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ESTIMATION WHEN A PARAMETER IS ON A BOUNDARY

BY DONALD W. K. ANDREWS1

This paper establishes the asymptotic distribution of an extremum estimator when the
true parameter lies on the boundary of the parameter space. The boundary may be linear,
curved, and�or kinked. Typically the asymptotic distribution is a function of a multivariate
normal distribution in models without stochastic trends and a function of a multivariate
Brownian motion in models with stochastic trends. The results apply to a wide variety of
estimators and models.

Ž .Examples treated in the paper are: i quasi-ML estimation of a random coefficients
Ž .regression model with some coefficient variances equal to zero and ii LS estimation of

an augmented Dickey-Fuller regression with unit root and time trend parameters on the
boundary of the parameter space.

KEYWORDS: Asymptotic distribution, inequality restrictions, random coefficients regres-
sion, stochastic trends, unit root model.

1. INTRODUCTION

TO OBTAIN THE ASYMPTOTIC DISTRIBUTION of an estimator, a standard assump-
tion in the literature is that the true parameter is in the interior of the
parameter space. This assumption is convenient because it allows one to make
use of the fact that first order conditions hold, at least asymptotically. There are
numerous cases of interest, however, in which the true parameter is on the
boundary of the parameter space. Examples are given below.

In this paper, we provide results that establish the asymptotic distribution of
an extremum estimator when the true parameter may be on the boundary of the
parameter space. In such cases, the first order conditions do not hold with
positive probability for all sample sizes. We provide general high level assump-
tions under which the asymptotic results hold, we provide sufficient conditions
for the high level assumptions, and we verify these conditions in two examples.

Ž .A sequel to this paper, Andrews 1997a , provides additional sufficient condi-
tions for the high level assumptions and considers six additional examples.

We start by outlining the steps used to obtain the asymptotic distribution. In
ˆthe process, we describe the asymptotic distribution itself. Let � be an estimator

1The author thanks Moshe Buchinsky, Arthur Lewbel, Whitney Newey, David Pollard, Chris
Sims, the co-editor, and three referees for helpful comments, Glena Ames for typing the manuscript,
and Rosemarie Lewis and Carol Copeland for proofreading the manuscript. The author gratefully
acknowledges the research support of the National Science Foundation via Grant Numbers SBR-
9410675 and SBR-9730277.
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Ž . sthat maximizes a function ll � over a parameter space ��R , where T is theT
ˆsample size. First, one establishes that � converges in probability to some value

� as T��. The case of interest is when � is on the boundary of � . Second,0 0
Ž .for ��� close to � , one approximates the estimator objective function ll �0 T

Ž Ž ..via �1�2 times a quadratic function of � , denoted q B ��� , whoseT T 0
coefficients are random and are normalized such that they converge in distribu-
tion to some limit. Here, B is a deterministic normalization matrix. ForT
nontrending data, often B �T 1�2I . Third, one shows that the quadraticT s

ˆŽ . Ž .approximation implies that B ��� �O 1 .T 0 p
Fourth, one considers the shape of the parameter space for � near � ,0

because only such values are relevant asymptotically. We treat the case where
Ž .the shifted and rescaled parameter space B ��� �b is a convex cone �T 0 T

Ž .centered at � at least locally to � , or can be approximated by �, where b is0 0 T
a sequence of scalar constants such that b �� as T��. For example, thisT
includes cases in which � is on a boundary defined by linear and�or nonlinear0
equality and�or inequality constraints.

Ž .Fifth, one shows that maximizing ll � over ��� is asymptotically equiva-T
ˆ ˆŽ . Ž . Ž .lent to minimizing q � over ��� in the sense that B ��� �� �o 1 ,T T 0 T p

ˆ Ž .where � is defined to minimize q � over ���.T T
ˆSixth, one obtains the asymptotic distribution of � using the convergence inT

Ž .distribution of the coefficients of q � and the continuous mapping theorem.T
Ž . Ž .� Ž . Ž .Let q � � ��Z TT ��Z denote the limit of q � , where Z is a randomT

Ž . Ž .s-vector, and TT is a possibly random s�s matrix. Let � minimize q � over
ˆ���. The random vector � is a continuous function of the coefficients ofT

ˆŽ .q � and the latter converge in distribution. In consequence, � converges inT T
ˆdistribution to �. For example, in the case of nontrending data, Z typically has a

normal distribution and TT is a positive definite nonrandom matrix.
Seventh, the results of the fifth and sixth steps combine to show that

ˆ ˆŽ .B ��� converges in distribution to �. We provide conditions under whichT 0
ˆcertain subvectors of � have simple expressions and we obtain closed form

ˆsolutions for subvectors of �.
ˆIn sum, we find that the asymptotic distribution of � is given by that of a

random vector that minimizes a stochastic quadratic function over a convex cone
� that approximates the shifted and rescaled parameter space. The asymptotic

Ž .distribution often depends on estimable nuisance parameters. It is easy to
simulate.

As discussed below, there are numerous antecedents in the literature to the
approach outlined above. For example, the use of a quadratic approximation to
the estimator objective function, rather than the reliance on first order condi-

Ž . Ž . Ž .tions, has been made by Chernoff 1954 , LeCam 1960 , Jeganathan 1982 ,
Ž . Ž . Ž .Pollard 1985 , Pakes and Pollard 1989 , and van der Vaart and Wellner 1996 ,

among others.
Our results are designed to cover a wide variety of estimators and models.

Ž .The estimators covered by the results include least squares LS , quasi-maxi-
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Ž . Ž .mum likelihood QML , generalized method of moments GMM , minimum
distance, two-step, and semiparametric estimators among others. The estimator
objective function can be smooth or nonsmooth, so that simulated method of

Ž .moment MSM and least absolute deviation estimators are covered. This
feature is obtained by using stochastic equicontinuity or stochastic differentia-

Ž . Ž . Žbility conditions, as in Pollard 1985 , Pakes and Pollard 1989 , Andrews 1994a,
. Ž .b , and van der Vaart and Wellner 1996 .
The results apply when the estimator function is not necessarily defined in a

neighborhood of the true parameter. In consequence, the results cover random
coefficient models in which some coefficient variances are zero. This contrasts
with many testing papers that consider tests when the true parameter is on the
boundary of the maintained hypothesis, but the estimator objective function is
assumed to be well-defined in a neighborhood of the true boundary point, such

Ž . Ž . Ž .as Chernoff 1954 , Gourieroux and Monfort 1989 , and Andrews 1996, 1998a ,
among others. To obtain these results we use a generalization of Taylor’s
Theorem that does not require the function to be defined in a neighborhood of
the point of expansion.

The models covered by the results include cross-sectional, panel, and time
series models. The results allow for deterministic and stochastic trends in linear
time series models. In consequence, the results can be applied to obtain the
asymptotic distributions of estimators of unit root and cointegration models
when there are binding equality and�or inequality restrictions on the parame-
ters. The results also can be applied to least squares and other estimators in
models with heavy tails when there are binding constraints on the parameters.

We note that the assumptions employed here are such that one often can use
Žexisting results in the literature that are designed for the case where the true

.parameter is an interior point to help verify the assumptions. This is particu-
larly useful for semiparametric estimators. One does not need to re-prove
results regarding the effect of preliminary nonparametric estimators on the
properties of the estimator objective function.

By approximating the parameter space by a cone, we allow the boundary
to be linear, curved, and�or kinked. The parameter space may have empty
interior, as occurs when there are equality restrictions. This approach was

Ž .used by Chernoff 1954 in the context of likelihood ratio tests. Our approxima-
Ž .tion condition extends that of Chernoff 1954 to allow for models with trends.

In addition, we provide primitive sufficient conditions for the approximation to
hold when the boundary is determined by nonlinear equality and�or inequality
constraints.

Several papers in the literature consider the asymptotic properties of estima-
tors when the true parameter lies on the boundary of the parameter space.

Ž .Aitchison and Silvey 1958 consider ML estimators for iid models with smooth
likelihoods when the parameter is subject to smooth equality constraints. Moran
Ž .1971 considers ML estimators for iid models with smooth likelihoods with one
or two parameters restricted to be nonnegative when the true values of these
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Ž . Ž .parameter s are zero. Chant 1974 generalizes Moran’s results for the same
Ž .model to cover more than two nonnegativity restrictions. Self and Liang 1987

generalize Chant’s results for the same model, but there are problems with their
Ž .results. Gourieroux and Monfort 1989, Ch. 21 consider an extremum estimator

based on a smooth objective function when the true parameter is on a boundary
defined by smooth inequality constraints. They provide the asymptotic distribu-
tion of some functions of this estimator, but not the asymptotic distribution of

Ž .the entire estimator. Added in press: two additional references are Geyer 1994
Ž . Ž . Ž .and Wang 1996 . Judge and Takayama 1966 , Lovell and Prescott 1970 ,
Ž . Ž .Rothenberg 1973, Ch. 3 , and Liew 1976 consider the finite sample behavior

of the LS estimator of the linear regression model when it is subject to linear
Ž .equality and inequality restrictions. Rothenberg 1973, Ch. 3 also provides some

finite sample efficiency results that apply to a general class of inequality
restricted estimators.

Ž .The asymptotic results derived here are useful for a number of purposes: i
They provide insight into the finite sample behavior of estimators when the true

Ž .parameter is on the boundary of the parameter space. ii They establish
conditions under which the asymptotic distribution of the estimator of a subvec-
tor of the parameter is not affected by the true values of another subvector

Ž .being on a boundary of the parameter space; see Section 6.1. iii They provide
conditions under which the usual formulae for the asymptotic standard errors of
extremum estimators are conservative when the true parameter is on a bound-

Ž .ary; see Section 6.3. iv The results can be used to formulate several methods of
generating consistent estimators of the asymptotic standard errors and�or the
whole asymptotic distribution of extremum estimators that apply whether or not

Ž .the true parameter is on a boundary; see Section 6.4. v The results can be used
to show that the standard bootstrap does not generate consistent estimators of
the asymptotic standard errors of extremum estimators when the true parameter

Ž . Ž .is on a boundary; see Andrews 1999 . vi The estimation results of this paper
are useful for constructing Wald-type tests when the null and alternative
hypotheses are more complicated than just nonlinear equality restrictions and

Ž . Ž .unrestricted parameters, respectively; see Andrews 1998b . vii A by-product of
the estimation results is the determination of the asymptotic distribution of the
estimator objective function. This can be used to determine the asymptotic
distributions of quasi-likelihood ratio test statistics for nonstandard testing

Ž . Ž .problems; see Andrews 1998b . viii The results can be used to analyze the
properties of model selection procedures for general extremum estimators
including cases where smaller models result from the specification of the
parameter as a point on the boundary of the parameter space of a larger model.
Ž .ix The results can be used to determine the asymptotic behavior of items that

Ž .are of interest from a Bayesian perspective, including the nonstandard asymp-
totic distribution of the posterior distribution in likelihood contexts when a
parameter is on a boundary. Research on several of the topics above is in
progress.
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Ž .We now discuss examples. This paper and its sequel, Andrews 1997a ,
consider eight examples. We treat the first two in this paper. The first example is
a random coefficient regression model in which some random coefficient vari-
ances are zero. The second example is an augmented Dickey-Fuller regression

Ž Ž . .model i.e., an AR p model with a time trend and a root that may equal one
with the largest root restricted to be less than or equal to one and the time
trend parameter restricted to be nonnegative.

The third example is an iid regression model with nonlinear equality and�or
inequality restrictions on the regression parameters. We note that nonlinear
inequality restrictions arise in demand, utility, cost, and profit function estima-
tion when Slutsky conditions, convexity, quasi-convexity, concavity, or quasi-con-
cavity is imposed. The fourth example is the same as the third except that the
regressors are integrated. The fifth example is an iid nonlinear median regres-
sion model with nonlinear equality and�or inequality restrictions. This model is
estimated using the restricted least absolute deviations estimator. The sixth
example is a multinomial discrete response model estimated via a MSM estima-
tor. We consider the case where the model includes random coefficients,
random effects, or measurement errors and the variances of some of these

Ž � .random terms are zero. The seventh example is a GARCH 1, q or
Ž � .IGARCH 1, q model in which the GARCH MA parameters are restricted to

be nonnegative and some of the true GARCH MA parameters equal zero. The
eighth example is a partially linear model estimated by the semiparametric LS

Ž .estimator of Robinson 1988 , but subject to nonlinear equality and�or inequal-
ity constraints.

The remainder of the paper is organized as follows. Section 2 describes the
two examples considered in this paper. Section 3 considers the quadratic
approximation of the estimator objective function. Section 4 provides conditions
under which the parameter space, suitably shifted and rescaled, can be locally
approximated by a cone. Section 5 establishes the asymptotic distribution of the
extremum estimator. Section 6 introduces a partitioning of the parameter vector
� that yields a simplification of the asymptotic distribution of the extremum
estimator, discusses LAN and LAMN conditions, and provides methods for
obtaining consistent asymptotic standard error estimates. An Appendix of Proofs
provides proofs of the results given in the paper.

All limits below are taken ‘‘as T��’’ unless stated otherwise. Let ‘‘wp�1’’
abbreviate ‘‘with probability that goes to one as T��.’’ Let ‘‘for all � �0’’T

� 4abbreviate ‘‘for all sequences of positive scalar constants � : T�1 for whichT
p d

� �0.’’ Let � and � denote convergence in probability and distributionT
Ž . Ž .respectively. Let � A and � A denote the smallest and largest eigenval-min max

Ž .ues, respectively, of a matrix A. Let 	� denote the boundary and cl � denote
Ž .the closure of a set �. Let S � , 
 denote an open sphere centered at � with

Ž .radius 
 . Let C � , 
 denote an open cube centered at � with sides of length
2
 . Let � denote ‘‘equals by definition.’’
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2. EXAMPLES

2.1. Random Coefficient Regression

Example 1 is a random coefficient regression model. The variances of the
random coefficients are nonnegative. We determine the asymptotic distribution
of the Gaussian QML estimator when one or more of the random coefficient
variances are zero.

The model is

Y �� �X �� �� 1�2
t 5 t t 3 t

� 1�2 � 1�2 Ž 2 .�� �X � � � 
 �X � � , � � , whereŽ .5 t 4 3 t t 1 tŽ .2.1

1�2 Ž .� �� �� � , � � .t 4 1 2 t

The vector � �Rb is the random coefficient vector. The observed variables aret
�Ž . 4 Ž � � .� b pY , X : t�T . The regressors are X � X , X �R , where X �R andt t t 1 t 2 t 1 t

b2 Ž .X �R . � � , � is a diagonal matrix with the random coefficient variance2 t 1 2
Ž � � .� Ž � � � .�parameters � , � on the diagonal. The vector �� � , � , � , � , � is the1 2 1 2 3 4 5

unknown parameter to be estimated. The random variables � �Rb and 
 �Rt t
2 Ž � . Ž � � .are unobserved errors that satisfy E
 �0, E
 �1, E � X �0 a.s., E � � Xt t t t t t t

Ž � . �Ž . 4�I a.s., and E � 
 X �0 a.s. The random variables Y , X , 
 , � : t�Tb t t t t t t t
are iid.

The parameter � �R p contains the random coefficient variances that are on1
Ž . b2the boundary i.e., the true value of � , � , is 0 . The parameter � �R1 10 2

Žcontains the random coefficient variances that are not on the boundary i.e.,
.each element of the true value of � , � , is positive . The parameter � is the2 20 3

idiosyncratic error variance. The true value of � , � , is positive. The parameter3 30
� �Rb is the deterministic part of the regression coefficients. The parameter4
� �R is the intercept.5

2.2. Dickey-Fuller Regression Model

Example 2 is a Dickey-Fuller time series regression model with estimated
constant and time trend. This is an autoregressive model of order b�1 that has
at most one unit root and all other roots in the stationary region. We consider
the case where the parameter space restricts the coefficient on the first lag of

Ž .the time series i.e., the potential unit root to be less than or equal to one and
the coefficient on the time trend to be greater than or equal to zero. Thus, the
model precludes the possibility of an explosive series and�or of a series with
negative growth.

We determine the asymptotic distribution of the LS estimator when the time
series has a unit root and a zero coefficient on the time trend. In this case, two
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parameters are on the boundary of the parameter space. The true process is the
process that defines the null hypothesis of most unit root tests. Most unit root
tests, however, impose at most one of the two restrictions on the parameters.

The model is

�Y �� Y �� t�� �
Y � �
 ,t 1 t�1 2 3 t�1 4 t

where �1�� �1, � �0,1 2

�Ž . Ž .2.2 
Y � 
Y , 
Y , . . . , 
Y , 
Y �Y �Y ,t�1 t�1 t�2 t�b t t t�1

Ž � . Ž 2 � . 2E 
 FF �0 a.s., E 
 FF �� a.s.,t t�1 t t�1

Ž .FF �� 
 , . . . , 
 ,t 1 t

b �Y , 
 , � , � , � �R, and 
Y , � �R . The observed time series is Y : �b� tt t 1 2 3 t�1 4 t
4 Ž �.��T . The parameter vector to be estimated is �� � , � , � , � .1 2 3 4

3. QUADRATIC APPROXIMATION OF THE OBJECTIVE FUNCTION

3.1. Definition of the Extremum Estimator and Consistency

Let Y denote the data matrix when the sample size is T for T�1, 2, . . . . WeT
Ž .consider an estimator objective function ll � that depends on Y . Maximiza-TT

s ˆŽ .tion of ll � over a parameter space ��R yields the estimator � that weT
Ž .analyze in this paper. The estimator objective function ll � can be a log-likeli-T

hood function, a quasi-log likelihood function, a least squares criterion function,
a GMM objective function, a minimum distance objective function, an objective
function that depends on finite or infinite dimensional preliminary estimators,
etc.

ˆ ˆBy definition, the extremum estimator � satisfies ��� and

ˆŽ . Ž . Ž . Ž .3.1 ll � � sup ll � �o 1 .pT T
���

ˆŽ . Ž . Ž .We only require that ll � be within o 1 of the global maximum of ll �pT T
over ��� , rather than the exact global minimum, because this circumvents the
question of existence and eases the computational burden.

Let � denote the pseudo-true value of the parameter � . By assumption,0
Ž .� �cl � .0

ˆWe assume consistency of � for � :0

ˆ Ž .ASSUMPTION 1: ��� �o 1 .0 p

A well-known sufficient condition for Assumption 1 that often holds when the
data do not involve trending variables is the following:
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� Ž . Ž . � �1 Ž .ASSUMPTION 1 : a For some function ll � : ��R, sup T ll � �� �� Tp
Ž . � Ž . Ž . Ž . Ž .ll � � 0. b For all 
�0, sup ll � � ll � , where ��S � , 
 de-� �� � SŽ� , 
 . 0 00

Ž .notes all 	ectors � in � but not in S � , 
 .0

Note that here and below a superscript �, 2�, or 3� on an assumption
Ždenotes that the assumption is sufficient sometimes only in the presence of

.other specified assumptions for the unsuperscripted assumption.
� Ž .Assumption 1 a is a uniform convergence condition that can be verified by

Ž .using a uniform law of large numbers; see Andrews 1992 and references
� Ž .therein. Assumption 1 b is an asymptotic identification condition. Sufficient

� Ž . � Ž � . Ž . Ž .conditions for Assumption 1 b , which we call Assumption 1 b , are i ll �
Ž . Ž . Ž .is uniquely maximized over � at � , ii ll � is continuous on � , and iii � is0

compact.
A second sufficient condition for Assumption 1 that allows for the case where

�1 Ž . Ž . Ž .T ll � � ll � for all ��� and ll � ��� for some ��� is given byp 0T
Ž .Pfanzagl 1969, Theorem 1.12 . An extension of Pfanzagl’s result is used in
Ž . Ž � .Andrews 1997a for the IGARCH 1, q Example.

When the data involve trending variables no generally applicable proof of
consistency is available. Usually, one has to establish consistency on a case by
case basis. For linear models this is often straightforward, but for nonlinear

Ž .models it can be difficult. See Andrews and McDermott 1995 and Saikkonen
Ž .1995 for some results regarding the latter models.

3.2. Quadratic Approximation of the Objecti	e Function

Ž .We consider the case where the estimator objective function ll � has aT
quadratic expansion in � about � :0

�Ž . Ž . Ž . Ž . Ž .3.2 ll � � ll � �D ll � ���0 0 0T T T

�1 2Ž . Ž .Ž . Ž .� ��� D ll � ��� �R � .0 0 0 T2 T

Ž .The remainder term R � specifies the sense in which the expansion holds.T
Ž . Ž .When ll � has partial derivatives of order two with respect to wrt � ,T

Ž . 2 Ž .D ll � and D ll � typically are the s-vector and s�s matrix of first and0 0T T
Ž .second partial derivatives, respectively, of ll � with respect to � evaluated atT

Ž .� . We do not require ll � to have partial derivatives of order two wrt � ,0 T
Ž .however, for two reasons. First, ll � is not defined on a neighborhood of �0T

Ž .for some of our applications of interest. Thus, at best, D ll � will consist of0T
Ž .left or right partial derivatives for some of its elements. Second, ll � involvesT

absolute value or sign functions in some applications of interest, so pointwise
Ž .partial derivatives or even left or right pointwise partial derivatives do not exist

Ž .in some cases. Nevertheless, ll � is often differentiable in a stochastic sense,T
which is the case considered here.
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Ž . 2 Ž .We introduce a norming matrix B for D ll � and D ll � so that eachT 0 0T T
Ž . Ž . Ž .is O 1 but not o 1 as indicated in Assumption 3 below . B is a determinis-p p T

tic s�s matrix. In most cases with nontrending data, B �T 1�2I . In some casesT s
with nontrending data, however, it is useful to take B=T 1�2M, where M is a
nonsingular nondiagonal matrix. By appropriate choice of M, one may be able
to obtain a block diagonal normalized ‘‘quasi-information’’ matrix TT , definedT
below. This yields a simplified expression for the asymptotic distribution of the

Ž � .extremum estimator. This occurs with the GARCH 1, q Example of Andrews
Ž .1997a .

With trending data, B is always more complicated than T 1�2I . For example,T s
in the Dickey-Fuller Example 2, B is an asymmetric matrix of the formT

Ž .B �	 M, where 	 is diagonal, � 	 ��, and M is nonsingular.T T T min T
Let

Ž . �1� 2 Ž . �1 �1 �1� Ž .3.3 TT ��B D ll � B and Z �TT B D ll � ,T T 0 T T T T 0T T

�1� Ž �1 .� Ž .where B denotes B . The quadratic expansion of 3.2 can be rewritten asT T

1 � 1Ž . Ž . Ž Ž .. Ž .ll � � ll � � Z TT Z � q B ��� �R � , where0 T T T T T 0 T2 2T TŽ .3.4 � sŽ . Ž . Ž .q � � ��Z TT ��Z for ��R .T T T T

Ž .The terms in the quadratic expansion of ll � are assumed to satisfy theT
following assumptions:

� Ž . � Ž .ASSUMPTION 2: For all 0����, sup R � �o 1 for some� �� :
 B Ž��� .
 �� T pT 0
Ž .nonrandom matrices B for which � B ��.T min T

Ž �1� Ž . . Ž .ASSUMPTION 3: B D ll � , TT � G, TT for some random 	ariables G�T 0 T dT
Rs and TT�Rs�s for which TT is symmetric and nonsingular with probability one.

A sufficient condition for Assumption 2 that we often employ is the following:

� � Ž . � Ž 
 Ž .
.2ASSUMPTION 2 : For all � �0, sup R � � 1� B ���T � �� :
��� 
 �� T T 00 T

Ž . Ž .�o 1 for some nonrandom matrices B for which � B ��.p T min T

In the next subsection, we give a sufficient condition for Assumption 2�. It
Ž .relies on the existence of left and�or right partial derivatives of ll � . AndrewsT

Ž . �1997a gives two additional sufficient conditions for Assumption 2 . The first
relies on a stochastic differentiability condition that generalizes that of Pollard
Ž . Ž .1985 and van der Vaart and Wellner 1996, Theorem 3.2.16 . The second
applies specifically to GMM and minimum distance estimators and generalizes

Ž .the stochastic equicontinuity condition of Pakes and Pollard 1989 . Andrews
Ž .1997a also gives a condition that is sufficient for Assumption 2, but not for
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� Ž .Assumption 2 . It covers the case where ll � is the sum of Lipshitz functionsT
of � . None of the sufficient conditions referred to above requires the parameter

Ž .space � or the domain of ll � to include a neighborhood of � .0T
Assumption 3 allows the normalized ‘‘information’’ matrix TT to be randomT

even in the limit as T��. This is necessary to cover models with stochastic
trends, such as unit root and cointegration models. In models with no stochastic

Ž .trends but possibly with deterministic trends , TT converges to a nonstochasticT
limit TT. In this case, one can take TT to be the nonstochastic limit TT in theT

Ž . Ž .quadratic expansion of 3.4 and the remainder term R � can absorb theT
difference. Thus, a sufficient condition for Assumption 3, that is applicable in
models with no stochastic trends, is the following:

� �1� Ž . sASSUMPTION 3 : B D ll � � G for some random 	ariable G�R , TT �T 0 d TT
s�s Ž .R is nonrandom and does not depend on T , and TT �TT is symmetric andT

nonsingular.

In quasi-log likelihood cases, Assumption 3 is implied by the convergence in
distribution of the normalized score function and the convergence in distribu-
tion or probability of the ‘‘Hessian’’ of the likelihood. In such cases, Assumption

Ž .3 usually follows from the central limit theorem CLT and the law of large
Ž .numbers LLN in models without stochastic trends and from an invariance

principle in models with stochastic trends. In GMM cases, Assumption 3 usually
follows from the CLT and several convergence in probability results. In some

Ž . Žcases, such as with Han’s 1987 maximum rank correlation estimator see
Ž ..Sherman 1993 , Assumption 3 follows from a CLT and LLN for U-statistics. In

minimum distance, semiparametric, and other cases that rely on preliminary
estimators, verification of Assumption 3 requires asymptotic results for the
preliminary estimators. Results already in the literature often can be used.

We describe the limit quantities G and TT in more detail in Section 6.

3.3. A Sufficient Condition for the Quadratic Approximation of the
Objecti	e Function

Here, we provide a sufficient condition for Assumption 2� that relies on
Ž . Ž .smoothness of ll � . It uses a Taylor expansion of ll � about � , but does0T T

Ž .not require ll � to be defined in a neighborhood of � . The requisite Taylor’s0T
theorem is established in the Appendix.

First, we introduce some terminology. Let f be a function whose domain
s Ž . Ž .includes XX�R . Let a�XX . We want a Taylor expansion of f x about f a to

hold for points x�XX . We suppose XX�a equals the intersection of a union of
Ž .orthants and an open cube, C 0, 
 , centered at 0 with edges of length 2
 for

Ž .some 
�0. Thus, XX�a is locally equal to a union of orthants. As defined, XX

is a cube centered at a with some ‘‘orthants’’ of the cube removed.
Ž . Ž .We say f has left�right l�r partial deri	ati	es of order 1 on XX if it has

partial derivatives at each interior point of XX ; if it has partial derivatives at each
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Ž .boundary point of XX with respect to wrt coordinates that can be perturbed to
Ž .the left and right; and if it has left right partial derivatives at each boundary

Ž .point of XX wrt coordinates that can be perturbed only to the left right . Note
that the shape of XX is such that for all x�XX and for all coordinates x of x it isj
possible to perturb x to the right or left or both and stay within XX . Thus, it isj
possible to define the left, the right, or the two-sided partial derivative of f wrt
x at x � j�s and � x�XX .j

We say f has l�r partial derivatives of order k on XX for k�2 if f has l�r
partial derivatives of order k�1 on XX and each of the latter has l�r partial
derivatives on XX . We say f has continuous l�r partial derivatives of order k on
XX if f has l�r partial derivatives of order k on XX , each of which is continuous
at all points in XX , where continuity is defined in terms of local perturbations
only within XX .

A sufficient condition for Assumption 2� is the following:

2 Ž . Ž . � Ž .ASSUMPTION 2 *: a The domain of ll � includes a set � that satisfies iT
� Ž .� �� equals the intersection of a union of orthants and an open cube C 0, 
 for0

Ž . Ž . �some 
�0 and ii �
S � , 
 �� for some 
 �0, where � is the parameter0 1 1
space of Assumption 2�.
Ž . Ž . �b ll � has continuous l�r partial deri	ati	es of order 2 on � �T�1 withT

probability one.
Ž .c For all � �0,T

2 2	 	��1 �1Ž . Ž . Ž .sup B ll � � ll � B �o 1 ,� �T 0 T pT Tž /	� 	� 	� 	�
 
��� : ��� ��0 T

Ž . Ž . Ž 2 �. Ž .where 	�	� ll � and 	 �	� 	� ll � denote the s 	ector and s�s matrix ofT T
Ž .l�r partial deri	ati	es of ll � of orders one and two respecti	ely.T

2 Ž . � Ž .Assumption 2 * a specifies a set � with a special shape on which ll �T
� Ž .must be defined. For each ��� , ll � has a quadratic approximation via theT

Taylor’s theorem in the Appendix. On the other hand, Assumption 22* does not
require that near � the parameter space � is a union of orthants centered at0
� . What Assumption 22* requires is that � be contained in such a set near � .0 0
If ��� happens to be a union of orthants local to 0, then one can take0

� Ž . 2� ��
C � , 
 in Assumption 2 *.0
2 Ž .Assumption 2 * b is designed to hold in cases in which � is on the boundary0

of the set where the objective function can be defined, such as in the random
coefficient regression example. Of course, it also holds in cases in which � is on0
the boundary of the parameter space, but the objective function can be defined
on a neighborhood of � . In such cases, one can take �� to be an open cube0
Ž .C � , 
 for some 
�0.0

2 Ž .Assumption 2 * c can be verified in the case of nontrending data as follows.
1�2 Ž 2 �. Ž . Ž 2 �. Ž .Suppose B �T M, 	 �	� 	� ll � �T� 	 �	� 	� ll � uniformly overT pT
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Ž .� � � 
 S � , 
 for some 
 � 0 and some nonrandom function0 2 2
Ž 2 �. Ž . 2 Ž .	 �	� 	� ll � that is continuous at � . Then Assumption 2 * c holds. The0

Ž 2 �. Ž .uniform convergence of 	 �	� 	� ll � �T can be established via a uniformT
Ž .LLN; e.g., see Andrews 1992 .

When stochastic or deterministic trends enter the objective function in a
Ž 2 �. Ž .linear fashion, then part of the matrix 	 �	� 	� ll � does not depend on �T

2 Ž . Ž 2 �. Ž .and Assumption 2 * c holds trivially for that part of 	 �	� 	� ll � .T

Ž . 2 � Ž .LEMMA 1: a Assumption 2 * implies Assumption 2 with D ll � and0T
2 Ž . Ž . Ž . Ž . Ž 2 �. Ž . ŽD ll � of 3.2 gi	en by 	�	� ll � and 	 �	� 	� ll � i.e., by the l�r0 0 0T T T

Ž . .partial deri	ati	es of ll � at � of orders one and two respecti	ely.0T
Ž . 2 �1�Ž 2 �. Ž . �1b If Assumption 2 * holds and �B 	 �	� 	� ll � B � TT for someT 0 T pT

� Ž . Ž .nonrandom matrix TT, then Assumption 2 holds with D ll � of 3.2 gi	en by0T
Ž . Ž . 2 Ž . Ž . Ž 2 �. Ž .	�	� ll � and with D ll � of 3.2 gi	en by either 	 �	� 	� ll � or0 0 0T T T
�B�

TTB .T T

COMMENT: The proof of the Lemma and other results below are given in the
Appendix.

3.4. Rate of Con	ergence of the Extremum Estimator

To obtain the asymptotic distribution of the extremum estimator, we first
establish its rate of convergence.

ˆŽ . Ž .ASSUMPTION 4: B ��� �O 1 .T 0 p

Sufficient conditions for Assumption 4 are given in the following theorem.
Ž .Alternative sufficient conditions are given by Andrews 1997a and van der

Ž .Vaart and Wellner 1996, Theorems 3.2.5 and 3.2.10 .

THEOREM 1: Assumptions 1, 2� , and 3 imply Assumption 4.

COMMENTS: 1. This Theorem shows why it is often useful to employ Assump-
tion 2� rather than Assumption 2�Assumption 2� not only delivers the desired
quadratic approximation of the estimator objective function, but it delivers
Assumption 4 as well. There are some occasions, however, where it is preferable
to employ Assumption 2 and use a different argument to verify Assumption 4;

Ž .see Andrews 1997a .
Ž . Ž . Ž .2. The Theorem holds even if o 1 is replaced by O 1 in 3.1 andp p

�1� Ž . Ž . Ž . Ž . �1 Ž .Assumption 3 is replaced by B D ll � �O 1 , � TT �O 1 , � TTT 0 p max T p min TT
Ž .�O 1 , and TT is symmetric wp�1.p T

3. The proof of the Theorem is similar to numerous proofs in the literature;
Ž .e.g., see the proof of Lemma 1 of Chernoff 1954 .
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Ž .3.5. Quadratic Approximation of the Objecti	e Function Continued

ˆ Ž .Let � denote an approximate maximizer of the quadratic approximation toq
Ž . Ž . Ž Ž ..ll � or, equivalently, an approximate minimizer of q B ��� . By defi-T T 0T

ˆ ˆ Ž .nition, � satisfies � �cl � andq q

ˆŽ . Ž Ž .. Ž .3.5 q B � �� � inf q B ��� �o 1 .ž /ž /T T q 0 T T 0 p
���

Note that

Ž Ž .. Ž .inf q B ��� � inf q � , whereT T 0 T
��� Ž .��B ���T 0Ž .3.6

sŽ . � Ž . 4B ��� � ��R : ��B ��� for some ��� .T 0 T 0

ˆ ˆOur next result shows that � is B -consistent and the objective function at �q T
1 ˆŽ Ž ..is a simple shift of the quadratic function � q B ��� evaluated at � .T T 0 q2

THEOREM 2: Suppose Assumptions 2�4 hold. Then,
ˆŽ . Ž . Ž .a B � �� �O 1 ,T q 0 p

1 � 1ˆ ˆŽ . Ž . Ž . Ž Ž .. Ž .b ll � � ll � � Z TT Z � q B ��� �o 1 ,0 T T T T T 0 p2 2T T
1 � 1ˆ ˆŽ . Ž . Ž . Ž Ž .. Ž .c ll � � ll � � Z TT Z � q B � �� �o 1 ,q 0 T T T T T q 0 p2 2T T

ˆ ˆŽ . Ž . Ž . Ž .d ll � � ll � �o 1 ,q pT T
ˆ ˆŽ . Ž Ž .. Ž Ž .. Ž .e q B ��� �q B � �� �o 1 , andT T 0 T T q 0 p

1 � 1ˆ ˆŽ . Ž . Ž . Ž Ž .. Ž .f ll � � ll � � Z TT Z � q B � �� �o 1 .0 T T T T T q 0 p2 2T T

Ž . Ž . Ž . Ž .COMMENT: Part a holds even if o 1 is replaced by O 1 in 3.5 , Assump-p p
�1� Ž . Ž . Ž . Ž . �1 Ž . Ž .tion 3 is replaced by B D ll � �O 1 , � TT �O 1 , � TT �O 1 ,T 0 p max T p min T pT

and TT is symmetric wp�1, and Assumption 4 is replaced by the assumptionT
that � is in the closure of � .0

Ž .3.6. Examples Continued

In this section, for the two examples of Section 2, we specify the estimator
Ž .objective function ll � , the parameter space � , and assumptions that areT

� Ž .sufficient for Assumptions 1, 2 , and 3 which imply Assumptions 2�4 . We
verify Assumptions 2� and 3 for both examples. Verification of Assumption 1 for

Ž .both examples is given in Andrews 1997b .

3.6.1. Random Coefficient Regression

In Example 1, we consider the Gaussian QML estimator, which is based on
the supposition that 
 and � are normally distributed and independent of X .t t t
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The Gaussian quasi-log likelihood function is

TT 1
�Ž . Ž . Ž . Ž Ž . .3.7 ll � �� ln 2� � ln � �X � � , � XÝ 3 t 1 2 tT 2 2 t�1

T1 2� �Ž . Ž Ž . .� Y �� �X � � � �X � � , � X .Ý t 5 t 4 3 t 1 2 t2 t�1

The true parameter vector � is0

� �� � � � � �Ž . Ž . Ž .3.8 � � � , � , � , � , � � 0 , � , � , � , � ,0 10 20 30 40 50 20 30 40 50

Ž .where � �0 element by element and � �0. The parameter space � is a20 30
bounded subset of Rs that restricts all elements of � and � to be nonnegative1 2
and that bounds � away from zero:3

�� � �sŽ . Ž .3.9 �� ��R : �� � , � , � , � , � , � �0, � �0, � �c,� 1 2 3 4 5 1 2 3


 
� �M � j�54j j

for some c�0 and 0�M �� � j�5.j
Ž .The quadratic approximation of ll � at � is defined as follows. Let0T

�� 2 2 2Ž . Ž .X � X , . . . , X , X � X , . . . , X ,t t1 t b t t1 t b

� ��� 2 2Ž . Ž . Ž .3.10 W � X , 1 , W � X , 1 ,t t t t

Ž . � Ž . � Ž .res � �Y �� �X � , and var � �� �X � � , � X .t t 5 t 4 t 3 t 1 2 t

Define

�2T Ž . Ž . Ž .res � �var � res ��t 0 t 0 t 0 �2Ž .D ll � � W , W ,Ý0 t tT 2ž /Ž .Ž . var �2 var � t 0t 0t�1

2 Ž .D ll � ��TTT ,0T

�1 2 2 2 Ž .EW W �var � 0t t t 02Ž .3.11 TT�TT � ,T � Ž .0 EW W �var �t t t 0

1�2 �1 �1�2 Ž .B �T I , and Z �TT T D ll � .T s T 0T

Ž . Ž . ŽWith these definitions, the quadratic approximations of 3.2 and 3.4 hold in
2 .particular, Assumption 2 * holds under the assumptions above and the moment

conditions below.



PARAMETER ON A BOUNDARY 1355

We assume that

Ž . 
 
 4 
 
 4 
 
 83.12 E 
 X ��, E � X ��,t t t t

Ž . 2 2� 2 Ž . � Ž .3.13 EW W �var � �0 and EW W �var � �0,t t t 0 t t t 0

where ‘‘�0’’ denotes ‘‘is positive definite.’’
We verify Assumption 2� for this example using Assumption 22* and Lemma
Ž . � Ž . � 4 Ž1 b . Let � ��
C � , 
 for some 0�
�min M : j�5 where the M are0 j j

. �specified in the definition of � . Then, � �� equals the intersection of the0
Ž �. p s�p Ž .orthant �� R �R and the open cube C 0, 
 , as required by Assump-

2 Ž .Ž . Ž . �tion 2 * a i . Also, �
S � , 
 �� for 0�
 �
 , as required by Assump-0 1 1
2 Ž .Ž . Ž . Ž .tion 2 * a ii . The quasi-likelihood function ll � of 3.7 has continuous l�rT

� 2 Ž .partial derivatives of order two on � , as required by Assumption 2 * b .
Ž .The matrix of l�r partial derivatives of order two of ll � isT

	 2

Ž . Ž .3.14 ll �� T	� 	�

2 Ž . Ž . Ž .2 res � �var � res �� �t t t2 2 2W W W Wt t t t3 2T Ž . Ž .var � var �t t
�� .Ý Ž .res � 1tt�1 � �2W W W W� 0t t t t2 Ž .Ž . var �var � tt

Ž Ž .By a uniform LLN e.g., see Andrews 1992, Theorem 4 using Assumption
. � �1Ž 2 �. Ž . �1 Ž 2 �. Ž . �TSE-1C , sup T 	 �	� 	� ll � �T E 	 �	� 	� ll � � 0. Also,� �� pT T

�1 Ž 2 �. Ž . 2 Ž .T E 	 �	� 	� ll � is continuous at � . In consequence, Assumption 2 * c0T
�1Ž 2 �. Ž . Ž .holds. By a LLN, �T 	 �	� 	� ll � � TT, where TT is defined in 3.11 .0 pT

Ž . �In consequence, Lemma 1 b is applicable and Assumption 2 holds with
Ž . 2 Ž . Ž . Ž .D ll � and D ll � of 3.2 as defined in 3.11 .0 0T T

Ž .In this example, TT does not depend on T and TT �TT is symmetric andT T
Ž . Ž . �positive definite by 3.11 and 3.13 . Thus, Assumption 3 holds provided

�1�2 Ž . Ž . Ž .T D ll � � G for some G. By the definition of D ll � in 3.11 and the0 d 0T T
Ž .moment assumptions of 3.12 , the CLT for iid mean zero finite variance

random variables yields

d�1�2 Ž . Ž .T D ll � � G�N 0, II , where0T

22 3Ž Ž . Ž .. Ž .res � �var � res ��t 0 t 0 t 0 �1 12 2 2E W W E W Wt t t t4 24 3Ž .3.15 Ž . Ž .var � var �t 0 t 0II� .
3Ž .res � �t 0 �1 2 Ž .E W W EW W �var �t t t t t 02 3 Ž .var �t 0
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3.6.2. Dickey-Fuller Regression

In Example 2, we consider the LS estimator. The estimator objective function
is

T
�2� �1Ž . Ž . Ž .3.16 ll � �� Y �X � , where X � Y , t , 1, 
Y .Ž .Ý t t t t�1 t�12T

t�1

The parameter space � is given by

Ž . � s Ž . b3.17 �� ��R : �1�� �1, � �0, g z �1�� z� ��� �� z1 2 41 4 b

�Ž . 4has roots outside the unit circle, where � � � , . . . , � .4 41 4 b

The true parameter � corresponds to a unit root model with nonnegative0
drift:

� �� �Ž . Ž . Ž .3.18 � � � , � , � , � � 1, 0, � , � ,0 10 20 30 40 30 40

where � �0 and � has a characteristic equation with roots outside the unit30 40
� Ž .� bcircle. Note that the latter implies that 1�1� �0, where 1� 1, . . . , 1 �R .40
Ž .We could consider the case of negative drift i.e., � �0 with little extra work.30

But, this case is not of great practical importance. We assume that � 2 �0. As
defined, � and � are, and � and � are not, on the boundary of � .10 20 30 40

Ž . Ž .The quadratic approximation of 3.2 and 3.4 holds with

T T
�2Ž . Ž .D ll � � 
 X , D ll � �� X X ,Ý Ý0 t t 0 t tT T

t�1 t�1

Ž .R � �0, B �	 M ,T T T
�1 0 0 0
�� 1 0 00

M� ,��� 0 1 � 10 0

0 0 0 Ib
Ž .3.19

�1 �� � 00 0
�

� 0 1 0 0�1L�M � ,�0 0 1 0
0 0 �� 1 I0 b

� 3�2 1�2 1�2Ž . Ž .� �� � 1�1� , 	 �Diag T , T , T , . . . , T , and0 30 40 T

T
� ��1 2 �1 �1 �1Ž . Ž .TT ��B D ll � B �	 LX LX 	 .ÝT T 0 T T t t TT

t�1
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Ž �1�

The matrix M is determined via M�L , where L is chosen such that
Ž �1 T �1 T Ž .� �1. Ž .	 Ý 
 �LX , 	 Ý LX LX 	 converges in distribution to G, TTT t�1 t t T t�1 t t T

Ž . . � Ž .in 3.21 below. Assumption 2 holds because R � �0.T
To verify Assumption 3, we impose the following mild tail condition on the

errors: For some random variable 
 , some 0�c��, and some ��0,

Ž . Ž � � . Ž � � . � � 2��3.20 P 
 �x �cP 
 �x � x�0 and E 
 ��.t

Under the assumptions given, we have

�1� Ž .B D ll � , TTŽ .T 0 TT

T T
��1 �1 �1Ž .� 	 
 LX , 	 LX LX 	Ý ÝT t t T t t Tž /

t�1 t�1

d Ž .� G, TT , where
1 2Ž Ž . .�� W 1 �12

1Ž Ž . Ž . .� W 1 �H W r dr0 Ž .G� , G �N 0, V ,4
Ž .� W 1� 0

G4

Ž .3.21 �2 1 2 1 1Ž . Ž . Ž .� H W r dr �H rW r dr �H W r dr 00 0 0
�1 Ž .�H rW r dr 1�3 1�2 00TT� ,
�1 Ž .�H W r dr 1�2 1 00� 0

0 0 0 V
�Ž . Ž .���� 1�1� , � �Cov 
Y , 
Y � j�0, . . . , b�1,40 j t t�j

� � � ��� �0 1 2 b�1

� � � ��� �1 0 1 b�2V� ,. . .. . .. . .� 0
� � � ��� �b�1 b�2 b�3 0

Ž . � �and W � is a standard scalar Brownian motion on 0, 1 that is independent of
G . Note that � is the jth order autocovariance of a bth order autoregressive4 j
process with autoregressive parameter � and error variance � 2. Thus, �40 j
depends only on � and � 2. The matrix V is nonsingular and TT is nonsingular40
with probability one. Thus, Assumption 3 holds.

Ž . Ž .The proof of 3.21 is given in Exercise 17.6 of Hamilton 1994, p. 540
� 4extended to allow for errors 
 : t�1 that form a martingale differencet

sequence, rather than an iid sequence, using the invariance principle for linear
Ž .processes in Theorem 3.15 of Phillips and Solo 1992, p. 983 in place of the one

used by Hamilton.
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4. THE PARAMETER SPACE

4.1. Local Approximation to the Shifted and Rescaled Parameter Space

This section provides conditions on the parameter space under which we can
ˆderive the asymptotic distribution of � . It is apparent from Assumption 4 that

ˆthe asymptotic distribution of � depends on the features of the parameter space
ˆ� only near � . In particular, we find that the asymptotic distribution of �0

depends on a local approximation to the shifted and rescaled parameter space
Ž . � 4B ��� �b , where b : T�1 is some sequence of scalar constants forT 0 T T

which b ��.T
If � includes a neighborhood of � , then0

Ž . Ž . Ž . Ž .4.1 inf q � � inf q � �o 1 ,T T p
Ž . �����B ���T 0

s Ž . s Ž Ž . .where ��R . This follows because B ��� �R provided � B �� .T 0 min T
Our interest lies in the case where � does not include a neighborhood of � .0

Ž . sThus, we do not require 4.1 to hold with ��R . Rather, we find sufficient
Ž . sconditions for 4.1 to hold with � given by a cone. By definition, a set ��R is

a cone if ��� implies a��� �a�R with a�0. Examples of cones include
Rs, linear subspaces, orthants, unions of orthants, and sets defined by linear
equalities and�or inequalities of the form � ��0 and � ��0, where � is aa b j
k �s matrix for j�a, b.j

Define the distance between a point y�Rs and a set ��Rs by

Ž . Ž . 
 
4.2 dist y , � � inf y�� .
���

� s 4 ŽWe say that a sequence of sets � �R : T�1 is locally approximated at theT
. sorigin by a cone ��R if

Ž . Ž 
 
. � 4 
 
dist � , � �o � � � �� : T�1 such that � �0T T T T T

Ž .4.3 and
Ž . Ž 
 
. � 4 
 
dist � , � �o � � � ��: T�1 such that � �0.T T T T T

Ž .This definition extends a definition of Chernoff 1954 , who considers the local
approximation of a single set by a cone. The extension is necessary to cover
cases where the normalization matrix B is not of the form � M for � �R.T T T
Thus, the extension is necessary to cover cases where some variables possess

Ž .deterministic and�or stochastic trends. We note that condition 4.3 is the same
Ž . Ž .as requiring that the Hausdorff distance between � 
S 0, 
 and �
S 0, 
T T T

goes to zero at a faster rate than 
 , where 
 �0 as T��.T T

� 4ASSUMPTION 5: For some sequence of scalar constants b : T�1 for whichT
Ž . � Ž . 4b �� and b �c� B for some 0�c��, B ��� �b : T�1 is locallyT T min T T 0 T

approximated by a cone �.

Ž .LEMMA 2: Suppose Assumptions 3 and 5 hold. Then, inf q � ��� B Ž��� . TT 0
Ž . Ž .inf q � �o 1 .�� � T p



PARAMETER ON A BOUNDARY 1359

COMMENTS: 1. Assumption 5 holds with ��Rs if � contains a neighborhood
Ž .of � , which is the standard case considered in the literature, provided � B0 min T

Ž Ž . Ž .. Ž . Ž .��. This follows because B ��� �� B 
S 0, 
 �S 0, 
 ��
T 0 min T
Ž .S 0, 
 for some 
�0.

Ž .2. Theorem 2 f and Lemma 2 give
1 � 1ˆŽ . Ž . Ž . Ž . Ž .4.4 ll � � ll � � Z TT Z � inf q � �o 1 .0 T T T T p2 2T T

���

4.2. Sufficient Conditions for Assumption 5

We now give two easily verifiable sufficient conditions for Assumption 5.
Ž .Andrews 1997a provides alternative sufficient conditions. We specify the

conditions in terms of the parameter space � shifted to be centered at the
origin rather than at � , i.e., in terms of ��� . We say that a set ��R s is0 0

s Ž . Ž .locally equal to a set ��R if �
C 0, 
 ��
C 0, 
 for some 
�0.

� Ž . sASSUMPTION 5 : a ��� is locally equal to a cone ��R .0
Ž . � 4b B �b I for some scalar constants b : T�1 for which b ��.T T s T T

� Ž .Assumption 5 a covers many cases of interest. For example, it covers the
common case where for some 
�0

s
sŽ . Ž .�
C � , 
 � ��R : ��� � I , ��C � , 
 and�0 0 j 0½ 5

j�1Ž .4.5 s
� �� 4�� I , where I � 0 , R , R , or R for j�s.� j j

j�1

� � 4 � � 4 �Here, R � x�R: x�0 and R � x�R: x�0 . Assumption 5 also allows
for parameter spaces ��� that are defined by multivariate equality and�or0
inequality constraints. For example, one could have
Ž . � s 
 
 44.6 �� ��R : � �� r , � �� r , � �c�� ,a 1 b 2

� � � r , and � � � r with equality for zero or more elements of r , where �a 0 1 b 0 2 2 j
is an ll �s matrix, r is an ll -vector, and 0� ll �s for j�a, b. In this example,jj j j

Ž . � s 44.7 �� ��R : � ��0, � ��0 ,a b1

where � denotes the submatrix of � that consists of the rows of � forb1 b b
which � � � r holds as an equality. In most cases where Assumption 5� isb 0 2
applicable, B �T 1�2I .T s

Assumption 5� is not applicable in dynamic models with deterministic and�or
stochastic trends, such as in the Dickey-Fuller Regression Example 2, because
B �b I in these models. Assumption 5� also is not applicable in theT T s

Ž � . Ž . 1�2GARCH 1, q Example of Andrews 1997a for which B �T M with MT
nondiagonal. For such cases, we introduce a more general sufficient condition
for Assumption 5.

A cone is uniquely determined by the elements of the unit sphere that it
contains. The maximal distance between two cones can be defined as the
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maximal distance between the subsets of the unit sphere that correspond to the
two cones. That is, for two cones � and � , we define1 2

Ž . Ž . 
 
 
 
 
 
4.8 dist � , � �max sup inf � � � �� � � ,c 1 2 1 1 2 2½
� ��2 2� ��1 1


 
 
 
 
 
sup inf � � � �� � � .1 1 2 2 5
� ��1 1� ��2 2

Ž .Note that dist � , � is the Hausdorff distance between the subsets of thec 1 2
unit sphere contained in � and � .1 2

2 Ž . � sASSUMPTION 5 *: a ��� is locally equal to a cone � �R .0
Ž . Ž .b B �	 M, where 	 is diagonal, � 	 ��, and M is nonsingular.T T T min T
Ž . s Ž � .c For some cone ��R , dist 	 M� , � �0.c T

2 Ž .For example, Assumption 5 * a holds with � defined via equality and�or
Ž . Ž . 2inequality constraints, as in 4.6 . The verification of part c of Assumption 5 *

is typically straightforward, though it can be somewhat tedious.

LEMMA 3: Each of Assumptions 5� and 52* is sufficient for Assumption 5.

COMMENT: Assumptions 5� and 52* do not allow for any curvature in the
Ž .boundary of � near � . See Andrews 1997a for sufficient conditions for0

Assumption 5 that allow for curvature.

Ž .4.3. Examples Continued

4.3.1. Random Coefficient Regression

Assumptions 5� holds in Example 1 with

p� s�pŽ . Ž .4.9 �� R �R .

4.3.2. Dickey-Fuller Regression

We verify Assumption 5 in this example using Assumption 52*. Assumption
52* holds because ��� is locally equal to the cone0

�� � � � � � �� � � � �s bŽ . � Ž . 44.10 � � � �R : � � � , � , � , � , � �0, � �0, � �R , � �R .1 2 3 4 1 2 3 4
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2 Ž . 2 Ž .Assumption 5 * b holds because B �	 M. Assumption 5 * c requiresT T
Ž � .dist 	 M� , � �0 for some cone �. In the present case, we havec T

T 0 0 0�

�3�2 3�2T � T 0 00
B �	 M� and�1�2 1�2 1�2T T �T � 0 T T � 10 0� 01�20 0 0 T Ib

Ž . � � s � 3�2 � 3�2 �4.11 	 M� � ��R : � �T� , � �T � � �T � ,T 1 1 2 0 1 2

� ��T 1�2� �� �T 1�2�� �T 1�2� 1��� , and3 0 1 3 0 4

1�2 � � � 4� �T � for � ��4 4

� s 1�2 b4� ��R : � �0, � �T � � , � �R , � �R .1 2 0 1 3 4

Ž . Ž � .From 4.11 , � depends on � �� � 1�1� . That is, it depends on the0 30 40
value of the drift parameter � of the unit root process. If � �0, then30 30

Ž . � � s b44.12 ��B � � ��R : � �0, � �0, � �R , � �R .T 1 2 3 4

Ž � .If � �0, then dist 	 M� , � �0 for30 c T

Ž . � s b44.13 �� ��R : � �0, � �R , � �R , � �R .1 2 3 4

In consequence, when the true unit root process has positive drift, the limit
ˆŽ .distribution of B ��� is the same whether or not the time trend parameterT 0

is restricted by � to be nonnegative or not.

5. ASYMPTOTIC DISTRIBUTION OF THE EXTREMUM ESTIMATOR

5.1. Asymptotic Distribution

ˆŽ .In this section, we determine the asymptotic distribution of B ��� .T 0
ˆ ˆŽ .We show that B ��� is asymptotically equivalent to � provided � isT 0 T
ˆ Ž .convex. By definition, � �cl � andT

ˆŽ . Ž .5.1 q � � inf q � .Ž .T T T
���

ˆThe random variable � is a version of the projection of Z onto the cone �T T

 
 Ž � .1�2 Ž .with respect to the norm � � � TT � ; see Perlman 1969, Sec. 4 . If � isT T

ˆconvex, � is uniquely defined. Whether or not � is convex, the followingT
�̂ ˆŽ . Ž .orthogonality property holds: � TT � �Z �0; see Perlman 1969, Lem. 4.1 .T T T T

For example, if � is a linear subspace of Rs, as occurs with linear or
ˆ ˆnonlinear equality constraints, then � is a linear function of Z : � �P Z ,T T T T� T


 
where P is the projection matrix onto � with respect to the norm � . ForTT�

� s 4instance, if �� ��R : ���0 , where � is full row rank, then P �I �T� s
�1 �Ž �1 �.�1 ŽTT � � TT � � . We note that for most of our examples, � is not a linearT T

.subspace.
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ASSUMPTION 6: � is con	ex.

Ž .Assumption 6 holds for all examples in this paper and Andrews 1997a .
ˆ ˆŽ .The asymptotic distribution of � and, hence, of B ��� is given by thatT T 0

ˆ ˆ Ž .of �. By definition, ��cl � and

ˆŽ . Ž .q � � inf q � ,
���Ž .5.2

� �1Ž . Ž . Ž .where q � � ��Z TT ��Z and Z�TT G.

ˆ ˆAs with � , � is not necessarily uniquely defined. It is unique, however, underT
Assumption 6.

ˆŽ .The asymptotic distribution of B ��� is given in the following theorem.T 0

ˆ ˆŽ . Ž . Ž .THEOREM 3: a Suppose Assumptions 2�6 hold. Then, B ��� �� �o 1 .T 0 T p
ˆ ˆ ˆ ˆŽ . Ž .b Suppose Assumptions 2�6 hold. Then, � � � and B ��� � �.T d T 0 d

Ž .c Suppose Assumptions 2�5 hold. Then,
1 � 1 �ˆ ˆ ˆŽ . Ž . Ž .ll � � ll � � Z TTZ� inf q � � � TT �.0 2 2ž /T T

d ���

COMMENTS: 1. In the classical case in which � is not on a boundary, ��Rs
0

ˆ �1 Žand ��TT G. Thus, if G is Gaussian and TT is nonrandom as typically occurs
ˆ. Ž .in models without stochastic trends , then B ��� has a Gaussian distribu-T 0

tion. The case of primary interest in this paper is when � is on a boundary and0
s ˆ��R . In this case, the distribution of � is more complex. Section 6 analyzes its

distribution in detail.
Ž . s2. The proof of Theorem 3 a is easy if ��R , which is the standard case

considered in the literature and which corresponds to the case where � is not0
Ž .on a boundary. The proof is as follows. By Theorem 2 e and Lemma 2,

ˆ s ˆŽ Ž .. Ž . Ž . Ž .q B ��� � inf q � �o 1 . If ��R , then � �Z , inf q �T T 0 �� � T p T T �� � T
�0, and

�ˆ ˆ ˆ ˆ ˆŽ . Ž .5.3 q B ��� � B ��� �� TT B ��� �� �o 1 .Ž . Ž . Ž .ž / ž / ž /T T 0 T 0 T T T 0 T p

Ž . sIn view of Assumption 3, this gives the result of Theorem 3 a . When ��R ,
Ž .the proof of Theorem 3 a is more complicated.

Ž . �1� Ž .3. Theorem 3 a still holds when Assumption 3 is replaced by B D ll � �T 0T
Ž . Ž . Ž . �1 Ž . Ž .O 1 , � TT �O 1 , � TT �O 1 , and TT is symmetric wp�1.p max T p min T p T

Ž .4. The result of Theorem 3 c can be used to obtain the asymptotic distribu-
Ž .tion of a quasi-likelihood ratio statistic, as is done in Andrews 1998b .

Ž .5.2. Examples Continued

5.2.1. Random Coefficient Regression
1�2 ˆ ˆŽ . Ž .Assumption 6 holds in this example by 4.9 . By Theorem 3, T ��� � �,0 d

ˆ Ž . Ž . Ž . Ž .where � satisfies 5.2 with G, TT defined in 3.15 and 3.11 and � defined in
Ž .4.9 .
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5.2.2. Dickey-Fuller Regression

In this example, Assumption 6 holds for all values of the drift parameter �30
ˆ ˆ ˆŽ . Ž . Ž . Ž .by 4.12 and 4.13 . By Theorem 3, B ��� � �, where � satisfies 5.2 withT 0 d

Ž . Ž . Ž . Ž .G, TT defined in 3.21 and with � defined in 4.12 or 4.13 depending on the
value of � .30

6. ASYMPTOTIC DISTRIBUTIONS OF SUBVECTORS OF THE

EXTREMUM ESTIMATOR

Ž .6.1. A Partitioning of � into � , � , �

ˆŽ .In this section, we simplify the asymptotic distribution of B ��� byT 0
partitioning � into three subvectors and providing separate expressions for each

ˆof the three corresponding subvectors of �. We partition � as follows:

� � �� � � � � � �Ž . Ž . Ž . Ž .6.1 �� ��, � � � , � , � and ��� � , � ,

where ��R p, ��Rq, ��Rr, 0�p, q, r�s, and p�q� r�s.
Below we assume that the asymptotic ‘‘quasi-information matrix’’ TT is block

diagonal between �� and � . We also assume that � is a parameter that is not0
Ž Ž � � � .�.on a boundary where � � � , � , � . These features characterize the sub-0 0 0 0

vectors � , � , and � . The results given below cover cases where no parameters �
and�or � appear simply by setting q and�or r equal to 0.

ˆ ˆ ˆ Ž .We partition � , � , B , G, TT, Z, � , �, and D ll � conformably with � . Let0 T T 0T

ˆ �� 0ˆ ���� 0ˆ ��� � , � � � ,ˆ 0� 0 ž /�ž /ˆ 0� � 0� 0 �ˆ 0�

B B B� T �� T �� TB� B�T � T B B BB � � ,�� T � T �� TT B � B� T � T B B B�� T �� T � T

TT TT TTG � �� ���
TT� TT�G� �

TT TT TTŽ . G6.2 G� � , TT� � ,�� � ���Gž / TT � TT� � �� 0G TT TT TT� �� �� �

�̂Z � T�
�̂�Z� Tˆ ˆZZ� � , � � � ,�� T � TZž / ˆ� � 0�� T� 0Z � 0� �̂� T
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�̂�
�̂�ˆ ˆ�� � , and��ˆž /�� � 0�̂�

Ž .D ll �� 0TŽ .D� ll �0T Ž .Ž . D ll �D ll � � � .� 0T0T Ž .D ll �ž /� 0T � 0Ž .D ll �� 0T

The defining features of the parameters � and � , respectively, are the
following:

Ž . �ASSUMPTION 7: a TT is block diagonal between �� and � . That is, TT� �TT �� �

Ž .�0. b The cone � of Assumption 5 is a product set � �� �� , where� � �

� �R p, � �Rq, and � �Rr are cones.� � �

ASSUMPTION 8: � �Rq.�

Assumptions 7 and 8 require that the asymptotic information matrix is block
diagonal between �� and � and that � is not on a boundary respectively. We0

Ž .note that Assumption 7 a often can be made to hold by reparameterization
˜ � �Ž .when TT is nonrandom. Suppose we start with a parameter �� ��� , � , where

���R p�q and ��Rr, and �� is the parameter of interest. Suppose that
Assumptions 2 and 3 hold with TT equal to

TT� TT ��
.

TT� TT� �

�1 Ž �.� Ž .Let ����TT �TT� �� and �� ��� , � . Then, Assumptions 2, 3, and 7 a�

Ž �1 .typically hold for the parameter � with TT equal to Diag TT�, TT �TT �TT� TT� .� � �

Under Assumption 7,

Z��TT��1 G�, Z �TT �1 G , and� � �

�1�1 �1 �1 �1Ž .6.3 Z �HZ��TT G �TT TT TT �TT TT TT TT TT G �G ,Ž . Ž .� � � � �� � �� � �� �� � � �

� � p� Ž p�q.where H� I : 0 �R .p

Define

�1� ��1Ž . Ž . Ž . Ž .q � � � �Z HTT� H � �Z and� � � � � �Ž .6.4 �Ž . Ž . Ž .q � � � �Z TT � �Z .� � � � � � �

Given Assumptions 7 and 8, we can split the terms of the quadratic approxi-
ˆ ˆŽ .mation to ll � , and, in consequence, � into separate terms involving � , � ,T
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and � :

THEOREM 4: Suppose Assumptions 3, 7, and 8 hold. Then,
ˆŽ . Ž . Ž .a q � � inf q � ,� � � � � � �� �

ˆ �1 �1 ˆŽ .b � �TT G �TT TT � ,� � � � �� �

ˆŽ . Ž . Ž .c q � � inf q � ,� � � � � � �� �

Ž . � � Ž �1 �.�1 � �1 �d Z TTZ�Z HTT� H Z �G TT G �Z TT Z ,� � � � � � � �

Ž . Ž . Ž . Ž .e inf q � � inf q � � inf q � , and�� � � � � � � � � � � �� � � �

Ž . � Ž . � Ž �1 �.�1 Ž . � �1f Z TTZ� inf q � �Z HTT� H Z � inf q � �G TT G�� � � � � � � � � � � �� �
� �̂ �1 � �1̂ � �1 �̂ ˆŽ . Ž .�Z TT Z � inf q � �� HTT H � �G TT G �� TT � .� � � � � � � � � � � � � � � � �� �

COMMENTS: 1. If � �R p, which holds if � is not on a boundary, then� 0
ˆ rŽ . Ž .inf q � �0 and � �Z . Similarly, if � �R , then inf q � �0� � � � � � � � � � � � �� � � �

ˆ �1and � �Z �TT G . Our interest here is in cases where one or the other or� � � �

both of these simplifications does not hold.
2. If � is a linear subspace of R p, which holds in the case of linear or�

Ž .nonlinear equality constraints as considered by Aitchison and Silvey 1958 , then
�̂ �P Z , where P is the projection matrix onto � with respect to the� � � � �� �


 
 2 � Ž �1 �.�1 � p 4norm � �� HTT� H � . For example, if � � � �R : � � �0 ,�� � � � � a �
�1 � �Ž �1 � �.�1then P �I �HTT� H � � HTT� H � � .� p a a a a�

Theorems 3 and 4 combine to give the following corollary:

Ž .COROLLARY 1: a Suppose Assumptions 2�8 hold. Then,
dˆ ˆ ˆ ˆB ��� �B ��� �B ��� � � ,Ž . Ž . Ž .� T 0 �� T 0 �� T 0 �

ˆ ˆ Ž .where � sol	es q � � inf q � ,ž /� B � � �
� ��� �

d �1 �1ˆ ˆ ˆ ˆB ��� �B ��� �B ��� � TT G �TT TT � ,Ž . Ž . Ž .�� T 0 � T 0 �� T 0 � � � �� �

dˆ ˆ ˆ ˆB ��� �B ��� �B ��� � � ,Ž . Ž . Ž .�� T 0 �� T 0 � T 0 �

ˆ ˆ Ž .where � sol	es q � � inf q � ,ž /� � � � �
� ��� �

and the con	ergence of these three terms holds jointly.
Ž .b Suppose Assumptions 2�8 hold. Then,

dˆ ˆB ��� � � pro	ided B �0 and B �0,Ž .� T 0 � �� T �� T

d �1 �1ˆ ˆB ��� � TT G �TT TT � pro	ided B �0 and B �0,Ž .� T 0 � � � �� � �� T �� T

dˆ ˆB ��� � � pro	ided B �0 and B �0,Ž .� T 0 � �� T �� T

ˆ ˆ Ž .and the con	ergence holds jointly, where � and � are as in part a .� �
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Ž .c Suppose Assumptions 2�5, 7, and 8 hold. Then,

d �1� �1 �1ˆŽ . Ž . Ž . Ž .ll � � ll � � Z HTT� H Z � inf q �0 � � � �2T T ž /� ��� �

1 � 1 ��1 Ž .� G TT G � Z TT Z � inf q �� � � � � � � �2 2 ž /
� ��� �

�1� � � �1 �1 �1ˆ ˆ ˆ ˆŽ .� � HTT� H � �G TT G �� TT � .� � � � � � � �2 ž /
Ž .COMMENTS: 1. Each of the three results of Corollary 1 b is applicable in the

Ž .examples of this paper and Andrews 1997a except in the Dickey-Fuller
Ž � .Regression Example considered in this paper and the GARCH 1, q Example

Ž .of Andrews 1997a . In these two examples, only the first and third results of
Ž .Corollary 1 b are applicable.

ˆ ˆŽ .2. Corollary 1 b shows that the asymptotic distributions of � and � do not
depend on whether � is on a boundary. Similarly, the asymptotic distribution0

ˆof � does not depend on whether � is on a boundary. For example, in the0
Random Coefficients Regression Example, the Gaussian QML estimator of the
regression slope coefficients does not depend on whether the variances of the
random coefficients are positive or zero.

ˆŽ .3. Corollary 1 b shows that the asymptotic distribution of � depends on
whether � is on a boundary if and only if TT �0. For example, in the0 ��

Ž .Regression with Restricted Parameters Example of Andrews 1997a , where
some slope coefficients are restricted, the asymptotic distribution of the LS
estimator of slope coefficients that are unrestricted does not depend on whether
the true restricted coefficients are on a boundary if and only if the asymptotic
‘‘information’’ matrix is block diagonal between the restricted and unrestricted
slope coefficients.

4. Corollary 1 reduces the dimensionality of the minimization problem
Ž .inf q � by splitting it up into three separate minimization problems of�� �

lower dimensions, one of which is solved analytically. This facilitates the solution
of the minimization problem whether one uses analytics or simulation.

ˆ ˆŽ .6.2. LAN and LAMN Conditions for � , �

ˆ ˆWe now concentrate on the asymptotic distributions of � and � . The
parameter � is considered to be a nuisance parameter. The following results for
ˆ ˆ ˆ � � �Ž .� and � can be applied to � by re-labeling � as ��� � , � .

We specify three conditions that indicate the form that the limit random
ˆ ˆŽ . Ž .variables G�, TT� which determine the asymptotic distributions of � and � ,

take in typical cases. The first condition is applicable in models in which
�1� Ž .B� D� ll � and TT� may depend on deterministic and stochastic trends,T 0 TT

Ž � � .�but none of the elements of �� � � , � are unit roots. This includes the0 0 0
Regression with Restricted Parameters and Integrated Regressors Example of
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Ž . ŽAndrews 1997a . It excludes the Dickey-Fuller Regression Example. Note that
.� may contain unit roots. Models covered by the first condition are locally0
Ž . Žasymptotically mixed normal LAMN models with respect to the parameters

Ž ..� ,� .

2 Ž .ASSUMPTION 3 *: a Assumption 3 holds.
Ž . Ž .b G��N �, II� conditional on some �-field FF, for some nonrandom

Ž . Ž . Ž . Ž .p�q -	ector � and some possibly random p�q � p�q -matrix II� that is
FF measurable.

Ž .The second condition covers the locally asymptotically normal LAN case
Ž Ž ..again, with respect to the parameters � , � . It is applicable in cross-sectional

�1� Ž .contexts and in time series contexts in which B� D� ll � and TT� mayT 0 TT
depend on deterministic trends but not on stochastic trends.

3 Ž .ASSUMPTION 3 *: a Assumption 3 holds.
Ž . Ž . Ž . Ž .b G��N 0, II� for some nonrandom p�q � p�q -matrix II�.
Ž .c TT� is nonrandom.

Next, we consider the case where II� of Assumption 32* or Assumption 33* is
proportional to TT�.

4 Ž . 2ASSUMPTION 3 *: a Assumption 3 * holds.
Ž .b II��cTT� for some scalar constant c�0.

It is apparent that Assumption 33*�32*�3 and Assumption 34*�32*�3.
Ž . 2If ll � is a correctly specified log-likelihood function and Assumption 3 *T

holds, then the information matrix equality implies that Assumption 34* holds
with c�1. Assumption 34* holds for LS estimators of regression models with
c�� 2 provided Assumption 34* holds and the regression errors are ho-
moskedastic conditional on the regressors with variance � 2.

ˆ6.3. A Closed Form Expression for ��

We now consider an assumption on � under which we have a simple closed�

ˆ ˆform expression for � and, hence, for � as well.� �

.� � �p� 4 � �ASSUMPTION 9: � � � �R : � � �0, � � �0 , where �� � . � is� � a � b � a b.
a full row rank matrix.

Note that Assumption 9 allows for the case where � or � does not appear.a b
Ž .Assumption 9 holds in all of the examples of this paper and Andrews 1997a .

ˆ Ž .For � as in Assumption 9, � is the solution to a quadratic programming QP� �

problem with mixed linear equality and inequality constraints.
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ˆThe following lemma provides a characterization of � when Assumption 9�

holds.

ˆLEMMA 4: Suppose that Assumptions 3 and 7�9 hold. Then, � �P Z for� L �

� p 4some linear subspace L of the form L� ll�R : � ll�0, � ll�0 , where � isa b1 b1
Ž .comprised of some possibly zero rows of � and P is the projection matrix ontob L


 
 2 � Ž �1 � .�1L with respect to the norm � �� HTT� H � . That is,�� � �

�1� � � ��1 �1Ž .P �I �HTT� H � � HTT� H � � ,L p 1 1 1 1

�.� �where � 
 � . � .1 a b1.

COMMENTS: 1. The number of different linear subspaces of the form L is 2 pb,
where p is the number of inequality constraints in � , i.e., the number of rowsb �

of � .b
2. Lemma 4 still holds if � is not full row rank provided one replaces � in1

the definition of P with a matrix that equals � but has any redundant rowsL 1
deleted.

ˆLemma 4 yields the following closed form expression for � .�

THEOREM 5: Suppose that Assumptions 3 and 7�9 hold. Then:
ˆ ˆ � � �1 � � �1Ž . Ž .a � �P Z , where j minimizes CF �Z � � HTT� H � � Z o	er j�ˆ� LŽ j. � j � j j j j �

pb Ž . � p 41, . . . , 2 for which P Z �� . Here, L j � ll�R : � ll�0, � ll�0 ,LŽ j. � � a b j.� � � � � � ��1 �1 �1� � Ž . �� � � . � , P � I � HTT� H � � HTT� H � � , and � : j �j a b j LŽ j. p j j j j b j.
pb4 Ž .1, . . . , 2 consists of all the different matrices comprised of some possibly zero

rows of � .b
ˆ 2 pb 2 pbŽ . Ž . Ž .b � �Ý P Z �1 P Z �� �Ł 1 CF �CF or P Z �� .� j�1 LŽ j. � LŽ j. � � k�1 j k LŽk . � �

Ž . Ž .c For any p�p possibly random matrix A that is symmetric and nonsingular
ˆ ˆ �1Ž .with probability one, � �AP Z , where j is as in part a , Z �A Z , andˆ� L Ž j. � A � A �A

�1 �1 � �Ž �1 � �.�1P �I �A HTT� H � � HTT� H � � A.L Ž j. p j j j jA

ˆŽ .COMMENTS: 1. In part a , j indexes the constraints, � , that are binding,ĵ
ˆgiven Z and TT�. Given the constraints � , � is obtained simply by an obliqueˆ� j �

ˆŽ .projection of Z onto the linear subspace, L j , defined by the constraints. Part�
ˆ ˆŽ .b provides a closed form expression for � based on the characterization of �� �

Ž .given in part a .
ˆŽ .2. Part c shows that � can be expressed in terms of a vector Z rather� � A

than Z . One can choose A such that Z has fewer nuisance parameters than� � A
Z . If Z has a normal distribution, this is done by taking A to be the inverse of� �

ˆthe square root of the covariance matrix of Z . By expressing � in this way,� �

ˆone can minimize the number of nuisance parameters on which � depends.�
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As an example of Theorem 5, suppose � �R��R p�1. Then,�

AZ if Z �0,� A � A1
�̂ � �� ½ Ž .A 0, Z �� Z , . . . , Z �� Z otherwise,� A2 12 � A1 � A p p1 � A1

whereŽ .6.5 �� � �1�2 �1 �1Ž . Ž .A�Diag HTT� H , Z � Z , . . . , Z �A Z ,� A � A1 � A p �

and
��1 �1 �1� �� � A HTT� H A , for i , j�1, . . . , p.i ji j

Our choice of A minimizes the number of nuisance parameters. The formula
ˆfor � also is valid for any positive definite diagonal matrix A�0. When�

� p�1 Ž .� �R �R , the inequality in 6.5 is reversed.�

Ž .Results of Lovell and Prescott 1970, Sec. 4 for the normal linear regression
ˆmodel imply that the mean squared error of each element of � as an estimator�

of 0 is less than or equal to the mean squared error of each corresponding
element of Z when � �R��R p�1. This implies that the conventional� A �

asymptotic standard errors that are based on the assumption that no parameters
Žare on a boundary are conservative estimators i.e., estimators whose probability

.limits are greater than or equal to the true asymptotic standard errors when
3 Žone element of � is on a boundary and Assumption 3 * holds or Assumption

2 ˆ.3 * holds with ��0 and EII��� . It also implies that the estimator � has a
smaller mean squared error of its asymptotic distribution than does an unre-
stricted version of the estimator that is based on a parameter space that
contains a full neighborhood of � .0

Ž . Ž .Rothenberg 1973, p. 57 conjectures that Lovell and Prescott’s 1970 result
for the normal linear regression model with one parameter on a boundary
extends to the general case where the parameter is on the boundary of a convex
set. We agree that this is probably true, but we do not have a proof. If true, then
the conventional asymptotic standard errors that are based on the assumption
that no parameters are on a boundary are conservative estimators whenever

3 Ž 2Assumptions 3 * and 6 hold or Assumptions 3 * and 6 hold with ��0 and
.EII��� , which covers the vast majority of cases in the literature.

Ž �. 2 p�2As a second example, suppose � � R �R . Then,�

�̂ �AP Z , whereˆ� L Ž j. � AA

P ZˆL Ž j. � AA

Ž .�1 Z �0, Z �0 Z� A1 � A2 � A

Ž .Ž . �1 Z �� Z �0, Z �06.6 � A1 21 � A2 � A2
�Ž .� Z �� Z , 0, Z �� Z , . . . , Z �� Z� A1 21 � A2 � A3 23 � A2 � A p 2 p � A2

Ž .�1 Z �0, Z �� Z �0� A1 � A2 12 � A1
�Ž .� 0, Z �� Z , . . . , Z �� Z ,� A2 12 � A1 � A p 1 p � A1
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ˆŽ .where A and � are as in 6.5 . The formula for � also is valid for any positivei j �
� � p�2 Ždefinite diagonal matrix A. For the case where � �R �R �R as occurs�

. Ž .in the Dickey-Fuller Regression Example with p�2 , 6.6 holds but with the
first of the two inequalities reversed in each of the indicator functions in the

Ž . � �definition of P Z . Adjustments of 6.6 for the cases where � �R �RˆL Ž j. � A �A
p�2 Ž �. 2 p�2�R and � � R �R are analogous.�

p ˆ� 4For the case where � is of the form � � � �R : � �0, � � �0 , � is� � � � 1 a � �

Ž .as defined in 6.5 , but with Z replaced by P Z , where P �I �� A � A � A � A pa a�1 �1 � �Ž �1 � �.�1A HTT� H � � HTT� H � � A. For the case where � is of the forma a a a �
p ˆ� 4 Ž .� � � �R : � �0, � �0, � � �0 , � is as defined in 6.6 , but with� � � 1 � 2 a � �

Z replaced by P Z .� A � A � Aa ˆOne can simulate the distribution of � when � is as in Assumption 9 by� �
ˆsimulating Z or Z and computing � using a standard quadratic program-� � A �

Ž .ming algorithm; e.g., see Gill, Murray, and Wright 1981 . The programs GAUSS
and Matlab have built-in procedures for doing so, called QPROG and QP
respectively. The GAUSS procedure QPROG is very quick. For example, 10,000
simulation repetitions with p�15, four equality constraints, and ten inequality
constraints take about 63 seconds using a PC with Pentium 90 processor.

Alternatively, one can use the formulae of Theorem 5 or the equations above.
These are easy to program because they only involve computing CF forj

pb ˆj�1, . . . , 2 , finding the value j that maximizes CF , and then computingj
ˆ ˆ� �P Z or � �AP Z . This method is not to be recommended if p isˆ ˆ� LŽ j. � � L Ž j. � A bA

large, but for small values of p it works well. It is easy to program and is quick.b

6.4. Consistent Standard Error Estimates

In this section, we describe three procedures for obtaining standard error
estimators that are consistent whether or not the true parameter is on a
boundary. Each actually provides a consistent estimator of the whole asymptotic

ˆŽ .distribution of B ��� .T 0
The first method is described as follows. Suppose the parameter space � is

Ž . � s Ž . Ž . 46.7 �� ��R : g � �0, m � �0 .a

Ž . J Ž .Assume that m � : ��R is continuously differentiable at � . Let m � �0
Ž Ž . Ž ..� � 4m � , . . . , m � . For j�1, . . . , J, let � : T�1 be a sequence of random1 J T j p

Ž . Ž .variables possibly constants that satisfies � � B � �. We specify a ruleT j min T

ˆŽ . Ž .based on m � and � to determine which if any of the inequality constraintsj T j
are binding at the true parameter. If

ˆŽ . Ž .6.8 m � ��� ,j T j
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Žthen we conclude that the jth constraint is binding. Because this rule is
essentially a one dimensional one-sided Wald test for some significance level �T
such that � �0, the � ’s could be chosen to be the critical values for suchT T j

ˆŽ .tests multiplied by an estimate of the standard error of m � based on thej

ˆŽ . .usual formulae that assume that m � is not on a boundary.j
Ž .Let j , . . . , j index the constraints that are found to be binding. Let g � �1 k b

� ˆŽ Ž . Ž .. Ž .m � , . . . , m � . Our estimate of the asymptotic distribution of B ��� isj j T 01 k

based on the supposition that the constraints that are found to be binding, i.e.,
Ž . Ž .g � �0 and g � �0, actually are binding. Then, we can obtain standarda b

error estimators by simulating the asymptotic distribution with any unknown
parameters replaced by consistent estimators.

This method is consistent given Assumptions 2�4, because
ˆ � �1 ˆ ˆŽ . Ž . Ž . ŽŽ . Ž . . Ž . Ž
 
.i m � �m � � 	�	� m � B B ��� �o ��� ,j j 0 j 0 T T 0 0

ˆ � �1Ž . Ž . Ž Ž . . ŽŽ . Ž . Ž . Ž .ii if m � �0, P m � ��� �P 	�	� m � B O 1 � B �j 0 j T j j 0 T p min T
Ž . Ž ..o 1 ��� � B �1, andp T j min T

ˆŽ . Ž . Ž Ž . . Ž Ž . Ž . .iii if m � �0, P m � ��� �P m � �o 1 ��� �0.j 0 j T j j 0 p T j

Ž .The second method is a subsample method introduced by Wu 1990 and
Ž .extended by Politis and Romano 1994 to cover cases where the statistic of

interest has some asymptotic distribution, not necessarily normal, such as those
Žconsidered in this paper. The method is applicable in iid contexts see Politis

Ž .. Žand Romano 1994, Sec. 2 , as well as in stationary time series contexts see
Ž ..Politis and Romano 1994, Sec. 3; 1996, Sec. 3 . A random subsampling variant

Ž .of the procedure is also available; see Politis and Romano 1994, Sec. 2.2 .
The third method is a version of the bootstrap in which bootstrap samples of

Ž .size T �T , rather than T , are employed. One uses the bootstrap distribution1
�̂ ˆ ˆ ˆŽ . Ž .of B � �� to estimate the distribution of B � �� , where � de-T T T T T 0 T1 1 ˆ �̂notes the estimator � constructed using T observations and � denotes theT1

ˆ �̂bootstrap estimator of � constructed from T observations. In an iid context, �1 T1

is constructed from T iid draws with replacement from the original sample of T1
1�2 Žobservations. This version of the bootstrap is consistent when B �T M forT

.any matrix M , if T �T�0 as T��. Typically, one approximates the distribu-1
�̂ ˆŽ .tion of B � �� by taking a number of simulation draws of it. ConsistencyT T T1 1

of this procedure and the others above rely on the existence of an asymptotic
ˆŽ .distribution for B ��� , which is established in this paper.T 0

Ž .6.5. Examples Continued

6.5.1. Random Coefficient Regression

In Example 1, we partition � as in Section 6.1 with
� �� � �Ž . Ž .��� � , � , � , �� � , � , ��� , and1 2 3 4 5 1Ž .6.9 ��Ž .�� � , � .2 3
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Ž .With this partitioning, Assumptions 7 and 8 hold. In particular, by 3.11 , TT is
block diagonal between �� and � . The set � is a product set � �� ��� � �

with

p� b �1 b�12Ž . Ž .6.10 � � R , � �R , and � �R .� � �

Thus, Assumption 9 also holds.
Ž . Ž .With this partitioning, from 3.11 and 3.15 , we have

1 � �2 2 2 Ž . Ž .TT�� EW W �var � , TT �EW W �var � ,t t t 0 � t t t 02

�Ž . Ž . Ž . Ž .G� G�� , G �N 0, II , G��N 0, II� , G �N 0, II ,� � �

22Ž .6.11 Ž Ž . Ž ..res � �var � �t 0 t 01 2 2II�� E W W , andt t4 4 Ž .var �t 0
� Ž .II �EW W �var � .� t t t 0

Assumption 33* holds with II� as above. Assumption 34* holds with c�1 if the
errors 
 and � are normally distributed.t t

d � � � �1�2 ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž . Ž .By Theorem 3, T ��� � �, where �� � , � , � . By Theorem 4 c ,0 � � �

ˆ �Ž . Ž . Ž . Ž . Ž .q � � inf q � , where q � � � �Z TT � �Z . Because �� � � � � � � � � � � � � � �� �

�Rb�1, this gives

ˆ �1 �1� �Z �TT G �N 0, TT andŽ .� � � � �

Ž .6.12 � d� �1� � �1�2 ˆ ˆ ˆŽ . Ž Ž ..T � , � � � , � � � �N 0, EW W �var � .ž /ž /ž /4 5 40 50 � t t t 0

ˆ ˆThus, the QML regression parameter estimators � and � are asymptotically4 5
Ž �1 .N 0, TT whether or not some random coefficient variances are zero.�

1�2 Ž .The matrix B �T I obviously is block diagonal. Hence, by Corollary 1 b ,T s

d1�2 ˆ ˆ ˆT � �� � � , where � satisfiesŽ .1 10 � �

ˆ Ž .q � � inf q � ,ž /� � � �� pŽ .� � R�Ž .6.13
�1� ��1Ž . Ž . Ž . Ž .q � � � �Z HTT� H � �Z , and� � � � � �

��1 �1 �1Ž .Z �HTT� G��N 0, HTT� II�TT� H .�

Ž .For example, if p�1 i.e., there is one random coefficient with zero variance ,
ˆ ˆŽ . Ž . Ž .then by 6.5 , � �AZ 1 Z �0 �Z 1 Z �0 and � has a half-normal� � A � A � � �

ˆ Ž .distribution. If p�1, then � is given in closed form by 6.6 or Theorem 5.�
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Ž .Also by Corollary 1 b ,
� d�� �1�2 ˆ ˆ ˆŽ .T � , � � � , � � � ,ž /ž /2 3 20 30 �

�1 �1ˆ ˆ� �TT G �TT TT � ,� � � � �� �

�
2 2 �X X1 2 2 2 2 b2 t 2 t 2Ž .TT � E var � , X � X , . . . , X �R ,Ž .� t 0 2 t t p�1 t b2 ž / ž /1 1

2 �X1 2 2 2 22 tŽ .6.14 TT � E X , X � X , . . . , X ,Ž .�� 1 t 1 t t1 t p2 ž /1

G� Ž .G�� �N 0, II� , andž /G�

2 �2 2 2Ž Ž . Ž ..res � �var �t 0 t 0 X X1 2 t 2 tG �N 0, E .� 4 4 ž / ž /Ž .ž /var � 1 1t 0

6.5.2. Dickey-Fuller Regression

In this example, we partition � as in Section 6.1 above with
� �Ž . Ž . Ž .6.15 ��� � , � , � , ��� , �� � , � , and ��� .1 2 3 4 1 2 3

Ž . Ž . Ž .With this partitioning, Assumptions 7 and 8 hold by 3.21 , 4.12 , and 4.13 .
The set � is a product set � �� �� with� � �

R��R� if � �0,30 bŽ .6.16 � � � �R , and � �R .�� � �½ R �R if � �0,30

Ž .With the above partitioning, from 3.21 , we have

2 1 2 Ž . 1 Ž . 1 Ž .� H W r dr �H rW r dr �H W r dr0 0 0

1 Ž .�H rW r dr 1�3 1�2TT�� , TT �V ,0 �� 01 Ž .�H W r dr 1�2 10

1Ž . 26.17 Ž Ž . .�� W 1 �12G�
1G� , G�� , andŽ Ž . Ž . .� W 1 �H W r dr0Gž /� � 0Ž .� W 1

G �G ,� 4

where G is independent of G� and TT�.�
d � �ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž . Ž .By Theorem 3, 	 M ��� � �, where �� � , � , � . By Theorem 4 cT 0 � � �

and the fact that � �Rb, we find that�

ˆ �1 �1Ž . Ž .6.18 � �Z �TT G �N 0, V .� � � �
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ˆ ˆŽ . Ž . Ž .By Theorem 4 a , � solves q � � inf q � , where � is defined in� � � � � � � � �� �

ˆŽ . Ž . Ž6.16 . Closed form expressions for � are given in 6.6 with the first inequality�
ˆ. Ž .reversed in each indicator function when � �0 and by � �Z 1 Z �0 when30 � � �

ˆ ˆŽ .� �0. Given � , Theorem 4 b gives a closed form expression for � :30 � �

1�1 �1ˆ ˆ ˆŽ . Ž .� �TT G �TT TT � �� W 1 � � W r dr , 1�2 � , whereH� � � � �� � �ž /0Ž .6.19
1 Ž . Ž .TT �1, TT � � W r dr , 1�2 , and G �� W 1 .H� �� �ž /0

ˆ ˆ ˆŽ .Note that � , � is independent of � .� � �

We have

ˆ	 M ���Ž .T 0

ˆT � ��Ž .1 10

3�2 3�2ˆ ˆT � � �� �T � ��Ž . Ž .0 1 10 2 20�
�1�2 1�2 1�2ˆ ˆ ˆ�T � � �� �T � �� �T � 1 � ��Ž . Ž . Ž .0 1 10 3 30 0 4 40� 01�2 ˆT � ��Ž .Ž . 4 406.20

�̂� 1

�̂d � 2� ,
�̂�� 0
�̂�

ˆ ˆ ˆ �Ž . Ž .where � � � , � . Equation 6.20 provides the asymptotic distribution of� � 1 � 2
ˆ ˆthe unit root estimator � and of the short-run dynamics parameter estimator �1 4

directly. Note that the latter is asymptotically normal even though the unit root
and time trend parameters, � and � , are on the boundary of the parameter10 20
space.

Ž .Equation 6.20 also provides the asymptotic distributions of nondegenerate
ˆ ˆlinear combinations of the estimators � , . . . , � that include the time trend and1 4

ˆ ˆintercept parameter estimators � and � . From these, the asymptotic distribu-2 3
ˆ ˆ Ž .tions of � and � can be determined. First, the second row of 6.20 implies2 3 pˆ ˆ ˆ ˆŽ . Ž . Ž .that T� � �� �T � �� � 0 and the first row implies that T� � ��0 1 10 2 20 0 1 10

d ˆ� � � . Hence,0 � 1

dˆ ˆŽ .6.21 T � �� � �� � .Ž .2 20 0 � 1
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ˆ ˆ � ˆŽ Ž . Ž .. ŽThus, the asymptotic joint distribution of T � �� , T � �� is � ,1 10 2 20 � 1
ˆ �. Ž .�� � , which is singular. Second, by the first, third, and fourth rows of 6.20 ,0 � 1

d �1�2 ˆ ˆ ˆŽ .6.22 T � �� � � �� 1� ,Ž .3 30 � 0 �

1�2 ˆŽ . Ž . Ž .because �T � � �� �o 1 . Hence, 6.20 yields the asymptotic distribu-0 1 10 p
ˆtions of all the elements of � and their convergence holds jointly.

Cowles Foundation, P.O. Box 208281, New Ha	en, CT 06520-8281, U.S.A.
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APPENDIX

A. A Taylor Expansion for a Function with Left�Right Partial Deri	ati	es

The following Taylor’s Theorem is used to prove Lemma 1. Let f be as in Section 3.3. For x�XX ,
Ž . Ž . Ž .let 	�	 x f x denote the l�r partial derivative with respect to x the jth element of x of f at x.j j
Ž k . Ž .Let 	 �	 x , . . . , 	 x f x denote the k th order l�r partial derivative of f at x with respect toi i1 k

x , . . . , x , where i is a positive integer less than s�1 � ll�k.i i ll1 k

THEOREM 6: Let f be a function whose domain includes XX�Rs. Let a�XX . Suppose XX�a equals
Ž .the intersection of a union of orthants and an open cube C 0, 
 for some 
�0. Suppose f has

continuous l�r partial deri	ati	es of order n�1 on XX for some integer n�0. Then, for any x�XX , there
exists a point c on the line segment joining x and a such that

n 1 1
k n�1Ž . Ž .Ž . Ž .Ž .f x � D f a x�a, . . . , x�a � D f c x�a, . . . , x�a ,Ý Ž .k! n�1 !k�0

0 Ž .Ž . Ž . k Ž .Ž .where D f a x�a, . . . , x�a � f a and for k�1, . . . , n�1 D f a x�a, . . . , x�a denotes the
k Ž . Ž .k-linear map D f a applied to the k-tuple x�a, . . . , x�a defined by

s k Ž .	 f a
k Ž .Ž . Ž . Ž .D f a x�a, . . . , x�a � x �a � ��� � x �a .Ý i i i i1 1 k k	 x , . . . , 	 xi ii , . . . , i �1 1 k1 k

COMMENT: If the l�r partial derivatives of f of order k are continuous with respect to XX at a
Ž .i.e., they are continuous where continuity is defined in terms of local perturbations only within XX ,

Ž Ž 2 . Ž . Ž 2 . Ž . .then they are symmetric i.e., 	 �	 x 	 x f a � 	 �	 x 	 x f a for k�2, etc. . This holds by1 2 2 1
Ž .the same argument as used to prove the symmetry of mixed two-sided partial derivatives; e.g., see

Ž .Courant 1988, Ch. II, Sec. 3.3, pp. 55�56 .

PROOF OF THEOREM 6: When s�1, XX is either an open interval that contains a or a half-closed
interval with a at the closed end. The Theorem holds in the former case by the standard one
dimensional Taylor’s Theorem. It holds in the latter case because standard proofs of the one

Ž Ž ..dimensional Taylor’s Theorem e.g., see Apostol 1961, p. 366 go through with x allowed to be an
endpoint of XX provided the derivative of order k of f is redefined to be the l�r derivative of order k

Ž .of f. The reason is that Rolle’s Theorem or the mean value theorem , upon which the proof
depends, does not require f to be differentiable at the endpoints of XX .

Ž ŽWhen s�1, standard proofs of Taylor’s Theorem e.g., see Courant 1988, Ch. II, Sec. 6, pp.
.. Ž . Ž Ž .. � �78�82 apply Taylor’s Theorem for s�1 to the function F � � f a�� x�a for �� 0, 1 and

use the chain rule for multi-variable functions to verify the necessary differentiability conditions on
F and to yield the form of the Taylor expansion.
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The main condition of the chain rule is that the functions involved are differentiable at the
appropriate points. In place of the condition of differentiability, we use the condition of l�r
differentiability. We say that a function f is l�r differentiable at x if it can be approximated at x by

Ž . Ž .a linear function and the approximation holds for all perturbations within XX . That is, f x�h � f x
� � 
 
 
 
�A h�
 h and 
 �0 as h �0 � x�h�XX for some vector A that is independent of h. Now,h h

Ž Ž ..standard proofs of the chain rule e.g., see Courant 1988, Ch. II, Sec. 5.1, pp. 69�73 go through
straightforwardly with partial derivatives and differentiable functions replaced by l�r partial
derivatives and l�r differentiable functions.

Ž . Ž . n Ž . n � �To show that the functions F � , dF � �d�, . . . , d F � �d� are l�r differentiable for �� 0, 1
Ž .which is needed to apply our generalized chain rule , we use a generalization of the result that a
function with continuous partial derivatives at a point is differentiable at that point. Standard proofs

Ž Ž ..of this result e.g., see Courant 1988, Ch. II, Sec. 4.1, pp. 59�62 go through straightforwardly to
show that a function with continuous l�r partial derivatives at a point is l�r differentiable at that
point. In consequence, under the assumptions of the Theorem, the chain rule for l�r differentiable
functions is applicable and the proof of Taylor’s Theorem for continuous l�r partially differentiable
functions is the same as that for continuous partially differentiable functions, which is referenced
above.

B. Proofs for Quadratic Approximation Section 3

Ž . Ž .PROOF OF LEMMA 1: We prove part a first. By the Taylor expansion of Theorem 6, ll �T
Ž .satisfies 3.2 with

1 	 2 	 2
� †Ž . Ž . Ž . Ž . Ž . Ž .7.1 R � � ��� ll � � ll � ��� ,� �T 0 0 0T Tž /2 	� 	� 	� 	�

† Ž .where � lies between � and � , when ��� and R � �0 when ��� . Thus,0 0 T 0

2Ž . Ž . Ž Ž . .7.2 sup R � � 1� B ���T 0 T 0

 
��� : ��� ��0 T

2 21 	 	�� �1 † �1Ž Ž .. Ž . Ž .� sup B ��� B ll � � ll � B� �T 0 T 0 TT Tž /2 	� 	� 	� 	�
 
��� : ��� ��0 T

2Ž . 
 Ž . 
�B ��� B ���T 0 T 0

2 21 	 	��1 �1Ž . Ž .� sup B ll � � ll � B� �T 0 TT Tž /2 	� 	� 	� 	�
 
��� : ��� ��0 T

Ž .�o 1 ,p

2 Ž .where the equality holds by Assumption 2 * c .
Ž . Ž .Part b follows from part a because the difference between the third summand on the

Ž . 2 Ž . Ž 2 � . Ž .right-hand side of 3.2 when defined with D ll � � 	 �	� 	� ll � and when defined with0 0T T
2 Ž . � Ž . �D ll � ��B TTB can be absorbed in the R � term without affecting Assumption 2 , due to0 T T TT

Ž 
 Ž .
.2 �the 1� 1� B ��� factor in Assumption 2 .T 0

1�2 ˆŽ . Ž .PROOF OF THEOREM 1: Let � �TT B ��� . � is in the closure of � by Assumption 1 .T T T 0 0
Ž . Ž . Ž . �Thus, by 3.1 , 3.2 , 3.3 , and Assumptions 1, 2 , and 3,

ˆŽ . Ž . Ž . Ž .7.3 o 1 � ll � � ll �p 0T T

� 1 21�2 ˆ
 
 Ž .�� TT Z � � �R �T T T T T2

221 �1 �2Ž 
 
. 
 
 Ž 
 
. Ž .�O � � � � 1� TT � o 1p T T T T p2

1 2 2Ž 
 
. 
 
 Ž 
 
. Ž 
 
 . Ž .�O � � � �o � �o � �o 1 .p T T p T p T p2
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 2 
 
 Ž . Ž . Ž .Rearranging this equation gives � �2 � O 1 �o 1 . Let � denote the O 1 term. Then,T T p p T p

2 2Ž . Ž 
 
 . Ž . Ž .7.4 � �� �� �o 1 �O 1 .T T T p p


 
 Ž .Taking square roots gives � �O 1 . Given Assumption 3, this establishes Assumption 4.T p

1�2 ˆŽ . Ž .PROOF OF THEOREM 2: Let � �TT B � �� . By 3.5 and Assumption 3, we haveqT T T q 0

1�2 2 ˆŽ . 
 
 Ž Ž .. Ž . Ž .7.5 � �TT Z �q B � �� �q 0 �o 1qT T T T T q 0 T p

� Ž . Ž .�Z TT Z �o 1 �O 1 .T T T p p

1�2 Ž . Ž . Ž .Thus, � �TT Z �O 1 �O 1 . By Assumption 3, this establishes part a .qT T T p p
Ž . Ž . Ž . Ž .Parts b and c hold by 3.4 , Assumptions 2 and 4, and part a .
Ž . Ž . Ž . Ž . Ž . Ž .Parts d and e hold by parts b and c , 3.1 , and 3.5 :

ˆ ˆŽ . Ž . Ž . Ž .7.6 o 1 � ll � � ll �p qT T

1 1ˆ ˆŽ Ž .. Ž Ž .. Ž . Ž .� q B � �� � q B ��� �o 1 �o 1 .T T q 0 T T 0 p p2 2

Ž . Ž . Ž .Part f holds by parts b and e .

C. Proofs for Parameter Space Section 4


 
 Ž �1 . sPROOF OF LEMMA 2: Let Z �Z �b . By Assumption 3, Z �O b . For any set ��RT b T T T b p T
and z�Rs, let

� 1�2Ž . Ž . ŽŽ . Ž ..7.7 dist z , � � inf ��z TT ��z .T T
���

Ž . 1�2Ž .Note that dist Z , � � inf q � . Because � is a cone,T T �� � T

Ž . �1 1�2 Ž .dist Z , � �b inf q � .T T b T T
���

Also,
� 1�2Ž . Ž Ž . . Ž . Ž .7.8 dist Z , B ��� �b � inf ��Z �b TT ��Z �bT T b T 0 T T T T T T

Ž .��B ��� �bT 0 T

� 1�2�1 Ž . Ž .�b inf b ��Z TT b ��ZT T T T T T
Ž .��B ��� �bT 0 T

�1 1�2 Ž Ž ..�b inf q B ��� .T T T 0
���

Let

Ž . Ž . Ž Ž . .7.9 C �dist Z , � �dist Z , B ��� �b .T T T b T T b T 0 T

�1 Ž 1�2Ž . 1�2Ž ..By the results above, C �b inf q � � inf q � and it suffices to show thatT T �� � T �� B Ž��� . TT 0
Ž �1 .C �o b .T p T

Ž . Ž Ž . . Ž � 4.Let Z �B ��� �b be such that dist Z , B ��� �b �dist Z , Z �� T b T 0 T T T b T 0 T T b � T b
Ž �1 . Ž .o b . Define Z �� analogously with B ��� �b replaced by �. By Assumption 5,p T �T b T 0 T

Ž . Ž
 
. Ž . Ž
 
.dist Z , � �o Z . This and Assumption 3 give dist Z , � �o Z . Analogously,� T b � T b T � T b p � T b
Ž Ž . . Ž
 
. Ždist Z , B ��� �b �o Z . To make the above argument utilizing Assumption 5T �T b T 0 T p �T b

really precise, we need to use an almost sure representation argument based on the fact that
Ž . .Z �o 1 , as proved below. For brevity, we do not give the details.� T b p

By the triangle inequality,

Ž . Ž � 4. Ž . Ž Ž . .7.10 C �dist Z , Z �dist Z , � �dist Z , B ��� �bT T T b � T b T � T b T b T 0 T

Ž . Ž �1 .�dist Z , � �o bT � T b p T

Ž 
 
. Ž �1 .�o Z �o b .p � T b p T

Ž
 
. Ž �1 .Analogously, C �o Z �o b .T p �T b p T
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Ž .By assumption, 0 belongs to the closure of ��� and, hence, to the closure of B ��� �b .0 T 0 T
This gives

Ž . Ž � 4. Ž Ž . . Ž �1 .7.11 dist Z , Z �dist Z , B ��� �b �o bT T b � T b T T b T 0 T p T


 1�2 
 Ž �1 .� TT Z �o b .T T b p T

Using Assumption 3, we then obtain

Ž . 
 
 Ž � 4. Ž 1�2 .7.12 Z �Z �dist Z , Z �� TT� T b T b T T b � T b min T

Ž 
 1�2 
 Ž �1 .. Ž 1�2 .� TT Z �o b �� TTT T b p T min T


 
 Ž 1�2 . Ž 1�2 . Ž �1 . Ž �1 .� Z � TT �� TT �o b �O b .T b max T min T p T p T

Thus,

Ž . 
 
 
 
 
 
 Ž �1 .7.13 Z � Z �Z � Z �O b .� T b � T b T b T b p T


 
 Ž �1 . Ž �1 .Analogously, Z �O b . Combining these results gives C �o b .�T b p T T p T

� Ž .PROOF OF LEMMA 3: Assumption 5 implies Assumption 5 because i B �b I implies thatT T s
Ž . Ž . Ž . Ž . Ž .B ��� �b ���� , ii for � � ��� 
S 0, 
 , dist � , � �0 for some 
�0 by As-T 0 T 0 T 0 T

� Ž . Ž . Ž . Ž .sumption 5 a , and iii for � ��
S 0, 
 , dist � , ��� �0 for some 
�0 by AssumptionT T 0
� Ž .5 a .

2 Ž .We now show that Assumption 5 * implies Assumption 5 with b �� 	 . Assume Assump-T min T
2 � s 4 
 
tion 5 * holds. A sequence � �R : T�1 with � �0 satisfiesT T

Ž . Ž . �7.14 � �B ��� �b �T large iff � �B � �T large.T T 0 T T T

Ž Ž ..This holds because 	 �b �1 �T�1, � j�s where 	 �diag 	 , . . . , 	 implies thatT j T T T 1 T s


 �1� �1 
 
 �1�

 
 
 Ž . �1� �1b M 	 � � M � � �0. Suppose � �B ��� �b �T large; then b M 	 � �T T T T T T 0 T T T T

Ž . Ž . � Ž . � ���� 
S 0, 
 �� 
S 0, 
 �� �T large and � �B � �T large. Conversely, suppose0 T T
� �1� �1 � Ž . Ž . Ž .� �B � �T large; then b M 	 � �� 
S 0, 
 � ��� 
S 0, 
 ���� �T largeT T T T T 0 0

Ž .and � �B ��� �b �T large.T T 0 T
Ž . � Ž . 4 
 
 �Using 7.14 , for any sequence � �B ��� �b : T�1 with � �0, we have � �B �T T 0 T T T T

�T large. For such a sequence,

Ž . Ž . 
 
 Ž 
 
 . 
 
 Ž � . Ž 
 
.7.15 dist � , � � � dist � � � , � � � dist B � , � �o � ,T T T T T c T T

Ž .where the first equality holds because � is a cone, the inequality holds by the definition of dist �, �c
� � 2 Ž .and the fact that � �B � and B � is a cone, and the last equality holds by Assumption 5 * c .T T T

� 4 
 
For any sequence � ��: T�1 for which � �0,T T

Ž . Ž � . 
 
 Ž 
 
 � . 
 
 Ž � .7.16 dist � , B � � � dist � � � , B � � � dist �, B �T T T T T T T c T

Ž 
 
.�o �T

by the same argument as above. Now, for some � �B �� �T�1,T T

Ž . Ž � . 
 
 Ž 
 
. Ž Ž . .7.17 dist � , B � � � �� �o � �dist � , B ��� �bT T T T T T T 0 T


 
 
 
 Ž�T large, where the inequality holds because � �0 implies � �0 implies � �B ��T T T T
. Ž . Ž . Ž .� �b using 7.14 . Equations 7.15 � 7.17 combine to verify Assumption 5.0 T

D. Proofs for Asymptotic Distribution Section 5
� ˆŽ . Ž . 
 Ž .PROOF OF THEOREM 3: First, we establish part a . Let � �cl � be such that B ��� �T T 0

� ˆ �
 Ž Ž . . Ž .� �dist B ��� , � . � is unique because � is a convex cone; see Perlman 1969, Sec. 4 . ByT T 0 T
ˆ � ˆ ˆ
 Ž . 
 Ž Ž . . Ž
 Ž . 
.Assumptions 4 and 5, B ��� �b �� �b �dist B ��� �b , � �o B ��� �b �T 0 T T T T 0 T T 0 T

Ž �1 .o b and sop T

ˆ �Ž . 
 Ž . 
 Ž .7.18 B ��� �� �o 1 .T 0 T p

� ˆ
 
 Ž .Thus, it suffices to show that � �� �o 1 .T T p
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� 1�2 � ˆ
 
 
 
 Ž . 
 
 Ž .Define � by � � � TT � . By Assumption 3, it suffices to show that � �� �o 1 .T T TT T T p
Ž . 
 
 
 
By Assumption 3, 7.18 holds with � replaced by � . This, the triangle inequality, and LemmaT

2 give

� ˆ ˆŽ . 
 
 
 Ž . 
 Ž . 
 
 Ž .7.19 � �Z � B ��� �Z �o 1 � � �Z �o 1 .T T TT T T 0 T p T T p

In consequence,

� ˆ
 
 
 
 Ž .
 � � �Z � � �Z �o 1 andT TT T T T T p
Ž .7.20

2 2� � ˆ
 
 
 
 Ž .
 � � �Z � � �Z �o 1 .T TT T T T T p

ˆ � ˆ � ˆŽ . 
 
 
 
 
 
First, suppose Z �cl � . Then, � �Z , � �� � � �Z � � �Z �
 �
 �T T TT T T T T T T T T T T
Ž .o 1 .p

Ž . ŽAlternatively, suppose Z �cl � . We now use a geometric argument that is most easilyT
ˆ ˆ. 
 
followed by drawing a picture. � is on the boundary of �, because � minimizes ��Z overTT T T

ˆ ˆ ˆŽ . Ž . Ž . Ž .��cl � and Z �cl � . Let L � , Z denote the line through � and Z . L � , Z isT T T T T T T
ˆŽ 
 
 .perpendicular with respect to the norm � to the ray through � starting at the origin. Let PT T L

ˆ �Ž . 
 
denote the projection onto L � , Z with respect to the norm � . Because � �� and � isTT T T
� ˆ ˆ � ˆ
 
 
 
convex, P � ��. By definition of � , � �Z � P � �Z . In consequence, � lies on theT TL T T T T L T T T

line segment joining P �� and Z .L T T
By the orthogonality of projections,

� ˆ 2 � � 2 � ˆ 2Ž . 
 
 
 
 
 
7.21 � �� � � �P � � P � �� .T T TT T T L T L T T

� � 2 � � ˆ 2 2Ž . 
 
 Ž . 
 
 Ž .We claim that i � �P � �
 and ii P � �� �
 . These two claims and 7.21T TT L T T L T T T
� ˆ � 2
 
 Ž .combine to yield � �� �
 �
 when Z �cl � , which gives the desired result.TT T T T T

Ž .Claim i follows from

Ž . 
 � � 
 2 
 � 
 2 
 � 
 27.22 � �P � � � �Z � P � �ZT T TT L T T T L T T

ˆ 2 � � 2
 
 
 
� � �Z �
 � P � �ZT TT T T L T T

�
� ,T

ˆ �because � lies on the line segment joining P � and Z .T L T T
Ž . Ž .Claim ii is established as follows. The first equality of 7.22 implies that

� � ˆŽ . 
 
 
 
 
 
7.23 P � �Z � � �Z � � �Z �
 .T T TL T T T T T T T

ˆ �This result and the fact that � lies on the line segment joining P � and Z giveT L T T

� ˆ � ˆŽ . 
 
 
 
 
 
7.24 P � �� � P � �Z � � �ZT T TL T T L T T T T

ˆ ˆ
 
 
 
� � �Z �
 � � �ZT TT T T T T

�
 ,T

Ž .which completes the proof of part a .
ˆŽ . Ž .Next, we establish part b . In part b , � is uniquely defined because � is a convex cone. WeT

ˆ �1�
Ž Ž . . Ž .can write � �h B D ll � , TT , where the function h is defined implicitly in 5.1 . The functionT T 0 TT

Ž �1�
Ž . .h is continuous at all points B D ll � , TT for which TT is nonsingular. Because TT isT 0 T TT

ˆ �1�
Ž Ž . .nonsingular with probability one, the continuous mapping theorem gives � �h B D ll � , TTT T 0 TT

ˆŽ . Ž . Ž .� h G, TT ��. The second result of part b holds by the first result and part a of the Theorem.d
Ž . Ž .The convergence result of part c holds by 4.4 , Assumption 3, and the continuous mapping

�̂ ˆŽ . Ž .theorem. The equality in part c holds by the orthogonality property � TT ��Z �0, which does not
Ž .require Assumption 6; see Perlman 1969, Lemma 4.1 , and some algebra.
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E. Proofs for Asymptotic Distribution of Sub	ectors Section 6

Ž . �PROOF OF THEOREM 4: First, we break up q � and Z TTZ into terms involving �� and � . For
���� �� , define� �

�Ž . Ž . Ž . Ž .7.25 q� �� � ���Z� TT� ���Z� .

By Assumption 7,
�� �Ž . Ž . Ž . Ž .q � �q� �� �q � for �� ��, � ,� � �

Ž . Ž . Ž . Ž .7.26 inf q � � inf q� �� � inf q � , and� �
��� ���� �� � ��� � � �

Z�
TTZ�Z�� TT�Z��Z�

TT Z .� � �

Next, we have

ˆŽ . Ž . Ž .7.27 0�q� �� � inf q� ��
���� ��� �

ˆ ˆŽ . Ž . Ž . Ž .�q� �� � inf q� �� �q � � inf q �� � � �
���� �� � ��� � � �

ˆŽ . Ž .�q � � inf q �
��� �� ��� � �

�0,
ˆŽ .where the first equality uses 7.26 and the second holds by the definition of �. In consequence, we

obtain

ˆŽ . Ž . Ž .7.28 q� �� � inf q� �� .
���� ��� �

Ž . Ž . Ž .Part c of the Theorem follows from 7.26 and 7.28 .
Ž .We now use Assumption 8 to break q� �� and Z�� TT�Z� into terms involving � and � . Let

Ip
Ž p�q .�p 
 Ž p�q .� Ž p�q .A� �R , P �AH�R , and�1�TT TTŽ . � ��7.29

P�I �P 
 .p�q


 
 p�q 
 
 Ž � .1�2 p�qDefine the norm � � on R by h �� h TT�h for h�R . Let L be the linear subspace
p�q �Ž � � .� q4 
of R defined by L� 0 , � : for some ��R . Let L denote the orthogonal complement of


 
 
 
 
 
L with respect to � �. P and P project onto L and L , respectively, with respect to � �. Thus,
Ž .� 
 p�qPh TT�P h �0 �h , h �R . By some algebra,1 2 1 2

0�1� ��1 �1Ž . Ž .7.30 A TT� A� HTT� H and PTT� G�� .�1TT G� �

. q� Ž p�q . �1HŽ � � � �For the second result, note that I � for F� 0 . I �R , HPTT� G��0 becausep�q qF .
�1 �1 �1 .HA�I , and FPTT� G��TT G because TT FTT� G��G by some algebra.p � � � �

The above results give
� �
 
Ž . Ž . Ž .7.13 Z�� TT�Z�� P Z� TT�P Z�� PZ� TT�PZ�

�1� � ��1 �1Ž .�Z HTT� H Z �G TT G .� � � � �

Ž . Ž . Ž .Equations 7.26 and 7.31 establish part d of the Theorem.
Ž � � .�For ��� � , � �� �� , we have� � � �

0
Ž .7.32 P��� .�1� �TT TT �ž /� � �� �
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Ž � � .�For ��� � , � �� �� , define� � � �

��1 �1 �1 �1Ž . Ž . Ž . Ž .7.33 q � , � � � �TT TT � �TT G TT � �TT TT � �TT G .� � � � � �� � � � � � � �� � � �

Ž . Ž .Then, using 7.30 and 7.32 , we have
� �
 
 
 
Ž . Ž . Ž . Ž . Ž . Ž .7.34 q� �� � P ���P Z� TT� P ���P Z� � P���PZ� TT� P���PZ�

Ž . Ž .�q � �q � , � .� � � � �

Under Assumption 8, for any � �R p, we have�

Ž . Ž . Ž .7.35 inf q � , � � inf q � , � �0.� � � � � �q� �� � �R� � �

Ž . Ž .Thus, using 7.34 and 7.35 , we obtain

Ž . Ž . Ž .7.36 inf q� �� � inf q � .� �
���� �� � ��� � � �

Ž . Ž . Ž .Equations 7.26 and 7.36 establish part e of the Theorem.
Ž .Part a of the Theorem follows from

ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .7.37 0�q � � inf q � �q � �q � , � � inf q �Ž .� � � � � � � � � � �
� �� � ��� � � �

ˆŽ . Ž .�q� �� � inf q� �� �0,
���� ��� �

Ž . Ž .where the equality holds by 7.34 and 7.36 using Assumption 8.
Ž .By equation 7.34 ,

ˆ ˆ ˆ ˆŽ . Ž . Ž .7.38 q� �� �q � �q � , � .Ž .� � � � �

ˆŽ . Ž . Ž . Ž . Ž . Ž .By equations 7.28 and 7.36 , q� �� � inf q � . This, 7.38 , and part a of the Theorem� � � � �� �

ˆ ˆŽ . Ž . Ž .give q � , � �0. The latter and 7.33 yield part b of the Theorem.� � �

Ž . Ž . Ž .The first equality of part f of the Theorem follows from parts d and e . The second equality of
�̂ �1 � �1 ˆ �̂ ˆŽ . Ž . Ž . Ž .part f holds by the orthogonality properties � HTT� H � �Z �0 and � TT � �Z �0;� � � � � � �

Ž .see Perlman 1969, Lemma 4.1 , and some algebra.

PROOF OF LEMMA 4: For any linear subspace L�R p and any z�R p, ll �L is the projection ofz

 
 
 
 Ž .z onto L with respect to the norm � if and only if ll minimizes ll�z over ll�L
S ll , 
� �z z

for some 
�0. Necessity of the latter holds by the definition of a projection. To prove sufficiency of
the latter, suppose the latter holds but the former does not. Then, P z� ll , and every point on theL z
line segment joining P z and ll yields a smaller criterion function value than the endpoint ll . ButL z z
this is a contradiction.

ˆ ˆNow, given � �� , we can construct two matrices � and � such that � � �0 and� � b1 b2 b1 �
ˆ Ž .� � �0 element by element , where � and � are comprised of different rows of � andb2 � b1 b2 b

ˆ p� 4together they include all the rows of � . In addition, � � �0. Let L� ll�R : � ll�0, � ll�0 .b a � a b1
ˆ ˆŽ . Ž .For some 
�0, L
S � , 
 �� 
S � , 
 , because the restrictions � ll�0 are satisfied for ll� � � b2

ˆ ˆ ˆ ˆ
 
 Ž .close to � . By definition, � minimizes � �Z over � �� 
S � , 
 . Hence, � minimizes�� � � � � � � �
ˆ ˆŽ .the same function over � �L
S � , 
 as well. By the first paragraph of the proof, then, �� � �

equals the projection of Z onto the linear subspace L.�
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