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NOTES AND COMMENTS

INCONSISTENCY OF THE BOOTSTRAP WHEN A PARAMETER IS
ON THE BOUNDARY OF THE PARAMETER SPACE

BY DONALD W. K. ANDREWS1

1. INTRODUCTION

RESEARCHERS IN ECONOMETRICS sometimes view the bootstrap as a panacea for statistical
Ž .inference. Indeed, it does have widespread applicability; e.g., see Hall 1992 , Efron and

Ž . Ž .Tibshirani 1993 , and Hall and Horowitz 1996 . Nevertheless, there are situations where
the bootstrap is not consistent. In this note, we provide such a counterexample to the
bootstrap. This counterexample is quite simple, but it generalizes to a wide variety of
estimation problems that are of importance in econometric applications. The counterex-
ample should serve as a useful reminder that the bootstrap is not a universal solution to
problems of statistical inference.

We consider the maximum likelihood estimator of the mean of a sample of iid normal
Ž Ž ..random variables with mean � and variance one denoted N �, 1 when the mean is

restricted to be nonnegative. The maximum likelihood estimator in this case is just the
maximum of the sample mean and zero. When the true mean is zero, the bootstrap is not
asymptotically correct to first order. This is true of the nonparametric bootstrap based on
the empirical distribution function, as well as the parametric bootstrap based on the
restricted or unrestricted maximum likelihood estimator.

The above counterexample to the bootstrap generalizes to a wide variety of estimation
problems that have considerable relevance in applications. For example, in models with
random coefficients, it is often the case that the estimated variances of some of the
random coefficients are small and, hence, the true variances of some of the random
coefficients may be zero. If any of the coefficient variances are zero, the bootstrap is not
consistent. More generally, the bootstrap is not consistent if the parameter is on a
boundary of the parameter space defined by linear or nonlinear inequality or mixed
inequality�equality constraints. If a parameter is on a boundary defined by linear or
nonlinear equality constraints, then the bootstrap is consistent.

We provide four alternatives to the bootstrap that are asymptotically correct to first
order in this context. The first method is based on testing. The second is a parametric
bootstrap procedure that uses an estimator that shrinks towards the boundary of the

Ž .parameter space. The third is a subsample method of Wu 1990 and Politis and Romano
Ž .1994 . The fourth is a ‘‘rescaled’’ bootstrap procedure. We note that none of these
methods is consistent when the true mean is of the form � ���n1�2. Thus, thesen
methods may not work as well as desired when the true mean is small, but not zero. We
show that it is impossible to derive a consistent scheme when the mean equals � �n
��n1�2.

1 The author gratefully acknowledges the research support of the National Science Foundation
via Grant Numbers SBR-9410675 and SBR-9730277. The author thanks Peter Bickel and Joe
Romano for references and Dale Stahl and two referees for helpful comments.
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Ž .In Andrews 1997 , we consider two types of bootstrap percentile confidence intervals
Ž .in the above example. The first is what Hall 1992 calls a bootstrap percentile confidence

Ž .interval. The second is what Efron and Tibshirani 1993 call a bootstrap percentile
confidence interval. We find that they both have asymptotic coverage probability that
exceeds the nominal asymptotic level when the true value of the mean � equals zero.

Ž .On the other hand, consider the level �� 0, 1�2 one-sided bootstrap test of H :0
1�2 ˆ ˆ��0 versus H : ��0 that rejects H when n � � t , where t is the 1��ˆ1 0 n 1�� 1��

1�2 � ˆŽ .quantile of n � �� conditional on F . This test has the correct asymptotic nullˆ ˆn n n
rejection rate; see the end of Section 4.

The remainder of this paper is organized as follows. Section 2 discusses counterexam-
ples to the bootstrap that are already in the literature. Section 3 establishes the
inconsistency of the bootstrap in the example described above. Section 4 considers
alternatives to the bootstrap for the example above.

2. RESULTS IN THE LITERATURE

Ž .The literature contains a number of examples in which the bootstrap of Efron 1979
does not consistently estimate the true distribution of a statistic correctly to first order.
These examples are all nonstandard in some way or other. The example considered in
this paper is very simple and close to being standard.

Ž . Ž .Bickel and Freedman 1981 provide two counterexamples to the nonparametric
bootstrap. Their first counterexample is a U-statistic of degree two in which the kernel
Ž . 2Ž . Ž .� x, x does not satisfy the condition H� x, x dF x ��, where F denotes the true

distribution of the data. Their second example is the largest order statistic from an iid
Ž .sample of uniform 0, � random variables. This example is extended in Bickel, Gotze,¨

Ž .and van Zwet 1997, Example 3 .
Ž .Other counterexamples to the nonparametric bootstrap in the literature include:

Ž Ž .extrema for unbounded distributions see Athreya and Fukuchi 1994 and Deheuvels,
Ž ..Mason, and Shorack 1993 ; the sample mean in the case of infinite variance random

Ž Ž . Ž ..variables see Babu 1984 and Athreya 1987 ; some versions of Hodges’ super-efficient
Ž . Ž Ž .estimator, viz., those with the rescaling parameter b� 0, 1 see Beran 1982, 1997 and

Ž .. Ž Ž ..Putter and van Zwet 1996 ; Stein’s shrinkage estimator see Beran 1997 ; degenerate
Ž Ž ..U and V statistics see Bretagnolle 1983 ; estimators of the eigenvalues of a covariance

Ž Ž ..matrix whose eigenvalues are not distinct see Beran and Srivastava 1985 ; nondifferen-
Ž Ž ..tiable functions of the empirical distribution function see Dumbgen 1993 ; the distribu-¨

Žtion of the square of a sample average when the population mean equals zero see Datta
Ž ..1995 ; and the nonparametric kernel estimator of the mode of a smooth unimodal

Ž .density when the smoothing parameter for both the estimator and the bootstrap is
Ž Ž ..chosen to be optimal for the estimation problem see Romano 1988 . A counterexample

Ž .to the parametric bootstrap is given in Sriram 1993 for critical branching processes with
Ž .immigration estimated by maximum likelihood. Beran 1997 gives necessary and suffi-

cient conditions for an ‘‘intuitive’’ parametric bootstrap to be consistent and for a
Žnonparametric bootstrap to be consistent for cases in which the underlying random

.variables have finite support .
The counterexample to the bootstrap introduced in this paper, based on a parameter

being on the boundary of the parameter space, seems simpler and more relevant to
economic applications than most of the counterexamples just listed.

Another counterexample to the bootstrap, which is of relevance to economic problems,
is the failure of the residual-based bootstrap in the estimation of the autoregressive
coefficient in a first order autoregressive model when the true coefficient equals unity



INCONSISTENCY OF THE BOOTSTRAP 401

Ž Ž ..see Basawa, Mallik, McCormick, Reeves, and Taylor 1991 . Unlike the counterexample
considered in the present paper, however, this counterexample does not involve the
standard nonparametric bootstrap applied in an iid context.

3. THE COUNTEREXAMPLE

� 4We now analyze the counterexample described in the Introduction. Let X : i�1 be ai
Ž . Ž .sequence of independent identically distributed iid N �, 1 random variables. Suppose

� � 4the parameter space for � is R � y: y�0 , where � denotes equality by definition.
� 4The maximum likelihood estimator of � in this case is � �max X , 0 , where X �ˆn n n

Ž . n1�n Ý X . It is easy to see thati�1 i

Z if ��0d1�2Ž . Ž . Ž .1 n � �� � as n��, where Z�N 0, 1 .ˆn ½ � 4max Z, 0 if ��0

� � 4First, we consider the standard nonparametric bootstrap. Let X : i�n be iid withi
� ˆ ˆ nŽ . Ž . Ž .X �F , where F x � 1�n Ý 1 X �x . The bootstrap maximum likelihood estima-i n n i�1 i

� � � � �n� 4 Ž .tor � is defined by � �max X , 0 , where X � 1�n Ý X . In cases where theˆ ˆn n n n i�1 i
1�2Ž � .bootstrap is asymptotically valid, the bootstrap distribution of n � �� is used toˆ ˆn n

1�2Ž .approximate the distribution of n � �� . Asymptotic validity of the bootstrapˆn
1�2Ž � .requires that with probability one the asymptotic distribution of n � �� condi-ˆ ˆn n

ˆ 1�2� 4 Ž .tional on F : n�1 equals the asymptotic distribution of n � �� . We show thatˆn n
this does not hold in the present example.

1�2� 4Suppose ��0. Let A � lim inf n X ��c for 0�c��. By the law of thec n�� n
Ž . � 4 �iterated logarithm, P A �1. For ��A , consider a subsequence n : k�1 of n:c c k

1�24 Ž .n�1 such that n X � ��c for all k. Then,k nk

Ž . 1�2 Ž � Ž ..2 n � �� �ˆ ˆk n nk k

�1�2 1�2 1�2Ž . Ž . Ž .�max n X �X � �n X � , 0 �max n X � , 0� 4½ 5Ž .k n n k n k nk k k k

�1�2 Ž .�max n X �X � �c, 0½ 5Ž .k n nk k

d ˆ� 4 � 4� max Z�c, 0 as k�� conditional on F : n�1n

� 4�max Z, 0 ,

where the last inequality is strict with positive probability and the convergence in
distribution holds by a triangular array central limit theorem. So, along the subsequence

1�2 � ˆ� 4 Ž Ž .. � 4 � 4n , n � �� � � max Z, 0 as k�� conditional on F : k�1 . Hence,ˆ ˆk k n n d nk k k1�2 � ˆŽ Ž .. � 4 � 4n � �� � � max Z, 0 as n�� conditional on F : n�1 . This is true for allˆ ˆn n d n
ˆŽ ���A . We conclude that with probability one with respect to the randomness in F :c n

4.n�1 , the bootstrap distribution is not consistent.
Note that the bootstrap also is not correct when ��0 for sample paths ��B �c

1�2� 4 � 4lim sup n X �c for any 0�c�� and sample sizes n : m�1 for whichn�� n m
1�2 Ž .n X � �c for all m. In this case, we havem nm

� �1�2 1�2 1�2Ž . Ž Ž .. Ž . Ž .3 n � �� � �max n X �X � , �n X �ˆ ˆ ½ 5Ž .m n n m n n m nm m m m m

�1�2 Ž .�max n X �X � , �c½ 5Ž .m n nm m

d ˆ� 4 � 4� max Z, �c as m�� conditional on F : n�1n

� 4�max Z, 0 ,
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Ž .where the last inequality is strict with positive probability. Note that P B �1 for allc
1�2 Ž .0�c��. Thus, the bootstrap is incorrect both when n X � is negative for n largen

1�2 Ž .and when n X � is positive for n large. In both cases, the bootstrap distribution isn
Ž .too small i.e., has too much mass to the left when ��0.

Ž . Ž .One can see why the bootstrap fails when ��0 by inspecting equations 2 and 3
�1�2 1�2Ž Ž .. Ž . Ž .and utilizing the fact that n X �X � and n X �� have the same N 0, 1n n n

�1�2Ž . Ž Ž ..distribution asymptotically. When X � ��c for c�0, then n � �� � �0ˆ ˆn n n
� 1�2Ž . Ž .whenever X �X � �c, whereas n � �� �0 whenever X ���0. Becauseˆn n n n

1�2Ž � Ž .. 1�2Žc�0, n � �� � has a higher probability of equalling zero than does n � �ˆ ˆ ˆn n n
� �1�2 1�2. Ž . Ž Ž .. � Ž� . Alternatively, when X � �c for c�0, then n � �� � �max n X �ˆ ˆn n n n

1�2 1�2Ž .. 4 Ž . � Ž . 4X � , �c , whereas n � �� �max n X �� , 0 . Because �c�0, the distri-ˆn n n
1�2Ž � Ž .. 1�2Ž .bution of n � �� � is to the left of that of n � �� .ˆ ˆ ˆn n n

We note that consistency of the nonparametric bootstrap cannot be rescued by using
� �1�2 1�2Ž . Ž .the distribution of n � �X , rather than that of n � �� , to approximate theˆ ˆ ˆn n n n

1�2Ž . Ž . Ž .distribution of n � �� . This follows because 3 holds with � � replaced byˆ ˆn nm
Ž .X � .nm

� � 4 � Ž .Next, we consider a parametric bootstrap. Let X : i�n be iid with X �N � , 1 .ˆi i n
Ž .The analysis of equation 3 is exactly the same as with the nonparametric bootstrap

Ž .except that the asymptotic distribution actually holds in finite samples as well . Thus, this
� �parametric bootstrap is not consistent. An alternative parametric bootstrap takes X :i

�4 Ž . Ž . Ž .i�n to be iid with X �N X , 1 . In this case, the analysis of both 2 and 3 is exactlyi n
Žthe same as with the nonparametric bootstrap except that the asymptotic distribution in

.both equations holds in finite samples as well . Thus, this parametric bootstrap also is not
consistent.

The above counterexample to the nonparametric bootstrap generalizes to any estima-
tion problem in which the true parameter is on the boundary of the parameter space and

Ž .the parameter space is not locally equal to or locally approximated by a linear subspace
Ž Ž ..as defined in Andrews 1999 . The primary case where the latter occurs is with linear or
nonlinear equality constraints. If the parameter is on a boundary defined by linear or
nonlinear inequality constraints or mixed inequality�equality constraints, then the boot-

Žstrap is not consistent. For brevity, we do not provide the details. See Andrews 1998,
.1999 for general results providing the asymptotic distribution of extremum estimators,

including maximum likelihood estimators, minimum distance estimators, etc., when the
true parameter is on the boundary of the parameter space. Such results are needed to
demonstrate the inconsistency of the bootstrap in more general cases than the simple
example provided above.

Ž .Bickel and Freedman 1981, Sec. 6 list three conditions for the bootstrap distribution
of a statistic to be consistent in iid contexts. The first is weak convergence of the statistic
when X �G for all distributions G in a neighborhood of the true distribution F. Thei
second is uniform weak convergence over distributions G in a neighborhood of the true
distribution F. The third is continuity of the mapping from the underlying distribution G
to the asymptotic distribution of the statistic. Bickel and Freedman provide two coun-

Ž .terexamples to the bootstrap described in the Introduction that violate the second
condition, viz., uniformity. The counterexample given above violates the third condition,
viz., continuity.

4. ALTERNATIVES TO THE BOOTSTRAP

We now suggest four methods for obtaining consistent estimators of the asymptotic
1�2Ž .distribution of the normalized maximum likelihood estimator, n � �� , in the iidˆn
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Ž .N �, 1 counterexample given above. These methods are designed to be consistent
whether or not the true parameter is on the boundary. The methods generalize to the
problem of an arbitrary extremum estimator when the true parameter may be on the

Ž .boundary of the parameter space; see Andrews 1999 .
We note that none of the four methods consistently estimates the asymptotic distribu-

1�2Ž . 1�2tion of n � �� when the true mean is of the form � ���n for some ��0. Inˆn n n
1�2Ž .fact, it is impossible to consistently estimate the asymptotic distribution of n � ��ˆn n

Ž 1�2 . � 4or of n � in this case. The reason is that the asymptotic distribution is max Z, ��ˆn
Ž � 4 .or max Z��, 0 respectively and consistent estimation of this term would imply
consistent estimation of �, which is not possible when � ���n1�2.n

� 4The first method is based on tests. Let � : n�1 be a sequence of positive randomn
Ž .variables possibly constants that satisfies

1�2Ž . Ž Ž ..4 P lim � �0 and lim inf � n� 2 ln ln n �1 �1.n nž /n�� n��

1�2Ž . � 4If � �� , then we estimate the asymptotic distribution of n � �� to be max Z, 0 .ˆ ˆn n n
ŽOtherwise, we estimate the asymptotic distribution to be Z. Note that the � ’s could ben

chosen to be the critical values for a sequence of one-sided tests of H : ��0 versus H :0 1
Ž . .��0 whose significance levels converge to zero as n�� at a rate such that 4 holds.

This estimator of the asymptotic distribution is strongly consistent, because

Ž . Ž .5 P lim sup � �� �0ˆn nž /
n��

n
1�2�1�2Ž . Ž Ž ..�P lim sup max 2n ln ln n X , 0 �� n� 2 ln ln n �0Ý i n½ 5ž /ž /n�� i�1

0 if ��0,
� ½ 1 if ��0,

Ž .by the law of the iterated logarithm. Equation 5 also holds with the lim supn��

replaced by lim inf .n��

This method of estimating the asymptotic distribution can be generalized to the case of
an arbitrary extremum estimator with a parameter space that is defined by linear or
nonlinear inequality constraints by specifying a criterion for each inequality constraint to
assess whether it is binding or not. The method can be applied when the data are iid, as
well as when the data exhibit temporal dependence, including stochastic and determinis-

Ž .tic time trends. See Andrews 1999 for details.
The second method is a parametric bootstrap procedure in which the parameter

estimator used to generate the bootstrap, � , shrinks to the boundary of the parameter˜n
Ž .space. This is an application of an idea of Beran 1997, Corollary 2.1 . Define � �˜n
� �Ž . � 4 � 4 Ž .X 1 X �� , where � : n�1 are as above. Let X : i�n be iid with X �N � , 1 .˜n n n n i i n

Ž .By equation 5 , when ��0, � �X for n sufficiently large with probability one. And˜n n
when ��0, � �0 for n sufficiently large with probability one. In consequence, this˜n
parametric bootstrap is asymptotically correct for all ��0.

Ž .The third method is a subsample method introduced by Wu 1990 and extended by
Ž . Ž Ž ..Politis and Romano 1994 also see Bickel, Gotze, and van Zwet 1997 to cover cases¨

where the statistic of interest has some asymptotic distribution, not necessarily normal,
such as that which arises when the true parameter is on the boundary of the parameter
space. The method is applicable in iid contexts, as well as in stationary time series

Ž .contexts; see Politis and Romano 1994 . A random subsampling variant of the procedure
Ž .is also available; see Politis and Romano 1994, Sec. 2.2 .
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nŽ .The method is as follows. Let D , . . . , D denote the N � subsets of size m of1 N n mn
� 4X : i�1, . . . , n , ordered in any fashion. Let � denote the statistic � computedˆ ˆi m, j n

� 4using the data set D rather than X : i�1, . . . , n . The empirical distribution ofj i
� 1�2Ž . 4 1�2Ž .m � �� : j�1, . . . , N is used to estimate the distribution of n � �� . Theˆ ˆ ˆm, j n n n

Ž .empirical distribution function, denoted L x , is defined byn

Nn1
1�2Ž . Ž .L x � 1 m � �� �x .ˆ ˆŽ .Ýn m , j nNn j�1

Ž . Ž . Ž .Provided m�� and m�n�0, L x � F x as n�� for all x�R, where F xn p � �
1�2Ž .denotes the asymptotic distribution function of n � �� ; see Politis and Romanoˆn

Ž .1994, Theorem 2.1 . Under stronger conditions on m, the convergence holds with
probability one.

The fourth method is a variant of the bootstrap, called a rescaled bootstrap, in which
Ž .bootstrap samples of size m �n , rather than n, are employed. This method has been

used previously as a means of fixing the bootstrap in the U-statistic counterexample of
Ž . Ž .Bickel and Freedman 1981 by Bretagnolle 1983 , in the largest order statistic example

Ž . Ž .of Bickel and Freedman 1981 by Swanepoel 1986 , and in the sample mean with
Ž . Ž .infinite variance random variables counterexample of Babu 1984 ; see Arcones 1990 ,

who attributes the idea to an unpublished paper of Athreya. See Bickel, Gotze, and van¨
Ž .Zwet 1997 for further applications and analysis of this method.

1�2Ž � .The idea is to use the bootstrap distribution of m � �� to estimate theˆ ˆm n
� � � �1�2Ž . � 4 Ž .distribution of n � �� , where � �max X , 0 , X � 1�m Ý X , andˆ ˆn m m m i�1, . . . , m i

� � ˆ� 4X : i�m are iid with X �F . This variant of the bootstrap is consistent withi i n
Ž .probability one if m�� and m ln ln n �n�0 as n��. The reason is that

Ž . 1�2 Ž � .6 m � ��ˆ ˆm n

�1�2 1�2 1�2 1�2Ž . Ž .�max m X �X �m X �� , �m � �m � ��ˆ� 4Ž .m n n n

�1�2 1�2Ž . Ž .�max m X �X �o 1 , �m � �o 1� 4Ž .m n

Z if ��0d ˆ� 4� as n�� conditional on F : n�1 ,n½ � 4max Z, 0 if ��0

where the second equality holds with probability one by the law of the iterated logarithm
and the convergence in distribution holds by the central limit theorem for triangular
arrays of row-wise iid random variables.

Lastly, we note that the reason the one-sided test described in the Introduction has
ˆcorrect null rejection rate is that if ��0 and X �0, then � �0, t �0, and the testˆn n 1��

�1�2Ž .does not reject; whereas if ��0 and X �0, then � �X , n � �� �ˆ ˆ ˆn n n n n
�1�2� Ž . 4 ˆmax n X �X , �X , t converges in probability to the standard normal 1��n n n 1��

quantile, and the test rejects H with asymptotic probability � .0

Cowles Foundation for Research in Economics, 30 Hillhouse A�e., P.O. Box 208281, New
Ha�en, CT 06520-8281, U.S.A.
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