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Abstract

This paper develops consistent model and moment selection criteria for GMM
estimation. The criteria select the correct model specification and all correct moment
conditions asymptotically. The selection criteria resemble the widely used likelihood-
based selection criteria BIC, HQIC, and AIC. (The latter is not consistent.) The GMM
selection criteria are based on the J statistic for testing over-identifying restrictions.
Bonus terms reward the use of fewer parameters for a given number of moment
conditions and the use of more moment conditions for a given number of parameters.
The paper also considers a consistent downward testing procedure. The paper applies the
model and moment selection criteria to dynamic panel data models with unobserved
individual effects. The paper shows how to apply the selection criteria to select the lag
length for lagged dependent variables, to detect the number and locations of structural
breaks, to determine the exogeneity of regressors, and/or to determine the existence of
correlation between some regressors and the individual effect. To illustrate the finite
sample performance of the selection criteria and the testing procedures and their impact
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on parameter estimation, the paper reports the results of a Monte Carlo experiment on
a dynamic panel data model. © 2001 Elsevier Science S.A. All rights reserved.
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1. Introduction

Many econometric models are specified through moment conditions rather
than complete distributional assumptions. Examples are dynamic panel data
models with unobserved individual effects and macroeconomic models with
rational expectations. Such models are usually estimated using generalized
method of moments (GMM), see Hansen (1982). For consistency and asymp-
totic normality, this method relies on the correct specification of the model and,
given the model, on the specification of correct moment conditions. To date, no
procedures are available in the literature that consider the problem of selecting
the correct model and correct moment conditions in a GMM context.

In this paper, we introduce consistent model and moment selection criteria
(MMSC) and downward testing procedures that are able to select the correct
model and moments for GMM estimation with probability that goes to one as
the sample size goes to infinity. Our results apply to both nested and non-nested
models. Our results extend those of Andrews (1999), who considers the problem
of selection of correct moments given the correct model. Our results extend the
model selection literature, which considers model selection based on the likeli-
hood under full distributional assumptions, to GMM contexts. Our results
provide a model selection alternative to the non-nested tests for GMM models
considered in Smith (1992).

In the paper, we apply the MMSC and downward testing procedures to
dynamic panel data models. We show that these procedures can be used to
consistently select from a number of different specifications of the model and
moment conditions. The MMSC and testing procedures can be applied to
questions of lag length, existence of structural breaks, exogeneity of regressors,
and correlation between regressors and an unobserved individual effect. Of
course, in any one application, one would not want to try to use the data to
answer all of these questions simultaneously. To do so would result in very poor
finite sample behavior. Nevertheless, for theoretical purposes, we set up a gen-
eral model that incorporates all these questions and allows us to provide one set
of results that simultaneously covers the many restricted sub-models of interest.



D.W.K. Andrews, B. Lu | Journal of Econometrics 101 (2001) 123-164 125

We explore the finite sample properties of the MMSC and testing procedures
and their impact on parameter estimation via a Monte Carlo experiment based
on a restricted version of the general dynamic panel data model. In this model,
the true lag length of the lagged dependent variables is unknown. Furthermore,
it is not known whether a regressor is predetermined or strictly exogenous with
respect to the time-varying error component or whether the regressor is corre-
lated with the unobserved individual effect.

The MMSC that we consider resemble the widely used BIC, AIC, and HQIC
model selection criteria. (See Hannan and Quinn (1979) for the latter.) The
MMSC are based on the J test statistic for testing over-identifying restrictions.
They include bonus terms that reward the use of more moment conditions for
a given number of parameters and the use of less parameters for a given number
of moment conditions. The J statistic is an analogue of (minus) the log-
likelihood function and the bonus terms are analogues of (minus) the term that
penalizes the use of more parameters in a standard model selection criterion.

For illustration, we define the MMSC-BIC here. Setting different elements of
0 equal to zero yields different models. For example, in a model with lagged
dependent variables, setting different lag coefficients to zero yields models with
different numbers of lags. As a second example, suppose one has two competing
non-nested models with two corresponding parameter vectors and two sets of
GMM estimating equations. Then, the two parameter vectors can be stacked to
yield a single parameter 0. Setting the second parameter vector equal to zero
yields the first model and vice versa.

Next, let (b, ¢) denote a pair of model and moment selection vectors. That is,
b is a vector that selects some parameters from the vector 6, but not necessarily
all of them. And ¢ selects some moments, but not necessarily all of them. Let |b]
and |c| denote the numbers of parameters and moments, respectively, selected by
(b, ¢). Let J,(b, ¢) denote the J test statistic for testing over-identifying restric-
tions, constructed using the parameters selected by b and the moments selected
by c. Let 4% be the parameter space for the model and moment selection vectors
(b, ¢). Let n denote the sample size. Then, the MMSC-BIC criterion selects the
pair of vectors (b, ¢) in #% that minimizes

Ju(b, ¢) = (lc| — [b)) Inn. (1.1)

In Andrews and Lu (1999), we show that this criterion is the proper analogue of
the BIC model selection criterion in the sense that it makes the same asymptotic
trade-off between the ‘model fit” and the ‘number of parameters’.

The downward testing procedure considered here selects models and mo-
ments by carrying out J tests of over-identifying restrictions. The downward
testing procedure starts with the model/moment combinations with the most
number of over-identifying restrictions and tests the null hypothesis that all
moments under test have mean zero for some parameter value. The procedure
tests model/moment combinations with progressively fewer over-identifying
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restrictions until it finds one that does not reject the null hypothesis. This one is
the selected model/moment combination.

We now discuss the general dynamic panel data model considered in the
paper. The model does not assume specific distributions for the errors in
the model. Instead, following many papers in the recent literature, the model is
specified by a sequence of assumptions on the means and covariances of the
random variables that enter the model. These assumptions imply a sequence of
moment conditions that may be used for GMM estimation of the parameters.

The general dynamic panel data model that we consider nests as special cases
the models in Hausman and Taylor (1981), Anderson and Hsiao (1982), Bhar-
gava and Sargan (1983), Breusch et al. (1989), Arellano and Bover (1995), and
Ahn and Schmidt (1995). In addition, the model shares a common feature with
those in Chamberlain (1984) and Holtz-Eakin et al. (1988) in the sense that
coefficients can vary over time. The model also incorporates some novel features
by allowing for (i) potentially unknown lag length for the lagged dependent
variables, (ii) possible structural breaks in the parameters at unknown times,
(i11) regressors whose predetermined/strictly exogenous status is unknown, and
(iv) regressors whose correlation with the individual effect is not known to be
Zero or nonzero.

To evaluate the finite sample properties of the MMSC and testing procedures,
we conduct a Monte Carlo experiment on a dynamic panel data model that is
a restricted version of the general model. The consistent MMSC are shown to
have good performance in selecting the correct parameter vector and correct
moment conditions. Conducting model and moment selection has an impact on
parameter estimation. The post-selection GMM estimators can have much
lower biases, standard errors, and root mean squared-errors and more accurate
rejection rates than a standard GMM estimator without model and moment
selection. We find that the MMSC-BIC and downward testing procedures are
the best procedures in all cases considered except that with the smallest sample
size.

We now review the literature related to this paper. In addition to Andrews
(1999), the closest literature to the model and moment selection results of this
paper is that concerning likelihood-based model selection criteria. The AIC
criterion was introduced by Akaike (1969). The BIC criterion was introduced by
Schwarz (1978), Rissanen (1978), and Akaike (1977). The HQIC criterion was
introduced by Hannan and Quinn (1979). The PIC criterion was introduced by
Phillips and Ploberger (1996). Consistency, strong consistency, or lack thereof of
these procedures are established by Shibata (1976), Hannan (1980, 1982), and
Hannan and Deistler (1988), as well as some of the references above. The use of
model selection procedures in general non-linear models has been considered by
Kohn (1983), Nishii (1988), and Sin and White (1996). The effect of model
selection on post-model selection inference is considered by Potscher (1991),
Potscher and Novak (1994), and Kabaila (1995) among others. For the literature



D.W.K. Andrews, B. Lu | Journal of Econometrics 101 (2001) 123-164 127

on regressor selection, see Amemiya (1980), Potscher (1989), and references
therein.

Other literature related to this paper includes Kolaczyk (1995), who considers
an analogue of the AIC model selection criterion in an empirical likelihood
context, and Pesaran and Smith (1994), who consider an R2-type criterion that
can be used for model selection in linear regression models estimated by
instrumental variables.

In addition, the results of this paper are related to the test of Eichenbaum et al.
(1988) of whether a given subset of moment conditions is correct or not. They
propose a likelihood-ratio like test based on the GMM criterion function. The
results of this paper also are related to the literature on non-nested tests in
GMM contexts, see Smith (1992).

Gallant and Tauchen (1996) address the issue of selecting a small number of
efficient moments from a large pool of correct moments. This is a different
problem from that addressed here. Gallant et al. (1997) consider using t-ratios
for individual moment conditions as diagnostics for moment failure.

Our results for dynamic panel data models follow a long line of research in
econometrics. Early contributions including Mundlak (1961), Balestra and Ner-
love (1966), and Maddala (1971). More recently, static panel data models with
unobserved individual effects that may be correlated with some of the explana-
tory variables are studied in Hausman and Taylor (1981), Amemiya and
MaCurdy (1986), Breusch et al. (1989), and Keane and Runkle (1992). Dynamic
panel data models with unobserved individual effects are studied in Anderson
and Hsiao (1982), Bhargava and Sargan (1983), Chamberlain (1984), Holtz-
Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt (1995), Blundell
and Bond (1995), and Arellano and Bover (1995). The latter paper provides
a nice summary of many of the models that have been considered in the
literature.

The rest of the paper is organized as follows: Section 2 introduces the general
model and moment selection problem and defines the ‘correct’” model and
moment selection vectors. Section 3 introduces a class of model and moment
selection criteria and provides conditions for consistency of these criteria in
a general GMM context. Section 4 introduces the downward testing procedure
and provides conditions for consistency of this testing procedure. Section 5
specifies a general dynamic model for panel data and compares it to models in
the literature. Section 5 also provides an array of different restrictions on the
general panel data model, specifies the moment conditions implied by these
restrictions, and applies the model and moment selection procedures of
Sections 3 and 4 to this model. Section 6 evaluates the finite sample per-
formance of the model and moment selection procedures via Monte Carlo
simulation. In this section, a restricted version of the general dynamic panel
data model of Section 5 is used. Section 7 concludes. An Appendix contains
proofs.
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2. The model and moment selection problem
2.1. Introduction

We have an infinite sequence of random variables Z,, ..., Z,, ... drawn from
an unknown probability distribution P° (the data generating process) that is
assumed to belong to a class 2 of probability distributions. The class 2 allows
for the cases where the random variables are iid, inid, stationary and ergodic,
weakly dependent and non-identically distributed, etc. Let E° denote expecta-
tion under P°.

We have a random vector of empirical moments

G,(0):0 > R (2.1)

and a random r x r weight matrix W, both of which depend on {Z;: i < n}. The
parameter space @ is a subset of R?. Typically, the empirical moments are of the
form G,(0) = (1/n)Y -1 m(Z;, 0).

We assume that G,(0) converges in probability as n — oo to a function
G°(0) V0e O, VP°e 2. (A formal statement of assumptions is provided below.)
Usually, this holds by a weak law of large numbers (LLN) and G°(0) is the
expectation of G,(0) or its limit as n — oo. The superscript ‘0" on G°(0), and on
various other quantities introduced below, denotes dependence on P°.

In the standard GMM framework (which is not adopted here), one assumes
that the entire parameter vector 0 is to be estimated and that all ¥ moment
conditions are correct. By the latter, we mean that for some 0°€ ®, one has
G°(0°) = 0. To achieve identification, one assumes that 0° is the unique solution
to these equations. The parameter 0° is then called the ‘true’ value of 0. In this
case, the standard GMM estimator 0, of 6° is defined to minimize

G, (O)W,G,(0) over HeO. (2.2)

The GMM estimator 0, is consistent for 8° under minimal (and well-known)
additional assumptions.

Here, we consider the case where the parameter vector § may incorporate
several models. By setting different elements of 6 equal to zero, one obtains
different models. Two examples of this are given in the Introduction. As a third
example, consider a model that may have structural breaks in the parameters
(perhaps at some unknown time(s)). The vector 6 can include the pre-break
values of the parameter plus post-break deviations from the pre-break values.
Different sets of post-break deviations can denote changes at different times. If
the post-break deviations are set equal to zero, then one obtains the model with
no structural breaks.

We consider the case where not all of the moments in G,(0) are necessarily
correct. That is, it may be the case that there is no vector 0°e @ for which
G°(0°) = 0. This situation can arise for a variety of reasons. It clearly arises in the
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example of selecting between two non-nested GMM models mentioned in the
Introduction. In this case, G,(0) consists of the moments for the two models
stacked one on top of the other. In this case, one expects a priori that one set of
moments or the other is correct, but not both. Of course, this example extends to
the case of more than two non-nested models.

In addition, one may have some incorrect moments when G,(0) consists of
moments for a single model or nested models, but there is a hierarchy of
restrictions on the model(s). In such cases, some moment conditions may hold,
whereas others may not. For example, some moment conditions might hold if
certain variables are predetermined and an additional set may hold if, in
addition, the variables are strictly exogenous.

By allowing for incorrect moment conditions, as in Andrews (1999), we
provide a method of dealing with the common problem in empirical applica-
tions that the J test of over-identifying restrictions rejects the null hypothesis
that all moment conditions are correct.

Below we show that under certain assumptions it is possible to consistently
estimate the ‘correct’ model and the ‘correct’ moment conditions given suitable
definitions of ‘correct’. This allows one to construct a GMM estimator that
relies only on the correct model and moment conditions asymptotically, pro-
vided there are some over-identifying restrictions on the correct model.

2.2. Definition of the correct model and moment selection vectors

Let (b, c)e R? x R" denote a pair of model and moment selection vectors. By
definition, b and ¢ are each vectors of zeros and ones. If the jth element of b is
a one, then the jth element of the parameter vector 6 is a parameter to be
estimated. If the jth element is a zero, then the jth element of 0 is set equal to zero
and is not estimated. If the jth element of ¢ is a one, then the jth moment
condition is included in the GMM criterion function, whereas if the jth element
is a zero, it is not included. Let

S ={b,c)eR*xR"b;=00r 1 VI<j<p,¢=00r1VI<k<r,
where b = (by,...,b,) and ¢ = (cy, ..., )} (2.3)

Let |b| denote the number of parameters to be estimated given b, i.e.,
[b| =YP?_,b;. Let |c| denote the number of moments selected by ¢, ie.,
|c] = Ziz 1Ck-

Consider any p-vector 0, any r-vector v, and any (b, ¢)e & with ¢ # 0. Let
Oy denote the p-vector that results from setting all elements of 0 equal to zero
whose coordinates equal coordinates of elements of b that are zeros (i.e., O is
the element by element (Hadamard) product of 0 and b). Let v, denote the
|c|]-vector that results from deleting all elements of v whose coordinates equal
coordinates of elements of ¢ that are zeros. Thus, G,.(0) is the |c|-vector of
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moments that are specified by c. In sum, the subscript [b] sets some elements of
a vector equal to zero, whereas the subscript ¢ deletes some elements. For ¢ = 0,
let v. =0 (eR).

We now define the ‘correct’ model selection vector b° and the ‘correct’
moment selection vector c°. Let ¢%(0) be the r vector of zeros and ones whose jth
element is one if the jth element of G°(0) equals zero and is zero otherwise. Thus,
¢°(0) indicates which moments equal zero asymptotically when evaluated at the
parameter vector 0. Define

Z° ={(b, c)e F: ¢ = c°(0) for some 0O with 0 = O, }. (2.4)

As defined, 2°° is the set of pairs of model and moment selection vectors (b, ¢) in
& that select only moments that equal zero asymptotically for some 6 € @ with
0 = Oy, (The notation ‘Z” is meant to remind one of ‘zero under P?.) Define

MZO ={(b, c)e Z° |c| — |b] > |c*| — |b*| V(b*, c*)e Z°). (2.5)

As defined, .# Z°° is the set of selection vectors in Z° that maximize the number
of over-identifying restrictions out of the model and moment selection vectors in
Z°(The notation *.# % denotes ‘maximal over-identifying restrictions under
P?)

For given P°e 2, we consider the following assumption:

Assumption IDbc. .4 %° contains a single element (b°, c°).

When Assumption IDbc holds, we call b° the ‘correct’ model selection vector
and ¢° the ‘correct’ moment selection vector. The correct selection vectors
(b°, ¢°) have the property that they uniquely select the maximal number of
over-identifying restrictions out of all possible models and moment conditions.
Depending upon P°, Assumption IDbc may or may not hold. Below we analyze
the properties of model and moment selection procedures both when this
identification assumption holds and when it fails to hold.

When the maximum number of over-identifying restrictions is zero for any
model and any set of moment conditions, i.e., [c| — |b| < 0 for (b, ¢)e .# Z°, then
Assumption IDbc typically does not hold. The reason is that whenever there are
as many or more parameters |b| as moment conditions |c| there is usually some
|b]-vector 0y, € © that solves the |c] moment conditions G.(0p,;) = 0. Hence,
Z° typically contains multiple elements with |c| = |b|. In consequence, Assump-
tion IDbc typically requires one or more over-identifying restrictions for it to
hold. That is, it requires |c| > |b| for (b, ¢)e .4 Z°.

For the model corresponding to the model selection vector b, let Op,( < O)
denote the parameter space. By definition, @y, is the subset of vectors in @ that
have zeros for elements that correspond to the zeros in b.
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For distributions P° for which Assumption IDbc¢ holds, we consider the
following condition:

Assumption ID 0. There is a unique vector 6° € O, such that G*(6°) = 0.

When Assumption ID0 holds, we call 0° the ‘true’ value of 0. The true value
0° has the property that it sets the moment conditions selected by ¢° to be zero
and is the unique parameter vector in @pe; that does so.

Note that the standard GMM situation considered in the literature corres-
ponds to the case where .#%° = {(1,, 1,)} and Assumption ID6 is imposed,
where 1, and 1, denote p- and r-vectors of ones. In this case, Assumption IDbc
holds.

To obtain consistent estimators of (b°, ¢°) when Assumption IDbc holds, it
turns out that one does not need Assumption ID6 to hold. To obtain consistent
estimators of both (b°, ¢°) and 0°, however, one needs both Assumptions IDbc
and ID# to hold.

Next, we discuss Assumptions IDbc and IDO in the context of linear IV
estimation. Consider the iid linear regression model Y; = X;0* + U; for
i=1,...,n under P°, where E°U; = 0 and E°||X;|| < co. We consider the IVs
Z:€R", where A° = E°Z;X,eR"*? and p° = E°Z,U,; e R". The moments in this
case are G,(0) = %Z?:I(Y,- — X:0)Z; and the corresponding limit function is
G°0) = EXY; — X\0)Z; = p° — A°(0 — 0*).

Let b* (e R?) denote the selection vector that selects all of the elements of
0* that are not equal to zero. That is, the jth element of b* is one if the
corresponding element of 6* is non-zero and is zero otherwise. Let ¢* (e R")
denote the selection vector that selects all of the IVs that are not correlated with
the error U;. Thus, the jth element of ¢* is one if the corresponding element of
p° is zero and is zero otherwise. We assume that there are more good I'Vs than
parameters in the correct model, i.e., [c*| > |b*|. In this context, the correct
selection vector of regressors that enter the model is b*, the selection vector of
correct I'Vs is ¢*, and the parameter of interest is 0.

Of interest is the question: When do Assumptions IDbc and ID0 hold with
b° = b*, c® = ¢* and 0° = 0%7 It is easy to see that (b*, c*)e Z°. Let A). denote
the matrix 4° with the columns corresponding to zeros in b deleted and the rows
corresponding to zeros in ¢ deleted. Then, Assumption IDbc holds with (b°, c°)
= (b*, ¢*) if and only if p? is not in the column space of Ap. for any
(b, ¢) # (b*, c*) with || — |b| = |c*| — |b*|, where p0 # 0e R, 49, € R’ and
lc| > |b|. Only very special A° and p° matrices violate this condition. If the
former condition holds, then Assumption ID0 holds with 0° = 6* if and only if
Aps+ is full column rank b*. (This is true because G&(Opy) = Apse(Op — 035,
where 0, € R”" and 03 e R"")

We now return to the general case. If Assumption IDbc fails to hold for some
PP, then it is still possible to define a ‘correct’ vector (b°, ¢°) in some cases. For
given P°e 2, we consider the following assumption:
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Assumption IDbc2. /4 %° contains a single element (b°, ¢°) for which
|b°| = min{[b|: (b, c)e.4Z°}.

That is, if it exists, we can define (b°, ¢°) to be the unique selection vector that
provides the smallest parameterization of the model out of all selection vectors
that maximize the number of over-identifying restrictions. Depending upon the
circumstances, this may or may not be a suitable way of defining (b°, ¢°). Below,
we focus on the definition of (b°, ¢°) given in Assumption IDbc, but we indicate
results that apply when (b°, ¢°) is defined more generally by Assumption IDbc2.

2.3. The J-test statistic

All of the model and moment selection procedures considered below are
based on the J-test statistic used for testing over-identifying restrictions, see
Hansen (1982). We define this statistic here. The J-test statistic based on the
model selected by b and the moments selected by ¢ is defined to be

Jn(ba C) =n lnf Gnc(e[b])/Wn(ba C)Gnc(e[b])' (26)

O €O

Here, W, (b, c) is the |c| x |c| weight matrix employed with the moments G, (0p)
and the model selected by b. For example, W, (b, ¢) might be defined such that it
is an asymptotically optimal weight matrix when the moments selected by ¢ are
correct.? By definition, when ¢ = 0, W,(b, ¢) = 0 (e R).

The GMM estimator based on the model selected by b and the moments
selected by ¢ is defined to be any vector 0,(b, ¢)€ Oy, for which

Gue(0(b, )Y Wa(b, )Gre(0,(b, ©)) = inf Gye(0) W,(b, )Gpe(0). (2.7)

0Oy,

2 In this case, W, (b, c)is the inverse of an estimator, V,,(b, ¢), of the asymptotic covariance matrix,

V(c), of the moment conditions \/ZGM(HO)‘ We recommend that V,(b, ¢) be defined using the same
general formula for each pair of selection vectors (b, ¢) (to minimize the differences across vectors
(b, ¢)) and with the sample average of the moment conditions subtracted off. For example, in an iid
case with G,(0) = (1/n)Y.1- m(Z;, 0) and V(c) = Var(m.(Z;, 6°)), we recommend defining V', (b, c) as
follows:

12 ~ ~
Vn(b= C) = ;Z (mc(Zi’ ()n(b’ C)) - mnc(ﬁn(ba c)))(mc(zia On(bs C)) - mnC(gn(b» C)))/,

where m, (0) = (1/n)2§‘:1mc(Zi, 0) and 0,(b,c) is some estimator of 0°. In the case of temporal
dependence, sample averages can be subtracted off from a heteroskedasticity and autocorrelation
consistent covariance matrix estimator in an analogous fashion. Subtracting off the sample averages
is particularly important when some of the moment conditions are not correct.
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Thus, the J,(b, ¢) test statistic also can be written as
Ju(b, ¢) = nG,e(0,(b, ¢)) W,(b, ¢)Gne(0,(b, c)). (2.8)

2.4. The parameter space for the model and moment selection vectors

We consider estimation of (b°, ¢°) via an estimator that we denote generically
by (b, ¢). The parameter space for (b, ¢) is denoted by %% < .. We always
specify the parameter space 4% such that it includes some (b, ¢)e . with ¢ = 0.
This guarantees that the parameter space always includes at least one pair (b, ¢)
of selection vectors that does not select any incorrect moments (since it does not
select any moments at all). Note that the lack of any correct moments indicates
model misspecification.

The parameter space 4% should be a very much smaller set than .. Other-
wise, the finite sample behavior of (b, &) will be poor and computation will be
difficult. The parameter space 4% should exploit the information that many
parameters are known not to be zero and that many moment conditions are
known to be correct. It should also exploit the nested or hierarchical structure
that often exists with parameters (e.g., with lagged variables) and with moment
conditions (e.g., when blocks of moment conditions are either correct or incor-
rect block by block rather than moment condition by moment condition, see
Andrews (1999)).

2.5. Definition of consistency

All limits considered here and below are limits ‘as n — oo ”. Let * — ” denote
‘convergence in probability as n — oo ’. Let ‘wp — 1” abbreviate ‘with probability
that goes to one as n — o0,

We say that a moment selection estimator (b, &) e B% is consistent if

(b, & = (b°, ¢°) wp — 1 under P°, VP°e 2 that satisfy Assumption IDbc.
(2.9)

Because #% is finite, (b, &) = (b°, ¢®) wp — 1 is equivalent to the standard
(weak) consistency condition that (b, ¢) — ,(b°, c°).

We note that the above definition of consistency is stronger if Assumption
IDbc is replaced by Assumption IDbc2 in (2.9).

2.6. Performance when assumption IDbc fails

Below we analyze the behavior of the model and moment selection proced-
ures introduced below in the case where Assumption IDbc does not hold. For
this purpose, we make the following definitions. Define

BCL° = BENZC. (2.10)
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As defined, #% % ° is the set of selection vectors in the parameter space #% that
select only models and moments that equal zero asymptotically for some
parameter vector. Define

. = {(b, ) BECL®: |c| — |b] > |c*| — |b*| V(b*, c*)e BEZXC).
(2.11)

As defined, .# %% %° is the set of selection vectors in #€%° that maximize the
number of over-identifying restrictions out of selection vectors in #€%°. We
show below that for many moment selection procedures discussed below
(b, &)e MBEZ° wp — 1 whether or not Assumption IDbc holds. That is, for
these procedures, with probability that goes to one as n — oo, (b, &) lies in the set
of selection vectors that maximize the number of over-identifying restrictions out
of all selection vectors in the parameter space 4% that select only moments that
equal zero asymptotically for some parameter vector.

2.7. Basic assumption

We now state the basic assumption under which the results below hold. This
assumption holds quite generally.

Assumption 1. (a) G,(0) = G°(0) + O,(n~ %) under P° V0e® <= R” for some
R"-valued function G°(-) on @, VP°e 2.

(b) W,(b, ¢) > ,W°(b, ¢) under P, for some positive definite matrix W(b, c)
Y(b, c)e B€, VP, P

(©) infpeqy, Gue(0) Wi(b, €)Ge(0) — pinfyeq, GI(OY WO(b, A)GL(0) = GL(O%Y Wb, c) x
G2(0*) under P° for some 0* € @, that may depend on ¢ and P°, V(b, c¢)c %%,
VPe2.

Assumption 1(a) typically holds by a central limit theorem (CLT) with G°(0)
equal to the expectation of G,(0) or its limit as n - oo, because G,(0) is often
a sample average. Assumption 1(b) is a standard condition used to obtain
consistency of GMM estimators. It is satisfied by all reasonable choices of
weight matrices W, (b, c).

Assumption 1(c) is implied by Assumption 1(b) and the following:
G,(0) > ,G°(0) uniformly over 0 € @ under P° for G°(-) as in Assumption 1(a),
G°(0) is continuous on @, and @,; = R” is compact for all b such that (b, ¢)e €
for some ¢, VP° e 2. The first two of these three conditions can be verified using
a generic uniform convergence result, such as a uniform weak LLN, e.g., see
Andrews (1992). Alternatively, when the moments are linear in 6, Assumption
1(c) typically holds under almost the same conditions as Assumption 1(a),
because the ‘infima over 0 e O, can be calculated explicitly. In the linear case,
the parameter spaces @, can be unbounded.
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For illustrative purposes, we provide a sufficient condition for Assumption 1
for the case of stationary data. This condition is not very restrictive. (The proof
of sufficiency is given in Andrews (1999).) Let || B|| denote the Euclidean norm of
a vector or matrix, i.e., ||B|| = (tr B'B)'/%.

Assumption STAT. (a) {Z;:i= ..., 0, 1,...} is a doubly infinite stationary and
ergodic sequence under P°, VP%e 2.

(b) G,(0) = (1/n)Y 1= m(Z;, 0) and m(z, ) is continuous in 6 on O for all z in
the support of Z;.

(c) E%llm(Z;, ) < oo and Y72 (E|Em(Z;, 0).F ;- )I*)'* < w0 VOeO,
VP°e 2, where Z; denotes the o-field generated by (..., Z;_1,Z;).

(d) Either (i) @y = R” is compact for all b such that (b, c)e #% for some ¢
and E°supy.e ||m(Z;, 0)]] < oo YP°e 2 or (ii) m(z, 0) = my(z) + m,(2)0 VOO,
where m;(z)e R" and m,(z) e R"*?, and O, = {0Ob: 0 € R"} for all b such that
(b, c)e B% for some ¢, where ‘©’ denotes element by element product.

(e) Assumption 1 (b) holds.

Note that the leading example where the moments are linear in 6 and
Assumption STAT(d) part (ii) holds is the linear IV estimator of the linear model
Y; = X.0%* + U; with IV vector Z;eR". In this case, the moments are
G,(0) = (1/”)2?:1 (Y: — Xi0)Z; = my(Z;) + my(Z,)0, where my(Z;) = Y, Z,eR’,
my(Z)= —Z;X;eR*? and Z; = (Y;, X}, Z,).

3. Model and moment selection criteria

Here we introduce a class of model and moment selection criteria (MMSC)
that are analogous to the well-known model selection criteria used for choosing
between competing models. They extend the moment selection criteria of An-
drews (1999) to allow for simultaneous model and moment selection.

The MMSC estimator, (byusc, ¢wmusc), is the value that minimizes

MMSC, (b, ¢) = J,(b, ¢) — h(|c| — |b)x, (3.1)
over #%. The function h(-) and the constants {x,: n > 1} in the definition of

MMSC, (b, ¢) are specified by the researcher. They are assumed to satisfy:

Assumption MMSC. (a) h(-) is strictly increasing.
(b) k, = oo and k, = o(n).

Given Assumption MMSC, h(|c| — |b))x, is a ‘bonus term’ that rewards
selection vectors (b, ¢) that utilize more over-identifying restrictions. This term
is necessary to offset the increase in J,(b, ¢) that typically occurs when
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over-identifying restrictions are added even if they are correct over-identifying
restrictions. Assumption MMSC(b) implies that the bonus given for more
over-identifying restrictions increases without bound as the sample size n increases.

It is always possible to specify MMSC for which Assumption MMSC holds,
because the researcher chooses h(-) and {x,: n > 1}.

Now we introduce three examples of MMSC. These are analogues of the BIC,
AIC, and HQIC criteria developed for model selection. We refer to them as the
MMSC-BIC, MMSC-AIC, and MMSC-HQIC criteria. In each case, they take
h(x) = x. They are defined by

MMSC-BIC: k, = Inn and MMSCgc (b, ¢) = J,(b, ¢) — (Ic| — |b])Inn,
MMSC-AIC: k, = 2 and MMSChyic. (b, ¢) = J,(b, ¢) — 2(|c| — |b]),
MMSC-HQIC: x, = QInlnn for some Q > 2 and

MMSChoic,a(b, ¢) = J,(b, ¢) — Q(c| — |b))Inlnn.  (3.2)

The MMSC-BIC and MMSC-HQIC procedures satisfy Assumption
MMSC. The MMSC-AIC procedure does not satisfy Assumption MMSC(b)
because k, = 2-> o0. Thus, the MMSC-AIC procedure is not consistent. For
brevity, we do not prove this here. The proof is similar to the proof of the lack of
consistency of the AIC model selection procedure, see Shibata (1976) and
Hannan (1980, 1982). The MMSC-AIC procedure has positive probability even
asymptotically of selecting too few over-identifying restrictions.

Consistency of (bywsc, emmsc) is established in the following theorem.

Theorem 1. Suppose Assumptions 1 and MMSC hold. Then,

() (Pamscs Enmsc) €M BE%° wp — 1, VP e 2,

(b) for all P°eP for which Assumption IDbc holds, (bymsc, eamsc) = (b°, ¢)
wp — 1 iff (b°, c°)e B%E, and

(©) (bymisc, Ewwisc) is consistent iff for all P°e P for which Assumption 1Dbc
holds, we have (b°, c°)e #%.

Comment. 1. Part (a) is a robust result that specifies the asymptotic behavior of
(bamses Emwse) for all P%e 2, not just for P° for which Assumption IDbc holds.
Note that if #/BCX° M Z° # 0, then (bymsc, Evmsc) € -4 % ° wp — 1, VP° e 2.
The result of part (a) is analogous to results concerning the behavior of
extremum estimators when the standard identification condition fails.

2. Theorem 1 is analogous to Theorem 1 of Andrews (1999). Theorem 1(b) is
similar to Theorem 3 of Hannan (1980) for (weak) consistency of model selection
criteria for lag selection in ARMA models.

3. Over-rejection of the J test in finite samples (see the July 1996 issue of the
Journal of Business and Economic Statistics) affects the MMSC only if the amount
of over-rejection differs for different selection vectors (b, c¢).
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4. The proof of Theorem 1 is given in the Appendix of Proofs.

5. Suppose that consistency is defined with Assumption IDbc replaced by
Assumption IDbc2. Then, a consistent MMSC can be obtained by adding
a penalty term h, (|b|)x,, to the definition of MMSC, (b, ¢) in (3.1), where h, () is
a strictly increasing function, x,, — o0, and x,, = o(x,).

4. Downward testing procedure

The downward testing (DT) procedure considered in this section is a model
and moment selection procedure that formalizes the procedure that empirical
researchers often use in a less formal fashion. Two advantages of considering
a precisely specified model and moment selection procedure are that (i) sufficient
conditions for consistency can be established and (ii) the effect of selection on
post-selection statistical inference can be assessed, e.g., via simulations.

We consider tests based on the statistic J,(b, ¢). Starting with vectors
(b, c)e %% for which |c| — |b] is the largest, we carry out tests with progressively
smaller |c| — |b| until we find a test that does not reject the null hypothesis that
the moment conditions considered are all correct for the given model b. (Note
that for each value of |c| — |b|, tests are carried out for each (b, c) e #% with this
value of |¢| — |b|.) Let kpy be the value of |¢| — |b| for the first test we find that
does not reject. (There is such a first test because the J test statistic based on
(b, ¢) with ¢ = 0 equals zero.) Given kpy, we take the downward testing es-
timator (bpr, ¢pr) of (b° ¢°) to be the vector that minimizes J,(b, ¢) over
(b, ¢)€ #% with |c| — |b| = kpy. This is the downward testing model and moment
selection procedure.

Note that, for a given number of moments, the downward testing model and
moment selection procedure progresses from the most restrictive model to the
least restrictive. This contrasts with a downward testing model selection proced-
ure in which the largest parameter vector, and hence the least restrictive model,
is considered first. Upward testing model selection procedures, which are ana-
logous to downward testing model and moment selection procedures, are
referenced in Amemiya (1980) and Pd&tscher (1989).

We now define kpy and (hpr, épr) more precisely. Let Ynx > 0 denote the
critical value employed with the test statistic J,(b, ¢) when |c| — |b| = k and
the sample size is n. In the recommended case where J,(b, ¢) is constructed
using an asymptotically optimal weight matrix, J,(b, ¢) has an asymptotic
chi-square distribution with |c| — min(|b], |c|) degrees of freedom when all
moment conditions in ¢ are correct given the model selected by b.? In this case,

3For conditions under which this result holds, see Hansen (1982) for the case of moment
conditions that are smooth in 6 and Andrews (1997) for the case of moment conditions that may be
non-differentiable and/or discontinuous.
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one takes

Puk = 1R (%) (4.1)

for values of k > 0, where y7(x,) denotes 1 — a, quantile of a chi-squared
distribution with k degrees of freedom.

Let kpre{—p,—p+ 1,...,r} be such that ming, oese: (e b=k Ju(bs €) >
Yok Yk >kpr  with ket = {|c| — |bl: (b, )€ BE},  MiNG eeneiiel— b] = fior
Ju(b,c) < Vnfoor> gnd kpredt . Define (bpr, ¢pr) to be any vector in Z% for which
|§DT| — |bpr| = kpr and J,(bpr, Cpr) = MiNe oews: |- (b =kor Jn(bs ©). In words,
kpr is the greatest number of over-identifying restrictions for which some
Ju(b, ¢) test does not reject for some (b, c)e #%. Given kor, (bor, épr) is the
vector that minimizes J,(b, ¢) over vectors (b, ¢)e % with |c| — |b| = kpr.

For consistency of (bpr, épr), We assume the critical values Vi Satisfy:

Assumption T. 9, — oo and y,, = o(n) Vke A

Assumption T holds if {y, ,: k€ # "} are defined as in (4.1) with the significance
level o, satisfying o, — 0 and Ina, = o(n) (see Theorem 5.8 of P6tscher (1983)).
For example, the latter condition holds if «, > A, exp( — A,n), for some
0<,—>0and 1, > 0.

Consistency of (bpr, ¢pr) is established in the following theorem.

Theorem 2. Suppose Assumptions 1 and T hold. Then,

(@) (bor, epr)eMBEZ° wp —> 1, VP e P,

(b) for all P° € 2 for which Assumption IDbc holds, (bpr, ¢nr) = (b°, ¢®) wp — 1
iff (b°, c®) e BE, and

() (bor, épr) is consistent iff for all P° € P for which Assumption IDbc holds, we
have (b°, c°) e #%.

Comment. 1. Theorem 2 is similar to Theorem 2 of Andrews (1999) for consist-
ency of downward testing moment selection procedures and Theorem 5.7 of
Potscher for consistency of upward LM tests for lag selection in ARMA
models.

2. The testing procedure (bpy, ¢pr) determines when there are no over-identi-
fying restrictions, just as (Pymsc, emmsc) does.

3. Over-rejection by the J test in finite samples, which has been documented in
some cases, leads to a higher probability of using only correct over-identifying
restrictions, but not necessarily all of them.

4. One can also consider upward testing procedures, as in Andrews (1999).
These procedures have the drawback that they are consistent only under an
additional restriction, see Andrews (1999). For this reason and for brevity, we do
not consider upward testing procedures explicitly here.
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5. An application to dynamic panel data models
5.1. A general dynamic model for panel data

Consider a dynamic panel data model
Vie = WitOp + Ui,
uh:ni—i—vi,, Vt=1,,T andi=1,...,N. (51)

Here y;, and w;, are observed variables, v;, is an unobserved idiosyncratic error,
n; is an unobserved individual effect, and §, are unknown parameters to be
estimated. The distributions of #; and v;, are not specified, but assumptions on
their means and correlations with other variables are given below. All of the
random variables in the model are assumed to be independent across indi-
viduals i.

The regressor vector w;, includes L lags of the dependent random variable, i.e.,
Vie—1»>--»Vi—1,» where L = 0. The true lag length L, ( < L) may be unknown.
The initial observations {y;o, i~ 15 ..-»Vi.i—1: i = 1, 2, ..., N} are assumed to be
observed.

The regressor vector w;, also includes other variables that may be strictly
exogenous, predetermined, or endogenous. These other variables are contained
in two observed vectors z; and f; of time varying and time invariant variables
respectively. The vectors z;, and f; may also contain variables that do not enter
the regression function. Such variables can be employed as instrumental vari-
ables.

The time varying variables z;, (and, hence, the time varying regressors in w;,)
may consist of five types of variables. The type of a variable depends on whether
the variable is strictly exogenous, predetermined, or endogenous with respect to
v;; and whether the variable is uncorrelated or correlated with the individual
effect #;. We partition z;, as

Zie = (X1it> X2its Plits P2ie> Vair) - (5.2)

Here, the variables (x};, x5%;) are strictly exogenous with respect to v;. The
variables (p};, p>i;) are predetermined with respect to v;,. The variables y,;, are
endogenous with respect to v;,. The variables (x};, pii) are uncorrelated with
the individual effect #;. The variables (x%;, p5i, V>i:) are correlated with the
individual effect #;. The econometrician may not know the type of some
variables in z; (and, hence, of some regressors in w;,).

The time invariant variables f; (and, hence, the time invariant regressors in w;,)
are strictly exogenous with respect to v;, and of two types. The type of a variable

depends on whether the variable is uncorrelated or correlated with the indi-
vidual effect #;. We partition f; as

Ji= i [20) (5.3)
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Here, the variables fi; are uncorrelated with the individual effect #; and the
variables f,; are correlated with #;. The econometrician may not know whether
certain variables in f; are uncorrelated or correlated with #;.

If z;; and f; do not contain any variables other than those that enter the vector
of regressors w;,, then general model (5.1) can be written as

L
Yie = Z Xt Vit —m + ZuPe + five + Ui,
m=1
uit=1/]i+l7i[ Vt=1,,T andi=1,...,N, (54)

where Wiy = (yi,tfla ceos Yig—Lo Z:’ta f:)l and 5t = (alto e O, ﬁ;a V;)l (NOtC that
this model includes intercept parameters provided f; contains a constant.)

In the general model (5.1), the parameter J, can vary with ¢. For example, this
allows one to consider a model with structural breaks at known or unknown
times. If a structural break occurs, the parameter takes different values before
and after the break point. To conform with the set-up of Section 2, we para-
meterize the model in terms of the parameter values for the first period, denoted
0, and the corresponding deviations from these values, denoted J, for
t=2,....T:

0 =0 + g, (5.5

In the most general case, (5.5) allows J, (and J,) to take different values for
each t and the parameter vector 0 is defined to be

0 == (5/, 5£2), ceey 6(]‘))’. (56)

Usually in practice, however, one will use a restricted version of (5.5), which
leads to a ‘restricted model’ rather the fully general model (5.1).
Examples of restricted models are: (i) No structural breaks occur over the

sample period, ie., d, =0 Vt =2,...,T. In this case, the parameter vector
0 simplifies to
0=0. (5.7)

(1)) H structural breaks occur at times 1 <71, <71, < - <71y < T. Then,
O =6% Vtwitht <t<7t.y, k=1,...,H, (5.8)
where 75+ = T + 1. In this case, the parameter vector 0 simplifies to
0=, 0", .., "y, (5.9)

(iii) H or fewer structural breaks occur at unknown times. For each combina-
tion of a number of structural breaks and times of the breaks that is to be
considered, one specifies vectors of ‘deviation’ parameters as in (5.8). Then, the
first period parameter § and all of the deviation parameters are stacked into
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a single vector 0. By appropriately selecting different subsets of the deviation
parameters, one obtains models with different numbers and times of structural
change.

(iv) Partial structural breaks occur. In this case, structural breaks occur at
known or unknown times, but only a subset of the parameters J, change. For
brevity, we do not provide the details.

It is worth mentioning that structural breaks in the individual effect also
could be introduced in the general model by allowing #; to have different
coefficients for different time periods, as in Chamberlain (1984) and Holtz-Eakin
et al. (1988). We do not do so here, because this would lead to different moment
conditions than those considered in most dynamic panel data models con-
sidered in the literature.

To this point, we have kept a high level of generality in model (5.1) by
incorporating many features that arise in different empirical studies. For
example, allowing for an unknown lag length is especially important for purely
dynamic panel data models that do not have any other regressors. Whether
elements of w;, are predetermined or strictly exogenous with respect to v;, is
especially important in models with rational expectations. Whether variables in
(2, f) are correlated with the individual effect or not separates the ‘correlated
random effects’ model from the standard ‘random effects’ model and is impor-
tant for many applications. Allowing for structural breaks in the parameters
provides a way to model nonstationarity in dynamic panel data models that is
an alternative to panel data unit root models. It is useful in many applications.

On the other hand, we do not expect that in any particular empirical study, all
of these features will be present or important simultaneously. The purpose of the
generality of model (5.1) is to have a single theoretical framework that covers
a wide variety of more restrictive sub-models that are of interest in different
applications.

5.2. Comparison with panel data models in the literature

Here we show that the general model (5.1) nests many models in the literature
and shares common features with some others.

Model (5.1) becomes the standard static ‘random effects’ model, if there are no
lagged dependent variables in the model, i.e., L = 0, all of the regressors w;, are
strictly exogenous with respect to v;, none of the regressors w;, are correlated
with #;, and the parameters are constant over time.

The following static correlated random effects model is considered by Haus-
man and Taylor (1981) and Breusch et al. (1989):

Vie = ziB + i + uy,

uhzni—i—vi, Vt=1,,T andi=1,...,N. (510)
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This model does not contain any lagged values of y;. In our notation, the
regressor vector w;, equals (zj, 7). The regressors z;, and f; are assumed to be
strictly exogenous with respect to v;, and a subset of z;, and f; are correlated with
the individual effect #;. That is, in our notation, z; = x; = (X, X%), and
fi = (f1:, f5:). This model also is one of four models considered in Amemiya and
MaCurdy (1986). All of the authors above consider estimation of this model by
instrumental variables.

Anderson and Hsiao (1982) and Bhargava and Sargan (1983) consider max-

imum likelihood estimation of a dynamic panel data model
Vie = 01 Yia—1 + Zif +[i7 + v,
uhzni—i—vi, Vt=1,,T andi=1,...,N. (511)

They also consider simpler versions of this model. Here, both z; and f;
are assumed to be strictly exogenous with respect to v; and uncorrelated
with #;. In our notation, wy, = (V.- 1, Zir, f1)s Zis = X1» and f; = f1;. The lag
length of the lagged dependent variables is known to be one. These
authors assume normal distributions for #; and v;,. Because the number
of time series observations T is small for typical panels, the assumption
used by these authors concerning the initial observation plays a crucial role in
interpreting the model and obtaining a consistent estimator. These authors also
discuss the case where vy, is serially correlated. We do not consider this case in
the present paper.

Ahn and Schmidt (1995) consider GMM estimation of several dynamic and
static panel data models. The most general model they consider is

Vie = 01 Vig—1 + Zie + iy + Uy,
uy, =n; +vy; Vt=1,...,Tandi=1,...,N. (5.12)

This model contains only one lagged value of y;,. The regressors z;, and f; are
assumed to be strictly exogenous with respect to v;, and a subset of z;, and f; may
be correlated with the individual effect #;. That is, in our notation,
Wi = Vie—15 Zie» [1)s Zie = Xig = (X1, X52) and f; = (13, f2:)-

Arellano and Bover (1995) consider a model that nests models (5.10)-(5.12). It
allows the regressor vector w;, and z; to contain strictly exogenous, predeter-
mined, and endogenous variables with respect to v;,. That is, as in our model
(5.1), ziy = (X145 X5it5 Plits Poits Voir)- Our model (5.1) nests that of Arellano and
Bover (1995) and models (5.10)—(5.12) in that it allows for time-varying para-
meters.

Holtz-Eakin et al. (1988) consider a bivariate vector autoregression (VAR) of
(i, Yir) with panel data. In our notation, each equation of their VAR takes the
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form
Lo
Yie = Z Lt Vit —m + ZiPe + e+ Ui,
m=1
Uy =4 +vy;, Vt=1,...,Tandi=1,...,N. (5.13)

In this model, the true lag length L, of the lagged y;, variables is assumed to be
known. The time varying regressors z;, contain only lagged values of the second
endogenous variable J;, and, thus, contain only variables that are predetermined
with respect to v; and are correlated with #;. That is, in our notation, z;, = p,;.
Also, in their model, the only time-invariant strictly exogenous variable is
a constant. Thus, in our notation, f; = 1. These aspects of (5.13) are less general
than corresponding parts of our model (5.1).

On the other hand, (5.13) allows for a time-varying coefficient 4, on the
individual effect. Model (5.13) is more general than (5.1) in this respect. Such
generality comes at the expense of identification, however, because at best only
the ratios /,//,—; may be identified. Holtz-Eakin et al. (1988) do not provide
identification results for their most general model (5.13), nor do they consider
estimation of it, but they do provide tests for whether a more restrictive model
with constant coefficients is sufficiently general.

5.3. Moment conditions in dynamic panel data models

It is well known that the simple OLS estimator of (5.1) is inconsistent because
the lagged dependent variables y; ;— 1, Vi -2, ..., Vis—r and (possibly unknown)
subsets of other regressors are correlated with the unobserved individual effect
1;. In consequence, we consider GMM estimation of model (5.1).

The moment conditions that are employed by a GMM estimator are implied
by assumptions that are imposed on the dynamic panel data model. Below, we
state various assumptions and corresponding moment conditions that can be
used with model (5.1). We state the assumptions sequentially such that they
impose increasingly restrictive assumptions on the model. The use of different
combinations of the assumptions yields different models. We do not require that
all of the assumptions are imposed.

We note that the use of additional correct moment conditions can substan-
tially improve the efficiency of an estimator in some cases; e.g., see Blundell and
Bond (1995). Furthermore, the identification of some parameters and the con-
sistency of an estimator may rely on some moment conditions being correct and
being employed by the estimator. On the other hand, the use of incorrect
moment conditions typically leads to inconsistency of an estimator.

In what follows, we wuse the notation z; = (X1i, X5, Plits P2it> V2it) s
Si = (1> [50)s Xie = X1ie, X54)5 and py, = (P, P2i). Each assumption applies
foralli=1,...,N.
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Assumption P1. (a) En; =0, Ev, =0, Evp; =0Vt =1, 2,...,T.
(b) Evjv;, =0 Vs, t =1,2,..., T with s #1¢.
() Evyyio = -~ =Bvyyii-r =0Vet=1,2,...,T.
(d) Evit(Zgls "'7221—1a x;ts p:taf;)/ =0Vt= 15 25 e T.

Assumption P2. Evy(Xi 51,....Xir) =0Vt =1,2,...,T — 1.

Assumption P3. En;(X1i, plif1:) =0Vt=1,2,...,T.

Assumption P4. Eni(Xai, Paies Vair) = ENi(Xaie—15 Priv—15 Vaie—1) Vi =2,...,T.
Assumption P5. Var(v;,) = o7 for some ¢? >0Vt =1,2,...,T.

Assumption P6. En;y;y = Engiyy, Vt=1—1L,..., 0.

Assumptions P1(a)-(c) impose the familiar error-components structure and
are referred to as ‘standard assumptions’ by Ahn and Schmidt (1995) for
dynamic panel data models with only lagged dependent variables as regressors.
Assumption P1(a) requires that the error u;; ( = v; + #;) has mean zero and v;, is
uncorrelated with the individual effect #;. Assumption P1(b) requires that v;, is
serially uncorrelated. Assumption P1(c) requires that v;, is uncorrelated with the
initial observations. Assumption P1(d) requires that all lags of z; are uncor-
related with v; and that all variables in z; except the endogenous variables
V2 are at least predetermined with respect to v, (i.e., their current period
correlation with v; is also zero). Assumptions Pl(a)-(d) are the minimum
restrictions imposed on model (5.1). They may not identify y,, the coefficients on
the time invariant regressors f;.

Assumption P2 specifies that some of the variables in z; are strictly
exogenous with respect to v;, rather than just predetermined.

Assumptions P3 and P4 concern the correlation between the regressors in
(z, f7) and the individual effect ;. Assumption P3 specifies that some variables
in z;; and f; are uncorrelated with the individual effect ;. This assumption can be
used to identify y,. Assumption P4 specifies that the variables in z; that are
correlated with #; have constant correlation across time with #;. This type of
restriction is considered by Bhargava and Sargan (1983) and Breusch et al.
(1989).

Assumption P5 concerns the second moments of the error terms. It assumes
that the variance of v;, is constant over time for each individual. (The variance
may vary across individuals.) In the literature, Assumption P5 (plus the assump-
tion that the variance of v;, is constant across individuals) is used to obtain
a feasible GLS estimator for the random effects model and a 3SLS estimator for
the correlated random effects model, because it implies a known structure for the
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variance—-covariance matrix of the errors, which is needed for the GLS trans-
formation. For a GMM estimator, the role of Assumption P5 is to provide
additional moment conditions.

Assumption P6 is a ‘stationarity’ assumption on the initial conditions
Yii-L,---»Yio- It requires that the initial conditions have same correlation with
the individual effect as the dependent variable at time ¢ = 1 has. The failure of
this assumption indicates that y;;_p,..., Vo are not drawn from the same
process that generates y;;. Assumption P6 also is used by Arellano and Bover
(1995), Blundell and Bond (1995), and Ahn and Schmidt (1995). Blundell and
Bond (1995) study the usefulness of Assumption P6 via a Monte Carlo study of
a simple dynamic panel data model with no regressors except a single lagged
dependent variable. They show this assumption, if correct, can substantially
improve the asymptotic efficiency of a GMM estimator when «;, the coefficient
on the lagged dependent variable, is close to unity.

We now specify the moment conditions that are implied by Assumptions
P1-P6. Let A denote the first difference operator applied to the variable
immediately following A. Thus, Au;z;, = (y — ;- 1)Zi-

Assumption P1 implies the following moment conditions:

Eu, =0 Vvt=1,...,T, (5.14)
EAu;(yig—rs-es Yie—-2) =0 Vt=2,...,T, (5.15)
EAu;(Ziq, .-y Zig—2, Xig—1, Diu—1-f1) =0 Vt=2,...,T, (5.16)
EuyAu,—1 =0 Vt=3,...,T. (5.17)

Let d., d;, d,, and d, denote the dimensions z, f;, x;, and p;, respectively.
The numbers of moment conditions in (5.14)—(5.17) are T, L(T — 1)+
(T—2(T-1)/2, d(T—1)T—-2)/2+d,+d,(T—-1)+d(T—1), and
T — 2 respectively.*

To construct a GMM estimator based on the moment conditions above (and
those below), one replaces u;, by the difference between y;, and the regression
function evaluated at the parameter vector 0 (or 0p,). Doing so, one can see that
the moment conditions in (5.14)—(5.16) yield estimating equations that are linear
in the parameters, whereas those generated by (5.17) are nonlinear in the

parameters.
Assumption P2 implies the following moment conditions:
EAuy (X}, ..., xip) =0 Vt=2,...,T. (5.18)

The number of moment conditions in (5.18) is d,. T(T — 1)/2.

4We note that an equivalent set of moment conditions to (5.14)~(5.17) are (5.14)~(5.16) plus
EuipAuy—y =0Vt =3,...,T.
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Assumption P3, combined with Assumption P1(d), implies the following
moment conditions:

Elyu;xy;, =0 Vi=1,...,T,
E(ltT+1)'M,-p1it =0 Vt=1,....,T — 1,
El/T“ifli =0, (5.19)

where u; = (u;q,...,u;r), 1y denotes a T-vector of ones, and 17, ; denotes
a T-vector whose first t elements are zeros and whose elements indexed from
t +1 to T equal ones. These moment conditions, if correct, can be used to
identify y,. Let d,, , d,,, and d,, denote the dimensions of Xy, p1i, and fy;,
respectively, that are uncorrelated with the individual effect. The number of
moment conditions in (5.19)is d,, T + d, (T — 1) + d,,.

Assumption P4, combined with Assumption P1(d), implies the following
moment conditions:

Euit(Ax,Zil) Ap,Zita Ay/ZiI), = 0 Vt = 2, LR} T. (520)

Letd,,, d,,,and d,, denote the dimensions of x5, p»i, and y,;. The number of
moment conditions in (5.20) is (d,, + d,, + d,, (T — 1).
Assumption P5 leads to the following T — 1 moment conditions:

ElyuAu, =0 Vt=2,...,T. (5.21)

Suppose one wishes to maximize the number of moment conditions that gener-
ate estimating equations that are linear in the parameters. Then, Ahn and
Schmidt (1995) show that, when the homoskedasticity Assumption P5 holds, the
moment conditions in (5.14)-(5.17) can be expressed equivalently as those in
(5.14)—(5.16) plus

E(vii—2Auiy—1 — yig-10uy) =0 Ve =3,...,T. (5.22)
Assumption P6 implies that
B3 u;Ay,, =0 Vi=2-1L,...,1 (5.23)

Assumption P6 yields L moment conditions.
5.4. Model and moment selection in dynamic panel data models

We now show how to apply the MMSC and testing procedures of Section 2 to
model (5.1) using the moment conditions of the previous subsection.

For a given restricted version of model (5.1), let 6 denote the parameter vector
that includes all parameters that enter the restricted model, as in (5.7) or (5.9).
Let p denote the dimension of 0. The largest 6 can be is as in (5.6), which
corresponds to the general case where the parameter vector takes different
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values at each time period. The set of possibly correct moment conditions for
a given restricted version of model (5.1) is a specified subset of (5.14)—(5.23). Let
r denote the total number of these moment conditions. Then, a pair of model
and moment selection vectors (b, ¢) consists of a px 1 vector b and an rx 1
vector ¢, both containing zeros and ones. Zeros in b indicate that the model does
not depend on the corresponding parameters in 0 and zeros in ¢ indicate that the
corresponding moment conditions are not employed when estimating the para-
meters in Op,;.

The parameter space 4% for (b, c) should incorporate a considerable amount
of information in order to eliminate many combinations of b and c. First, for
a given restricted model, most variables in the model will be known to enter
the model. Hence, #% will only contain b vectors with ones corresponding to the
coefficients on these variables. Second, for most variables, the type of the
variable will be known or partly known, be it predetermined, strictly exogenous,
correlated with #;, and/or uncorrelated with ;. Hence, #% will only contain
¢ vectors with ones corresponding to the appropriate moment conditions.

Third, the moment conditions in (5.14)—(5.23) typically are included or not
included for all relevant time periods, such as t = 1,..., T, rather than time
period by time period. The parameter space #% is defined accordingly. Fourth,
moment conditions in (5.17) and (5.22) are not included at the same time and
those in (5.22) are included only if those in (5.20) are included.

Lastly, any other information about the correct parameter and moment
vectors also should be used. Such information helps to reduce the parameter
space and ease the selection problem.

For any (b, c)e #%, we evaluate the moment conditions selected by c at the
parameters selected by b. Specifically, we substitute the following expression in
each of the selected moment conditions in place of u;:

Yie — Wit(0 + (), (5.24)

where ;) = 0 and each parameter in (&', J(3), ..., d¢r))’ is set equal to zero if it is
not included in 0 or if the corresponding element in b is zero.

The weight matrix W (b, ¢) for the GMM criterion function can be taken to
equal V, 1(b, ¢), where V (b, ¢) is defined in footnote 2 with J,(b, ¢) equal to the
GMM estimator of 6§ obtained by using the moments selected by ¢, the para-
meter space @y, for 0, and the weight matrix equal to the identity matrix.

Selection of the parameter vector and the moment conditions, including lag
length, detection of structural breaks, exogeneity of regressors, etc., is conducted
simultaneously. Given a model and moment selection estimator (b, ¢), the
parameters 0z selected by b are estimated using the moment conditions selected
by ¢.

It remains to verify Assumption 1 of Section 2 for the dynamic panel data
models considered in this section. This can be done for the case of observations
that are identically distributed or non-identically distributed across individuals i.
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For brevity, we just give sufficient conditions for the identically distributed
case. Note that independence across individuals i has already been assumed.
Assumption 1(a) holds for iid observations by the central limit theorem with
G°(0) equal to the expectation of G,(0) provided E||G,(0)||*> < co VOe 6. All of
the moments conditions in (5.14)-(5.23) just involve (at most) products of the
underlying variables. In consequence, a sufficient condition for this moment
condition is

Ell(yit -5 oes Yirs Xio fiYIIF < o0 (5.25)

The convergence part of Assumption 1(b) holds by a weak law of large
numbers using the preceding moment conditions provided d,(b, c) converges in
probability to some parameter 0°(b, c)for each (b, ¢)e #%.> The matrix W(b, c)
equals VO(b, ¢)”! in this case, where

Vo(b> C) = E(mc(Zi, Oo(ba C)) - Emc(zia 00(b7 C)))
(m.(Z;, 0°(b, ¢)) — Em.(Z;, 0°(b, ¢))). (5.26)

The positive definiteness part of Assumption 1(b) holds if V°(b, ¢) is positive
definite for all (b, ¢)e #E.

The convergence part of Assumption 1(c) holds using a Vapnik-Cervonen-
kis-type uniform weak law of large numbers for iid random variables under the
moment conditions above using the linear or quadratic structure of the moment
conditions, e.g., see Pollard (1984, Theorem 11.24, Lemmas I1.25 and 11.27). The
equality in Assumption 1(c) holds provided @y, is compact or @, is of the form
Oy = {00b: 0 R?} for all b such that (b, ¢)e #% for some ¢, where ‘©’ denotes
element by element product.

6. Monte Carlo experiment

In this section, we conduct a Monte Carlo experiment to evaluate the
performance of the MMSC and downward testing procedures. We consider
MMSC-AIC, MMSC-BIC, MMSC-HQIC, and DT. We set Q =2.1 in
MMSC-HQIC.

The model we use is a restricted version of the general model in (5.1).

% For example, the latter holds if
0.(0°b,c)) < inf Q.(0) for all e >0,

0e6,||0—0°(b.0)|| > &
where
0.(0) = E(m.(Z;, 0)) — Em.(Z;, 0))(m.(Z;, 0) — Em.(Z;, 0)).

In turn, sufficient conditions for this are that Q,(6) is uniquely minimized over 6 € @ by 6°(b, ¢) and
Oy 1s compact.
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6.1. The correct model

We consider a dynamic panel data model with lagged dependent variables
and a covariate as regressors. We assume that the econometrician does not
know the true lag length. We also assume that the econometrician does not
know whether the covariate is correlated with the individual effect or whether
the covariate is strictly exogenous with respect to the time-varying error com-
ponent.

In particular, the correct model is

Vie = 0o + 0y Vg1 + BXi + uy,
uy =1+, Vi=1,. Tandi=1,... N, 6.1)

where n; ~ N(0, 67), v;; ~ N(0, 07), and En,;v;, = 0 for all 7. The true lag length is
one, i.e., Ly = 1. The covariate x;, is predetermined, but not strictly exogenous
with respect to the time-varying error v;. It is correlated with the individual
effect #; for all t.

We take

(Xi15 v XiToMis Vits---» Uyp) ~ N(0, ),
where
o1y Olr Ol
2=|oylr a,f 0r | (6.2)
ol 0 O'LZ-IT

Here, I; denotes a T x T identity matrix, 1; denotes a T x 1 vector of ones,
0, denotes a T x 1 vector of zeros, I'isa T x T matrix whose jkth element is one
when k=j—1 for j=2,...,T and zero otherwise, o,, = Ex;n; #0, and
0., = Bxyv; -1 # 0. As specified, (i) x;; is uncorrelated with x; for t # s and has
a constant variance o2, (ii) v; is serially uncorrelated and uncorrelated with
n; and both error components have constant variances of o7 and oy, respective-
ly, and (iii) x; is correlated with the individual effect and is predetermined
(because Ex;v;, =0 for s=1¢+ 1,...,T), but not strictly exogenous (because
Ex;v;—1 = 04, # 0 and Ex; v, =0 for s # ¢ — 1).
The L initial observations are specified by

Vis =0 + 0 Vi1 + BXys 1 + v, s=2-L,..., 0,

Bo.y + 0n
or(l — o)
where vy -1, vy ~ N, 62), 7 ~N(0, 07), p =1, and k = ao/(1 — ;). The
parameter ¢ controls the correlation between the initial observations and the
individual effect #;. The choice ¢ = 1 implies that the ‘stationarity’ assumption,

Yii-L =K+ (pn: + vi1 1) (6.3)
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i.e., Assumption P6, holds. The parameter x controls the mean levels of the
initial observations. It does not affect whether the ‘stationarity’ assumption
holds or not. It is chosen so the means of the observations are stationary.

In specifying the correct model, we use parameter values that have the
following features: (i) there is a noticeable difference in efficiency between the
GMM estimator that uses the correct model and all correct moment conditions
and the GMM estimator that uses the least parsimonious model and only those
moment conditions that are known to be correct and (ii) there are noticeable
biases in the GMM estimators that are based on models that exclude some
parameters whose true values are non-zero and/or use incorrect moment condi-
tions. For parameter values with these features, there are gains to be exploited
by a good selection procedure and losses to be incurred by a poor selection
procedure. The following parameter values exhibit the desired features:

(%0, 21, f) = (0.8, 0.85, 0.5) and
(me Oxps 0-721, 6L2'7 G)zc) = ( - 027 053 17 17 1) (64)

We want to examine how the selection procedures’ finite sample performances
change across both N and T. In consequence, we conduct experiments with five
different sample size configurations: (7T, N) = (3, 250), (3, 500), (3, 1000),
(6, 250), and (6, 500). We employ 1000 simulation repetitions for each sample.

To evaluate the robustness of our results to models that exhibit a high degree
of persistence, we also report results from one experiment with o; = 0.95. We
consider the sample size configuration (T, N) = (3, 500). The full parameter
vectors in this case are:

(cto, 011, f) = (0.8, 0.95, 0.5) and
(Gags Oxor 02, 62, 62) = (— 0.2, 0.5, 0.2, 0.2, 5). (6.5)

This case has received attention in the literature. Ahn and Schmidt (1995) and
Blundell and Bond (1995) have shown that when o is close to one, moment
conditions based on the first differences of y; may not be very informative,
whereas moment conditions based on the ‘stationarity’ assumption can be very
informative.

6.2. The parameter space for model and moment selection vectors

We assume that the econometrician does not know the correct model.
Instead, he considers GMM estimation of the following model:

Vie = 0o + 01 Yig—1 + A Vig—2 + BXy + uy,

uhzni—i—vi, Vt=1,,T and lzl,,N (66)
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The econometrician selects a lag length of 0, 1, or 2. For possible moment
conditions, he considers the following four groups of assumptions:

Assumption GI. (a) En; =0, Ev, =0, Evpn; =0Ve=1,2,...,T.
(b) Eviv, =0Vs, t=1,2,...,T with s # ¢.

(¢) Eviyio = Bvyyi -1 =0Ve=1,2,...,T.
(d) Var(v;) = 67 for some 6 >0Vt =1,2,...,T.
(e) Evit(xil, ...,xi,) =0Vt= 1, 2, ceey T.

Assumption G2. Boy(Xi;415.-.,X7) =0Vt =1,2,...,T — 1.
Assumption G3. En;x;; =0Vt=1,2,...,T.
Assumption G4. En;y;; = Eniyio = Eniyi 1.

Assumption G1 imposes the standard error-component structure, constant
variance for v;,, and predeterminedness for x;. Assumption G2 further imposes
strict exogeneity for x;. Assumption G3 assumes x; is uncorrelated with #;.
Assumption G4 is the ‘stationarity assumption’.

Under the correct model, Assumptions G1 and G4 hold, but Assumptions G2
and G3 do not hold. We assume that the econometrician only knows that
Assumption G1 holds. The econometrician determines the validity of Assump-
tions G2-G4 by using a selection procedure. For computational reasons in the
Monte Carlo experiments, we only consider /inear moment conditions. These
conditions are the following:

Moment Conditions 1. (a) E(u;, ..., u;7) = 0.
(®) EGig—rsesVia-2)Auy =0 Ve =2,...,T.
(©) Eig—1Auy — yirAu; ) =0Ve=2,...,T — 1.
(d) E(xil, ...,xi,t,l)AuiI = 0 Vt = 2, cany T.

Moment Conditions 2. E(xy, ..., Xip)Au;; =0Vt =2,...,T.
Moment Conditions 3. E(uy, + -+ + ujp)x;; =0Vt =1,...,T.
Moment Conditions 4. E(u;, + -+ + uip)Ay;,, =0Vt=2—-1L,..., L.
Moment Conditions j are implied by Assumptions G1 and Gjforj=1,..., 4.

For the above model and moment selection problem, the largest parameter
vector that the econometrician considers is

0 = (050, 0y, 0o, ﬁ), (67)
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We assume the econometrician always includes an intercept in the model, selects
0, 1, or 2 lags, and selects to include or exclude the covariate x;,. This yields six
selection vectors b. The largest collection of moment conditions the econo-
metrician considers includes all of the Moment Conditions 1-4. We assume that
the econometrician knows that Moment Conditions 1 are correct and selects
either all or none of the moment conditions in each group of Moment Condi-
tions 2—4. This yields eight selection vectors ¢. Thus, the parameter space 4%
contains forty-eight (b, ¢) pairs. Each pair is a combination of one of the
following six model selection vectors and eight moment selection vectors:

and (6.8)

o O O =
-0 O M
S O = =
_ O = =

—_ = =
—_ = =
oS O O =
S O ==

—_ O =
_ o O =
O = = =
—_ O = =
_ = O
—_ = = =

0 0

The correct model selection vector is b° = (1, 1, 0, 1)’ and the correct moment
selection vector is ¢® = (1, 0, 0, 1), which selects the Moment Conditions 1 and 4.

6.3. Measures of performance

We report two sets of results that measure the performances of the MMSC
and DT procedures. First, for each selection procedure, we calculate the prob-
abilities that the procedure

1. selects (b°, ¢%);

2. selects ‘Other Consistent (b, ¢), i.e., (b, ¢)e #% such that b > b°, ¢ < ¢°, and
(b, ¢) # (b°, ¢°); and

3. selects ‘Inconsistent (b, c), i.e., (b, ¢)e % such that b < b° or ¢ > c°.

In the first case, the correct model and all correct moment conditions are
selected and consistent parameter estimators are obtained. This is the ideal
situation. In the second case, although (b°, ¢°) is not selected, the model and
moment conditions selected lead to consistent GMM estimators. In the third
case, the model and moment conditions selected lead to GMM parameter
estimators that are inconsistent. A selection procedure with a high probability of
selecting (b°, ¢°), coupled with a low probability of selecting ‘Inconsistent (b, c),
leads to an efficient GMM estimator. A selection procedure with a moderate to
high probability of selecting ‘Inconsistent (b, ¢)’ leads to a GMM estimator with
poor finite sample properties due to the biases resulting from employing too
parsimonious a model and/or incorrect moment conditions.

Second, we report the biases, standard errors, and root mean-squared errors
(RMSEs) of the post-selection GMM estimators for each selection procedure.
We also report the rejection rates of the 5% ¢-tests based on the post-selection
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GMM estimators. (When a parameter is excluded from the selected model, its
estimated value is set equal to zero when computing the t-statistic.) Each t-test
tests the null hypothesis that a parameter equals a value that is the true value
and, hence, the null is true. The critical values for the t tests are the 5% critical
values from a standard normal distribution.

In order to assess the performance of the post-selection GMM estimators, we
also report biases, standard errors, etc. for four benchmark GMM estimators
that are not post-selection estimators. The first such estimator is the GMM
estimator based on the correct model and moment selection vector (b°, ¢°). This
estimator is infeasible, but is used as a benchmark for good performance. The
second estimator is the GMM estimator based on the least restrictive specifica-
tion: (by., ¢;,) = (1,1, 0, 0, 0)). The third estimator is the GMM estimator
based on (b, ¢) = (1,, 1,), i.e., the whole parameter vector and all of the moment
conditions. The fourth estimator is the GMM estimator based on the most
restrictive specification: (b,,,, ¢,..) = ((1, 0, 0, 0), 1,). The second through fourth
estimators are feasible estimators. Given the correct model, the second leads to
consistent GMM estimators and the econometrician knows this (given the
assumptions). The third and fourth estimator do not lead to consistent GMM
estimators, although the econometrician does not know this given the assump-
tions.

We refer to the post-selection estimators of 6§ based on MMSC-AIC,
MMSC-BIC, MMSC-HQIC, and DT as GMM(bac, caic), GMM(bgc, cpic),
GMM(buqic, cnaic), and GMM(bpr, cpr) respectively. We refer to the four
benchmark GMM estimators as GMM(b° ¢°), GMM(b,,, ¢, GMM(1,, 1,),
and GMM(b,., Cuy)-

6.4. Monte Carlo results

Now we present the Monte Carlo results for the selection probabilities and
post-selection estimators and tests. The results for the post-selection estimators
and tests ultimately are of greatest interest. But, the results for the selection
probabilities help explain the pattern of results obtained for the post-selection
estimators and tests.

6.4.1. Selection probabilities

Table 1 reports the selection probabilities for MMSC-AIC, MMSC-BIC,
MMSC-HQIC, and DT for six different sample size/parameter combinations.
The first three combinations in Part A of the Table are for «; = 0.85 and (T, N)
equal to (3, 250), (3, 500), and (3, 1000). The effect of increasing N is quite
dramatic. For MMSC-BIC, the probability of selecting (b°, ¢°) increases from
0.482 to 0.852 to 0.990; while the probability of selecting ‘Inconsistent (b, ¢)’
declines from 0.487 to 0.116 to 0.000. For MMSC-HQIC, the corresponding
changes are from 0.663 to 0.855 to 0.918 and from 0.214 to 0.028 to 0.000
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Table 1
Selection probabilities

MMSC-AIC MMSC-BIC MMSC-HQIC® DT

(A) oy = 0.85°

Sample size: T =3, N = 250

(b°,c% 0.607 0.482 0.663 0.559
Other consistent (b, ¢)° 0.328 0.031 0.123 0.046
Inconsistent (b, c)* 0.065 0.487 0.214 0.395
Sample size: T =3, N = 500

(b°c? 0.664 0.852 0.855 0.915
Other consistent (b, ¢) 0.333 0.032 0.117 0.034
Inconsistent (b, ¢) 0.003 0.116 0.028 0.051
Sample size: T = 3, N = 1000

(b°,c% 0.658 0.990 0.918 0.955
Other consistent (b, ¢) 0.342 0.010 0.082 0.045
Inconsistent (b, ¢) 0.000 0.000 0.000 0.000
Sample size: T = 6, N = 250

(b°,c% 0.536 0.637 0.661 0.704
Other consistent (b, c) 0.458 0.115 0.283 0.250
Inconsistent (b, ¢) 0.006 0.248 0.056 0.046
Sample size: T = 6, N = 500

(b°,c% 0.622 0.928 0.850 0.859
Other consistent (b, ¢) 0.378 0.063 0.150 0.141
Inconsistent (b, ¢) 0.000 0.009 0.000 0.000
(B) a; =0.95°

Sample size: T =3, N = 500

(b°,¢% 0.566 0918 0.831 0.901
Other consistent (b, ¢) 0.428 0.033 0.156 0.079
Inconsistent (b, ¢) 0.006 0.049 0.013 0.020

*The true parameter values in Part A of the table are (o, o1, o5, f) = (0.8, 0.85, 0, 0.5) and (o,
Ors 05, 05, 02) =(— 02,05, 1, 1, 1).

®Q = 2.1 in MMSC-HQIC.

*‘Other consistent (b, ¢)’ refers to model and moment selection vectors other than (b°, ¢°) that yield
GMM estimators that are consistent.

4“Inconsistent (b, c)’ refers to model and moment selection vectors that yield GMM estimators that
are inconsistent.

¢The true parameter values in Part B of the table are (xq, oy, o, ) = (0.8, 0.95, 0, 0.5) and
(OsysTxs 02, 02, 02) =(— 0.2, 0.5, 0.2, 0.2, 5).

respectively. For DT, the corresponding changes are from 0.559 to 0.915 to 0.955
and from 0.395 to 0.051 to 0.000 respectively.

The selection probabilities of MMSC-AIC are much less sensitive to the
sample size N than are those of the other three procedures. As the sample size
N increases from 250 to 500 to 1000, the probability of selecting (b°, ¢°) by
MMSC-AIC changes from 0.607 to 0.664 to 0.658 and the probability of
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selecting ‘Inconsistent (b, ¢)’ decreases from 0.065 to 0.003 to 0.000. The fact that
the probability of selecting (b°, ¢®) does not increase toward one as N increases
reflects the inconsistency of the MMSC-AIC procedure. For the smallest sample
size, MMSC-AIC is the best of the three procedures. But, for larger samples
sizes, it does not perform as well as the other two MMSC.

Next, we consider the cases where (T, N) equals (6, 250) and (6, 500). The
effect of the increase in sample size N is quite similar to the case where T = 3.
There is a dramatic improvement for MMSC-BIC, MMSC-HQIC, and DT,
but only a modest improvement for MMSC-AIC.

The effect of fixing N at 250 or 500 and increasing T from 3 to 6 is quite
similar to that of fixing T and increasing N. Specifically, the performances of
MMSC-BIC, MMSC-HQIC, and DT improve dramatically, while that of
MMSC-AIC changes relatively little.

The effect on the selection probabilities of increasing o; from 0.85 to 0.95 can
be seen by comparing the results of Part B of Table 1 with those of Part A for
(T, N)=(3, 500). We find that MMSC-BIC improves somewhat, while
MMSC-AIC, MMSC-HQIC, and DT deteriorate somewhat.

Overall, we find that MMSC-AIC works best for the smallest sample size
(T, N) = (3, 250), whereas MMSC-BIC, MMSC-HQIC, and DT work best for
all other sample sizes. MMSC-BIC performs very well for the largest sample
sizes. MMSC-BIC and DT appear to perform best in an all-around sense.

6.4.2. Post-selection estimation and testing

Tables 2-4 report biases, standard errors, etc. for the eight GMM estimators
discussed above for the cases where «; = 0.85 and (T, N) equals (3, 250),
(3, 500), and (3, 1000) respectively. In each table, results for the four benchmark
GMM estimators are listed on the left-hand side and those for the four post-
selection GMM estimators are listed on the right-hand side.

In Tables 2-4, the benchmark estimators exhibit the following patterns.
GMM(b°, ¢°) sets the standard for good performance. The consistent and
feasible estimator GMM(b,,, ¢;) has somewhat larger biases and much larger
standard deviations and RMSEs than GMM(b°, ¢°) for ag, «;, and a,. For
example, for oy and o, its RMSEs are two to four times those of GMM(b°, c°).
For f3, its biases, standard deviations, and RMSEs are only marginally larger
than those of GMM(b®, ¢°). Thus, there is considerable scope for the post-
selection estimators to outperform GMM(b,,, ¢;,) in terms of RMSE for o, oy,
and o,, but not for f. The rejection rates of the 5% tests for GMM(b,,, ¢;,) are
noticeably higher than those for GMM(b°, ¢°) (and greater than 5%) when
N = 250, but not for N = 500 or 1000.

The two inconsistent estimators GMM(1,, 1,) and GMM(b,,,, c,,) perform
very poorly. They have very large biases, standard errors, and RMSEs. Their
rejection rates exceed the nominal 5% rate by a very large margin. These results
indicate that the cost of using the wrong model and/or moment conditions in the
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Table 2
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% tests: T = 3,
N =250, a; = 0.85*°

Bias SD RMSE Rej. rate®  Bias SD RMSE Rej. rate®
GMM(bO> co)d GMM(barc; Caic)
oo 0.042 0.236 0.239 0.062 0.086 0.522 0.529 0.084
oy —0.008 0.041 0.042 0.083 —0.022 0.112 0.114 0.159
oy — — — — 0.007 0.048 0.048 0.070
p —0.008 0.065 0.065 0.060 —0.012 0.072 0.073 0.075
GMM(by,, crr) GMM(bgc, cpic)
oo 0.187 0.505 0.539 0.088 0.099 0.568 0.577 0.099
oq —0.062 0.124 0.139 0.138 —0.016 0.112 0.113 0.138
oy 0.028 0.062 0.068 0.098 —0.002 0.033 0.034 0.037
p —0.009 0.066 0.067 0.058 —0.048 0.090 0.102 0.296
GMM(1,, 1,) GMM(bHQICa CHQ]C)e
oo 0471 0.385 0.608 0.637 0.064 0.421 0.426 0.089
o —0.153 0.154 0.217 0.655 —0.014 0.091 0.092 0.147
Oy 0.068 0.105 0.125 0.506 0.002 0.039 0.039 0.056
p —0.193 0.078 0.208 0.907 —0.022 0.080 0.083 0.153
GMM(bmn Cmr) GMM(bDT9 CDT)
oo 4.566 0.584 4.604 1.000 0.093 0.491 0.500 0.096
oy —0.850 — 0.850 — —0.016 0.095 0.097 0.129
o5 0.000 — 0.000 — 0.000 0.031 0.031 0.029
p —0.500 — 0.500 — —0.041 0.088 0.097 0.248

*The true parameter values are (xo, o5, o2, ) = (0.8, 0.85, 0, 0.5) and (o, s, 07, 07, 02) =

(=02,051,1,1).

*The results are based on 1000 Monte Carlo repetitions.

°The rejection rate is the fraction of times the 5% t-test based on the given GMM estimator rejects
the null hypothesis that the given parameter equals the true value.

9The GMM estimators are defined as in Section 5.4.3: GMM(b°, ¢°) - the GMM estimator based
on the correct model and moment selection vectors; GMM(b,,, ¢;.) - the GMM estimator based on
the least restrictive specification, where b, = (1, 1, 1, 1) and ¢, = (1, 0, 0, 0); GMM(1,, 1,) - the
GMM estimator based on all of the parameters and moment conditions; GMM(b,,,, ¢,.) — the
GMM estimator based on the most restrictive specification, where b, = (1,0, 0, 0) and
e = (1, 1, 1, 1); GMM(barc, carc), GMM(bgic, cpic), and GMM(byqic, cuqic) - the GMM  es-
timators based on MMSC-AIC, MMSC-BIC, and MMSC-HQIC respectively.

°Q =2.1 in MMSC-HQIC.

cases under consideration can be huge. There is ample room for the post-
selection estimators to outperform GMM(1,, 1,) and GMM(b,,, c,,), but also
the possibility that they will perform very poorly.
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Table 3
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% tests: T = 3,
N =500, oy, = 0.85*

Bias SD RMSE Rej. rate Bias SD RMSE Rej. rate
GMM(»°, %) GMM(barc; Carc)
o 0.027 0.152 0.155 0.057 0.025 0.241 0.242 0.077
oy — 0.006 0.026 0.026 0.060 — 0.006 0.063 0.063 0.123
oy — — — — 0.001 0.033 0.033 0.063
p —0.005 0.045 0.046 0.065 —0.005 0.046 0.046 0.059
GMM(by,, ci) GMM(bgic, Cric)
oo 0.068 0.329 0.336 0.053 0.029 0.172 0.174 0.078
oy —0.024 0.082 0.085 0.070 — 0.005 0.038 0.038 0.103
o 0.011 0.044 0.045 0.065 —0.001 0.017 0.017 0.023
p —0.005 0.047 0.047 0.056 —0.013 0.055 0.057 0.141
GMM(1,, 1,) GMM(byqic; Cuqic)
oo 0.469 0.263 0.538 0.838 0.021 0.190 0.191 0.076
oy —0.141 0.106 0.176 0.749 — 0.004 0.050 0.050 0.111
oy 0.054 0.071 0.089 0.494 —0.001 0.027 0.027 0.055
p —0.201 0.056 0.208 0.991 —0.007 0.047 0.048 0.073
GMM(y, Cr) GMM(bpr, cpr)
oo 4.519 0.381 4.535 1.000 0.030 0.166 0.168 0.068
oy —0.850 — 0.850 — — 0.006 0.035 0.035 0.080
o 0.000 — 0.000 — 0.000 0.014 0.014 0.012
p —0.500 — 0.500 — — 0.008 0.050 0.050 0.097

*Footnotes 1-5 of Table 2 apply to this table as well.

The results given in Table 2 indicate that for N = 250 the post-selection
estimators are roughly comparable in RMSE and rejection rate performance to
GMM(b,,, c;,). Thus, they perform noticeably worse than GMM(b°, c°), but
very much better than GMM(1,, 1,) and GMM(b,,,, ¢,,.). Given the rather
small sample size, at least for panel data, these results are encouraging. Com-
parisons across the post-selection estimators exhibit mixed results for both
RMSE and rejection rates. For [, GMM(byc, caic) i1s the best and
GMM(bgc, cpic) is the worst. For a, and oy, GMM(byqic, cuaic) is the best and
GMM(bgc, cgic) 1s the worst. For o,, GMM(bgic, cgic) and GMM(bpr, cpr) are
the best.

The results of Table 3 for N = 500 show that the post-selection estimators are
much better than GMM(b,,, ¢;,) in terms of RMSE, although they are still worse
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Table 4
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% tests: T = 3,
N = 1000, oy = 0.85*

Bias SD RMSE Rej. rate Bias SD RMSE Rej. rate
GMM(b°, c°) GMM(barc; Carc)
o 0.015 0.103 0.104 0.055 0.012 0.172 0.173 0.083
oy —0.003 0.018 0.018 0.070 —0.003 0.043 0.044 0.124
o0 — — — — 0.000 0.023 0.023 0.048
p —0.004 0.031 0.032 0.068 —0.004 0.032 0.032 0.064
GMM(by,, ci) GMM(bgic, Cric)
oo 0.042 0.232 0.236 0.053 0.015 0.105 0.106 0.058
oy —0.012 0.058 0.059 0.064 —0.003 0.021 0.022 0.077
o 0.004 0.030 0.031 0.050 0.000 0.008 0.008 0.008
p —0.004 0.033 0.033 0.057 — 0.004 0.031 0.031 0.067
GMM(1,, 1,) GMM(byqic; Cuqic)
o 0.497 0.178 0.528 0.981 0.012 0.124 0.125 0.067
oy —0.149 0.071 0.165 0.889 —0.002 0.031 0.031 0.102
oy 0.057 0.048 0.075 0.588 —0.001 0.015 0.015 0.033
p —0.200 0.038 0.203 0.999 —0.004 0.031 0.031 0.066
GMM(buys Conr) GMM(bpr, cpr)
oo 4.537 0.283 4.546 1.000 0.017 0.119 0.120 0.061
oy —0.850 — 0.850 — — 0.004 0.024 0.024 0.078
o 0.000 — 0.000 — 0.000 0.009 0.009 0.007
p —0.500 — 0.500 — — 0.004 0.031 0.032 0.069

*Footnotes 1-5 of Table 2 apply to this table as well.

than GMM(b°,c°). They are somewhat worse than GMM(b®,c°) and
GMM(b,,, ¢;,) in terms of rejection rates. The post-selection estimators are very
much better than GMM(1,,.1,) and GMM(b,,,, c,,) in terms of both RMSE and
rejection rates. The ranking of the four post-selection estimators for RMSE
and rejection rates is as follows. GMM(bpr, cpr) is the best. GMM(bgc, Cpic)
and GMM(byqic, cuaic) are slightly worse and GMM(bjc, carc) is the worst.
The RMSE performances of GMM(bpr, cpr) and GMM(bgc, ¢gic) are much
better than that of GMM(byc,caic) and are not too far from that of
GMM(b°, c°). These results reflect the selection probability results of Table 1. In
sum, the results of Table 3 indicate that for a sample size of (T, N) = (3, 500)
post-selection estimators can outperform any of the feasible benchmark
estimators with respect to RMSE.
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Table 4 presents results for (T, N) = (3, 1000). In this case, the performance of
GMM(bgc, cpic) is almost equivalent to that of GMM(b®, ¢°) in terms of both
RMSEs and rejection rates. Thus, GMM(bgc, cgic) outperforms GMM(b,,, ¢;,.)
by a noticeable margin and totally dominates GMM(1,, 1,) and GMM(b,,,, C;u)-
Its excellent performance could be anticipated from the results of Table 1,
because it selects the correct model and moment conditions with very high
probability. The performance of GMM(bpr,cpr) is close behind that of
GMM(bgc, cpic)- GMM(byqic, cuqic) and GMM(bjc, carc) perform better than
GMM(b,,, ¢;,), but neither is as good as GMM(bgc, cgic) or GMM(bpr, cpt).
The ordering of the four post-selection estimators in Table 4 is clear:
GMM(bgc, cpic) is first, GMM(bpr, cpr) is second, GMM(byqic; cuqic) is third,
and GMM(bac, caic) 1s fourth.

For brevity, we do not present post-selection estimation results for the sample
sizes (T, N) = (6, 250) and (6, 500). The results for these cases are similar to
those of Tables 3 and 4, respectively, for (T, N) = (3,5 00) and (3, 1000), which
have the same total number of observations.

Lastly, in Table 5 we report results for the second set of parameter
values and sample size (T, N) = (3, 500). In this case, «; is close to one,
so the dependent variable y; is highly persistent and the ‘stationarity
assumption’ Assumption G4 is very informative. In consequence,
GMM(b,,, ¢;r), which does not exploit Assumption G4, is much less efficient
than GMM(b?, c°). Its RMSEs are from seven to twenty times as large as those
of GMM(b°, c°).

In Table 5, all four post-selection estimators outperform GMM(b,,, ¢;,.) in
terms of both RMSE and rejection rates, but all are outperformed by
GMM(b° % in terms of RMSE. The best post-selection estimator is
GMM(bgc, cpic) in terms of RMSE and rejection rates. Next best are
GMM(bpr, cpr) and GMM(byqic, cuqic)- The RMSEs of GMM(bgc, cpic) are
roughly half the size of those of GMM(byc, caic)- In addition, GMM(bgc, Cpic)
performs very well in terms of rejection rates with rates of 0.050, 0.055, and 0.064
for o, oy, and f.

In summary, the results of Tables 2-5 indicate that the MMSC and DT
procedures are effective in delivering improved estimator performance
over the feasible alternative benchmark estimators provided the sample size
(T, N) is greater than (3, 250). The improvement of the consistent
MMSC and DT procedures as the sample size increases is quite evident. With
a sample size of (T, N) = (3, 1000), the GMM(bgc, cgic) estimator performs as
well as the infeasible estimator that relies on knowing the correct model and
moment conditions. The choice of the best MMSC is unclear for the smallest
sample size (T, N) = (3, 250), but for all larger sample sizes it is clearly seen to
be GMM(bgc, cgic).- The DT procedure is comparable to GMM(bgc, cpic) in an
overall sense. It performs slightly better for the smaller sample sizes, but slightly
worse for the larger ones.
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Table 5
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% t-tests:
T =3, N =500, oy = 0.95*

Bias SD RMSE Rej. rate Bias SD RMSE Rej. rate
GMM(b°, c°) GMM(barc; Carc)
o 0.057 0.189 0.197 0.039 0.692 1.862 1.987 0.140
oy — 0.004 0.012 0.012 0.035 —0.040 0.108 0.115 0.141
o0 — — — — —0.003 0.015 0.016 0.064
p —0.003 0.010 0.010 0.056 —0.020 0.052 0.056 0.138
GMM(by,, ci) GMM(bgic, Cric)
oo 1.670 2.162 2.732 0.184 0.136 1.047 1.056 0.050
oy —0.094 0.124 0.156 0.182 —0.009 0.062 0.062 0.055
o —0.010 0.020 0.022 0.068 0.000 0.007 0.007 0.021
p — 0.046 0.060 0.075 0.188 —0.005 0.030 0.031 0.064
GMM(1,, 1,) GMM(byqic; Cuqic)
o 0.286 0.526 0.599 0.525 0.295 1.326 1.359 0.078
oy —0.052 0.030 0.060 0.832 —0.018 0.078 0.079 0.081
oy 0.034 0.019 0.039 0.679 —0.001 0.011 0.011 0.041
p —0.045 0.012 0.047 0.995 —0.009 0.038 0.039 0.086
GMM(y, Cr) GMM(bpr, cpr)
oo 15.211 0.427 15.217 1.000 0.277 1.323 1.352 0.074
oy —0.950 — 0.950 — —0.016 0.076 0.077 0.074
o 0.000 — 0.000 — —0.001 0.010 0.010 0.024
p —0.500 — 0.500 — — 0.009 0.037 0.038 0.090

*The true parameter values are (ao, o1, 02, B) = (0.8, 0.95,0,0.5) and (o, 0., 07 0Z
62) = (= 02,05, 02,02, 0.5).

"Footnotes 2-5 of Table 2 apply to this table as well.

7. Conclusions

This paper extends the standard GMM framework to the case where there is
imperfect knowledge about the correct model and moment conditions. We
introduce a class of model and moment selection criteria (MMSC) and down-
ward testing procedures that consistently select the correct model and all of the
correct moment conditions, but no others. The MMSC are based on a trade-off
between the magnitude of the J statistic and the numbers of parameters and
moment conditions employed. The trade-off is analogous to that made by model
selection criteria in likelihood scenarios.
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The paper applies the MMSC and testing procedures to GMM estimation of
dynamic panel data models. In such models, different GMM estimators are based
on different sets of assumptions concerning the covariances between different
components of the model, such as error components, regressors, and initial condi-
tions. The selection procedures can be used to help determine which of the
covariance restrictions are correct. The selection procedures also can be used to help
specify the model. For example, they can be used to select the lag length, detect
structural breaks in the parameters, or determine which regressors to include.

Lastly, we conduct a Monte Carlo experiment to evaluate the finite sample
performance of the selection procedures. We consider a dynamic panel data
problem. We compute the probabilities that several MMSC and downward
testing procedures select the correct model and moment conditions, as well as
various combinations of incorrect model and moment conditions. We analyze
the performance of post-selection GMM estimators in terms of their biases,
standard deviations, root mean-squared errors, and t-test rejection rates. The
MMSC-BIC and downward testing procedures are found to work quite well in
a variety of contexts.

Appendix A. Proofs

Proof of Theorem 1. The proofis quite similar to that of Theorem 1 of Andrews
(1999). First, we establish Theorem 1(a). For any (b, c)e #% with (b,c)¢ BE2°,
we have

Jo(b, )/n B inf GO0, WO(b, c)G2(0p;) > O under PO, (A.1)

0 €0

where the convergence holds by Assumption 1(c) and the inequality holds
because (i) G(0;)) # 0 VO, € O by the supposition that (b, ¢)¢ 262 ° and (ii)
WO(b, ¢) is positive definite by Assumption 1(b). Eq. (A.1) and Assumption
MMSC(b) yield: For any (b, ¢c)e #% with (b, ¢)¢ BEC%°,

MMSC, (b, c)/n = J,(b,c)/n — h(lc| — |b)x,/n

5 inf GU0p) WO(b,c)Go(0py) > 0 under P°.  (A.2)

011 €O
For any (b,c)e 8¢ %°, we have
Ju(b,c) = Oy(1) under P, (A.3)

using Assumptions 1(a) and (c) and the fact that G2(0;,;) = 0 for some O € O
Eq. (A.3) and Assumption MMSC(b) yield: For any (b, c)e #€%°,

MMSC, (b, c)/n = O,(1) — h(le| — [bkn/n = O,(1) under P°. (A4)
Egs. (A.2) and (A.4) imply that (hywsc, émmsc) € BEZ° wp — 1.
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Now, suppose (by,cy), (b2,¢2)eBECZ°, (by,c1)¢ MBEZ°, and (b,,c,)e
MBEX°. Then, |c{| — |by| < |c2]| — |b,| and by Assumption MMSC

(A(ler| = [b1]) = h(lea| — 1b2 )iy = — 0. (A.5)

Egs. (A.3) and (A.5) imply that MMSC, (b, c¢{) > MMSC, (b5, c,) wp — 1. Thus,
(bamsc, Enmsc) € M BEZ° wp — 1, as stated in Theorem 1(a).

Now, Assumption IDbc and (b°,c%) e #% imply that M BEZ° = {(b° °)}.
Hence, coupled with Theorem 1(a), the former conditions imply that
(bumses Ewmse) = (0%, ¢%) wp — 1. In addition, (b°,c%)eB% is necessary for
(bumses Ewmse) = (b2, ¢°). Hence, Theorem 1(b) holds.

Theorem 1(c) follows from Theorem 1(b). [

Proof of Theorem 2. First, we establish Theorem 2(a). For any (b, c)e #% with
(b,0)¢ BEZ°, we have

Ju(b, )/t~ 1o > o0 under P° (A.6)

by (A1) and Assumption T. Thus, kpr < #(A/BE€Z°) wp -1, where
# (M BE Z°) denotes the (unique) number of over-identifying restrictions for the
vector(s) in M BECZ°.

For any (b,c)e #6%°, (A.3) and Assumption T yield

Jn(b, C) < Vnlel—1p] WP — 1 under PO. (A7)

In consequence, kpy = # (.4 B%%°) wp — 1. This result and (A.6) imply that
(bor, épr) € M RBEZ° wp — 1 and, hence, Theorem 2(a) holds.

Now, Theorems 2(b) and (c) follow from Theorem 2(a) by the same argument
as used above to show that Theorems 1(b) and (c) follow from Theorem 1(a). [

References

Ahn, S.C., Schmidt, P., 1995. Efficient Estimation of Models for Dynamic Panel Data. Journal of
Econometrics 68, 5-27.

Akaike, H., 1969. Fitting autoregressive models for prediction. Annals of the Institute of Statistical
Mathematics 21, 243-247.

Akaike, H., 1977. On entropy maximization principle. In: Krishnaiah, P.R. (Ed.), Applications of
Statistics. North-Holland, Amsterdam.

Amemiya, T., 1980. Selection of regressors. International Economic Review 21, 331-354.

Amemiya, T., MaCurdy, T.E., 1986. Instrumental-variable estimation of an error-components
model. Econometrica 54, 869-881.

Anderson, T.W., Hsiao, C., 1982. Formulation and estimation of dynamic models using panel data.
Journal of Econometrics 18, 47-82.

Andrews, D.W.K., 1992. Generic uniform convergence. Econometric Theory 8, 241-257.

Andrews, D.W.K., 1997. A stopping rule for the computation of generalized method of moments
estimators. Econometrica 65, 913-931.



D.W.K. Andrews, B. Lu | Journal of Econometrics 101 (2001) 123-164 163

Andrews, D.W.K., 1999. Consistent moment selection procedures for generalized method of mo-
ments estimation. Econometrica 67, 543-564.

Andrews, D.W.K., Lu, B, 1999. Consistent model and moment selection criteria for GMM
estimation with application to dynamic panel data models. Cowles Foundation Discussion
Paper No. 1233, Yale University.

Arellano, M., Bond, S., 1991. Some tests of specification for panel data: Monte Carlo evidence and an
application to employment equations. Review of Economic Studies 58, 277-297.

Arellano, M., Bover, O., 1995. Another look at the instrumental variable estimation of error-
components models. Journal of Econometrics 68, 29-51.

Balestra, P., Nerlove, M., 1966. Pooling cross section and time series data in the estimation of
a dynamic model: the demand for natural gas. Econometrica 34, 585-612.

Bhargava, A., Sargan, J.D., 1983. Estimating dynamic random effects models from panel data
covering short time periods. Econometrica 51, 1635-1659.

Blundell, R., Bond, S., 1995. Initial conditions and moment restrictions in dynamic panel data
models. Working Paper No. W95/17, The Institute for Fiscal Studies, London.

Breusch, T.S., Mizon, G.E., Schmidt, P., 1989. Efficient estimation using panel data. Econometrica
57, 695-701.

Chamberlain, G., 1984. Panel data.. In: Griliches, Z., Intriligator, M.D. (Eds.), Handbook of
Econometrics, Vol. II. Elsevier, Amsterdam.

Eichenbaum, M.S., Hansen, L.P., Singleton, K.J., 1988. A time series analysis of representative agent
models of consumption and leisure choice under uncertainty. Quarterly Journal of Economics
103, 51-78.

Gallant, A.R., Hsieh, D., Tauchen, G., 1997. Estimation of stochastic volatility models with
diagnostics. Journal of Econometrics 81, 159-192.

Gallant, A.R., Tauchen, G., 1996. Which moments to match? Econometric Theory 12, 657-681.

Hannan, EJ., 1980. The estimation of the order of an ARMA process. Annals of Statistics 8,
1071-1081.

Hannan, E.J., 1982. Testing for autocorrelation and Akaike’s criterion. In: Gani, J.M., Hannan, E.J.
(Eds.), Essays in statistical science. Applied Probability Trust, Sheffield, pp. 403-412.

Hannan, E.J., Deistler, M., 1988. The Statistical Theory of Linear Systems. Wiley, New York.

Hannan, E.J., Quinn, B.G., 1979. The determination of the order of an autoregression. Journal of the
Royal Statistical Society Series B 41, 190-195.

Hansen, L.P., 1982. Large sample properties of generalized method of moments estimators. Econo-
metrica 50, 1029-1054.

Hausman, J.A., Taylor, W.E., 1981. Panel data and unobservable individual effects. Econometrica
49, 1377-1398.

Holtz-Eakin, D., Newey, W., Rosen, H.S., 1988. Estimating vector autoregressions with panel data.
Econometrica 56, 1371-1395.

Kabaila, P., 1995. The effect of model selection on confidence regions and prediction regions.
Econometric Theory 11, 537-549.

Keane, M.P., Runkle, D.E., 1992. On the estimation of panel-data models with serial correlation
when instruments are not strictly exogenous. Journal of Business and Economics Statistics 10,
1-9.

Kohn, R., 1983. Consistent estimation of minimal subset dimension. Econometrica 51,
367-376.

Kolaczyk, E.D., 1995. An information criterion for empirical likelihood with general estimating
equations. Unpublished manuscript, Department of Statistics, University of Chicago.

Maddala, G.S., 1971. The use of variance components models in pooling cross section and time
series data. Econometrica 39, 341-358.

Mundlak, Y., 1961. Empirical production function free of management bias. Journal of Farm
Economics 43, 45-56.



164 D.W.K. Andrews, B. Lu | Journal of Econometrics 101 (2001) 123-164

Nishii, R., 1988. Maximum likelihood principle and model selection when the true model is
unspecified. Journal of Multivariate Analysis 27, 392-403.

Pesaran, M.H., Smith, R.J., 1994. A generalized R criterion for regression models estimated by the
instrumental variables method. Econometrica 62, 705-710.

Phillips, P.C.B., Ploberger, W., 1996. An asymptotic theory of Bayesian inference for time series.
Econometrica 64, 381-412.

Pollard, D., 1984. Convergence of Stochastic Processes. Springer, New York.

Po6tscher, B.M., 1983. Order estimation in ARMA-models by Lagrangian multiplier tests. Annals of
Statistics 11, 872-885.

Po6tscher, B.M., 1989. Model selection under nonstationarity: autoregressive models and stochastic
linear regression models. Annals of Statistics 17, 1257-1274.

Po6tscher, B.M., 1991. Effects of model selection on inference. Econometric Theory 7, 163-185.

Potscher, B.M., Novak, A.J., 1994. The distribution of estimators after model selection: large and
small sample results. Unpublished manuscript, Institute for Statistics, Operations Research, and
Computer Science, University of Vienna.

Rissanen, J., 1978. Modeling by shortest data description. Automatica 14, 465-471.

Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics 6, 461-464.

Shibata, R., 1976. Selection of the order of an autoregressive model by Akaike’s information
criterion. Biometrika 63, 117-126.

Sin, C.-Y., White, H., 1996. Information criteria for selecting possibly misspecified parametric
models. Journal of Econometrics 71, 207-225.

Smith, RJ., 1992. Non-nested tests for competing models estimated by generalized method of
moments. Econometrica 60, 973-980.



