A,y provided 7, € 7,
and 7,€ 9, wp—1, where A= supee% e e, SUPs e I DHTi(x, 0, 7, Ty)
D#ra(x,0,7,,7,) and A= supxeg*lrm(x 6%, 71, 75) — T5o(x, BO,TIO,TZO)I 7x,0,7,7,) de-
notes the kernel estimate 7,(x) of 0> on X, when the residuals U, are based on “estimates”
(0,7,,72) of By, 7o, 7). T3e(x,0, 1-1,1-2) is the corresponding expected value of these residuals
given X,=x. 97 and 7, are neighborhoods of 7,3 and 7,, that are sufficiently restricted in terms
of smoothness on 2.* of the functions they contain that Corollary 2 of Andrews (1994b) can be
used to prove that /flT % 0 by verifying its Assumptions NP1*-D and NP2*-NP5*. Given that K4(-)
is assumed to be zero outside a bounded set, uniform convergence of D#74(x,8,7,,7,) to
D#74(x,8,7,7,) over x € 27* only requires smoothness of 75(x,6,7,,7,)f,(x) on an e-neighbor-
hood 27* of 2°* and not on all of R*; see Comment 4 to Theorem 3 of Andrews (1994b). In
consequence, 9, and J; are defined to include functions that are suitably smooth on 2.* and, in
order for 7, and 7, to lie in 97 and ., wp — 1, (A.20), and (A.21) must hold for x € .Q”.* and Yu
with |u| < g for some integer g > (k + 1) /2. The result AzT 2,0 is obtained using (A.20) and (A.21),
the conditions on 7,,(x, 8), and the continuity of D#r,4(x, ) at 8, uniformly over x € 27*.

Theorem 2 is proved by verifying Assumptions C and N with d(m,y) and m,{6,7) as in (3.6) and
(3.7) respectively. Assumption C(a) holds by applying the uniform WLLN given in Andrews (1992,
Thm. 3(a)) and verifying its Assumption BD, P-WLLN, and W-LIP with the metric

p((00:72), (05,73)) =116, = 6,11 + Slg*lful(X) = 7%l

xe

+ sup  sup |7,(x,0) —Th(x,0)
€@ xe°*

+ sup [my3(x) — T3 x )l
@™
P-WLLN is verified using Andrews (1988, Thm. 1, Remark 4 of Sec. 3). Assumption C(b) holds using
(A.20)-(A.22) and various parts of WLS/PPR. Assumption C(c) holds automatically because
d(m, ) is the identity function. Assumption C(d) holds by WLS /PPR(e). Theorem A-1 now implies



70 DONALD W. K. ANDREWS

that 6% 6,. An analogous argument using the condition on m(8, 7{) given in WLS /PPR(e) yields
6* 5 8, where 0* is the nonweighted LS estimator that is used in the definition of 74(x).

Assumption N(a) holds by Theorem A-1 and WLS/PPR(a). Assumption N(b) holds by
(A.20)-(A.22). Assumption N(c) holds by (A.20)-{A.22), because by standard inequalities we can
write

(A2) W (mi0.5).9)]

<ﬁ( sup |7(x) = 7yo(x)|+ sup |$2(x,90)—720(x,90)|)
Q"*

eX* xe
d 3 ‘
X su —7,(x,6 x,0 in x).
xeé* 30 72( o)~ "20( 0) TGY,XGQ”*TS( )

Assumption N(d) holds using WLS/PPR(b) and (c) by a CLT of Herrndorf (1984, Cor. 1).
Assumption N(e) holds by the Proposition of Section 2 using the definition of  and WLS /PPR(a)
and (b). Assumption N(f) holds trivially since d(m,y)=m'm/2. The continuity of m(8,7) and
M(8,7) specified in Assumptlon N(g) holds with the metrics given in (4.10) and (4.11) using
(A20)-(A.22) to show that (8,7) 5 (84, 7). The uniform WLLNs specified in Assumption N(g) hold
by applying the generic uniform WLLN of Andrews (1992, Thm. 3(a)) in the same manner as for
Assumption C(a). Q.E.D.
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