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Abstract

This paper develops consistent model and moment selection criteria for GMM
estimation. The criteria select the correct model speci"cation and all correct moment
conditions asymptotically. The selection criteria resemble the widely used likelihood-
based selection criteria BIC, HQIC, and AIC. (The latter is not consistent.) The GMM
selection criteria are based on the J statistic for testing over-identifying restrictions.
Bonus terms reward the use of fewer parameters for a given number of moment
conditions and the use of more moment conditions for a given number of parameters.
The paper also considers a consistent downward testing procedure. The paper applies the
model and moment selection criteria to dynamic panel data models with unobserved
individual e!ects. The paper shows how to apply the selection criteria to select the lag
length for lagged dependent variables, to detect the number and locations of structural
breaks, to determine the exogeneity of regressors, and/or to determine the existence of
correlation between some regressors and the individual e!ect. To illustrate the "nite
sample performance of the selection criteria and the testing procedures and their impact
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on parameter estimation, the paper reports the results of a Monte Carlo experiment on
a dynamic panel data model. ( 2001 Elsevier Science S.A. All rights reserved.
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1. Introduction

Many econometric models are speci"ed through moment conditions rather
than complete distributional assumptions. Examples are dynamic panel data
models with unobserved individual e!ects and macroeconomic models with
rational expectations. Such models are usually estimated using generalized
method of moments (GMM), see Hansen (1982). For consistency and asymp-
totic normality, this method relies on the correct speci"cation of the model and,
given the model, on the speci"cation of correct moment conditions. To date, no
procedures are available in the literature that consider the problem of selecting
the correct model and correct moment conditions in a GMM context.

In this paper, we introduce consistent model and moment selection criteria
(MMSC) and downward testing procedures that are able to select the correct
model and moments for GMM estimation with probability that goes to one as
the sample size goes to in"nity. Our results apply to both nested and non-nested
models. Our results extend those of Andrews (1999), who considers the problem
of selection of correct moments given the correct model. Our results extend the
model selection literature, which considers model selection based on the likeli-
hood under full distributional assumptions, to GMM contexts. Our results
provide a model selection alternative to the non-nested tests for GMM models
considered in Smith (1992).

In the paper, we apply the MMSC and downward testing procedures to
dynamic panel data models. We show that these procedures can be used to
consistently select from a number of di!erent speci"cations of the model and
moment conditions. The MMSC and testing procedures can be applied to
questions of lag length, existence of structural breaks, exogeneity of regressors,
and correlation between regressors and an unobserved individual e!ect. Of
course, in any one application, one would not want to try to use the data to
answer all of these questions simultaneously. To do so would result in very poor
"nite sample behavior. Nevertheless, for theoretical purposes, we set up a gen-
eral model that incorporates all these questions and allows us to provide one set
of results that simultaneously covers the many restricted sub-models of interest.
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We explore the "nite sample properties of the MMSC and testing procedures
and their impact on parameter estimation via a Monte Carlo experiment based
on a restricted version of the general dynamic panel data model. In this model,
the true lag length of the lagged dependent variables is unknown. Furthermore,
it is not known whether a regressor is predetermined or strictly exogenous with
respect to the time-varying error component or whether the regressor is corre-
lated with the unobserved individual e!ect.

The MMSC that we consider resemble the widely used BIC, AIC, and HQIC
model selection criteria. (See Hannan and Quinn (1979) for the latter.) The
MMSC are based on the J test statistic for testing over-identifying restrictions.
They include bonus terms that reward the use of more moment conditions for
a given number of parameters and the use of less parameters for a given number
of moment conditions. The J statistic is an analogue of (minus) the log-
likelihood function and the bonus terms are analogues of (minus) the term that
penalizes the use of more parameters in a standard model selection criterion.

For illustration, we de"ne the MMSC}BIC here. Setting di!erent elements of
h equal to zero yields di!erent models. For example, in a model with lagged
dependent variables, setting di!erent lag coe$cients to zero yields models with
di!erent numbers of lags. As a second example, suppose one has two competing
non-nested models with two corresponding parameter vectors and two sets of
GMM estimating equations. Then, the two parameter vectors can be stacked to
yield a single parameter h. Setting the second parameter vector equal to zero
yields the "rst model and vice versa.

Next, let (b, c) denote a pair of model and moment selection vectors. That is,
b is a vector that selects some parameters from the vector h, but not necessarily
all of them. And c selects some moments, but not necessarily all of them. Let DbD
and DcD denote the numbers of parameters and moments, respectively, selected by
(b, c). Let J

n
(b, c) denote the J test statistic for testing over-identifying restric-

tions, constructed using the parameters selected by b and the moments selected
by c. LetBC be the parameter space for the model and moment selection vectors
(b, c). Let n denote the sample size. Then, the MMSC}BIC criterion selects the
pair of vectors (b, c) in BC that minimizes

J
n
(b, c)!(DcD!DbD) ln n. (1.1)

In Andrews and Lu (1999), we show that this criterion is the proper analogue of
the BIC model selection criterion in the sense that it makes the same asymptotic
trade-o! between the &model "t' and the &number of parameters'.

The downward testing procedure considered here selects models and mo-
ments by carrying out J tests of over-identifying restrictions. The downward
testing procedure starts with the model/moment combinations with the most
number of over-identifying restrictions and tests the null hypothesis that all
moments under test have mean zero for some parameter value. The procedure
tests model/moment combinations with progressively fewer over-identifying
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restrictions until it "nds one that does not reject the null hypothesis. This one is
the selected model/moment combination.

We now discuss the general dynamic panel data model considered in the
paper. The model does not assume speci"c distributions for the errors in
the model. Instead, following many papers in the recent literature, the model is
speci"ed by a sequence of assumptions on the means and covariances of the
random variables that enter the model. These assumptions imply a sequence of
moment conditions that may be used for GMM estimation of the parameters.

The general dynamic panel data model that we consider nests as special cases
the models in Hausman and Taylor (1981), Anderson and Hsiao (1982), Bhar-
gava and Sargan (1983), Breusch et al. (1989), Arellano and Bover (1995), and
Ahn and Schmidt (1995). In addition, the model shares a common feature with
those in Chamberlain (1984) and Holtz-Eakin et al. (1988) in the sense that
coe$cients can vary over time. The model also incorporates some novel features
by allowing for (i) potentially unknown lag length for the lagged dependent
variables, (ii) possible structural breaks in the parameters at unknown times,
(iii) regressors whose predetermined/strictly exogenous status is unknown, and
(iv) regressors whose correlation with the individual e!ect is not known to be
zero or nonzero.

To evaluate the "nite sample properties of the MMSC and testing procedures,
we conduct a Monte Carlo experiment on a dynamic panel data model that is
a restricted version of the general model. The consistent MMSC are shown to
have good performance in selecting the correct parameter vector and correct
moment conditions. Conducting model and moment selection has an impact on
parameter estimation. The post-selection GMM estimators can have much
lower biases, standard errors, and root mean squared-errors and more accurate
rejection rates than a standard GMM estimator without model and moment
selection. We "nd that the MMSC}BIC and downward testing procedures are
the best procedures in all cases considered except that with the smallest sample
size.

We now review the literature related to this paper. In addition to Andrews
(1999), the closest literature to the model and moment selection results of this
paper is that concerning likelihood-based model selection criteria. The AIC
criterion was introduced by Akaike (1969). The BIC criterion was introduced by
Schwarz (1978), Rissanen (1978), and Akaike (1977). The HQIC criterion was
introduced by Hannan and Quinn (1979). The PIC criterion was introduced by
Phillips and Ploberger (1996). Consistency, strong consistency, or lack thereof of
these procedures are established by Shibata (1976), Hannan (1980, 1982), and
Hannan and Deistler (1988), as well as some of the references above. The use of
model selection procedures in general non-linear models has been considered by
Kohn (1983), Nishii (1988), and Sin and White (1996). The e!ect of model
selection on post-model selection inference is considered by PoK tscher (1991),
PoK tscher and NovaH k (1994), and Kabaila (1995) among others. For the literature
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on regressor selection, see Amemiya (1980), PoK tscher (1989), and references
therein.

Other literature related to this paper includes Kolaczyk (1995), who considers
an analogue of the AIC model selection criterion in an empirical likelihood
context, and Pesaran and Smith (1994), who consider an R2-type criterion that
can be used for model selection in linear regression models estimated by
instrumental variables.

In addition, the results of this paper are related to the test of Eichenbaum et al.
(1988) of whether a given subset of moment conditions is correct or not. They
propose a likelihood-ratio like test based on the GMM criterion function. The
results of this paper also are related to the literature on non-nested tests in
GMM contexts, see Smith (1992).

Gallant and Tauchen (1996) address the issue of selecting a small number of
e$cient moments from a large pool of correct moments. This is a di!erent
problem from that addressed here. Gallant et al. (1997) consider using t-ratios
for individual moment conditions as diagnostics for moment failure.

Our results for dynamic panel data models follow a long line of research in
econometrics. Early contributions including Mundlak (1961), Balestra and Ner-
love (1966), and Maddala (1971). More recently, static panel data models with
unobserved individual e!ects that may be correlated with some of the explana-
tory variables are studied in Hausman and Taylor (1981), Amemiya and
MaCurdy (1986), Breusch et al. (1989), and Keane and Runkle (1992). Dynamic
panel data models with unobserved individual e!ects are studied in Anderson
and Hsiao (1982), Bhargava and Sargan (1983), Chamberlain (1984), Holtz-
Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt (1995), Blundell
and Bond (1995), and Arellano and Bover (1995). The latter paper provides
a nice summary of many of the models that have been considered in the
literature.

The rest of the paper is organized as follows: Section 2 introduces the general
model and moment selection problem and de"nes the &correct' model and
moment selection vectors. Section 3 introduces a class of model and moment
selection criteria and provides conditions for consistency of these criteria in
a general GMM context. Section 4 introduces the downward testing procedure
and provides conditions for consistency of this testing procedure. Section 5
speci"es a general dynamic model for panel data and compares it to models in
the literature. Section 5 also provides an array of di!erent restrictions on the
general panel data model, speci"es the moment conditions implied by these
restrictions, and applies the model and moment selection procedures of
Sections 3 and 4 to this model. Section 6 evaluates the "nite sample per-
formance of the model and moment selection procedures via Monte Carlo
simulation. In this section, a restricted version of the general dynamic panel
data model of Section 5 is used. Section 7 concludes. An Appendix contains
proofs.
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2. The model and moment selection problem

2.1. Introduction

We have an in"nite sequence of random variables Z
1
,2,Z

n
,2 drawn from

an unknown probability distribution P0 (the data generating process) that is
assumed to belong to a class P of probability distributions. The class P allows
for the cases where the random variables are iid, inid, stationary and ergodic,
weakly dependent and non-identically distributed, etc. Let E0 denote expecta-
tion under P0.

We have a random vector of empirical moments

G
n
(h) :HPRr (2.1)

and a random r]r weight matrix=
n
, both of which depend on MZ

i
: i)nN. The

parameter space H is a subset of Rp. Typically, the empirical moments are of the
form G

n
(h)"(1/n)+n

i/1
m(Z

i
, h).

We assume that G
n
(h) converges in probability as nPR to a function

G0(h) ∀h3H, ∀P03P. (A formal statement of assumptions is provided below.)
Usually, this holds by a weak law of large numbers (LLN) and G0(h) is the
expectation of G

n
(h) or its limit as nPR. The superscript &0' on G0(h), and on

various other quantities introduced below, denotes dependence on P0.
In the standard GMM framework (which is not adopted here), one assumes

that the entire parameter vector h is to be estimated and that all r moment
conditions are correct. By the latter, we mean that for some h03H, one has
G0(h0)"0. To achieve identi"cation, one assumes that h0 is the unique solution
to these equations. The parameter h0 is then called the &true' value of h. In this
case, the standard GMM estimator hK

n
of h0 is de"ned to minimize

G
n
(h)@=

n
G

n
(h) over h3H. (2.2)

The GMM estimator hK
n

is consistent for h0 under minimal (and well-known)
additional assumptions.

Here, we consider the case where the parameter vector h may incorporate
several models. By setting di!erent elements of h equal to zero, one obtains
di!erent models. Two examples of this are given in the Introduction. As a third
example, consider a model that may have structural breaks in the parameters
(perhaps at some unknown time(s)). The vector h can include the pre-break
values of the parameter plus post-break deviations from the pre-break values.
Di!erent sets of post-break deviations can denote changes at di!erent times. If
the post-break deviations are set equal to zero, then one obtains the model with
no structural breaks.

We consider the case where not all of the moments in G
n
(h) are necessarily

correct. That is, it may be the case that there is no vector h03H for which
G0(h0)"0. This situation can arise for a variety of reasons. It clearly arises in the
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example of selecting between two non-nested GMM models mentioned in the
Introduction. In this case, G

n
(h) consists of the moments for the two models

stacked one on top of the other. In this case, one expects a priori that one set of
moments or the other is correct, but not both. Of course, this example extends to
the case of more than two non-nested models.

In addition, one may have some incorrect moments when G
n
(h) consists of

moments for a single model or nested models, but there is a hierarchy of
restrictions on the model(s). In such cases, some moment conditions may hold,
whereas others may not. For example, some moment conditions might hold if
certain variables are predetermined and an additional set may hold if, in
addition, the variables are strictly exogenous.

By allowing for incorrect moment conditions, as in Andrews (1999), we
provide a method of dealing with the common problem in empirical applica-
tions that the J test of over-identifying restrictions rejects the null hypothesis
that all moment conditions are correct.

Below we show that under certain assumptions it is possible to consistently
estimate the &correct' model and the &correct' moment conditions given suitable
de"nitions of &correct'. This allows one to construct a GMM estimator that
relies only on the correct model and moment conditions asymptotically, pro-
vided there are some over-identifying restrictions on the correct model.

2.2. Dexnition of the correct model and moment selection vectors

Let (b, c)3Rp]Rr denote a pair of model and moment selection vectors. By
de"nition, b and c are each vectors of zeros and ones. If the jth element of b is
a one, then the jth element of the parameter vector h is a parameter to be
estimated. If the jth element is a zero, then the jth element of h is set equal to zero
and is not estimated. If the jth element of c is a one, then the jth moment
condition is included in the GMM criterion function, whereas if the jth element
is a zero, it is not included. Let

S"M(b, c)3Rp]Rr: b
j
"0 or 1 ∀1)j)p, c

k
"0 or 1 ∀1)k)r,

where b"(b
1
,2,b

p
)@ and c"(c

1
,2, c

r
)@N. (2.3)

Let DbD denote the number of parameters to be estimated given b, i.e.,
DbD"+p

j/1
b
j
. Let DcD denote the number of moments selected by c, i.e.,

DcD"+r
k/1

c
k
.

Consider any p-vector h, any r-vector v, and any (b, c)3S with cO0. Let
h
*b+

denote the p-vector that results from setting all elements of h equal to zero
whose coordinates equal coordinates of elements of b that are zeros (i.e., h

*b+
is

the element by element (Hadamard) product of h and b). Let v
c

denote the
DcD-vector that results from deleting all elements of v whose coordinates equal
coordinates of elements of c that are zeros. Thus, G

nc
(h) is the DcD-vector of
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moments that are speci"ed by c. In sum, the subscript [b] sets some elements of
a vector equal to zero, whereas the subscript c deletes some elements. For c"0,
let v

c
"0 (3R).

We now de"ne the &correct' model selection vector b0 and the &correct'
moment selection vector c0. Let c0(h) be the r vector of zeros and ones whose jth
element is one if the jth element of G0(h) equals zero and is zero otherwise. Thus,
c0(h) indicates which moments equal zero asymptotically when evaluated at the
parameter vector h. De"ne

Z0"M(b, c)3S: c"c0(h) for some h3H with h"h
*b+

N. (2.4)

As de"ned, Z0 is the set of pairs of model and moment selection vectors (b, c) in
S that select only moments that equal zero asymptotically for some h3H with
h"h

*b+
. (The notation &Z0' is meant to remind one of &zero under P0'.) De"ne

MZ0"M(b, c)3Z0: DcD!DbD*DcHD!DbHD ∀(bH, cH)3Z0N. (2.5)

As de"ned, MZ0 is the set of selection vectors in Z0 that maximize the number
of over-identifying restrictions out of the model and moment selection vectors in
Z0. (The notation &MZ0' denotes &maximal over-identifying restrictions under
P0'.)

For given P03P, we consider the following assumption:

Assumption IDbc. MZ0 contains a single element (b0, c0).

When Assumption IDbc holds, we call b0 the &correct' model selection vector
and c0 the &correct' moment selection vector. The correct selection vectors
(b0, c0) have the property that they uniquely select the maximal number of
over-identifying restrictions out of all possible models and moment conditions.
Depending upon P0, Assumption IDbc may or may not hold. Below we analyze
the properties of model and moment selection procedures both when this
identi"cation assumption holds and when it fails to hold.

When the maximum number of over-identifying restrictions is zero for any
model and any set of moment conditions, i.e., DcD!DbD)0 for (b, c)3MZ0, then
Assumption IDbc typically does not hold. The reason is that whenever there are
as many or more parameters DbD as moment conditions DcD there is usually some
DbD-vector h

*b+
3H that solves the DcD moment conditions G

c
(h

*b+
)"0. Hence,

Z0 typically contains multiple elements with DcD"DbD. In consequence, Assump-
tion IDbc typically requires one or more over-identifying restrictions for it to
hold. That is, it requires DcD'DbD for (b, c)3MZ0.

For the model corresponding to the model selection vector b, let H
*b+

(-H)
denote the parameter space. By de"nition, H

*b+
is the subset of vectors in H that

have zeros for elements that correspond to the zeros in b.
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For distributions P0 for which Assumption IDbc holds, we consider the
following condition:

Assumption ID h. There is a unique vector h03H
*b0+

such that G0
c
0(h0)"0.

When Assumption IDh holds, we call h0 the &true' value of h. The true value
h0 has the property that it sets the moment conditions selected by c0 to be zero
and is the unique parameter vector in H

*b0+
that does so.

Note that the standard GMM situation considered in the literature corres-
ponds to the case where MZ0"M(1

p
, 1

r
)N and Assumption IDh is imposed,

where 1
p

and 1
r
denote p- and r-vectors of ones. In this case, Assumption IDbc

holds.
To obtain consistent estimators of (b0, c0) when Assumption IDbc holds, it

turns out that one does not need Assumption IDh to hold. To obtain consistent
estimators of both (b0, c0) and h0, however, one needs both Assumptions IDbc
and IDh to hold.

Next, we discuss Assumptions IDbc and IDh in the context of linear IV
estimation. Consider the iid linear regression model >

i
"X@

i
hH#;

i
for

i"1,2, n under P0, where E0;
i
"0 and E0DDX

i
DD(R. We consider the IVs

ZI
i
3Rr, where A0"E0ZI

i
X@

i
3RrCp and o0"E0ZI

i
;

i
3Rr. The moments in this

case are G
n
(h)"1

n
+n

i/1
(>

i
!X@

i
h)ZI

i
and the corresponding limit function is

G0(h)"E0(>
i
!X@

i
h)ZI

i
"o0!A0(h!hH).

Let bH (3Rp) denote the selection vector that selects all of the elements of
hH that are not equal to zero. That is, the jth element of bH is one if the
corresponding element of hH is non-zero and is zero otherwise. Let cH (3Rr)
denote the selection vector that selects all of the IVs that are not correlated with
the error ;

i
. Thus, the jth element of cH is one if the corresponding element of

o0 is zero and is zero otherwise. We assume that there are more good IVs than
parameters in the correct model, i.e., DcHD'DbHD. In this context, the correct
selection vector of regressors that enter the model is bH, the selection vector of
correct IVs is cH, and the parameter of interest is hH

*bH+
.

Of interest is the question: When do Assumptions IDbc and IDh hold with
b0"bH, c0"cH, and h0"hH? It is easy to see that (bH, cH)3Z0. Let A0

bc
denote

the matrix A0 with the columns corresponding to zeros in b deleted and the rows
corresponding to zeros in c deleted. Then, Assumption IDbc holds with (b0, c0)
"(bH, cH) if and only if o0

c
is not in the column space of A0

bc
for any

(b, c)O(bH, cH) with DcD!DbD*DcHD!DbHD, where o0
c
O03R@c@, A0

bc
3R@c@C@b@, and

DcD'DbD. Only very special A0 and o0 matrices violate this condition. If the
former condition holds, then Assumption IDh holds with h0"hH if and only if
A0

b
H
c
H is full column rank bH. (This is true because G0

c
H(h*bH+

)"A0
b
H
c
H(h

b
H!hH

b
H),

where h
b
H3R@b

H
@ and hH

b
H3R@b

H
@.)

We now return to the general case. If Assumption IDbc fails to hold for some
P0, then it is still possible to de"ne a &correct' vector (b0, c0) in some cases. For
given P03P, we consider the following assumption:
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2 In this case,=
n
(b, c) is the inverse of an estimator,<

n
(b, c), of the asymptotic covariance matrix,

<(c), of the moment conditions JnG
nc

(h0). We recommend that <
n
(b, c) be de"ned using the same

general formula for each pair of selection vectors (b, c) (to minimize the di!erences across vectors
(b, c)) and with the sample average of the moment conditions subtracted o!. For example, in an iid
case with G

n
(h) "(1/n)+n

i/1
m(Z

i
, h) and <(c)"Var(m

c
(Z

i
, h0)), we recommend de"ning <

n
(b, c) as

follows:

<
n
(b, c)"

1

n

n
+
i/1

(m
c
(Z

i
, hI

n
(b, c))!m6

nc
(hI

n
(b, c)))(m

c
(Z

i
, hI

n
(b, c))!m6

nc
(hI

n
(b, c)))@,

where m6
nc

(h)"(1/n)+n
i/1

m
c
(Z

i
, h) and hI

n
(b, c) is some estimator of h0. In the case of temporal

dependence, sample averages can be subtracted o! from a heteroskedasticity and autocorrelation
consistent covariance matrix estimator in an analogous fashion. Subtracting o! the sample averages
is particularly important when some of the moment conditions are not correct.

Assumption IDbc2. MZ0 contains a single element (b0, c0) for which
Db0D"minMDbD: (b, c)3MZ0N.

That is, if it exists, we can de"ne (b0, c0) to be the unique selection vector that
provides the smallest parameterization of the model out of all selection vectors
that maximize the number of over-identifying restrictions. Depending upon the
circumstances, this may or may not be a suitable way of de"ning (b0, c0). Below,
we focus on the de"nition of (b0, c0) given in Assumption IDbc, but we indicate
results that apply when (b0, c0) is de"ned more generally by Assumption IDbc2.

2.3. The J-test statistic

All of the model and moment selection procedures considered below are
based on the J-test statistic used for testing over-identifying restrictions, see
Hansen (1982). We de"ne this statistic here. The J-test statistic based on the
model selected by b and the moments selected by c is de"ned to be

J
n
(b, c)"n inf

h*b+ |H*b+

G
nc

(h
*b+

)@=
n
(b, c)G

nc
(h

*b+
). (2.6)

Here,=
n
(b, c) is the DcD]DcD weight matrix employed with the moments G

nc
(h

*b+
)

and the model selected by b. For example,=
n
(b, c) might be de"ned such that it

is an asymptotically optimal weight matrix when the moments selected by c are
correct.2 By de"nition, when c"0, =

n
(b, c)"0 (3R).

The GMM estimator based on the model selected by b and the moments
selected by c is de"ned to be any vector hK

n
(b, c)3H

*b+
for which

G
nc

(hK
n
(b, c))@=

n
(b, c)G

nc
(hK

n
(b, c))" inf

h|H*b+

G
nc

(h)@=
n
(b, c)G

nc
(h). (2.7)
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Thus, the J
n
(b, c) test statistic also can be written as

J
n
(b, c)"nG

nc
(hK

n
(b, c))@=

n
(b, c)G

nc
(hK

n
(b, c)). (2.8)

2.4. The parameter space for the model and moment selection vectors

We consider estimation of (b0, c0) via an estimator that we denote generically
by (bK , c( ). The parameter space for (bK , c( ) is denoted by BCLS. We always
specify the parameter space BC such that it includes some (b, c)3S with c"0.
This guarantees that the parameter space always includes at least one pair (b, c)
of selection vectors that does not select any incorrect moments (since it does not
select any moments at all). Note that the lack of any correct moments indicates
model misspeci"cation.

The parameter space BC should be a very much smaller set than S. Other-
wise, the "nite sample behavior of (bK , c( ) will be poor and computation will be
di$cult. The parameter space BC should exploit the information that many
parameters are known not to be zero and that many moment conditions are
known to be correct. It should also exploit the nested or hierarchical structure
that often exists with parameters (e.g., with lagged variables) and with moment
conditions (e.g., when blocks of moment conditions are either correct or incor-
rect block by block rather than moment condition by moment condition, see
Andrews (1999)).

2.5. Dexnition of consistency

All limits considered here and below are limits &as nPR'. Let &P
1
' denote

&convergence in probability as nPR'. Let &wpP1' abbreviate &with probability
that goes to one as nPR'.

We say that a moment selection estimator (bK , c( )3BC is consistent if

(bK , c( )"(b0, c0) wpP1 under P0, ∀P03P that satisfy Assumption IDbc.

(2.9)

Because BC is "nite, (bK , c( )"(b0, c0) wpP1 is equivalent to the standard
(weak) consistency condition that (bK , c( )P

1
(b0, c0).

We note that the above de"nition of consistency is stronger if Assumption
IDbc is replaced by Assumption IDbc2 in (2.9).

2.6. Performance when assumption IDbc fails

Below we analyze the behavior of the model and moment selection proced-
ures introduced below in the case where Assumption IDbc does not hold. For
this purpose, we make the following de"nitions. De"ne

BCZ0"BCWZ0. (2.10)
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As de"ned, BCZ0 is the set of selection vectors in the parameter space BC that
select only models and moments that equal zero asymptotically for some
parameter vector. De"ne

MBCZ0"M(b, c)3BCZ0: DcD!DbD*DcHD!DbHD ∀(bH, cH)3BCZ0N.

(2.11)

As de"ned, MBCZ0 is the set of selection vectors in BCZ0 that maximize the
number of over-identifying restrictions out of selection vectors in BCZ0. We
show below that for many moment selection procedures discussed below
(bK , c( )3MBCZ0 wpP1 whether or not Assumption IDbc holds. That is, for
these procedures, with probability that goes to one as nPR, (bK , c( ) lies in the set
of selection vectors that maximize the number of over-identifying restrictions out
of all selection vectors in the parameter space BC that select only moments that
equal zero asymptotically for some parameter vector.

2.7. Basic assumption

We now state the basic assumption under which the results below hold. This
assumption holds quite generally.

Assumption 1. (a) G
n
(h)"G0(h)#O

1
(n~1@2) under P0 ∀h3HLRp for some

Rr-valued function G0( ) ) on H, ∀P03P.
(b) =

n
(b, c)P

1
=0(b, c) under P

0
for some positive de"nite matrix =0(b, c)

∀(b, c)3BC, ∀P
0
3P.

(c) infh|H*b+
G

nc
(h)@=

n
(b, c)G

nc
(h)P

1
infh|H*b+

G0
c
(h)@=0(b, c)G0

c
(h)"G0

c
(hH)@=0(b, c)]

G0
c
(hH) under P0 for some hH3H

b
that may depend on c and P0, ∀(b, c)3BC,

∀P03P.

Assumption 1(a) typically holds by a central limit theorem (CLT) with G0(h)
equal to the expectation of G

n
(h) or its limit as nPR, because G

n
(h) is often

a sample average. Assumption 1(b) is a standard condition used to obtain
consistency of GMM estimators. It is satis"ed by all reasonable choices of
weight matrices =

n
(b, c).

Assumption 1(c) is implied by Assumption 1(b) and the following:
G

n
(h)P

1
G0(h) uniformly over h3H under P0 for G0( ) ) as in Assumption 1(a),

G0(h) is continuous on H, and H
*b+
LRp is compact for all b such that (b, c)3BC

for some c, ∀P03P. The "rst two of these three conditions can be veri"ed using
a generic uniform convergence result, such as a uniform weak LLN, e.g., see
Andrews (1992). Alternatively, when the moments are linear in h, Assumption
1(c) typically holds under almost the same conditions as Assumption 1(a),
because the &in"ma over h3H

*b+
' can be calculated explicitly. In the linear case,

the parameter spaces H
*b+

can be unbounded.
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For illustrative purposes, we provide a su$cient condition for Assumption 1
for the case of stationary data. This condition is not very restrictive. (The proof
of su$ciency is given in Andrews (1999).) Let DDBDD denote the Euclidean norm of
a vector or matrix, i.e., DDBDD"(trB@B)1@2.

Assumption S¹A¹. (a) MZ
i
: i"2, 0, 1,2N is a doubly in"nite stationary and

ergodic sequence under P0, ∀P03P.
(b) G

n
(h)"(1/n)+n

i/1
m(Z

i
, h) and m(z, h) is continuous in h on H for all z in

the support of Z
i
.

(c) E0DDm(Z
i
, h)DD2(R and +=

j/1
(E0DDE0(m(Z

i
, h)DF

i~j
)DD2)1@2(R ∀h3H,

∀P03P, where F
i
denotes the p-"eld generated by (2, Z

i~1
,Z

i
).

(d) Either (i) H
*b+
LRp is compact for all b such that (b, c)3BC for some c

and E0 suph|H DDm(Z
i
, h)DD(R ∀P03P or (ii) m(z, h)"m

1
(z)#m

2
(z)h ∀h3H,

where m
1
(z)3Rr and m

2
(z)3RrCp, and H

*b+
"Mh(b: h3RpN for all b such that

(b, c)3BC for some c, where &(' denotes element by element product.
(e) Assumption 1 (b) holds.

Note that the leading example where the moments are linear in h and
Assumption STAT(d) part (ii) holds is the linear IV estimator of the linear model
>
i
"X@

i
hH#;

i
with IV vector ZI

i
3Rr. In this case, the moments are

G
n
(h)"(1/n)+n

i/1
(>

i
!X@

i
h)ZI

i
"m

1
(Z

i
)#m

2
(Z

i
)h, where m

1
(Z

i
)">

i
ZI

i
3Rr,

m
2
(Z

i
)"!ZI

i
X@

i
3RrCp, and Z

i
"(>

i
, X@

i
, ZI @

i
)@.

3. Model and moment selection criteria

Here we introduce a class of model and moment selection criteria (MMSC)
that are analogous to the well-known model selection criteria used for choosing
between competing models. They extend the moment selection criteria of An-
drews (1999) to allow for simultaneous model and moment selection.

The MMSC estimator, (bK
MMSC

, c(
MMSC

), is the value that minimizes

MMSC
n
(b, c)"J

n
(b, c)!h(DcD!DbD)i

n
(3.1)

over BC. The function h( ) ) and the constants Mi
n
: n*1N in the de"nition of

MMSC
n
(b, c) are speci"ed by the researcher. They are assumed to satisfy:

Assumption MMSC. (a) h( ) ) is strictly increasing.
(b) i

n
PR and i

n
"o(n).

Given Assumption MMSC, h(DcD!DbD)i
n

is a &bonus term' that rewards
selection vectors (b, c) that utilize more over-identifying restrictions. This term
is necessary to o!set the increase in J

n
(b, c) that typically occurs when
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over-identifying restrictions are added even if they are correct over-identifying
restrictions. Assumption MMSC(b) implies that the bonus given for more
over-identifying restrictions increases without bound as the sample size n increases.

It is always possible to specify MMSC for which Assumption MMSC holds,
because the researcher chooses h( ) ) and Mi

n
: n*1N.

Now we introduce three examples of MMSC. These are analogues of the BIC,
AIC, and HQIC criteria developed for model selection. We refer to them as the
MMSC}BIC, MMSC}AIC, and MMSC}HQIC criteria. In each case, they take
h(x)"x. They are de"ned by

MMSC}BIC: i
n
"ln n and MMSC

BIC,n
(b, c)"J

n
(b, c)!(DcD!DbD) ln n,

MMSC}AIC: i
n
"2 and MMSC

AIC,n
(b, c)"J

n
(b, c)!2(DcD!DbD),

MMSC}HQIC: i
n
"Q ln ln n for some Q'2 and

MMSC
HQIC,n

(b, c)"J
n
(b, c)!Q(DcD!DbD) ln ln n. (3.2)

The MMSC}BIC and MMSC}HQIC procedures satisfy Assumption
MMSC. The MMSC}AIC procedure does not satisfy Assumption MMSC(b)
because i

n
"2;R. Thus, the MMSC}AIC procedure is not consistent. For

brevity, we do not prove this here. The proof is similar to the proof of the lack of
consistency of the AIC model selection procedure, see Shibata (1976) and
Hannan (1980, 1982). The MMSC}AIC procedure has positive probability even
asymptotically of selecting too few over-identifying restrictions.

Consistency of (bK
MMSC

, c(
MMSC

) is established in the following theorem.

¹heorem 1. Suppose Assumptions 1 and MMSC hold. Then,
(a) (bK

MMSC
, c(

MMSC
)3MBCZ0 wpP1, ∀P03P,

(b) for all P03P for which Assumption IDbc holds, (bK
MMSC

, c(
MMSC

)"(b0, c0)
wpP1 iw (b0, c0)3BC, and

(c) (bK
MMSC

, c(
MMSC

) is consistent iw for all P03P for which Assumption IDbc
holds, we have (b0, c0)3BC.

Comment. 1. Part (a) is a robust result that speci"es the asymptotic behavior of
(bK

MMSC
, c(

MMSC
) for all P03P, not just for P0 for which Assumption IDbc holds.

Note that if MBCZ0WMZ0O0, then (bK
MMSC

, c(
MMSC

)3MZ0 wpP1, ∀P03P.
The result of part (a) is analogous to results concerning the behavior of
extremum estimators when the standard identi"cation condition fails.

2. Theorem 1 is analogous to Theorem 1 of Andrews (1999). Theorem 1(b) is
similar to Theorem 3 of Hannan (1980) for (weak) consistency of model selection
criteria for lag selection in ARMA models.

3. Over-rejection of the J test in "nite samples (see the July 1996 issue of the
Journal of Business and Economic Statistics) a!ects the MMSC only if the amount
of over-rejection di!ers for di!erent selection vectors (b, c).
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3For conditions under which this result holds, see Hansen (1982) for the case of moment
conditions that are smooth in h and Andrews (1997) for the case of moment conditions that may be
non-di!erentiable and/or discontinuous.

4. The proof of Theorem 1 is given in the Appendix of Proofs.
5. Suppose that consistency is de"ned with Assumption IDbc replaced by

Assumption IDbc2. Then, a consistent MMSC can be obtained by adding
a penalty term h

2
(DbD)i

2n
to the de"nition of MMSC

n
(b, c) in (3.1), where h

2
( ) ) is

a strictly increasing function, i
2n
PR, and i

2n
"o(i

n
).

4. Downward testing procedure

The downward testing (DT) procedure considered in this section is a model
and moment selection procedure that formalizes the procedure that empirical
researchers often use in a less formal fashion. Two advantages of considering
a precisely speci"ed model and moment selection procedure are that (i) su$cient
conditions for consistency can be established and (ii) the e!ect of selection on
post-selection statistical inference can be assessed, e.g., via simulations.

We consider tests based on the statistic J
n
(b, c). Starting with vectors

(b, c)3BC for which DcD!DbD is the largest, we carry out tests with progressively
smaller DcD!DbD until we "nd a test that does not reject the null hypothesis that
the moment conditions considered are all correct for the given model b. (Note
that for each value of DcD!DbD, tests are carried out for each (b, c)3BC with this
value of DcD!DbD.) Let kK

DT
be the value of DcD!DbD for the "rst test we "nd that

does not reject. (There is such a xrst test because the J test statistic based on
(b, c) with c"0 equals zero.) Given kK

DT
, we take the downward testing es-

timator (bK
DT

, c(
DT

) of (b0, c0) to be the vector that minimizes J
n
(b, c) over

(b, c)3BC with DcD!DbD"kK
DT

. This is the downward testing model and moment
selection procedure.

Note that, for a given number of moments, the downward testing model and
moment selection procedure progresses from the most restrictive model to the
least restrictive. This contrasts with a downward testing model selection proced-
ure in which the largest parameter vector, and hence the least restrictive model,
is considered "rst. Upward testing model selection procedures, which are ana-
logous to downward testing model and moment selection procedures, are
referenced in Amemiya (1980) and PoK tscher (1989).

We now de"ne kK
DT

and (bK
DT

, c(
DT

) more precisely. Let c
n,k

'0 denote the
critical value employed with the test statistic J

n
(b, c) when DcD!DbD"k and

the sample size is n. In the recommended case where J
n
(b, c) is constructed

using an asymptotically optimal weight matrix, J
n
(b, c) has an asymptotic

chi-square distribution with DcD!min(DbD, DcD) degrees of freedom when all
moment conditions in c are correct given the model selected by b.3 In this case,
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one takes

c
n,k

"s2
k
(a

n
) (4.1)

for values of k'0, where s2
k
(a

n
) denotes 1!a

n
quantile of a chi-squared

distribution with k degrees of freedom.
Let kK

DT
3M!p,!p#1,2, rN be such that min

(b, c)|BC> @c@~@b@/k
J
n
(b, c)'

c
n,k

∀k'kK
DT

with k3K"MDcD!DbD: (b, c)3BCN, min
(b,c)|BC>@c@~@b@/kK DT

J
n
(b, c))c

n,kK DT
, and kK

DT
3K. De"ne (bK

DT
, c(

DT
) to be any vector in BC for which

Dc(
DT

D!DbK
DT

D"kK
DT

and J
n
(bK

DT
, c(

DT
)"min

(b,c)|BC> @c@~@b@/kK DT
J
n
(b, c). In words,

kK
DT

is the greatest number of over-identifying restrictions for which some
J
n
(b, c) test does not reject for some (b, c)3BC. Given kK

DT
, (bK

DT
, c(

DT
) is the

vector that minimizes J
n
(b, c) over vectors (b, c)3BC with DcD!DbD"kK

DT
.

For consistency of (bK
DT

, c(
DT

), we assume the critical values c
n,k

satisfy:

Assumption ¹. c
n,k

PR and c
n,k

"o(n) ∀k3K.

Assumption T holds if Mc
n,k

: k3KN are de"ned as in (4.1) with the signi"cance
level a

n
satisfying a

n
P0 and ln a

n
"o(n) (see Theorem 5.8 of PoK tscher (1983)).

For example, the latter condition holds if a
n
*j

0
exp(!j

n
n), for some

0(j
n
P0 and j

0
'0.

Consistency of (bK
DT

, c(
DT

) is established in the following theorem.

¹heorem 2. Suppose Assumptions 1 and T hold. Then,
(a) (bK

DT
, c(

DT
)3MBCZ0 wpP1, ∀P03P,

(b) for all P03P for which Assumption IDbc holds, (bK
DT

, c(
DT

)"(b0, c0) wpP1
iw (b0, c0)3BC, and

(c) (bK
DT

, c(
DT

) is consistent iw for all P03P for which Assumption IDbc holds, we
have (b0, c0)3BC.

Comment. 1. Theorem 2 is similar to Theorem 2 of Andrews (1999) for consist-
ency of downward testing moment selection procedures and Theorem 5.7 of
PoK tscher for consistency of upward LM tests for lag selection in ARMA
models.

2. The testing procedure (bK
DT

, c(
DT

) determines when there are no over-identi-
fying restrictions, just as (bK

MMSC
, c(

MMSC
) does.

3. Over-rejection by the J test in "nite samples, which has been documented in
some cases, leads to a higher probability of using only correct over-identifying
restrictions, but not necessarily all of them.

4. One can also consider upward testing procedures, as in Andrews (1999).
These procedures have the drawback that they are consistent only under an
additional restriction, see Andrews (1999). For this reason and for brevity, we do
not consider upward testing procedures explicitly here.
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5. An application to dynamic panel data models

5.1. A general dynamic model for panel data

Consider a dynamic panel data model

y
it
"w@

it
d
t
#u

it
,

u
it
"g

i
#v

it
, ∀t"1,2,¹ and i"1,2, N. (5.1)

Here y
it

and w
it

are observed variables, v
it

is an unobserved idiosyncratic error,
g
i

is an unobserved individual e!ect, and d
t

are unknown parameters to be
estimated. The distributions of g

i
and v

it
are not speci"ed, but assumptions on

their means and correlations with other variables are given below. All of the
random variables in the model are assumed to be independent across indi-
viduals i.

The regressor vector w
it

includes ¸ lags of the dependent random variable, i.e.,
y
it~1

,2, y
it~L

, where ¸*0. The true lag length ¸
0

()¸) may be unknown.
The initial observations My

i0
, y

i,~1
,2, y

i,1~L
: i"1, 2,2,NN are assumed to be

observed.
The regressor vector w

it
also includes other variables that may be strictly

exogenous, predetermined, or endogenous. These other variables are contained
in two observed vectors z

it
and f

i
of time varying and time invariant variables

respectively. The vectors z
it

and f
i
may also contain variables that do not enter

the regression function. Such variables can be employed as instrumental vari-
ables.

The time varying variables z
it

(and, hence, the time varying regressors in w
it
)

may consist of "ve types of variables. The type of a variable depends on whether
the variable is strictly exogenous, predetermined, or endogenous with respect to
v
it

and whether the variable is uncorrelated or correlated with the individual
e!ect g

i
. We partition z

it
as

z
it
"(x@

1it
, x@

2it
, p@

1it
, p@

2it
, y@

2it
)@. (5.2)

Here, the variables (x@
1it

, x@
2it

)@ are strictly exogenous with respect to v
it
. The

variables (p@
1it

, p@
2it

)@ are predetermined with respect to v
it
. The variables y

2it
are

endogenous with respect to v
it
. The variables (x@

1it
, p@

1it
)@ are uncorrelated with

the individual e!ect g
i
. The variables (x@

2it
, p@

2it
, y@

2it
)@ are correlated with the

individual e!ect g
i
. The econometrician may not know the type of some

variables in z
it

(and, hence, of some regressors in w
it
).

The time invariant variables f
i
(and, hence, the time invariant regressors in w

it
)

are strictly exogenous with respect to v
it

and of two types. The type of a variable
depends on whether the variable is uncorrelated or correlated with the indi-
vidual e!ect g

i
. We partition f

i
as

f
i
"( f @

1i
, f @

2i
)@. (5.3)
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Here, the variables f
1i

are uncorrelated with the individual e!ect g
i

and the
variables f

2i
are correlated with g

i
. The econometrician may not know whether

certain variables in f
i
are uncorrelated or correlated with g

i
.

If z
it

and f
i
do not contain any variables other than those that enter the vector

of regressors w
it
, then general model (5.1) can be written as

y
it
"

L
+

m/1

a
mt

y
i,t~m

#z@
it
b
t
#f @

i
c
t
#u

it
,

u
it
"g

i
#v

it
∀t"1,2,¹ and i"1,2, N, (5.4)

where w
it
"(y

i,t~1
,2, y

i,t~L
, z@

it
, f @

i
)@ and d

t
"(a

1t
,2, a

tL
, b@

t
, c@

t
)@. (Note that

this model includes intercept parameters provided f
i
contains a constant.)

In the general model (5.1), the parameter d
t
can vary with t. For example, this

allows one to consider a model with structural breaks at known or unknown
times. If a structural break occurs, the parameter takes di!erent values before
and after the break point. To conform with the set-up of Section 2, we para-
meterize the model in terms of the parameter values for the "rst period, denoted
d, and the corresponding deviations from these values, denoted d

(t)
for

t"2,2,¹:

d
t
"d#d

(t)
, (5.5)

In the most general case, (5.5) allows d
(t)

(and d
t
) to take di!erent values for

each t and the parameter vector h is de"ned to be

h"(d@, d@
(2)

,2, d
(T)

)@. (5.6)

Usually in practice, however, one will use a restricted version of (5.5), which
leads to a &restricted model' rather the fully general model (5.1).

Examples of restricted models are: (i) No structural breaks occur over the
sample period, i.e., d

(t)
"0 ∀t"2,2,¹. In this case, the parameter vector

h simpli"es to

h"d. (5.7)

(ii) H structural breaks occur at times 1(q
1
(q

2
(2(q

H
)¹. Then,

d
(t)
"d(k) ∀t with q

k
)t(q

k`1
, k"1,2, H, (5.8)

where q
H`1

"¹#1. In this case, the parameter vector h simpli"es to

h"(d@, d(1){,2, d(H){)@. (5.9)

(iii) H or fewer structural breaks occur at unknown times. For each combina-
tion of a number of structural breaks and times of the breaks that is to be
considered, one speci"es vectors of &deviation' parameters as in (5.8). Then, the
"rst period parameter d and all of the deviation parameters are stacked into
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a single vector h. By appropriately selecting di!erent subsets of the deviation
parameters, one obtains models with di!erent numbers and times of structural
change.

(iv) Partial structural breaks occur. In this case, structural breaks occur at
known or unknown times, but only a subset of the parameters d

t
change. For

brevity, we do not provide the details.
It is worth mentioning that structural breaks in the individual e!ect also

could be introduced in the general model by allowing g
i

to have di!erent
coe$cients for di!erent time periods, as in Chamberlain (1984) and Holtz-Eakin
et al. (1988). We do not do so here, because this would lead to di!erent moment
conditions than those considered in most dynamic panel data models con-
sidered in the literature.

To this point, we have kept a high level of generality in model (5.1) by
incorporating many features that arise in di!erent empirical studies. For
example, allowing for an unknown lag length is especially important for purely
dynamic panel data models that do not have any other regressors. Whether
elements of w

it
are predetermined or strictly exogenous with respect to v

it
is

especially important in models with rational expectations. Whether variables in
(z@

it
, f @

i
)@ are correlated with the individual e!ect or not separates the &correlated

random e!ects' model from the standard &random e!ects' model and is impor-
tant for many applications. Allowing for structural breaks in the parameters
provides a way to model nonstationarity in dynamic panel data models that is
an alternative to panel data unit root models. It is useful in many applications.

On the other hand, we do not expect that in any particular empirical study, all
of these features will be present or important simultaneously. The purpose of the
generality of model (5.1) is to have a single theoretical framework that covers
a wide variety of more restrictive sub-models that are of interest in di!erent
applications.

5.2. Comparison with panel data models in the literature

Here we show that the general model (5.1) nests many models in the literature
and shares common features with some others.

Model (5.1) becomes the standard static &random e!ects'model, if there are no
lagged dependent variables in the model, i.e., ¸"0, all of the regressors w

it
are

strictly exogenous with respect to v
it
, none of the regressors w

it
are correlated

with g
i
, and the parameters are constant over time.

The following static correlated random e!ects model is considered by Haus-
man and Taylor (1981) and Breusch et al. (1989):

y
it
"z@

it
b#f @

i
c#u

it
,

u
it
"g

i
#v

it
∀t"1,2,¹ and i"1,2, N. (5.10)
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This model does not contain any lagged values of y
it
. In our notation, the

regressor vector w
it

equals (z@
it
, f @

i
)@. The regressors z

it
and f

i
are assumed to be

strictly exogenous with respect to v
it

and a subset of z
it

and f
i
are correlated with

the individual e!ect g
i
. That is, in our notation, z

it
"x

it
"(x@

1it
, x@

2it
)@, and

f
i
"( f @

1i
, f @

2i
)@. This model also is one of four models considered in Amemiya and

MaCurdy (1986). All of the authors above consider estimation of this model by
instrumental variables.

Anderson and Hsiao (1982) and Bhargava and Sargan (1983) consider max-
imum likelihood estimation of a dynamic panel data model

y
it
"a

1
y
i,t~1

#z@
it
b#f @

i
c#u

it
,

u
it
"g

i
#v

it
∀t"1,2,¹ and i"1,2, N. (5.11)

They also consider simpler versions of this model. Here, both z
it

and f
i

are assumed to be strictly exogenous with respect to v
it

and uncorrelated
with g

i
. In our notation, w

it
"(y

i,t~1
, z@

it
, f @

i
)@, z

it
"x

1it
, and f

i
"f

1i
. The lag

length of the lagged dependent variables is known to be one. These
authors assume normal distributions for g

i
and v

it
. Because the number

of time series observations ¹ is small for typical panels, the assumption
used by these authors concerning the initial observation plays a crucial role in
interpreting the model and obtaining a consistent estimator. These authors also
discuss the case where v

it
is serially correlated. We do not consider this case in

the present paper.
Ahn and Schmidt (1995) consider GMM estimation of several dynamic and

static panel data models. The most general model they consider is

y
it
"a

1
y
i,t~1

#z@
it
b#f @

i
c#u

it
,

u
it
"g

i
#v

it
∀t"1,2,¹ and i"1,2, N. (5.12)

This model contains only one lagged value of y
it
. The regressors z

it
and f

i
are

assumed to be strictly exogenous with respect to v
it

and a subset of z
it

and f
i
may

be correlated with the individual e!ect g
i
. That is, in our notation,

w
it
"(y

i,t~1
, z@

it
, f @

i
)@, z

it
"x

it
"(x@

1it
, x@

2it
)@ and f

i
"( f @

1i
, f @

2i
)@.

Arellano and Bover (1995) consider a model that nests models (5.10)}(5.12). It
allows the regressor vector w

it
and z

it
to contain strictly exogenous, predeter-

mined, and endogenous variables with respect to v
it
. That is, as in our model

(5.1), z
it
"(x@

1it
, x@

2it
, p@

1it
, p@

2it
, y@

2it
)@. Our model (5.1) nests that of Arellano and

Bover (1995) and models (5.10)}(5.12) in that it allows for time-varying para-
meters.

Holtz-Eakin et al. (1988) consider a bivariate vector autoregression (VAR) of
(y

it
, y8

it
) with panel data. In our notation, each equation of their VAR takes the
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form

y
it
"

L0

+
m/1

a
mt

y
i,t~m

#z@
it
b
t
#c

t
#u

it
,

u
it
"j

t
g
i
#v

it
∀t"1,2,¹ and i"1,2, N. (5.13)

In this model, the true lag length ¸
0

of the lagged y
it

variables is assumed to be
known. The time varying regressors z

it
contain only lagged values of the second

endogenous variable y8
it

and, thus, contain only variables that are predetermined
with respect to v

it
and are correlated with g

i
. That is, in our notation, z

it
"p

2it
.

Also, in their model, the only time-invariant strictly exogenous variable is
a constant. Thus, in our notation, f

i
"1. These aspects of (5.13) are less general

than corresponding parts of our model (5.1).
On the other hand, (5.13) allows for a time-varying coe$cient j

t
on the

individual e!ect. Model (5.13) is more general than (5.1) in this respect. Such
generality comes at the expense of identi"cation, however, because at best only
the ratios j

t
/j

t~1
may be identi"ed. Holtz-Eakin et al. (1988) do not provide

identi"cation results for their most general model (5.13), nor do they consider
estimation of it, but they do provide tests for whether a more restrictive model
with constant coe$cients is su$ciently general.

5.3. Moment conditions in dynamic panel data models

It is well known that the simple OLS estimator of (5.1) is inconsistent because
the lagged dependent variables y

i,t~1
, y

i,t~2
,2, y

i,t~L
and (possibly unknown)

subsets of other regressors are correlated with the unobserved individual e!ect
g
i
. In consequence, we consider GMM estimation of model (5.1).
The moment conditions that are employed by a GMM estimator are implied

by assumptions that are imposed on the dynamic panel data model. Below, we
state various assumptions and corresponding moment conditions that can be
used with model (5.1). We state the assumptions sequentially such that they
impose increasingly restrictive assumptions on the model. The use of di!erent
combinations of the assumptions yields di!erent models. We do not require that
all of the assumptions are imposed.

We note that the use of additional correct moment conditions can substan-
tially improve the e$ciency of an estimator in some cases; e.g., see Blundell and
Bond (1995). Furthermore, the identi"cation of some parameters and the con-
sistency of an estimator may rely on some moment conditions being correct and
being employed by the estimator. On the other hand, the use of incorrect
moment conditions typically leads to inconsistency of an estimator.

In what follows, we use the notation z
it
"(x@

1it
,x@

2it
, p@

1it
, p@

2it
, y

2it
)@,

f
i
"( f @

1i
, f @

2i
)@, x

it
"(x@

1it
, x@

2it
)@, and p

it
"(p@

1it
, p@

2it
)@. Each assumption applies

for all i"1,2, N.
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Assumption P1. (a) Eg
i
"0, Ev

it
"0, Ev

it
g
i
"0 ∀t"1, 2,2,¹.

(b) Ev
is
v
it
"0 ∀s, t"1, 2,2,¹ with sOt.

(c) Ev
it
y
i0
"2"Ev

it
y
i,1~L

"0 ∀t"1, 2,2,¹.
(d) Ev

it
(z@

i1
,2, z@

it~1
, x@

it
, p@

it
, f @

i
)@"0 ∀t"1, 2,2,¹.

Assumption P2. Ev
it
(x@

i,t`1
,2,x@

iT
)@"0 ∀t"1, 2,2,¹!1.

Assumption P3. Eg
i
(x@

1it
, p@

1it
, f @

1i
)@"0 ∀t"1, 2,2,¹.

Assumption P4. Eg
i
(x@

2it
, p@

2it
, y@

2it
)@"Eg

i
(x@

2i,t~1
, p@

2i,t~1
, y@

2i,t~1
)@ ∀t"2,2,¹.

Assumption P5. Var(v
it
)"p2

i
for some p2

i
'0 ∀t"1, 2,2,¹.

Assumption P6. Eg
i
y
i1
"Eg

i
y
it

∀t"1!¸,2, 0.

Assumptions P1(a)}(c) impose the familiar error-components structure and
are referred to as &standard assumptions' by Ahn and Schmidt (1995) for
dynamic panel data models with only lagged dependent variables as regressors.
Assumption P1(a) requires that the error u

it
("v

it
#g

i
) has mean zero and v

it
is

uncorrelated with the individual e!ect g
i
. Assumption P1(b) requires that v

it
is

serially uncorrelated. Assumption P1(c) requires that v
it

is uncorrelated with the
initial observations. Assumption P1(d) requires that all lags of z

it
are uncor-

related with v
it

and that all variables in z
it

except the endogenous variables
y
2it

are at least predetermined with respect to v
it

(i.e., their current period
correlation with v

it
is also zero). Assumptions P1(a)}(d) are the minimum

restrictions imposed on model (5.1). They may not identify c
t
, the coe$cients on

the time invariant regressors f
i
.

Assumption P2 speci"es that some of the variables in z
it

are strictly
exogenous with respect to v

it
, rather than just predetermined.

Assumptions P3 and P4 concern the correlation between the regressors in
(z@

it
, f @

i
)@ and the individual e!ect g

i
. Assumption P3 speci"es that some variables

in z
it

and f
i
are uncorrelated with the individual e!ect g

i
. This assumption can be

used to identify c
t
. Assumption P4 speci"es that the variables in z

it
that are

correlated with g
i

have constant correlation across time with g
i
. This type of

restriction is considered by Bhargava and Sargan (1983) and Breusch et al.
(1989).

Assumption P5 concerns the second moments of the error terms. It assumes
that the variance of v

it
is constant over time for each individual. (The variance

may vary across individuals.) In the literature, Assumption P5 (plus the assump-
tion that the variance of v

it
is constant across individuals) is used to obtain

a feasible GLS estimator for the random e!ects model and a 3SLS estimator for
the correlated random e!ects model, because it implies a known structure for the
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4We note that an equivalent set of moment conditions to (5.14)}(5.17) are (5.14)}(5.16) plus
Eu

iT
*u

it~1
"0 ∀t"3,2,¹.

variance}covariance matrix of the errors, which is needed for the GLS trans-
formation. For a GMM estimator, the role of Assumption P5 is to provide
additional moment conditions.

Assumption P6 is a &stationarity' assumption on the initial conditions
y
i,1~L

,2, y
i0

. It requires that the initial conditions have same correlation with
the individual e!ect as the dependent variable at time t"1 has. The failure of
this assumption indicates that y

i1~L
,2, y

i0
are not drawn from the same

process that generates y
i1

. Assumption P6 also is used by Arellano and Bover
(1995), Blundell and Bond (1995), and Ahn and Schmidt (1995). Blundell and
Bond (1995) study the usefulness of Assumption P6 via a Monte Carlo study of
a simple dynamic panel data model with no regressors except a single lagged
dependent variable. They show this assumption, if correct, can substantially
improve the asymptotic e$ciency of a GMM estimator when a

1
, the coe$cient

on the lagged dependent variable, is close to unity.
We now specify the moment conditions that are implied by Assumptions

P1}P6. Let * denote the "rst di!erence operator applied to the variable
immediately following *. Thus, *u

it
z
it
"(u

it
!u

i,t~1
)z

it
.

Assumption P1 implies the following moment conditions:

Eu
it
"0 ∀t"1,2,¹, (5.14)

E*u
it
(y

i,1~L
,2, y

i,t~2
)@"0 ∀t"2,2,¹, (5.15)

E*u
it
(z@

i1
,2, z@

i,t~2
, x@

i,t~1
, p@

i,t~1
, f @

i
)@"0 ∀t"2,2,¹, (5.16)

Eu
it
*u

it~1
"0 ∀t"3,2,¹. (5.17)

Let d
z
, d

f
, d

x
, and d

p
denote the dimensions z

it
, f

i
, x

it
, and p

it
, respectively.

The numbers of moment conditions in (5.14)}(5.17) are ¹, ¸(¹!1)#
(¹!2)(¹!1)/2, d

z
(¹!1)(¹!2)/2#(d

x
#d

p
)(¹!1)#d

f
(¹!1), and

¹!2 respectively.4
To construct a GMM estimator based on the moment conditions above (and

those below), one replaces u
it

by the di!erence between y
it

and the regression
function evaluated at the parameter vector h (or h

*b+
). Doing so, one can see that

the moment conditions in (5.14)}(5.16) yield estimating equations that are linear
in the parameters, whereas those generated by (5.17) are nonlinear in the
parameters.

Assumption P2 implies the following moment conditions:

E*u
it
(x@

it
,2,x@

iT
)@"0 ∀t"2,2,¹. (5.18)

The number of moment conditions in (5.18) is d
x
¹(¹!1)/2.
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Assumption P3, combined with Assumption P1(d), implies the following
moment conditions:

E1@
T
u
i
x
1it

"0 ∀t"1,2,¹,

E(1T
t`1

)@u
i
p
1it

"0 ∀t"1,2,¹!1,

E1@
T
u
i
f
1i
"0, (5.19)

where u
i
"(u

i1
,2, u

iT
)@, 1

T
denotes a ¹-vector of ones, and 1T

t`1
denotes

a ¹-vector whose "rst t elements are zeros and whose elements indexed from
t#1 to ¹ equal ones. These moment conditions, if correct, can be used to
identify c

t
. Let d

x1
, d

p1
, and d

f1
denote the dimensions of x

1it
, p

1it
, and f

1i
,

respectively, that are uncorrelated with the individual e!ect. The number of
moment conditions in (5.19) is d

x1
¹#d

p1
(¹!1)#d

f1
.

Assumption P4, combined with Assumption P1(d), implies the following
moment conditions:

Eu
it
(*x@

2it
, *p@

2it
, *y@

2it
)@"0 ∀t"2,2,¹. (5.20)

Let d
x2

, d
p2

, and d
y2

denote the dimensions of x
2it

, p
2it

, and y
2it

. The number of
moment conditions in (5.20) is (d

x2
#d

p2
#d

y2
)(¹!1).

Assumption P5 leads to the following ¹!1 moment conditions:

E1@
T
u
i
*u

it
"0 ∀t"2,2,¹. (5.21)

Suppose one wishes to maximize the number of moment conditions that gener-
ate estimating equations that are linear in the parameters. Then, Ahn and
Schmidt (1995) show that, when the homoskedasticity Assumption P5 holds, the
moment conditions in (5.14)}(5.17) can be expressed equivalently as those in
(5.14)}(5.16) plus

E(y
i,t~2

*u
i,t~1

!y
i,t~1

*u
it
)"0 ∀t"3,2,¹. (5.22)

Assumption P6 implies that

E(1T
2
)@u

i
*y

i,t
"0 ∀t"2!¸,2,1. (5.23)

Assumption P6 yields ¸ moment conditions.

5.4. Model and moment selection in dynamic panel data models

We now show how to apply the MMSC and testing procedures of Section 2 to
model (5.1) using the moment conditions of the previous subsection.

For a given restricted version of model (5.1), let h denote the parameter vector
that includes all parameters that enter the restricted model, as in (5.7) or (5.9).
Let p denote the dimension of h. The largest h can be is as in (5.6), which
corresponds to the general case where the parameter vector takes di!erent
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values at each time period. The set of possibly correct moment conditions for
a given restricted version of model (5.1) is a speci"ed subset of (5.14)}(5.23). Let
r denote the total number of these moment conditions. Then, a pair of model
and moment selection vectors (b, c) consists of a p]1 vector b and an r]1
vector c, both containing zeros and ones. Zeros in b indicate that the model does
not depend on the corresponding parameters in h and zeros in c indicate that the
corresponding moment conditions are not employed when estimating the para-
meters in h

*b+
.

The parameter space BC for (b, c) should incorporate a considerable amount
of information in order to eliminate many combinations of b and c. First, for
a given restricted model, most variables in the model will be known to enter
the model. Hence,BCwill only contain b vectors with ones corresponding to the
coe$cients on these variables. Second, for most variables, the type of the
variable will be known or partly known, be it predetermined, strictly exogenous,
correlated with g

i
, and/or uncorrelated with g

i
. Hence, BC will only contain

c vectors with ones corresponding to the appropriate moment conditions.
Third, the moment conditions in (5.14)}(5.23) typically are included or not

included for all relevant time periods, such as t"1,2,¹, rather than time
period by time period. The parameter space BC is de"ned accordingly. Fourth,
moment conditions in (5.17) and (5.22) are not included at the same time and
those in (5.22) are included only if those in (5.20) are included.

Lastly, any other information about the correct parameter and moment
vectors also should be used. Such information helps to reduce the parameter
space and ease the selection problem.

For any (b, c)3BC, we evaluate the moment conditions selected by c at the
parameters selected by b. Speci"cally, we substitute the following expression in
each of the selected moment conditions in place of u

it
:

y
it
!w@

it
(d#d

(t)
), (5.24)

where d
(1)

,0 and each parameter in (d@, d@
(2)

,2, d@
(T)

)@ is set equal to zero if it is
not included in h or if the corresponding element in b is zero.

The weight matrix=
n
(b, c) for the GMM criterion function can be taken to

equal <~1
n

(b, c), where <
n
(b, c) is de"ned in footnote 2 with hI

n
(b, c) equal to the

GMM estimator of h obtained by using the moments selected by c, the para-
meter space H

*b+
for h, and the weight matrix equal to the identity matrix.

Selection of the parameter vector and the moment conditions, including lag
length, detection of structural breaks, exogeneity of regressors, etc., is conducted
simultaneously. Given a model and moment selection estimator (bK , c( ), the
parameters h

*bK +
selected by bK are estimated using the moment conditions selected

by c( .
It remains to verify Assumption 1 of Section 2 for the dynamic panel data

models considered in this section. This can be done for the case of observations
that are identically distributed or non-identically distributed across individuals i.
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5For example, the latter holds if

Q
c
(h0(b, c))( inf

h|H*b+ ,@@h~h0(b,c)@@;e
Q

c
(h) for all e'0,

where

Q
c
(h)"E(m

c
(Z

i
, h))!Em

c
(Z

i
, h))@(m

c
(Z

i
, h)!Em

c
(Z

i
, h)).

In turn, su$cient conditions for this are that Q
c
(h) is uniquely minimized over h3H

*b+
by h0(b, c) and

H
*b+

is compact.

For brevity, we just give su$cient conditions for the identically distributed
case. Note that independence across individuals i has already been assumed.
Assumption 1(a) holds for iid observations by the central limit theorem with
G0(h) equal to the expectation of G

n
(h) provided EDDG

n
(h)DD2(R ∀h3H. All of

the moments conditions in (5.14)}(5.23) just involve (at most) products of the
underlying variables. In consequence, a su$cient condition for this moment
condition is

EDD(y
i,1~L

,2, y
i,T

, x@
it
, f @

i
)@DD4(R. (5.25)

The convergence part of Assumption 1(b) holds by a weak law of large
numbers using the preceding moment conditions provided hI

n
(b, c) converges in

probability to some parameter h0(b, c) for each (b, c)3BC.5 The matrix=0(b, c)
equals <0(b, c)~1 in this case, where

<0(b, c)"E(m
c
(Z

i
, h0(b, c))!Em

c
(Z

i
, h0(b, c)))

(m
c
(Z

i
, h0(b, c))!Em

c
(Z

i
, h0(b, c)))@. (5.26)

The positive de"niteness part of Assumption 1(b) holds if <0(b, c) is positive
de"nite for all (b, c)3BC.

The convergence part of Assumption 1(c) holds using a Vapnik}Cervonen-
kis-type uniform weak law of large numbers for iid random variables under the
moment conditions above using the linear or quadratic structure of the moment
conditions, e.g., see Pollard (1984, Theorem II.24, Lemmas II.25 and II.27). The
equality in Assumption 1(c) holds provided H

*b+
is compact or H

*b+
is of the form

H
*b+
"Mh(b: h3RpN for all b such that (b, c)3BC for some c, where &(' denotes

element by element product.

6. Monte Carlo experiment

In this section, we conduct a Monte Carlo experiment to evaluate the
performance of the MMSC and downward testing procedures. We consider
MMSC}AIC, MMSC}BIC, MMSC}HQIC, and DT. We set Q"2.1 in
MMSC}HQIC.

The model we use is a restricted version of the general model in (5.1).
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6.1. The correct model

We consider a dynamic panel data model with lagged dependent variables
and a covariate as regressors. We assume that the econometrician does not
know the true lag length. We also assume that the econometrician does not
know whether the covariate is correlated with the individual e!ect or whether
the covariate is strictly exogenous with respect to the time-varying error com-
ponent.

In particular, the correct model is

y
it
"a

0
#a

1
y
i,t~1

#bx
it
#u

it
,

u
it
"g

i
#v

it
∀t"1,2,¹ and i"1,2, N, (6.1)

where g
i
&N(0, p2g ), vit&N(0, p2

v
), and Eg

i
v
it
"0 for all t. The true lag length is

one, i.e., ¸
0
"1. The covariate x

it
is predetermined, but not strictly exogenous

with respect to the time-varying error v
it
. It is correlated with the individual

e!ect g
i
for all t.

We take

(x
i1

,2, x
iT

,g
i
, v

i1
,2, v

iT
)@&N(0, R),

where

R"A
p2
x
I
T

p
xg1T p

xv
C

p
xg1@T p2g 0@

T
p
xv

C@ 0
T

p2
v
I
T
B. (6.2)

Here, I
T

denotes a ¹]¹ identity matrix, 1
T

denotes a ¹]1 vector of ones,
0
T

denotes a ¹]1 vector of zeros, C is a ¹]¹ matrix whose jkth element is one
when k"j!1 for j"2,2,¹ and zero otherwise, p

xg"Ex
it
g
i
O0, and

p
xv
"Ex

it
v
it~1

O0. As speci"ed, (i) x
it

is uncorrelated with x
is

for tOs and has
a constant variance p2

x
, (ii) v

it
is serially uncorrelated and uncorrelated with

g
i
and both error components have constant variances of p2

v
and p2g , respective-

ly, and (iii) x
it

is correlated with the individual e!ect and is predetermined
(because Ex

it
v
is
"0 for s"t#1,2,¹), but not strictly exogenous (because

Ex
it
v
it~1

"p
xv
O0 and Ex

it
v
is
"0 for sOt!1).

The ¸ initial observations are speci"ed by

y
i,s
"a

0
#a

1
y
i,s~1

#bx
is
#g

i
#v

is
, s"2!¸,2, 0,

y
i,1~L

"i#
bp

xg#p2g
p2g (1!a

1
)

(/g
i
#v

i,1~L
), (6.3)

where v
i,1~L

, v
i,s
&N(0, p2

v
), g

i
&N(0, p2g ), /"1, and i"a

0
/(1!a

1
). The

parameter / controls the correlation between the initial observations and the
individual e!ect g

i
. The choice /"1 implies that the &stationarity' assumption,
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i.e., Assumption P6, holds. The parameter i controls the mean levels of the
initial observations. It does not a!ect whether the &stationarity' assumption
holds or not. It is chosen so the means of the observations are stationary.

In specifying the correct model, we use parameter values that have the
following features: (i) there is a noticeable di!erence in e$ciency between the
GMM estimator that uses the correct model and all correct moment conditions
and the GMM estimator that uses the least parsimonious model and only those
moment conditions that are known to be correct and (ii) there are noticeable
biases in the GMM estimators that are based on models that exclude some
parameters whose true values are non-zero and/or use incorrect moment condi-
tions. For parameter values with these features, there are gains to be exploited
by a good selection procedure and losses to be incurred by a poor selection
procedure. The following parameter values exhibit the desired features:

(a
0
, a

1
, b)"(0.8, 0.85, 0.5) and

(p
xg , p

xv
, p2g , p2

v
, p2

x
)"(!0.2, 0.5, 1, 1, 1). (6.4)

We want to examine how the selection procedures' "nite sample performances
change across both N and ¹. In consequence, we conduct experiments with "ve
di!erent sample size con"gurations: (¹, N)"(3, 250), (3, 500), (3, 1000),
(6, 250), and (6, 500). We employ 1000 simulation repetitions for each sample.

To evaluate the robustness of our results to models that exhibit a high degree
of persistence, we also report results from one experiment with a

1
"0.95. We

consider the sample size con"guration (¹, N)"(3, 500). The full parameter
vectors in this case are:

(a
0
, a

1
, b)"(0.8, 0.95, 0.5) and

(p
xg , p

xv
, p2g , p2

v
, p2

x
)"(!0.2, 0.5, 0.2, 0.2, 5). (6.5)

This case has received attention in the literature. Ahn and Schmidt (1995) and
Blundell and Bond (1995) have shown that when a

1
is close to one, moment

conditions based on the "rst di!erences of y
it

may not be very informative,
whereas moment conditions based on the &stationarity' assumption can be very
informative.

6.2. The parameter space for model and moment selection vectors

We assume that the econometrician does not know the correct model.
Instead, he considers GMM estimation of the following model:

y
it
"a

0
#a

1
y
i,t~1

#a
2
y
i,t~2

#bx
it
#u

it
,

u
it
"g

i
#v

it
∀t"1,2,¹ and i"1,2, N. (6.6)
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The econometrician selects a lag length of 0, 1, or 2. For possible moment
conditions, he considers the following four groups of assumptions:

Assumption G1. (a) Eg
i
"0, Ev

it
"0, Ev

it
g
i
"0 ∀t"1, 2,2,¹.

(b) Ev
is
v
it
"0 ∀s, t"1, 2,2,¹ with sOt.

(c) Ev
it
y
i0
"Ev

it
y
i,~1

"0 ∀t"1, 2,2,¹.
(d) Var(v

it
)"p2

i
for some p2

i
'0 ∀t"1, 2,2,¹.

(e) Ev
it
(x

i1
,2,x

it
)"0 ∀t"1, 2,2,¹.

Assumption G2. Ev
it
(x

i,t`1
,2,x

iT
)"0 ∀t"1, 2,2,¹!1.

Assumption G3. Eg
i
x
it
"0 ∀t"1, 2,2,¹.

Assumption G4. Eg
i
y
i1
"Eg

i
y
i0
"Eg

i
y
i,~1

.

Assumption G1 imposes the standard error-component structure, constant
variance for v

it
, and predeterminedness for x

it
. Assumption G2 further imposes

strict exogeneity for x
it
. Assumption G3 assumes x

it
is uncorrelated with g

i
.

Assumption G4 is the &stationarity assumption'.
Under the correct model, Assumptions G1 and G4 hold, but Assumptions G2

and G3 do not hold. We assume that the econometrician only knows that
Assumption G1 holds. The econometrician determines the validity of Assump-
tions G2}G4 by using a selection procedure. For computational reasons in the
Monte Carlo experiments, we only consider linear moment conditions. These
conditions are the following:

Moment Conditions 1. (a) E(u
i1

,2, u
iT

)"0.
(b) E(y

i,1~L
,2, y

i,t~2
)*u

it
"0 ∀t"2,2,¹.

(c) E(y
i,t~1

*u
it
!y

it
*u

i,t`1
)"0 ∀t"2,2,¹!1.

(d) E(x
i1

,2, x
i,t~1

)*u
it
"0 ∀t"2,2,¹.

Moment Conditions 2. E(x
it
,2, x

iT
)*u

it
"0 ∀t"2,2,¹.

Moment Conditions 3. E(u
it
#2#u

iT
)x

it
"0 ∀t"1,2,¹.

Moment Conditions 4. E(u
i2
#2#u

iT
)*y

i,t
"0 ∀t"2!¸,2, 1.

Moment Conditions j are implied by Assumptions G1 and Gj for j"1,2, 4.
For the above model and moment selection problem, the largest parameter

vector that the econometrician considers is

h"(a
0
, a

1
, a

2
, b)@. (6.7)
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We assume the econometrician always includes an intercept in the model, selects
0, 1, or 2 lags, and selects to include or exclude the covariate x

it
. This yields six

selection vectors b. The largest collection of moment conditions the econo-
metrician considers includes all of the Moment Conditions 1}4. We assume that
the econometrician knows that Moment Conditions 1 are correct and selects
either all or none of the moment conditions in each group of Moment Condi-
tions 2}4. This yields eight selection vectors c. Thus, the parameter space BC
contains forty-eight (b, c) pairs. Each pair is a combination of one of the
following six model selection vectors and eight moment selection vectors:

A
1 1 1 1 1 1

0 0 1 1 1 1

0 0 0 0 1 1

0 1 0 1 0 1B and A
1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1B. (6.8)

The correct model selection vector is b0"(1, 1, 0, 1)@ and the correct moment
selection vector is c0"(1, 0, 0, 1)@, which selects the Moment Conditions 1 and 4.

6.3. Measures of performance

We report two sets of results that measure the performances of the MMSC
and DT procedures. First, for each selection procedure, we calculate the prob-
abilities that the procedure

1. selects (b0, c0);
2. selects &Other Consistent (b, c)', i.e., (b, c)3BC such that b*b0, c)c0, and

(b, c)O(b0, c0); and
3. selects &Inconsistent (b, c)', i.e., (b, c)3BC such that b(b0 or c'c0.

In the "rst case, the correct model and all correct moment conditions are
selected and consistent parameter estimators are obtained. This is the ideal
situation. In the second case, although (b0, c0) is not selected, the model and
moment conditions selected lead to consistent GMM estimators. In the third
case, the model and moment conditions selected lead to GMM parameter
estimators that are inconsistent. A selection procedure with a high probability of
selecting (b0, c0), coupled with a low probability of selecting &Inconsistent (b, c)',
leads to an e$cient GMM estimator. A selection procedure with a moderate to
high probability of selecting &Inconsistent (b, c)' leads to a GMM estimator with
poor "nite sample properties due to the biases resulting from employing too
parsimonious a model and/or incorrect moment conditions.

Second, we report the biases, standard errors, and root mean-squared errors
(RMSEs) of the post-selection GMM estimators for each selection procedure.
We also report the rejection rates of the 5% t-tests based on the post-selection
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GMM estimators. (When a parameter is excluded from the selected model, its
estimated value is set equal to zero when computing the t-statistic.) Each t-test
tests the null hypothesis that a parameter equals a value that is the true value
and, hence, the null is true. The critical values for the t tests are the 5% critical
values from a standard normal distribution.

In order to assess the performance of the post-selection GMM estimators, we
also report biases, standard errors, etc. for four benchmark GMM estimators
that are not post-selection estimators. The "rst such estimator is the GMM
estimator based on the correct model and moment selection vector (b0, c0). This
estimator is infeasible, but is used as a benchmark for good performance. The
second estimator is the GMM estimator based on the least restrictive speci"ca-
tion: (b

lr
, c

lr
)"(1

p
,(1, 0, 0, 0)@). The third estimator is the GMM estimator

based on (b, c)"(1
p
, 1

r
), i.e., the whole parameter vector and all of the moment

conditions. The fourth estimator is the GMM estimator based on the most
restrictive speci"cation: (b

mr
, c

mr
)"((1, 0, 0, 0)@, 1

r
). The second through fourth

estimators are feasible estimators. Given the correct model, the second leads to
consistent GMM estimators and the econometrician knows this (given the
assumptions). The third and fourth estimator do not lead to consistent GMM
estimators, although the econometrician does not know this given the assump-
tions.

We refer to the post-selection estimators of h based on MMSC}AIC,
MMSC}BIC, MMSC}HQIC, and DT as GMM(b

AIC
, c

AIC
), GMM(b

BIC
, c

BIC
),

GMM(b
HQIC

, c
HQIC

), and GMM(b
DT

, c
DT

) respectively. We refer to the four
benchmark GMM estimators as GMM(b0 c0), GMM(b

lr
, c

lr
), GMM(1

p
, 1

r
),

and GMM(b
mr

, c
mr

).

6.4. Monte Carlo results

Now we present the Monte Carlo results for the selection probabilities and
post-selection estimators and tests. The results for the post-selection estimators
and tests ultimately are of greatest interest. But, the results for the selection
probabilities help explain the pattern of results obtained for the post-selection
estimators and tests.

6.4.1. Selection probabilities
Table 1 reports the selection probabilities for MMSC}AIC, MMSC}BIC,

MMSC}HQIC, and DT for six di!erent sample size/parameter combinations.
The "rst three combinations in Part A of the Table are for a

1
"0.85 and (¹, N)

equal to (3, 250), (3, 500), and (3, 1000). The e!ect of increasing N is quite
dramatic. For MMSC}BIC, the probability of selecting (b0, c0) increases from
0.482 to 0.852 to 0.990; while the probability of selecting &Inconsistent (b, c)'
declines from 0.487 to 0.116 to 0.000. For MMSC}HQIC, the corresponding
changes are from 0.663 to 0.855 to 0.918 and from 0.214 to 0.028 to 0.000
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Table 1
Selection probabilities

MMSC}AIC MMSC}BIC MMSC}HQIC" DT

(A) a
1
"0.85!

Sample size: ¹"3, N"250
(b0, c0) 0.607 0.482 0.663 0.559
Other consistent (b, c)# 0.328 0.031 0.123 0.046
Inconsistent (b, c)$ 0.065 0.487 0.214 0.395
Sample size: ¹"3, N"500
(b0, c0) 0.664 0.852 0.855 0.915
Other consistent (b, c) 0.333 0.032 0.117 0.034
Inconsistent (b, c) 0.003 0.116 0.028 0.051
Sample size: ¹"3, N"1000
(b0, c0) 0.658 0.990 0.918 0.955
Other consistent (b, c) 0.342 0.010 0.082 0.045
Inconsistent (b, c) 0.000 0.000 0.000 0.000
Sample size: ¹"6, N"250
(b0, c0) 0.536 0.637 0.661 0.704
Other consistent (b, c) 0.458 0.115 0.283 0.250
Inconsistent (b, c) 0.006 0.248 0.056 0.046
Sample size: ¹"6, N"500
(b0, c0) 0.622 0.928 0.850 0.859
Other consistent (b, c) 0.378 0.063 0.150 0.141
Inconsistent (b, c) 0.000 0.009 0.000 0.000

(B) a
1
"0.95%

Sample size: ¹"3, N"500
(b0, c0) 0.566 0.918 0.831 0.901
Other consistent (b, c) 0.428 0.033 0.156 0.079
Inconsistent (b, c) 0.006 0.049 0.013 0.020

!The true parameter values in Part A of the table are (a
0
, a

1
, a

2
, b)"(0.8, 0.85, 0, 0.5) and (p

xg ,
p
xv

, p2g , p2
v
, p2

x
)"(!0.2, 0.5, 1, 1, 1).

"Q"2.1 in MMSC}HQIC.
# &Other consistent (b, c)' refers to model and moment selection vectors other than (b0, c0) that yield

GMM estimators that are consistent.
$&Inconsistent (b, c)' refers to model and moment selection vectors that yield GMM estimators that

are inconsistent.
%The true parameter values in Part B of the table are (a

0
, a

1
, a

2
, b)"(0.8, 0.95, 0, 0.5) and

(p
xg ,pxv

, p2g , p2
v
, p2

x
)"(!0.2, 0.5, 0.2, 0.2, 5).

respectively. For DT, the corresponding changes are from 0.559 to 0.915 to 0.955
and from 0.395 to 0.051 to 0.000 respectively.

The selection probabilities of MMSC}AIC are much less sensitive to the
sample size N than are those of the other three procedures. As the sample size
N increases from 250 to 500 to 1000, the probability of selecting (b0, c0) by
MMSC}AIC changes from 0.607 to 0.664 to 0.658 and the probability of
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selecting &Inconsistent (b, c)' decreases from 0.065 to 0.003 to 0.000. The fact that
the probability of selecting (b0, c0) does not increase toward one as N increases
re#ects the inconsistency of the MMSC}AIC procedure. For the smallest sample
size, MMSC}AIC is the best of the three procedures. But, for larger samples
sizes, it does not perform as well as the other two MMSC.

Next, we consider the cases where (¹, N) equals (6, 250) and (6, 500). The
e!ect of the increase in sample size N is quite similar to the case where ¹"3.
There is a dramatic improvement for MMSC}BIC, MMSC}HQIC, and DT,
but only a modest improvement for MMSC}AIC.

The e!ect of "xing N at 250 or 500 and increasing ¹ from 3 to 6 is quite
similar to that of "xing ¹ and increasing N. Speci"cally, the performances of
MMSC}BIC, MMSC}HQIC, and DT improve dramatically, while that of
MMSC}AIC changes relatively little.

The e!ect on the selection probabilities of increasing a
1

from 0.85 to 0.95 can
be seen by comparing the results of Part B of Table 1 with those of Part A for
(¹, N)"(3, 500). We "nd that MMSC}BIC improves somewhat, while
MMSC}AIC, MMSC}HQIC, and DT deteriorate somewhat.

Overall, we "nd that MMSC}AIC works best for the smallest sample size
(¹, N)"(3, 250), whereas MMSC}BIC, MMSC}HQIC, and DT work best for
all other sample sizes. MMSC}BIC performs very well for the largest sample
sizes. MMSC}BIC and DT appear to perform best in an all-around sense.

6.4.2. Post-selection estimation and testing
Tables 2}4 report biases, standard errors, etc. for the eight GMM estimators

discussed above for the cases where a
1
"0.85 and (¹, N) equals (3, 250),

(3, 500), and (3, 1000) respectively. In each table, results for the four benchmark
GMM estimators are listed on the left-hand side and those for the four post-
selection GMM estimators are listed on the right-hand side.

In Tables 2}4, the benchmark estimators exhibit the following patterns.
GMM(b0, c0) sets the standard for good performance. The consistent and
feasible estimator GMM(b

lr
, c

lr
) has somewhat larger biases and much larger

standard deviations and RMSEs than GMM(b0, c0) for a
0
, a

1
, and a

2
. For

example, for a
0

and a
1
, its RMSEs are two to four times those of GMM(b0, c0).

For b, its biases, standard deviations, and RMSEs are only marginally larger
than those of GMM(b0, c0). Thus, there is considerable scope for the post-
selection estimators to outperform GMM(b

lr
, c

lr
) in terms of RMSE for a

0
, a

1
,

and a
2
, but not for b. The rejection rates of the 5% tests for GMM(b

lr
, c

lr
) are

noticeably higher than those for GMM(b0, c0) (and greater than 5%) when
N"250, but not for N"500 or 1000.

The two inconsistent estimators GMM(1
p
, 1

r
) and GMM(b

mr
, c

mr
) perform

very poorly. They have very large biases, standard errors, and RMSEs. Their
rejection rates exceed the nominal 5% rate by a very large margin. These results
indicate that the cost of using the wrong model and/or moment conditions in the
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Table 2
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% tests: ¹"3,
N"250, a

1
"0.85!,"

Bias SD RMSE Rej. rate# Bias SD RMSE Rej. rate#

GMM(b0, c0)$ GMM(b
AIC

, c
AIC

)

a
0

0.042 0.236 0.239 0.062 0.086 0.522 0.529 0.084
a
1

!0.008 0.041 0.042 0.083 !0.022 0.112 0.114 0.159
a
2

* * * * 0.007 0.048 0.048 0.070
b !0.008 0.065 0.065 0.060 !0.012 0.072 0.073 0.075

GMM(b
lr
, c

lr
) GMM(b

BIC
, c

BIC
)

a
0

0.187 0.505 0.539 0.088 0.099 0.568 0.577 0.099
a
1

!0.062 0.124 0.139 0.138 !0.016 0.112 0.113 0.138
a
2

0.028 0.062 0.068 0.098 !0.002 0.033 0.034 0.037
b !0.009 0.066 0.067 0.058 !0.048 0.090 0.102 0.296

GMM(1
b
, 1

r
) GMM(b

HQIC
, c

HQIC
)%

a
0

0.471 0.385 0.608 0.637 0.064 0.421 0.426 0.089
a
1

!0.153 0.154 0.217 0.655 !0.014 0.091 0.092 0.147
a
2

0.068 0.105 0.125 0.506 0.002 0.039 0.039 0.056
b !0.193 0.078 0.208 0.907 !0.022 0.080 0.083 0.153

GMM(b
mr

, c
mr

) GMM(b
DT

, c
DT

)

a
0

4.566 0.584 4.604 1.000 0.093 0.491 0.500 0.096
a
1

!0.850 * 0.850 * !0.016 0.095 0.097 0.129
a
2

0.000 * 0.000 * 0.000 0.031 0.031 0.029
b !0.500 * 0.500 * !0.041 0.088 0.097 0.248

!The true parameter values are (a
0
, a

1
, a

2
, b)"(0.8, 0.85, 0, 0.5) and (p

xg , p
xv

, p2g , p2
v
, p2

x
)"

(!0.2, 0.5, 1, 1, 1).
"The results are based on 1000 Monte Carlo repetitions.
#The rejection rate is the fraction of times the 5% t-test based on the given GMM estimator rejects

the null hypothesis that the given parameter equals the true value.
$The GMM estimators are de"ned as in Section 5.4.3: GMM(b0, c0) } the GMM estimator based

on the correct model and moment selection vectors; GMM(b
lr
, c

lr
) } the GMM estimator based on

the least restrictive speci"cation, where b
lr
"(1, 1, 1, 1) and c

lr
"(1, 0, 0, 0); GMM(1

b
, 1

r
) } the

GMM estimator based on all of the parameters and moment conditions; GMM(b
mr

, c
mr

) } the
GMM estimator based on the most restrictive speci"cation, where b

mr
"(1, 0, 0, 0) and

c
mr
"(1, 1, 1, 1); GMM(b

AIC
, c

AIC
), GMM(b

BIC
, c

BIC
), and GMM(b

HQIC
, c

HQIC
) } the GMM es-

timators based on MMSC}AIC, MMSC}BIC, and MMSC}HQIC respectively.
%Q"2.1 in MMSC}HQIC.

cases under consideration can be huge. There is ample room for the post-
selection estimators to outperform GMM(1

p
, 1

r
) and GMM(b

mr
, c

mr
), but also

the possibility that they will perform very poorly.
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Table 3
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% tests: ¹"3,
N"500, a

1
"0.85!

Bias SD RMSE Rej. rate Bias SD RMSE Rej. rate

GMM(b0, c0) GMM(b
AIC

, c
AIC

)

a
0

0.027 0.152 0.155 0.057 0.025 0.241 0.242 0.077
a
1

!0.006 0.026 0.026 0.060 !0.006 0.063 0.063 0.123
a
2

* * * * 0.001 0.033 0.033 0.063
b !0.005 0.045 0.046 0.065 !0.005 0.046 0.046 0.059

GMM(b
lr
, c

lr
) GMM(b

BIC
, c

BIC
)

a
0

0.068 0.329 0.336 0.053 0.029 0.172 0.174 0.078
a
1

!0.024 0.082 0.085 0.070 !0.005 0.038 0.038 0.103
a
2

0.011 0.044 0.045 0.065 !0.001 0.017 0.017 0.023
b !0.005 0.047 0.047 0.056 !0.013 0.055 0.057 0.141

GMM(1
b
, 1

r
) GMM(b

HQIC
, c

HQIC
)

a
0

0.469 0.263 0.538 0.838 0.021 0.190 0.191 0.076
a
1

!0.141 0.106 0.176 0.749 !0.004 0.050 0.050 0.111
a
2

0.054 0.071 0.089 0.494 !0.001 0.027 0.027 0.055
b !0.201 0.056 0.208 0.991 !0.007 0.047 0.048 0.073

GMM(b
mr

, c
mr

) GMM(b
DT

, c
DT

)

a
0

4.519 0.381 4.535 1.000 0.030 0.166 0.168 0.068
a
1

!0.850 * 0.850 * !0.006 0.035 0.035 0.080
a
2

0.000 * 0.000 * 0.000 0.014 0.014 0.012
b !0.500 * 0.500 * !0.008 0.050 0.050 0.097

!Footnotes 1}5 of Table 2 apply to this table as well.

The results given in Table 2 indicate that for N"250 the post-selection
estimators are roughly comparable in RMSE and rejection rate performance to
GMM(b

lr
, c

lr
). Thus, they perform noticeably worse than GMM(b0, c0), but

very much better than GMM(1
p
, 1

r
) and GMM(b

mr
, c

mr
). Given the rather

small sample size, at least for panel data, these results are encouraging. Com-
parisons across the post-selection estimators exhibit mixed results for both
RMSE and rejection rates. For b, GMM(b

AIC
, c

AIC
) is the best and

GMM(b
BIC

, c
BIC

) is the worst. For a
0

and a
1
, GMM(b

HQIC
, c

HQIC
) is the best and

GMM(b
BIC

, c
BIC

) is the worst. For a
2
, GMM(b

BIC
, c

BIC
) and GMM(b

DT
, c

DT
) are

the best.
The results of Table 3 for N"500 show that the post-selection estimators are

much better than GMM(b
lr
, c

lr
) in terms of RMSE, although they are still worse
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Table 4
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% tests: ¹"3,
N"1000, a

1
"0.85!

Bias SD RMSE Rej. rate Bias SD RMSE Rej. rate

GMM(b0, c0) GMM(b
AIC

, c
AIC

)

a
0

0.015 0.103 0.104 0.055 0.012 0.172 0.173 0.083
a
1

!0.003 0.018 0.018 0.070 !0.003 0.043 0.044 0.124
a
2

* * * * 0.000 0.023 0.023 0.048
b !0.004 0.031 0.032 0.068 !0.004 0.032 0.032 0.064

GMM(b
lr
, c

lr
) GMM(b

BIC
, c

BIC
)

a
0

0.042 0.232 0.236 0.053 0.015 0.105 0.106 0.058
a
1

!0.012 0.058 0.059 0.064 !0.003 0.021 0.022 0.077
a
2

0.004 0.030 0.031 0.050 0.000 0.008 0.008 0.008
b !0.004 0.033 0.033 0.057 !0.004 0.031 0.031 0.067

GMM(1
b
, 1

r
) GMM(b

HQIC
, c

HQIC
)

a
0

0.497 0.178 0.528 0.981 0.012 0.124 0.125 0.067
a
1

!0.149 0.071 0.165 0.889 !0.002 0.031 0.031 0.102
a
2

0.057 0.048 0.075 0.588 !0.001 0.015 0.015 0.033
b !0.200 0.038 0.203 0.999 !0.004 0.031 0.031 0.066

GMM(b
.r

, c
.r

) GMM(b
DT

, c
DT

)

a
0

4.537 0.283 4.546 1.000 0.017 0.119 0.120 0.061
a
1

!0.850 * 0.850 * !0.004 0.024 0.024 0.078
a
2

0.000 * 0.000 * 0.000 0.009 0.009 0.007
b !0.500 * 0.500 * !0.004 0.031 0.032 0.069

!Footnotes 1}5 of Table 2 apply to this table as well.

than GMM(b0, c0). They are somewhat worse than GMM(b0, c0) and
GMM(b

lr
, c

lr
) in terms of rejection rates. The post-selection estimators are very

much better than GMM(1
p
,1

r
) and GMM(b

mr
, c

mr
) in terms of both RMSE and

rejection rates. The ranking of the four post-selection estimators for RMSE
and rejection rates is as follows. GMM(b

DT
, c

DT
) is the best. GMM(b

BIC
, c

BIC
)

and GMM(b
HQIC

, c
HQIC

) are slightly worse and GMM(b
AIC

, c
AIC

) is the worst.
The RMSE performances of GMM(b

DT
, c

DT
) and GMM(b

BIC
, c

BIC
) are much

better than that of GMM(b
AIC

, c
AIC

) and are not too far from that of
GMM(b0, c0). These results re#ect the selection probability results of Table 1. In
sum, the results of Table 3 indicate that for a sample size of (¹,N)"(3, 500)
post-selection estimators can outperform any of the feasible benchmark
estimators with respect to RMSE.
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Table 4 presents results for (¹,N)"(3, 1000). In this case, the performance of
GMM(b

BIC
, c

BIC
) is almost equivalent to that of GMM(b0, c0) in terms of both

RMSEs and rejection rates. Thus, GMM(b
BIC

, c
BIC

) outperforms GMM(b
lr
, c

lr
)

by a noticeable margin and totally dominates GMM(1
p
, 1

r
) and GMM(b

mr
, c

mr
).

Its excellent performance could be anticipated from the results of Table 1,
because it selects the correct model and moment conditions with very high
probability. The performance of GMM(b

DT
, c

DT
) is close behind that of

GMM(b
BIC

, c
BIC

). GMM(b
HQIC

, c
HQIC

) and GMM(b
AIC

, c
AIC

) perform better than
GMM(b

lr
, c

lr
), but neither is as good as GMM(b

BIC
, c

BIC
) or GMM(b

DT
, c

DT
).

The ordering of the four post-selection estimators in Table 4 is clear:
GMM(b

BIC
, c

BIC
) is "rst, GMM(b

DT
, c

DT
) is second, GMM(b

HQIC
, c

HQIC
) is third,

and GMM(b
AIC

, c
AIC

) is fourth.
For brevity, we do not present post-selection estimation results for the sample

sizes (¹, N)"(6, 250) and (6, 500). The results for these cases are similar to
those of Tables 3 and 4, respectively, for (¹, N)"(3,5 00) and (3, 1000), which
have the same total number of observations.

Lastly, in Table 5 we report results for the second set of parameter
values and sample size (¹,N)"(3, 500). In this case, a

1
is close to one,

so the dependent variable y
it

is highly persistent and the &stationarity
assumption' Assumption G4 is very informative. In consequence,
GMM(b

lr
, c

lr
), which does not exploit Assumption G4, is much less e$cient

than GMM(b0, c0). Its RMSEs are from seven to twenty times as large as those
of GMM(b0, c0).

In Table 5, all four post-selection estimators outperform GMM(b
lr
, c

lr
) in

terms of both RMSE and rejection rates, but all are outperformed by
GMM(b0, c0) in terms of RMSE. The best post-selection estimator is
GMM(b

BIC
, c

BIC
) in terms of RMSE and rejection rates. Next best are

GMM(b
DT

, c
DT

) and GMM(b
HQIC

, c
HQIC

). The RMSEs of GMM(b
BIC

, c
BIC

) are
roughly half the size of those of GMM(b

AIC
, c

AIC
). In addition, GMM(b

BIC
, c

BIC
)

performs very well in terms of rejection rates with rates of 0.050, 0.055, and 0.064
for a

0
, a

1
, and b.

In summary, the results of Tables 2}5 indicate that the MMSC and DT
procedures are e!ective in delivering improved estimator performance
over the feasible alternative benchmark estimators provided the sample size
(¹, N) is greater than (3, 250). The improvement of the consistent
MMSC and DT procedures as the sample size increases is quite evident. With
a sample size of (¹, N)"(3, 1000), the GMM(b

BIC
, c

BIC
) estimator performs as

well as the infeasible estimator that relies on knowing the correct model and
moment conditions. The choice of the best MMSC is unclear for the smallest
sample size (¹, N)"(3, 250), but for all larger sample sizes it is clearly seen to
be GMM(b

BIC
, c

BIC
). The DT procedure is comparable to GMM(b

BIC
, c

BIC
) in an

overall sense. It performs slightly better for the smaller sample sizes, but slightly
worse for the larger ones.
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Table 5
Biases, standard deviations, and RMSEs of GMM estimators and rejection rates of 5% t-tests:
¹"3, N"500, a

1
"0.95!,"

Bias SD RMSE Rej. rate Bias SD RMSE Rej. rate

GMM(b0, c0) GMM(b
AIC

, c
AIC

)

a
0

0.057 0.189 0.197 0.039 0.692 1.862 1.987 0.140
a
1

!0.004 0.012 0.012 0.035 !0.040 0.108 0.115 0.141
a
2

* * * * !0.003 0.015 0.016 0.064
b !0.003 0.010 0.010 0.056 !0.020 0.052 0.056 0.138

GMM(b
lr
, c

lr
) GMM(b

BIC
, c

BIC
)

a
0

1.670 2.162 2.732 0.184 0.136 1.047 1.056 0.050
a
1

!0.094 0.124 0.156 0.182 !0.009 0.062 0.062 0.055
a
2

!0.010 0.020 0.022 0.068 0.000 0.007 0.007 0.021
b !0.046 0.060 0.075 0.188 !0.005 0.030 0.031 0.064

GMM(1
b
, 1

r
) GMM(b

HQIC
, c

HQIC
)

a
0

0.286 0.526 0.599 0.525 0.295 1.326 1.359 0.078
a
1

!0.052 0.030 0.060 0.832 !0.018 0.078 0.079 0.081
a
2

0.034 0.019 0.039 0.679 !0.001 0.011 0.011 0.041
b !0.045 0.012 0.047 0.995 !0.009 0.038 0.039 0.086

GMM(b
mr

, c
mr

) GMM(b
DT

, c
DT

)

a
0

15.211 0.427 15.217 1.000 0.277 1.323 1.352 0.074
a
1

!0.950 * 0.950 * !0.016 0.076 0.077 0.074
a
2

0.000 * 0.000 * !0.001 0.010 0.010 0.024
b !0.500 * 0.500 * !0.009 0.037 0.038 0.090

!The true parameter values are (a
0
, a

1
, a

2
, b)"(0.8, 0.95, 0, 0.5) and (p

xg , p
xv

, p2g , p2
v
,

p2
x
)"(!0.2, 0.5, 0.2, 0.2, 0.5).

"Footnotes 2}5 of Table 2 apply to this table as well.

7. Conclusions

This paper extends the standard GMM framework to the case where there is
imperfect knowledge about the correct model and moment conditions. We
introduce a class of model and moment selection criteria (MMSC) and down-
ward testing procedures that consistently select the correct model and all of the
correct moment conditions, but no others. The MMSC are based on a trade-o!
between the magnitude of the J statistic and the numbers of parameters and
moment conditions employed. The trade-o! is analogous to that made by model
selection criteria in likelihood scenarios.
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The paper applies the MMSC and testing procedures to GMM estimation of
dynamic panel data models. In such models, di!erent GMM estimators are based
on di!erent sets of assumptions concerning the covariances between di!erent
components of the model, such as error components, regressors, and initial condi-
tions. The selection procedures can be used to help determine which of the
covariance restrictions are correct. The selection procedures also can be used to help
specify the model. For example, they can be used to select the lag length, detect
structural breaks in the parameters, or determine which regressors to include.

Lastly, we conduct a Monte Carlo experiment to evaluate the "nite sample
performance of the selection procedures. We consider a dynamic panel data
problem. We compute the probabilities that several MMSC and downward
testing procedures select the correct model and moment conditions, as well as
various combinations of incorrect model and moment conditions. We analyze
the performance of post-selection GMM estimators in terms of their biases,
standard deviations, root mean-squared errors, and t-test rejection rates. The
MMSC}BIC and downward testing procedures are found to work quite well in
a variety of contexts.

Appendix A. Proofs

Proof of ¹heorem 1. The proof is quite similar to that of Theorem 1 of Andrews
(1999). First, we establish Theorem 1(a). For any (b, c)3BC with (b, c) NBCZ0,
we have

J
n
(b, c)/n 1

P inf
h*b+ |H*b+

G0
c
(h

*b+
)@=0(b, c)G0

c
(h

*b+
)'0 under P0, (A.1)

where the convergence holds by Assumption 1(c) and the inequality holds
because (i) G0

c
(h

*b+
)O0 ∀h

*b+
3H

*b+
by the supposition that (b, c) NBCZ0 and (ii)

=0(b, c) is positive de"nite by Assumption 1(b). Eq. (A.1) and Assumption
MMSC(b) yield: For any (b, c)3BC with (b, c) NBCZ0,

MMSC
n
(b, c)/n"J

n
(b, c)/n!h(DcD!DbD)i

n
/n

1
P inf

h*b+ |H*b+

G0
c
(h

*b+
)@=0(b, c)G0

c
(h

*b+
)'0 under P0. (A.2)

For any (b, c)3BCZ0, we have

J
n
(b, c)"O

1
(1) under P0, (A.3)

using Assumptions 1(a) and (c) and the fact that G0
c
(h

*b+
)"0 for some h

*b+
3H

*b+
.

Eq. (A.3) and Assumption MMSC(b) yield: For any (b, c)3BCZ0,

MMSC
n
(b, c)/n"O

1
(1)!h(DcD!DbD)i

n
/n"O

1
(1) under P0. (A.4)

Eqs. (A.2) and (A.4) imply that (bK
MMSC

, c(
MMSC

)3BCZ0 wpP1.
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Now, suppose (b
1
, c

1
), (b

2
, c

2
)3BCZ0, (b

1
, c

1
) NMBCZ0, and (b

2
, c

2
)3

MBCZ0. Then, Dc
1
D!Db

1
D(Dc

2
D!Db

2
D and by Assumption MMSC

(h(Dc
1
D!Db

1
D)!h(Dc

2
D!Db

2
D))i

n
P!R. (A.5)

Eqs. (A.3) and (A.5) imply that MMSC
n
(b

1
, c

1
)'MMSC

n
(b

2
, c

2
) wpP1. Thus,

(bK
MMSC

, c(
MMSC

)3MBCZ0 wpP1, as stated in Theorem 1(a).
Now, Assumption IDbc and (b0, c0)3BC imply that MBCZ0"M(b0, c0)N.

Hence, coupled with Theorem 1(a), the former conditions imply that
(bK

MMSC
, c(

MMSC
)"(b0, c0) wpP1. In addition, (b0, c0)3BC is necessary for

(bK
MMSC

, c(
MMSC

)"(b0, c0). Hence, Theorem 1(b) holds.
Theorem 1(c) follows from Theorem 1(b). h

Proof of ¹heorem 2. First, we establish Theorem 2(a). For any (b, c)3BC with
(b, c) NBCZ0, we have

J
n
(b, c)/c

n,@c@~@b@
1

P R under P0 (A.6)

by (A.1) and Assumption T. Thus, kK
DT

)d(MBCZ0) wpP1, where
d(MBCZ0) denotes the (unique) number of over-identifying restrictions for the
vector(s) in MBCZ0.

For any (b, c)3BCZ0, (A.3) and Assumption T yield

J
n
(b, c)(c

n,@c@~@b@
wpP1 under P0. (A.7)

In consequence, kK
DT

"d(MBCZ0) wpP1. This result and (A.6) imply that
(bK

DT
, c(

DT
)3MBCZ0 wpP1 and, hence, Theorem 2(a) holds.

Now, Theorems 2(b) and (c) follow from Theorem 2(a) by the same argument
as used above to show that Theorems 1(b) and (c) follow from Theorem 1(a). h
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