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THE LARGE SAMPLE CORRESPONDENCE BETWEEN
CLASSICAL HYPOTHESIS TESTS AND BAYESIAN
POSTERIOR ODDS TESTS

By DonaLb W. K. ANDREWs'

This paper establishes a correspondence in large samples between classical hypothesis
tests and Bayesian posterior odds tests for models without trends. More specifically, tests
of point null hypotheses and one- or two-sided alternatives are considered (where
nuisance parameters may be present under both hypotheses). It is shown that for certain
priors the Bayesian posterior odds test is equivalent in large samples to classical Wald,
Lagrange multiplier, and likelihood ratio tests for some significance level and vice versa.
The priors considered under the alternative hypothesis are taken to shrink to the null
hypothesis at rate n~ /2 as the sample size n increases.
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1. INTRODUCTION

THIS PAPER CONSIDERS LARGE SAMPLE APPROXIMATIONS to Bayesian posterior
odds test statistics for models without trends. For certain priors that shrink to
the null hypothesis as the sample size goes to infinity, the approximations turn
out to be monotone functions of the standard Wald, Lagrange multiplier (LM),
and likelihood ratio (LR) test statistics. In consequence, the posterior odds test
for a given prior corresponds in large samples to a classical hypothesis test for
some significance level «. In turn, a classical hypothesis test with given signifi-
cance level « corresponds in large samples to a variety of Bayesian posterior
odds tests based on different priors. Thus, the choice of significance level for
classical tests is seen to be analogous to the choice of prior for Bayesian
posterior odds tests and vice versa.

The results referred to above may be of interest to classical and Bayesian
econometricians alike. In addition, Bayesian econometricians may find the
approximations quite convenient from a computational perspective, because
they eliminate high-dimensional integrations, especially with certain choices of
priors. Bayesian econometricians also may find the approximations of interest
because they illustrate certain robustness properties of posterior odds tests. The
results show that posterior odds tests for a variety of different priors yield
equivalent tests in large samples.

There is considerable literature on the relationship between classical hypoth-
esis tests and Bayesian posterior odds tests. Some of this literature focuses on
the question of whether a p value can be viewed as a posterior probability of
the null hypothesis. In some cases where one is testing a one-sided null
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hypothesis against a one-sided alternative hypothesis concerning a scalar param-
eter, such an interpretation is possible (e.g., see Casella and R. L. Berger
(1987), J. O. Berger (1985, pp. 147-148), DeGroot (1973), and Pratt (1965)). In
other cases, notably those with a point null hypothesis and one- or two-sided
alternatives, the interpretation of a p value as the posterior probability of the
null hypothesis is not possible (e.g., see J. O. Berger (1985, pp. 148-151), J. O.
Berger and Sellke (1987), and Edwards, Lindman, and Savage (1963)). On the
other hand, for point null hypotheses, Hodges (1992) has constructed point
alternatives for which the p value is approximately equal to the posterior
probability of the null hypothesis.

In this paper, we consider point null hypotheses with one- or two-sided
alternatives (and allow for nuisance parameters under the null and the alterna-
tive). We are interested in the correspondence between classical hypothesis tests
and Bayesian posterior odds tests, but we do not focus on the question of
whether a p value can be interpreted as a posterior probability of the null
hypothesis. Rather, we ask the question of whether a Bayesian posterior odds
test is equivalent to some classical test for some significance level. In a large
sample sense, we find that the answer is yes for a variety of different shrinking
priors.

Various results in the literature also are relevant to the question of whether a
Bayesian posterior odds test is equivalent to some classical test for some
significance level. A number of finite sample results show this for particular
models and priors; see Jeffreys (1961, Chs. V, VI), Zellner and Siow (1979,
1980), and for further references Zellner (1984, Ch. 3.7, p. 285). In addition,
there are some asymptotic results that are relevant, including those of Jeffreys
(1961, pp. 246~7, 249-50), Lindley (1961), Schwarz (1978), Kass, Tierney, and
Kadane (1988), Kass and Vaidyanathan (1992), and Phillips (1992). The rela-
tionship of our results to the latter asymptotic ones is discussed below (see
Section 7).

In this paper, we also analyze classical and Bayesian tests that are designed to
be impartial between the null hypothesis and a chosen alternative distribution.
We find that the impartial classical and Bayesian tests are equivalent asymptoti-
cally for one-sided alternative hypotheses. For two-sided hypotheses, we find
that they are not equivalent asymptotically, but are quite close to being so. We
note that these results are established for models without trends. For example,
they do not apply to tests of a unit root.

The remainder of this paper is organized as follows. Section 2 states the
testing problem of interest and outlines the results of the paper. Section 3
specifies the parametric model under consideration and states various “high-
level” assumptions that it is required to satisfy. These high-level assumptions
include the assumptions that the normalized score function and sample infor-
mation matrix satisfy a central limit theorem and law of large numbers,
respectively, and that the maximum likelihood estimator is consistent. These
assumptions are replaced by more primitive assumptions later in the paper. The
high-level assumptions are employed, because they help to clarify the essential
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aspects of the parametric model that are needed for the results of the paper.
Section 4 specifies the prior distributions that are considered in the paper.
Section 5 states the main results and discusses their implications. Section 6
provides primitive conditions for the assumptions of Section 3 for the case of
stationary nonlinear models. Section 7 discusses related results in the literature.
An Appendix provides proofs of the results stated in the paper.

All limits below are taken “as T — o,”” where T is the sample size. We let
wp — 1 denote “with probability that goes to one as T — «,” ~ denote “has
the same distribution as,” and 7 denote pi=3.14....

2. THE PROBLEM OF INTEREST AND OUTLINE OF RESULTS

The testing problem considered here is the following: Suppose we have a
parametric model indexed by a parameter § € @ c R. The parameter 6 is of the
form 0 =(p',8Y, where B R?, 8 R4, and s =p +q. We are interested in
testing the null hypothesis

(21)  H,:B=0.

In the classical testing scenario, H, is tested against the alternative hypothesis
H, given by

(22)  Hy B+0.

In a Bayesian scenario, the alternative hypothesis H, is that the parameter 8
has some distribution that is not pointmass at 0. For the case where p = 1, we
also consider the one-sided alternative testing problem where the hypotheses
are Hy: f=0and H;: >0.

We note that, although (2.1) and (2.2) involve testing linear restrictions, the
results given below apply more generally. One usually can reparameterize the
model under consideration to convert nonlinear restrictions of the form H,:
h(8) =0 into linear restrictions of the form (2.1) in a transformed parameter
space. The results given below can be applied with the transformed parameter
space and then mapped back to the original parameter space. (For an alterna-
tive approach to posterior odds testing with nonlinear restrictions, see
McCulloch and Rossi (1992).)

With classical methods, one can test the null hypothesis H,: 8 =0 using a
standard Wald, LM (score), or LR statistic given a significance level a. Such
tests have well-known asymptotic optimality properties; e.g., see Wald (1943).
Under suitable regularity conditions, these statistics have a nuisance parameter
free asymptotic distribution under H, and an asymptotically valid critical value,
k, ., can be obtained given a significance level a.

Using Bayesian methods, one can carry out a posterior odds test of H,
against H;. To do so one specifies a prior probability 7 < (0,1) for the null
hypothesis H, and prior distributions over the parameter values both under H,
and under H,. If 7 is set equal to 1/2 (e.g., as advocated by Jeffreys (1961,
pp. 246)), then the prior odds are even. In any event, the posterior odds statistic
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in favor of H, is given by the ratio of the posterior probability of H, to that of
H,. A posterior odds test rejects H, if the posterior odds statistic (in favor of
H,) is greater than 1 and otherwise accepts H,.?

Let W, LM, and LR, denote the standard Wald, LM, and LR statistics
respectively. (The statistic LR, equals — 2 times the log of the likelihood ratio.)
The main result of this paper is that for certain choices of prior, Q,, the
posterior odds ratio is approximately equal to a monotone function of Wi,
LM, or LR, in large samples.

To define this monotone function, let Sp denote the unit sphere {v € R?:
v'v=1} for p>1 and let S; denote the unit sphere in R¥, ie., S{ ={1}. Let
#, generically denote one of the unit spheres §, or § . The unit sphere S,
arises with two-sided tests of the value of a p-dimensional vector 8. The unit
sphere S| arises with one-sided tests of the value of a scalar parameter 8.

The posterior odds ratio in favor of H, is shown to be approximately equal to
POW, ), PO(LMy, ), and PO(LR;, w), where

1—

(23)  PO(M,u)= fexp(—r2/2)gp(Mr2)dp,(r)
for M= W;,, LMy, or LR,. Here, u(-) is a probability distribution on R*=
{r €R: r > 0} that depends on the prior Q, and g,(-) is a function defined by

(2.4) gp(:<)=f‘/exp(h<|1/2 sgn (k)€'1) dU(¢)

zexp (Ikl'/?) + 5 exp (~I[/?) for =5,
[# 2 (p/2)/T((p ~1)/2)]

X/l exp (IxI'%u)(1 —uz)(p-”/2 du for /4 =5,and p>2,
-1

exp (Ix|'/? sgn (k) for ./ = ST,
for k €R, where U(+) denotes the uniform distribution on ./, sgn(x) denotes
the sign of «, 1 denotes an arbitrary vector in 4, and I'(-) denotes the gamma
function. (The second equality for the case of p > 2 follows from Watson (1983,
Appendix A, eqns. (1.1), (1.5), (1.6)).)

Of course, the approximate posterior probabilities of H, and H,, denoted
PP(H,) and PP(H,), respectively, can be obtained from the approximate
posterior odds statistics via

PO(M, n)

(2.5)  PP(H,)= 1+PO(M, )

—  and PP(H,)=
TvPO(M,py 204 PPU)

for M =W;, LM, or LR;.

2 Bayesian tests also can be based on ratios of posterior expected losses (e.g., see Zellner (1971,
pp. 295-6)). Such tests are more general than posterior odds tests. The application of the result of
this paper to tests based on posterior expected losses is discussed briefly in Section 5 below.
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Throughout, the prior Q, denotes a distribution function rather than a
density. If Q, is a certain multivariate normal distribution with variance
proportional to a scalar 7> 0 (or the distribution of the absolute value of a
normal variate for the one-sided testing case), then the posterior odds statistics
POW_, ) etc. simplify. The distribution u = u . that corresponds to @, in this
case equals the square root of 7 times a chi-square random variable with p
degree of freedom (x}), i.e, p=pu, = ‘/7)(;. The statistic PO(M, u) of (2.3)
simplifies in this case to

r

§1+7

11— o2
(26) PO(M,p.)=——(1+7)"" exp
T

in the two-sided testing case for p > 1 and to

1= -1,2
7)) PO(M,p,)=——(1+7) /

X exp 2147 1+7
in the one-sided testing case, where ®(-) denotes the standard normal distribu-
tion function.’

Given the approximation of the posterior odds ratio by PO(Wy, n), it is easy
to see that there is a direct correspondence between a classical test and
a posterior odds test. A classical Wald test rejects H,, if Wi.>k, . Here, k, ,
is the (1 — a)th quantile of a X,% distribution for two-sided tests with p > 1 and
k, . is the (1 —2a)th quantile of a x{ distribution for one-sided tests. An
approximate posterior odds test rejects H, if PO(W,, u)> 1. Since PO(M, )
is a strictly increasing function of M (provided w is not pointmass at 0),
PO(-, u) has an inverse function PO~ !(-,u) and the approximate posterior
odds test rejects if W, > PO™'(1,n). Thus, the classical and approximate PO
tests are equivalent whenever PO'l(l,,u)=kp,a or, equivalently, whenever
PO(k, ,,u)=1. For fixed « and u, one can always find 7 such that equality
holds. Alternatively, for fixed u and 7, one can always find « such that equality
holds. It is in this sense that the present paper demonstrates a correspondence
between classical and Bayesian tests of H,, versus H,.

LT M}ztp((—T—lMl)l/zsgn(M))

3. THE PARAMETRIC MODEL

In this section, we define the parametric model, state high-level assumptions
that are sufficient for our results, and define the W, LM, and LR statistics.

31t is sometimes of interest to a Bayesian from a robustness /sensitivity perspective to compute
the maximum of the PO statistic over certain classes of priors, e.g, see Edwards, Lindman, and
Savage (1963), Berger (1985, Sec. 4.3.3), and Berger and Seltke (1987). If one considers the class of
multivariate normal priors referred to above, then for two-sided tests the maximum of the
approximate PO statistic (2.6) over 7 > 0 is given by

1_TW(%;I—)p/zexp(%[thp]).
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Let Y, denote the random data vector when the sample size is T for
T=1,2.... Consider a parametric family {f(y,,8): 8 € ©} of densities of Y,
with respect to some o-finite measure y,, where @ cR°. The likelihood
function is given by f,(6) = f (Y, 0).

In many cases, the likelihood function f;(#) can be written as a product of
two terms, one that depends on 6 and another that does not. Often the latter
term is the product over t=1,...,T of the conditional distribution of some
weakly exogenous variables at time ¢ given all of the preceding variables
(exogenous or not). In such cases, these conditional distributions of the weakly
exogenous variables need not be known in order for one to construct the
classical or posterior odds test statistics considered here. The results below hold
for any such distributions for which the assumptions on f;(8) hold. See Section
6 below for a more explicit discussion of the factoring of f;(6) into known and
unknown terms.

Let /,(6) = log f(68). Let DI,(8) denote the s vector of partial derivatives of
1,(6) with respect to 6. Let D?/(8) denote the s X s matrix of second partial
derivatives of /;(#) with respect to 6. We consider the standard case where the
appropriate norming factors for DI;(8) and D?/,(8) (so that each is 0,(1) but
not 0,(1) as T— o) are T~/ and T~! respectively.

Let 6,=1(0,6() denote a value of # in the null hypothesis. (Below we
consider a pointmass prior distribution at 6,.) We say that a statement holds
“under 6, if it holds when the true density of Y, is f(8,) for T=1,2,....

The likelihood function/parametric model is assumed to satisfy the following
assumptions.

AssumpTION 1: (a) 8, is an interior point of 6.

(b) f(8) is twice continuously partially differentiable in 0 for all 8 € @, with
probability one under 8, for all T large, where @ is some neighborhood of 6.

(¢) =T~'D?1(8) 5 #(8) uniformly over 8 € @, under 6, for some nonran-
dom s X s matrix function #(8).

(d) #(0) is uniformly continuous on @,

(e) A= .#(8,) is positive definite.

AssumpTiON 2: T~V2DI(8,) % Z ~ N(0, #) under 6,

We comment briefly on Assumptions 1 and 2. Assumptions 1(a), (b), (d), and
(e) are fairly common maximum likelihood (ML) regularity conditions. Differ-
entiability in @ is assumed for simplicity at the expense of some generality. As is
well known, it is not needed for standard ML estimation results and undoubt-
edly could be relaxed here with some increase in complexity.

Assumption 1(c) is a high-level assumption that requires a uniform weak law
of large numbers (WLLN) to hold (since — 77 'D?/,.(,) can be written as a
normalized sum of random variables by factoring the likelihood function using
conditional distributions). The “uniformity” in Assumption 1(c) can be estab-
lished, e.g., by using the generic uniform convergence results of Andrews (1992).
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As stated, Assumption 1(c) allows one to be relatively agnostic regarding the
temporal dependence and heterogeneity of the data. To verify 1(c), one needs
to be more specific regarding these properties.

Assumption 2 is a second high-level assumption. It requires that the normal-
ized score function satisfy a central limit theorem (CLT) (since T~'/2DIL.(8,)
can be written as a normalized sum of random variables that are mean zero
under weak additional conditions).

Let 6 (= 6,) be the unrestricted ML estimator of 6. That is, § satisfies

(3.1) lT(é) = sup [(8) wp — 1 under 6.
[[2=C)

Let 6 (= 6;) be the restricted ML estimator of §. That is, 6 satisfies
(32) 6€0={6€0:0=(0,8) forsome 6 €R} and
1;(8) = sup [;(8) wp— 1under 6,.
TELC)
We now introduce two additional high-level assumptions. We assume that the

parametric model is sufficiently regular that the ML and restricted ML estima-
tors are consistent under the null hypothesis.

AssumPTION 3: § 5 0, under 8,,.
AssUMPTION 4: § 5 6, under 6,

Primitive sufficient conditions for Assumptions 1-4 are given in Section 6
below.

We add a final comment concerning Assumption 1(a) for the case of one-sided
tests. This assumption requires that the parametric model be defined for
two-sided alternatives even though H, is one-sided. It implies that 6=(p,8)is
a two-sided unrestricted ML estimator. That is, [§ may take values greater than
or less than zero. Assumption 1(a) can be restrictive in the one-sided case. For
example, if B is a variance parameter, it requires that the likelihood function
can be defined for g <0, which is not always possible. On the other hand, it
does cover many models of interest and it is an assumption that has been used
frequently elsewhere in the literature. For example, it is imposed in the classic
paper by Chernoff (1954) on large sample one-sided tests.

This completes the set of assumptions on the parametric model. We are now
in a position to define the classical test statistics W, LM,, and LR,. For the
case of two-sided tests with p > 1, define

(33)  Wy=(HT'29)[Ho (8)H'] " HT'/%,
LM, = [T~'DI,(8)] #71(§)T~/*Di(6),  and
LRy = —2(1,(6) —1,(8)),  where
H=[I,0] cR”* and  #(6)=~T 'D.(6).
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Alternatively, one can define .Z () to be of outer product, rather than
Hessian, form. Note that only the first p elements of DI, () are nonzero in the
definition of LMy, because 31,(8)/35 = 0 by the first order conditions for the
restricted estimator 8 (wp — 1).

For the case of one-sided tests, let W*, LM}, and LR%* denote the expres-
sions on the right-hand side of (3.3) and define the test statistics W, LM, and
LR by

(34)  W,=Wisgn(H6), LM;=LM; sen(H7;'(6)Dl(6)), and
LR, =LR%sgn(H9).

Note that a test based on W, is equivalent in this case to the standard large
sample ¢ test, since W, just equals the ¢ statistic squared times its sign.

4. SPECIFICATION OF PRIORS

We take the prior probability of H, to be w&(0,1) and that of H, to be
1 — 7. We are able to obtain approximations that hold for any parameter vector
6, in the null hypothesis and these approximations do not depend on 6,. In
consequence, we take the prior over 6 in H; to be given by pointmass at 6,
where 6, is an arbitrary parameter vector in H,. By doing so, we avoid placing a
prior over the nuisance parameter vector 8. As is desirable, the results hold for
any fixed value of the nuisance parameter.

Next we specify priors over 8§ in H,. We consider priors that depend on the
sample size 7. We do so in order to obtain large sample approximations that
hold under the marginal distributions of the data both under H; and under H,
and that capture relatively detailed effects of the chosen prior. We do not
envisage one changing the prior as 7 changes in practice. Rather, in order to
generate approximations for a fixed prior and fixed sample size, we find it useful
theoretically to embed the prior in a sequence of priors that vary with 7. The
approach used here is analogous to the use of local alternatives in the analysis
of the power of classical tests. If one does not change the prior with T, the large
sample behavior of the posterior odds ratio in favor of H,; is degenerate. It
diverges to infinity under H, and converges to zero under H,. Using such fixed
prior asymptotics, the effect of the prior is captured only crudely (see the
discussion and references in Section 7).

For 6 in H,, we write

(41)  6=0,+T ",

where 6, is as above and 4 is some R* vector. We consider a prior O, over
vectors 4 € R®. Q, is fixed for all T. This corresponds to priors on 6 that place
greater mass on alternatives near 6, as T increases.

The prior @, on h is defined as follows. Let V' denote the linear subspace of
R defined by

(42) V={€R*:0=(0,8) forsome § €RY}.

"
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The null hypotheses can be expressed as H;: 6 € @=60nV. We consider a
prior O, over h in R* that concentrates on the orthogonal complement of V
with respect to the inner product {Ah,!) .=Hh #1 for h,l € R’, where £ is
defined in Assumption 1. The orthogonal complement is denoted V' *. Since V
is a g-dimensional subspace of R°, V' * is a p-dimensional subspace of R®. Let

{al,...,ap} be some basis of V'* and define 4=[ay,...,a,] €R**?. For
example, one can take
1

p
43) A= ;
(4.3) -7z S A

S A
) where #=

for #, € R?*?, #, € R?™9, and £, € R7"%. In consequence,
(44) V+={h€R’ h=A\for some A €R"}.

The prior 0, that we consider concentrates on V' + and has contours given by
certain ellipsoids. In other respects, the prior is arbitrary. Thus, the results given
below apply for a wide range of priors. The ellipsoids over which Q, gives
constant weight are the same as those considered by Wald (1943) in his
demonstration of the property of asymptotically greatest weighted average
power of classical Wald tests. The parameter vectors 6 corresponding to
different points on any such ellipsoid have the property that they are equally
difficult to detect asymptotically—no direction away from the null is favored
over any other.

The prior distributions are assumed to satisfy the following assumption.

AssumpTION 5: (a) The prior probabilities of H, and H, are 7w <(0,1) and
1 — 1 respectively.

(b) The prior distribution of 6 under H, is pointmass at 6, where 8 is the null
parameter vector considered in Assumptions 1-4.

(c) The prior distribution of 6 under H, is given by 0=0,+ T~ '/?h and
h~Q,, where 8, is as in part (b). The distribution Q, of h is such that
h/\h|l o~ A(A' FA)1/%¢, where ¢ is a random vector that is uniformly dis-
tributed on the p-dimensional unit sphere ./,, and h/|lhll» and ||kl are
independent .

Let w denote the prior distribution of [|%||_~. Assumption 5 allows u to be
arbitrary (provided it is not pointmass at 0).

When p=1 and H,; is one-sided, the unit sphere % referred to in
Assumption 5(c) is a pointmass at 1. In this case, Assumption 5(c) places no
restriction on the distribution of 4 other than that it lies in V. When p=1
and H, is two-sided, the unit sphere . equals {—1,1}. In this case, Assump-
tion 5(c) requires the prior on A4 to satisfy a symmetry property. If .#, =0 (i.e.,
if the information matrix is diagonal between the parameters B8 and &), the
symmetry property just requires that £ and —A be given equal prior density (or
prior mass) for all 4. When p > 1, the unit sphere ./, is nondegenerate and
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Assumption 5(c) requires the prior Q, to have contours given by certain
ellipsoids, as noted above.

For particular choices of distribution y on ||A]|_», the distribution Q, and the
approximation to the posterior odds ratio simplify. More specifically, suppose u
is the distribution of the square root of 7 times a chi-square random variable

with p degrees of freedom (.e., u~ 7)(5) for some 7> 0. Then, in the
two-sided testing case, A and 6 have prior distributions given by

(4.5) h~Q,=N(0,7%) and 6~N(6,,(7/T)%),  where

IS=A(A A

— i -1 — ’ -1 —
(S~ Sk 75) (A - )

— ’ — L — ’ - 1y 1 —
_‘jS l‘]2(‘]1—‘]2‘]3 l‘]Z) ‘]3 ‘]2(‘]1 _‘/2‘]3 l‘]2) jZ‘/S !

and N0, 3) denotes a multivariate normal distribution with mean 0 and
covariance matrix 3 (which is singular when ¢ > 0). With some algebraic
manipulations, one can show that the upper left p X p block of 3, (4'#£4)" !,
and H.# 'H' are equal. In consequence, the above prior on 6=(g,8')
corresponds to the following prior on B:

(4.6) B~N(0,(7/TYHSZ'H").

Note that (1/T)H.#"'H' is the asymptotic variance of the unrestricted ML
estimator [§ o

In the one-sided testing case, the above prior u ~ \/ 7x% on ||kl yields
priors on 4, 6, and B given by

(47)  h~Q,=IN(0,72)], 6~8,+|N(0,(r/T)2)|, and
B~|N(0,(7/T)H.7 'H")|

for 3 as in (4.5), where |N(0, 3)| denotes the distribution of the absolute value
of a random variable with N (0, 3) distribution.
For convenience, we refer to the above cases as Assumption 5*:

AssumpTION 5%: Assumption 5 holds with the distribution Q, of h given by
N(O,73) for tests of two-sided alternatives and by |N(0, 73)| for tests of one-sided
alternatives, for some constant 7> 0.

Under Assumption 5%, the formula (2.3) for the approximate posterior odds
ratio can be simplified.

Lemma 1: Under Assumption 5%, the expression for PO(M, u) given in (2.3)
simplifies to that given in (2.6) for two-sided tests and to that given in (2.7) for
one-sided tests.
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5. MAIN RESULTS

In this section, we state the main approximation results for the posterior odds
statistic and discuss their interpretation.

5.1. Statement of the Main Results

To start, we define the posterior odds statistic POT(Q;L) given the priors
defined in Assumption 5:
1—a

(5:1)  POL(Q,) = ——— [fr(60+T7'*h) dQ, (1) /f1(8).

Note that for convenience we have defined PO, (Q,) to be the posterior odds
ratio in favor of H,, not in favor of H,. (The latter is just the reciprocal of
PO(Q,))

Below we say that probabilistic results hold “under H,” and “under H,” if
they hold under the predictive densities of the data under H, and under H,
respectively (i.e., under the marginal distribution of the data Y, that is deter-
mined by the parametric model and the prior on # under H, and under H,, as
described in Assumption 5). Thus, “under H,” is equivalent to “under 6,,”
whereas “under H,” depends on 6, and Q,,.

The main result of the paper is the following:

THEOREM 1: Suppose Assumptions 1-5 hold. Then, under both H, and H,, we
have: (a) POQ,)—POWy,u)5 0, (b) POQ,)—PO(LMy,p) %0, and
(c) POAQ,) — PO(LRy, 1) 5 0.

Comments: 1. Theorem 1 holds not just for a single vector 6, but for all null
parameter vectors 8, for which Assumptions 1-5 hold, since PO (W, u),...,
PO(LR, 1) do not depend on 6,,.

2. The result of Theorem 1 suggests approximating PO(Q,) by PO(Wp, u),
PO(LM, w), or PO(LR,, ). At least in some cases, this approximation is quite
good. For example, part (a) of Theorem 1 holds exactly (i.e., POQ,)=
PO(W., 1)) in the case of a linear regression model with regression parameter
8, iid normal (0, o2) errors, o known, and weakly exogenous regressors.*

3. Theorem 1 yields approximate sampling properties of posterior odds test
statistics, because the asymptotic distribution of PO(W,, ) is easy to deter-
mine. For example, under 6, it is given by PO(Z*, u) where Z* has chi-squared
distribution with p degrees of freedom (for two-sided tests).

5.2. Interpretation of Theorem 1

Theorem 1 shows that the posterior odds test, which rejects H, when
PO(Q,)>1, is approximately equal to the test that rejects H, when

*To see this, one can go through the proof of Theorem 1 in the Appendix and verify that all of
the 0,(1) terms are 0 in this case, provided one defines #= —T~'D?/,(8,).
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PO(Wy, ) > 1, or equivalently, when
(5.2) W.> PO (1,u),

where PO~ !(-, ) is the inverse function of the strictly increasing function
POC(-, ). (The same holds with Wy replaced by LM, or LR;.) On the other
hand, a classical Wald test of asymptotic significance level a rejects H, when

(5.3) Wr>k, .,

where k, , is as defined in Section 2. In consequence, the posterior odds test is
approximately equal to a classical test, and vice versa, whenever «, u, and 7 are
such that

(54)  PO(k, 4pn)=1.

It can be shown that for any significance level a € (0,1) there exist pairs of
priors (7, ) such that (5.4) holds. In fact, there are many such (s, u) pairs
corresponding to a given a. Conversely, given any pair of priors (77, 1), there
exists a (unique) significance level « such that (5.4) holds. In fact, given any pair
from the triplet (a, 7, w), there exists a value of the third element such that
(5.4) holds. Thus, for the special case of even prior odds (7 = 1/2), given any
significance level a there exists a prior w such that (5.4) holds and vice versa.
These results imply that for any classical test there exist equivalent approximate
posterior odds tests and vice versa. The mapping of posterior odds tests to
classical tests is many-to-one.

The discussion above indicates that in large samples there are numerous
posterior odds tests that are approximately equal. Different pairs of priors
(7, ) that yield the same value of PO ~!(1, u) generate posterior odds tests that
are approximately equal. This is a useful robustness property for posterior odds
tests: The result of a posterior odds test holds not just for a single pair of priors
(7, 1), but for the whole family of priors that generate the same value of
PO™(1, ). Note that even if the prior probability 7 of H, is fixed, say at 1/2,
there is still a whole family of priors u that generate the same value of
PO™(1, ).

The p value of a test based on the statistic W, say, is a monotone decreasing
function of W,. In consequence, the approximate posterior odds ratio is a
monotone decreasing function of the p value. In turn, the posterior probability
of H, is a monotone increasing function of the p value. (It will not equal the p
value in general.) More specifically, let Py, denote the p value of the test
based on W;. Then, by definition, k, » L= W,. Hence, the approximate poste-
rior odds statistic equals PO(k Py M) which is a monotone decreasing func-
tion of Py, .

We now analyze the correspondence between classical and posterior odds
tests more closely for two particular families of prior distributiens w on |4l -
The first family corresponds to priors Q, ~ N(0, 7¥) on & for different 7 > 0, or
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TABLE I

VALUES OF THE PRIOR PARAMETER 7 FOR WHIcH CLAssICAL TESTS OF SIGNIFICANCE LEVEL a
ARE EQUIVALENT TO APPROXIMATE POSTERIOR OpDs TEsTs WHEN 7 = 1/2

P .01 .05 .10 25 .52
1 (one-sided) 881. 50. 14. 1.6 0.
1 (two-sided) 750. 41. 1. .79 —
2 94 16. 6.3 1.0 —
3 38 9.5 4.5 95 —
4 23 6.9 3.6 88 —
5 16 5.6 3.0 81 —

“For a sufficiently large, there is no distribution g of the form ‘r)(g that solves (5.5) or (5.6). This accounts for the
dashes in the table.

equivalently, to priors 8 ~ N(6,, (7 /T)L). The prior distributions w in this case
equal \/ 7)(3. Equation (5.4) holds for such priors if

1 - T
55)  (1+7) exp|lz—k, .| = ——
(3:5) (t7) Trexp| g ke = T

for the case of two-sided tests with p > 1, and if

) e 1 - ® T 172 T
(56 (1+7) exp(z 1+7k1’“)2 (( 1 +7k1’“) ) -7
for the case of one-sided tests.

Table I provides the values of 7 that solve (5.5) and (5.6) when 7 =1/2 for a
variety of different values of a and p. The table shows that as « increases (so
that the classical test rejects more frequently), the value of 7 that yields an
(approximately) equivalent posterior odds test decreases.

To illustrate the use of Table I, consider a situation where the upper-left
p Xp block of £~ equals I,. Then, a posterior odds test with priors 7=1/2
and B ~ N(0,41/T), where T is the sample size, corresponds (approximately) to
a two-sided classical test with significance level @ = .05. A posterior odds test
with 7=1/2 and B~ |Z;| for Z;~ N(0,50/T) corresponds to a one sided
classical test with significance level a = .05.

Next, we consider the family of prior distributions @ on ||kl|_» that equal
pointmass at r, for different r, > 0. Such distributions correspond to the prior
on # being given by the distribution of 6, + T~'/%4(A'#4)"¢r, and the prior
on B being given by the distribution of T-V2(H # 'H')"V?¢r,, where ¢ is
uniformly distributed on .. (Note that the variance of g under this prior is
(r2 /T)H.#7'H', which equals r2 times the asymptotic variance of the ML
estimator B.) Equation (5.4) holds for such priors if

(5.7)  exp(—ri/2)g,(k, %)= T
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In particular, for the case of one-sided tests, this reduces to

(58) exp(~—ri/2+\/kl’ar*)=ﬁ.

Equation (5.8) can be solved analytically to yield r, = (k; )'*+(k, ,—
2log(mr /(1 —7))!/? provided r, > 0. Thus, for one-sided tests with 7=1/2,
we have r, =2k, .. Here, \/kl,(x equals the critical value for the Wald ¢
statistic. Thus, one needs the prior on B8 to put pointmass at twice the critical
value for the ¢ statistic times o, =(H.#"'H/T)"? in order for the posterior
odds test and significance level « tests to be equivalent (approximately), where
o is the asymptotic standard error of the ML estimator [§ In particular, for
a = .01, .05, .10, and .25, one has r, equal to o, times 4.65, 3.29, 2.56, and 1.35,
respectively.

5.3. Bayesian Versus Classical Tests That Are Impartial Between the Null
and a Given Alternative

Suppose one wants a test that treats the null and a particular alternative
distribution impartially. A Bayesian test can be constructed in this case by
specifying a pointmass prior distribution at the alternative distribution of
interest under H, and by taking the prior probability of H, to equal that of H,
i.e, m=1/2. In contrast, a classical test can be constructed that has the
property that its probability of type I error (significance level) equals its
probability of type II error for the alternative distribution of interest.

How do these Bayesian and classical tests compare? Using the results above
and those of Andrews (1989), we find that for one-sided alternatives the two
tests are asymptotically equivalent and for two-sided tests they are not asymp-
totically equivalent, but are quite close.

First, consider one-sided alternatives. Suppose the alternative distribution of
interest has B equal to B,. Then, for a Bayesian posterior odds test, a
pointmass prior distribution on B, under H, corresponds to the distribution p
introduced above being pointmass at r, = B, /o, where oy = (H.#"'H'/T)"/?.
For this prior, the (approximate) posterior odds test rejects H, if W, >k},
where kf , solves (5.8) with m=1/2, i.e,, k} = (r /2" =B% /(403).

On the other hand, asymptotic inverse power results in Andrews (1989) give
the (approximate) magnitude of 8 for which the probability of type II error of a
Wald, LM, or LR test of level a equals a. The magnitude is 2z,,0,, where z,, 1s
the (1 — a)th quantile of the standard normal distribution. In consequence, for a
test to have significance level equal to the probability of type II error against
B = B*, one needs a to satisfy B, =2z,0; or z, =B, /(20z). A Wald ¢ test
rejects if the ¢ statistic exceeds z, =, /(203), or equivalently, if W, (which
equals the squared ¢ statistic times the sign of the  statistic) exceeds B% /(40;5).
Thus, the impartial posterior odds and classical tests are equivalent asymptoti-
cally.
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Next, for two-sided tests, similar calculations can be made, but one does not
find that the impartial posterior odds and classical tests are exactly equivalent
asymptotically. Nevertheless, they do not differ greatly. For example, suppose
p=1and B, and o, are such that B /o =3.605. Then, by Table I of
Andrews (1989), the classical test with size equal to one minus power at 8, has
a = .05. This asymptotic test rejects if W, > 3.84, using the x? table. For the
impartial posterior odds test, on the other hand, r, =B, /o5 =3.605 corre-
sponds to a critical value k, , =3.98, according to equation (5.7). That is, the
approximate posterior odds test rejects if Wy (or LM, or LR;) exceeds 3.98.
Since the critical values 3.98 and 3.84 are quite close, the posterior odds and
classical tests are quite close asymptotically. If g, and o5 are such that
ri =By /05 =4902 (or 2.926), then the impartial classical test must have a
equal to .01 (.10 respectively) and the asymptotic critical values of the impartial
posterior odds and classical tests are 6.72 and 6.63 (2.89 and 2.71 respectively).
In each case, the impartial posterior odds and classical tests are quite close
asymptotically.

We now add several caveats to the results described in this subsection. First,
the results are established only for standard asymptotic scenarios, where the
ML estimator is asymptotically normal. They also should apply if the asymptotic
distribution of the ML estimator is a location shift family of symmetric distribu-
tions, such as mixed normal distributions. On the other hand, they cannot be
expected to hold for tests involving unit root parameters in models with
stochastic trends. Second, the results depend on the difference between the
prior on the nuisance parameter 8 under H, and its prior under H, going to
zero as T — . If one had different priors on 8 asymptotically under the two
hypotheses, then the results would not hold. (In finite samples, this cause of a
difference between impartial Bayesian and classical tests can be illustrated by
considering tests of Hy: Y ~N(0,0?2) versus H,: Y ~ N(B,0}) where of # 05.)
Third, for two-sided tests, the results depend on the restrictions on the prior on
B under H, (as specified in Assumption 5(c)).

5.4. Tests Based on Expected Posterior Losses

In this section, we show that the results above, which show a correspondence
between Bayesian posterior odds tests and classical tests, also provide a corre-
spondence between Bayesian posterior expected loss tests and classical tests.

Let L(6, Hy) (resp., L(8, H,)) denote the loss when 6 is the true parameter
and H, (resp. H,) is chosen. By assumption, L(8, H;) >0 and L(6, H;) =0 V9
in H; for j=0,1. A Bayesian posterior expected loss test rejects H, (e,
chooses H,) if the posterior expected loss of H, is less than that of H,, or
equivalently, if the ratio of the posterior expected loss of H,, over that of H,
denoted REPL,, is greater than 1. A Bayesian posterior odds test is a special
case for which L(#, H,) = L(¢', H)) V8 in H, and V6’ in H,.

Let L(#,, H,) = 1 without loss of generality. Suppose one takes L(8, H,) and
the prior on # under H, to be such that their product equals the prior on 6
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under H, specified in Assumption 5 above. Then, under the other assumptions
above, REPL . — PO(W,, 1) % 0 under H, and under H,, and likewise for LM,
and LR;, where PO(Wy,n) is as defined in (2.3) except with (1—m)/7
replaced by [L(8,+ T~"'/*h, Hy)dQ (h)X1 — ) /7. This result gives a direct
correspondence between classical tests and certain posterior expected loss
tests.”

6. NONLINEAR MODELS

In this section, we consider nonlinear dynamic models. We provide primitive
assumptions that are sufficient for Assumptions 1-4 of Section 3. For simplicity,
we consider strictly stationary mth order Markov models.

The sample of observations is given by

(6.1) Y;={(S,,X,): t<T},

where {S,: t < T} are endogenous variables and {X,: t < T} are weakly exoge-
nous variables.® Let

(6.2)  {g,(0):0€0}={g/(SIS,,....S,_; X},..., X,): 6 €O}

denote a parametric family of conditional densities (with respect to some
measure A) of S, given S,,...,8,_, X;,..., X, evaluated at the random vari-
ables §,,...,S5,, X,,..., X,, where @ CR"’. Let

(63) b, =h(XIS1,..., S Xpree s X))

denote the conditional density (with respect to some measure) of X,

given S,...,8,_, X,..., X,_, evaluated at the random variables
S8, 1, X,..., X,. By the assumption of weak exogeneity, 4, does not
depend on 6.

The likelihood function f7(6) and log likelihood function /,(6) are given by

T T T T
(6.4)  fr(0)= ﬂlg,(e)- [1r, and 1,(6) =) logg(0)+ X logh,,
t= t=1 1 1

where LT denotes X7_,.

We consider the case where {(S,, X,): t > 1} is part of a doubly infinite strictly
stationary ergodic sequence {(S,, X,): t=...,0,1,.. . }and {S;: r=...,0,1,...} is
mth order Markov for some integer m > 0. In this case, the function .#(8)

> The proof of this result holds by the same argument as used to establish Theorem 1 with the
prior on 8 under H, replaced by the product of L(8, H,) and the prior on 8 under H; divided by its
integral over 6 in H,; (e, by [L(6y+ T~'/?h)dQ (1) in order to ensure that the product
integrates to one, and hence, is a proper distribution.

% Weak exogeneity of {X,: t < T}, defined in Engle, Hendry, and Richard (1983), implies that the
likelihood function for Yy can be factored into two pieces, one of which contains conditional
distributions of S, and depends on 8 and the other of which contains conditional distributions of X,
and does not depend on 9; see below.
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equals —Ed? log g,(0)/060¢'. By definition, {S,: t=...,0,1,...} is mth order
Markov if the conditional distribution of §, given %,_,=0(...,S,_,,S,_;
..-,X,_1, X)) equals the conditional distribution of S, given S, ., =(S,_,.....,
S,_)and X, , =(X,_,,...,X) for all t. The Markov assumption yields the
simplification that the summands log g,(#) in the log-likelihood function are
strictly stationary and ergodic for ¢ > m. Without the Markov assumption this
would not be the case, because the number of relevant observed variables in the
conditioning set would vary with ¢.

The following assumption provides primitive sufficient conditions for Assump-

tions 1-4 of Section 3:

AssumpTION NL: (a) @ is compact and 6, lies in the interior of ©.

(b) {(S,,X,): t=...,0,1,...} is strictly stationary and ergodic and (S,
t=...,0,1,...} is mth order Markov under 0 for each 6 € 0.

(c) g,(0) is continuous in 6 on @ and twice continuously partially differentiable
in 0 on @y with probability one under 0,, where @, is some compact set that
contains a neighborhood of 6,,.

(d) g,(8) # g,(8,) with positive probability under 8, V0 € ® with 6 + 0,,.

(e) Esupycollog g(0)| <o, Esup,cg |10 log g(6)/36] < o,

Elldlog g,(8,) /301> <, and E sup |19* log g,(0) /3636’ < co.
00,

(f) F= —Ed? log g,(0,)/3036’ is positive definite.

The expectations in parts (e) and (f) are taken under 6.
Assumption NL constitutes a fairly standard set of ML regularity conditions
for stationary and ergodic situations.

Lemma 2: Assumption NL implies Assumptions 1-4.

Thus, Assumptions NL and 5 are sufficient for the result of Theorem 1 to
hold.

7. RELATED RESULTS IN THE LITERATURE

Here we discuss some asymptotic results for posterior odds tests due to
Jeffreys (1961, pp. 246-247, 249-250), Lindley (1961), Schwarz (1978), Kass and
Vaidyanathan (1992), and Phillips (1992). In particular, we focus on the rela-
tionship between these results and the results presented above.

Kass and Vaidyanathan (1992, eqn. (2.3)) (hereafter denoted KV) provide a
family of approximations to the PO statistic that depend on the choice of
certain functions b, and b. Their approximations do not vield the approximate
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PO statistic to be a monotone function of Wy, LM, or LR,. Their approxima-
tions are closest to being such a function, however, if one takes b, and b to
equal the priors on the parameters under H, and under H, respectively.

In this case, their approximate PO statistic in favor of H, is given by

" - 1,2
Lormld) det(T[L/fT(evA)]zlz)2 exp(lLRT)’
7o(9) det (T77(9)) 2

(7.1)

where 7((-) is the prior on 6 under H,, 7 (-) is the prior on é under H,, 7, 6,
and 6 are as above, [L%T((zi)]22 is the lower right g X g submatrix of .#-(f), and
det(A4) denotes the determinant of the matrix A. This formula reduces to that
given by Lindley (1961) for the case where p = 1. It is similar to, but different
from, the approximation given by Jeffreys (1961) for the case p = 1.

KV show that the approximation (7.1) is valid to within a multiplicative error
of O(1/T) (i.e., the ratio of exact to approximate PO equals 1+ O(1 /7)) with
probability one under H, and under H, using asymptotics that employ the same
prior for all T.

A direct comparison of KV’s approximations to those given in this paper is
not straightforward, because different asymptotics are employed. Under KV’s
asymptotics, the PO statistic has limit zero or infinity depending on whether H,
or H, is true. In consequence, multiplicative approximation errors are consid-
ered and the prior only affects the approximation in a relatively crude fashion.
With the asymptotics used in this paper, the PO statistic has a nondegenerate
limit as 7 — o, so additive approximation errors are considered and the whole
prior affects the approximation.

KV’s multiplicative approximation errors are O(1/T), which is of second
order and is quite desirable. This does not necessarily translate into additive
approximation errors of o(1) under H,, however, because the true PO statistic
diverges to infinity very quickly under H, using their asymptotics. On the other
hand, the additive approximation errors of the approximations given in this
paper are necessarily op(l) under H, and under H, using our asymptotics, but
the corresponding multiplicative approximation errors are not O,(1/ T) in
general. It seems likely that the approximations given here are more accurate
than KV’s in some cases and less accurate in others. The former is known to be
true, since the approximations given here are exact for linear regression models
with iid normal errors and known variance for a wide variety of priors, whereas
KV’s approximations are not exact in these cases.

Next, we consider Schwarz’s (1978) asymptotic results for Bayesian model
selection procedures. His results yield the following approximation to the PO
statistic in favor of H:

(72) T ?exp(iLR;).

The same formula applies for all prior probabilities 7 (0,1) of H,, for all
(proper) priors over the values of 8 in H, and for all priors over those values of
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6 in H,. Obviously, his approximation can be quite crude given its extremely
broad range of applicability. (One can make the PO statistic take any value in
(0, ) by suitable choice of . Thus, it is clear that Schwarz’s approximation
does not hold uniformly in 7 and can have arbitrarily poor accuracy.) This
crudeness of approximation is both a virtue and a drawback. It is a virtue, if one
wants to construct an asymptotic procedure that is independent of the prior, as
does Schwarz. It is a drawback, however, if one wants a reasonably accurate
approximation of the PO statistic, as is desired here.

Schwarz’s results apply to a subclass of the models considered in this paper,
viz., iid linear exponential models. On the other hand, his results apply to a
broader class of hypotheses. In addition to considering hypotheses of the form
H,: B=0 versus H;: B#0, which correspond to choosing between nested
models of different dimensions, he also considers choosing between nonnested
iid linear exponential models. The type of asymptotics considered by Schwarz
differs from that considered here. He fixes the values of the (normalized)
sufficient statistics of the linear exponential model for all 7. Thus, in his
asymptotics, nothing is random.

Schwarz’s approximations are valid in the sense that the ratio of the true PO
statistic to the approximate posterior odds statistic (6.2) is bounded away from
zero and infinity for all 7. Obviously, this is a very weak approximation result.
For the purposes of obtaining reasonably accurate approximations, one would
like the ratio to have limit one as T — o, as with KV’s approximations.

Last, we discuss some results of Phillips (1992, Remark 3.2(ii)). Phillips’
results are similar to those given here in that they establish an asymptotic
correspondence between Bayesian posterior odds and classical tests. His results
differ, however, in terms of the priors considered, the models considered, and
the choice of distributions under which the asymptotics hold. Thus, his results
and those given here are more complements than substitutes.

More specifically, Phillips’ results and ours differ as follows: (i) Phillips
discusses the asymptotic correspondence when the asymptotics are derived
under the null, whereas we consider the asymptotic correspondence under the
null and also under the alternative, (ii) Phillips considers a noninformative
(improper) prior, whereas we consider classes of proper priors, and (iii) Phillips
considers linear vector autoregressive models that are stationary under the null
and possibly nonstationary under the alternative, whereas we consider nonlinear
models with random variables that are nontrending under the null and the
alternative.’

Cowles Foundation for Research in Economics, Dept. of Economics, Yale
University, P.O. Box 208281 Yale Station, New Haven, CT 06520-8281, U.S.A.

Manuscript received November, 1992; final revision received December, 1993.

7 Note that Phillips (1992) considers general nonstationary linear models in most of his paper, but
the section dealing with an asymptotic correspondence between Bayesian and classical tests
considers a null hypothesis under which the random variables are stationary.
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APPENDIX

Without loss of generality, we set the prior probability = of H, to be 1/2 throughout the
Appendix. This simplifies notation, since the multiplicative factor (1 —m)/m reduces to 1. The
proofs of Lemmas 1 and 2 follow those of Theorem 1. We start by stating an assumption, several
definitions, and four lemmas that are used in the proof of Theorem 1.

Assumprion 1: T7V2DI(8,) = O(1) under 6.

Assumption 1" is implied by Assumption 2. Assumption 1 is introduced, so that it is evident
below where the full strength of Assumption 2 is used in the proofs.
Define

(A1) §=2"1T7"2DI,(8,).

LEmmMA A-1: Suppose Assumptions 1, 1, and 3 hold. Then, Tl/z((; - 8y) — 950 under 0.

Next, we define an unobserved large sample approximation to the posterior-odds statistic
PO(Q,). Let

(A2) POr(Q,) = [exp[ =40~ h) #(8~1)] dQ,(h)/exp [ - 3077

LEMMA A-2: Suppose Assumptions 1, ', and 3 hold. Then, POT(Q’L) —mT(Q’L) 50 under 0,.
For the case of two-sided tests, we define an approximate Wald statistic WT by
(A3)  Wy=(HBY(Hrs'H') 'HO.

For the case of one-sided tests, we let WT equal the right-hand side of (A.3) and we define WT to
equal W sgn (H9).

The approximate posterior-odds statistic POT(Q ) simplifies to a simple function of the approxi-
mate Wald statistic:

LEMMA A-3: Suppose Assumption 5 holds. Then, PO1(Q,) = PO(Wy, ).

Combining Lemmas A-2 and A-3, one sees that the results of Theorem 1 under 6, are equivalent
to

— P
(A4) PO(Wr,u) ~PO(Wr,pu) >0  under 6,

and likewise with Wy replaced by LM, and LR. The latter results are relatively straightforward to
establish under Assumptions 1-5 (see below).

To obtain the results of Theorem 1 under H, it suffices to show that they hold under 8, and that
the alternative marginal densities { [f,(8, + T~1/?h) dQ,/ (h): T = 1} of the data vectors {Y;: T > 1},
under the parametric model {f(6): 6 € @} and the prior Q,,, are contiguous to the null densities
{(Fr(0p): T= 1} of {(Yp: T 1}.

LeEmMmA A-4: Suppose Assumptions 1-5 hold. Then, the alternative marginal densities {[f(8,+
T~'2R)dQ (k). T > 1} of the data vectors {Yr: T = 1} are contiguous to the null densities {fr(8,):
T>1}.

Proor oF LEMMA A-1: Lemma A-1 is established by takmg a mean value expansion about 8, of
each of the elements of DIT(H) Details can be found in the proof of Lemma 1 of Andrews and
Ploberger (1994). Q.E.D.
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Proor orF LEMMA A-2: All probability calculations in this proof are made “under 6,.” For
0 <M <, define

(A5) POTM=4M|<MfT(00+ T712h) dQ,(h)/fr(8,)  and

(A6) POy = " Mexp(-% 5—h)'f(§-h)) dQM(h)/exp(—%é’jg).
All<

For any ¢ > 0,
(A7) P(|PO(Q,) —POr(Q,)|>¢)
< P(|PO7(Q,) =~ POry| > &) + P(|POry — POi| > £)
+P(|POr(Q,) — POru|>¢).

Hence, it suffices to show that (1) given any 5 > 0 we can choose T* < and M <« sufficiently
large so that P({PO(Q,) — POyyl>e) <n and P(PO(Q, ) — POryl>¢) <n for all T= T* and
(2) POy~ POrps D 0 VO <M < o,

We show (1) first. We have

(A8)  P(|POr(Q,) ~ POry|>¢)
<e7E|PO,(Q,) —POpy|

—e E [ £7(80+T712h) /f1(80)] dQ,(h)

lal> 1

=g 1 d
‘ /uhn>M Qu(h),

where the second equality holds by Fubini’s Theorem and the fact that E[f;(8,+ T~1?h)/
fr(85)) =1 Vh. The right-hand side (rhs) of (A.8) can be made arbitrarily small for all T by taking
M large.
Next, we have
(A9) IITO_T(QM) —?@m| =exp[%§’/§] Ahlk exp[—%(@—h)’/(é—h)]dQM(h)
>M

<o [T 2Dt (o) e ] [ a0, (),

where the inequality uses Assumption 1{e). The first term on the rhs of (A9) is O,(1) by
Assumptions 1(e) and 1’ and the second term on the rhs can be made arbitrarily small by taking M
large.

We now establish (2). A two term Taylor series expansion gives

(A.10) Ir(0+ T 2h) —17(8y) =T~ /*Dip(8y) + SHTTID2L(0)h + i (h),

where the remainder term r,;(k) satisfies

(A1) sup ||rp(H)| <M? sup I7-1D2(0) - T~'D1(8y) |
|Hl<M 0: 17 26 -0) <™
<M?* sup |T-'D1,(8) — #()|
00,
+M? sup [#(8) - #(6) |l

o: T 20— ol <pr
+ M2 T'D27(0,) + #(6) ”
=0,(1),
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where the equality uses Assumptions 1(c) and (d). In addition,

(A.12) KT D (8)h = —H Fh+r,p(h),  where sup | ror(h)| =0,(1),
h:llhlls M

by Assumption 1{c). It follows from (A.11) and (A.12) that

(A.13) exp[ri7(h) + rp(R)] =1 +57(h),  where sup |sp(h)| =0,(1).
h: k<M

Combining (A.10) and (A.12) and using the definition of § yields
(A.14) (8, + T~ 2h) —1p(09) =H A0 — L #h + rip(h) + ryp(h)
= 10700 — L(8—hY #(8 — h) +rip(h) + ryp(h).
Combining (A.5), (A.6), (A.13), and (A.14) gives

(A15)  POpy= Ahu<Mexp[lT(00+ T172h) — 1:(8,)] dQ,(h)

=SSP [46°#8 — (6~ 1Y #(8— )| (1 +57(h)) dO,(h)

=POrm+0,(1),

where the third equality uses POpy = 0,(1), which follows from a close analogue to (A.9). This
completes the proof. Q.ED.

Proor oF LEmMa A-3: Let P and P* denote the projection matrices onto ¥ and V' +,
respectively, with respect to { -, - )_s. The projection matrix P L jsgivenby P+ —AH where A4 and
H are as in the text. To see this, note that P' is characterized by () P*v=0 Vv &V and
Gi) Prm=m ¥Ym eV *. Condition (i) holds for P+ = AH by simple algebra. Condition (ii) holds
for P =AH because for m =(m,my) eV vV IFm=0VveV iff [0 ]Fm=0iff m=Am,
In consequence, AHm = AHAm = Am,=m Vm €V * (using the fact that HA=1I,).

Now, twice the exponent of the integrand of POT(Q#) can be rewritten as follows

(A.16) 6.7 — (h - 5)'/(/1 ~0)y=—W Fh+ 20 IO = —h Fh+ 20 FP L9
= (P+8) FPLO— (h—PL8) #(h—PLh),
where the second equality holds because h €V L implies H'#P6 = 0.
Define Z = ( A #A)/2H0. Let ¢ be a random p vector with uniform (U7) distribution on the unit
sphere, as in Assumption 5. Let R be a real random variable independent of ¢ with distribution
ul-). Let h=A(AFA)" 12 Let O(-) denote the distribution of /. Note that Wil _s= 1. Define

h =Rh. Then, h ~ ~ Q,(*), as desired.
Using these deﬁmtlons (A.16), and P+ = AH, we obtain

(A17)  POr(Q,) = [[ exp[32'Z = S (rA(A5A) V¢ — aHD)
X F(rA(AFA) "€~ AH) | dU(¢) du(r)
= [[exp[42'Z = 4(r¢ = Z) (r6 ~ 2)] dU(£) dpu(r)

= [exp[ =172 ] [ exo [1ZIIr&' (Z/NZID] dU(€) dpu(r) = PO(X, 1),

where X =||Z||? for two-sided tests and X = |1Z}i% sgn(Z) for one-sided tests. The last equality of
(A.17) holds by the definitions of g,(x) and PO(-, p).
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It remains to show that ||Z{® = Wy for two-sided tests and IZI1% sgn(Z) = Wy for one-sided
tests. Since ||Z|| =(HBYA FAHD and sgn(Z) = sgn(H9), the latter results hold provided A'.#4 =
(H#"'H")~!. By simple algebra, A .#4 =7, — % #; ' #. On the other hand, (H.#"1H")"!
equals the inverse of the upper p Xp submatrix of #71, which equals £, — %, # 1.7, by the
formula for a partitioned inverse. Q.E.D.

PROOF OF LEMMA A-4: The following assertion is verified below using results of Strasser (1985).
If (1) PO(Q, )5 PO(X, w) under 8, for some random variable X and (ii) E[PO(X, un)] =1, then
the result of Lemma A-4 holds. Condition (i) is obtamed as follows: By Lemmas A-2 and A-3,
PO(Q,) - PO(Wr, p )—) 0 under 8. Next, PO(W,, u) % PO(X, }L) under 6, where X = Z'Z for
wwo-sided tests, X = Z2 sgn(Z) for one-sided tests, and Z ~ N(0, I ), by Assumptions 1(e) and 2,
continuity of PO(-, n), and the continuous mapping theorem. Condmon (i1) is obtained as follows:
For X as above, by (A.17),

(A.18) E[PO(X,w)] =E[[exp[—%r2+r§’2]dU(§)d;,L(r)
= //exp[—%rZ]Eexp[rg’Z]dU(g)du(r)

= [[ew -4 lew [irge] v (&) du(r) =1,

where the second equality holds by Fubini’s Theorem and the third uses the expression for the
standard normal moment generating function.

It remains to verify the assertion above. Let ({2, &) be a measurable space. Let Py and Q4 be a
null distribution and an alternative distribution on (2, %) for T> 1. Let E;= (02, o/, (P, Q7).
Ey is called a (binary) experiment and {E,: T > 1} is a sequence of experiments. One can define
equivalent experiments and one can put a metric 4, on the space &,/ ~ of equivalence classes of
experiments; see Strasser (1985, pp. 74, 75). By Theorem 18.11 of Strasser (1985), if A,(E,, E) >0
as T — o for some experiment E = (2, %7, (P, Q)), then {Q,: T > 1} is contiguous to {P: T > 1} if
and only if Q is absolutely continuous with respect to P, i.e., if and only if [Jxuz(dx)=1, where
wg is the distribution of the likelihood ratio dQ/dP under P, #(dQ /dP|P).

Also, by Theorem 16.8 of Strasser (1985), (&,/ ~, 4,) and (.#, ) are homeomorphic, where .#
is the set of all probability measures p on [0,0) with [Fxu(dx) <1 and I is the topology of weak
convergence, with homeomorphism T defined by T(E)=_#(dQ/dP/P), where E is the equiva-
lence class of experiments that contains E and E =(0,.97,(P,(Q)). In consequence, for any
experiment E = (£2,27,(P, Q)) and any sequence of experiments {E;: T2 1} ={(2, A,(Pr, Q7))
T> 1}, AXE,, E) =0 as T— « if and only if_/(dQT/dPTIPT) = A(dQ/dP|P) as T - », where

” denotes weak convergence (or equivalently, convergence in distribution). This result and the
result of the previous paragraph establish the assertion above. Q.E.D.

ProOF OF THEOREM 1: Suppose parts (a)—(c) of Theorem 1 hold under 8. Then, the probability
of the set {|PO(Q,) — PO(W,, u)| > ¢} converges to zero as T — = under 6, Ve > 0. By contiguity
(Lemma A-4), its probablhty also converges to zero under H,. The same holds with W, replaced by
LM, and LR;. Thus, it remains to establish parts (a)-(c) of Theorem 1 under 6.

Given Lemmas A-2 and A-3, to establish parts (a)~(c) of Theorem 1 under 0y, it suffices to
establish (A.4). Since PO(-, ) is a continuous function, (A.4) holds if

(A19) () Wr~Wr 50, (B)Wr—LM;50, and  (¢) LMyp—LR; 50 under 6.
For two-sided tests, part (a) of (A.19) holds because HT'/26 — H 5 0 under 6, by Lemma A-1,

(A20)  |oa(B) - £ < sup [ £(0) - £(0)] + £ (6) - # | =0,(1).

=0,

and £ is positive definite (Assumption 1(e)). The inequality in (A.20) holds wp — 1 using
Assumption 3 and the equality in (A.20) holds by Assumptions 1(c), 1(d), and 3. For one-sided tests,
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part (a) holds for the above reasons plus the fact that P(sgn(H8) = sgn(HB)) — 1 under 8, since
H6 — HT'/29 % 0 and HO 5 N(0, H.#~'H’) under 8,,. The proofs of parts (b) and (c) are similar to
proofs in the literature and, hence, are omitted for brevnty We do point out, however, that for
one-sided tests P(sgn(H®) = sen(H. #7 (6)D{6)) 5 1 under 6, for the same reasons as for the
analogous result in part (a). Q.E.D.

PROOF OF LEmma 1: Let M = | M|/ sgn(M) and e, = (1,0,...,0). By definitions (2.3) and (2.4),

(A21)  PO(M,p)= [[/exp[-%(r§)'r§+1\/~lr§’61] dU(&) du(r).
s
Now, in the two-sided case with R~ p = ]/Txlf, we have R¢=w ~N(0,71,). We write w =
(w,@'), where w; €R and & € RP™!, Then, using (A.21), we obtain
(A22)  PO(M,p)=Eexp(—300+Mao,)

=FEexp(—306) -Eexp(—%w%+1\/-lw1)

1
- R ) e (o),

where the last equality holds by rewriting each expectation as a constant times the integral of a
normal density over its entire domain.

Next, in the one-sided case with R ~ u = ‘/r)(lz ,we have R¢~ |N(0,7)|. Let w ~ N(O, 7) and let
= |w]|. Let Z ~ N(0,1). Then, using (A.21), we have

1 _ 1
(A.23) PO(M,u)= [Rexp [— 5(92 +M|w|](27"rr)—1/zexp [ - Z_Twz] dw

® 1({1+7
=2[ (Zﬁr)_l/zexp[—i(
0

—1/2
4—~M2 [ (27% )
21+71 o +7

1({1+7 T .)\?
Xexp| - = (a)— M) do
2 T 1+7

w? - ZMw)] dw

=(1 +r)71/zexp

T T -
=(1+ —M|2P Z+ M>0
=( T) exp[z 1+7 ] ( 1+7 1+7 )
i/2 Lo T 12
=+ exp| 5 oM 20| | ——IMI)  sen (M) ). Q.E.D.
21+ 1+7

ProOF OF LEMmAa 2: Assumption 1(a) holds by Assumption NL(a). 1(b) holds by NL(c). 1(c)
holds with #(0) = —Ed% log £,(8)/30 38 provided a uniform WLLN can be established. The
Markov property (NL(b)) ensures that {6° log g,(8)/3606": t>m} is part of a doubly infinite
stationary and ergodlc sequence. Thus, using NL(b) and (e), the ergodic theorem implies that
~T7'D%,8) % #(8) V6 € @,: A generic uniform WLLN (e.g., Assumptions TSE-1D, BD, DM,
and P- WLLN and Theorem 4 of Andrews (1992)) strengthens this result to uniform convergence
over @, using NL(b), (c), and (e). Assumption 1(d) holds, because .#(8) is continuous on @, by the
dominated convergence theorem using NL(c) and (e) and @ is compact. 1(e) holds by NL(f).

Note that {(9log g,(6,)/38, F_): t > m} is a martingale difference sequence (MDS). Using the
Cramer-Wold device, Assumption 2 now follows from the univariate CLT for stationary ergodic
square-integrable MDS with positive variances (e.g., see Brown (1971)).
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Sufficient conditions for Assumptions 3 are: (i) @ is compact, (ii) log g,(8) is continuous in 8 on
© with probability one under 6, (jii) supy co!(1/T)E](log £,(8) — E log g,(6)] % 0 under 8, and
(iv) Elogg,(8) is uniquely maximized over @ at @, (e.g., see Amemiya (1985, Thm. 4.1.1,
pp. 106-107)). Parts (i) and (ii) hold by NL{a) and (c) respectively. Part (iii) holds by the same
argument as for 1(c) above. To obtain part (iv), note that for 6 # @,

(A24)  Elogg,(8)—Elogg(8,)=Elog[g,(6)/2,(80)] <log Eg,(6)/2,(65) =0,

where the inequality is an application of Jensen’s inequality and is strict by NL(d).
Assumption 4 holds by the same argument as for Assumption 3 with @ in place of . Q.E.D.
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