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A THREE-STEP METHOD FOR CHOOSING THE
NUMBER OF BOOTSTRAP REPETITIONS

BY DONALD W. K. ANDREWS AND MOSHE BUCHINSKY1

This paper considers the problem of choosing the number of bootstrap repetitions B
for bootstrap standard errors, confidence intervals, confidence regions, hypothesis tests,
p-values, and bias correction. For each of these problems, the paper provides a three-step
method for choosing B to achieve a desired level of accuracy. Accuracy is measured by
the percentage deviation of the bootstrap standard error estimate, confidence interval
length, test’s critical value, test’s p-value, or bias-corrected estimate based on B bootstrap
simulations from the corresponding ideal bootstrap quantities for which B��.

The results apply quite generally to parametric, semiparametric, and nonparametric
models with independent and dependent data. The results apply to the standard nonpara-
metric iid bootstrap, moving block bootstraps for time series data, parametric and
semiparametric bootstraps, and bootstraps for regression models based on bootstrapping
residuals.

Monte Carlo simulations show that the proposed methods work very well.

KEYWORDS: Bias correction, bootstrap, bootstrap repetitions, confidence interval, hy-
pothesis test, p-value, simulation, standard error estimate.

1. INTRODUCTION

BOOTSTRAP METHODS HAVE GAINED a great deal of popularity in empirical
research. Although the methods are easy to apply, determining the number of
bootstrap repetitions, B, to employ is a common problem in the existing
literature. Typically, this number is determined in a somewhat ad hoc manner.
This is problematic, because one can obtain a ‘‘different answer’’ from the same
data merely by using different simulation draws if B is chosen to be too small.
On the other hand, it is expensive to compute the bootstrap statistics of interest,
if B is chosen to be extremely large. Thus, it is desirable to be able to determine
a value of B that obtains a suitable level of accuracy for a given problem at
hand. This paper addresses this issue in the context of the three main branches
of statistical inference, viz., point estimation, interval and region estimation, and
hypothesis testing.

We provide methods for determining B to attain specified levels of accuracy
for bootstrap standard error estimates, confidence intervals, confidence regions,
hypothesis tests, and bias correction. The basic strategy is the same in each case.

1 The authors thank Ariel Pakes, three referees, and the co-editor for helpful comments; Glena
Ames for typing the original manuscript; and Rosemarie Lewis for proofreading the manuscript. The
first author acknowledges the research support of the National Science Foundation via Grant
Numbers SBR-9410975 and SBR-9730277. The second author acknowledges the research support of
the National Science Foundation via Grant Number SBR-9320386 and the Alfred P. Sloan Founda-
tion via a Research Fellowship.
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We approximate the distribution of the appropriate bootstrap statistic by its
asymptotic distribution as B��. Here we are referring to the distribution of
the statistic with respect to the simulation randomness conditional on the
sample. We replace unknown parameters in the asymptotic distribution by
consistent estimates. Then, we determine a formula for how large B needs to be
to attain a desired level of accuracy based on the asymptotic approximation. A
three-step method for choosing B is proposed for each case. Three steps are
required because one needs to estimate unknown parameters in the initial two
steps before one can determine a suitable choice of B in the third step.

The measure of accuracy employed is the percentage deviation of the boot-
strap quantity of interest based on B repetitions from the ideal bootstrap
quantity, for which B��. In particular, in the different applications considered,
accuracy is measured by the percentage deviation of a bootstrap standard error
estimate, confidence interval ‘‘length,’’ critical value of a test, p-value, or
bias-corrected estimate based on B repetitions from its ideal value based on
B��. For a symmetric two-sided confidence interval, the ‘‘length’’ is just the
distance between the lower and upper bounds of the interval. For a one-sided
confidence interval, the interval has an infinite length. In this case, the ‘‘length’’
that we consider is the lower or upper length of the interval depending upon
whether the one-sided interval provides a lower bound or an upper bound. By
definition, the lower length of a confidence interval for a parameter � based on a

ˆparameter estimate � is the distance between the lower endpoint of the
ˆconfidence interval and the parameter estimate � . The upper length is defined

analogously. For two-sided equal-tailed confidence intervals, we consider both
the lower and upper lengths of the confidence interval.

The accuracy obtained by a given choice of B is stochastic, because the
bootstrap simulations are random. To determine a suitable value of B, we
specify a bound on the relevant percentage deviation, denoted pdb, and we
require that the actual percentage deviation be less than this bound with a
specified probability, 1�� , close to one. The three-step method takes pdb and �
as given and specifies a data-dependent method of determining a value of B,
denoted B*, such that the desired level of accuracy is obtained. For example,

Ž . Ž .one might take pdb, � � 10, .05 . Then, the three-step method yields a value
B* such that the relevant percentage deviation is less than 10% with approxi-
mate probability .95.

The three-step methods are applicable in parametric, semiparametric, and
Ž .nonparametric models with independent and identically distributed iid data,

Ž .independent and nonidentically distributed inid data, and time series data. The
methods are applicable when the bootstrap employed is the standard nonpara-
metric iid bootstrap, a moving block bootstrap for time series, a parametric or
semiparametric bootstrap, or a bootstrap for regression models that is based on
bootstrapping residuals. The methods are applicable to statistics that have
normal and non-normal asymptotic distributions. Essentially, the results are
applicable whenever the bootstrap samples are simulated to be iid across
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different bootstrap samples. The simulations need not be iid within each
bootstrap sample.

The results for confidence intervals apply to symmetric two-sided, equal-tailed
two-sided, and one-sided percentile t confidence intervals, as defined in Hall
Ž . Ž .1992 . Efron’s 1987 BC confidence intervals are not considered. They area

Ž .considered in Andrews and Buchinsky 1999b . The results for tests apply to a
wide variety of tests of parametric restrictions and model specification based on
t statistics, Wald statistics, Lagrange multiplier statistics, likelihood ratio statis-
tics, etc.

We note that the results given here for bootstrap standard error estimates are
of interest even to those who believe that the bootstrap should only be used to
obtain confidence intervals or tests that exhibit higher-order accuracy. The
reason is that a bootstrap standard error estimate can be used to ‘‘Studentize’’ a
statistic in order to construct an asymptotically pivotal statistic that is the basis
of a bootstrap percentile t confidence interval or test. Calculating a bootstrap
confidence interval or test that employs a bootstrap standard error estimate to
Studentize the statistic requires that one does a nested bootstrap, which is
computationally intensive. Nevertheless, there are situations where this is the
best method to use.

For bootstrap standard error estimates, the three-step method depends on an
estimate of the coefficient of excess kurtosis, � , of the bootstrap distribution of2
the parameter estimator. We consider the usual estimator of � as well as a2
bias-corrected estimator of it. We compare these two methods via simulation in

Ž .Andrews and Buchinsky 1999a . Because the computational cost of carrying out
the bias correction is small and the gains are significant in some cases, we
recommend use of the bias-corrected estimator of � .2

The three-step methods are justified by asymptotic results. The small sample
accuracy of the asymptotic results is evaluated via simulation. We assess the
performance of the three-step methods for symmetric percentile t confidence
intervals. More comprehensive simulation results for the standard error esti-
mates, tests for a given significance level, and p-values are given in Andrews and

Ž .Buchinsky 1999a . In short, the simulations show that the methods work very
well in the cases considered.

The closest results in the literature to the standard error results given here
Ž .are those of Efron and Tibshirani 1986, Sec. 9 . Efron and Tibshirani provide a

simple formula that relates the coefficient of variation of the bootstrap standard
error estimator, as an estimate of the true standard error, to the coefficient of
variation of the ideal bootstrap standard error estimator, as an estimate of the
true standard error. Their formula depends on some unknown parameters that
are not estimable. Hence, Efron and Tibshirani only use their formula to
suggest a range of plausible values of B. An advantage of our approach over
that of Efron and Tibshirani is that the unknown parameters in our approach
can be estimated. This allows us to specify an explicit method of choosing B to
obtain a desired degree of accuracy.
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The closest results in the literature to the confidence interval results given
Ž .here are those of Hall 1986 . Hall considers unconditional coverage probabili-

ties, i.e., coverage probabilities with respect to the randomness in the data and
the bootstrap simulations. In contrast, we consider conditional coverage proba-
bilities, i.e., coverage probabilities with respect to the randomness in the data
conditional on the bootstrap simulations. We do so because we do not want to
be able to obtain ‘‘different answers’’ from the same data due to the use of
different simulation draws. Bootstrap simulation randomness is ancillary and,
hence, should be considered only when making inference according to the

Ž .principle of ancillarity or conditionality; see Kiefer 1982 .
The closest results in the literature to the results given here for tests with a

Ž .given significance level are those of Davidson and MacKinnon 1997 . They
propose a pretesting method of choosing B that aims to ensure that the
probability is small that there is a difference between the conclusions of the
ideal bootstrap test and the bootstrap test based on B bootstrap repetitions for
a test with a given significance level � . The method that we consider aims to
achieve a bootstrap test that has good conditional significance level and power
given the simulation randomness by determining an accurate critical value.
However, if desired, one can choose the bound pdb so that the method

Ž .considered here has the same goal as the Davidson and MacKinnon 1997
method.

No results in the literature other than this paper discuss choosing B for
p-values or for bias-correction. We prefer the use of bootstrap p-values over
tests with a given significance level because they are more informative.

The remainder of this paper is organized as follows. Section 2 presents the
general framework that is employed, introduces notation and definitions, and
describes the applications to which the results apply. Section 3 presents formu-
lae for the accuracy of the bootstrap estimator for finite B as an approximation
to the ideal bootstrap estimator for the applications of interest. This formula is
the basis of the three-step method for determining B. Section 4 introduces the
three-step method for determining B. Section 5 states its asymptotic justifica-
tion. Section 6 presents Monte Carlo simulation results for the three-step
method for symmetric two-sided confidence intervals. An Appendix discusses
the asymptotics used to justify the three-step method and provides proofs of the
results given in Sections 3 and 4. It also defines a bootstrap bias-corrected
estimator for the coefficient of excess kurtosis of the bootstrap estimator, which
is used in the three-step method for standard error estimates.

2. APPLICATIONS OF INTEREST

2.1. The General Framework

The general framework is as follows. We are interested in a quantity �. We
ˆwould like to estimate � using an ‘‘ideal’’ bootstrap estimate denoted � . In�

ˆgeneral, analytic calculation of � is intractable, so we approximate it using�
ˆbootstrap simulations. The bootstrap approximation of � based on B bootstrap�
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ˆ ˆ ˆrepetitions is denoted � . Below we specify �, � , and � for each of theB � B
applications of interest. Before doing so, we introduce some notation and
definitions.

Ž .The observed data are a sample of size n: X� X , . . . , X �. Let X*�1 n
Ž � � .X , . . . , X � be a bootstrap sample of size n based on the original sample X.1 n
When the original sample X is comprised of iid or inid random variables, the
bootstrap sample X* often is an iid sample of size n drawn from some

ˆ ˆdistribution F. For example, for the nonparametric bootstrap, F is the empirical
distribution function based on X. For parametric and semiparametric bootstraps,
F̂ depends on estimators of some parameters.

When the original sample X is comprised of dependent data, the bootstrap
sample often is taken to be a moving block bootstrap or some variation of this;

Ž . Ž . Ž .see Carlstein 1986 , Kunsch 1989 , Hall and Horowitz 1996 , Li and Maddala
Ž . Ž .1996 , and Andrews 1999 . When the model is a regression model with
independent or dependent data, the bootstrap sample is sometimes generated by

Ž . Ž .bootstrapping the residuals; see Freedman 1981 , Li and Maddala 1996 , and
the references therein. All of these bootstrap methods are covered by our
results.

ˆ Ž̂ .Let ��� X be an estimator of a parameter � based on the sample X. Let0
ˆ Ž̂ . Ž .� *�� X* denote the bootstrap estimator. Let T�T � , X be a test statistic0
based on the sample X for testing the null hypothesis H : ��� . Let T*�0 0

˜ ˜ ˆŽ .T � , X* be the bootstrap test statistic where ��� if X* is defined without
ˆimposing the null hypothesis, and ��� if X* is defined with the null hypothe-0

sis imposed.
� � 4Let X : b�1, . . . , B denote B iid bootstrap samples, each with the sameb

distribution as X*. We note that our results are applicable in any bootstrap
� � 4context in which the simulated bootstrap samples X : b�1, . . . , B are iid overb

�̂ ˆ � � ˜ �Ž . Ž .the index b. Let � �� X and T �T � , X , for b�1, . . . , B, denote theb b b b
� � 4corresponding B bootstrap estimators and test statistics. Let T : b�1, . . . , BB, b

denote the ordered sample of the bootstrap T statistics.
Let E denote expectation with respect to the randomness in X. Let P* and

E* refer to probability and expectation, respectively, with respect to the ran-
� � 4domness in the bootstrap samples X* or X : b�1, . . . , B conditional on theb

observed data X.
We now consider the applications of interest.

2.2. Standard Errors

The first application is to bootstrap standard error estimates for a scalar
ˆ ˆ ˆŽ .estimator � . The quantities �, � , � in this case are the standard error, se, of� B �

�̂ ; the ‘‘ideal’’ bootstrap standard error estimator, se ; and the bootstrap� �
standard error estimator based on B bootstrap repetitions, se ; respectively. SeeB
Table I for their definitions.� �

Note that lim se � se almost surely by the law of large numbers pro-B �� B �
ˆ 2Ž Ž ..vided E* � X* ��. The latter holds automatically for the nonparametric

bootstrap due to its finite support.
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TABLE I

ˆ ˆVALUES OF �, � , AND � FOR EACH APPLICATION� B

Ž .Quantity of Interest � ; and Bootstrap Quantity Based on
ˆ ˆŽ .Application Ideal Bootstrap Quantity � B Repetitions: �� B

1�2
2B B

1 1� � �2 1�2ˆ ˆ ˆ ˆŽ Ž Ž . Ž .. .1. Standard Errors se � E � X � E� X se � � � �B b cÝ ÝB� 1 Bž /ž /b�1 c�1�
2 1�2ˆ ˆŽ Ž Ž . Ž .. .se � E* � X* � E*� X*�

�0 � Ž . 42. Confidence Intervals, q � inf q : P T � q � 1 � � q � Tˆ1� � 1�� , B B , 	
� Ž . 4Confidence Regions, and Tests q � inf q : P* T * � q � 1 � � � 1 � � quantile of1̂� � , �

�� 4with a Given Significance Level T : b � 1, . . . , Bb
B

1
�Ž .3. p-values p � exact p-value p � 1 T � TˆB bÝB

b�1
Ž .p � P* T * � T�̂

B
1

�0ˆ ˆ ˆ ˆ ˆ ˆ ˆŽ .4. Bias Correction � � � � E� � � � � � � � � �b c 0 b c, B bÝBž /
b�1
B

1
� �ˆ ˆ ˆ ˆ ˆ ˆŽ .� � � � E*� � � � 2� � �b c, � bÝB

b�1

0 � � �Notes: q and q are the 1 � � quantiles of T and T * respectively. T is the 	 th order statistic of T :ˆ1� � 1�� , � B , 	 b
4 Ž .Ž .b � 1, . . . , B , where 	 is an integer that satisfies 	 � B � 1 1 � � .

2.3. Confidence Inter�als, Confidence Regions, and Tests

The second group of applications includes confidence intervals, confidence
regions, and tests for a given significance level � . In each case, the quantity � of

0 Ž .interest is the 1�� quantile, denoted q , of a test statistic T�T � , X for1�� 0
testing the null hypothesis H : ��� . The statistic T is normalized such that0 0
T� G as n��, where G is some distribution function that has a uniqued

1�� quantile, denoted q , and a density with respect to Lebesgue measure,1��

Ž .denoted g 
 , in a neighborhood of q . The distribution G may depend on1��

unknown parameters.
When T is an asymptotically pivotal test statistic, then the confidence level of

the bootstrap confidence interval or region based on T , or the significance level
of the bootstrap test based on T , typically exhibits higher order improvements
over the corresponding procedure based on the delta method; e.g., see Beran
Ž . Ž .1988 and Hall 1992 . When T is not asymptotically pivotal, such improve-
ments are not obtained.

ˆThe ideal bootstrap estimate � is the 1�� quantile of T*, denoted q .ˆ� 1�� , �

ˆIt is defined precisely in Table I. The bootstrap estimate � in this case is theB
� � 41�� sample quantile of T : b�1, . . . , B , denoted q . Following Hallˆb 1�� , B

Ž .1992, p. 307 , for the applications considered in this subsection, we choose B
Ž .not to be just any positive integer, but one that satisfies 	� B�1 �1�� for

some positive integer 	 . This has advantages in terms of the unconditional
coverage probability of the resultant confidence interval or region or the

Ž .unconditional significance level of the resultant test; see Hall 1992, p. 307 .
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Note that B can be chosen as such only if � is rational. We assume therefore
that
Ž .2.1 ��� ��1 2

Ž .for some positive integers � and � with no common integer divisors . Then,1 2
Ž .B�� h�1 and 	� � �� �h for some positive integer h. For example, if2 2 1

�� .05, then � �1, � �20, B�20h�1, and 	�19h for some integer h�0.1 2
In this case, B�19, 39, 59, etc.

� � 4For B as defined above q is the 	 th order statistic of T : b�1, . . . , B .1̂�� , B b
That is, q �T� .1̂�� , B B, 	

Table II provides a detailed specification of five applications in which
ˆ ˆ 0Ž . Ž .�, � , � � q , q , q for different choices of T. The five applica-ˆ ˆ� B 1�� 1�� , � 1�� , B

Ž .tions are: i symmetric two-sided percentile t confidence intervals of level
Ž . Ž . Ž100 1�� %, ii one-sided percentile t confidence intervals of level 100 1�

. Ž . Ž� %, iii equal-tailed two-sided percentile t confidence intervals of level 100 1
. Ž . Ž . Ž .�2� %, iv confidence regions of level 100 1�� %, and v tests for a given

significance level � . For each of these applications, Table II specifies the test
statistic T , the bootstrap test statistic T*, the ‘‘theoretical’’ statistical procedure,
the ideal bootstrap statistical procedure, and the bootstrap statistical procedure

TABLE II

CONFIDENCE INTERVALS, CONFIDENCE REGIONS, AND TESTS

Ž .Test Statistic T ; Theoretical Procedure;
and Bootstrap Ideal Bootstrap Procedure; and

�Ž .Application Test Statistic T Procedure Based on B Bootstrap Repetitionsb

� �� 0 �� 0ˆ ˆ ˆ� Ž . � � 	1. Symmetric Two-sided Percentile t n ��� �� J � ��n � q , ��n � qˆ ˆ ˆ0 S Y 1�� 1��

�� ��ˆ ˆ ˆ ˆŽ . � Ž . � �100 1�� % Confidence Intervals n � �� �� * J � ��n � q ,ˆ ˆˆb S Y , � 1�� , �

��ˆ 	��n � qˆ 1̂� � , �

��ˆ ˆ�J � ��n � q ,ˆˆS Y , B 1�� , B
��ˆ 	��n � qˆ 1̂� � , B

� �� 0ˆ ˆŽ . � .2. One-sided Percentile t n ��� �� J � ��n � q , �ˆ ˆ0 1 1��

�� ��ˆ ˆ ˆ ˆŽ . Ž . � .100 1�� % Confidence Intervals n � �� �� * J � ��n � q , �ˆ ˆˆb 1, � 1�� , �

��ˆ ˆ� .J � ��n � q , �ˆˆ1, B 1�� , B

� �� 0 �� 0ˆ ˆ ˆŽ . � 	3. Equal-tailed Percentile t n ��� �� J � ��n � q , ��n � qˆ ˆ ˆ0 2 1�� �

�� �� ��ˆ ˆ ˆ ˆ ˆŽ . Ž . � 	100 1�2� % Confidence Intervals n � �� �� * J � ��n � q , ��n � qˆ ˆˆ ˆˆb 2, � 1�� , � � , �

ˆ ˆ �� ˆ ��� 	J � ��n � q , ��n � qˆˆ ˆˆ2, B 1�� , B � , B
0Ž . Ž . � Ž . 44. 100 1�� % Confidence T � , X CR� � 

 : T � , X �q0 0 0 1���ˆŽ . � Ž . 4Regions T � , X* CR � � 

 : T � , X � q̂� 0 0 1�� , ��

� Ž . 4CR � � 

 : T � , X � q̂B 0 0 1�� , B
0Ž .5. Tests for a Given Significance T � , X Reject H if T�q0 0 1��

˜Ž .Level � T � , X* Reject H if T� q̂0 1�� , �

Reject H if T� q̂0 1�� , B

Notes: All quantities in the table are defined in Section 2.
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based on B repetitions. Note that for notational convenience we define the
equal-tailed two-sided percentile t confidence intervals to have confidence level

Ž . Ž .100 1�2� %, not 100 1�� %.
ˆThe three confidence interval applications are based on an estimator � of a

� ˆŽ .scalar parameter � . We assume that the normalized estimator n ��� has0 0
an asymptotic distribution as n��. In the leading case, the asymptotic distribu-
tion is normal. In many cases of interest, ��1�2. We allow for ��1�2,
however, to cover nonparametric estimators, such as nonparametric estimators

Ž .of a density or regression function at a point. Let ��� X denote a consistentˆ ˆ
� ˆ � �Ž . Ž .estimator of the asymptotic standard error of n ��� . Let � �� X forˆ ˆ0 b b

b�1, . . . , B.
For symmetric two-sided percentile t confidence intervals, the asymptotic

distribution of T in the leading case is that of the absolute value of a standard
Ž . Ž Ž . . Ž . Ž .normal random variable. That is, G x � 2� x �1 1 x�0 , where � x is the

standard normal distribution function, and q �z , where z denotes the1�� 1�� �2 �

� quantile of a standard normal distribution.
For one-sided percentile t and equal-tailed two-sided percentile t confidence

intervals, the asymptotic distribution of T in the leading case is a standard
Ž . Ž .normal distribution. That is, G x �� x and q �z .1�� 1��

For the equal-tailed percentile t confidence interval, we are actually inter-
ested in two population quantities �. The first is q0 . It determines the lower1��

endpoint of the confidence interval. The second is q0 . It determines the upper�
ˆ ˆŽ . Ž .endpoint. In the latter case, � , � � q , q , where q is the � quantileˆ ˆ ˆ� B � , � � , B � , �

� ˆ ˆ � � �̂Ž . � Žof T*�n � *�� �� * and q is the � sample quantile of T �n � �ˆ �̂ , B b b
ˆ �. 4 Ž .� �� : b�1, . . . , B . Given the choice of B such that 	� B�1 �1�� forˆb

some positive integer 	 , q �T� , where ��B�1�	 . That is, q is theˆ ˆ� , B B, � � , B
� � 4 Ž .� th order statistic of T : b�1, . . . , B . If B�� h�1, 	� � �� h, andb 2 2 1

��� �� for some positive integer h, then ��� h. For example, if �� .05,1 2 1
then B�20h�1, 	�19h, and ��h for some integer h�0.

The confidence region application is for a parameter �ector � . We consider0
confidence regions that are defined to be the set of parameter vectors � such0

Ž .that a test of H : ��� based on a test statistic T�T � , X fails to reject the0 0 0
null hypothesis. For this application, the test statistic T could be a Wald
statistic, a likelihood ratio statistic, a Lagrange multiplier statistic, etc. The
asymptotic distribution of T is G. In the leading case, G is a chi-squared
distribution with d degrees of freedom.

For the test application, the test statistic T could be a t statistic, the absolute
value of a t statistic, an overidentifying restrictions test statistic, a nonasymptoti-

Ž .cally pivotal statistic, such as Andrews’ 1997 conditional Kolmogorov test
statistic for testing the specification of a parametric model, or any of the test
statistics listed in the previous paragraph. In the leading cases, the asymptotic
distribution G of T is a normal distribution, the distribution of the absolute
value of a normal random variable, or a chi-squared distribution with d degrees
of freedom.



BOOTSTRAP REPETITIONS 31

We note that it is crucial for testing applications that the distribution of the
bootstrap statistic T* mimics the null distribution of T whether or not the null
is actually true. Otherwise, the bootstrap test will have poor power properties;

Ž . Ž .see Hall and Wilson 1991 , Hall and Horowitz 1996 , and Li and Maddala
˜Ž .1996 . More specifically, the bootstrap sample X* and � should be defined such

that the asymptotic distribution of T* conditional on the data is the asymptotic
Žnull distribution G with probability one with respect to the randomness in the

.data .

2.4. p-�alues

Here we consider a testing problem in which one wants to report a p-value. In
ˆ ˆŽ .this case, the quantities �, � , � of interest are the exact p-value, p; the ideal� B

bootstrap p-value, p ; and the bootstrap p-value based on B repetitions, p .ˆ ˆ� B
Table I provides the definitions of p and p .ˆ ˆ� B

We view the reporting of a p-value to be an efficient method of communicat-
Ž .ing the result of hypothesis tests for all significance levels �
 0, 1 . The use of

a bootstrap p-value exploits the higher-order improvements of the bootstrap
when T is asymptotically pivotal. This holds because the p-value can be used to
construct tests with given significance levels of interest and these tests possess
the higher order accuracy of bootstrap tests.

2.5. Bias Correction

ˆIn this application, the objective is to bias-correct an estimator � of a scalar
parameter � . The quantity � of interest is the exact bias-corrected estimate,0

ˆ0 ˆ ˆdenoted � . The quantities � and � are the ideal bootstrap bias-correctedbc � B
ˆestimator, denoted � , and the bootstrap bias-corrected estimator based on Bbc, �

ˆrepetitions, denoted � , respectively. The latter are defined in Table I.bc, B �
2ˆ ˆŽ .We assume in this application that 0� se �E* � *�E*� * ��.�

ˆ ˆ3. A FORMULA FOR THE ACCURACY OF � AS AN ESTIMATE OF �B �

In this section, we give a simple formula that provides a probabilistic
ˆ ˆstatement of how close � is to � as a function of the number of bootstrapB �

repetitions B. We are interested in this, because we want B to be sufficiently
ˆ ˆlarge that � is close to � . Otherwise, two researchers using the same data andB �

the same statistical method could reach different conclusions due only to the
use of different simulation draws.

ˆ ˆ ˆWe measure the closeness of � and � by the percentage deviation of �B � B
ˆfrom � :�

ˆ ˆ� �� ��B �Ž .3.1 100 .
�̂�
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Let 1�� denote a probability close to one, such as .95. Let pdb be a bound
ˆ ˆon the percentage deviation of � from � . We want to determine pdb�B �

Ž .pdb B, � such that

ˆ ˆ� �� ��B �Ž .3.2 P* 100 �pdb �1�� .ˆž /��

Ž .Alternatively, for given B and pdb, we want to determine ��� B, pdb such
Ž . Ž .that 3.2 holds. The function B�B pdb, � is considered in Section 4 below.

Ž . Ž .The approximate formulae we give for pdb�pdb B, � and ��� B, pdb are
based on the following asymptotic result:

1�2 ˆ ˆ ˆŽ . Ž .3.3 B � �� �� � N 0, � ,ž /B � � d

Žwhere � is defined in Table III for each of the applications of Section 2. Note
.that � , also specified in Table III, is defined in Section 4 below. This result1

ˆholds as B�� for fixed n in the applications in which � is a smooth functionB
of a sample average, viz., the standard error, p-value, and bias correction

ˆapplications, and as B�� and n�� in the applications in which � is aB
sample quantile, viz., the confidence interval, confidence region, and hypothesis

Ž .test applications. The proof of 3.3 and a discussion of the treatment of n as
fixed or as diverging to infinity is given in the Appendix.

Let � denote a consistent estimator of � based on the bootstrap samplesˆB
� � 4X : b�1, . . . , B . Table IV specifies � for each of the applications of Sec-ˆb B
tion 2.

Note that 1�g in the definition of � in Table IV for the confidenceˆ ˆB B
Ž .interval, confidence region, and tests applications is Siddiqui’s 1960 estimator

Ž Ž . Ž ..analyzed by Bloch and Gastwirth 1968 and Hall and Sheather 1988 of the
reciprocal of the density of T* with a plug-in estimator of the bandwidth

Ž . Žparameter, viz., m , calculated by Hall and Sheather 1988 . See Section 7.2.3ˆ B
of the Appendix for an explanation of why this estimator is suitable even if T* is

.discrete. To reduce the noise of the plug-in estimator, we take advantage of the
fact that we know the asymptotic value of the density and use it to generate our
estimators of the unknown coefficients in the plug-in formula.

In Table IV, the estimator � is used in the definition of � for theˆ ˆ2 B B
standard error application to estimate the coefficient of excess kurtosis � of2
�̂ *. Simulations show that � is downward biased, especially when B is small.ˆ2 B
In this case, it is preferable to use the bootstrap biased-corrected estimator �̂2 BR
defined in the Appendix. The latter is easy to compute no matter how difficult it

ˆis to compute � .
For confidence intervals, confidence regions, and tests for a given significance

level, the formula for � depends on c , which depends on the asymptoticˆB �

distribution G of the statistic T. Table IV provides a general formula for these
applications, as well as specific formulae that are obtained in the leading cases
for G.
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We note that a much simpler choice of � than the formulae given in TableˆB
IV for the confidence interval, confidence region, and test examples is simply
� ��. For large n this should work well, but for small n the formulae given inˆB

Ž .Table IV are much preferred based on the simulations we have run . The
reason is that � may differ substantially from the finite sample variance of

1�2 ˆ ˆ ˆŽ .B � �� �� , when n is not large and it is a good estimate of the finiteB � �
1�2 ˆ ˆ ˆŽ . Ž .sample variance of B � �� �� that is needed for the formulae of 3.4B � �

below to be accurate.
Ž . Ž .Using 3.3 , the relationship between B, pdb, and � that is defined by 3.2

satisfies the following approximate formulae:
1�2Ž .pdb�100 z � �B or, equivalently,˙ ˆ1�� �2 B

1�2Ž .��2 1�� pdb B�� �100 ,˙ ˆŽ .ž /B

Ž .3.4

Ž .where z and � 
 are the 1���2 quantile and distribution function,1�� �2
Ž .respectively, of the standard normal distribution. The formulae of 3.4 are

justified by the following asymptotic result:

ˆ ˆ� �� ��B � 1�2Ž . Ž .3.5 P* 100 �100 z � �B �1�� .ˆ1�� �2 Bˆž /��

Ž . Ž .As in 3.3 , equation 3.5 holds as B�� for fixed n in the examples in which
�̂ is a smooth function of a sample average and as B�� and n�� in theB

ˆexamples in which � is a sample quantile. See the Appendix for the proof ofB
Ž .3.5 .

Ž .We now illustrate how the formulae of 3.4 can be utilized. Consider the case
of a standard error, i.e., ��se. Suppose B has been specified, perhaps by the
author of some research paper of interest. We are interested in whether this

ˆ ˆchoice of B is sufficiently large to yield � close to � . Take 1�� close to one,B �

say .95. Then, z �1.96 and1�� �2

1�2Ž . ŽŽ . .3.6 pdb�98 2�� �B .˙ ˆ2 B

ŽFor example, if B�200 and � �0 which corresponds to the kurtosis of theˆ2 B
.normal distribution , then pdb�10. That is, with probability approximately .95,˙� � �

se is within �10% of se . Or, with probability approximately .95, se is withinB � �� ˆŽ Ž .�10% of se . The latter interpretation is valid because 3.5 holds with � in�B
ˆ .the denominator replaced by � . Alternatively, if B�200 and � �2, thenˆB 2 B

pdb�14. Next, suppose B�50. When � �0, we obtain pdb�20 and when˙ ˆ ˙2 B
� �2, we obtain pdb�28.ˆ ˙2 B

As a second example, consider a confidence interval. In this case, ��q0 .1��

Suppose n is quite large, so we can simply take � ��. Let �� .05. Then,ˆB

1�2Ž .� 1��
Ž .3.7 pdb�196 .˙ 2 2ž /Ž .g q q B1�� 1��
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Ž . Ž Ž . . Ž .When �� .05 and G x � 2� x �1 1 x�0 , which is the leading case for a
symmetric two-sided 95% confidence interval, this gives pdb�186�B1�2. If˙

Ž . Ž .B�339, then pdp�10.1. When �� .025 and G x �� x , which is the leading˙
case for an equal-tailed two-sided 95% confidence interval, this gives pdb�̇
267�B1�2. If B�339, then pdp�14.5.˙

4. A THREE-STEP METHOD FOR DETERMINING THE

NUMBER OF BOOTSTRAP REPETITIONS

We now specify a three-step method for determining B to achieve a desired
ˆ ˆ Ž .accuracy of � for estimating � . The desired accuracy is specified by a pdb, �B �

Ž .combination, such as 10, .05 .
Let � denote a preliminary estimate of the asymptotic variance � of1

1�2 ˆ ˆ ˆŽ . Ž .B � �� �� in 3.3 . Table III specifies � for each of the applications ofB � � 1
Section 2. The formulae for � for confidence intervals, confidence regions, and1
tests for a given significance level depends on G, the asymptotic distribution of
the test statistic T. Table III provides the general formula for these applications,
as well as the formulae for the leading cases for G. If G depends on unknown
parameters, the parameters can be replaced by consistent estimates in the
formula for � .1

The choice of � in Table III for standard errors is optimal for the case1
ˆwhere � * has a normal distribution. This is a suitable initial choice for �,

ˆ ˆbecause � * typically is asymptotically normal when � is asymptotically normal.
Nevertheless, the three-step procedure does not rely on this for its asymptotic
justification.

The choice of � in Table III for confidence intervals, confidence regions,1
and tests for a given significance level is based on the asymptotic distribution of
T* as n��. The choice of � for p-values is also based on the asymptotic1
distribution T* as n��. In both cases, the asymptotic distribution does not
need to be close to the finite sample distribution for the three-step method to
work well. The reason is that the initial value of � is used only to generate an1
initial value of B that is used, in turn, to obtain an improved value of � that

ˆreflects the finite sample distribution of � * or T*.
Ž .Let int a denote the smallest integer greater than or equal to a.

The three-step method is as follows:

STEP 1: Given � from Table III, compute1

Ž . 2 24.1 B � int 10,000 z � �pdbŽ .1 1�� �2 1

ˆor, if � is an � or 1�� sample quantile, computeB

Ž .4.2 B �� h �1,1 2 1

Ž 2 Ž 2 ..where ��� �� and h � int 10,000 z � � pdb � .1 2 1 1�� �2 1 2
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� � 4STEP 2: Simulate B bootstrap samples X : b�1, . . . , B and compute an1 b 1
improved estimate � of � using the formulae of Table IV with B replacedˆB1

by B .1

STEP 3: Compute

Ž . 2 24.3 B � int 10,000 z � �pdbˆž /2 1�� �2 B1

ˆor, if � is an � or 1�� sample quantile, computeB

Ž . 2 Ž 2 .4.4 B �� h �1, where h � int 10,000 z � � pdb � .ˆž /2 2 2 2 1�� �2 B 21

� 4Take the desired number of bootstrap repetitions to be B*�max B , B .2 1

Note that Steps 2 and 3 could be iterated with little additional computational
burden by replacing B in Step 2 by B , replacing B in Step 3 by B , and taking1 2 2 3

� 4B*�max B , B , B . In some cases, this may lead to finite sample properties3 2 1
that are closer to the asymptotic properties of the three-step procedure. In the
simulation results we have carried out, however, the finite sample properties of
the three-step procedure are quite close to its asymptotic properties even
without iteration.

Often one is interested in more than one standard error estimate, confidence
interval, etc. In such cases, there is more than one quantity � of interest.
Furthermore, in the equal-tailed two-sided confidence interval example, there
are always two quantities of interest: q0 and q0 .1�� �

� 4Suppose there are M�1 quantities � of interest, say � : j�1, . . . , M . Inj
�such cases, the three step method is carried out as follows. Given � : j�j1

4 � 41, . . . , M according to the formulae of Table III, one computes B : j�1, . . . , Mj1
� 4in Step 1. In Step 2, one takes B �max B : j�1, . . . , M and computes1 j1

� 4� : j�1, . . . , M according to the formulae of Table IV. In Step 3, one com-ˆ jB1
� 4 � 4putes B : j � 1, . . . , M using � : j � 1, . . . , M and takes B* �ˆj2 jB1

� 4 Ž .max B , B , . . . , B . Note that different values of pdb, � can be used for1 12 M 2
different value of j.

For tests with a given significance level, application of the three-step method
Ž .for given pdb, � delivers a choice of B that ensures that the bootstrap critical

value based on B repetitions is close to the ideal bootstrap critical value. As
Ž .suggested by Davidson and MacKinnon 1997 , in some cases, one may not want

a critical value that is accurate to a prespecified level, but rather, one may want
to choose B such that the outcome of the testing procedure is the same whether
one uses the critical value based on B repetitions or the ideal bootstrap critical
value. Of course, no finite choice of B can guarantee this. Instead, suppose we
want to choose B such that the probability of this occurring, 1�� , is quite high,
such as .99. That is, we want

Ž . Ž Ž . Ž ..4.5 P* 1 T�q �1 T�q �1�� .ˆ ˆ ˙1�� , B 1�� , �
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Ž � � � �The left-hand side equals P* 100 q �q �q �100 T�q �ˆ ˆ ˆ ˆ1�� , B 1�� , � 1�� , � 1�� , �

. � �q . In consequence, if pdb�100 T�q �q , then the three-stepˆ ˆ ˆ1�� , � 1�� , � 1�� , �

method delivers the desired choice of B. This choice of pdb is not feasible
because q is unknown.1̂�� , �

Instead, in the first and third steps of the three-step method, we suggest
taking

� � � � 4 4pdb�min max 100 T�q �q , � , � and1�� 1��

� �pdb �max 100 T�q �q , � ,ˆ ˆ½ 51 1�� , B 1�� , B1 1

Ž .4.6

respectively, in place of pdb, where ��0 and ��� are truncation bounds, such
as 1�2 and 25, that ensure that pdb lies in a reasonable interval, q is the1��

1�� quantile of G, the asymptotic distribution of T , and q �T� is1̂�� , B B , 	1 1 1
� � 4the 	 th sample quantile of T : b�1, . . . , B .1 b 1

5. ASYMPTOTIC JUSTIFICATION OF THE THREE-STEP METHOD

ŽThe justification of the three-step method is that as pdb�0 and n��
ˆ .when � is a sample quantile , we haveB

ˆ ˆ� �� ��B �2Ž .5.1 P* 100 �pdb �1�� .ˆž /��

Ž . Ž . Ž . Ž .Note that B depends on pdb in 5.1 via 4.3 or 4.4 . The proof of 5.1 and2
some innocuous additional assumptions under which it holds are given in the
Appendix.

Ž .Equation 5.1 implies that the three-step method attains precisely the speci-
fied accuracy asymptotically using ‘‘small pdb’’ asymptotics when ��� . If1

Ž��� , then B*�B �B with probability that goes to one as pdb�0 and1 1 2
ˆ ˆ.n�� when � is a sample quantile and the accuracy of � for approximatingB B*

ˆ Ž .� exceeds that of pdb, � . This is a consequence of the fact that it would be�

silly to throw away the extra B �B bootstrap estimates that have already been1 2
calculated in Step 2.

ˆ Ž .When � is a sample quantile, 5.1 holds as is, as well as with B replaced byB 2
B*. The reason is that ��� in this case.1

Because one normally specifies a small value of pdb, the asymptotic result
Ž .5.1 should be indicative of the relevant nonzero pdb behavior of the three-step
method. The simulation results of Section 6 are designed to examine this. We
note that the asymptotics used here are completely analogous to large sample
size asymptotics with pdb driving B to infinity as pdb�0 and B playing the2 2
role of the sample size.

When there are M�1 quantities of interest, the three-step method ensures
ˆ ˆthat the percentage deviation of � from � is less than pdb with probabilityjB j�

that is greater than or equal to 1�� for all j�1, . . . , M and equal to 1�� for
some j, asymptotically.
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6. MONTE CARLO SIMULATIONS FOR SYMMETRIC

TWO-SIDED CONFIDENCE INTERVALS

In this section, we evaluate the performance of the three-step method
introduced in Section 4 for the case of symmetric two-sided percentile t
confidence intervals. More extensive simulation results for standard errors,
symmetric two-sided confidence intervals, tests for a given significance level � ,

Ž .and p-values are reported in Andrews and Buchinsky 1999a .
Ž .The proposed three-step method is justified by the limit result of 5.1 . We

wish to see whether this limit result is indicative of finite sample behavior for a
range of values of pdb and � in a standard econometric model. More specifi-

ˆŽ . Ž �cally, given several pdb, � combinations, we want to see how close P* 100 �B2

ˆ ˆ� .�� �� �pdb is to 1�� . Since the limit result also holds with B replaced by� � 2
ˆ ˆ ˆŽ � � .B* in this application, we also want to see how close P* 100 � �� �� �pdbB* � �

is to 1�� .

6.1. Monte Carlo Experimental Design

The model we consider is the linear regression model

Ž . �6.1 y �x ��u for i�1, . . . , n ,i i i

Ž � . Ž . 6where n�25, X � y , x � are iid over i�1, . . . , n, x � 1, x , . . . , x �
R ,i i i i 1 i 5 i
Ž .x , . . . , x are mutually independent normal random variables, x is indepen-1 i 5 i i
dent of u , and Eu �0. The simulation results are invariant with respect to thei i

Ž .means and variances of x , . . . , x , the variance of u , and the value of the1 i 5 i i
regression parameter � , so we need not be specific as to their values. We

Ž Ž ..consider three error distributions: standard normal denoted N 0, 1 , t with five
Ž .degrees of freedom denoted t , and chi-squared with five degrees of freedom5

Ž 2 .shifted to have mean zero denoted � . These distributions were chosen in5
Ž 2 . Ž 2 .order to assess the effect of heavy tails t and � and asymmetry � on the5 5 5

performance of the three-step method.
Ž .We estimate � by least squares LS . We focus attention on the first slope

Ž .coefficient. Thus, the parameter � in this case is � the second element of � .2
The standard error estimator � is defined using the standard formula. That is,ˆ

2 Ž . 2Ž � .�1 2 Ž� is the 2, 2 term of the matrix � Ý x x �25 , where � �e�e� nˆ ˆ ˆu i�1, . . . , 25 i i u
.�6 and e is the vector of the LS residuals.

We simulate 250 different samples from each of the three error distributions.
ˆFor each of the 250 samples, we compute the LS estimate � and the standard

error estimate � . Then, we simulate q using 250,000 bootstrap repetitionsˆ 1̂�� , �

Ž .each of size 25 . We explicitly assume that 250,000 is close enough to infinity to
ˆaccurately obtain q . Given � , � , and q , we calculate the idealˆ ˆ ˆ1�� , � 1�� , �

ˆbootstrap symmetric confidence interval J defined in Table II for each ofS Y , �

the 250 samples and for each error distribution.
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Next, we run 2,000 Monte Carlo repetitions for each of the 250 samples for a
ˆtotal of 500,000 repetitions. In each Monte Carlo repetition, we compute J ,S Y , B2

Ĵ , q , and q , using the three-step method of Section 4. We makeˆ ˆS Y , B* 1�� , B 1�� , B*2
Ž . Žthis calculation for several combinations of � viz., .10 and .05 , pdb viz., 15%,

. Ž .10%, and 5% , and 1�� viz., .10 and .05 . For each repetition and each
Ž .� , pdb, � combination, we check whether q satisfies1̂�� , B*

� �q �qˆ ˆ1�� , B* 1�� , �Ž .6.2 100 �pdb,
q̂1�� , �

ˆŽ .or equivalently, whether L J satisfiesS Y , B*

ˆ ˆ� �L J �L JŽ . Ž .S Y , B* S Y , �Ž .6.3 100 �pdb,ˆL JŽ .S Y , �

ˆ ˆŽ .where L J denotes the length of J . We call the fraction of times thisS Y , B* S Y , B*
condition is satisfied, out of the 2,000 repetitions, the empirical le�el based on
B*. The empirical level based on B bootstrap repetitions is computed analo-2
gously. In addition, we compute the fraction of times that � falls within the

ˆconstructed confidence interval J . We call this fraction the empiricalS Y , B*
unconditional co�erage probability. The empirical unconditional coverage proba-
bility based on B bootstrap repetitions is defined analogously.2

The three-step method of Section 4 is considered to perform well if the
empirical levels based on B and B* bootstrap repetitions are close to 1�� .2

6.2. Monte Carlo Simulation Results

The results from this set of experiments are reported in Table V for the
Ž .N 0, 1 and t error distributions. The numbers reported in this table are5

averages over the 250 samples. The results for the � 2 error distribution are very5
Ž .similar to those given in Table V B for the t error distribution in terms of both5

the empirical levels obtained and the number of bootstrap repetitions B*
needed. These results show that the high skewness of the � 2 error distribution5
does not have any effect on the performance of the three-step method. For
brevity, we do not report these results.

Ž .Table V A shows that the empirical levels are somewhat higher than the
Ž .corresponding 1�� values for the experiments with the N 0, 1 error distribu-

Ž .tion. Nevertheless, with low pdb 5 , the empirical levels are quite close to their
asymptotic counterparts.

Ž .Table V A indicates that the performance of the three-step method is
determined by the number of bootstrap repetitions, B or B*, employed. The2
Ž .� , pdb, � combinations that yield the best results are those that induce a
relatively large number of bootstrap repetitions. Thus, the smaller the bound
pdb, the closer are the empirical levels to their asymptotic counterparts, and the
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TABLE V

MONTE CARLO SIMULATION RESULTS FOR SYMMETRIC TWO-SIDED CONFIDENCE INTERVALS

Ž .A. ERROR DISTRIBUTION N 0, 1

Empirical
1� � pdb 1 � � Level B B1 2

B* B Mean Med Min Max2

.90 15 .90 .946 .943 99 258 216 28 1,837

.90 10 .90 .924 .920 219 394 364 74 1,482

.90 5 .90 .907 .905 849 1,317 1,280 481 3,003

.90 15 .95 .970 .968 139 309 273 47 1,532

.90 10 .95 .960 .957 309 524 493 124 1,652

.90 5 .95 .952 .951 1,209 1,825 1,785 756 3,829

.95 15 .90 .952 .949 119 564 360 31 16,709

.95 10 .90 .947 .946 259 754 654 104 4,346

.95 5 .90 .915 .915 979 1,920 1,843 591 5,104

.95 15 .95 .989 .989 159 1,228 804 69 35,579

.95 10 .95 .969 .968 359 884 801 159 3,809

.95 5 .95 .955 .955 1,399 2,611 2,531 947 6,046

B. ERROR DISTRIBUTION t5

Empirical
1� � pdb 1 � � Level B B1 2

B* B Mean Med Min Max2

.90 15 .90 .945 .942 99 275 230 29 1,927

.90 10 .90 .924 .920 219 418 385 79 1,560

.90 5 .90 .908 .907 849 1,388 1,348 505 3,196

.90 15 .95 .969 .967 139 329 291 48 1,686

.90 10 .95 .959 .957 309 555 521 130 1,792

.90 5 .95 .953 .952 1,209 1,922 1,878 792 4,048

.95 15 .90 .950 .948 119 587 377 32 18,426

.95 10 .90 .947 .946 259 800 696 107 4,439

.95 5 .90 .917 .916 979 2,055 1,972 635 5,320

.95 15 .95 .989 .989 159 1,274 839 75 39,633

.95 10 .95 .969 .968 359 941 854 163 3,958

.95 5 .95 .957 .956 1,399 2,799 2,714 1,007 6,530

Note: The reported numbers are the averages over the simulations performed for 250 samples, each of which
consists of 25 observations. For each sample we carry out 2,000 Monte Carlo repetitions.

Ž .more so, the higher the 1�� value. For example, for the .10, 5, .10 combina-
Ž .tion, the median B* value is 1,348, while for the combination .10, 15, .10 , it is

only 230. As a result, the empirical level for the former case is .907, which is
quite close to .900, while for the latter it is .942.

Ž .Table V B reports the results from the Monte Carlo simulations with the t5
Ž .error distribution. The general picture revealed by Table V B is very similar to

Ž .that of Table V A . The empirical levels are comparable to those reported in
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Ž .Table V A . They are somewhat higher than their asymptotic counterparts. The
most pronounced difference between the two sets of experiments is that for all
Ž .� , pdb, � combinations, the number of bootstrap repetitions B* is larger for
the experiment with the t error distribution, but not by much. This indicates5

Ž .that even with a relatively small sample size 25 observations the bootstrap
distribution of T* with a fat-tailed t error distribution is not much different5

Ž .than with a N 0, 1 error distribution. Certainly, the bootstrap distribution of T*
based on t errors is far from being a t distribution.5 5

We conclude that the three-step method does pretty well in attaining the
desired accuracy of the confidence interval length in relation to its ideal
bootstrap counterpart. The three-step method is slightly conservative, because
the accuracy obtained is slightly greater than the nominal accuracy.

Lastly, we consider the empirical unconditional coverage probabilities. In all
cases, they are the same whether based on B or B* bootstrap repetitions. In2

Ž .Table V A , they equal .908 or .909 for all cases where �� .90 and .957 for all
Ž .cases where �� .95. In Table V B , they are in the range .900�.902 for all cases

where �� .90 and in the range .951�.953 for all cases where �� .95. Thus, the
empirical unconditional coverage probabilities are extremely close to their

Ž .asymptotic counterparts. This is consistent with Hall’s 1986 result that one
need not employ a large number of bootstrap repetitions in order to obtain good
unconditional coverage probabilities. Nevertheless, our results show that to
construct confidence intervals whose length and conditional coverage probability
are close to that of the ideal bootstrap confidence interval, one does need to
employ a relatively large number of bootstrap repetitions.
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APPENDIX

A BOOTSTRAP BIAS-CORRECTED ESTIMATOR OF �2

Here, we specify a bootstrap bias-corrected estimator of � , which can be used in the three-step2
procedure for choosing B for bootstrap standard errors. The iid sample of B bootstrap estimates of

� �̂ �̂Ž .� is 
 � � , . . . , � . By definition, � is the coefficient of excess kurtosis of the distribution of0 B 1 B 2
�̂ �̂ �̂Ž .� for any b�1, . . . , B. For present purposes, we think of � , . . . , � as being the original sampleb 1 B

and � as being an estimator based on this sample that we want to bootstrap bias correct.ˆ2 B
ˆ �̂ �̂Ž .Let G denote the empirical distribution of � , . . . , � . Consider R independent bootstrap1 B

�� �� �̂� �̂�� 4 Ž .samples 
 : r�1, . . . , R , where each bootstrap sample 
 � � , . . . , � is a random sampleB r B r 1 r B r
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ˆof size B drawn from G. The bootstrap bias-corrected estimator � of � for R bootstrapˆ2 BR 2
repetitions is

R1
��Ž .� �2� � � 
 , whereˆ ˆ ˆÝ2 BR 2 B 2 B rR r�1

4B B1 1
�� ��ˆ ˆ� � �Ý Ýbr crž /B�1 Bb�1 c�1��Ž .� 
 � �3.ˆ2 B r 22B B1 1

�� ��ˆ ˆ� � �Ý Ýbr crž /B�1 Bž /b�1 c�1

Ž .7.1

The computational requirements of � are quite modest. The estimator � requires thatˆ ˆ2 BR 2 BR
Ž �� .one simulate R bootstrap samples and calculate the simple closed form expressions for � 
 forˆ2 B r

Ž Ž . Ž ..r�1, . . . , R. For example, when B is 192 which corresponds to pdb, � � 10, .05 and R�400, the
computational time is only about four seconds using a Sun Sparc-20 computer. Note that the
computational requirements of � are the same no matter how difficult and time consuming theˆ2 BR

ˆcomputation of � is.

ASSUMPTIONS AND PROOFS

General Proofs

ˆLet ‘‘& n�� . . . ’’ abbreviate ‘‘and n�� when � is a sample quantile.’’ All of the probabilisticB
statements below refer to the bootstrap simulation randomness conditional on the sample X, unless
stated otherwise.

Ž .For each of the three applications, we show below that 3.3 holds and

Ž . Ž .7.2 � � � as B�� & n�� . . . .ˆB p

1�2 ˆ ˆ ˆ 1�2Ž . Ž . Ž . Ž .In consequence, B � �� � � � � N 0, 1 and 3.5 holds.ˆB � � B d
Ž .Next, 7.2 implies that the random number of bootstrap repetitions B satisfies2

Ž .B �B � 1 as pdb�0 & n�� . . . , where2 � p

B �10,000 z2 ��pdb2 .� 1�� �2

Ž .7.3

Ž . Ž .Note that B is nonrandom. For each of the applications, we use the proof of 3.3 plus 7.3 to�

establish that

1�2 ˆ ˆ ˆŽ . Ž . Ž .7.4 B � �� �� � N 0, � as pdb�0 & n�� . . . .Ž .2 B � � d2

Ž . Ž .Equation 7.2 , the fact that B is nonrandom, and B �� as pdb�0 & n�� . . . imply that1 1
Ž . Ž .� � � as pdb � 0 & n � � . . . . This result, 7.4 , and the substitution of pdb �ˆB p1

Ž .1�2 Ž . Ž .100 z � �B into 5.1 establishes 5.1 . The latter expression for pdb follows from theˆ1� � �2 B 21
Ž . Ž Ž . .definition of B in 4.3 ignoring the asymptotically negligible effect of the int 
 function .2

Ž . Ž . Ž .It remains to show that 3.3 , 7.2 , and 7.4 hold in each of the three applications.

Proofs for the Standard Error Application

�̂ 4Ž . Ž .Suppose E* � ��; then � � � as B�� by the weak law of large numbers and 7.2ˆ2 B p 2
ˆ 4 �̂Ž .holds. Note that E* � * �� always holds for the nonparametric bootstrap, because � has a

discrete distribution in this case.
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�

Ž .Next, we prove 3.3 . We rewrite se , defined in Table I, asB

1�22B B1 1� 2� �ˆ ˆŽ . Ž .Bse � � �� � � �� �m A , whereÝ Ýb b Bž /B Bž /b�1 b�1

B1 2�̂Ž .� ��Ý bB b�1 1�22Ž . Ž .A � and m a � a �aB 1 2B1
�̂� ��� 0Ý bB b�1

Ž .7.5

Ž .for a� a , a �.1 2

�
For convenience, we have replaced B�1 in the denominator of se by B. By the central limitB
theorem,

d1�2 Ž . Ž .B A �A � N 0, � as B��, whereB

2�2 3� 2� �ˆ ˆ2 Ž . Ž .E* � �� �se E* � ��Ž .b � bse�A� and �� .�ž / 3 20 �� 0ˆŽ .E* � �� seb �

Ž .7.6

�
1 2 �1�2Ž . Ž . Ž . Ž . Ž . Ž . Ž Ž . .We have ��� a m a � a �a 1, �2 a � and ��� a m A � 1� 2se , 0 �. The delta1 2 22 �

method now gives

� � d1�2 1�2Ž . Ž Ž . Ž .. Ž .B se �se �B m A �m A � N 0, V , whereB � B

�221 se�2 �2�̂Ž . Ž .V� E* � �� �se � 2�� .� Ž .b � 22 44se�

Ž .7.7

Ž .This establishes 3.3 .
Ž . Ž . Ž .Next, we prove 7.4 . Equations 7.6 and 7.7 hold with B replaced by B throughout and with�

Ž .the limit as B�� replaced by the limit as pdb�0 because the latter forces B �� . Now, by the�

central limit theorem of Doeblin�Anscombe for a sum of independent random variables with a
Ž Ž ..random number of terms in the sum e.g., see Chow and Teicher 1978, Thm. 9.4.1, p. 317 , because
Ž .B �B � 1 as pdb�0, the result of 7.6 holds with B replaced by B and with the limit as B��2 � p 2

Ž .replaced by the limit as pdb�0. In turn, this implies that 7.7 holds with the same changes, which
Ž .establishes 7.4 .

The Asymptotic Framework and Additional Assumptions for the Confidence Inter�al,
Confidence Region, and Test Applications

Ž .We start by discussing the reason for letting n�� as B�� or as pdb�0 in the asymptotic
ˆjustification for these applications. In these applications, � �q is a sample quantile based onˆB 1�� , B

an iid sample of random variables, each with distribution given by the bootstrap distribution of T*.
1�2Ž .If the bootstrap distribution of T* was absolutely continuous at q , then B q �qˆ ˆ ˆ1� � , � 1�� , B 1�� , �

would be asymptotically normally distributed as B�� for fixed n with asymptotic variance given by
Ž . Ž Ž ..2 Ž .� 1�� � f * q , where f * 
 denotes the density of T*. But, the bootstrap distribution ofq̂�� , �

ŽT* is a discrete distribution at least for the nonparametric bootstrap, which is based on the
. 1�2Ž .empirical distribution . In consequence, the asymptotic distribution of B q �q asˆ ˆ1� � , B 1�� , �

B�� for fixed n is a pointmass at zero for all � values except for those in a set of Lebesgue
Žmeasure zero. The latter set is the set of values that the distribution function of T* takes on at its

.points of support.
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Although T* has a discrete distribution in the case of the nonparametric iid bootstrap, its
distribution is very nearly continuous even for small values of n. The largest probability � of any ofn

n Ž .1�2 �nits atoms is very small: � �n!�n � 2� n e provided the original sample X consists of distinctn
Ž .vectors and distinct bootstrap samples X* give rise to distinct values of T* as is typically the case ;

Ž .see Hall 1992, Appendix I . This suggests that we should consider asymptotics as n��, as well as
B��, in order to account for the essentially continuous nature of the distribution of T*. If we do

1�2Ž .so, then B q �q has a nondegenerate asymptotic distribution with asymptoticˆ ˆ1� � , B 1�� , �

variance that depends on the value of a density at a point, just as in the case where the distribution
Ž .of T* is continuous. This is what we do. It is in accord with Hall’s 1992, p. 285 view that: ‘‘for many

practical purposes the bootstrap distribution of a statistic may be regarded as continuous.’’
We now introduce a requisite strengthening of the assumption that T� G as n��. Wed

� 4assume: For some ��0 and all sequences of constants x : n�1 for which x �q , we haven n 1��

Ž . Ž . Ž �� .P T�x �G x �O n as n�� andn nŽ .7.8
� Ž � . Ž . Ž �� .P T �x �G x �O n as n��.n n

ŽThe assumption on T* is assumed to hold with probability one with respect to the randomness in
Ž . .the data, i.e., with respect to P 
 .

Ž .Assumption 7.8 holds whenever the statistic T and the bootstrap statistic T* have one-term
Edgeworth expansions. The latter occurs in any context in which the bootstrap delivers higher order

Ž .improvements. The literature on the bootstrap is full of results that establish 7.8 for different
Ž . Ž .statistics T and T*. For example, see Hall 1992, Sec. 3.3 and Ch. 5 , Hall and Horowitz 1996 ,

� ˆŽ . � Ž . �Andrews 1999 , and references therein. For example, suppose T� n ��� �� , as is typical forˆ0
symmetric two-sided confidence intervals. When ��1�2 and � is an n1�2-consistent estimator ofˆ

ˆ �1 �2Ž . Žthe asymptotic standard error of � , then 7.8 typically holds with ��1. The n terms in the
Edgeworth expansions of T and T* typically are even functions of x and hence cancel out in then

�1 .Edgeworth expansions of T and T*, leaving the order of the first terms of the latter equal to n .
ˆŽ .One example where 7.8 holds with ��1�2 and ��1 is when � is a sample quantile and � is anˆ

Ž 1�2estimator of its asymptotic standard error which is not n -consistent because it involves the
. Ž .nonparametric estimation of a density at a point ; see Hall and Sheather 1988 and Hall and Martin

ˆŽ . Ž .1991 . When ��1�2, as occurs with nonparametric estimators � , then 7.8 typically holds with
Ž .��1; see Hall 1992, Ch. 4 and references therein.

� ˆŽ .As a second example, suppose T�n ��� �� , as is typical for one-sided and equal-tailedˆ0
two-sided confidence intervals. When ��1�2 and � is an n1�2-consistent estimator of theˆ

ˆ Ž .asymptotic standard error of � , then 7.8 typically holds with ��1�2.
To obtain the desired asymptotics in which q behaves like the sample quantile from a1̂� � , B

sample of continuous random variables, we cannot allow B�� or pdb�0 too quickly relative to
Ž . Ž .the speed at which n��. Thus, for 3.3 and 7.2 to hold, we require that

Ž . � 1�27.9 n �B �� as B�� and n��,

Ž . Ž .where � is as in 7.8 . Alternatively, for 7.4 to hold, we require that

Ž . �7.10 n �pdb�� as pdb�0 and n��.

These are both purely technical assumptions whose justification is that they yield good asymptotic
approximations.

Proofs for the Confidence Inter�al, Confidence Region,
and Test Applications

Ž .First, we prove 3.3 . We use an argument developed for proving the asymptotic distribution of
Ž .the sample median, e.g., see Lehmann 1983, Thm. 5.3.2, p. 354 .

We have: For any x
R,

Ž . Ž 1�2 Ž . . Ž � 1�2 .7.11 P* B q �q �x �P* T �q �x�B .ˆ ˆ ˆ1� � , B 1�� , � B , 	 1�� , �
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Let S be the number of T� ’s for b�1, . . . , B that exceed q �x�B1�2. We haveˆB b 1�� , �

Ž . � 1�2 Ž .7.12 T �q �x�B if and only if S �B�	�B�� 1�� .ˆB , 	 1�� , � B

Ž .The random variable S has a binomial distribution with parameters B, p , whereB B , n

Ž . Ž 1�2 .7.13 p �1�P* T*�q �x�B .ˆB , n 1�� , �

Ž .The probability in 7.11 equals

Ž . Ž Ž ..7.14 P* S �B�� 1��B

Ž .S �Bp B�� 1�� �BpB B , n B , n�P* � .1�2 1�2ž /Ž .Ž Ž .. Bp 1�pBp 1�p B , n B , nB , n B , n

Note that the random variable in the right-hand side probability has mean zero and variance one
Ž .and satisfies the conditions of the Lindeberg central limit theorem applied with B�� and n�� .

Ž .Using the assumption of 7.8 , we obtain

� Ž . 4 � Ž . 4 Ž .q � inf q : P* T*�q �1�� � inf q : G q �1�� �o 11̂� � , �

Ž . Ž .7.15 �q �o 1 as n�� and1� �

Ž 1�2 .p �1�P* T*�q �x�B �� as B�� and n��.ˆB , n 1, � , �

Ž .The upper bound in the right-hand side probability of 7.14 can be written as

1�2 Ž . Ž . 1�2B ��p � 1�� �BB , nŽ .7.16 w �B , n 1�2Ž Ž ..p 1�pB , n B , n

1�2 1�2ŽŽ Ž .. Ž .. Ž . Ž .� � 1�� �o 1 B ��p �o 1B , n

as B�� and n��. In addition, we have

Ž . 1�2 Ž . 1�2 Ž Ž 1�2 . Ž ..7.17 B ��p �B P* T*�q �x�B � 1��ˆB , n 1�� , �

1�2 Ž Ž 1�2 . Ž .. Ž .�B P* T*�q �x�B �P T�q �o 1ˆ ˆ1� � , � 1�� , �

1�2 Ž Ž 1�2 . Ž .. Ž .�B G q �x�B �G q �o 1ˆ ˆ1� � , � 1�� , �

1�2 Ž . 1�2 Ž .�B g � x�B �o 1B , n

Ž .�g q x as B�� and n��.1� �

Ž .The first equality of 7.17 holds by the definition of p . The second and third equalities hold byB , n
Ž . Ž . Ž 1�2 Ž � ..7.8 and 7.9 using the fact that the latter implies that B �o n . The fourth equality holds for
some � that lies between q �x�B1�2 and q by a mean value expansion, using theˆ ˆB , n 1�� , � 1�� , �

Ž . Ž . Ž .assumption that G 
 has a density g 
 in a neighborhood of q . The convergence result of 7.171� �

holds because � �q as B�� and n��.B , n 1��

Ž . Ž .Equations 7.16 and 7.17 give

1�2Ž . Ž . Ž Ž ..7.18 w �g q x� � 1�� as B�� and n��.B , n 1��

Ž . Ž . Ž . Ž .Equations 7.11 , 7.14 , and 7.18 plus the Lindeberg central limit theorem applied to 7.14 yield

1�21�2Ž Ž . . Ž Ž . Ž Ž .. .P* B q �q �x �� xg q � � 1�� andˆ ˆ1� � , B 1�� , � 1��

Ž .� 1��d1�2 Ž .B q �q � N 0,ˆ ˆ1� � , B 1�� , � 2ž /Ž .g q1� �

Ž .7.19

Ž .as B�� and n��, which implies that 3.3 holds, as desired.
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Ž .Second, we establish 7.2 . It suffices to show that

p pB 1
� �Ž . Ž .7.20 q � q and T �T �1̂� � , B 1�� B , 	�m B , 	�mˆ ˆž / Ž .2m g qˆ 1� �

Ž . Ž .as B�� and n��. The former holds by 7.15 and 7.19 . The latter is established as follows.
�1 Ž . � Ž . 4 Ž .For a distribution function F, define F t � inf x : F x � t . Let F 
 denote the distribu-T *

Ž . � 4 � 	tion function of T* conditional on the sample X . Let U : b�1, . . . , B denote iid uniform 0, 1b
� 4 � 4random variables. Let U : b�1, . . . , B denote the ordered sample of U : b�1, . . . , B . Then,B , b b

�1 Ž . � �1Ž . �F U has the same distribution as T and F U has the same distribution as T . It sufficesT * b b T * B , b B , b
to show that

pB 1
�1 �1Ž . Ž Ž . Ž ..7.21 F U �F U �T * B , 	�m T * B , 	�mˆ ˆž / Ž .2m g zˆ 1� �

as B�� and n��.
Ž .The left-hand side of 7.21 equals

�1 Ž . �1 Ž .F U �F U BT * � T * �Ž . Ž .7.22 U �U� �ž /ž /U �U 2m̂� �

�1 Ž . �1 Ž .F U �F UT * � T * � Ž Ž ..� 1�o 1pž /U �U� �

Ž .where U and U abbreviate U and U respectively. Equation 7.22 holds by the� � B , 	�m B , 	�mˆ ˆ
Ž . Žargument of Bloch and Gastwirth 1968, Pf. of Thm. 1 which relies on the fact that the spacings of

.the order statistics of uniform random variables have beta distributions . The first term in parenthe-
Ž .ses on the right-hand side of 7.22 equals

�1 Ž . �1 Ž .G U �G U� �Ž .7.23
U �U� �

1�3 Ž �1 Ž . �1 Ž .. 1�3 Ž �1 Ž . �1 Ž ..B F U �G U B F U �G UT * � � T * � �� � .1�3 1�3Ž . Ž .B U �U B U �U� � � �

Ž .The first summand of 7.23 satisfies

p p
U � 1�� , U � 1�� , and� �

Ž .7.24 �1 �1Ž . Ž . pG U �G U � 1 1� � �1 Ž .� G 1�� � ��1 Ž .Ž Ž ..U �U � x g qg G 1��� � 1��

Ž .as B�� and n��. The first two results of 7.24 hold by standard results for the sample quantiles
of iid uniform random variables. The third result follows from the first two results using the

�1 Ž .definition of differentiability of G 
 and an almost sure representation argument.
Ž . Ž .Next, we show that the second and third summands of 7.23 are o 1 . By the argument of Blochp

1�3Ž .and Gastwirth, referred to above, B U �U � 2c �0. Thus, it suffices to show that� � p �

p
1�3 �1 �1Ž . Ž Ž . Ž ..7.25 B F U �G U � 0 as B�� and n��T * � �

and likewise with ‘‘U ’’ replaced by ‘‘U ’’. The proofs of these two results are the same, so we just� �
prove the former.

Ž . 1�3 2 � �3 1�3 Ž 2 � �3.It suffices to prove 7.25 with B replaced by n because B �o n by the assump-
Ž . �1 Ž . Ž . Ž . Ž .tion of 7.9 . For any distribution function F, x �F t �x if and only if iff F x � t�F x ;1 2 1 2
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Ž .see Shorack and Wellner 1986, p. 5 . Thus, for any ��0,

2 � �3 �1 �1Ž . Ž . Ž .7.26 n F U �G U �� iffT * � �

�1 Ž . 2 � �3 �1 Ž . �1 Ž . �2 � �3G U �n ��F U �G U �n � iff� T * � �

Ž �1 Ž . �2 � �3 . Ž �1 Ž . �2 � �3 .F G U �n � �U �F G U �n � .T * � � T * �

We have

Ž . Ž �1 Ž . �2 � �3 .7.27 F G U �n �T * �

Ž Ž �1 Ž . �2 � �3 . Ž �1 Ž . �2 � �3 ..� F G U �n � �G G U �n �T * � �

Ž �1 Ž . �2 � �3 .�G G U �n ��

Ž �� . Ž Ž .Ž �2 � �3 ..�O n � U �g � �n �p � B , n

�U�

Ž . Ž .with probability that goes to one as B�� and n��. The second equality of 7.27 holds by i the
Ž . �1 Ž . �2 � �3assumption of 7.8 , the fact that G U �n �� q , and the use of an almost sure� p 1��

Ž . �1 Ž .representation argument and ii a mean value expansion, where � lies between G U �B , n �
�2 � �3 �1Ž . Ž .n � and G U and, hence, � � q . An analogous result with the inequality reversed� B , n p 1��

Ž �1 Ž . �2 � �3 . Ž .holds for F G U �n � . Hence, the right-hand side of 7.26 holds with probability thatT * �
Ž . Ž .goes to one, which establishes 7.25 , and the proof of the second result of 7.20 is complete. Thus,

Ž .7.2 holds, as desired.
Ž . Ž . Ž .Third, we use 7.3 and the above proof of 3.3 to establish 7.4 . We have: For any x
R,

Ž . Ž 1�2 Ž . . Ž � 1�2 .7.28 P* B q �q �x �P* T �q �x�B .ˆ ˆ ˆ� 1�� , B 1�� , � B , 	 1�� , � �2 2 2

Ž . �Note that we take the normalization factor to be B not B . Let S be the number of T ’s for� 2 B b2

b�1, . . . , B that exceed q �x�B1�2. We haveˆ2 1�� , � �

Ž . � 1�2 Ž .7.29 T �q �x�B iff S �B �	 �B �� 1�� .ˆB , 	 1�� , � � B 2 2 22 2 2

Ž .Thus, the probability in 7.28 equals

Ž . Ž Ž ..7.30 P* S �B �� 1��B 22

Ž .S �B p B �� 1�� �B pB 2 B , n 2 2 B , n2 � ��P* � .1�2 1�2ž /Ž Ž .. Ž Ž ..B p 1�p B p 1�p2 B , n B , n 2 B , n B , n� � � �

The random variable depending on S in the right-hand side probability is a normalized sum ofB2

independent random variables with a random number, B , of terms in the sum. By the central limit2
theorem of Doeblin-Anscombe, it has a standard normal asymptotic distribution as pdb�0 and

Ž .n��, because i it has a standard normal asymptotic distribution when B is replaced by the2
Ž . Ž .nonrandom quantity B and ii B �B � 1 as pdb�0 and n�� by 7.3 .� 2 � p

Ž . Ž . 1�2Now, in the present context, equations 7.15 � 7.18 hold with the following changes: p , B ,B , n
B��, and ‘‘� ’’ are replaced by p , B1�2, pdb�0, and ‘‘� ,’’ respectively, and the second andB , n 2 p�

Ž . Ž . Ž .third equalities of 7.17 hold by 7.8 and 7.10 using the fact that the latter and the definition of
1�2 Ž . � Ž Ž � .. Ž � . 1�2 Ž � .B imply that B �O 1�pdb �n O 1� pdb�n �o n and, hence, B �o n . The� � 2 p

Ž . Ž . Ž .revised 7.18 and 7.3 imply that the upper bound in the right-hand side of 7.30 converges in
Ž . Ž Ž ..1�2probability to g q x� � 1�� as pdb�0 and n��. This result and the result of the1� �

Ž . 1�2Ž . 1�2Žprevious paragraph combine to verify 7.19 with B q �q replaced by B qˆ ˆ ˆ1� � , B 1�� , � � 1�� , B2
. Ž . Ž .�q . In light of 7.3 , this establishes 7.4 , as desired.q̂� � , �

Lastly, we note that because ��� in this application, we have B �B , B �B � 1 as1 � 1 2 1 p
Ž . Ž .pdb�0 and n�� using 7.3 , B*�B � 1, the proof of 7.4 above goes through with B replaced� p 2

Ž . Ž .by B* throughout and 7.4 and 5.1 hold with B replaced by B*, as is claimed in Section 4.2
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Proofs for the p-�alue and Bias Correction Applications

First, by the central limit theorem for iid random variables,
1�2 Ž .B p �pˆ ˆ dB �Ž . Ž .7.31 � N 0, 1 and1�2Ž Ž ..p 1�pˆ ˆ� �

1�2 ˆ ˆŽ .B � �� dbc , B bc , � Ž .� N 0, 1 as B��,�
se� �

2ˆ ˆŽ . Ž .because p �P* T*�T does not equal zero or one by assumption and se �E* � *�E*� * is�̂ �

Ž .positive and finite by assumption. Hence, 3.3 holds. Second, by the law of large numbers for iid
ˆ ˆ Ž . Ž .integrable random variables, p � p and � � � as B��. So, 7.2 holds. Third, 7.31ˆ ˆB p � bc, B p bc, �

Žholds with B replaced by B and with the limit as B�� replaced by the limit as pdb�0 because�

.the latter forces B �� . By the central limit theorem of Doeblin-Anscombe, which holds using�

Ž . Ž .7.3 , the result of 7.31 holds with B replaced by B and with the limit as B�� replaced by the2
Ž .limit as pdb�0. Hence, 7.4 holds.
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