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HIGHER-ORDER IMPROVEMENTS OF
A COMPUTATIONALLY ATTRACTIVE k-STEP
BOOTSTRAP FOR EXTREMUM ESTIMATORS

By DoNALD W. K. ANDREWS!

This paper establishes the higher-order equivalence of the k-step bootstrap, introduced
recently by Davidson and MacKinnon (1999), and the standard bootstrap. The k-step
bootstrap is a very attractive alternative computationally to the standard bootstrap for
statistics based on nonlinear extremum estimators, such as generalized method of moment
and maximum likelihood estimators. The paper also extends results of Hall and Horowitz
(1996) to provide new results regarding the higher-order improvements of the standard
bootstrap and the k-step bootstrap for extremum estimators (compared to procedures
based on first-order asymptotics).

The results of the paper apply to Newton-Raphson (NR), default NR, line-search NR,
and Gauss-Newton k-step bootstrap procedures. The results apply to the nonparametric
iid bootstrap and nonoverlapping and overlapping block bootstraps. The results cover sym-
metric and equal-tailed two-sided ¢ tests and confidence intervals, one-sided ¢ tests and
confidence intervals, Wald tests and confidence regions, and J tests of over-identifying
restrictions.

KEYWORDS: Block bootstrap, Edgeworth expansion, generalized method of moments
estimator, k-step bootstrap, Newton-Raphson method.

1. INTRODUCTION

THIS PAPER ANALYZES the higher-order properties of a computationally attrac-
tive k-step bootstrap procedure for extremum estimators, such as generalized
method of moments (GMM) and maximum likelihood (ML) estimators. The
method was proposed first by Davidson and MacKinnon (1999). It is closely
related to the one-step and k-step estimators considered by many authors,
including Fisher (1925), LeCam (1956), Pfanzagl (1974), Janssen, Jureckova, and
Veraverbeke (1985), and Robinson (1988), among others.

Let B denote the number of bootstrap repetitions. The standard bootstrap
for an extremum estimator requires that one solve B nonlinear optimization
problems to obtain B bootstrap estimators. These estimators are then used to
construct bootstrap confidence intervals (CI’s), test statistics, etc. In contrast, the
k-step bootstrap requires calculation of a closed-form expression for each of the
B bootstrap repetitions. Given a bootstrap sample, the k-step bootstrap estimator
is obtained by taking k-steps of a Newton-Raphson (NR), default NR, line-search
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editor, three referees, and Jong Kim, for their comments and suggestions. The author thanks Carol
Copeland for proofreading the manuscript. The author gratefully acknowledges the research support
of the National Science Foundation via Grant Number SBR-9730277.
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NR, or Gauss-Newton (GN) iterative scheme starting from the estimate based
on the original sample.

We show that the distribution function of a k-step bootstrap statistic differs
from that of a standard bootstrap statistic by at most N~¢ with probability 1 —
o(N~) for any a > 0, provided £ is taken large enough and sufficient smoothness
and moment conditions hold, where N denotes the sample size. For example, it
is often sufficient to take k > 2 for a =1 and k > 3 for a = 2 for the NR, default
NR, and line-search NR k-step bootstraps and k >3 for a =1 and k > 5 for
a =2 for the GN k-step bootstrap. These results are used to show that the k-step
bootstrap yields higher-order improvements over procedures based on first-order
asymptotics. The results cover the nonparametric iid bootstrap and overlapping
and nonoverlapping block bootstraps for time series.

This paper also provides a number of new results concerning the higher-order
properties of the standard (i.e., non-k-step) nonparametric iid and block boot-
straps for extremum estimators. These results extend results of Hall and Horowitz
(1996) (denoted HH hereinafter).

The paper establishes that the standard and k-step bootstraps reduce the error
in test rejection probability and CI coverage probability (relative to standard
first-order asymptotics) by a factor of N ¢ for some £ > 0. The error is shown to
be of magnitude o(N~(*+9) for symmetric ¢, Wald, and J tests and correspond-
ing CI’s and o(N~1/2+9) for equal-tailed and one-sided ¢ tests and correspond-
ing CI’'s. When the data are dependent and the block bootstrap employed, the
value of ¢ depends on the block length parameter vy, where the block length ¢ is
proportional to N? for some 0 <y < 1/2. For the block length ¢ o« N, which
maximizes the upper bound on &, ¢ is bounded above by 1/4. For equal-tailed
and one-sided tests and corresponding CI’s, this upper bound on ¢ is sharp.
The source of this bound is the combination of (i) the large sample bias of the
block bootstrap Edgeworth coefficients, viewed as estimators of the correspond-
ing nonbootstrap Edgeworth coefficients, which goes to zero sufficiently fast only
if £ <, and (ii) the variability of the block bootstrap Edgeworth coefficients,
which goes to zero sufficiently fast only if £ 4y < 1/2. In contrast, the results of
HH show that the error in test rejection probability is reduced from O(N~1) to
o(N~1) for symmetric two-sided ¢ tests and J tests.

When the data are iid and the standard or k-step nonparametric iid bootstrap
is employed, our results establish a reduction in the error of test rejection prob-
ability and CI coverage probability (relative to standard first-order asymptotics)
by a factor of N~! for two-sided ¢ tests and symmetric percentile ¢ CI's. The
magnitude of these errors is shown to be O(N~2), which is sharp. These results
use an argument of Hall (1988, Sec. 3). Note the difference between the results
for the improvements due to the block bootstrap for time series, viz. N~¢ for all
& < 1/4, and the results for the nonparametric iid bootstrap, viz., N~!. The block
bootstrap is much less effective than the nonparametric iid bootstrap.

The results given here allow for a great deal of flexibility in the choice of
the block length parameter in the case of time series data. Specifically, if the



k-STEP BOOTSTRAP 121

block length is £ o« N7, then we just require 0 < y < 1/2. The results of HH are
somewhat restrictive in this dimension and only cover the block length € oc N1/,

The results given here apply to both the overlapping and nonoverlapping
block bootstraps. The results of HH apply to the nonoverlapping block boot-
strap, whereas much of the literature on the block bootstrap focuses on overlap-
ping blocks; e.g., see Kiinsch (1989), Lahiri (1992, 1996), and Gétze and Kiinsch
(1996). The overlapping block bootstrap is slightly more efficient asymptotically
for estimating the distribution function of a ¢ statistic than the nonoverlapping
block bootstrap; see Hall, Horowitz, and Jing (1995). The overlapping block boot-
strap also is more efficient asymptotically for estimating the variance of an esti-
mator than the nonoverlapping block bootstrap; see Lahiri (1999). Given these
superior asymptotic properties of the overlapping block bootstrap, it is desirable
to have results for extremum estimators that cover it.

A key assumption made throughout the paper is that the estimator moment
conditions are uncorrelated beyond some finite integer k > 0, which implies that
the covariance matrix of the estimator can be estimated using at most k cor-
relation estimates. This assumption is satisfied with k =0 in many time series
models in which the estimator moment conditions form a martingale difference
sequence due to optimizing behavior by economic agents, due to inheritance of
this property from a regression error term, or due to the martingale difference
property of the ML score function. It also holds with 0 < k < oo in many models
with rational expectations and/or overlapping forecast errors, such as McCallum
(1979), Hansen and Hodrick (1980), Brown and Maital (1981), and Hansen and
Singleton (1982). For additional references, see Hansen and Singleton (1996).
This assumption is also employed in HH.

Two papers in the literature concerning the overlapping block bootstrap are
Gotze and Kiinsch (1996) and Lahiri (1996). They consider statistics that are
smooth functions of sample averages and regression parameter ¢ statistics, respec-
tively. They allow the asymptotic variances of the statistics of interest to depend
on an infinite number of correlations, which is less restrictive than the assump-
tion employed here. On the other hand, they obtain accuracy of CI coverage
probabilities only up to o(N~'/?), whereas we obtain accuracy up to o(N~1+9)
for symmetric ¢, Wald, and J tests and corresponding CI’s, as outlined above.
Two recent papers that consider the block bootstrap for econometric models are
Zvingelis (2001) and Inoue and Shintani (2000).

We note that Davidson and MacKinnon (1999) provide an argument for
higher-order improvements of the k-step bootstrap, based on Robinson’s (1988)
stochastic difference results for k-step estimators. However, their argument is
heuristic. They “simply assume that rejection probabilities differ at the same
order as the order in probability of the difference between the statistics them-
selves.” They do not provide any regularity conditions, but they point to Robinson
(1988) for the type of conditions needed. Robinson (1988), however, does not
deal with bootstrapping.

In this paper, we make use of a moment inequality of Yokoyama (1980, equa-
tion (4.1)) and Doukhan (1995, Theorem 2 and Remark 2, pp. 25-30) rather than
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the weaker inequality of Lahiri (1992, Lemma 5.1), which is used in HH. We rely
heavily on the methods used by HH in our proofs. In turn, the methods used
by HH build on those of Bhattacharya and Ghosh (1978), Chandra and Ghosh
(1979), Gotze and Hipp (1983, 1994), Hall (1985), Carlstein (1986), Bhattacharya
(1987), and Lahiri (1992). For part of our proofs, our methods are similar to
those of Robinson (1988). The methods of Robinson (1988) are related to those
of Pfanzagl (1974) and utilize results from the numerical analysis literature. Our
results for the nonparametric iid bootstrap utilize results in Hall (1988).

Andrews (2001b) provides results analogous to those of this paper for the para-
metric bootstrap. Andrews (2000) provides results on the higher-order equiva-
lence of nonbootstrap k-step estimators and corresponding extremum estimators.

The remainder of the paper is organized as follows: Section 2 gives an outline
of the main results of the paper and their proofs. Section 3 defines the extremum
estimators. Section 4 defines the overlapping and nonoverlapping block boot-
straps. Section 5 defines the k-step block bootstraps. Section 6 states the assump-
tions. Section 7 establishes the higher-order asymptotic equivalence of the k-step
and standard block bootstraps. Section 8 establishes the higher-order improve-
ments of the k-step and standard block bootstraps. An Appendix contains proofs
of the results. Andrews (2001a) gives more details than are given in the Appendix
for some of the proofs.

2. OUTLINE OF THE RESULTS

In this section, we provide an outline of the methods and results established
in detail in the sections below. We start by discussing the usual asymptotic ¢ tests
and CI’s and the higher-order improvements that can be obtained by bootstrap
t tests and CI’s. Then, we outline the argument establishing the higher-order
improvements of k-step bootstrap ¢ tests and CI’s.

The observed sample is yy = {X;:i < N}. It is a stationary time series or an
iid cross-section of observations that is distributed according to a probability dis-
tribution P. An extremum estimator  of a parameter 6 € @ is defined to min-
imize a criterion function Jy (6), which depends on the sample y,, over @. For
example, Jy (6) could be a GMM or (the negative of an) ML criterion function.

We are interested in either a two-sided test of the null hypothesis H, : 0, =
0y.,, where 6, is the rth element of 6, or a CI for 6,. The ¢ statistic for H, is
Ty = N0y, —6,.,)/(0x)"?, where 0y , denotes the rth element of f and
(oy),, denotes an estimator of the asymptotic variance of N/ 2(HAN,, —0,,). The
usual ¢ test with asymptotic significance level a rejects Hy if |Ty| > z,,,, where
Z4 18 the 1 —a/2 quantile of a standard normal distribution. Correspondingly,
the usual CI for the true parameter 6, , with asymptotic confidence level 100(1 —
@)% is Cly =[Oy, — 2, (N2 /N2, On.,+2z4p(0y)"2/NY2]. The error in the
rejection probability and coverage probability of these procedures can be shown
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to be O(N~1). That is,

(2.1) P(ITy| > z,,) =a+O(N™") under H, and
P(6,,€CIy)=1—a+O(N~") when §,, is the true value.

Bootstrap ¢ tests and CI’s are alternatives to the ¢ tests and CI’s described
above. They have errors in rejection probability and coverage probability that are
smaller than O(N~1). Bootstrap procedures are based on an estimator P* of the
probability P that generates the sample y,. The estimator P* depends on the
sample y,. For example, if y, consists of iid random vectors X;, each with dis-
tribution function (df) F, then P* could be the distribution of iid random vectors
each with df FN, where FN is the empirical df y,. This is the standard nonpara-
metric iid bootstrap. It works because FN is a uniformly consistent estimator of
F by the Glivenko-Cantelli Theorem. For dependent data, P* could be a block
bootstrap that resamples blocks of observations in y, in order to mimic the
time series structure of y,. (The block bootstrap is described in detail below.)
Alternatively, P* could be an estimator of P that utilizes an assumed parametric
model.

Let x5y ={X;:i < N} be a sample of random vectors that are distributed
according to P* conditional on yy. Define J3(0) as Jy(0) is defined, but with
X% in place of yy; define 6% to minimize J} (0) over @; define (a7)Y/* as (oy)/>
is defined, but with x3 in place of y,; and define the bootstrap ¢ statistic Ty =
NY2(0%., — Oy.,)/(0%) 2. (Depending on the criterion function Jy(6) and the
bootstrap distribution P*, the above definitions of J3(0) and T} need to be
adjusted somewhat from those just given. For example, this is true for the GMM
criterion function and the block bootstrap; see below.) The distribution of T
under P* mimics that of T,y under P, provided P* is a reasonable estimator of
P. Let z;, , denote the 1 —a quantile of [Ty

The bootstrap test of asymptotic significance level a rejects H, if |Ty| > z{7 .
The symmetric percentile ¢ bootstrap CI for 6, , of asymptotic confidence level
100(1 — @)% is CIy =[Oy, — 2i7. o (ON) /N2, by, + 257, o (0n) /2 /N'2]. The
error in rejection probability and coverage probability of these bootstrap proce-
dures is shown below to be smaller than that for the usual procedures. In partic-
ular, we show that

(2.2) P(ITy| > iy o) = @+ O(N~"*9) under H, and
P(8,,€CIy)=1—a+O(N""*9) when 6,, is the true value,

for all £ <1 when the data are iid and the nonparametric iid bootstrap is used
and for all ¢ < 1/4 when the data are stationary and the block bootstrap is used
(given a suitable choice of the block length parameter). (Note that O(N~0+9)
for all £ < 1/4 is equivalent to o(N~(+9) for all ¢ < 1/4, which is the error stated
in Theorem 2 below.)
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The proof of (2.2) uses Edgeworth expansions to show that the df’s of 7}, and
Ty are sufficiently close that

23) zyirioN”P(SuglP*(T; =2) =PIy =2)|> N“) =0

for some a > 1+ ¢, where 2a is an integer. In the independent case, a = 2; in the
dependent case, a = 3/2. Hence, the random df P*(Ty < z), which depends on
Xv» differs from the nonrandom df P(7y < z) by a small amount, N ¢, except
on a set with small probability N—¢.

Typically, the analytic calculation of zj;, , is intractable, but the simulation of
samples yy with distribution P* is easy and fast. In consequence, the bootstrap
is carried out by (i) simulating a large number, B, of independent bootstrap
samples x5 (b) ={X(b):i <N} for b=1,..., B, each with distribution P*;
(if) computing the B bootstrap criterion functions J3 (6, b), estimators 63 (b),
and ¢ statistics Ty (b) for the bootstrap samples yx(b) for b=1,...,B; and
(iii) approximating the population 1 —« quantile zj;, , of [T}| by the sample 1 —«a
quantile z, (B) of {|T{(b)[:b=1,...,B}. As B— oo,z ,(B) converges in
probability to zj;, ,, because a sample quantile of iid random variables converges
in probability to the corresponding population quantile. Andrews and Buchinsky
(2000) provide a three-step method for determining a value of B so that zj;, ,(B)
is close to zj; , with high probability. Often, B needs to be in the range of
750-1000.

A computational problem with the bootstrap procedure described above is that
one needs to compute the minima of B nonlinear functions, where B is fairly
large. In particular, one needs to minimize J(0,b) over € ® for b=1,...,B.
This can be a very time consuming task unless the minimization problem is easy.
To circumvent this problem, one can use the fact that 63, is close to éN with high
probability (because N2(6% —68y) = 0,(1)) and 6, is known. One can start at
fy and take a small number k of steps, such as NR steps, towards 6. Denote
the resulting k-step bootstrap estimator by 6y, ,. Then, one can use 6y, , in place
of 0} in forming the bootstrap ¢ statistic.

By definition,

(24)  60y,=0y and
ad .
0:1,_/:0;/,]'7]_(Qx&,jfl)il%]}rl(e;k\/,jfl) for j=1,...,k,

where QF ;_; is a matrix that depends on 6y ; ;. For NR steps, O} ;| =
(9%/96 00')J3 (6 ;_1)- In this case, the definition of 6} , is motivated by the
approximation of (d/90)J3 (60) at the k —1 step by the affine function

(25) Ay 1(0) = (9/00)T5 (O 1)+ (97/00.00") T3 (O, 1) (0 = Oy 1 _y)-

The value of 6 that solves the approximate first-order conditions Ay, , ,(6) =0
is easily seen to be 6y ;.
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Let Ty , denote the bootstrap ¢ statistic defined with the k-step estimator
0y, In place of 0y Let z7 , , denote the 1—a quantile of [Ty ,|. The k-step
bootstrap t test and CI are the same as the bootstrap procedures defined above,
but with 217 koo in place of 27 The computational advantage of the k-step
procedures is that the approximation of zj , , by the 1 —a sample quantile

of {|Ty ,(b)|:b=1,..., B} only requires calculation of the k-step estimators
{0y (b):b=1,... ,B} which have closed form solutions, rather than the cal-
culation of the extremum estimators {0%(b) : b=1,..., B}, which require B

nonlinear minimizations.

If 0;*\, « 18 close enough to 6%, one hopes that the higher-order improvements
given in (2.2) still hold with z;, , . in place of zj;, . In this paper, we show that
this is true. We now outline the proof for the the NR choice of Q’,‘V, i1 In this
case, we show that it suffices to have the number of steps k > 3.

The higher-order improvements of the k-step bootstrap procedures can be
shown by establishing that for a as in (2.3) and for k > 3,

(2.6) Al/im N“P(sup |P*(Ty  <2)— P (Ty <2)| > N”) =0,
o zeR

because this implies that (2.3) holds with 7y , in place of 7. First, we show
that the df of T} possesses a well-behaved Edgeworth expansion with remainder
of order o(N~“) conditional on y, except possibly on a set with P-probability
o(N~7). In consequence, a small change in z yields a small change in P*(Ty < z).
This is used to show that (2.6) holds provided T}, , and T} are close in the sense
that

(2.7) Al/if}”N“P(P*UTA?k_Tm >%y)>N"9)=0
for some constants ¥, = o(N~*). Equation (2.7) is established by showing that
(28)  lim NP(P (N6}, — 03] > 9y) > N =0

and then extending this result to obtain (2.7). Hence, we focus on the proof
of (2.8).

We show that (2.8) holds for the NR choice of O} ; | with &y = N'2N —2e,
where c is a constant in (0, 1/2). This corresponds to quadratic convergence of
0.« to 05 as the number of steps k increases, which is very fast. For this defini-
tion of ¥y, Iy = o(N~%) provided 2¥c > a+1/2. For a=2 or a=3/2 and ¢ close
to 1/2, the latter holds provided k > 3, as stated above. For a different choice
of Oy ;_, such as the GN choice, the convergence of 6y, , to 63 may be slower
and k may need to be larger to obtain the desired higher-order improvements.

The first step in showing (2.8) is to show that 63 is close to 6, with high
probability. Using Taylor expansions and good moment inequalities for sums of
strong mixing rv’s, we show that for all ¢ < 1/2 and all ¢ > 0,

(29)  lim N°P(P*(|6y — Oyl > N~e) > N™) =0.
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This result relies on sufficient smoothness of Jy (6) and sufficient moment con-
ditions on terms that arise in the Taylor expansion of Jy (6) about 6.

Next, we show that the difference between 60} , and 63 depends on the dif-
ference between (4/36)Jy (6) and the affine approximation A} ,_,(6) at 6 = 65
(defined in (2.5)) and that the latter is a quadratic function of the dlfference
between 6y, ; and 63. Our proof parallels the standard proof in the numer-
ical analy51s literature of the quadratic convergence of the NR algorithm; e.g.,
see Dennis and Schnabel (1983, Sec. 5.2). For notational simplicity, let V2J5
denote (8%/3030')J3 (0% _,)- By the definition of 65 ,,

0
(210) By~ 0% = B3 41— (V2T )" —J;(o;z,k,o 6,
USRS ( Ty (03) ~ )
—VZJ;,k_lw;z—e;,k_l))

=20 (350 = A5 (8

where the second equality holds because (d/d6)J5(6%) = 0 with P*-probability
1—0(N~") on a set with P-probability 1 — o(N %) by the first-order conditions
for 6} and (2.9). A Taylor expansion of (d/36)J5,(6%) about 6y, gives

Q11 LT8R~ Al (5))

’ 63 * * *
=[O~ 03 g 5 O DG =G5 2]

vec

where [7,],.. denotes a vector whose uth element is y, and 6y, ,_, , lies between
Oy and 6y , ;.
Combining (2.10) and (2.11) gives

212) (105 — 04l < & 103y — 0% ||2, where
3

* 2y
tv = max NVn 0Ol L | 5535567

Lok

B3 0.002).
We show that there exists a constant K < oo such that
(213)  lim N*P(P*({} > K) > N™) =0.
Repeated substitution into the right-hand side of (2.12) gives
214) 103, — O3 = (G0 1030 = O 7 = (L) (N“NlBy — O3 1) N,

where ¢ = Z;‘:l 2/-! and the equality uses 6} , = 0.
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Combining (2.9), (2.13), and (2.14) gives the result that, for & > 0 sufficiently
small,

(215)  lim N“P(P*(|0y, . — Oy > N-2¢) > N9
< lim N“P(P*(({3) (N0 — 63 1)** > 1) > N~)

< lim N“P(P*(K%¢”¢>1) > N9

N—oo

=0.

This establishes (2.8) with 9, = N'/2N ¢ and implies that NR k-step bootstrap
t tests and CI’s have the same errors as given in (2.2) for the standard boot-
strap procedures, provided k£ > 3. The proof of analogous results for GN k-step
bootstrap procedures is similar, though more complicated, and requires k to be
larger.

3. EXTREMUM ESTIMATORS AND TESTS

In this section and those that follow, we provide a rigorous and detailed treat-
ment of the results that are outlined in the previous section as well as additional
results. As much as possible, we use the same notation as HH. We consider
extremum estimators that are either GMM estimators or estimators that mini-
mize a sample average. We call the latter “minimum p estimators,” because the
sample average is taken to be N~' YV p(X,, 0), where X, € R~ is a random vec-
tor, # € ® C R is an unknown parameter, and p(-,-) is a known real function.
Maximum likelihood (ML), least squares (LS), and regression M estimators are
examples of minimum p estimators. GMM estimators are based on the moment
conditions Eg(X;, 6,) =0, where g(-,) is a known L,-valued function, X; is as
above, 6, € @ C R" is the true unknown parameter, and L, > L,.

Minimum p estimators can be written as GMM estimators with g(X;, ) =
(0/00)p(X;, 8). It is useful to consider minimum p estimators separately, how-
ever, because the identification condition for consistency of a minimum p estima-
tor requires that there be a unique minimum of Ep(X;, 6) over 0 € ©, whereas
the identification condition for consistency of the GMM estimator based on the
first-order conditions of the minimum p estimator requires that there be a unique
solution to the equations E(d/d0)p(X;, 0) =0 over 0 € ©. The latter may have
multiple solutions even though the former has a unique minimum.

The observations are {X;:i=1,...,n}. They are assumed to be from a
(strictly) stationary ergodic sequence of random vectors. We assume that the
true moment conditions (for a GMM or minimum p estimator) are uncorrelated
beyond lags of length « for some 0 < k < co. That is, Eg(X;, 6))g(X;,;,60,) =0
for all j > k. In consequence, the covariance matrix estimator and the asymp-
totically optimal weight matrix for the GMM estimator only depend on terms of
the form g(X;, 0)g(X,,;, 0) for 0 < j < k. This means that the covariance matrix
estimator and the weight matrix can be written as sample averages, which allows
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us to use the Edgeworth expansion results of Gotze and Hipp (1983, 1994) for
sample averages of stationary dependent random vectors, as in HH. To this end,
we let

Gl X=X, X, X)) for i=1,...,n—x

i+1° i

All of the statistics considered below can be closely approximated by sample
averages of functions of the random vectors X; in the sample yy:

(32)  xy={X,:i=1,...,N},

where N = [(n — k)/£]¢ for block bootstraps with block length ¢, [-] denotes
the integer part of -, and k =0, £ =1, and N = n for the nonparametric ii~d
bootstrap. Thus, as in HH and Gotze and Kiinsch (1996), some observations X;
are dropped if (n— k)/¢ is not an integer to ensure that the sample size N is an
integer multiple of the block length ¢.?

We consider two forms of GMM estimator. The first is a one-step GMM esti-
mator that utilizes an L, x L, nonrandom positive-definite symmetric weight
matrix (2. In practice, (2 is often taken to be the identity matrix / L, The sec-
ond is a two-step GMM estimator that utilizes an asymptotically optimal weight
matrix. It relies on a one-step GMM estimator to define its weight matrix.

The one-step GMM estimator, 9N, solves

(3.3) min In(0) = (N‘1 g:g(Xl—, 0)>/Q<N‘1 g:g(X,-, 0))

The two-step GMM estimator which, for economy of notation, we also denote
by 6, solves

(34) gggJNw,éN):(N-lﬁg(x,-,0))/0N<éN)(N-1§g(X,»,0>), where

i=1

Qy(0)=Wy'(0),

WN(9>=N'Z(g(x,-,0>g(x,-,e>/+iH<Xi,X,-+,,0>),

i—1 j=1

H(X;, X;,;,0)=8(X;,0)8(X,1;,0) +8(X,,;,0)8(X;,0),

and 6, solves (3.3). A
The minimum p estimator, which we also denote by 6, solves

N
(335)  minN"' Y p(X;, 0).
i=1

2 For convenience, we state that limits are as N — oo below, although, strictly speaking, they are
limits as n — oo.
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For this estimator, we let g(X;, 8) denote (9/30)p(X;, 0). Except for consistency
properties, the minimum p estimator can be analyzed simultaneously with the
GMM estimators. The reason is that with probability that goes to one (at an
appropriate rate) the solution 6 to the minimization problem (3.5) is an interior
solution and, hence, is also a solution to the problem of minimizing a quadratic
form in the first-order conditions from this problem with weight matrix given by
the identity matrix, which is just the one-step GMM criterion function.
The asymptotic covariance matrix, o, of the extremum estimator 6 is

(D'QD)"' D' Q0 QOD(D' QD)™ if fy solves (3.3),
(3.6) o=1(DQD)! if f solves (3.4),
D0y D! if 6 solves (3.5), where

_ )
Qy=(EWy(6y))"" and D= Ea_e,g(Xia 6o)-

A consistent estimator of o is
(DyQ2Dy) ™' Dy 0025 (6,)

(3.7) oy =

x QDy(D\y2Dy)™"  if 6y solves (3.3),
(D25 (0)Dy) ™! if 6 solves (3.4),

D 03 () DR if 6, solves (3.5), where

N
0 A
DN = N_lza—e/g(Xi, HN)
i=1

Let 6,, 6,,, and éN’, denote the rth elements of 6, 6,, and éN respectively.
Let (oy),, denote the (r, r)th element of oy. The ¢ statistic for testing the null

hypothesis H, : 6, = 6, , is
(38) TN = Nl/z(éN, r 00,r)/(0-N))1‘£2‘

Let n(f) be an R*s-valued function (for some integer L, > 1) that is contin-

uously differentiable at 6,. The Wald statistic for testing H,
Hy:n(8) #0 is
ad

09 =My (e ) )

The J statistic for testing overidentifying restrictions is

(3.10)  Jy=K,(0y)Ky(0y), where

Ky(0) =2y (O)N~'/ %g(xi, 0)

i=1

: n(6;) = 0 versus

and 6, is the two-step GMM estimator. Under H,, T has an asymptotic N (0, 1)
distribution. If L, > L, and the overidentifying restrictions hold, then Jy has an
asymptotic chi-squared distribution with L, — L, degrees of freedom. (This is not
true if the one-step GMM estimator is used to define the J statistic.)
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4. NONPARAMETRIC BLOCK BOOTSTRAP

We consider both the overlapping and the nonoverlapping block bootstraps.
The former is often called the Kiinsch (1989) blocking scheme, and the latter, the
Carlstein (1986) scheme, although Hall (1985) considers both of these schemes
in a related context. -

The observations to be bootstrapped are {X,;:1 <i < N}. Let ¢ denote
the length of the blocks. We assume that ¢ o« N? for some 0 <y < 1. For
dependent data, one takes y > 0. (Note that this is necessary even if the
data are m-dependent, because the independence between the bootstrap blocks
requires the number of blocks to increase more slowly than N to properly cap-
ture the m-dependence.) For the nonoverlapping block bootstrap, the first block

is X;,...,X,, the second block is X,,,...,X,, etc. There are b different
blocks, where b¢ = N. For the overlapping block bootstrap, the first block is
X,,...,X,, the second is~X2, ..., X4y, etc. There are N —¢+41 different blocks.

For iid data, k =0, X; = X;, N = n, the block length ¢ equals one, and
v = 0. In this case, the bootstrap is referred to as the nonparametric iid
bootstrap.

The bootstrap is implemented by sampling b blocks randomly with replace-
ment from either the b nonoverlapping or the N — ¢+ 1 overlapping blocks.
Let X7,..., Xy denote the bootstrap sample obtained from this sampling
scheme. Note that X Tseens X % is comprised of b randomly selected blocks, each
of length ¢, whether the overlapping or the nonoverlapping block bootstrap is
used. The difference between the two blocking schemes is in the different col-
lection of blocks from which blocks are randomly selected.

The bootstrap one-step GMM estimator, 63, solves

N 4 N
1) minJ3(6) = (N‘1 Y gt (X}, 0)) .(2<N‘1 Y gt (X}, 0)), where
€@ i=1 i=1
g (X;,0)=g(X;],0)—E"g(X], by),

X} denotes the first element of X ¥, and E* denotes expectation with respect to
the distribution of the bootstrap sample conditional on the original sample. For
the nonoverlapping and overlapping block bootstraps, respectively, we have

N N
(42) NS E'g(X:,0)=N"'Y g(X,0) and

i=1 i=1

N N
NS E*g(X;,0)=(N—¢+1)7" > w(i, ¢, N)g(X;,0), where
i=1 i=1
i/t ifie[l,¢—1],
w(i,t,N)=1{1 ifie[t, N—¢+1],
(N—i+1)/t ifie[N—-£+2,N].
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The bootstrap sample moments N~'Y"N ¢*(X#,0) in (4.1) are recen-
tered (by subtracting off E*g(X/, 0y)) to ensure that their expectation
E*N-'Y N ¢*(X}, 0) equals zero when 6 = 0y, which mimics the population
moments Eg(X;, #), which equal zero when 6 = 6,. Note that recentering also
appears in Shorack (1982), who considers bootstrapping robust regression esti-
mators, as well as in HH.

The bootstrap two-step estimator, also denoted by 03, solves

43 0.5 = (Ve (00 2@ (VU Ee ().
where
26 = Wi (0) ",

a0 = N3 (600,008 (X0 0+ 2108, X200,

i=1 j=1

H* (X}, X}, 0) = 8°(X7, 008" (X7, 0) +8° (X7, 0)g" (X7, 0)'

0% denotes the one-step bootstrap estimator that solves (4.1), and, with some
abuse of notation, X; l*ﬂ denotes the (j+ 1)st element of X7.3
The bootstrap minimum p estimator, also denoted by 6%, solves

N
(@4 minN Y (p(X70) ~ (X7 0,)0).
€ i=1

where g(-,0) = (d/30)p(-, 0). For the nonoverlappmg block bootstrap, the term
E*g(X7, 6y)'0 is zero, because E* g(X}, 0y)=N-! >y 1g(X,,HN) = 0, where
the second equality holds by the first-order conditions for 6, using the fact that
the dimensions of g(-,-) and 6 are equal. For the overlapping block bootstrap,
however, E*g(X}, fy) #N-! >N e (X, ON) =0 and the extra term in (4.4) is
nonzero. In this case, the term E*g(X/, ON) 0 properly recenters the minimum
p bootstrap criterion function. It yields bootstrap populatlon first-order condi-
tions that equal zero at HN, as desired. That is, E*(a/aﬂ)(N >N (p(X7E, 0)—
E*g(X?,0y)0)) = E*N-' YN g*(X7,0) =0 when 0 = 6. With this recenter-
ing, the first-order conditions for 05 are N-' YN, ¢*(X7, %) = 0, rather than
N-'YY g(X;,05) =0, which means that 6% minimizes the one-step GMM
bootstrap criterion function J5(0) with g(-, 8) = (d/90)p(-, #) and arbitrary pos-
itive definite weight matrix (2.

i » where X P =
(XFgs -+ -» X}) wherever they appear. To maintain consistency of notation w1th HH we do not do
so.

3 This abuse of notation can be avoided by writing X7 as X7, and X}, as X7,
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The bootstrap covariance matrix estimator is

4.5) oy =0ox5(0y), where

(D (0) 2D} (0))~!
x D% (0) 02425, (0)~102D% (6)
au(0) =1 x (D% () QD ()" if § solves (3.3),
(D3, (8) 2%,(0) D3y () if 6, solves (3.4),
D3,(0) 125, (0) "L D%, () if 6 solves (3.5), and

Dy(0) = Z 8

The bootstrap ¢, Wald, and J statistics are defined using correction factors,
Tn.r» Sx» and Vy, respectively, to correct for the fact that the independence
between the bootstrap blocks does not properly mimic the dependence in the
original sample. See HH for further discussion. These correction factors are not
used in the case where the observations are iid. The bootstrap ¢, Wald, and J
statistics are

(46) T}T/ - TN er/z((H )r_HN r)/ N(B )%2’
Wy = H5(0%) Hy(05), and
Iy =Ky (0y) Kxn(0y), where

~N —1/2

130 = 2 ( (5510 2O (500) ) N2 @@) =0,

K3 (0) = (Vy)'"?03,(6)' "N~ MZg (X7, 0),

i=1

(6%), denotes the rth element of 6%,* o (6%),, denotes the (r, r)th element of
o (0%), and Vi denotes the Moore Penrose inverse of V. The correction factor
Ty, is defined as follows:

4.7) 1y, =(on)?/(Gy),?, where

(Dy QD) Dy O,
x QDy(D\yQDy)™! if § solves (3.3),
Oy = (D;VQN(éN)lA)N)ilD;VQN(éNA) .
x Wy Q5 (03)Dy(DyQ2y(0))Dy)~t if 6y solves (3.4),
Dy'WyDy™! if 6 solves (3.5), and

*The rth element of 6 is denoted (6}),, rather than 0% ,, to distinguish it from the k-step
bootstrap estimator, 6} ,, defined in Section 5.
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~ N N ~ A
Wy=E'N"Y > g"(X;, On)g (X7, 0y)
i=1 j=1
N Z Z] ]Zm 18 (X1l+j70N)g (th+m7 AN),
for non-overlapping blocks,
DN (N — €+ 1) C i Yy 87 (KXo 008" (X O )
for overlapping blocks.

The correction factor & is defined to be

N = <80/ n(y)Gy <80/ 77(9/\/))/)1/2(;0/ n(0y)oy <80/ 77(0,\,)),)1/2.

The correction factor V) is defined to be
(49) V=M Wy ()W Wy (0y)M,, where
My =1, — Wy (0) Dy (D W5 (By) Dy) ' Dy W2 (B).

(4.8)

1y

Let ziy) 4> 27 45 Z% o> and zj , denote the 1 —« quantiles of [Ty, Ty, Wy, and
J respectively. To be precise, since the distributions of |T3| etc. are discrete, we
define zj7, , to be a value that minimizes |P*(|Ty| < z) — (1 —a)| over z € R. The
precise definitions of z7 ,, z%, ,, and zj , are analogous.

Each of the following tests is of asymptotic significance level a. The symmetric
two-sided bootstrap ¢ test of H,: 6, = 6,, versus H, : 0, # 6, , rejects H, if
|Ty| >z, ,- The equal-tailed two- 51ded bootstrap ¢ test for the same hypotheses
rejects Hy if Ty <z} ,, or Ty >z} ,,,. The one-sided bootstrap ¢ test of
H,:6,<6,,versus H, : 0, > 0, , rejects H if Ty, > z7 ,. The bootstrap Wald test
of Hy:n(6y) =0 versus H, : n(6,) # 0 rejects the null hypothesis if Wy > z% ,.
The bootstrap J test of overidentifying restrictions rejects the null if Jy > z7 .

Each of the following CI’s is of asymptotic confidence level 100(1 — a)%
The symmetric two-sided bootstrap CI for 6, is [Ay., — Zira(on) PN,

Oy, + 21 (on)}?/N'V2]. The equal tailed two-sided bootstrap CI for
by, is [HN,r ZT,a/z(UN)xz/Nl/z, 0Nr+ZT1 a/z(O'N)l/z/Nl/z]- The upper
one-sided bootstrap CI for 6, is [HN, 25 (on)1?/N'?, 00). The Wald-
based bootstrap confidence region for 7n(6) is {n € R™ : N(n(by) —
) ((00(0y)/90)on (00(0y)/06')) " (n(Oy) — 1) < 275 . }-

5. k-STEP BOOTSTRAP

Here, we define the k-step bootstrap estimators and corresponding ¢, Wald,
and J statistics. The k-step bootstrap estimator is denoted 67, ;. For the one-step
GMM estimator for which (2 is fixed, we define recursively

J .
(5.1) 07\/,/‘ = 07\/,/-1 - (Q;ﬁv,,‘—l)il @J;\}(e}k\f,j—l) for 1<j<k
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and 0y, = Oy, where @ denotes the one-step GMM estimator. For two-
step GMM and minimum p estimators, 6 , is defined in the same way
with (3/36)J3 (0% ;1) replaced by (9/06)J% (01\/] > 97\,’,{1) and N-' YN, g*(X7,
0y, ;-1), respectively, and with Oy denoting the two-step GMM estimator and the
minimum p estimator, respectively, where the derivative is taken with respect to
the first argument of J3(-,-) and ON x, denotes the k-step bootstrap one-step
GMM estimator defined in (5.1). We assume that k, > k.

The Ly x L, random matrix Q% ; ; depends on ON j—1- 1t determines whether
the k-step estimator is a NR, default NR, line-search NR, or GN k-step esti-
mator. The NR, default NR, and line-search NR choices of O} ; ; yield k-step
bootstrap estimators that have the same higher-order asymptotic behavior. The
results below show that they require fewer steps, k, to approximate the extremum
bootstrap estimator 0} to a specified accuracy than does the GN k-step estimator.
The NR choice of Qy ;_; is

2

5090 Jv(Oy.i1) for the one-step GMM estimator,
#*NR __ 82
(52)  QOyja= 5090 YNNI N,kl) for the two-step GMM estimator,
Dy, (6% j—l) for the minimum p estimator, where

D}k\f(e N,j— 1) N~ 1Zae,g(X 07\/,]—1)'

Note that the expression for 6y , for a minimum p estimator with NR matrix
Q}‘\,A;Rl is just the bootstrap version of the usual one-step scoring estimator start-
ing from 63 ,_, in the case of the ML estimator with score function g(x, )
(= (2/36)p(x, 0)).

The default NR choice of Oy, ;_;, denoted oy’ N, j—1> equals oN N Rt Q}“\,N R leads
to an estimator 6y, ; via (5.1) for which J§ (6% ;) < J3 (0%, ;- 1) for the one-step
GMM estimator, but equals some other matrix otherwise. In practice, one wants
this other matrix to be such that J3 (6% ;) < Jy(0y ;_;) (but the theoretical results
do not require this). For example, one might use the matrix (1/¢)I,, for some
small & > 0. (See Ortega and Rheinboldt (1970, Theorem 8.2.1) for a result that
indicates that such a choice will decrease the criterion function.) For the two-
step GMM and minimum p estimators, J5(-) above is replaced by J3 (-, é}kv,kl)
and p},(-) respectively.

The line-search NR choice of Oy ;_;, denoted Q’,‘\,L]S 1> uses a scaled version
of the NR matrix Q , that optimizes the step length. Specifically, let 4 be a
finite subset of (0,1] of step lengths that includes 1. One computes 65 ; via (5.1)
for O ; , = (1/a)Qj‘V , for each @ € 4. One takes Q;’ng_l to be the matrix
(1/()1)Q}*\,’\;R1 that minimizes Jy (63 ;) over all @ € A for the one-step GMM
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estimator. (If the minimizing of value of « is not unique, one takes the largest
minimizing value of a in A.) For the two-step GMM and the minimum p esti-
mators, one replaces Ji (65 ;) by Jy (0% ;. Oy ) and py (6% ;) respectively.

The GN choice of Oy ; ,, denoted Qy le, uses a matrix that differs from, but
is a close approximation to, the NR matrix Q* NR . In particular,

2Dy 2Dy for the one-step
GMM estimator,

(53) Oy =12Dy 250y, )Dy ;- for the two-step
GMM estimator,

Dy i for the minimum p estimator,

where Dy, ; ; is determined by some function A(:, ) as follows:

N
(54) Dy ;= N7 AXG, Oy.j-1) € RE*Lo and

i=1

EA(X;, 6))=E g(X,,HO)
a0’
The latter condition is responsible for Dy ., being a close approximation to
Dy (0y. ;1) which appears in Oy NR . Note that, for the one-step and two-
step GMM estimators, jS,mf] is the sum of two terms, one of which contains
NN (2/0000) g* (X}, 0% ;_1)- The latter term is omitted in Qy (jN It is
close to zero, because it is multiplied by the factor N=' YV i1 8" (X7, 0y ;_1), which
is close to zero.
For an example of a GN matrix for one-step or two-step GMM estimators,

consider a nonlinear instrumental variables (IV) estimator for which
(5.5) g(X;,0)=U(X;,0)L(Z;,0) and EU(X;, 6))|Z;)=0 as.,

where U(X;,0) € R is a residual, L(Z,, §) € R*« is a function of some IV’s Z,,
and Z; is a subvector of X;. In this case,
(5.6)

o 4(X,0) = L(Z,,0) 25 U(X,, 0) + U (X, )2 L(Z, ).

a0’ a0’
The GN choice of Qy ; | omits the second summand of the bootstrap version
of (9/30")g(X;,0) in Dy, ;| because EU (X, 0,)(3/d0")L(Z;, 6,) = 0. That is,
Q}“V(;ﬂ is as in (5.3) and (5.4) with

~ Jd
(57) AR 0) = L(Z1,0)55 U (X, 0).

An example of a GN matrix QNCN for a minimum p estimator is the sam-
ple outer-product estimator of the bootstrap information matrix in a ML sce-
nario. Suppose that p,(6) is a normalized negative log likelihood function and
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g(X;,0)=(3/00)p(X;,0) is the negative score (or conditional score) function
for the X;th observation. By the information matrix equality,

(5.8) Eae,g(X” 60) = Eg(X;, 6,)g(X;, 6,)

when the model is correctly specified. In this case, the NR matrix QN j—1 is the
bootstrap version of the sample analogue of the expectation on the left-hand side
of (5.8): Q;A;Rl =N'3Y,(9/30)g(X}, 0% ;). The GN matrix O} GNI is the
bootstrap version of the sample analogue of the expectation on the rlght -hand
side of (5.8). Thus, O} ]Nl is as in (5.3) (for minimum p estimators) and (5.4)
with

(59)  A(X:,0)=g(X;, 0)g(X;,0).

The GN matrix does not require calculation of the second derivative of the log
likelihood function.

A second example of a GN matrix for a minimum p estimator arises with the
least squares (LS) estimator of a nonlinear regression model. The GN matrix
Q;‘\,G]i\/l omits a term (whose expectation at 6 = 6, is zero) that involves the second
partial derivatives of the nonlinear regression function. For brevity, we do not
give details.

We define the k-step bootstrap ¢ statistic, Ty , Wald statistic, Wy ,, and J
statistic, Jy , as in (4.6) but with (6}), and 0% replaced by 0N x.r and Oy i
respectively, where O ., denotes the rth element of 6y k Let 27y a0 27 ka0
2 e and Z7 denofe the 1—a quantiles of [Ty .|, Ty > Wy 4, and JN’k
respectively.

The k-step bootstrap ¢, Wald, and J tests and corresponding CI’s and regions
are defined in the same way as the standard bootstrap tests and confidence inter-
vals (given in the last two paragraphs of Section 4), but with z{7 ., 27 o 2% o
and zj , replaced by zj7 (4o 27 ko0 23 k00 @0d 25, , Tespectively (the precise
definitions of which are analogous to that of zj;, , given above).

6. ASSUMPTIONS

We now introduce the assumptions. They are similar to those of HH.

Let f(X;, 0) denote the vector containing the unique components of g(X;, 6)
and g(X;, 0)g(X,,;,0) for j=0,...,k, and their derivatives through order
d, > 3 with respect to 6. Let (3//307)g(X,,0) and (3'/36)f (X, 0) denote the
vectors of partial derivatives with respect to 6 of order j of g(X;, #) and f(X,, 6),
respectively.

The following assumptions apply to the one-step GMM, two-step GMM, or
minimum p estimator.

ASSUMPTION 1: There is a sequence of iid vectors {g; :i = —o0,...,00} of
dimension L, > L, and an L, x 1 function h such that X; = h(g;, &;_1, €;_55...).
There are constants K < oo and & > 0 such that for all m > 1

E|\h(ej, 4. )—h(&;, 81558 0,0,...)| < Kexp(—&m).
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ASSUMPTION 2: (a) O is compact and 0, is an interior point of ©. (b) Either
(i) 0y minimizes Jy(6) or Jy(6,0y) over 6 € O; 0, is the unique solution in O to
Eg(X,,0) = 0; for some function Cy(x), [g(x,6,) —g(x, 0,)ll < C,(x)[[6, — 6]
for all x in the support of X, and all 6,,6, € ©; and EC{'(X,) < o and
E|g(X,,0)||" < oo for all 6 € O for all 0 < q, < oo, or (ii) 0y minimizes
N='Y% p(X;, 0) over 0 € O for some function p(x, 0) such that (3/30)p(x, 6) =
g(x, 0) for all x in the support of X; 0, is the unique minimum of Ep(X,, 0) over
0 € ©; and Esup,q ||g(X;, )| < 00 and E|p(X,, 0)|" < oo for all § € O for all

0<gq <oo.

ASSUMPTION 3: (a) Eg(X,, 0))g(Xy,;,0,) =0 for all j > k for some 0 < k <
oc. (b) 2 and Q, are positive definite and D is full rank L. (¢) g(x,0)is d=d,+d,
times differentiable with respect to 6 on Ny, some neighborhood of 6, for all x in
the support of X 1 where d, >3 and d2 > 0. (d) There is a function Cy;(X;) such
that ||(3’/99’)f(X1, 6) — (91007 f (X, 00) | < Cop(X,)10— byl for all 6 € N, for
all ] = ,d,. (e) ECg]%(Xl) < oo and E||(8f/6'0’)f(X1, 0p)[|%2 < C; < oo for all
j= d2 for some constant C; (that may depend on q,) and all 0 < g, < oo.
(f) f (X 1, 0y) is once differentiable with respect to X | with uniformly continuous
first derivative. (g) If the Wald statistic is considered, the R™1-valued function 7(-)
is d, times continuously differentiable at 6, and (3/90")n(0,) is full rank L, < L.

ASSUMPTION 4: There exist constants K, < oo and 6 > 0 such that for arbitrarily
large { > 1 and all integers m € (87, N) and t € RY™) with § < |t| < N¥¢,

£ (e it mzf(if 00)i4e; i ml > K} )| < exp(-0).

where i =~/ —1 here.
ASSUMPTION 5: The function A(-,-) in (5.4) satisfies

EA(X,, 0,) = E(3/30')g(X., 6,),
E|A(X,,0)|% <oo forall 0<gq,<oo, and
Esup [[(3/30,)A(X,, 0)]|* < oo

0eN,

forallu=1,...,Lyand all 0 < g, < .

Assumption 1 is the same as Assumption 1 of HH.’> The lower bounds on d,
and d, in Assumption 3 are minimal bounds. The results stated below specify
more stringent lower bounds that vary depending upon the result. Assumption 4
is the same as condition (4) of Gotze and Hipp (1994). It reduces to the standard
Cramér condition if {X;:i> 1} are iid. The moment conditions in Assumptions 2,

> Assumption 1 of HH is missing the expectation operator E in its statement.
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3, and 5 are stronger than necessary, but lead to relatively simple results. See
Andrews (2001a) for similar results to those given below, but established under
weaker moment conditions.

7. HIGHER-ORDER ASYMPTOTIC EQUIVALENCE OF THE k-STEP AND
STANDARD BOOTSTRAPS

The higher-order asymptotic equivalence of the k-step and standard boot-
straps is established in the following theorem. This theorem holds when 6}, , is
the one-step GMM, two-step GMM, or minimum p k-step bootstrap estimator.
The bootstrap employed may use nonoverlapping blocks or overlapping blocks.
The standard nonparametric iid bootstrap is a special case of each of these.

In the following theorem, the constant a > 0 indexes the order of magnitude of
the probabilities that the k-step and standard bootstrap statistics are not close.
These probabilities are o(N~%). The larger is a, the stronger are the results.
On the other hand, the larger is a, the stronger are the requisite smoothness
assumptions.

THEOREM 1: Suppose Assumptions 1-3 hold with d, > 2a+2 and d, > 0 for
some a > 0; £ « N? for some 0 <7y < 1; and k is a positive integer.

(a) When Oov. jo1is the NR, default NR, or line search NR matrix, we have, for
all 0 <c <1/2,

P* (163~ O3]l > N72) < N7,

P(|Ty  — Tyl > N"¥NY2) < N9,

P (| Wy Wyl > N N'"?) <N, and

Py =Tl > N"YeN2) < N,
except if {xy : N > 1} are in a sequence of sets with probability o(N~). When
QY ;-1 is the GN matrix and Assumption 5 holds, each of the results above holds
with N=2° replaced by N~*+De,

(b) Suppose the following additional conditions hold: k satisfies 2* > 2a+2 when
Oxv. jo1 1S the NR, default NR, or line search NR matrix; k > 2a+ 1 and Assump-
tion 5 holds when Qy, ., is the GN matrix; d, >2a+1; 0 <y <1/2 (where y =0
is permitted if {X,:i> 1} are independent); 2a is an integer; and Assumption 4
holds. Then,

sup |P*(N'*(0y . — 0y)<z)— P*(N'2(0% — 0y) < 7)| < N7,
zeRLo

sup IP*(T]’\},,( <z)—P (T} < z)| <N~ under H,,

zeR

sup IP*(W,T,,,( <z)—P*(Wy <z)| <N~ under H,,

zeR

sup }P*(J;,,k <z)—P*(Jy < z)‘ < N7 under H,,

zeR

except if {xy : N > 1} are in a sequence of sets with probability o(N~*).
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COMMENTS: 1. Another way to express the first result of part (a) of the
theorem (and analogously the other results of part (a) and part (b)) is

(7.1 lim N“P(P*(16y  — 0% > N2> N =0.

2. In the usual terminology, part (a) gives the stochastic differences between
the bootstrap statistics (0% ,, Ty x> Wy x> Iy ;) and (Ox, Ty, Wy, J5), whereas
part (b) gives distributional approximations of (0% ., Ty > Wy > In.) by
(0%, T3, Wy, J%) up to order o(N~?) respectively. Results of the latter sort are
used in higher-order efficiency comparisons of estimators and tests. For example,
see Pfanzagl (1974) and Rothenberg (1984).

3. It may seem odd that the results of part (a) of the Theorem hold without
requiring the block length parameter vy to be positive when the data are depen-
dent. The explanation is simple. If the data are dependent and y =0, then the
bootstrap estimator ¢ does not have a distribution that properly mimics the
distribution of 6y, but the distributions of 6%, and Oy, are still close.

8. HIGHER-ORDER IMPROVEMENTS OF THE k-STEP AND
STANDARD BLOCK BOOTSTRAPS

In this section, we show that the k-step and standard block bootstrap proce-
dures lead to higher-order improvements in test rejection probabilities and con-
fidence interval coverage probabilities when compared to procedures based on
standard first-order asymptotics.

The following Theorem shows that the k-step and standard symmetric two-
sided block bootstrap #, Wald, and J tests have rejection probabilities that are
correct up to o(N~-U+9) for all £ < 1/4 when the block length ¢ is chosen propor-
tional to N'/4, which maximizes the upper bound on £. It shows that the k-step
and standard block bootstrap equal-tailed two-sided ¢ and one-sided ¢ tests have
rejection probabilities that are correct up to o(N~1/2%9) for all £ < 1/4 when
¢ is chosen proportional to N4, which again maximizes the upper bound on
¢. For iid data, the Theorem shows that the k-step and standard nonparametric
iid bootstrap symmetric two-sided ¢ tests (which have block length ¢ = 1) have
rejection probabilities that are correct up to O(N~2). The latter result is sharp;
see Hall (1988, Sec. 3). The coverage probabilities of the corresponding CI’s are
correct to the same orders.

The following results hold for statistics based on one-step GMM, two-step
GMM, and minimum p estimators.

THEOREM 2: (a) Suppose Assumptions 1-4 hold with d, > 5 and d, > 4;
Assumption 5 holds when the GN matrix is employed; k is an integer that satis-
fies k > 3 when the NR, default NR, or line search NR matrix is employed and
k > 4 when the GN matrix is employed; 0 < & < 1/2 —y; and either (i) ¢ <y and
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0 <y <1/2or (ii) {X;:i> 1} are independent. Then, under H,: 6, =6, ,,
P(ITy| > 27 1,0) = @+ o(N~U9) and
P(ITy| > zj7),0) = a+o(N-079),
Under H, : m(6,) =0,
P(Wy > 2% o) =a+o(N""*9) and
Py > 2,.,) = a+o(N-09),
In addition, if L, > Ly, then
P(Iy>z5, )=a+o(N" ") and P(Jy>z; ,)=a+o(N 1H9),

(b) Suppose Assumptions 1-4 hold with d, > 4 and d, > 3; Assumption 5 holds
when the GN matrix is employed; k is an integer that satisfies k > 2 when the NR,
default NR, or line search NR matrix is employed and k > 3 when the GN matrix is
employed; 0 < & < 1/2—1y; and either (i) ¢ <yand 0 <y <1/2or (i) {X;:i>1}
are independent. Then, under H, : 6, =6, ,,

P(Ty <27 a2 08 Ty > 27 4 1_app) = @+ 0(N~W29),
P(Ty < Z;,H/Z or Ty > Z;,l—a/z) = a—i—O(N*(l/z*f)),
P(Ty > 25, ) =a+o(N"V*) and

P(Ty > z7.,) = a+o(N-1/2+9),

(c) Suppose { X, :i > 1} are iid; Assumptions 1-4 hold with d, > 6 and d, > 5;
Assumption 5 holds when the GN matrix is employed; k is an integer that satisfies
k > 3 when the NR, default NR, or line search NR matrix is employed, and k > 5
when the GN matrix is employed; and ¢ =1; and 'y =0. Then, under H,,: 0, = 0, ,

P(\Ty| > zj7 4.o) =@+ O(N?) and P(|Ty| >zl ) =a+O(N?).

CoMMENTS: 1. The errors in part (a), (b), and (c) of the Theorem when the
critical values are based on standard first-order asymptotics (using the normal
distribution or the chi-square distribution) are O(N~'), O(N~'/?), and O(N ')
respectively. Thus, parts (a) and (b) of the Theorem show that the bootstrap
critical values reduce the error in test rejection probabilities (and in CI cover-
age probability) relative to first-order asymptotics by a factor of at least N~¢.
When the data are dependent, the choice of y = 1/4 maximizes ¢ subject to the
requirements of the Theorem that ¢ <y and £+ vy < 1/2. For this choice of v,
the results of parts (a) and (b) hold for all £ < 1/4. When the data are indepen-
dent, one takes y =0 and the results of parts (a) and (b) hold for all ¢ < 1/2.

When the data are independent, the results of part (c) of the Theorem show
that the bootstrap critical values reduce the error in test rejection probability for
symmetric two-sided ¢ tests relative to first-order asymptotics by a factor of N1,
as in Hall (1988).
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In contrast to Theorem 2, the results of HH show that the use of the standard
bootstrap in place of first-order asymptotics reduces the error in test rejection
probability from O(N~') to o(N~') for the tests of part (a) and from O(N~'/?)
to o(N~'/2) for the tests of part (b).

2. The reason that symmetric two-sided ¢ tests, Wald tests, and J tests are
correct to a higher order than equal-tailed two-sided ¢ tests and one-sided ¢ tests
is that the O(N~'/?) terms of the Edgeworth expansions of |Ty|, %}, and J, are
zero by a symmetry property. See Hall (1992), HH, or the proof of Theorem 2
for details.

3. The proof of Theorem 2(c) relies on the argument given in Hall (1988).
Analogous results to those of Theorem 2(c) are likely to hold for Wald and J
statistics in the iid case. See Hall (1992, Sec. 4.2, pp. 165-166) for related results.

4. The possibility of improving the result of Theorem 2(a) for |7, | when the
data are dependent via the symmetry argument of Hall (1988), as is done in
Theorem 2(c) for iid data, is unclear. At best, this would lead to an error of
O(N73/2), because the bootstrap moments and population moments differ by at
least N~'/* in the dependent case, rather than N~'/? in the independent case;
see Lemma 14 in the Appendix. But, any improvement is difficult to establish for
the following reason.

Hall’s (1988) argument for the O(N ~?) error in the iid case relies on determin-
ing Edgeworth expansions of T, + A, where A denotes the difference between the
exact critical value and the bootstrap critical value. This is done by establishing
Cornish-Fisher expansions for these two critical values, approximating the differ-
ence of these two expansions by a linear combination of sample averages of the
data, and utilizing the smooth function of sample averages approach to Edge-
worth expansions to get the Edgeworth expansions for T\, + A; see Hall (1988,
Sec. 3; 1992, Sec. 5.3).

This method relies on the fact that the coefficients of the Cornish-Fisher
expansion of the bootstrap critical value depend on bootstrap moments that are
sample averages. With dependent observations, the coefficients of the Cornish-
Fisher expansion of the bootstrap critical value depend on bootstrap moments,
but the bootstrap moments are not sample averages. The bootstrap moments
depend on terms of the form Z;&l(ziebjh()( )))S, where s is an integer that
depends on the order of the moment, A(-) is some function that depends on the
criterion function or its derivatives, b; is a set of indices for the jth block, and .,
is the number of blocks. The number of indices in b; increases with N. There are
no Edgeworth expansion results in _the literature that cover terms of the above
type when the random variables {X, :i > 1} are dependent. Thus, without new
Edgeworth expansions for statistics involving terms of the above type, one cannot
prove results utilizing Hall’s (1988) symmetry argument.

Cowles Foundation for Research in Economics, Yale University, PO. Box 208281,
30 Hillhouse Ave., New Haven, CT 06520-8281, U.S.A.
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APPENDIX A: PROOFS

In the first subsection of this Appendix, we state Lemmas 1-17 that are used in the proofs of
Theorems 1 and 2. A number of these Lemmas are similar to Lemmas in HH, but in the Lemmas
given here the rates of convergence to the limits are much faster. In the second subsection, we prove
Theorems 1 and 2. In the third subsection, we prove Lemmas 1-17.

We use the following notation. Let .V, denote the number of different blocks of length ¢. For
nonoverlapping blocks, .V, = b. For overlapping blocks, /, = N —¢+1. Let {b;:j=1,..., ./, } denote
the W, sets of indices of the observations in each of the ., blocks. For nonoverlapping blocks,
b, =A{1,...,¢},b,={+1,...,2¢}, etc. For overlapping blocks, b, ={1,...,¢},b,=42,...,¢+1},
etc. For either the overlapping or the nonoverlapping block bootstrap, let {b;: j=1,..., b} denote
the b iid bootstrap blocks used to construct the bootstrap sample X R X +. By definition of the
block bootstrap, {bj : j=1,...,b} are iid and each b; has a discrete distribution with probability
1/, of equaling each element in {b;: j=1,..., N}

Throughout the Appendix, C denotes a generic constant that may change from one equality or
inequality to another.

9.1. Lemmas

LEMMA 1: Suppose Assumption 1 holds. - -
(a) Let h(-) be a matrix-valued function that satisfies Eh(X;) =0 and E| h(X,)||? < oo for p>2 and
p >2a/(1-2c) for some c €[0,1/2) and a > 0. Then, for all € >0,

| N ~
: a -1
lim N P<’N S h(X;)

i=1

> Nﬁca) =0.

(b) Let h(-) be a matrix-valued function that satisfies E||h(X,)|| < o for p > 2 and p > 2a for some
a > 0. Then, there exists a constant K < oo such that

>K)=0.

LEMMA 2: Suppose Assumptions 1-3 hold. Define G,(X;,0) = g(X;,0) — Eg(X,,0) and
G,(X;,0)=p(X;,0)— Ep(X,,0). Then, for all a >0 and all ¢ > 0,

N
: a -1 v
Jim N P('N S h(X)

i=1

Al/IELN P(sup

(=5¢)

N
N’lsz(Xi,O)H>8):O for j=1,2.
i=1

LEMMA 3: Let éN denote the one-step GMM or minimum p estimator. Suppose Assumptions 1-3
hold. Then, for all ¢ €[0,1/2) and all a >0,

Al[iE}oN“P(H@N — 0] > N~) =0.

LEMMA 4: Let 0 denote the one-step GMM estimator based on the weight matrix (2. Let By denote
the two-step GMM estimator based on the weight matrix (0 ). Suppose Assumptions 1-3 hold. Then,
forall ¢ €[0,1/2) and all a > 0,

lim N“P([6y— 0]l > N™) =0.

LEMMA 5: (a) Let {Ay : N > 1} be a sequence of L, x 1 random vectors with either (i) uniformly
bounded densities over N > 1 or (ii) an Edgeworth expansion with coefficients of order O(1) and remain-
der of order o(N~*) for some a >0 (i.e., for some polynomials 7;(8) in 8 = d/dz whose coefficients
are O(1) for i=1,...,2a, limy_ Nesup_, |P(Ay < 2)—[1+ 2 N-2m,(0/92)]dy, (2)| =0,
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where @y, (2) is the distribution function of a N(0, 2) random variable and the eigenvalues of Xy are
bounded away from 0 and oo for N > 1). Let {¢y : N > 1} be a sequence of L 4, x 1 random vectors with
P(|éx]l > Oy) = o(N~*) for some constants Oy = o(N~*) and some a > 0. Then,

[\llim sup NY|P(Ay+éy <z)—P(Ay <2)|=0.

* zerLa

(b) Let {A3 : N > 1} be a sequence of L, x 1 bootstrap random vectors that possesses an Edgeworth
expansion with coefficients of order O(1) and remainder of order o(N~*) that holds except if {xy :
N > 1} are in a sequence of sets with probability o(N~°) for some a > 0. (That is, for all € > 0,
limy_ . N*P(N“sup,_pr, |P*(Ay < z) —[1+ b N”'/zﬂj(ﬁ/ﬁz)]d)% (2)| > €) =0, where }(8) are
polynomials in & = 3/dz whose coefficients, Cy, ,, satisfy: for all p > 0, there exists K, < oo such that
limy_ . N*P(P*(IC} | > K,)>p)=0forall tandalli=1,...,2a, Dy (2) is the distribution function
of a N(0, 2%) random variable conditional on 3% and 3% is a possibly random matrix whose eigenvalues
are bounded away from 0 and oo with probability 1 —o(N~*) as N — o0.) Let {5, : N > 1} be a
sequence of L, x 1 random vectors with limy_ ., N°P(P*(||éy || > Oy) > N~%) =0 for some constants
Yy =o(N~%). Then,

lim N”P( sup |P*(Ay+&y <2)— P (Ay <2)| > N,,,) —0.

zerbA

LEMMA 6: Suppose Assumption 1 holds. Let h(-) be a matrix-valued function that satisfies E h()~( )=
0 and E||h(X;)||P < oo for p>2and p > 4a/(1—2c) for some c €[0,1/2) and a > 0. Assume £ x N
for some 0 <y < 1. Then,

N
(a) Jim N”P(P*( NS WX - ER(XD)| > N*c) - N,,,) —0,
- i=1 I
N ~
(b) }\llim N”P(P*( Nﬁle*h(Xi*) >N">>N’”>:O,
e i=1
N ~
(c) lim N”P(P*( N (X)) > N’”) > N’”) =0, and
e i=1
N ~
(d) for some K < oo, lim N”P(P*(‘ N E*h(X})| > K> > N‘“) =0 and
o i=1

N
lim 1\1“10(11>*(‘le1 h(X?)
R .

i=

>K) >N"‘> =0,

even if En(X;) # 0 and p only satisfies p > 2 and p > 4a in part (d).

LEMMA 7: Suppose Assumptions 1-3 hold and € « N for some 0 <y < 1. Define G;(X},0) =
8(X:,0)—E*g(X;,0) and G3(X;,0)=p(X},0)— E*p(X},0). Then, for all a >0 and all € >0,

lim N"P(P* (sup

N—oo )

N
N7 Y Gi(X;,0)
i=1

>s> >N’”>:0 for j=1,2.

LEMMA 8: Suppose Assumptions 1-3 hold and ¢ o N” for some 0 <y < 1. Let éj\, denote any
bootstrap estimator that satisfies: For all € > 0, limy_ . N*P(P*(||03 — 6, > &) > N~*) = 0 for some
a > 0. Then, for all € >0,

lim N“P(P*(|25,(63) — ol > &) > N™) =0.
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LEMMA 9: Let éN denote the one-step GMM or minimum p estimator. Let 0%, denote the correspond-
ing bootstrap estimator. Suppose Assumptions 1-3 hold and £ o« N for some 0 <y < 1. Then, for all
ce[0,1/2) and all a >0,

lim N“P(P* (163, — Oy ]| > N™) > N~*) =0.

LEMMA 10: Let 0y and 03, denote the one-step GMM estimator and its bootstrap analogue based on
the weight matrix (). Let éN and 0% denote the two-step GMM estimator and its bootstrap analogue based
on the weight matrices Qy(0y) and Q3 (0%) respectively. Suppose Assumptions 1-3 hold and € «c N
for some 0 <y <1. Then, for all c €[0,1/2) and all a > 0,

lim N“P(P*(|16y ~ Oyl > N<)>N")=0.

LEMMA 11: Suppose Assumptions 1-3 hold and ¢ x N for some 0 <y < 1. Let 6, denote the
bootstrap one-step GMM estimator based on the weight matrix (2. Let é}‘\, denote any bootstrap esti-
mator that satisfies: For all € > 0, lim,_, N“P(P*(HBA,*V —8ll > &) > N™) = 0. Then, for all a >0
and all € >0,

lim N“P(P*(|[Dy, (6;) =Dl > &) > N =0,

Al/li‘lloN P<P< 8080’J (9 ,6:)—2D'0,D >a)>N’):0,
AIJIEON P 8793] ’91\1) >K)>N7>=0 for some K < oo,

and analogous results hold for (8230 00')J;:(6%) —2D' QD and (8°/36°)J5(0%).
For any function m(X,, 0), let m%,(8) = N"' YN (m(X7, 0) — E*m(X7, 0)).

LEMMA 12: Suppose Assumption 1 holds, m()? > 0) is differentiable with respect to 6, and
Esupy.y, 1(3/00)ym(X,, 0)||? < oo for some p > 4a and p > 2 for some a > 0. Suppose
limy_ . N“P(P*(|03 — 0ol > &) > N~*) =0 for all £ >0 and limy_  N“P(P*(|0y , — 0%l > Oy) >
N~*) =0 for some sequence of constants {Oy : N > 1} for which 9y — 0. Then,

Jim N*P(P* (3, (83,.) = miy (63 > 9) > N~*) =0.

We now introduce some additional notation. Let f* ()N( I, 0) denote the vector containing
the unique components of g*(X7,0) and g*(X;,0)g*(X;,;,0) for all j_ 0,...,k and their
derivatives with respect to 6 through order d,. Let Sy = NN f(X,,BU) S =ESy, Sy =
NIYN f (X* 6y), and §* = E*S3. Let T, and KN(O) denote Ty, and K3 (0), respectively, with-
out the correction factors 7y, and (V)2 ie., T, = N'2((65), —ON,,)/(TN(B* )2 and Ky (0) =
Q3 (0)' PN Y g7 (X7, 6). Let Hy (8) = ((3/00')n(8)ay ((3/06')n(8))) > N">n(6) and 17N(0) =
((9/96)n(6)o ((9/36")m(6)))~2N"2(m(8) — (6y))-

LEMMA 13: Let A, and A% denote N'2(, — 6,) and NY2(8% — 8y), or Ty and Ty, or Hy(6y)
and H v(0%), or K v(0y) and K ~(0%) (where the statistics may be defined using one-step GMM,
two-step GMM, or minimum p estimators in each case except the last, in which case @N and 0% are two-
step GMM estimators). For each definition of Ay and A%, there is an infinitely differentiable function
G(-) with G(S) =0 and G(S*) =0 such that the following results hold.

(a) Suppose Assumptions 1-4 hold with d, > 2a+ 2, where 2a is some nonnegative integer. Then,

lim sup N“|P(4y < 2) = P(N'?G(Sy) = 2)| = 0.
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(b) Suppose Assumptions 1-4 hold with d, > 2a+ 2, where 2a is some nonnegative integer, and
0 <y <1 (where y =0 is permitted if {X,:i> 1} are independent). Then,

lim N”P(sup |P*(A% <z)— P*(N'2G(Sy) <z)| > N*") =0.

We now define the components of the Edgeworth expansions of the test statistics Ty, Wy, and Jy,
as well as their bootstrap analogues Ty, Wy, and J5. Let ¥, = NV2(Sy —S) and ¥}, = N'/2(S3, —S*).
Let ¥y ; and ¥y ; denote the jth elements of ¥, and ¥} respectively. Let vy , and 7y , denote
vectors of moments of the form N*"™ET[;_, ¥y j, and N D E* Ty W5, i respectively, where 2 <
m <2a+2, a(m) =0 if m is even, and a(m) =1/2 if m is odd. Let v, =limy_ vy ,. (The limit
exists under Assumption 1.)

Let m;(8, v,) be a polynomial in 6 = d/dz whose coefficients are polynomials in the elements of
v, and for which 7;(8, v,)®(z) is an even function of z when i is odd and is an odd function of z
when i is even for i =1, ..., 2a, where 2a is an integer. The Edgeworth expansion of 7,y depends on
;(8, v,). In contrast, the Edgeworth expansions of %) and J, depend on m,(y,v,) and 7,(y, v,),
where 7.,,(y, v,) and 7,(y, v,) denote polynomial functions of y whose coefficients are polynomials
in the elements of v, for i=1,...,[qa].

The Edgeworth expansion of Ty depends on (3, v} y ,), Where v} , , is a vector whose jth
element is of the form [v} y | = Tf,{ A7y,.]; and B; is some positive integer that depends on the
bootstrap moment [7y ,]; being considered. The Edgeworth expansions of %y and Jy depend on
Ty (¥, Vi v.o) and (v, vy y ), respectively, where v, = Ay (S, Py ), Ay (-, ) is a function
that is continuously differentiable at (I, ,v,), Ay(I1,,¥,) = Voo Vi n.o = A (V)2 Py 0)s A5 0)
is a function that is continuously differentiable at (M, v,), and A,(M,, v,) = v,. Here, M, is the
projection matrix [ L~ (2(1,/ ZD(D’_QUD)”D’Q(I/ 2 which is the probability limit of the correction factor
(V¥)V2. The functions A, (-, -) and A, (-, -) are determined by the effect of the correction factors =y
and (V{)Y? on the Edgeworth expansions of the bootstrap Wald and J statistics respectively.

Let x; denote a chi-square random variable with A degrees of freedom.

The following Lemma shows that the bootstrap moments 7 , are close to the population moments
v, in large samples.

LEMMA 14: Suppose Assumptions 1 and 3 hold with d, > 2a+1 for some a>0, 0 < ¢ <1/2—1,
and either (i) € <y and 0 <y <1/2 or (ii) {X, : i > 1} are independent. Then,
lim N“P([|7y,,—v,|l > N =0.

The next Lemma shows that the main components of the correction factors 7y ,, =y, and (V)2
are well behaved.

LEMMA 15: Suppose Assumptions 1-3 hold with d = d, +d, > 2a+2 for some a >0, 0 < ¢ <
1/2—7v/2, and 0 <y < 1/2 (where y =0 is permitted if {X,:i > 1} are independent). Suppose either
E<yor Z}(:lj(EglgiJrj +Egy,;8) =0, where g, = g(X;, 0,).

(a) Then,

lim NP(|Wy = Wy(8y)] > N4) =0.
(b) If, in addition, d, >2a+1and 0 <& <1/2—1y, then
,\l,im NP(|vy y.o—Vall > NH=0 for s=T,W,J.

LEMMA 16: (a) Suppose Assumptions 1-4 hold with d, > 2a+ 2, where 2a is some nonnegative
integer. Then,

P(Ty <z)— |:1 +§: N~q,(85, Va)]cb(z) =0,

m N“sup
zeR i=1

li
N—oo

: @
Pony =)= [ a1+ XN G [P0, <] <o

i=1

lim N“sup
N—o0 zeR
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and

[a]

lim N sup|P<JN <= [ A2V moo|pod, L, < y)\ -
- i=1

(b) Suppose Assumptions 1-4 hold with d, > 2a+2 and d, > 2a+ 1, where 2a is some nonnegative
integer, and 0 <y < 1/2 (where y = 0 is permitted if {X,:i > 1} are independent). Then,
[24]

lim N“P(sup P(Ty <z)— [l +Y N8, V;Na)]d)(z)

zeR i=1

> N’”) =0,

z [a]
Isim N“P(sup Py, gz)—/ [l-i-ZN Ty (y,V,,Na)]P()(L <y)‘ >N~ ) 0,

zeR
> N7“> =0.

(¢) Under the assumptions given, the results of part (b) also hold with Ty, W5, and J}, replaced by
Ty > W o and T}, provided k satisfies 2 > 2a+2 when Qy ;_, is the NR, default NR, or line search
NR matrix and k > 2a+1 when Q’,‘\,VH is the GN matrix.

and
[a]

tim NP (sup P05 =2)= [ [ 14 DN 708500 | PO, 1y <0
- i=1

zeR

LEMMA 17: (a) Suppose Assumptions 1-3 hold and Q3 ;_, is the NR, default NR, or line search NR
matrix. Then, for one-step GMM estimators, for all a > 0,

lim NP <P*<QN11;£9000/J*(0 H)>>N“>—o for j=1,... k.

For two-step GMM and minimum p. estimators, analogous results hold with (8%/30060')J% (0% ;)
replaced by (9*/3030')J (0% ; 1, Oy, k) and Dy (0% ;_,) respectively.

(b) Suppose Assumptions 1-3 and S hold and Qy, ;_, is the GN matrix. Then, for one-step GMM
estimators, for all ¢ € [0,1/2) and a >0,

lim N“P(P*

N—oo

(\Q*N,,,l

6089’1 (Ox,;-1) >N’)>N’):0 for j=1,... k.

For two-step GMM estimators and minimum p estimators, analogous results hold with

&
a0 00’

replaced by (9*/96090)J3 (0 ;_, N«k1) and Dy (0y ;_,) respectively.

o7 IV (0N 1)

9.2. Proofs of Theorems
9.2.1. Proof of Theorem 1

We establish the first result of part () first. We treat the different choices of O, ; , simultaneously.
To start, suppose 63 is the one-step GMM estimator. A Taylor expansion about 0N 1 gives

p
(9.1) 0= 273 (63)

a
= *J*(G* o) F o I (O ) (O = O ) + Ry

8000’
ST B )+ O B~ 03+ O 05— 03 )
+(a(930'1*(0 N k= ‘)_Q*N,k—1>("?v—Gz,k_l)+R*N,k

= b (0= 05,0+ (g 508 = Qi ) 05— 54+ Ri
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where N

’ a * k- k-
Rive= |03 =00 s 5 O DO =03 02]

Ly

(€11, denotes an L, vector whose rth element is §,, 0% ,_, , lies between 85 and 63 , . the first
equality holds with P*-probability 1 —o(N~“) on a set with P-probability 1 —o(N~“) by Lemmas 4
and 9, and the fourth equality holds because (3/90)J3 (0. )+ On ;1 (O, — Ox. 1) = 0 by the
definition of 0} ,.

Define w} to be the subset of the bootstrap probability space on which (92/3096")J3 (0% ;) =
Q]*V’ jforall j=1,... kwhen O} ; , is the NR, default NR, or line search NR matrix and define

v to be the entire bootstrap probability space when Q3 ; ; is the GN matrix. By Lemma 17(a),

thﬂo NP(P*(wy) <1—-N"*)=0.Let 15y, =0and uy =N" %¢ when Oy, ;-1 is the NR, default
NR, or line search NR matrix and 15y =1 and uy = N~* D¢ when Q3 ., is the GN matrix.

The first inequality below follows from rearranging (9.1). The second inequality holds on the set
wy. We have

0D 1Byl = Qe ) Ril
d
T (P S [UES)
00 eV =65, e
3

gN_ max {”(QN/ )" 30,0000 "N

LT ,)/ZH

7 IOy i) =08 i

)

As in Robinson (1988, Pf. of Thm. 5), repeated substitution into the right-hand side of the inequality
gives an upper bound that is a finite sum of terms with dominant terms of the form

@*
* -1 c
S [(SWID RPN Fvew

* * « (12k— —jeqJ .
93) CE)° 1030 — O I N1y for j=0,... .k,

where ¢ is a positive integer and 0° = 1 by definition. To see this, consider the solution in terms
of x, of the equation x, = x} | + Ax,_,. Collect all terms in powers of A that are multiplied by the
smallest number of x, terms. Note that the upper bound in (9.3) for each of the three NR cases is
CEN 10— 17

Using (9.3) and 6y, , = 6y, an upper bound on the right-hand side of (9.2) is

(9.4) C(g”,\,)qs max ()\* YN eyl <C(§N)lls max ()\* Yy,  where

Ay = Nelloy — 631

Lemma 9 implies that for all £ > 0 lim_, ., N*P(P*(A}, > &) > N~*) =0 (using the fact that the result
of Lemma 9 holds for all ¢ € [0, 1/2)). In addition, by Lemmas 11 and 17 and Assumption 3(b), there
exists a finite constant K such that lim,_  N*P(P*({} > K) > N~“) = 0. Combining these results
with (9.2) and (9.4) gives

9.5) Al,iLT:CNﬂP(P*((||0?v,k_9?v‘| > uy)Nwy) > N7

: a £ K\ )k —a\ __
Sz\l/IE:ON P(P*(C(L)?Ay > 1) > N™) =0.

This result and Lemma 17(a) combine to yield the first result of part (a) of the Theorem for the
one-step GMM estimator.
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For the minimum p estimator, the result of Lemma 3 implies that éN is in the interior of O,
N1YY ¢(X,,0y) =0, and 6, minimizes J, (0) (defined with an arbitrary positive definite weight
matrix (2) over 6 € © with probability 1—o(N~*). In consequence, the proof for the one-step GMM
estimator also covers the minimum p estimator.

The proof of the first result of part (a) for the case where 6} is the bootstrap two-step GMM
estimator is similar to that given above with J;(6) replaced by J; (6, 8%) or J; (9, éﬁ,ﬁk]) in the
appropriate place and with reference to Lemma 9 replaced by reference to Lemma 10. However, two
additional terms arise on the right-hand side of (9.1) because J3 (6, 65)  J; (9, 5,*\,1 x,)- These terms
are

&

B 03) = 5

©6)  Miy= T Nkl))(ez—erv,k,l) and

< @*

2090’
M; = J*(9Nk R J*(9Nk 0O k,)-

These terms can be shown to satisfy

9.7) hm N"P(P*(HM*NH>;LN)>N =0 for j=1,2.

In consequence, the result of part (a) of the Theorem holds for the bootstrap two-step GMM esti-

mator.
To prove (9.7), we first show that

©8)  lim NP(P* (|25 (By) " = 25 (B3) | = ) > N) =0

using Lemma 12 with m3,(0) = 23,(0)~", 63 = 6%, Oy = HN %> and Jy = uy. The conditions of
Lemma 12 are verified using the result of part (a) of the Theorem for the bootstrap one-step GMM
estimator, the assumption that k; > k, and Lemma 9. The proof of (9.7) also uses the first and second
results of Lemma 11 with 0N = 0y ;_;» where the condition on 0* holds by applying the proof of part
(a) of the Theorem for the k-step bootstrap two-step GMM estimator recursively for k =1, 2, .

The proof of (9.7) also uses limy_, ., P(P*(||0} — 0% ;I > K) > N~*) =0 for some 0 < K < oo, which
holds by applying the current proof recursively because K > u, for N large.

For the second result of part (a), when y > 0, we use (9.64) of the proof of Lemma 15(b) (which
guarantees that 7 , is well behaved, utilizes the condition d, > 2a+2, and holds for all 0 <y < 1).
Let TN and TN « denote Ty and Ty ,, respectively, with the correction factor 7y , deleted. Let o ,
and g} denote oy (0y ,),, and oy (0}),, respectively. For y > 0, we use the following:

(9.9) Ty« —Ty| < N"2|0y  — 0%/ (o7 ,)'P
+ N0y = Oyl [ (o )P = ()| /(or 1)

By (9.9) and the result concerning 7y ,, the second result of part (a) is implied by the first result of
part (a) plus the following: There exists a K < oo and a 6 > 0 such that

(9100 lim N*P(P*(|(a7. )" = (07)"?] > py) > N~ =0,
©A1)  lim N“P(P*(|6}, —by] > K) > N~) =0,

9.12) lim N*P(P*(0}, <8)>N"*)=0, and

(9.13) lim N*P(P*(07 <8) > N™) =0.

Equation (9.11) holds by Lemma 9 or 10. Equations (9.12) and (9.13) hold by Lemmas 8-11 and the
first result of part (a) of the Theorem.
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Equation (9.10) is implied by (9.12), (9.13), and
(9.14) lim N*P(P*(loy,, =07 > py) > N™) =0
by applying the mean value theorem. Equation (9.14) is implied by
(9.15) 11m NP(P*(IDy (8 1) — Dy (OW) > my) > N™) =0 and

lim N*P(P (123 (85,007 = 23 (63) | > ) = N =0.

These results hold by Lemma 12 with &, = u, using the first result of part (a) of the Theorem and
Assumption 3.

The third and fourth results of part (a) are established by analogous arguments; see Andrews
(2001a) for details.

To establish part (b) of the Theorem, we apply Lemma 5(b) four times with 9y = N'?uy = o(N )
(where the last equality uses the condition 2% > 2a+2 in the NR cases and k > 2a+1 in the GN case)
and with (A3, ;) equal to (NV2(8% — 6y), N0y = 00)), (T3, Ty« — T3), (Hy (83), Hy (03.,) —
H}(0%)), and (K3 (0%), K3 (0% ) — Ky (0%)). In the third and fourth times Lemma 5(b) is applied,
the result of Lemma 5(b) implies the third and fourth results of part (b) of the Theorem by a
straightforward argument. The condition of Lemma 5(b) on £} holds by part (a) of the Theorem for
the first two applications of Lemma 5(b) and by analogous results given in Andrews (2001a) for the
third and fourth applications. As required by Lemma 5(b), the random variables T3, H} (63 ), and
K3 (0%) have Edgeworth expansions with remainder o(N~*) by Lemma 16(b) using the additional
conditions on d,,y, and a in part (b). Lemma 16(b) does not state an Edgeworth expansion for
NYV2(05 — éN), but one can be obtained under the same assumptions and by the same argument as
for Ty. Q.E.D.

9.2.2. Proof of Theorem 2

We establish the first result of part (a) of the Theorem first. By Theorem 1(b), Lemma 16(b),
Lemma 14, and Lemma 16(a), respectively, each with a =3/2, we have:

(9.16) }\llim N3/2P<sup|P*(TN* <) =P (T <2)| > N’M) =0,

- zeR :

Aim N“”P(sup IP*(IT3| = 2) = [1+ N7y (8, 77,y 5 )(@(2) = B(=2))]| > N*W) =0,
i zeR

lim N3/2P(sup|(w2<a, Vi ) = (8,13, 2)) (B(2) — B(=2))| > N*ﬁ) =0, and
e zeR T

Al/im N*Zsup|P(|Ty| < z) = (1+N"'my(8,v3,))(P(2) — P(—2))| =0,
- zeR

using the evenness of m;(8, v} y 3,,)®(z) and (8, v;,)P(2) in z for j=1,3 in the second and
fourth results respectively. The results of (9.16) combine to give

(9.17) }\llim N3/2P(sup|P*(|T}\’j’k| <z)-P(Ty| <2)| > N’(”’5)> =0.
i zeR

Because [T} ,| has a discrete distribution, P*(|T}y ,| < ZIT\ x.«) Might not equal 1 — & exactly. Nev-
ertheless, the Edgeworth expansion for T} with a = 3/2 given in Lemma 16(b) combined with the
equivalence of the higher-order asymptotic efficiency of T3 and Ty , given in Theorem 1(b) imply
that

(©18)  lim NPP(IP (T | < 2l 0.0 — (1— @) = N2 =0.
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This holds because (i) there is a value zj7, , such that the Edgeworth expansion of P*(|T}| < z),
viz., (8, v}y 3)(P(2) — P(=2)), equals 1 —a at z=z{7, , by the continuity of ®(z) and ¢(z), (ii)
by definition of zjy ., |P*(IT3 il < 27 x.0) — (A=) < [P*(T3 4| < 2j7,.) — (1 — )], (iii) the latter
upper bound differs from |P*(|T;| < 27, ,) — (1 —@)| by more than N> with probability o(N ) by
Theorem 1(b), (iv) the latter expression differs from |m,(8, v} y 3,)(P(z]7, ) — P(—z7 ) — (1—a)]
by more than N %2 with probability o(N~*?) by Lemma 16(b), and (v) the expression in (iv) equals
0 by definition of zf7, .
Taking z = z{7, , , in (9.17) and combining it with (9.18) gives

(9.19) Jim N2P(|1—a—P(Ty| =2l . )l > N™0*9) =0.

The expression in the absolute value sign is nonrandom. Hence, for N large, |1—a — P(|Ty| <
Zi k)| < N70H9, which establishes part (a).

The proof of the second result of part (a) is the same as for the first result but with 7} , and
Zi7.1.o TePlaced by T and zj7, , in (9.17)-(9.19). The proofs of the remaining results of part (a) are
analogous, using the appropriate results from Theorem 1(b) and Lemma 16(a)—(b).

The proof of part (b) of the Theorem is quite similar to that of part (a). The main differences are
that Theorem 1(b) and Lemma 16 are applied with @ =1 and the term involving (8, v} y ;) ®P(2)
and (8, v,)®(z), which arises in the application of Lemma 16, does not cancel out because it no
longer enters via (P(z) — P(-z2)).

Next, we prove the second result of part (c). By Lemma 13 with a = 2, it suffices to establish the
result with 7y and T} replaced by N'2G(Sy) and N'/2G(S};) respectively. The second result of part
(c) now can be established using methods developed for “smooth functions of sample averages,” as
in Hall (1988, 1992). Define zg, , by P(IN'?G(Sy)| < z6,,) =1 —a and let A=z , — 2]y ,- The
idea of the proof is to show that

(9.20) P(N"V2G(Sy)+A < Zigla) =1— a/2+ N (2161, )P (Zi61,) + O(N7%) and
P(N'?G(Sy)—A< ~Zgl0) = /2~ N73/271(—Z\G\,a)d’(—zm\,a) +O(N™?),

where r,(x) is a constant times x and ¢(-) denotes the standard normal density function, as in Hall
(1988). Then,

(9:21) P(ITy| < zjp,.) = PN G(Sy)| < 2i7,) + O(N7?)
=1—a+N*p (216, )P(2(61, 0) +N73/2r1(_Z\G\,a)(;b(_zki\,a) +O(N7?)
=1-a+O(N7?),

using the fact that r,(x) is an odd function and ¢(-) is an even function. The results of (9.20) are
established by the same argument as used to prove (3.2) of Hall (1988), where his 7' corresponds to
our N'2G(Sy). (More details of this argument can be found in Hall (1992, Pf. of Thm. 5.3), which
considers one-sided confidence intervals, but can be extended to symmetric two-sided confidence
intervals.) This argument relies on Edgeworth expansions of N'2G(Sy) and N'2G(S%):

(9.22) Al/im NZsup |P(IN'*G(Sy)| < 2)
e zeR
—(1+ N7y (8, v,) + N2, (8, v) ) (P(2) — @(—z))‘ =0 and

Jim NZP(sup P*(IN'2G(S})| < 2)
e zeR

—(L+N7'my(8, Ty o) + N 7211, (8, Ty ) (P(2) — P(—2))| > Nﬁz) =0,

which hold by Lemma 16 with a =2, Ty and Ty replaced by N'2G(Sy) and N'2G(S},), respectively,
and v}  , replaced by Uy ,. The former replacements are valid by the proof of Lemma 16. The latter
replacement holds because no correction factor is used in the iid case.

The proof of the first result of part (c) is the same as that of the second except that the rea-
son that it suffices to establish the desired result with Ty and T} replaced by NY2G(Sy) and
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N'2G(Sy), respectively, is the second result of Theorem 1(b) with a =2 combined with Lemma 13
with a = 2. QE.D.

9.3. Proofs of Lemmas
9.3.1 Proof of Lemma 1

A strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995, Theorem 2 and
Remark 2, pp. 25-30) gives E[ YN, h()?,»)”” < CN”? provided p > 2. Application of Markov’s
inequality and the Yokoyama—Doukhan inequality yields the left-hand side in part (a) of the Lemma
to be less than or equal to

P
(9.23) Al/im ePNPHIE < Al/im gTPCN—PPetr2 — (),

i=1

Part (b) follows from part (a) applied to h()N( ) —Eh()? 1) with ¢ =0 and the triangle inequality.
Q.E.D.

9.3.2. Proof of Lemma 2

The proof is the same as that of Lemma 2 of HH (which mimics a standard proof of a uniform
law of large numbers) except that we apply Lemma 1 above with ¢ =0 and p = g, rather than their
Lemma 1. Q.E.D.

9.3.3. Proof of Lemma 3

First, we prove the result with N~¢ replaced by arbitrary fixed & > 0 for the minimum p estimator
under Assumption 2(b)(ii). Let p(6) = E,(X,, 0) and py(0) = N YN p(X;, 0). Given & > 0, there
exists a 6 > 0 such that || — 6,|| > & implies that p(8) —p(6,) > & > 0. Thus,

924 NﬂP(HéN =6, > ¢) < NHP(P((;N) — PN (éN)+PN(éN) —p(6y) > 8)
= N”P(P(éN) _pN(éN) +px(8) — p(6,) > 3)
< N“P(zigg\pN<6)—p(e)| ~3) =0

using Lemma 2 with j =2. The corresponding proof for the one-step GMM estimator under Assump-
tion 2(b)(i) is analogous with p(6) and p, () replaced by J(0) = Eg(X,, ) QEg(X,, 0) and J(0)
respectively.

Next, we prove the result as stated in the Lemma. For the minimum p estimator, the result of
the Lemma for arbitrary & > 0 implies that 6 is in the interior of @, N' "N ¢(X,,8y) =0, and
6,y minimizes not only py (8) but Jy () (defined with an arbitrary positive definite weight matrix £2)
over 6 € @ with probability 1 —o(N~“). In consequence, in the remainder of this proof, we can treat
the minimum p estimator as a one-step GMM estimator.

For the one-step GMM estimator, 6y is in the interior of ® and (8/90)],\,(5,\,) = 0 with proba-
bility 1 — o(N~¢). Hence, element by element mean value expansions of (3/36)Jy (8y) about 6, and
rearrangement give

(9.25) 0y —06,= ((wﬁae/ v (0% )) BOJN(%)

with probability 1 — o(N=¢), where 6}; lies between 6 and 6, and may differ across rows. In conse-
quence, the result of the Lemma follows from

©.26)  lim N*P (HaaaorJN(m 6060’JN(9°)H>8) 0,

N—oo

lim N°P (HMWJ(GO) 2D.(2Dl|>s) 0,
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Al[im NP(|Dy(6)) —D| >€)=0, and
N
Jim N“P(“N’l > g(X,, 00)” > N*C) —0.
- i=1

The first result of (9.26) holds using the result of the present Lemma with N~ replaced by & > 0,
Taylor expansions about 6,, and multiple applications of Lemma 1(b) with A(X,) = (¢//36")g(X;, 6,)
for j=0,...,3 or h(X,)= C,(X;). The second result of (9.26) holds by multiple applications of
Lemma 1(a) with h(X,) = (9//06))g(X,, 6,) — E(3'/06/)g(X,, 6,) for j = 0,1,2,¢=0, and p =g,
and standard manipulations. The third result holds by Lemma 1(a) with 4(X;) as in the proof of the
second result with j = 1. The fourth result holds by Lemma 1(a) with h(f ) =g8(X;,6),c=c, and
pP=q. Q.E.D.

9.3.4. Proof of Lemma 4
First, we show that lim,_, , N*P(||2,(6y) — ] > €) = 0. This follows from

9.27) lim N“P(]|€2/ (By) — 0271 (6)] > ) =0 and
lim N“P([ 023 (6,) — 5[l > &) =0.

The first result of (9.27) holds by Lemma 3, mean value expansions, and multiple applications of
Lemma 1(b) with h(X;) = supycy, I8(X;, )| - 1(8/90)g(X,;, 0) forNj = —K,...,k. The second
result of (9.27) holds by multiple applications of Lemma 1(a) with A(X,) = g(X, 0,)8(X ;> 0,) —

Eg(X;,0))8(X.,;,0,) for j=—x,...,k,c=0,and p=gq,/2.
Given the result of the previous paragraph, the proof of Lemma 4 is analogous to that of Lemma 3.
Q.E.D.

9.3.5. Proof of Lemma 5

Consider part (a). Let ¢ denote a column L ,-vector of ones. Then, for all z € RE4,

(9.28) NY(P(Ay+éy <2)—P(Ay <2))
SN P(Ay+éy =z, [Exl < Dy) — P(Ay <2)) + NP([éx]l > Oy)
SNYP(Ay S z4+9y) = P(Ay <2)) + N P(J[Ey]l > Oy)-

The second term on the right-hand side converges in probability to zero by assumption. Now, consider
the case where A, has an Edgeworth expansion with remainder o(N~*). The first term on the last
line of (9.28) is less than or equal to N multiplied by

(9.29) (1 + %N-f/zm(a/az)) Dy (24 Ty1) — (1 +[ZZH%N‘”27TI-(6/82)> @5 (2)+o(N7).

i=1 i=1
This is o(N~*) uniformly over z € RE4 because the derivatives of @ (z) of all orders are bounded
over z € Rl4 given the assumptions on X, and dy = o(N ). Alternatively, in the case where
{Ay : N > 1} have uniformly bounded densities, the first term on the right-hand side of (9.28) is o(1)
because ¥y = o(N79).

An analogous argument shows that N(P(Ay < z) — P(Ay + &y < 2)) is o(1) uniformly over
z € Rt4, This completes the proof of part (a).

The proof of part (b) is similar. For brevity, it is omitted. Q.E.D.
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9.3.6. Proof of Lemma 6
First, we establish part (a). Define I = N-' YN, h()?;‘) - E*h(fi*). By Markov’s inequality
applied twice, we have
(9.30) NP(P*(|I3ll > N~€) > N~) < N°P(E*||T}|? > N~“P)
< N*P BT

Define Y= €734 h()?/-) and Y, = €73, h()?]-) (where b7 and b; are defined at the beginning
of the Appendix). Then, I'; =b~' Y-°_ (Y;: — E*Y}). By applying Burkholder’s and Holder’s inequality
in a single step (e.g., see Hall and Heyde (1980, eqn. (3.67), p. 87)), we obtain

b
> (Yi—E'Yp)

i=1

< ChPRE Y|P,

P

(9:31) E|Ig||P=b""E" <CO"PEY||Y, - EYy|l

Now, for nonoverlapping blocks, we have

b
(9:32) EE*| YAl = Eb' YNV, |" = E|IY,|1” < Ce”

i=1

using Yokoyama’s strong mixing moment inequality (see the proof of Lemma 1). For overlapping
blocks, (9.32) holds, but with b replaced by N — £+ 1 after the first equality.

Combining (9.30), (9.31), and (9.32) gives
(9.33) NP(P*(|IT}]| > N™°) > N™) < CN**tPprl2g=P2 = CN?+P=PI2 = o(1).

To establish part (b), note that the left-hand side in part (b) equals limy_  N*P(||E*N~"x
Zi}i (X)) > N~¢), which we denote by /hs. For nonoverlapping blocks, then,

|
>N”>
>Nc) =0

using Lemma 1. For overlapping blocks with ¢ « N” for 0 <y < 1, we have

- )

N
= lim N”P(H(N—E-i—l)’l S w(i, £, N)h(X,)

i=1

b

(9.34) lhs = lim N“P( by Y,

i=1

= lim NP
N—oo

N-! ZN:h()N(,-)

i=1

—

N—t41
(N—¢+D)' Y v,

i=1

(9.35) lhs = Al]im NP

TN

> N’“) =0,

where w(i, £, N) is defined in (4.2). Note that |w(i, £, N)| < 1. The last equality of (9.35) holds by an
argument analogous to that of Lemma 1 using Yokoyama’s strong mixing moment inequality (which
applies to nonstationary L?-bounded random variables; see Doukhan (1995, Theorem 2 and Remark
2, pp. 25-30)), using the fact that limy_, , N/(N — ¢4 1) =1 when 0 <y < 1. For overlapping blocks
with y = 1, we have lhs =limy_  N°P(|[N"' TN, h(X,)| > N) =0.

Part (c) follows from parts (a) and (b). The first result of part (d) holds by using the triangle
inequality | E*N ' XY, (X)) < |E*NV Y, h(X;)~ ER(X,) |+ | ER(X,)| and applying part (b) to
h()—E h(i 1) with ¢ arbitrarily close to zero. The second result of part (d) is established analogously
using part (c) in place of part (b). Q.E.D.



154 DONALD W. K. ANDREWS

9.3.7. Proof of Lemma 7

The proof is the same as that of Lemma 8 of HH except that we apply Lemma 6 above with ¢ =0
and p = g, rather than Lemma 7 of HH. Q.E.D.

9.3.8. Proof of Lemma 8

Define 2% (0) to equal €23 (0) with g* (X}, 0) (=g(X},0)—E*g(X}, 6y)) replaced with g(X:r, 0).
The result of the Lemma follows from

036)  lim N*P(P*(123(62) "~ 23(6)) ]| = £) > N*) =0,

©37) i NP(P(124(6,) " — 25 (6) I = £) > N*) =0,

©38)  lim NP(P (1025 (6) "~ E*(Q5(6) )| > &) > N)=0,  and
(039)  lim NP(P (IE (@5 (00) ) — 2" > £) > N*) =0,

To establish (9.36), we take mean value expansions about 6,, apply both parts of Lemma 6(d)
with h()?[) = SUpy, lg(X:, Ol -11(3/96)g(X ., O)| for j = —k,...,k and p = gq,, and use the
assumption on é,’i,. To establish (9.37), we use the Cauchy-Schwarz inequality and Lemma 6(b) and
6(c) with h(f,) =g(X;,0), c€(0,1/2), and p = q,. To establish (9.38), we use Lemma 6(c) with
h(X;) =g(X,, eo)g(Xi+j’ 60,) — Eg(X,, Gﬂ)g(X1+j7 0y) for j=—«,...,k, c€(0,1/2), and p = q,/2.
To establish (9.39), we use Lemma 6(b) with h()N([), ¢, and p as immediately above. Q.E.D.

9.3.9. Proof of Lemma 9

First, we prove the result with N~¢ replaced by arbitrary fixed & > 0 for the minimum p esti-
mator under Assumption 2(b)(ii). Let py(8) = N~' 3N, p(X,, 0), p(8) = Ep(X,, 0), and p% () =
N1YY (p(X:,0)—E*g(X?,8y)0). Consider the case of nonoverlapping blocks. Given & > 0, there
exists a 6 > 0 independent of N such that ||§ — Oyl > ¢ implies that E*p% (6) — E*pj\,(é,\,) >6>0
with probability 1 —o(N =) because (i) E*N-' YN, p(X}, 8) = py () with probability 1 —o(N~¢), (ii)
E*g(Xr,0y)=N"'YY g(X,,0,) =0 with probability 1 —o(N~*) by the first-order conditions for
6, since the dimensions of g(-, -) and 6 are equal, (jii) lim,_ NP (sup,.e |pn(6) —pn(By) —p(8)+
p(By)] > A) =0 for all A > 0 by Lemma 2, (iv) lim,,__ N“P(|p(8y) —p(6,)| > A) = 0 using Lemma 3,
and (v) p(6) is uniquely minimized at 6, and is continuous on @. Thus, we have

(9.40) NP(P*(||05, —Oy]l > &) > N™)
< NP(P*(E*piy (03) — P (03) + i (03) — E*piy (6y) > 8) > N™)
< N“P(P*(E"p} (03) — px (03) +pi (Oy) — E"py (By) > 8) > N ™)

< N‘P (P* (2 sup
He®

using Lemma 7 with j =2.

For the case of overlapping blocks, (i) and (ii) of the previous paragraph do not hold. Instead,
we have E*N'YN p(X7,0) = (N —¢+1)"' Y w(i, ¢, N)p(X,, 8), where w(i, ¢, N) is defined in
(4.2). By the arguments used to prove Lemmas 2 and 6(b), (iii) holds with p, (6) replaced by (N —
L+ 1YY w(i, £, N)p(X,, 8). In addition, some calculations using Lemmas 1 and 3 and a mean
value expansion show that limy_, NP (| E*g(X7}, 6y)|l > A) =0 for all A > 0, because E*g(X}, 6y) =
(N—¢+1)'N (w(i, 6, N)— (N —£+1)/N)g(X,, 0). In consequence, the remainder of the proof
above goes through unchanged with overlapping blocks.

The proof of the result of the Lemma for the one-step GMM estimator under Assumption 2(b)(i)
when N ¢ is replaced by € > 0 is analogous to that given above using Lemma 7 with j = 1. The proof
of the result of the Lemma as stated is analogous to that given in Lemma 3 with J, N(éN) replaced by
J3 (6%) using Lemmas 6 and 7 in place of Lemmas 1 and 2. Q.E.D.

P (0) — E*pi(0)| > 5) > N’“) — 0,
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9.3.10. Proof of Lemma 10

The proof is analogous to that of Lemma 9 using Lemma 8. Q.E.D.

9.3.11. Proof of Lemma 11

By Lemma 9 with N~¢ replaced by arbitrary fixed & > 0, 6% satisfies the same condition as éji,. In
consequence, it suffices to show that the first result of the Lemma holds and that for all € > 0,

(9.41) }\llim N"P(P*(H()Tv(éfv) — || >e)>N")=0,

>K>>N”>:O

for some K < oo for j=1,2,3, and

>£) >N”> =0.

The first result of the Lemma, (9.42), and (9.43) hold by mean value expansions, multiple applications
of Lemma 6, and the assumption on 63}. Equation (9.41) holds by Lemma 8. Q.E.D.

N B .
(9.42) A1,i3201v“10<1v*( N ng*(X,.*, 0%)

i=1

N
(9.43) lim N”P(P* ( N7'Y g (X7, 6%)

i=1

9.3.12. Proof of Lemma 12

By a mean value expansion and the triangle inequality,

(9.44) [l (05 ) — miy (63)]

N N
< (Nl 3 sup |(3/00)m(X;, 0)]| + BN 3 sup [ (2/a6)m (X 6) |) 105« = 0% -
i=1 €Ny i=1 0Ny

Hence, the Lemma holds by the assumption on ||6% , — ;]| and Lemma 6(d) with i(X,) =
Supgey, 1(9/90)m(X;, 0)]- Q.E.D.

9.3.13. Proof of Lemma 13

The proof of part (a) is analogous to that of Proposition 1 of HH except that we use Lem-
mas 1 and 3-5 above in place of their Lemmas 1 and 3-5, respectively, and we take the Taylor
expansion through order d, rather than order 4. (For the Wald statistic, this requires that the func-
tion 7(-) is d, times continuously differentiable.) The latter implies that the remainder term
from the Taylor expansion in the proof of Proposition 1 of HH (to which our Lemma 5 needs to
be applied with £y = N'/2£,) satisfies [|£y | < C||6y — 6,0 with probability 1 —o(N=). In conse-
quence, limy_ . N*P(||{y|| > N~91¢) = 0 and for our Lemma 5 to apply with £, = N2{,, we need
dyc>a+1/2 for some ¢ € [0,1/2) and we need 2a to be an integer. The former holds if d, > 2a+2,
as is assumed. The latter holds by assumption.

The proof of part (b) is analogous to that of Proposition 2 of HH except that we use Lemmas 3-9
above in place of their Lemmas 3-9 and we take the Taylor expansion through order d, rather than
order 4. Q.E.D.
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9.3.14. Proof of Lemma 14

It is shown in Andrews (2001a) that the least favorable value of m for the bootstrap moment
NV E*TT,_, Wy, ;, is three. Here we just consider this case. We show that

3 3
(9.45) 4, = lim N"P(!N”ZE* 1‘[1 v, —N"E ]’11 WNTM! > 6N§> =0 and
p= M=

A, = lim N* =0.

3 3
N'ET] Wy, = lim N'ET] ¥y,
p=1 e p=1

For notational simplicity, suppose j, = 1 for p =1,2,3. Let f; = f; ()?i, 6,) — Ef, ()N(,-, 6,), where
fi(X;, 6,) denotes the first element of f(X;,6,), and let f* = f,(X,, 6y) —E*fi(X}, 6y). Let Y, =
Z,»E,,]_ [ Y = Zieb/_ fiand Y = Zieb;f fi* (where b;, by, and .V, are defined at the beginning of the

Appendix). Then, ¥ ; =N~ >N, f and vy, =N Y0, Y;. We have

3 b b b
(9.46) NZE T, =N X Y EY; Y)Y,

) ) ! oo
=1 j1=1j=1j3=1

Ny
=N"DE'Y® = N""bu? X:YJ3

=1

A lengthy proof in Andrews (2001a) shows that

>N_§> =0.

The proof uses a Taylor expansion of order d, of 171 —Y;, which depends on éN, about 6,. To ensure
that the remainder term is asymptotically negligible requires d, > —1+ (a+7y+ £)/c, which is implied
by the assumed condition that d, > 2a+ 1 because y+ ¢ < 1/2 and we can take ¢ (< 1/2) arbitrarily
close to 1/2.

Using (9.46) and (9.47), we obtain

N -
(9.47) Al/i_r)rloN"P( NN (Y -Y))

j=1

(9.48) A, <B,+B,, where

/vg
lim NP(N "o (Y] —EYY)| > N¥) and

j=1
> N’§>.

For nonoverlapping blocks, a strong mixing moment inequality of Yokoyama and Doukhan (see
Doukhan (1995, Theorem 2 and Remark 2, pp. 25-30)) gives: for any § > 0, there exists a constant
C < oo such that

B,

N—oo

3
B, = lim 1<|N*1bEY13 ~N"ZET] ¥y,
p=1

s

(949) E < Cbx/Z(E|er _ Eer|s+8)s/(x+8) < Cb_v/Z(Elylr|x+¢5)x/(:+8)7

b
(Y —EY])
i=1

for r > 0 and s > 2. (This result uses the fact that @, (i) < a(i) for all £ > 1, where «(i) denotes the ith
strong mixing number of {X; :i> 1} and «,(i) denotes the ith strong mixing number of {Y; :i < b}.)
In turn, the same moment inequality gives

r(s+8)
< Cé’(”s)/z(Elfl |r(x+a)+5)r(s+8)/<r(s+5)+5).

13

(9.50) E|Y[|? =E

=1
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Combining these two inequalities gives

N s
(951) E'b,/\/[l Z(er _ EYIV) < Cbx/zerx/Z(EUcl |rx+(r+1)8)chx ,
i=1

where ¢, ;= sr(s+8)/[(r(s+6)+6)(s+8)].
Next, for overlapping blocks, we have

N—t+1 s\ s ¢ b(u) s\ /s
9.52) (E S (Y- EY]) ) =(E Y (i, —EY)) )
i=1 u=1 i=0

b(u)

s\ 1/s
> (Vi EY)) )
i=0

(e

u=1

3
< Z(Cbx/zer:/Z(EUcl |r:+(r+l)8)cr,5)1/x
i=1
where b(u) =max{j:j<b—1,u+4£j <N —£+1}, using Minkowski’s inequality and (9.51), where
the latter applies because Zfi‘(‘])(Yi; +— EY[) is a sum of terms based on nonoverlapping blocks.
Equation (9.52) gives

) s bes
9. E\bN;! Y —EY/ —_
( 53) 4 Z( i 1) = (N_e_‘__l)s

i=1

Cbx/2£n/2 (E‘fl ‘n+(r+])5)c,v,s

— Cbs/Zer/Z (E‘fl Irs+(r+1)5)6’r,A R

using the fact that (b€)/(N —¢+1)=1+0(1) if y < 1.
Now we show that B, = 0. By Markov’s inequality and (9.51) or (9.53) with r =3, we have

N )4
(9.54) B, =C lim N“*P(f’”Elb./\/[l > (Y, —EY))

=1
. a+p(é-1) 1,p/2 p3p/2 3p+48yc3,
=Clim N DPEEPE(EIf[PPe) .
Given (9.54), B, =0 provided s is such that s > a/(1/2 —y— &) and E|f,[**** < co. The latter holds

for all 0 < s < oo by Assumption 3(e) and the former holds for s sufficiently large because y+§& < 1/2.
For B,, we have

3 N N N
(9.55) NPET Wy, =N X Y Ef, [, 1,
p=1 ij=liy=1i3=1
N-1 N-1
=YY ol NEG .
ij=—N+1iy=—N+1

where w(i, N) =1—i/N. In addition, we have

4 3 -1 -1
(9.56) N‘%EYf:Z“E(ZfI-) = Y > ol +inOERf, f,-

i=1 i ==+l iy=—t+1
The quantity B, equals zero if the difference between the right-hand sides of (9.55) and (9.56)
multiplied by N¢ has limit equal to zero. The latter holds by a strong mixing covariance inequal-
ity, viz., Efyf;, < Ca’(i;) for some r > 0 (where a(i;) denotes the i th strong mixing number); e.g.,
see Doukhan (1995, Thm. 3, p. 9); the fact that the strong mixing numbers decline exponentially
fast by Assumption 1, N¢ o ¢¥/7, and either (i) £ <y and 0 <y <1 or (i) {X;:i > 1} are inde-
pendent. The latter condition appears because limy_,  N¢ Zfl’:{[ﬂ 2,42’:17H1((z'1 +0L)/OVERS, T, =
limy N Y S (h+L)Eff, fi, =0 if either ¢ <y or {X,:i>1} are independent.

We conclude that B, = 0. An analogous argument gives A4, =0. QE.D.
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9.3.15. Proof of Lemma 15

First, we prove part (a) for the nonoverlapping block bootstrap. Let g, denote g(X;,6,). It is
sufficient to establish the following results:
> N-f> =0.

N K
Wy(By)—-N"'Y |:gi81 +> {88 +gi+jg;}:|

i=1 j=1

b-1 ¢ ¢

- N_] Z Z Z gié+/’g;z+m

i=0 j=1 m=1

(9.57) lim NP

N—o0

—
e
N

(9.58) lim NP

N—oo

—

> Nf) =0.

b-1 ¢ ¢
(9.59) ]},IE:O NaP( N! Z Z Z [gi//+jg;t+m - Egi1f+jg1{(+m] > N§> =0.
i=0 j=1m=1
N K
(9.60) ,\1,12; NaP( N Z |:gigz{ - Eg.g; +Z{g1g;+j - Egigl{+j +gi+/g; - Egi+jg:}i| ! > N§> =0.
i=1 j=1
-1 ¢ ¢ N I
(961) hm N e Z Z Z Egllé+]gtl+m - N71+§ Z[Eglgl/ + Z {Egig!{Jr[ + Egl+Jg:}] = O
i=0 j=1m=1 i=1 Jj=1

The proof of (9.57) is rather lengthy. It is given in Andrews (2001a). It involves taking a Taylor
expansion of order d of WN, which depends on BN, about 6,; showing that the first term in the
expansion equals the second term in the norm in (9.57) plus an asymptotically negligible term; and
showing that the higher order terms are asymptotically negligible. The proof of (9.58) is similar to
that of (9.57), but simpler. Equation (9.59) is established using Markov’s inequality, the Yokoyama-
Doukhan strong mixing moment inequality of (9.49), Minkowski’s inequality, and the assumptions
that E||f;[|%2 < oo for all g, < 00 and £+ /2 < 1/2; see Andrews (2001a) for details. Equation (9.60)
holds by Lemma 1(a) with ¢ = ¢ and p > 2a/(1—2¢) because E||f;||? < oo for all p < oo by Assump-
tion 3(e) and & < 1/2.

Equation (9.61) holds only if ¢ <y when }°7_, j(Eg,g},; +Egi,,81) # 0. To see this, for simplicity,
suppose g; is a scalar. Then, the left-hand side of (9.61) equals

3 3 K
(9.62) Al/i_IgoN_H&ZZEg/gm*Nf[ng‘FzzEglgH/]

j=1 m=1 j=1

= lim N~ V“[ﬁEg +ZZ(«‘Z J)Eglglt,] N*’[ngHZEglgH,}

j=1 j=1

= 72]\l/iiI:ON7”§ Znglgl+j =0.
j=1
Next, we prove part (a) for the overlapping block bootstrap The desired result follows from
(9.57)=(9.61) with N=' 3"} replaced by N~'h(N — £+1)~1 YN and 8ivv;&iesm TEPlaced by g, gl
in (9.57), (9.59), and (9. 61) Equations (9.58) and (9.60) have already been established. The proofs
of (9.57) and (9.59) are similar to those for nonoverlapping blocks; see Andrews (2001a).
The analogue of (9.61) is established as follows. Some calculations show that

N—t+1 ¢ ¢

(9.63) NTD(N =+ 1) 3 33 Egii8iim

i=1 j=1m=1

N—t+1 K
(Nt Y [vN(t,o, OFgg+3 vy, z)(Eg,.g;t,+Egi+jg;)], where
i=1 j=1

1—j/¢ fore<i<N-—-(+1,
oy (s ) = 41— (b—i—j)/e for1<i<¢,

1-(+i—N+1—j)/¢ for N—¢+1<i<N.
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In consequence, the analogue of (9.61) holds provided limy_ . N* Y7, (j/€) (Eg,g1,; + Egi1;81) =0,
which requires either £ <y or 3.7, j(Eg 81, + E814,;81) =0.
Next, the result of part (b) for ¢ statistics follows from Lemma 14 and

(9.64) lim N“P(j7y , —1]> N~) =0.

Equation (9.64) follows from part (a) of the present Lemma, limy_  N*P(||oy — 0| > &) =0 for all
& > 0, which holds by (9.26) and (9.27), and the fact that o is positive definite by Assumption 3(b).
The proof for the 7, statistic is analogous with N¢|7y , —1| replaced by N¢|| 5 — 1, |l The proof
for the J statistic uses

(965)  lim N*P(|My— M|l > N¥) =0, lim N“P(|Vy = M| > N4) =0,
lim NPV} =Myl > N") =0, and
lim NP(I(Vi)" = Myl > N6) =0.

The first result of (9.65) follows from (9.26) and (9.27), the second result follows from the first result
and part (a) of the Lemma, the third result follows from the second result, M, = M (because M,
is a projection matrix), and the fact that rk(Vy) = rk(M,) = L, — L, with probability 1 —o(N~);
see Andrews (1987, Theorem 2); and the fourth result follows from the third result and M, = M,.
Now, part (b) of the Lemma for the J statistic follows from the fourth result of (9.65), Lemma 14,
and the properties of the function A, (-, -). Q.E.D.

9.3.16. Proof of Lemma 16

We use the same method as HH use in the proof of their Theorems 1 and 2. Because their
description is very brief, we describe the method in a little more detail than HH do. Given Lemma 13,
for the results of parts (a) and (b) regarding Ty and Ty, it suffices to show that N/>*G(Sy) and
NT”2 G(Sy) of Lemma 13 possess Edgeworth expansions with remainder o(N ). For the case of
N 1/ZG(S v), this follows by applying Theorem 3.1 of Bhattacharya (1987) with his integer parameter
s satisfying (s —2)/2 = a for a given in the present Lemma (with 2a being an integer) and with the
normalized sample average N'/2(X —u) of the underlying random variables in his theorem satisfying
an Edgeworth expansion not because they are iid and satisfy his condition (A4,), but because they are
asymptotically weakly dependent and satisfy the conditions of Theorem 1.1 of G6tze and Hipp (1994).
The latter theorem is a special case of Corollary 2.9 of Gotze and Hipp (1983). Conditions (2)—(4) of
Gotze and Hipp (1994) hold by Assumptions 1, 3(e), and 4. Conditions (A,)-(A;) of Bhattacharya
(1987) hold by Assumption 3(e), the fact that G(-) is infinitely differentiable, and Assumption 3(b)
respectively.

For the case of N'27y .G(S%), the result holds by an analogous argument as for N'2G(Sy), but
with Theorem 3.1 of Bhattacharya (1987) replaced by Theorem 3.3 of Bhattacharya (1987) and using
Lemma 15(b) with ¢ =0 to ensure that the coefficients v}  , are well behaved.

To obtain the remaining results of parts (a) and (b), we note that N'2G(Sy) and N> 5, G(S;,)
(or N2(Vi)12G(Sy)) of Lemma 13 possess multivariate Edgeworth expansions with remainder
o(N~%) when G(-) corresponds to Hy(8y) or Ky (6y), by the same argument as just given. Then,
the results follow by applying Theorem 1 and Remark 2.2 of Chandra and Ghosh (1979) to obtain
the given Edgeworth expansions of Hy(6y)Hy(8y), Ky(8y)Ky(8y), H: ~(0%) Hy(0%), and
K3 (03) K3y (6)-

Part (c) follows from part (b) and Theorem 1(c). Note that the proof of Theorem 1(c) uses part
(b), but not part (c), of the present Lemma in its proof. Q.E.D.

9.3.17. Proof of Lemma 17
The NR result of part (a) holds by definition of Q%™? . The default NR result of part (a) is

N,j-1
established in Andrews (2001a) by showing that each step of the NR k-step estimator decreases
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the magnitude of the bootstrap criterion function except on a sequence of sets with asymptotically
negligible probability. The line-search NR result of part (a) is established in Andrews (2001a) by
showing that the optimal step length is one except on a sequence of sets with asymptotically negligible
probability.
To establish part (b) of the Theorem, we use the second result of Lemma 11 and Lemma 8. Using
these results, it suffices to show that
N") > N") =0.

By mean value expansions about 6, and the triangle inequality, it suffices to show that

N
©66)  lim N“P(P*(NIZ( (%5, 03,1-0) ~ 280X 03,.)

N
) Aim N "P<P*(| N7 YO(A(XT 6) - 80, (X}, 0)| > N~ ) > N“) =0,
(ii) lim N“P|( P* N Z su g (A()?* 6) — & (X7, )> K) N™“)=0
o) T 1) %) 50,008 g =
(iif) lim N“P(P*( |\0N] =0y > N) >N =0,
(iv) lim NP(P*(|03 —by[ > N~) > N") =0, and
) lim NP(P*([0y 6 > N™) > N™) =0
for j=1,...,k and for some K < oco. Condition (i) holds using Assumption 5 by Lemma 6(a) with

p =min{q,, g;} for g; as in Assumption 5, (ii) holds using Assumptions 3 and 5 by Lemma 6(d)
with p = min{q,, q,} for ¢, and g, as in Assumptions 3 and 5, (iv) holds by Lemma 9 or Lemma
10, (v) holds by Lemma 3 or 4, (iii) holds for j =1 by Lemma 9 or Lemma 10 because 6% , —by,
and (iii) holds for j = , k by recursively applying the first result of part (a) of Theorem 1 with
k = j—1, which holds because the proof of Theorem 1(a) for 63 ; , only relies on the result of the
present Lemma holding for Q;VCIN fori<j—2. Q.E.D.
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