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This article introduces approximately median-unbiased estimators for univariate AR(p) models
with time trends. Confidence intervals also are considered. The methods are applied to the
Nelson-Plosser macroeconomic data series, the extended Nelson-Plosser macroeconomic data
series, and some annual stock-dividend and price series. The results show that most of the
series exhibit substantially greater persistence than least squares estimates and some Bayesian
estimates suggest. For example, for the extended Nelson-Plosser data set, 8 of the 14 series
are estimated to have a unit root, but 6 are estimated to be trend stationary. In contrast, the least
squares estimates indicate trend stationarity for all of the series.
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1. INTRODUCTION AND SUMMARY

This article focuses on methods for, and applications of,
median-unbiased (MU) estimation and confidence-interval
(CI) construction in univariate pth order autoregressive
[AR(p)] models with time trends. This focus reflects our
interest in assessing the degree of persistence exhibited by
various economic time series. In particular, the time series
we analyze here include the 14 Nelson—Plosser (NP) macro-
economic time series, the 14 extended Nelson—Plosser (ENP)
time series, and 6 stock-dividend and price series that have
received considerable attention in the literature. Our interest
in persistence of economic time series is in common with
many recent works in empirical macroeconomics that focus
on the question of whether economic time series possess a
unit root or are trend stationary.

There are two motivations for this article. The first is
the emphasis placed in the unit-root literature on hypothesis
testing. A problem that arises with hypothesis tests in the
unit-root context is that tests have low power in many sce-
narios of empirical interest, including those analyzed here.
In such cases, point and interval estimators can be used to
provide more information than that given by unit-root tests.

The second motivation is the recent growth in Bayesian .

estimation methods for the models considered here (e.g., see
the fourth issue of the 1991 edition of the Journal of Applied
Econometrics, which is devoted entirely to this subject). This
development of Bayesian methods is very useful. We feel,
however, that a corresponding development of classical es-
timation methods also is likely to provide useful tools and
applied results. In particular, classical estimation methods
that exhibit unbiasedness properties can provide results that
exhibit a degree of impartiality that may not be attainable via
Bayesian methods.

The problem with using the standard classical estimators
[i.e., the least squares (LS) estimator] in the AR(p) model
with time trend is that of bias. The LS estimators of key
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parameters exhibit substantial biases. In particular, for esti-
mating the sum of the AR coefficients, «, the bias tends to
be downward and quite large. For estimating the coefficient
on the time trend, (3, the bias is upward and quite large. In
consequence, the LS estimator is a misleading indicator of
the true values of « and S.

To deal with the problem of bias, this article introduces a
bias correction for the LS estimator. The proposed method is
an extension to AR(p) models of the exactly MU estimation
method introduced by Andrews (1993) for AR(1) models.
The extended method yields only approximately, not exactly,
MU estimators. Here the approximation occurs both in the
usual statistical sense (due to the use of estimators rather than
true parameters in one stage) and in a numerical sense (due
to the use of pseudorandom numbers).

The long-run persistence properties of time series are ex-
hibited by their impulse response function (IRF). For a series
with a unit root, the IRF never dies out. For a trend-stationary
series, on the other hand, the IRF does die out. In either case,
the magnitude of the IRF across different time horizons in-
dicates how much persistence is present in the series.

It is often useful to focus attention on a scalar measure of
persistence rather than consider the whole IRF. In this article,
we develop an MU estimator and CI's for such a measure.
The measure we focus on is the cumulative impulse response
(CIR)—that s, the sum of the IRF over all time horizons. This
measure has the attribute that its relation to the persistence
of the series is immediate—it is a simple function of the
IRF. In addition, the CIR is a monotone transformation of
the spectral density function at zero frequency. In AR(p)
models, the CIR equals 1/(1 — &), where « is the sum of the
AR coefficients. Thus ouranalysis can focus on the parameter
« (since median unbiasedness and CI coverage probabilities
are invariant under monotone transformations).

The essence of our bias-correction method for the LS esti-
mator of «vis as follows: If the LS estimate of a equals .8, say,
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one does not use .8 as the estimate o but rather one uses the
value of a that yields the LS estimator to have a median of .8.
If the distribution of the LS estimator of « depends only on &
and is monotone in ¢, as in the AR(1) case, then the resultant
estimator is exactly median unbiased. If the distribution of
the LS estimator of o depends on some nuisance parameters
as well as on a, as in the AR(p) case for p > 1, then we
use an iterative procedure that jointly estimates o and the
nuisance parameters and yields only an approximately MU
estimate of a. In fact, simulations reported later show that
the approximation is very good-—the proposed estimator is
essentially median unbiased.

Once we obtain the approximately MU estimator of o, we
impose this estimate on the model and run an augmented
Dickey—Fuller LS regression to obtain estimates of the other
parameters in the model. Again, simulations show that the
resultant procedure leads to estimators that are essentially
median unbiased. We obtain standard-error estimates for all
of the parameter estimates via simulation.

The method for obtaining an MU estimator of « can be
extended to generate approximate CI's for . In addition,
it leads to an approximately unbiased model-selection pro-
cedure for determining whether a data series has a unit root
or is trend stationary. This selection procedure chooses the
unit-root model if the bias-corrected estimator of a equals 1
and chooses the trend-stationary model otherwise. The term
approximation is used here and later in the same sense as
previously.

Analternative scalar parameter that has been considered in
the literature to be a parameter of interest in AR(p) models is
the magnitude of the largest root of the model. For example,
Stock (1991) developed asymptotic CI's for this parameter
and DeJong and Whiteman (1991a,b) considered Bayes esti-
mators of this parameter. We show in the following that the
persistence properties of two series with the same dominant
root can be very different depending on the values of the other
roots. In consequence, the empirical results of Stock (1991)
and DeJong and Whiteman (1991a,b) are not as informative
as is desirable.

Although Stock (1991) focused on what we consider the
wrong parameter, his method requires considerably less com-
putational effort than is required by our method outlined pre-
viously. For this reason, we provide a trivial extension of his
method to the estimation of the parameter « that we consider
to be of main interest. Using his tables and a simple iterative
scheme, one can compute asymptotically MU estimates of «
and corresponding CI’s for it.

The procedures just described are applied here to three dif-
ferent data sets. The first is the Nelson and Plosser (1982)
(NP) data set. Nelson and Plosser applied tests for unit roots
on these data series and found that they could reject the null
hypothesis of a unit root for only 1 of the 14 series, viz., the
unemployment rate. Subsequently, however, several authors
pointed out that the tests employed by Nelson and Plosser
have relatively low power against relevant trend-stationary al-
ternatives given the sample sizes employed (e.g., see De Jong,
Nankervis, Savin, and Whiteman 1992).

As an alternative to classical hypothesis tests, Bayesian
estimation methods have now been applied to the NP data se-
ries (see DeJong and Whiteman 1991a, Phillips 1991a, and
Zivot and Phillips 1991). The results are mixed with re-
spect to the degree of persistence found, depending on the
priors employed and the parameters considered. DeJong and
Whiteman (1991a), for instance, obtained estimates of the
magnitude of the largest root that are substantially less than
one for most series. Phillips (1991a) found more evidence
of unit-root behavior, but still the evidence he found for it is
not strong.

The MU estimates of o obtained here show considerably
more persistence in the NP data than the LS, DeJong and
Whiteman, or Phillips estimates show. For 3 series (out of
14) the estimates equal 1.0, for 7 series the estimates are .96
or larger, and for 13 series the estimates are .89 or larger.

A second data set we consider is an extension of the NP
data set, which terminates in 1970, to include observations
up to 1988. This extension was compiled by Schotman and
van Dijk (1991). The MU estimates for the extended Nelson—
Plosser (ENP) data set show very high levels of persistence
for many of the series. Eight of the fourteen series, includ-
ing all of the nominal variables except money stock, have «
estimates equal to 1.0. Most of the real variables—including
real gross national product (GNP), real per capita GNP, indus-
trial production, and employment—have « estimates in the
range .86 to .91, which corresponds to considerable persis-
tence although less than unit-root-like behavior. In fact, for
the former two series, as well as for the unemployment rate,
the null hypothesis of a unit root can be rejected at the 5%
level using the ENP data. Nevertheless, the overall picture
obtained from the ENP data set is one of noticeably greater
persistence than with the NP data set.

The third data set we analyze consists of annual series
for Dow-Jones (DJ) dividends and prices (1928-1978), New
York Stock Exchange (NYSE) dividends and prices (1926
1981), and Standard and Poor’s (S&P) dividends and prices.
We use the same data as DeJong and Whiteman (1991b),
some of which were compiled by Shiller (1981). Interest in
the unit-root-versus-trend-stationarity question for these data
series arises because of their implications for volatility tests of
the perfect-markets hypothesis as initiated by Shiller (1981).
DeJong and Whiteman (1991b) presented some Bayesian es-
timates of the magnitude A of the largest root of AR(3) models
with time trend fitted to the preceding data series. Their esti-
mates for A were quite low—.72, .76, .77, .84, .72, and .87,
respectively.

In contrast, our MU parameter estimates are considerably
larger. The CI’s obtained are very wide, however, so a key
feature of our results is that for most of the series it is not
possible to make definitive statements one way or another
regarding the unit-root/trend-stationary question. Our pa-
rameter estimates for « for these series are .79, 91, .90, 1.0,
.82, and .94, respectively. Our corresponding estimates for
A for these series are nearly the same—.79, .92, .90, 1.0, .77,
and .94. Our estimators are essentially median unbiased,
whereas DeJong and Whiteman’s (1991b) Bayesian proce-



dure appears to have a substantial downward bias.

Next we mention several additional related articles. First,a
method similar to that introduced here has been considered re-
cently by Rudebusch (1992). Rudebusch’s procedure differs
from that considered here in that he aimed for MU estimators
of each of the AR(p) parameters, whereas we focus on the
single parameter o. His procedure was subject to the criticism
that the existence and uniqueness of his estimator is an open
question. In addition, Rudebusch obtained estimates of the
AR parameters but did not provide any measure of the vari-
ability of these estimates. Other related works include those
of Quenouille (1949, 1956), Hurwicz (1950), Marriott and
Pope (1954), Kendall (1954), Orcutt and Winokur (1969),
Stine and Shaman (1989), and Fair (1992).

The remainder of this article is organized as follows. Sec-
tion 2 defines the model to be considered and provides a dis-
cussion of the parameters of interest. Section 3 introduces
approximately MU estimators, CI’s, and approximately un-
biased model-selection procedures. Section 4 extends the
local-to-unity asymptotic results of Stock (1991) to cover the
parameter c. Sections 5-7 provide the empirical results.

2. THE MODEL AND PARAMETERS
OF INTEREST

2.1 Definition of the Model

The model we consider is an AR(p) model with inter-
cept and time trend. It can be written in an unobserved-
components form and in a regression form. In unobserved-
components form, it is given by

Yy=p*+3%t+Y for t=—p+1,...,T,

Y/ =al! |+ AY o+ AYS  + UL
for t=1,...,T,

U, ~iidN©,c%) for t=1,...,T, (2.1

where {Y, : t = —p + 1,...,T} is the observed series.
The variable AY; denotes Y — Y,°,. The parameters
(u*, B*, 0%, ) satisfy u* € R,3* € R,0> > 0, and
o € (—1,1]. When a = 1 the model is nonstationary. The
parameters (Y1, . . . , Pp—1) are such that the AR model for ¥;
is stationary when o € (—1, 1) and the AR model for AY}
is stationary when « = 1. The initial values of Y;—that is,
(Y* 415 - -+ » Yg)—are taken to be such that {¥} : £ > —p+1}
is stationary when o € (=1, 1)and {AY} : t > —p+2}is sta-
tionary when « = 1. The level of the AY;* series is arbitrary
whena = 1. [Thatis, when « = 1, the initial random variable
(tv) YZ,,, can be fixed or can have any distribution provided
the subsequent ¥;* values are such that AY;" is stationary.]
The regression form of Model (2.1) is given by

Yi=p+ft+aY | +1AY
+ P AY Uy for t=1,...,T

p=prl—a)+(@—Y = —Pp_)B*
B=p*(1-a), 2.2)
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where (Y_p41,...,Yo)and {U, : t=1,..., T} are as defined
in (2.1). The AR(p) model for ; in (2.2) is written in aug-
mented Dickey—Fuller regression form. It can be written in
standard AR(p) regression form as

Vi=p+Bt+nYi g +nYio+--+pY,+U. (23)

The parameter « in the augmented Dickey-Fuller form equals
the sum of the AR coefficients (y1,...,7,). As will be ar-
gued, the augmented Dickey—Fuller parameterization is the
most useful for the purposes of this article. The param-
eters (¢1,...,9%p—1) and (y1,...,7p) are related via ¢ =
—(Yp+-+yp)forj=1,...,p— 1L

Note that the parameter 3 on the time trend is necessarily
0 when o = 1 in (2.2) and (2.3). This is a desirable feature
of the model because it implies that the mean of Y; is a linear
functionof t forall & € (—1, 1]. If # # 0 was allowed when o
= 1, then the mean of ¥; would be a linear function of ¥; when
a € (—1,1) but a quadratic function of t when o = 1. This
discontinuity is naturally avoided in the preceding model.

2.2 Scalar Measures of Persistence

In this article, as in many empirical articles, in the macro-
economic and financial literature, we are interested in assess-
ing the persistence of a time series Y;. In particular, we are
interested in the persistence of shocks to the series. The IRF
is a suitable measure of such persistence. The IRF traces out
the effect of a change in the innovation U, by a unit quantity
on the current and subsequent values of Y. In particular, if
Y, is the series based on the innovations {U;, Us, ...} and ¥,
is the series based on {Uy, ..., U1, Uy +1,Up1, Upa, . . .},
then

IRF(h) = Yp4p — Yyup for h=0,1,.... 24)

By linearity, the IRF does not depend on #, on the values
{Uy, Us, ...}, or on the parameters (r*, 5*). It only depends
on (&, ¥y, ...,¥p—1). The IRF can be computed by suppos-
ing u* = 3* = 0 and then by calculating the (infinite-order)
moving average representation of ¥,. The coefficient on U;—;,
in this representation is IRF(4). That is, when p* = 8* =0,
we can write

o
Yo=(l=mL—- =% U= calin,
h=0

IRF(h) = cy, (2.5

forh=0,1,..., where L is the lag operator.

Being an infinite vector of numbers, the IRF is a rather
unwieldy measure of persistence. In consequence, it is of-
ten convenient to have a scalar measure of persistence that
summarizes the information contained in the IRF. One such
measure is the CIR. It is defined by

CIR =Y IRF (h). (2.6)

h=0
The CIR yields an especially useful summary of the IRF
if one is dealing with different series for which the IRF’s
are of the same basic shape. This is the case for the data
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Table 1. Comparison of Impulse Response Functions for Two Pairs of Models

Order Magnitude Magnitudes .
Data series of AR of largest of Impulse responss function

mimicked model root a otherroots iy, P, ... 1 2 38 4 5 7 10 15 20 25 30

Industrial production—NP 6 .95 92 .80,.80,78, .05-08.01, 10 8 7 6 3 3 4 2 2 2 A
.78,.70 —.08,—.26

Nominal wages—NP 3 .94 .96 .36,.36 .53,—.12 15 16 15 14 13 12 9 7 5 4 3
Unemployment rate—ENP 3 .81 .80 .50,.50 22,—.20 10 6 4 4 3 2 1 .04 01 .01 .00
Money stock—ENP 2 .81 .96 .81 .65 16 19 21 21 20 1.7 11 5 2 .06 .02

series considered here. With few exceptions, the series con-
sidered have IRF’s that start at 1, increase monotonically and
smoothly for several periods, and then decrease monotoni-
cally and smoothly to 0. In some cases, there is no increase
over the first few periods. In a few cases, the IRF becomes
negative for some large values of A, but the magnitudes of
such negative values are always small (.03 or less). Also, in
a few cases the decrease to 0 is not completely monotone but
exhibits some small wiggles.

If one is considering several series whose IRF’s are of
quite different shapes, then the CIR may not be sufficiently
informative about the difference in their IRF’s. Consider
the following two examples. The first example is the case in
which one series has an everywhere-positive IRF and another
series has an IRF that oscillates between positive and negative
values. The two series could have equal CIR’s but quite
different IRF’s due to the cancellation of positive and negative
terms for the second series.

The second example is the case in which one series is
given by Y; = aY,_; + U, and another series is given by
Y, =aY,_; + U, for some k > 1. The IRF functions of these
series are (a) IRF(h) = o for h = 0,1,... and (b) IRF(h)
=ab for h = bk for b = 0,1,... and IRF(4) = 0 otherwise,
respectively. The CIR’s of these two series are identical, but
their IRF’s are noticeably different with the latter exhibiting
more persistence as k is increased. (We thank Chris Sims for
suggesting this example.)

Fortunately, neither of the two examples just mentioned, in
which the CIR is noticeably deficient, are of real concern for
the economic applications we shall consider. In no cases are
there IRF’s with substantial positive and negative terms. Inno
cases are there IRF’s with the nonmonotone and nonsmooth
behavior of that of the model ¥, = aY,_; + U, fork > 1.
The one feature of the IRF’s that appears empirically but is
not captured by the CIR is the difference between a relatively
large initial increase and a subsequent quick decrease in the
IRFandarelatively small initial increase and subsequent slow
decrease in the IRF. Two series can have the same CIR but
somewhat differently shaped IRF’s due to such differences.
In the empirical applications, differences of this sort arise,
but they are not extreme.

Based on the preceding discussion, we conclude that the
CIR yields a fairly good scalar summary of the IRF, at least
for the type of data series that are of interest here. Inaddition,

the CIR is a simple function of the parameters of the model

CIR = —l— 2.7
1-a

The fact that the CIR is directly related to « in such a sim-
ple way means that one can rely on o as a measure of the
persistence of a series. Different values of & can be inter-
preted easily in terms of persistence because they correspond
straightforwardly to different values of the CIR. It is for this
reason that we use the augmented Dickey—Fuller parameter-
ization of the AR(p) model in (2.2) rather than the standard
AR parameterization in (2.3).

The parameter o can be interpreted as a measure of per-
sistence in a second way—via the spectrum of ¥,. This inter-
pretation was discussed by Phillips (1991b). The spectrum at
zero frequency is a measure of the low-frequency autocovari-
ance of the series. For the model (2.1)—(2.3), it is given by

2
1-ap’

Thus by this measure too persistence of Y, depends directly
on the magnitude of the parameter a.

Before deciding to emphasize the parameter « as an ap-
propriate scalar measure of persistence, we need to consider
another possibility—the magnitude of the largest root of the
AR(p) model. The latter parameter was relied on by DeJong
and Whiteman (1991a,b) and Stock (1991), among others.

The magnitude of the largest root of the AR(p) model
turns out to be a very poor summary measure of the IRF.
The reason is simply that the shape and height of the IRF
depends on more than just the magnitude of the largest root.
Depending on the values of the other roots, one can observe
a very wide range of different persistence properties from
series that have the same magnitude of largest root. This is
illustrated by Table 1. Table 1 considers two pairs of models.
Each model corresponds to an estimated model (estimated via
the approximately MU method described later) using the NP
or ENP data. (The reason for considering estimated models
is to ensure empirical relevance of the results. We are not
considering pathological cases in Table 1.)

In sum, the parameter « is a fairly reliable measure of the
persistence of a series because it alone determines both the
CIR and the spectrum at 0 of the series. On the other hand, we
find that the magnitude of the largest root does not provide

spectrum at zero = (2.8)



an adequate summary measure of the IRF. The other roots
have too great an effect on the persistence of the series to
rely solely on the magnitude of the largest root. For these
reasons we focus attention in the following primarily on the
estimation of v and secondarily on the estimation of the other
parameters. We note that a graphical presentation provides
an alternative to a scalar measure of persistence (e.g., see
Gallant, Rossi, and Tauchen 1993).

3. APPROXIMATELY MEDIAN-UNBIASED
ESTIMATORS

3.1 Definition of the Approximately Median-
Unbiased Estimators

Here we describe a method for obtaining approximately
MU estimators of the parameters of the augmented Dickey-
Fuller model (2.2). The method is an extension of an exactly
MU estimation procedure introduced by Andrews (1993) for
the AR(1) version of Model (2.2).

We start by defining median unbiasedness. By definition,
a number m is a median of an rv X if

P2 m) 2 2

2

This definition of a median allows for nonuniqueness, but all

of the medians considered here are unique. It also allows for

the median of X to be a probability mass point of X. This

feature of the definition is used here. If a median mof X is not
a probability mass point, then P(X > m) = P(X < m) = 1.

Let & be an estimator of the parameter «v. By definition, &
is median unbiased for « if the true parameter « is a median
of & for each « in the parameter space. The condition of
median unbiasedness has the intuitive impartiality property
that the probability of underestimation equals the probabil-
ity of overestimation. This holds unless the true parameter
value is estimated with positive probability, and in this case
the probabilities of underestimation and overestimation are
each less than one-half. In scenarios in which the magnitude
of a parameter is a contentious issue, such as in the (trend)
stationary-versus-unit-root debate, this impartiality property
is quite useful. Advocates of one view are not likely to ac-
cept estimates that are biased toward a different view. MU
estimators are more likely to be acceptable to a broad audi-
ence than biased estimators because they do not favor any
particular outcome. For a comparison of median and mean
unbiasedness, see Andrews (1993).

We note that in the classical Gaussian linear-regression
model with fixed regressors the LS estimator is median un-
biased. In fact, it is the best MU estimator for a wide variety
of loss functions (see Andrews and Phillips 1987). In the
AR(p) model (2.2), on the other hand, the LS estimator is
not median unbiased and hence does not possess the same
optimality properties.

Next, we describes the method used by Andrews (1993) for
obtaining exactly MU estimators of « in the AR(1) version
of Model (2.2). Suppose that & is an estimator whose median
function m(c)(= mr(a)) is uniquely defined, depends only on
a, and is strictly increasing on the parameter space (—1,1].

mdpagmzé 3.1
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Then an MU estimator, &y, of « is given by

ay=1 if &> m()
=m~Ha) if m(—1) < &< md)
=-1 it &< m(-1), (3.2)

where m(~1) = lim,—,_; m(a) and m™1 : (m(—1), m(1)] —
(=1,1] is the inverse function of m(.) that satisfies
m~Y(m(a)) = a for a € (—1,1]. Thus, if the observed
value of & is .8, say, one does not use .8 as the estimate of
a, but rather one uses the value of « that yields the estima-
tor & to have a median of .8. This method was applied in
Andrews (1993) with & equal to the LS estimator of o for
Model (2.2) with p = 1. [The general method is not due
to Andrews (1993); e.g., it more or less corresponds to the
method discussed by Lehmann (1959, sec. 3.5, p. 83).]

For higher-order versions of Model (2.2) (i.e, p > 1),
the LS estimator of o has a distribution that depends on
more parameters than just . In consequence, the exact bias-
correction method outlined previously cannot be applied. In
fact, the LS estimator of o, &g, has distribution that depends
on (@, ¥1,...,Y,—1). It does not depend on p*, 3*, or o2,
and when o = 1 it does not depend on the value or distribution
of the initial rv Yip +1> see the Appendix. [Similar invariance
properties in the AR(1) model have been pointed out by sev-
eral authors. For references, see Andrews (1993).] In con-
sequence, if (1,. . ., ¥p_1) were known, the bias-correction
method of (3.2) could be applied.

Since (21, ...,1,—1) are unknown in practice, we sug-
gest a simple iterative procedure that yields an approxi-
mately MU estimator. First, compute the LS estimator of
(@ P15 -y Yp—t1, 4 ) by regressing ¥, on (Yi—y, AY;y,
ooy AY_py1, 1,0, call it (&rst, Y1810 - -+ Wp—1,L81, fiLs1s
Bist). Second, treat (Y1 rs1, . .-, Pp—1.1s1) as though they
were the true values of (¥,...,%p~1) and compute the
bias-corrected estimator of «, &y, using (3.2). Third, treat
&y as though it was the true value of a and compute a
second round set of LS estimates of (¥y,...,¥,_1)—call
them (1,152, - - - , Pp—1,L52)—Dby regressing ¥, — &s; ¥~y on
(AY,—y,...,AY_pu, 1,8). When Gy = 1, exclude the re-
gressor ¢ in the latter regression to impose the constraint that
[ = 0. Next, treat (1/31,1452, ... ,1/3,,_1,L52) as though they were
the true values of (11, ..., ¥,_1) to generate a second-round
bias-corrected estimator of o, &y,. Continue this procedure
either for a fixed number of iterations or until convergence.
For the following empirical results we specify a maximum of
10 iterations. For most of the series, convergence is obtained
in 2 iterations, but one series took 4.

If &sz is the final estimate of «, then (’(/31,sz+1,
e, 1/3,,_1,sz+1, frsje1s BLSjH) are the final estimates of

(11117 e 71/)[)—-1’/—’/7 ,B) Let

(Bmu, Y1 MU, -« » Yp—1,MUs fimus Bmu)
= (ALsj, YLSj+1, - - - » Yp—1,LSj+15 PLsjr1s OLsje) - (3.3)

denote the final round approximately MU estimators. We
refer to these estimators as the MU estimators.
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Simulation methods can be used to compute the
bias-corrected estimator defined in (3.2) given a vector
(¥1,...,¥p—1). More specifically, for a given value of o
and fixed (v1,. .., Yp_1), set u* = B* =0and 02 = 1 in (2.2)
and simulate a data set {Y,, : t = —p + 1,..., T} according
to the model (which has Gaussian errors). Regress the sim-
ulated Y, on (Y, AY,,_1,...,AY;;—pi, 1,1) to obtain
a single random draw of the LS estimator &s. Repeat this
procedure R times; thatis, r = 1,...,R(R = 1,000 is used
in the empirical results following) and take the sample me-
dian of the simulated LS estimates of « to be a Monte Carlo
estimate of the median of 4.5 when the true parameters are
(@, ¥1,...,%p-1). Given the observed value of &g, say .8,
iteratively determine the value of o such that the Monte Carlo
estimate of the median of the estimator &g equals .8. This
yields the desired estimator &y. Monotonicity of the median
function of &5 for given (1, .. ., ¥,_1) generally makes the
iterative procedure converge quickly.

In keeping with the computer-intensive methods just em-
ployed, one can generate standard errors for all of the MU
estimators (Gmy, 1Z'I,MU, vy 12;,,_1,Mu, bmu, BMU) as follows.
Treat the observed estimates, say (&g, P vy, - - -, Bu), as
though they were the true values and perform a simulation
study of the estimators (&my, . .., 3MU) with these true val-
ues. For each repetition of the simulation, one generates a
simulated data set, computes the LS estimates for this data set,
and then computes the corresponding approximately median
unbiased estimators of («, 91, ..., ¥p—1, u, 3) for this data
set. Having completed the desired numbers of repetitions
R*(R* = 1,000 for the cases to be reported), one has R* real-
izations from the distribution of (&my, . . . , Bvu) (up to sim-

ulation error) when the true parameters are (&I‘Z,[U, cee BI?AU).
The sample standard errors from these R* realizations are
used as estimates of the standard errors of (&my, - . - , Bmu)

for the original data series.

The preceding method of simulating standard errors is
straightforward but computer intensive, because each of the
R* repetitions involves computing bias-corrected estimates
(Gmu, - - - » Bvw), which by themselves require a simulation
procedure. Using a 486 33-megahertz personal computer, it
took 50 hours to generate the parameter estimates and cor-
responding standard errors for each of the data series to be
analyzed. Although slow, this performance shows the pro-
posed method to be quite feasible. It is hoped that within a
few years the required time will be reduced to a few hours on
the fastest PC’s.

3.2 Confidence Intervals for a

Approximate confidence intervals (CI's) for « can be ob-
tained in a similar way to that of the approximately median-
unbiased estimator of c. Suppose that & is an estimator
whose p; and p, quantiles are uniquely defined, depend only
on ¢, and are strictly increasing in o on the parameter space
(=1, 1]. Let gp,(@) and g,,(a) denote these quantile func-
tions. Then, an exact level 100 (1 — p; — p2)% CI for « is
given by [&,, &y], where

& >1 if &> gp(1)
= g, (@) if gp(—1) < & < gp(1)
= -1 if &< gp(=1)
ev=1 if &> gp (1)
=g, (&) if gp(=1) < &< g, (1)
= —1 if &< gp(=1). (3.4)

In (3.4), for i = 1,2,qp,(~1) = limg—_; gp,(a) and q;',‘ :
(gp;(—1), gp,(1)] — (~1, 1} is the inverse function of qp;(*)
that satisfies qui‘(qpi(a)) = a for @ € (=1,1]. Andrews
(1993) used this method to construct exact CI's for « for the
first-order AR version of Model (2.2). (Note that this method
of constructing CI’s is time honored; only the application of
it in the present context is original.)

Letting & of (3.4) be the LS estimator of o from the re-
gression in (2.2), one finds that its distribution depends on
(0,91, ..., Pp—y) rather than just . Hence one cannot ob-
tain an exact CI for « using the method of (3.4). One can
obtain an approximate one, however, by taking the final bias-
corrected estimates of (3)y, . .., 9,_1) defined previously and
treating them as though they were the true values. Given
these values, ¢, and ¢y can be computed by simulation us-
ing an analogous procedure to that described previously for
computing &y.

3.3 An Unbiased Model-Selection Procedure

The approximately median-unbiased estimator just in-
troduced can be used to construct approximately unbi-
ased model-selection procedures. By definition, a model-
selection procedure is unbiased if for any correct model the
probability of selecting the correct model is at least as large as
the probability of selecting each incorrect model. For exam-
ple, one might want to select between the (trend) stationary
model for which o € (—1,1) and the unit-root (with drift)
model for which & = 1. An unbiased selection procedure
in this case has the property that if o = 1 the probability
of selecting the unit-root model is > the probability of se-
lecting the (trend) stationary model and if o € (—1, 1) the
P, probability of selecting the (trend) stationary model is >
the P, probability of selecting the unit-root model for each
a € (—1, 1). Unbiased selection procedures exhibit an intu-
itive impartiality property that may be useful if the selection
of one model or another is a contentious issue.

The concept of unbiased selection procedures is a special
case of that of risk-unbiased decision rules (see Lehmann
1959, p. 12). For selection procedures, the space of actions
is finite—one chooses one model from a finite set of models.
If the loss function equals 0 when the correct model is chosen
and 1 otherwise, then a risk-unbiased decision rule for this
problem is an unbiased selection procedure.

Consider the problem of selecting one of two models de-
fined by o € I, and « € I, where I, and I, are intervals that
partition the parameter space (—1,1] for .. For example, one
might have I, = (—1, Dand I, = {1} or I, = (—1,.975) and
I, = [.975, 1]. [The latter were considered by DeJong and
Whiteman (1991a) and Phillips (1991a).]



The selection procedure we consider here is
choose I if vy € I for k=a,b. 3.5)

This procedure is exactly unbiased if &y is exactly me-
dian unbiased. To see this, suppose that I, lies to the left of
I, and &my is exactly median unbiased. Then, forall a € I,

1
Po(bmu € Ip) < Po(bmu > a) < 3
L Py(bmy £ ) < Poldmu € 1), (3.6)

where the second and third inequalities use the median unbi-
asedness of &yy. For a € [, the argument is analogous, so
the selection procedure of (3.5) is unbiased. We note that the
selection procedure of (3.5) is also a valid level .5 (unbiased)
test in this case of Hy : o € I, versus H; : o € I and of
Hy:ael,versusHy :a € I,.

Since Aymy is only approximately median unbiased when
p > 1, the model-selection procedure of (3.5) is correspond-
ingly only approximately unbiased. In fact, simulations re-
ported in the next section show that &y is very close to being
median unbiased for several scenarios of empirical relevance.
In consequence, the model-selection procedure is also very
close to being unbiased at least in these scenarios.

3.4 Properties of the Approximately Median-
Unbiased Estimators

Consider now the finite-sample properties of the MU esti-
mators (&my, - - - BMU). The main features of these estima-
tors that are of interest are their median-bias properties and
their variability relative to the LS estimators. These proper-
ties can be assessed using the same simulation procedure as
is used to generate the standard error estimates. In particu-
lar, given a data series and the corresponding observed MU
estimates (&%, - - - , A%y)» the simulation procedure gener-
ates R* random draws from the distribution of the LS and
MU estimators of (o, ¥y, ..., ¥p—1, 4, £). In addition, one
can compute estimates of the IRF at different time horizons
and of the magnitudes of the roots of the AR(p) model corre-
sponding to both the LS and MU estimates for each repetition.

The difference between the sample median of any of these
parameter estimates over the R* repetitions and the true value
gives a Monte Carlo estimate of the median bias of the LS and
MU estimators when the true parameters are (83, - - - , B)-
Corresponding Monte Carlo estimates of the standard devia-
tion, root mean squared error (MSE), and interquartile range
of the LS and MU estimators can be computed analogously.

Table 2 provides the results of the preceding simulation
procedure when the true parameter values are taken to mimic
those of three different series that exhibit varying degrees of
persistence. The series mimicked are the NP series for real
GNP, GNP deflator, and consumer prices whose « values are
.88, .96, and 1.0, respectively (as estimated by dyy).

The results for the o = .88 (real GNP) and o = .96 (GNP
deflator) cases with p = 2 show the following. The median
bias of the MU estimator for all estimands is essentially 0.
The median bias of the LS estimator, on the other hand, is
substantial for «, 11, 3, the magnitudes of the two roots, and
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the IRF at most time horizons. The standard deviation of
the MU estimator is the same or somewhat larger than that
of the LS estimator for all estimands except the IRF at long-
time horizons, for which it is substantially larger. The root
MSE of the MU estimator is noticeably smaller than that of
the LS estimator for estimation of «, u, 3, and the IRF at
short-time horizons. It is approximately equal for ¥, 07,
and the magnitudes of the roots and is substantially larger
for the IRF at long-time horizons. The interquartile range
of the LS estimator does not include the true value for the
estimands a, 1, 3, and IRF(A)V A > 3. Onthe otherhand, the
interquartile range of the MU estimator includes the true value
and is symmetrically centered around it for these estimands.
For the other estimands, the interquartile range results for the
two estimators are more comparable.

Next we describe the results for the o« = 1.0 (con-
sumer prices) case with p = 4. The MU estimators of
(o, 9o, 3, 1, B, 0%) are essentially median unbiased, while
that of 9, has a small downward median bias. In contrast,
the LS estimators of (o, ¥y, ¥2, ¥3, p, B) are all significantly
median biased. The MU and LS estimators of the magni-
tudes of the roots each have median biases. Those of the
MU estimator are smaller. The MU estimator of the IRF is
downward median biased, especially at long-time horizons.
Its downward bias is quite small, however, in comparison to
that of the LS estimator, which is huge, especially for long-
time horizons. The standard deviations of the MU and LS
estimators are approximately equal for all estimands except
the IRF at long-time horizons, for which the MU estimator
has considerably larger standard deviations. The root MSE
of the MU estimator is substantially smaller than that of the
LS estimator for the estimands «, z1, 3, the magnitudes of
the two largest roots, and IRF (h) for all 4. For the other
estimands, the MU and LS estimators have comparable root
MSE’s. The length and location of the interquartile ranges
of the MU and LS estimators corroborate the results based
on the standard deviations and median biases.

Central 90% CI’s for a calculated as described in Section
3.2 are found to have simulated confidence levels of 88.9%,
89.7%, and 86.9% for the o = .88, .96, and 1.0 case, re-
spectively. These simulated confidence levels have standard
errors of approximately .7% each. Thus there appears to be a
tendency for the CI’s coverage probabilities to be somewhat
too low.

In conclusion, we find that the MU estimator achieves a
substantial reduction in median bias over the LS estimator for
almost all of the estimands considered. The MU estimator is
essentially median unbiased for most of the estimands with
the greatest exception being the IRF when o= 1. The MU es-
timator pays a negligible-to-small price in terms of increased
standard deviation for its improved median-bias properties,
except when estimating the IRF at long-time horizons, in
which case the price is large. In consequence, the root MSE
of the MU estimator is noticeably smaller than that of the LS
estimator for many estimands, with the main exception being
the IRF at long-time horizons when o < .96.

The robustness of the MU estimator and CI’s to nonnor-
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Table 3. Properties of the Approximately Unbiased
Model-Selection Procedure

Probability of Data series
True parameters selecting a model mimicked
a P Yo T+p witha =1 (using NP data)
81 21 -20 81 .04 Unemployment rate
87 .10 —-.05 111 .04 Industrial production
.87 39 .01 62 12 Real GNP
89 23 -02 71 .20 Real wages
82 39 11 81 19 Employment
95 70 -.08 82 19 Money stock
96 .42 .05 82 .34 GNP deflator
.97 27 -.18 100 .44 Common-stock prices
1.0 74 -27 111 .56 Consumer prices
1.0 .10 —-.05 102 .55 Velocity
10 18 37 7T .59 Interest rate
1.0 50 —.14 62 .54 Nominat GNP

mality of the innovations is discussed briefly in Section 5.
The robustness results are quite similar to those reported by
Andrews (1993) for the AR(1) model.

Last, we note that the standard bootstrap procedure for &g
is asymptotically invalid in the unit-root case (see Basawa,
Mallik, McCormick, Reeves, and Taylor 1991). The MU es-
timator is a type of parametric bootstrap estimator. It does not
suffer from the same problem in the unit-root case, however,
because it does not rely on estimates of the unit-root pa-
rameter « in formulating its approximation to the quantiles
of dLS .

3.5 Properties of the Approximately Unbiased
Model-Selection Procedure

Here we briefly investigate the properties of the approx-
imately unbiased model-selection procedure introduced in
Section 3.3. We consider the two models defined by I, =
(—1,1) and I, = {1}. The selection rule is to choose the
unit-root model I, if &vy = 1 and otherwise to choose the
trend-stationary model.

Table 3 shows how the probability of selecting a unit-root
model varies as a function of the true parameter « for several
AR(3) models. This probability also depends on the param-
eters 1, and 1, and on the sample size T + p. The o, 91, 15,
and T + p combinations considered were chosen to mimic
different NP data series. (That is, the true parameters listed
correspond to the MU estimates for the data series listed.)
The probabilities of selecting a model in which o = 1 were
calculated by simulation using 1,000 repetitions. The simu-
lation standard errors for these probabilities range from .0062
for the @ = .81 case to .017 for the o = 1.0 case.

The first eight rows of Table 3 show the probabilities of
erroneously choosing a unit-root model for different o values
less than 1.0. When the value of « is < .95, the probabilities
are small (< .20) for the sample sizes considered. For « val-
ues closer to 1.0, the probabilities are larger. For example,
for o = .97, the probability is .44 when T + p = 100. The
last four rows of Table 3 show the probabilities of correctly
selecting a unit-root model when o = 1 for several different
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sample sizes. These probabilities are just above .5. They are
much lower than the corresponding probabilities for a level
.05 test of a unit-root null hypothesis because the unbiased-
ness condition precludes giving the unit-root model favorable
status a priori.

4. AN ASYMPTOTICALLY MEDIAN-UNBIASED
ESTIMATOR OF

Arecent article by Stock (1991) used local-to-unity asymp-
totics to obtain CI’s for the magnitude of the largest root in
Model (2.2). His work builds on the local-to-unity testing re-
sults of Bobkoski (1983), Cavanagh (1985), Phillips (1987,
1988), Chan and Wei (1987), and Chan (1988) and especially
on the local-to-unity CI results of Cavanagh (1985). Ca-
vanagh (1985) considered asymptotic CI’s for v in an AR(1)
model without intercept or time trend. Stock (1991) extended
these results to the empirically relevant case of AR( p) models
with intercept and time trend.

As argued in Section 2, point or interval estimates for
the magnitude of the largest root of the model (2.2) are not
very useful summary measures of the persistence of a se-
ries as measured by its IRF or its spectrum at 0. In conse-
quence, it seems worthwhile to introduce a trivial extension
to Stock’s methods that focuses on point and interval esti-
mation of the parameter o, the sum of the AR coefficients,
rather than on the magnitude of the largest root. The method
is based on local-to-unity asymptotics and yields estimators
and CI’s that are easy to compute given the tables provided
by Stock (1991).

In comparison with the computer-intensive methods de-
scribed in Section 3, the methods considered here are very
quick to compute. On the other hand, they are probably
less accurate, especially when the sample size is small or «
is not close to 1. In addition, they do not yield estimates
and standard-error estimates for the wide range of estimands
considered in Table 2 as the method of Section 3 does. As
noted in Section 3, the methods there can be given asymp-
totic justifications even if the errors are nonnormal, just as
the methods here can. Thus there is no inherent advantage of
either method with respect to robustness against nonnormal
errors (with several moments finite).

Our asymptotically median-unbiased (AMU) estimator
Aamu of o and central CI [£, U] for a of asymptotic con-
fidence level 100(1 — pg)% are defined by

Gamu = 1+ Ceab(1)/T
(L, U) = [1 +cob(1)/T, 1+ ¢1b(1)/T], (4.1)

where 13(1) is a consistent estimator (defined later) of (1) =
1y,

The 1v’s cped, €0, and ¢; are determined using Stock’s
(1991) table A.1, part B, as follows. Let ¥ denote the
t statistic for testing Hp:a = 1 in the regression of ¥,
on (Y,_1,AY,1,...,AY;_py1, 1, 1), where a is the coeffi-
cient on Y,—;. (It is often convenient for computing 77
to note that it equals the ¢ statistic for testing whether
the coefficient on Y,_; is O in the regression of AY,
on (Y,_1,AY,y,...,AY: _p, 1,1).) In the column labeled
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“Stat” in Stock’s table A.1, part B, one finds the row cor-
responding to the observed value of #7. The value cpeq in
(4.1) is the number in the column labeled “Median” that is
in the aforementioned row. The values ¢ and ¢; in (4.1) are
the numbers in the columns labeled cq and ¢; [corresponding
to the desired confidence level 100(1 — py)% being equal to
95%, 90%, 80%, or 70%] that are in the aforementioned row.
[If the model (2.2) of interest does not contain a time trend,
then one computes cped, Co, and c; from Stock’s table A.1,
part A, and one omits the time trend in the regressions used
to calculate 7 and in the regression described later used to
calculate b(1).]

Our suggested estlmator of b(1) is an iterative one. Let
b)) =1~ EJ 1 1/), Ls1, where 7!11,1,51 is the LS estima-
tor of 1); (the coefficient on AY;_;) from the regression of
Yy on (Yi—1,Ay—1,...,AYp, 1,1). Let Gamur = 1+
Cmea b1 (1)/T. Letby(1) = 1- S0 4y s, where )y 5o is the
LS estimator of 9); (the coefficient on AY;_;) from the regres-
sion of ¥; — &amu1Yi—1 on (AY,_1,...,AY;py1, 1,1). Let
Gamuz = 1 + cmeab2(1)/T. The estimators b3(1), ba(1), . . .
and &amus, Gamus, - - - are defined analogously to B(1) and
dAqu. The estimator l;( 1) is then defined to equal ei-
ther b, (1) for some fixed integer k or the limiting value of
bi(1),by(1),... (provided convergence occurs). In practice,
we find that & = 2 is sufficient to achieve convergence to
within two decimal places for l;k(l) and &amuy for many se-
ries, although & = 6 is required for one series reported later.

The asymptotic justification for &ayy and [L, 01 is
sketched in the Appendix. It is a straightforward extension
of Stock’s results. Note that the use of &amy and [f., 0 is
appropriate only when the sample size is not “too” small and
« is “near” one.

Lastly, we briefly mention a theoretical issue concerning
the CI [L, U] (see Phillips 1991b). The CI [L, U] for o can be
used to obtain a CI for the parameter ¢, where & = 1+cb(1)/T.
Because c cannot be estimated consistently, it may seem odd
that one can construct a CI for ¢. In fact, the fact that ¢ cannot
be estimated consistently means that the length of the CI for
¢ does not go to 0 (in some probabilistic sense) as T — oo,
but it does not preclude the construction of a CI for ¢ whose
coverage probability is correct asymptotically.

5. EMPIRICAL RESULTS FOR THE EXTENDED
NELSON-PLOSSER DATA

In this section, we apply the MU estimation method to the
ENP data set compiled by Schotman and van Dijk (1991).
(All series except the interest rates are logged.) Table 4
presents the results along with LS estimates. In the table,
simulated estimates of the biases and standard deviations of
the estimators, computed using the MU estimates as the truth,
are given in parentheses below each estimate. The lag lengths
(p) of the AR(p) models that are estimated are taken to be
the same as those of Nelson and Plosser (1982). This choice
is made because it facilitates comparison with the results in
the literature and because an analysis of the residuals of the
estimated models did not provide evidence that the NP lag

lengths are inappropriate. (The only exception is some weak
evidence that a longer lag length than p = 1 may be appro-
priate for velocity.) Of course, a data-dependent method of
choosing p may very well choose different lag lengths.

Eight of the fourteen MU estimates of « equal 1.0. All
of the nominal variables have an MU estimate of « equal to
1.0 except money stock, whose estimate is .96. Real wages
is the only real variable for which the MU estimate of « is
1.0. The other real variables, except the unemployment rate,
have MU estimates of « in the range of .86 to .91. The
unemployment rate has the lowest estimate of «; it is .76.
The 90% CT’s for « for the nominal variables are relatively
short with the lower bound ranging from .91 to 1.0. The 90%
CI’s for « for the real variables are noticeably longer, ranging
in length from .18 to .25. The null hypothesis of a unit root
(a = 1) can be rejected at a 5% level using a one-sided test
for three of the series—real GNP, real per capita GNP, and
the unemployment rate.

The MU estimates of « are substantially closer to 1.0 than
are the LS estimates. The range of differences is .02 to .07.
These differences are due to the downward median bias of
the LS estimator.

The MU estimates of the time-trend parameter 3 are fairly
small. The LS estimates of 3 are larger than the MU estimates
for every series except the unemployment rate. The bias
of the MU estimator of (3 is essentially 0. In contrast, the
LS estimators of 3 are upward biased by approximately the
amount that the LS estimates exceed the MU estimates.

The unbiased model-selection rule introduced in Section
3.3 saysto choose a unit-root model if the MU estimatoris 1.0
and to choose a trend-stationary model if the MU estimator
is less than 1.0. This rule selects eight series as being unit-
root models and six as being trend stationary. The unit-root
models include all nominal variables except money stock,
plus real wages.

Next, we compare the MU and LS estimates for the ENP
series with those for the NP series. The last column of Table
4 provides the estimates of « for the NP data. The biggest
changes occur with the real-wage series. The LS and MU
estimates increase enormously when the new data are added
from .83 and .89 t0 .93 and 1.0, respectively. The 90% CI for
«a shrinks in length from .22 to .09. The graph of real wages
is flat over the period of new data 1971-1988, whereas it
increases throughout the period of the NP data 1900-1970.
The next largest changes occur for the nominal GNP, GNP
deflator, nominal wages, and common-stock price series. The
LS and MU estimates for each of these series increased by
.03 or .04 with the MU estimates going from .96 or .97 to
1.0 in each case. The lengths of the 90% CI’s for « for these
series shrink from .14 to .07, .11t0 .03, .12 t0 .08, and .12 to
.09. For the first three of these series, the graphs of the series
show a steeper slope (presumably due to increased inflation)
over the new period of data 1971-1988 than previously.

In addition, the interest-rate series shows a large drop in
the LS estimate of « from 1.03 to .95 with addition of the
new data, but the MU estimate stays constant at 1.0. The
real GNP and real per capita GNP series show liitle or no



change in the LS and MU estimates of , but the increased
precision due to the addition of data allows one to reject the
null hypothesis that o = 1 with the ENP data, whereas one
cannot reject this hypothesis with the NP data.

To analyze the robustness of the preceding results to non-
normality of the innovations, the MU estimates and CI’s were
recomputed using several alternative distributions for the in-
novations. The distributions considered were the #3, chi-
squared with 4 df (shifted to have mean 0), Rademacher (1
with probability } each), and Cauchy. These distributions ex-
hibit thick tails, skewness, discreteness, and extremely thick
tails, respectively. In short, the MU estimates and CI's for o
are very robust to nonnormality of the innovations. Only for
the case of Cauchy innovations did any of the results differ
noticeably.

More specifically, the maximum difference between the
MU estimates of o for Gaussian, 3, xﬁ, and Rademacher
distributions is .006 and almost all differences are .003 or
less. The MU estimates for the Cauchy differ from those
of the normal by .01 or less for all cases but one, in which
case the difference was .02. The maximum differences for
the CI bounds for « for the normal, #3, Xﬁ, and Rademacher
distributions is .01 or less for all cases but one, in which
case the difference is .02. The CI's for o using Cauchy
innovations are all contained in those for the normal case.
(This is not surprising, because the LS estimator is known to
converge at a rate faster than /T in the AR(1) model with
Cauchy innovations.) The lower bounds for the Cauchy case
are larger by between .00 and .03. The upper bounds for
the Cauchy case are smaller by .02 for the cases in which
the bounds for Gaussian innovations are less than 1.00 and
otherwise are the same as the Gaussian bounds.

6. COMPARISON OF DIFFERENT ESTIMATES
USING THE NELSON-PLOSSER DATA

Here we compare the MU and LS estimates for the NP data
series with other estimates given in the literature including
those of Rudebusch (1992), DeJong and Whiteman (1991a),
and Phillips (1991a). In addition, we make comparisons with
estimates given by Stock’s (1991) AMU estimator of the mag-
nitude of the largest root [although not with results actually
reported by Stock (1991)]. We also make comparisons with
the AMU of « considered in Section 4. Because different
authors use different lag lengths p, comparisons across all
methods are not always possible. Rudebusch (1992) used the
Nelson and Plosser (1982) choice of p. DeJong and White-
man (1991a) and Phillips (1991a) used p = 3. Moreover,
different authors choose to report different estimands. Rude-
busch (1992) gave estimates of 7i,...,"p, from which an
estimate of & = 37 ; can be obtained. DeJong and White-
man (1991a) reported only estimates of the magnitude of
the largest root, A, and the time trend parameter 3. Phillips
(1991a) reported only estimates of «. First we compare the
MU estimates with those of Rudebusch for models with the
Nelson-Plosser choices of p. Next, we consider all models
with p = 3 and compare the MU estimates with those of LS,
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DeJong and Whiteman (1991a) (DW), Phillips (1991a) (Ph),
and AMU.

DeJong and Whiteman’s (1991a) estimators of A and
are Bayesian posterior means in which the prior is chosen
to be uniform over the AR coefficients v, ..., and over
the time-trend parameter 3 subject to the restriction that
A € [.55,1.055] and 8 € [.000,.016]. Phillips’s (1991a)
estimator is defined here to be the posterior median of his
posterior distributions for « obtained using the Jefferies prior
and some analytic approximations. [Phillips does not report
posterior medians. The Ph estimates reported in Table 5 are
obtained by eyeballing Phillips’s posterior distributions given
in his fig. 4. In consequence, these estimates are subject to
(our own) computational error.]

Summing Rudebusch’s (1992) estimates of ,...,7,
yields the following estimates of . We give the Rudebusch
estimate firstand the MU estimates second for the series as or-
dered in Table 4 (with the NP choice of p): (.898, .885), (.946,
.958), (.882, .875), (.919, .919), (.900, .914), (.773, .765),
(.968, .960), (.985, 1.00), (.974, .970), (913, .896), (947,
.942), (.995, 1.00), (.984, 1.00), and (984, .970). (Rude-
busch did not provide any measure of the variability of his
estimates, sonone can be given here.) Overall, the differences
are small. They vary from .000 for industrial production to
.017 for real wages. Thus the Rudebusch estimates are much
closer to the MU estimates than to the LS estimates. This is
to be expected because the MU and Rudebusch methods are
quite similar.

Next, we turn to comparisons of MU, LS, DW, Ph, and
AMU estimates for AR(3) models (see Table 5). Resulits
are reported for estimates of «, 8, and the magnitude of the
largest root A. Bias and standard-deviation estimates are pro-
vided in parentheses beside each of the MU and LS estimates.
These were obtained by the simulation method outlined in
Section 3.1. The standard deviation of the posterior distribu-
tion of A is provided in parentheses beside the DW estimates.
Asymptotic 90% central CI's for o and A are provided in
brackets beside each estimate for the AMU estimator. The
CI for A is as defined by Stock (1991); that for « is as defined
in Section 4.

First, we summarize the results for the main parameter of
interest «. The comparison between the MU and LS estimates
is quite similar to that given in Table 4. The MU estimates are
uniformly closer to 1 than the LS estimates. The differences
between the two estimates range from .02 to .09. These
differences correspond to MU estimates of the CIR that are
from 38% to co% larger than those of the LS estimates.

The Ph estimates are slightly larger (i.e., larger by .01 or
.02) than the LS estimates for all series except the industrial-
production, velocity, and interest-rate series. For the latter
two, the Ph estimates are much larger. The latter two are
the series with the largest LS estimates. For these series, the
Ph estimates are much larger than the LS estimates because
of the large weight that the Jefferies prior puts on o > 1.
Because the Ph estimates of « are just slightly larger than the
LS estimates for most series, the MU estimates are noticeably
larger than the Ph estimates for-most series.
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The MU and AMU estimates of « are quite similar. The
differences are between .00 and .02. The differences in the
lower bounds of the MU and AMU CI’s for « also are fairly
small in most cases, although they differ by .03 for real wages.

Next, we compare estimates of the magnitude of the largest
root A. Although A is not a parameter of great interest by
itself, as argued in Section 2, these comparisons indicate
whether the differences between the MU estimates and other
estimates in the literature, such as those of DeJong and White-
man (1991a), are due to differences in the methods employed
or just to the choice of estimand considered. The differences
between the MU and DW estimates of A are very large. They
range from —.10 to .14, with most being in the .07 1o .10
range. The MU estimates are usually significantly closer to
1 than the DW estimates, but not always. For many cases the
bias of the MU estimator is small, though for a few cases it
is large. In each case in which it is large, the DW estimate
is in the direction of the bias relative to the MU estimate,
which suggests that the DW estimator is more biased than
the MU estimator. The LS and DW estimates of A are closer
together than the MU and DW estimates are, but there still
are noticeable differences. Unlike the estimates of «, the MU
and AMU estimates of A differ noticeably for a few series.

Last, we compare estimates of the time-trend parameter 3.
The LS and DW estimates of 3 are almost the same. The
MU estimates are noticeably closer to 0 than the LS and DW
estimates. The difference between the MU and LS estimates
of 3 are approximately the same as the upward bias of the LS
estimator. The MU estimator of 3 is essentially unbiased.
One might conjecture that the DW estimates of 3 have an
upward bias roughly equal to that of the LS estimates. Bias
correction of the LS and DW estimates, then, would yield
estimates approximately equal to the MU estimates.

Overall, the results of Table 5 lead to the following con-
clusions. There are noticeable differences between the MU
and AMU estimates on one hand and the LS, DW, and Ph es-
timates on the other. The former show considerably greater
persistence for most of the series than the latter. The dif-
ferences can be attributed to the fact that the MU and AMU
estimators of o and A are not biased toward 0 and those of 3
are not biased away from 0.

7. EMPIRICAL RESULTS FOR THE
STOCK-DIVIDEND AND PRICE DATA

In this section, we present empirical results for the stock-
dividend and price data referred to in Section 1. (All series
are logged.) We use an AR(3) model for each series, asin the
work of DeJong and Whiteman (1991b). This choice is made
for comparative purposes and because residual analysis did
not indicate that this choice is inappropriate.

Table 6 presents MU and LS estimates of a variety of esti-
mands for the stock-market data series. In addition, the DW
posterior mean estimates of the magnitude A of the largest
root and the coefficient 3 on the time trend are provided. Bias
and standard-deviation estimates for the MU and LS estima-
tors (computed using the simulation method outlined in Sec.
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3.1 and taking the MU estimates as the truth) are given in
parentheses below each estimate. The standard deviations of
the posterior distributions of A and (3 are given in parentheses
below the DW estimates of these parameters.

We now discuss the results of Table 6. Four of the six se-
ries show considerable persistence; two show noticeably less
persistence. In particular, DJ prices, NYSE dividends and
prices, and S&P prices all have MU estimates of « equal to
.90 or greater, whereas DJ dividends and S&P dividends have
MU estimates of « equal to .79 and .82, respectively. Only
NYSE prices have an MU estimate of e equal to 1.0. Thus the
unbiased model-selection procedure of Section 3.3 chooses a
unit-root model for NYSE prices and trend-stationary models
for all other series.

The 90% central CI’s for « are extremely wide for the DJ
dividend and price and S&P dividend series with widths of
45, .31, and .28, respectively. The CI's for « for the NYSE
price and S&P price and dividend series are also wide, but
much less so, with widths of .19, .21, and .16. The principal
explanation for the excessively wide CI’s is the small number
of observations (T + p) for the DJ and NYSE series—51 and
55, respectively.

The LS estimates of « and of the IRF are much smaller
than the MU estimates, especially for the DJ and NYSE se-
ries. The differences in LS and MU estimates of « for these
series range from .10 to .21, which are very large. Inall cases,
the LS estimates are closer to 0 than the MU estimates. This
is due to the downward bias of the LS estimators, which is
particularly large for small-sample sizes. Given these biases,
we do not believe that the LS estimates give impartial esti-
mates of the amount of persistence in the series, as measured
by « or by the IRF. The MU estimates of « and the IRF,
on the other hand, are essentially median unbiased in most
cases. Hence they provide a more objective estimate of the
amount of persistence.

The MU estimates of « and of the magnitude A of the
largest root are approximately the same for each series ex-
cept S&P dividends. The same is true of the LS estimates.
In consequence, for five of these series, the magnitude of
the largest root can be given an interpretation related to the
persistence of the series.

Comparing the DW estimates of A with those of LS, we
find the DW and LS estimates are approximately equal for all
series except DJ dividends and S&P dividends. Comparing
the DW estimates of A with the MU estimates, we find that the
DW estimates are uniformly smaller than the MU estimates.
The differences for the six series are .07, .16, .13, .16, .05, and
.07, which are substantial. Thus the MU estimates indicate
considerably greater persistence in the series than the DW
estimates do. The explanation for the differences is the dif-
ference in the bias properties of the MU and DW estimators.

We conclude that the MU estimates differ noticeably from
the LS and DW estimates. Of the point estimates given,
we believe that the MU estimates of « and the IRF to be
the most informative regarding persistence because they are
approximately median unbiased. The interval estimates for
o also are quite informative because they make clear that the
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level of uncertainty about the “true” values of « is quite high.

The MU estimates of « indicate a high degree of persis-
tence for four of the six series and a lesser degree for two
series. One of the six series is estimated to have a unit root
and five are estimated to be trend stationary.
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APPENDIX: PROOFS

A.1 Invariance of &g

First we establish the claim made in Section 3.1 that
Grs has distribution that does not depend on (u*, ,B*,az)
and when @ = 1 on Yf_p“. In fact, we will show that
these invariance properties hold for the distribution of
(Grs, Y1185+ > Yp—1,Ls-

Consider successive regressions of Y, Y,_1, AY,_q, ...,
AY,_pon (1,0 fort = 1,...,T. Then (&s, Pirs, - -,
1/3p_1,L5) equals the LS estimator from the regression of the
residuals from the regression with ¥, as dependent vari-
able on the vector of residuals from the regressions with
Y1, AY—1, ..., AY,_p4 as dependent variables. Because
Y = p* + (%t + Y} by (2.1), all of the preceding residuals
are invariant with respect to (u*, 8*). In consequence, the
distribution of (&, ..., 1/31,_1,Ls) is invariant with respect to
", 8.

Given the invariance, we can suppose that y* = 8* = Oand
Y, = ¥ in the remainder of the proof. Multiplication of 0% by
a positive constant ¢ in (2.1) causes Y;* and Y, to be multiplied
by the same constant ¢ for t = —p + 1,...,T when o €
(—1, 1) (using the fact that stationarity of {¥, : t > —p + 1}
requires that the initial rv’s Yip 410 -+ ¥ are scaled by the
same constant ¢). In consequence, the residuals from the
regressions of Yy, . .., AY,_p; on (1, £) are multiplied by the
same constant. This constantcancels out in the expression for
the LS estimator (4., .. ., 1/31,_1,Ls) given by the regression
of the residuals from ¥; on those from (¥,—y,...,AY;_pu1).
Thus the distribution of A1 is invariant with respect to o
when a € (—1,1).

Now suppose that o = 1. We can always write Y =
YX 10+ Y e pia AYS. By assumption, when a = 1, {AY; :
t > —p+2} is stationary with level that is arbitrary. That is,
achange in Y2, has no effect on {AY} :t> —p+2}. In
consequence, because ¥; = Y;*, the residuals from the regres-

sions of Yy, ..., AY,_,, on (1, f) are invariant with respect to
the value of Y* P and (Qus, - . ., Yp—1,Ls) I8 likewise. Given

this invariance, suppose that ¥ ,,; = 0. Then, the multipli-
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cation of o2 by a constant ¢ causes AY;, ¥, AY,, and ¥, to
be scaled by the same constant. As previously, this leaves
(brs, . . ., ¥p—1,15) unchanged. The proof is now complete.

A.2 Asymptotic Properties of éayy and [L, U]

Next we consider the asymptotic justification for &amy
and [L, U/]. We use the same model and assumptions as Stock
(1991). The parameter « in his notationis (1) = 1+cb(1)/T,
where cisaconstantand b(1) = 1— Z’-:l 1);. Equation (5) of
Stock (1991) gives the local-to-unity asymptotic distribution
of the statistic #7. This distribution depends only on ¢. Let
fep(c) and f;, ,(c) denote the lower and upper p quantiles of
this distribution.

Consider the following CI for a:

Cl={a:a=1+2b1)/T and f1,, () < fu @} (A1)
This CI has asymptotic confidence level 100(1 — p; — p,,)%:

Pop(ar € C
= PaT[fZ,pe(E) <A Sfu,pu(a
for ¢ defined by ar = 1 + £b(1)/T]
= Porlfep, (eb(1)/b(1)) < #7 < foup, (cb(1)/B(1))]
—1—pg—p,asT — oo, (A.2)

where a7 = 1+ cb(1)/T and P,.(-) denotes the probability
measure when ar is the true value of a. The preceding
convergence to 1 — p; — p, uses the fact that fz ,(c) and
Jup(c) are continuous functions of ¢ and #7 has absolutely
continuous limit distribution.

Let f;} () = sup{c : fe,(c) < y} and f}() = inf{c :
Sup(©) = y}. If fop,(c) and f, 5, (c) are monotone increas-
ing functions of ¢, then f;,,(€) < 7 < f,,,@iff 1 +
L (#1b(1)/T < 14&b(1)/T < 1+2,5,(F7)b(1)/T. In this
case, Cl = [L, U] with co = f,, (#") and ¢; = f;),(+7) and
[L, ] is an asymptotically valid 100(1 — p; — p,)% CI for c.
If f; p, () and f,, 5, (c) is not everywhere monotone increasing
in ¢, then CI C [L, U] and [L, U] is an asymptotically valid
CI for o with confidence level > 100(1 — py — p,)%. In fact,
Jep.(c) and f, 5, (c) are almost, but not quite, monotone in ¢
(see Stock 1991, fig. 2) In consequence, [L, U] has asymp-
totic significance level just slightly above 100(1 — p, — p,,)%.
(To obtain a CI with asymptotic confidence level exactly
100(1 — pgy — p,)%, if this precision is deemed necessary
for some reason, one can use CI defined previously in con-
junction with Stock’s fig. 2).

Furthermore, if f; ) /2(c) is monotone increasing in c, then
for (p1, p.) equal to (0, 1) and (3, 1) the two corresponding
CI CI’s are of the form [@amu, 00) and (—00, &amul, respec-
tively. These CI’s have the property that their probabilities
of covering the true « are both 1/2 asymptotically. In con-
sequence, &amu is asymptotically median unbiased. In fact,
Jfi,1/2(c) is not quite monotone increasing in ¢ (see Stock 1991,
fig. 2). The extent of nonmonotonicity is sufficiently small
that & amy is very close to being asymptotically median unbi-
ased (close enough for practical purposes), although it is not
exactly so. Furthermore, the small region where nonmono-
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tonicity occurs is just above o = 1, so if one restricts the
parameter space to be (—1, 1], then this problem disappears.

[Received September 1992. Revised August 1993.]
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