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It is well known that a one-step scoring estimator that starts from NHY-
consistent estimator has the same first-order asymptotic efficiency as the maxi-
mum likelihood estimatorThis paper extends this result kestep estimators and
test statistics fok = 1, higher order asymptotic efficiencgnd general extremum
estimators and test statistics

The paper shows thatlastep estimator has the same higher order asymptotic
efficiency, to any given orderas the extremum estimator toward which it is step-
ping, provided(i) k is sufficiently large (i) some smoothness and moment con-
ditions hold and (iii) a condition on the initial estimator holds

For examplefor the Newton—Raphsokrstep estimator based on an initial es-
timator in a wide classwe obtain asymptotic equivalence to integer orslero-
vided X = s+ 1. Thus for k=1, 2, and 3 one obtains asymptotic equivalence to
first, third, and seventh ordersespectivelyThis means that the maximum differ-
ences between the probabilities that the"/2-normalized k-step and extremum
estimators lie in any convex set anél), o(N~%?2), ando(N~3), respectively

1. INTRODUCTION

In this paperwe consider the differences between statistics that are based on
an extremum estimatdk, and corresponding statistics that are based lostep
estimatoréN,k that starts from some initial estimatén’o and take steps to-
ward 6. Robinson(1988 Theorem 2 shows that the stochastic difference be-
tween such estimators declines to zerdNas> co and that the magnitude of the
difference declines very quickly as a function kfHere we show that the
convex variational distandeglefined subsequenilypetween the distributions of
such estimators declines to zero very quickly\as> oo at a rate that increases
very quickly as a function ok. This result establishes the equivalence of the
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higher order asymptotic efficiency of thestep and extremum estimatoiihe
magnitude of the order of equivalence dependk,0on moment and smooth-
ness conditionsand on the initial estimator

We also establish analogous results that hold under the null hypothesis for
thet, Wald, Lagrange multiplieLM ), quasi-likelihood ratidQLR), andJ test
statistics based on thestep and extremum estimatoi&he results hold for a
variety of different types ok-step estimatorsncluding Newton—RaphsofNR),
default NR line-search NRand Gauss—Newto(GN) k-step estimatorsThe
results hold for stationary asymptotically weakly dependent time series obser-
vations and also for independent and identically distribuieicd.) observa-
tions The results hold for a variety of different extremum estimatorsluding
generalized method of momentSMM ), maximum likelihood(ML ), and least
squaregLS) estimatorsThe results cover GMM estimators with a fixed weight
matrix, called FW-GMM estimatorsand GMM estimators with an estimated
weight matrix based on a preliminary FW-GMM estimatcalled EW-GMM
estimators

Let B, denote the class of all convex Borel measurable seR-imhe con-
vex variational(CV) distance between the distributions of twe-valued ran-
dom vectorsyY; andY, is defined to be

dev(Y1,Y2) = sup [P(Y; € B) — P(Y, € B)|. (1.1)

BEB,,

We say that twd\N ¥/?-consistent estimatoréLN and ézyN of a parametef, €
C R“ have equab-order asymptotic efficiency if

dCV(Nl/Z(él,N — o), Nl/z(éz,N —6p)) =0o(N"?) fora=(s—1)/2. (1.2)

Analogously two test statisticsT; y and T, y have equals-order asymptotic
efficiency if dey(Ty N, Ton) = O(N72) for a = (s — 1)/2.12

Higher order asymptotic efficiency is defined in terms of CV distances rather
than stochastic differencebecause the main use of asymptotic results is to
provide approximations to the distributions of statistitlse magnitudes of the
errors of these approximations are assessed directly by CV distaticger
order asymptotic efficiency measures the rate at which these errors go to zero
asN — oo.

We now summarize some of the results for the case where the estimator
used to initiate theék-step estimator satisfies aw'/?-consistency type of con-
dition that is shown to hold for a broad class of estimatofer the NR de-
fault NR, and line-search NR-step estimatorsve show that the CV distance
between the distributions of théNY2-normalized k-step estimator and the
corresponding extremum estimator is of ord¢N ~2) for anya = 0 with 2a
an integey provided ¥ = 2a + 2. In terms of equality ofs-order asymptotic
efficiency the requirement is'2= s + 1. Hence for k = 2, we havea = 1
ands = 3; for k = 3, we havea = 3 ands = 7; for k = 4, we havea = 7 and
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s = 15; etc Analogous results are shown to hold fgrwald, and LM test
statistics For the QLR statistic based on an EW-GMM estimator and for the
J-statistic for testing overidentifying restrictionsomewhat weaker conditions
suffice 2K = 2a + 1 or 2 = s. For the QLR statistic in likelihood contexts
even weaker conditions suffic@<** = 2a + 3 or 2"t = s+ 2.

For GN k-step estimatotsve show that the CV distance between the distri-
butions of the(NY/2-normalized k-step estimator and the corresponding extre-
mum estimator is of ordes(N~?) for anya = 0 with 2a an integerprovided
k = 2a + 1. In terms of equality ofk-order asymptotic efficiengythe require-
ment isk = s. Hence in this scenaripfor k = 2, we havea = 3 ands = 2; for
k = 3, we havea = 1 ands = 3; for k = 4, we havea = 3 ands = 4; etc
Analogous results are shown to hold fpkVald, and LM test statisticg-or the
QLR statistic based on an EW-GMM estimator and for Jhstatistic weaker
conditions sufficek = 2a or k = s — 1. For the QLR statistic in likelihood
contexts even weaker conditions sufficek =2a+ 1 or k= s.

The results of the paper can be useful in practice to obtain an estimator that
has the same desirable higher order asymptotic efficiency properties as some
extremum estimator without having to compute the extremum estimEber
results show that it suffices to compute any extremum estimator based on a
well-behaved criterion function and to take a sufficiently large number of steps
k from it and toward the extremum estimator of interddte results also can
be useful to obtain &¥?-consistent estimatpwhich may have desirable first-
or higher order asymptotic efficiency propertistarting from an initial estima-
tor that is onlyN °-consistent for some € (0,3).

On the other handne has to be careful in applying the theoretical results of
the paperbecause they rely on the initial estimator being in a neighborhood of
the true valuelf the initial estimator is far from the true value and the extre-
mum estimator criterion function at hand has multiple local minithan the
asymptotic results will not be reflected closely in the finite sample behavior

The results of the paper extend results of PfanAa§i74, Pfanzagl and
Wefelmeyer(1978, JanssenJureckova and Veraverbek€1985, Robinson
(1988, and othersOne-step estimators were first considered by Fighep5
and LeCam(1956. Papers in the literature that consider higher order asymp-
totic efficiency of estimators include Pfanzad974, Pfanzagl and Wefel-
meyer(1978, Akahira and Takeuch(1981), Rothenberg1984), and Robinson
(1988, among othersPapers that considérstep bootstrap estimators include
Davidson and MacKinnofi1999 and Andrewq2002. Davidson and MacKin-
non (1999 point out thatk-step likelihood ratio bootstrap statistics require fewer
steps than othek-step bootstrap test procedureghich is analogous to what
we find here

Proofs in this paper rely heavily on methods used by Hall and Horowitz
(1996, who consider higher order properties of bootstrap procedures for GMM
estimatorsin turn, the methods of Hall and Horowita996 build on those of
Bhattacharya and Ghogh978 and Gétze and Hipfl983 1994). Parts of our
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proofs are similar to those of Robins@088. The methods of Robinsai1988
are related to those of PfanzadP74) and to results in the numerical analysis
literature on convergence of iterative optimization algoritimg., see Dennis
and Schnabell983 Sect 5.2).

Throughout the papem®(N) denotesIn(N))®.

The remainder of the paper is organized as follofsction 2 provides an
outline of the results and their praddection 3 defines the extremum estima-
tors and test statistic§ection 4 introduces thlestep estimators and test sta-
tistics Section 5 presents the assumptions uSedtion 6 states the higher order
equivalence resultsSSection 7 contains proofs of the results

2. OUTLINE OF THE RESULTS

In this sectionwe provide an outline of the methods and results established in
detail in the sections that follaw

An extremum estimatofy, of a parametef € 0 is defined to minimize a
criterion functionJy (@) over ©. For example Jy(#) could be a GMM or an
ML criterion function The true parameter value 6.

Let éN,o denote the estimator used to initiate thetep estimatorThe k-step
estimator is defined recursively as follows

éN,j :éN,j 1~ (Quj- 1)7 JN(9NJ 1) forj=1..k (2.1)

where Qy j—1 iS a matrix that depends ola‘NJ 1. For NR stepsQy,j-1 =
(0%/06006") JN(GNJ 1). In this casethe definition ofBN « is motivated by the
approximation of(d/00)Jy(6) at thek — 1 step by the affine function

An1(8) = (3/960) Iy (On 1) + (0%36000") Iy (O k1) (0 — On i 1)- (2.2)

The value of that solves the approximate first-order conditiéqg,—1(6) = 0
is easily seen to béNyk. For brevity in this section we only consider the NR
choice ofQy j_1.

We want to show for soma = 0, where 21 is an integerthat

sup |P(Nl/2(éN,k — 6,) € B) — P(NY2(y — 6,) € B)| = o(N2). (2.3

BEB,,

This implies thatN¥2(dy, — 6,) and NY2(dy — 6,) are asymptotically
equivalent to integer ordex= 2a + 1. First we show that the distribution of
NY2(6y — 6,) possesses a well-behaved Edgeworth expansion with remainder
of ordero(N~2). In consequencea small change iz yields a small change

in P(NY2(6y — 6) + z € B). This is used to show thaf2.3) holds if
NY2(0y.« — 6o) andNY2(fy — 6,) are close in the sense that

P(HNl/Z(éN,k — 05) — NY2(6y — 6,)| > wy) = 0(N"?) (2.4)
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for some constantey = o(N~?). Note that the left-hand side ¢2.4) equals
P(|0n,k — Onl > Nil/zaA)N)~

The initial estimatomy o is assumed to satisfy the following conditidfor
some finite constant;,

P(HéN,O — 6o > Cyyn) =0(N7%), (2.5)

where{yy: N = 1} is a sequence of constants that satisfieqligyy = 0 and

vn = (IN(N)/N)¥2 for all N = 1. For examplewe show that2.5) holds with

yn = (IN(N)/N)Y2 if fy, is an extremum estimatoprovided the estimator
criterion function is sufficiently smooth and terms that arise in its Taylor ex-
pansion aboué, have sufficiently many finite moment§See Lemma lwhich
follows.) But, it could be the case that the initial estimator converges more
slowly andyy = N~¢ for somec € (0,3). For examplethis occurs if one min-
imizes an extremum estimator criterion function over a discrete grid of fixed
points or over a set of randomly selected poiistse Robinsgril988 Theorem §.

Given that the initial estimator satisfi€¢&5) for some sequendg/y: N =1},
we show that2.4) holds withwy = C;NY2y2" for someC; < oo for the NR
choice ofQy j-1. The expressionvy = C5NY2y2" corresponds to quadratic
convergence oby  to 6y as the number of stegsincreaseswhich is very
fast

In the leading case wherg, = (In(N)/N)¥2 we havewy = 0o(N~?) (as is
required for(2.4)) provided ¥ = 2a + 2. Fork = 2, this holds fora = 1, which
corresponds to asymptotic equivalenceégfk andéy to orders = 3, because
s= 2a + 1. Fork = 3, this holds fora = 3, which corresponds to asymptotic
equivalence to ordes = 7.

For an initial estimator for whichyy = N7¢ for ¢ € (0,3), wy =
CsNY2y2° = o(N~2) provided ¥ > (a + 2)/c. For examplefor ¢ = £ and
k = 2, this holds fora = 0, which corresponds to asymptotic equivalence of
orders = 1. Forc =  andk = 3, this holds fora = 1, which corresponds to
asymptotic equivalence of order= 3. For c = ; andk = 4, this holds for
a = 3 ands = 7. A larger number of stepk are needed to achieve a given
orders of asymptotic equivalence when the initial estimalf% has a slower
rate of convergence

For the GN choice ofQy j_1, the expression fowy is different from
CsNY2y2°, the rate convergence @k, to dy is slower and k needs to be
larger to obtain the same order of asymptotic equivaleno@,,qfandéN.

To establish(2.4), we show that(i) the difference betweeéN,k and 6
depends on the difference betwe@iiod)Jy(#) and its affine approximation
Ay k-1(0) both evaluated af = 6y and(ii) the latter difference is a quadratic
function of the difference betweeﬁm, «_1 andfy. Our proof parallels the stan-
dard proof in the numerical analysis literature of the quadratic convergence of
the NR algorithm(e.g., see Dennis and Schnap&P83 Sect 5.2). For nota-
tional simplicity let V2Jy k-1 denote(9%/0006') Iy (. _1)- By the definition
of 6N,ka
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« « A 5 1 J A «
On— O = Onk1— (v JN,k—l) £ JN(ON,k—l) — Oy
- (v )1(ia (B) = = By )
N, k—1 99 NN 99 N N, k—1
- VZJN, kfl(éN - éN, k1)>

d ~ N
= (VZ‘JN, kfl)il <£ JN(GN) - AN,kl(gN)>’ (2-6)

where the second equality holds beca(@@g)JN(éN) = 0 with probability
1 - o(N™#) by the first-order conditions fofy. Element by element Taylor
expansions 0fd/d00)Jy(6y) aboutby -, give

d ~ ~
£ JN(GN) - AN,kfl(HN)

3

= |:(éN — Oni-n)’ IO k-1.0) (B — éN,k—l)/2:| , (2.7)

vec

96,0000

where Lbu]\,eC genotes a vector whosgth element isb, and 6y _, , lies be-
tweendy andfy k1.
Combining(2.6) and(2.7) gives

[6n k — Onll = InllOn k-1 — O 12 where

Lo

In= an”(VzJN’j,l)_l)H-E

j=1..., u=1

3

— I (6 i 2][. 2.8
96,0000' N ( N, j 1)/ H (2.8)

We show that there exists a const&nt oo such that

P(¢{n > K)=0(N"?). (2.9)
Repeated substitution into the right-hand side of the inequalit2.B) gives

”éN,k — Oyl = §$|‘éN,O — Oy sz, (2.10)

whereg = 3f_; 2171
We show that the extremum estima#yy satisfies the following conditions
For some finite constar,,

P(|6n — 6o > C4(In(N)/N)¥2) = o(N~2). (2.11)
Equations(2.5) and(2.11) and the triangle inequality combine to yield
P(|0n0— On] > Cyn) = 0(N72), (2.12)
whereC = max{C,,C,}/2.
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Combining(2.9), (2.10), and(2.12) gives the following resultFor some fi-
nite constantC;,

P(”éN,k - éN > C3'Y§k)
= P( |60 — On = Cs%%k)
= P(K*(Cyn)? > C3y8) + 0(N"?)
= o(N"3), (2.13)

where the equality holds fo€; sufficiently large This establishe$2.4) with
wn = CsNY292° . as desired

The proof of analogous results for the Gdtep estimator is similathough
more complicatedand requirek to be larger for a given value @& The rea-
son thatk needs to be larger for the GMstep estimator than the NRstep
estimator is that additional terms arise (26) when Qy ;. does not equal
V2Ju k-1 and these terms increase the difference betvé@gmndéN.

The proofs for results concernirtg Wald, LM, QLR, and J test statistics
under the null hypothesis also are similar to the proof outlined earlier but more
complicated The conditions relatingc anda required for thet, Wald, and LM
statistics are the same as those for the normalized estimgt8¢dy , — 6o),
because the differences between kkstep and extremum versions of these test
statistics are approximately linear functionsl\b’f/z(éN,k — 6y). The conditions
required for the QLR and-statistics are weaker than for the other statistics
The reason is that the differences betweenktiséep and extremum versions of
these statistics are approximately quadratic functionsIJdF(éN,k — 6y) and
NY2(Gy.« — 6n), Wwherefy  andfy are restricted analogues @§ , andf, that
satisfy the null hypothesis

3. EXTREMUM STATISTICS

In this sectionwe define the extremum estimators and corresponding test sta-
tistics that are consideredVe consider extremum estimators that are either
GMM estimators or estimators that minimize a sample aver&ge call
the latter “minimump estimators because the sample average is taken to be
N-13N. p(X,6), whereX; € R is a random vecto € © C R is an
unknown parameteandp(-,-) is a known real functionML, LS, and regres-
sion M estimators are examples of minimymestimators GMM estimators
are based on the moment conditidgg( X, 6,) = 0, whereg(-,-) is a known
L,-valued functionX; is as befored, € 6 C Rb is the true unknown param-
etef andLy = L,.

Minimum p estimators can be written as GMM estimators wgilX;, §) =
(9/00) p(X;,0). It is useful to consider minimum estimators separatelljow-
ever for two reasonsFirst thek-step estimator may differ depending on whether
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the extremum estimator is written in minimumor GMM form. The tradi-
tional one-step scoring estimator is obtained by writing the ML estimator as a
minimum p estimatoy not as a GMM estimatoSecondthe identification con-
dition for consistency of a minimum estimator requires that there is a unique
minimum of Ep(X;,0) over # € 0, whereas the identification condition for
consistency of the GMM estimator based on the first-order conditions of the
minimum p estimator requires that there is a unique solution to the equations
E(9/00)p(X;,0) = 0 overf € 0. The latter may have multiple solutions even
though the former has a unique minimum

The observations ar€X;:i = 1,...,n}. They are assumed to be from a
(strictly) stationary and ergodic sequence of random vect®ks assume that
the true moment functiongy(X;,0y) :i = 1} (for a GMM or minimump esti-
maton are uncorrelated beyond lags of lengtfor some 0= « < oo. That
is, EQ(Xi,60)9(Xi+j,60)" = 0 for all j > «. This assumption is satisfied with
x = 0 in many time series models in which the estimator moment functions
form a martingale difference sequence as a result of optimizing behavior by
economic agenjsbecause of inheritance of this property from a regression
error term or because of the martingale difference property of the ML score
function It also holds with 0< « < co in many models with rational expec-
tations andor overlapping forecast errgrsuch as Hansen and Hodri¢k980),
Brown and Maital(1981), and Hansen and Singletqd982. For additional
referencessee Hansen and Singlet¢h996.

A consequence of the assumption thed(X;,65)9(Xi.j,0,)" = 0 for all
j > « is that the covariance matrix estimator and the asymptotically optimal
weight matrix for the GMM estimator only depend on terms of the form
9(Xi,0)9(Xi4;,0)" for 0 = j = k. This means that the covariance matrix esti-
mator and the weight matrix can be written as sample aveyaggésh allows
us to use the Edgeworth expansion results of Gotze and Hipp3 19949
for sample averages of stationary dependent random veesrsn Hall and
Horowitz (1996.

To this end we let

X=X\, X1, X)) fori=1,...,n—«. 3.1)

All of the statistics considered subsequently can be closely approximated by
sample averages of functions of the random vec¥rs the sampleyy:

N =1X:i=1,...,N}, (3.2)

whereN = n — k.

We consider two types of GMM estimatdrhe first is a FW-GMM estimator
that utilizes anLy X Ly nonrandom positive-definite symmetric weight matrix
Q. In practice Q is often taken to be the identity matrl;gg. The second is an
EW-GMM estimator that uses a weight matrix that depends on a preliminary
FW-GMM estimator and is asymptotically optimal to first order the litera-
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ture this estimator is sometimes calledvwa-step GMM estimatoWe do not
use this terminologybecause we reserve the tekistep GMM estimatofor
the iterative estimator that is the main focus of this paper

The FW-GMM estimatqréy, minimizesJy(#) over ®, where

N / N
In(8) = (Nl__Zlg(Xi,H)>Q<N1__219(Xi,9)>- (3.3

TAhe EW-GMM estimatgrwhich, for economy of notationwe also denote
by 6y, minimizesJy (6, 6y) over ®, where

N 4 N
I (6, 0y) = (Nl > g(Xi,6)> () (Nl > g(Xi,0)>, where

i=1

O (0) = WH(0),
W () = N1 (g(xiye)g(xi’g)/ + > H(Xi’xiﬂ"e)),
i=1 i=1

H(Xi, Xi1,0) = 9(X;,0)9(Xi15,0)" + 9(Xi4;,0)9(X;,0)', (3.4)

and#fy minimizes(3.3).4
The minimump estimatoy which we also denote bgy, minimizes py(6)
over 0, where

N
pn(0) = Nflzp(xi,a)- (3.5)

For this estimatqrwe letg(X;, ) denote(d/d0)p(X;,0).
The asymptotic covariance matyix, of the extremum estimatdh, is

(D’QD)D'00,10OD(D'OD)™t  for FW-GMM

o =1(D'Q,D)? for EW-GMM
D 0,!D? for minimump, where
__ d
QO = (EWN (90))71 and D = E @ g(xl ,00). (3.6)

A consistent estimator af is
oy = on(6y), Where
(D (6) Dy (6)) "Dy (8) Q0N (6) Dy (6)
X (Dn(6)QDy(6) for FW-GMM
(Dn(6)'Qn(0)Dy (0)) 1 for EW-GMM
Dy (6) Q' (0)Dyt(0) for minimump,

on(0) =
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and

N 9
Dn(6) = N1 PYY g(X;,0). (3.7)
i=1

Let#d,, 6o, and(fy), denote theth elements od, 6,, anddy, respectively
Let (on),r denote thgr,r)th element ofoy. Thet-statistic for testing the null
hypothesisHy: 6, = 6o, is

Tn = NY2((6)r = b0, )/ (on)/>. (3.8)

UnderH, and the assumptions given subsequefitlyhas an asymptotii (0,1)
distribution

Let () be anR"-valued function(for some integet, = 1) that is contin-
uously differentiable afl,. The Wald statistic for testingly: n(6y) = 0 versus
H1:7](¢90) #0is

. . o . Y\
W = N”I(GN)’<8_0, ”’7(0N)0'N<£ 7](9N)>> 7(0y). (3.9)
UnderH, and the assumptions given subsequendly, has an asymptotic chi-
squared distribution with.,, degrees of freedom

Next, we consider the LM statistic for testingy: 8 = 0 versusH,: 8 # 0,
whered = (7/, ')’ andB € R“s. By definition, the restricted FW-GMM esti-
matot denoteddy = (7,0')’, minimizesJy () over®@,={ € ®:6 = (7,0")’
for somer € R'-}. The restricted EW-GMM and minimum estimatorsalso
denoted bydy = (7,0")’, minimize Jy(6,6;;) and py(8), respectively over
0o, wheredy; denotes the restricted FW-GMM estimator

The LM statistic is

LMy = Uy(6y)'Uy(6y), where
Un(0) = Ul,N(a)UZ,N(0)7
Upn(0) = ([O“Lﬁ]UN(@)[Of'LB]’)71/2[03|Lﬁ], and

( Jd
N¥2(Dy(6) 2Dy (6)) %~ (6) for FW-GMM

d
Uy n(0) = { NY2(Dy(6)Q(0)Dy(6)) " 20 In(8,605) for EW-GMM

N¥2D () 9 (6) for minimum
\ N 90 PN p-

(3.10)

UnderHgy and the assumptions given subsequenhithty has an asymptotic chi-
squared distribution with ; degrees of freedom
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The QLR statistic for testingdy: 8 = 0 versusH,;: 8 # 0 is

N(JN(O_N90:|) - JN(éN,éN)) fOI’ EW‘GMM

2N(pn(By) — pn(6y)) for minimum p. (3.11)

QLRy = {
Under Hy and the assumptions given subsequer@izRy has an asymptotic
chi-squared distribution witl ; degrees of freedom wheQLRy is based on
the EW-GMM estimatarWhen QLR is based on the minimum estimatoy
the asymptotic chi-squared result requii2s= Qg*. For example the latter
holds in an ML context by the information matrix equaliprovided the model
is correctly specified

We do not consider LRy -statistic that is based on the FW-GMM estima-
tor, because such a statistic has an asymptotic chi-squared null distribution only
if Q =0yt The latter is rarely satisfied in practiceecause one rarely knows
Oo.

The J-statistic for testing overidentifying restrictions is

I = Kn(0n)' Ky (by), where
N
Kn(0) = Q?(0n)N72 X g(X;,0), (3.12)
i=1

6y is the EW-GMM estimatgrand dy, is the FW-GMM estimatorlf Ly > Ly

and the overidentifying restrictions hglithenJy has an asymptotic chi-squared
distribution withLy — L, degrees of freedom under the assumptions given sub-
sequently (This |s not true ifdy is the FW-GMM estimator an@2(dy) is
replaced byQ¥? in (3.12).)

4. k-STEP STATISTICS

Here we define thek-step estimators an#l-stept, Wald, LM, QLR, and
J-statistics Thek-step estimator is denoteﬁq, - The starting value for thk-step
estimator is a consistent estimaﬁp\[o. For the FW-GMM estimatgomwe define
recursively

éN,j = é\N,jfl (QN] 1)_ HNJ 1) for 1<J =k (41)

For EW-GMM and minimump estimators HAN,k is defined in the same way
with (3/06)Jy(0nj-1) replaced by(3/06)Jy(Oy -1, 0y ,) and N"2 3L, X
9(Xi, 0 j-1)s respectivelywhere the derivative is taken with respect to the
first argument ofdy(-,-) and by, K, denotes thek;- -step FW-GMM estimator
defined in(4.1), that starts from the same estlmam[o as thek-step EW-
GMM estimator We assume that,; = k.

Thel, X L, random matrixQy ;—, depends onﬁN,j_l. It determines whether
the k-step estimator is an NRx default NR a line-search NRa GN, or some
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otherk-step estimatoiThe NR default NR and line-search NR choices Qf, ;1

yield k-step estimators that have the same higher order asymptotic efficiency
The results that follow show that they require fewer sidpso approximate

the extremum estimatdiy to a specified accuracy than does the &iNtep
estimator The NR choice oQy 1 is

2

3990" JN(HNJ 1) for FW-GMM

QUf-1=4 @ (4.2)
3990" —— Jy(Oy;-1.0n,) for EW-GMM
DN(eN,jfl) for minimump,

where the derivatives aly(-,-) are with respect to its first argument ae,(;lk

is defined as beforéNote that the expression fa9|<, « for a minimump estima-

tor with the NR matrleNJ , is just the usual one-step scoring estimator start-
ing from 0N «_1 in the case of the ML estimator with score functigfx, 9)

(= (0/00)p(x,0)). It is possible for that NR steps may move one away from
the target extremum estimatdfor this reasonwe also consider default and
line-search NR matrice®y ;.

The default NR choice 0Qy -1, denotedQNJ 1 equaIsQN] 1 i QU
leads to an estlmattﬁr,\,l via (4.1) for which JN(QN )= JN(GNJ ;) for the FW-
GMM estimator but it equals some other matrix otherwida practice one
wants this other matrix to be such th]a,,t(éN,j) < JN(éN,j_l) (but the theoreti-
cal results do not require this-or exampleone might use the matrigdl/e)l, ,
for some smalle > 0. (For a result that indicates that such a choice will de-
crease the criterion functipsee Ortega and Rheinbald97Q Theorem &.1.)

For the EW-GMM and minimunp estimatorsJy(-) is replaced by]N(-,éN, k)
andpy(-), respectively

The line-search NR choice @y j-1, denoteoQN] 1, uses a scaled version
of the NR matnxQNJ 1 that optimizes the step lengtBpecifically let A be a
finite subset of(0,1] of step lengths that includes Dne computes?,\,,j via
(4.1) for Qu ;-1 = (1/a)QNJ , for eacha € A. One takesQN, , to be the
matrix (1/a)QN, , for the value ofa that m|n|m|zes]N(0N j)overalla € A
for the FW-GMM estimatar(If the minimizing of value ofa is not unique
one takes the largest minimizing value efin A.) For the EW-GMM and
minimum p estimators one replaces (fy ;) by Jy(6y,j,0n.,) and pn(6y),
respectively

The GN choice ofQy -1, denotedQNJ 1, uses a matrix that differs from
but is a close approximation tthe NR matrleNJ 1. In particular

2D{; 10Dy 1 for FW-GMM
QN1 = | 2Df -1 (O k,)Dn -1 for EW-GMM (4.3)
Dy j-1 for minimum p,
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whereDy j_, is determined by some functiax(-,-) as follows

N
Dyjo1= N> A(X,0y;1) €R*  and

i=1
- d
EA(XhHO) =E (.)_0, g(xi700)~ (44)

The latter condition is responsible fddy ;_, being a close approximation
to DN(HNJ 1), which appears |rQNJ .. Note that for the FW-GMM and
EW—GMM estlmatorsQNJ , Is the sum of two termsone of which contains

N1, (0%0000") g(Xi, 0y j-1). The latter term is omitted IS 4. It is
close to zerpbecause it is multiplied by the factdd 13N g(XI,BN,J,l),
which is close to zero

For an example of a GN matrix for FW-GMM or EW-GMM estimatocen-
sider a nonlinear instrumental variabl@¥' ) estimator for which

g(xl’a) = U(X|,9)L(Z|,9) and E(U(XI’HO)|ZI) = O as, (45)
whereU(X;,6) € Ris a residualL(Z;,6) € R"s is a function of some IVg;,
andZ; is a subvector o0¥;. In this case

ad
FYD 9(Xi,0) = L(Z,0) a_e' U(X;,6) + U(X.,e) L(Z.,H) (4.6)

The GN choice oQy j—; omits the second summand(@faa’)g(xi,e) in Dy j—1
because&U(X;, 0y)(9/00')L(Z;,6,) = 0. That is QNJ ,is asin(4.3) and(4.4)
with

A(X,0) = L(Z,,0) U(X,,H) (4.7)

For an example of a GN matrix for a minimumestimatoy consider the LS
estimator of a nonlinear regression madel

q(Z;,6,) +U; fori=1,...,n,
p(X,,G) = (YI - q(zno))z/z,
J
9(Xi,0) = =(Y; —q(Z;,0)) 20 q(Z;,0), and

2

d d
_g( i )_ Q(Zna)

q(zl ) 6),

(4.8)

whereY; is a scalar dependent variaplg is a vector of regressor variables
U; is an unobserved scalar error wit{U;|Z;) = 0 as., andq(-,-) is a known
real function that is twice differentiable in its second argumé&he GN ma-

a0’ 06000’
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trix QN _, omits the second summand @i/06')g(X;,0), becauseE(Y; —
q(Zl,eo)) (0%/060060')q(Z;,6,) = 0. That is QN, . Is as in(4.3) (for minimum
p estimator$ and (4.4) with

- d
A(Xna) _Q(Zn@) 00’ (ZI,H) (49)

A second example of a GN matrQN] , for a minimump estimator is the
sample outer-product estimator of the information matrix in a ML scen&rip-
pose thapy(6) is a normalized negative log likelihood function agdX;, 0) =
(9/00) p(X;, 0) is the negative scor@r conditional scorefunction for theX;th
observationBy the information matrix equality

d

66, g(XHeO) Eg(xi’eo)g(xi’HO)/ (410)

when the model is correctly specifielth this casethe NR matnxQNJ , is the

sample analogue of the expectation on the left-hand sidd.t0): QNl L=
1SN (3/96 )g(XI,ONJ 1). The GN matrleNJ , is the sample analogue

of the expectation on the right-hand side(4f10). Thus QNJ ,is as in(4.3)

(for minimum p estimatorg and (4.4) with

The GN matrix does not require calculation of the second derivative of the log
likelihood function

Alternatively in an ML scenaripone can use a GN matriQy j—, based on
the expected information mattix

6

!
89 0=0;1

where E, denotes expectation when the true parametér. is this casethe
function A(X;, ) of (4.4) is E4(9/06")9(X;,6), which is nonrandom and does
not depend orX;. The expected information matrix is often used in the statis-
tical literature on one-step ardstep estimators in likelihood scenari@sg.,
see Pfanzagll974).

For GMM estimators that have the same number of moment conditions as the
dimension o, such as ML estimators defined via the likelihood equat;iém(
is the same whether defined usifigor Qy (fy,) (because the moment condi-
tionsN~2 3, g(X;,8) have an exact zero with probability that goes to one at
an appropriate rate a$ — o).

Next we define the restrictell-step estimatofy  of 7 that is used by the
k-step LM and QLR statistics when the null hypothesi¢lis 8 = 0. The re-
stricted estimatofy  of 7 yields the corresponding restricted estimatQy, =
(7,x,0")" of 6. The starting value for the restrictdéestep estimator is an esti-
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mator Oy, = (7X,0,0")" that is consistent undét,: 3 = 0. For the restricted
FW-GMM estimatoy we define7y  recursively via

g = Tjo1— (QF -0 JN(ONJ ) forl=sj=k (4.13)

where (0/d7)Jy(0) denotes the vector of partial derivatives Rf(6) with re-
spect to the first. . elements of andQf ;_, is anL, X L, matrix that depends
on 7y j-1. The matrixQf ;—, determines whether the restrictedtep estimator
is an NR a default NR a line-search NRa GN, or some othek-step estimator
Often Qi1 equals the uppel, X L, block of Qy j—; defined withfy ;_; in
place offy 1.

For EW-GMM and minimump estimators7y i is defined as in4.13) with
(0/07)In (O, ;1) replaced by(d/07)Jy (On, 1,08, k,) @and (8/07) pn(Tn,j-1), re-
spectively where the derivative is taken with respect to the firselements of
the first argument ofy(-,-) andéy, ,, denotes the restricted -step FW-GMM
estimator that starts at the same estimai@p as the restricteck-step EW-
GMM estimator We assume that; = k.

The restricted NR matrixQ{ ¥, default NR matrix Qi ,, line-search
NR matrix Qf ]le, and GN matrix Qi are defined as in4.2)—(4.4)
but with 9%/9606’, On.j—1, Onj—1, Dn(0), andDy j_, replaced by %/arar', Oy j-1,
0N,j-1, the first L, rows of Dy(#), and the firstL, rows of Dyj_4,
respectively

We define thek-stept-statistic Ty , Wald statistic Wy , LM statistic LMN ks
QLR statistic QLRy x, and J- stat|st|c I ks @s in(3.8)—(3.12), but with (6y),,
On, On, Oy, andéy, replaced wa ko 6N K HN ky> On. ko andey k, respectlvely
in all parts of their defmltlonswhereeN r denotes theth element ofHN K
HN, k, denotes the;-step FW-GMM estimatorand 6y ,, denotes the restricted
k,-step FW-GMM estimator

5. ASSUMPTIONS

We now introduce the assumptionghey apply to the FW-GMMEW-GMM,
or minimump estimator

Let a be a non-negative constant such thati? an integerThe following
assumptions depend @nand are used to show that the CV distances between
the distributions of thé&-step and the extremum statistics af& ~2). This cor-
responds to equality af= 2a + 1—order asymptotic efficiencihe larger i,
the stronger are the assumptions

Let f(X;,0) denote the vector containing the unique component;of
9(X;,0), and g(X;,0)g(Xi4j,0)" for j = 0,...,k, and their derivatives with
respect tof through orderd = max{2a + 2,3}. Let f(X|) = f(X;,6,). Let
(07/007)g(X;,0) denote the vector of partial derivatives with respecttof
orderj of g(X;,8). For a matrixA, |A| denoteg(tr(A’A))Y2,
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Assumption 1 There is a sequence of.d. vectors{g;:i = —o0,...,00} Of
dimensionL, = L, and anL, X 1 function h such thatf(X,) =
h(ei,&i_1,8_2,...). There are constants < co and¢ > 0 such that for all
m=1

E”h(gi’si—l’---) - h(Si’Si—lw--78i—m70’0’---)” = Kexp(_gm)-

Assumption 2 (a) ® is compact and, is an interior point of®. (b) Either
(i) 6y minimizes Jy(6) or Jy(6,6y) over 8 € O; 6, is the unique solution
in © to Eg(Xy,0) = 0; for some functionCy(x), |g(x,6:1) — a(x,6,)] =
Cy(X)[61 — 6| for all x in the support ofX; and all 6;,6, € ©; and

Cq°(X1) < oo and E|g(Xy,0)% < oo for all 0 € O for gy = max{2a + 1,
2} or (i) 6y minimizes py(6) over 8 € O; 6, is the unique minimum of
Ep(X.,0) over 8 € 0O; and E|p(X.,0)|% < oo for all # € ® and
ESUpecolg(Xy,0)[|% < oo for gy = max{2a + 1, 2}, where g(x,0) =
(9/00) p(X,6).

Assumption 3 (a) EQ(Xy,60)9(X1+j,600)" = 0 for all j > « for 0 = k < oo.
(b) Q and Qg are positive definite and is full rank Ly. (c) g(x,6) isd =
max{2a + 2, 3} times differentiable with respect t® on Ny, some neigh-
borhood ofé,, for all x in the support ofX;. (d) E[f(X;)|% < oo for q; =
2a + 3. (e) There is a functionCy(X;) such that| f(X.,0) — f(Xy, 60| =
Cy(X1)|6 — 6| for all & € Ny andECH(X,) < oo for g, = 2a + 3. (f) If the
Wald statistic is consideredhe R“»-valued functionn(-) is d times continu-
ously differentiable at, and(9/d0')n(6) is full rank L, = L,. If the LM or
QLR statistic is consideredhe true parameted, = (74,0')’ underH, is such
thatrg is in the interior of{7:(7,0')’ € Og}.

Assumption 4 There exist constants; < co ands > 0 such that for arbi-
trarily large > 1 and all integersn € (6 4 N) andt € RY™(") with § <
Ith <N,

2m+1 _
E’E(exp(x/—lt’ > f(Xs))
s=1
Assumption 5 The initial estimatoréN,o satisfies the following conditions

For some finite constar, and for some sequence of constafigg: N = 1}
with limy_,..yn = 0 andyy = (In(N)/N)¥2 for all N = 1, we have

= exp(—9).

{8,-:|J'—m|>K1})

P(HéN,O — 6o > Cyyn) =0(N72).

If the LM or QLR statistic is consideredhe restricted initial estimatdiy o =
(7X,0,0")" satisfies the same condition undeg.

Assumption 6 The matriceqQy j-1:j = 1,...,k} satisfy the following con-
ditions For some finite constan€, and for some sequences of constants
{nj-1:N =1} forj = 1,...,k that satisfy eithei) yn ;-1 =0 forallN=1
andj =1,...,kor (i) ¢ -1 = max{y2 ", (In(N)/N)¥2}, we have
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82
P(”QN,jl 96000 ‘]N(HNJ D> Cothn j- 1> =0o(N"?) forj= . K

for FW-GMM estimators For EW-GMM and minimump estimators
analogous conditions hold Wlth(az/aaae )JN(0N, 1) replaced by
(0%/0006' )JN(QN, 1,¢9N k) and DN(GNJ 1), respectively If the LM or QLR
statistic is consideredQf;_,:j = 1,...,k} satisfy the same condition with
the same constan{s//,\,J 1:N =1} but W|th (az/afar’)JN(élNJ 1) in place of
(%0600’ )JN(ONl ,) for the restricted FW-GMM estimator and analogously
for the restricted EW-GMM and minimum estimators

When considering th@LRy «-statistic we use the following assumption

Assumption 7 The QLRy-statistic has an asymptotjg? expansion with re-
maindero(N~?). That is there exist polynomialg§w;(z):i = 1,...,[a]} in z
whose coefficients ar®(1) such that

[a]
sup|P(Ay € B) —fB<1+ ElNim(z)) f,2(2)dz| = o(N73),

BEB;
wheref,z(-) denotes the density of som¢& random variable

Assumption 1 is the same as conditidn of Gétze and Hipg1994). It is an
assumption of asymptotically weak temporal dependence of the sequence of
random vector$ f(X):i = 1}. It implies that{ f(X;) :i = 1} are strong mixing
Assumption 1 holds automatically {X;:i = 1} are ii.d. Assumption 2 is a
standard assumption used to obtain consistency of extremum estimf&ers
sumption 3 is similar to conditions in the literature used to obtain asymptotic
normality of extremum estimatarBut, whena > 0, it imposes stronger smooth-
ness and moments restrictions than is typitaladdition Assumption 3a) is
more restrictive than usuabee Section 3 for a discussion of Assumptidn)3
Assumption 4 is the same as conditic) of Gotze and Hipp(1994. It re-
duces to the standard Cramér conditiogXf:i = 1} are ii.d.

The conditionyy = (In(N)/N)¥2 in Assumption 5(concerning the initial
estimatoréy o) is not restrictive because Assumption 5 typically does not hold
for constantsyy that are smaller thatin(N)/N)¥2 For some estimatoy#\s-
sumption 5 may hold only whepy > (In(N)/N)¥2 such asyy = N~ V4,

On the other hanadhe following lemma shows that for initial estimators in a
broad class of extremum estimators Assumption 5 holds witlgiven by the
minimal values

= (In(N)/N)Y2, (5.1)

LEMMA 1. SupposeéN,o is an extremum estimator that minimizes a crite-
rion function d,0(6), Ju.0(6, On,0), OF pro(68) over®, where do(8), Io(6,On o),
and pyo(6) are defined as in (3.3)—(3.5), respectively, wittXg 6), Q, Qy(-),

On, p(X;,0), and f(X;,0) replaced by some quantities(d;,6), Q°, Quo(-),
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On.0, po(Xi,0), and §(Xi,0), respectively. Suppose Assumptions 1-4 hold with
the same changes. Suppdkg, is a restricted extremum estimator that mini-
mizes one of the preceding criterion functions o®gibut with dy o replaced by
0.0 1N In0(6, On0), whereéy , minimizes Jo(6) over ©,. Then, Assumption 5
holds withyy = (In(N)/N)¥2,

Remarks

(1) Given the result of Lemma, the leading case of interest fgg in Assumption 5
is yn = (IN(N)/N)¥2 Much of the discussion that follows focuses on this case
But, we provide results that allow for initial estimators that have a slower rate of
convergencesuch as those for whiciy = N~¢ for ¢ € (0,3). This occurs with
an initial estimator that is defined by minimizing a criterion function over a dis-
crete grid of points or over a set of randomly selected poratser than all points
in the parameter space

(2) In Lemma 1 the condition ond in Assumption 3 for the initial estimatoréw
andfy o can be weakened o = 3. (This holds because the proof of Lemma 1
only relies on Lemma 5 in Section 7 and not on Lemma 8.08€e the remark
following Lemma 9 in Section.y

Next, we provide sufficient conditions for Assumption 6 for the Ndefault
NR, line-search NRand GN choices of matrice3y ;1. Other choices of ma-
tricesQy, ;1 are possible

LEMMA 2. Suppose Assumptions 1-5 hold for son®e @with 2a an inte-
ger. Then, Assumption 6 holds wigh,; = Oforall N =1and j=1,...,k
for the NR, defaultNR, and line-searchiNR choices of Q ;. In addition, As-
sumption 6 holds witly ;1 = max{y3 ", (In(N)/N)¥2} for the GN choice of
Qu,j-1 forj =1,...,k, provided Assumptions 1 and 4 hold with the elements
of A(X;,8y) (defined in (4.4)) added to(¥;), the functionA(-,-) satisfies
E(A(X;,00) — (0/060")g(Xi,60)) = 0, A(X;,#) is continuously differenti-
able in 0 for 8 € No, E|A(Xi,0,) — (0/90")g(Xi,0,))]?*2 < oo, and
E supen,(0/36,)A(X;,0)|% < o forallr =1,...,L, for g, = max{2a + 1, 2}.

Remark Suppose Assumption 5 holds with, = (In(N)/N)¥2 as Lemma 1
shows occurs for a broad class of extremum estimaidren for GN choices
of Qu,j—1, Assumption 6 holds by Lemma 2 withy ;1 = (In(N)/N)*? for all
N=1andj=1,...,k

Assumption 7 is shown to hold under regularity conditions.ird.i likeli-
hood contexts by Chandra and Ghd4l979 Sect 4). Furthermoreit should
be possible to use the same line of argument in the nah-iikelihood case
and in the EW-GMM case making use of the lemmas given in Sectibtow-
evet the arguments for these cases would be quite long and invdhardrev-
ity, we do not provide such results
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6. EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY
OF k-STEP AND EXTREMUM STATISTICS

The higher order asymptotic equivalence of Kastep and extremum statistics
is established in parid)—(d) of Theorem 1which follows Part(b) gives con-
ditions under which the CV distances betweéNY?(Ay . — 6o), Ta.io
Wilo LMy ) and (NY2(8y — 6o), Ty, W, LMy), respectivelyareo(N~2) for
somea = 0. Part(c) does likewise folQLRy k, Jy k) and(QLRy, Jy) when
QLRy is based on the EW-GMM estimatd?art(d) does likewise folQLRy
and QLRy whenQLRy is based on the minimum estimator The conditions
required for partd) are weaker than those for pdcj, which, in turn, are weaker
than those for partb).

In part (a) of the theoremthe difference between thestep estimator and
the corresponding extremum estimator is shown to be of greater magnitude than
M,k With probability o(N~?), where

y2 when Assumption 6 holds witf ; ; = 0
Mk = k when Assumption 6 holds witiy ;; (6.1)
™ JHl Vi =max{yg ", (In(N)/N)¥2}.

Thus uy k= y,ﬁk for NR, default NR and line-search NR matrices apg, x =
yn I ;1 for GN matrices

If Assumption 5 holds withyy = (In(N)/N)Y2, as it does for the extremum
estimators of Lemma,then for GN matricegy j—1 = (In(N)/N)¥? = y and
wn,k Simplifies to

k= YN (6.2)

We see that for the NR procedures the differeneq « (= y,%k), decreases
very quickly ask increaseswhereas for GN procedures the differenge
(= &™), decreases more slowly &sncreasesSimplified formulae foru i
for GN matrices wheryy = N~¢ for ¢ < % are given in Remark 3 following
the theorem

The key condition in partb) of Theorem 1 is

pnk = O(N~(@H/2), (6.3)

where 2 is a non-negative intege@iven this conditionthe CV distances be-
tween thek-step and extremum statistics aré\ ~?), and these statistics have
equal asymptotic efficiency to order= 2a + 1.

If Assumption 5 holds withyy = (In(N)/N)¥2, as it does for initial estima-
tors that are extremum estimatpasid Assumption 6 holds witl ; = 0, as it
does for NR default NR and line-search NR procedurdében(6.3) holds if

2k=2a+2 orequivalently 2K=s+1, (6.4)
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where 2 ands are integersThus for k = 1, we havea = 0 ands = 1; for
k =2, we havea =1 ands = 3; for k= 3, we havea = 3 ands = 7; for k=4,
we havea = 7 ands = 15; etc

If Assumption 5 holds withyy = (In(N)/N)¥2? and Assumption 6 holds with
¥n; = (IN(N)/N)VZ as it does for GN procedures under the conditions in
Lemma 2 then(6.3) holds if

k=2a+1 orequivalently k=s, (6.5)
where 2 ands are integersThus for k = 1, we havea = 0 ands = 1; for
k = 2, we havea = 3 ands = 2; for k = 3, we havea = 1 ands = 3; for
k = 4, we havea = 3 ands = 4; etc

Conditions under which6.3) holds when Assumption 5 holds witjy, =
N~¢ for ¢ € (0,3) are given in Remarks 2 and 3 following the theorem

The conditions used in par{s) and(d) of the theorem folQLRy x andJy «
are discussed in Remarks 4 and 5 following the theorem

The main result of the paper is the following theordtrholds Whené,\,)k is

the FW-GMM, EW-GMM, or minimum p k-step estimatorAs previously B,
denotes the class of convex setsRh

THEOREM 1 Suppose Assumptions 1-6 hold for somz & with 2a an
integer in parts (a)—(d), which follows. When considering test statistics in parts
(a)—(d), the null hypothesis is assumed to hold.

(&) Then, for some finite constant,C

P(”éN,k —Oul > Csmn k) =0(N72),
P(I Tk — Tnl > CaNY2uy ) = o(N73),
P([Wi k= Wnl > CaNY2uy ) = 0o(N72),
P(|LMy k= LMy | > C3N¥2uy ) = 0(N72),
P(JQLRyk — QLRy| > C30ay k) = 0(N7?)
whendy, andf are EW-GMM estimators,
P(|QLRy« — QLRy| > CsNuf ) = o(N™?)
whenéy, and 6y, are minimuny estimators, and
P([Ink = Inl > Caly mn) = O(N72),

where g = max{In(N), Ny, i} -
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(b) Supposeuy = o(N~@*Y2) Then,

sup |P(NY2(fy « — o) € B) — P(NY2(y — 6,) € B)| = o(N™2),

BEB,,
sup|P(Tyk € B) — P(Ty €B)| = o(N7?)
BEB,
under H,,
sup|P(Wy « € B) — P(Wy € B)| = o(N™?)
BEB,
under H,,
and

sup|P(LMy « € B) — P(LMy € B)| = o(N"?)

BEB,
under H,.

(c) Supposgiy kx = o(N~2gyt). Suppose Assumptiahholds when consid
ering the QLR \-statistic. Then, for the QLfr-statistic based on the
EW-GMM estimator and for theJ,-statistic,

sup|P(QLRy € B) — P(QLRy €B)| = o(N"?) underH, and

BEB,

sup|P(Jyx € B) — P(Jy €B)| = o(N"®) under H,.
BEB;

(d) Supposeuyx = o(N~@"D/2) and Assumption 7 holds. Then, for the
QLR -statistic based on the minimupmestimator,

sup|P(QLRy « € B) — P(QLRy € B)| = o(N"2) under H,.

BEB,

Remarks

1. Whena = 0, part(a) gives the stochastic differences between the statis-
tics 0N « and by, etc, as in Robinson(1989 (although Robinsan1988 does
not consider test statisticdVhena = 0 andyy = N ¢ for somec € (0,3), the
results of parta) for GN procedures are stronger than those in Robir{$688
because we exploit the fact that Assumption 6 holds with lower bouRrds
that decrease ipin this caserather than being independentjoiNVhena > O,
part (a) gives stronger results than stochastic difference resitilshows that
the difference betweek-step and extremum statistics is very small except on
sets with very small probabilitie§hese stronger results are used to establish
parts(b)—(d) of the theoremParts(b)—(d) show that the cv distances between
the distributions oNY?(fy  — 6o) andN¥2(fy — 6,), etc, areo(N~?). Parts
(b)—(d) establish that thk-step and extremum estimators and test statistics have
equals-order asymptotic efficiency fos = 2a + 1.
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2. Here we discuss the conditiny = o(N~@*Y2)) in part(b) of the theo-
rem when Assumption 5 holds withy, = N~¢ for somec € (0,3) and NR
default NR or line-search NR procedures are emplaykdthis case uy x =
N~ and the condition holds if’2> (a + %)/c. For exampleif ¢ = %, it holds
if 2K > 4a + 2. If ¢ = 7 andk = 2, the condition holds witta = 0 ands = 1. If
¢ = 1 andk = 3, the condition holds witta = 1 ands = 3.

3. Some calculations show that if Assumption 5 holds with= N~¢ for
c € [275,27P1) for someb € {2,3,...}, then for GN matricesw « satisfies

MNKk = y2' fork<b

(6.6)
wnk=7Ya (In(N)/N)*k2+D/2 for k= b,

In this caseyy j-1 = v2 forj<b andyn ;-1 = (IN(N)/N)¥2 for j = b.

Supposeyy = N~ ¢ for ¢ € [4,3); thenb = 2, uy = N72¢ for k = 1, and
punk = N726(In(N)/N) /2 for k = 2. In this casethe conditionuy =
o(N~@*¥2) in part(b) of the theorem holds fok = 1 if ¢ > a/2 + 7, which
holds fora = 0 ands = 1 providedc > 7 and does not hold even far= 0
whenc = 3. The conditionuy x = o(N~@*Y2) holds fork = 2 if k > 2a —
4c¢. For k = 2, this condition holds witha = 1 ands = 3 for ¢ =  and with
a= 2 ands = 4 for c > 1. For k = 3, the condition holds witta = 3 and
s= 4 forc = ; and witha =2 ands = 5 for ¢ > 1.

4. Here we discuss the conditigny « = o(N~2gy?) in part(c) of the theo-
rem When Assumption 5 holds withy = (In(N)/N)¥?2 as it does for extre-
mum estimators under the conditions of Lemmaathd Assumption 6 holds
with ¢y ; = 0, as it does for the NRdefault NR and line-search NR proce-
dures thengy = In(N) and the conditionuy x = o(N~2gy?) holds provided

2K=2a+1 orequivalently 2¢=s (6.7)

Thus for k = 1, we havea = 3 ands = 2; for k = 2, we havea = 3 ands = 4;
for k = 3, we havea = £ ands= 8; for k = 4, we havea = ¥ ands = 16; etc

If Assumption 5 holds withyy = (In(N)/N)¥2 and Assumption 6 holds with
¥, = (IN(N)/N)¥2 as it does for the GN procedure under the conditions in
Lemma 2 thengy = In(N) and the conditionuy , = 0(N2gy?) in part(c)
holds if

k=2a or equivalently k=s-1, (6.8)

where 2 ands are integersThus for k = 1, we havea =
k = 2, we havea = 1 ands = 3; for k = 3, we havea =
k = 4, we havea = 2 ands = 5; etc

When Assumption 5 holds witlyy, = N~¢ for ¢ € (0,3) and Assumption 6
holds with ¢y ; = 0, then the conditionuy x = o(N~2gy?) in part(c) holds
provided ¥ > max{a/c,(a + 1)/(2c)}. For exampleif ¢ = ; andk = 1, the
condition does not hold even with = 0. If ¢ = 7 andk = 2, the condition
holds witha = 3 ands = 2. If ¢ = 3 andk = 3, the condition holds witla = 3
ands = 4.

ands = 2; for

1
2
3 ands = 4; for
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5. Next, we discuss the conditiopy , = o(N~@*1/2) in part (d). When
Assumption 5 holds withyy = (In(N)/N)¥2 and when Assumption 6 holds
with ¢ ; = 0, as it does for the NRdefault NR and line-search NR proce-
dures this condition holds provided

2kt1=2a+ 3 or equivalently 21 =s+ 2. (6.9)

Thus for k=1, we havea = 3 ands = 2; for k= 2, we havea = 3 ands = 6; for
k = 3, we havea = 12 ands = 14; for k = 4, we havea = 2 ands = 30; etc

If Assumption 5 holds withyy = (In(N)/N)¥? and Assumption 6 holds
with ¢y = (In(N)/N)¥2 for all j = 1,...,k, as it does for GN procedures
under the conditions in Lemma fhen the conditionuy x = o(N~@*D/2y jp
part (d) holds if

2k=2a+1 orequivalently 2k=s, (6.10)

ands = 2; for
ands = 6; for

where 2 ands are integersThus for k = 1, we havea =
k = 2, we havea = 3 ands = 4; for k = 3, we havea =
k = 4, we havea = Z ands = 8; etc

When Assumption 5 holds witlyy, = N~¢ for ¢ € (0,3) and Assumption 6
holds withyn ; = 0, then the conditionuy, x = o(N~@*72) in part(d) holds
provided ¥ > (a + 1)/(2c). For exampleif ¢ = 7 andk = 1, the condition
does not hold even with = 0. If ¢ =  andk = 2, the condition holds with
a= 3 ands= 2. If c= 1 andk = 3, the condition holds witta = 2 ands = 6.

6. The condition onuy  in part(d) of the theorem is weaker than those in
parts (b) and (c). Also, the condition onuy k in part (c) of the theorem is
weaker than that in parth). The reason this occurs is that pdge) of the
theorem holds for the statistics considered in p&isand (d) with the lower
bounds in the probability being (IN)wny « and Nuj . respectively rather
than the larger quantiti]®2uy , which is the lower bound for the statistics
considered in partb).

The reason for these results in pgait is as follows Consider theQLRy -
statistic based on the minimumestimatoy for which part(a) holds with lower
boundNug . We have

QLRyx — QLRy = 2N(pn (O 1) — o (n)) — 2N(pn (Bn1) — o (Bn))-
(6.11)

1
2
5
2

The first and second terms on the right-hand side are quadratic foréﬂ,gkiﬁ
6y anddy,  — Oy, respectivelyHence |QLRy  — QLRy/| is of the same order
asN| 6y — On]? andN| by, — A |2 The result of parta) for |y — x| and
|6n.k — Onl holds with lower bounduy k. Thus the result of parta) for
|QLRy k — QLRy/| holds with lower boundNug .

The reason that the first term on the right-hand sid€6dfl) is a quadratic
form in dy — 6y is that a two-term Taylor expansion pf (6 ) aboutfy
gives
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2

A . 1 . ~ ~ ~
pn(Onk) — pn(Oy) = > (O — On) P (6R) (O — On), (6.12)

9000’
where the linear term iéN,k — 6y is zero with probability - o(N~2), because
(3/06) pn(6x) = 0 by the first-order conditions fa,. An analogous result holds
for pn(On6) — on(On).

For the QLR «-statistic based on the EW-GMM estimator and theg.-
statistic the preceding calculations need to be altered somewhat because of
the difference betweef¥/d0)Jy (dy, fy.x,) and (3/06)In(0n,On). The former
appears in the Taylor expansidwith respect to the first argumenof
In(By o 0h. ) about By, which is analogous to the Taylor expansion of
(6.12). But, it is the latter (9/00)Jn (0, 6y), that equals zero with probability
1 — o(N™®). Hence the linear term in the Taylor expansion is not identically
zera In consequencehe lower bounds in pafg) for the QLR -statistic based
on the EW-GMM estimator and thi (-statistic are larger than for tH@L Ry -
statistic based on the minimumestimator but smaller than for the other sta-
tistics consideredin turn, this implies that the condition needed in pé&} is
stronger than that required in pdd) but weaker than that required in p&b.

7. Results analogous to those given previously for test statistics under the
null hypothesis could be established under local alternatives brevity we
do not do so

7. PROOFS

In Section 71, we state Lemmas 3+-%hich are used in the proofs of Lemmas
1 and 2 and Theorem. In Section 72, we prove Theorem.lln Section 73,
we prove Lemmas 1-9

Throughout this sectigra denotes a constant that satisfees= 0 and 2 is
an integer

7.1. Lemmas

LEMMA 3. Suppose Assumption 1 holds.

(a) Let m-) be a matrix-valued function that satisfies EXj) = 0 and
E[m(X)|P < co for p > 2a and p= 2. Then, for alle > 0,

N
P(HNl _2 m(>”<i)H > s> =0o(N™?).

(b) Let m(-) be a matrix-valued function that satisfieg(X;)|P < co for p > 2a
and p= 2. Then, there exists K oo such that

P<HN‘1 > m(>‘<i)H > K) =0o(N"2).
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(c) Suppose Assumptions 3(c), 3(d), and 4 also hold. Then, for all constants C
(2a)2,

i=1

P<HN1/2 > (F(X) — Ef(X ))H > C4In1/2(N)> =0o(N"3).

LEMMA 4. Suppose Assumptions 1-3 hold. Lty and 6,y denote
any estimators that satisfy the following condition. For all> 0, P(|6; n —
0o] > &) = o(N7?) for j = 1,2. Then, for alle > 0 and some K< oo,

P( DN(e_LN) —D[>¢g) =0(N"?),

P(|Qn(01,8) — Qol > &) = 0(N73),

82
P<H6060' JN(GLN’GZ N) 2D’90D >8> = O(Nia),

93 _ _
P(Hﬁ In(Ons02n) >K> =0(N79),

N
P(‘N_lE g(xiagLN)
i—1

and analogous results hold fo(3%/9006")Jy(6,n) — 2D’QD and (9%/
00°3)In(01n), where (0%/96°%)3y (01 n, 02, ) denotes a vector containing all
of the partial derivatives of order three of,09, , 62 n) With respect to its
first argument and likewise fdiB3/963)Jy (61 n)-

> 8) =0(N7?),

LEMMA 5. Suppose Assumptions 1-4 hold. Bgtdenote theFW-GMM,
EW-GMM, or minimump estimator. Then, for some finite constang, C

P(|6n — 0ol > Cs(In(N)/N)Y2) = o(N2).

LEMMA 6. Let {Ay:N = 1} be a sequence of X 1 random vectors
with an Edgeworth expansion or asymptofié expansion with coefficients
of order O(1) and remainder of order @N~2). (That is, in the case of
an Edgeworth expansion, there exist polynomipts(z):i = 1,...,2a} in
z whose coefficients are (0) such thatsunseg |P(Ay € B) — fB(l +
> N V27 (2)) ¢, (2) dz] = o(N7?), wheregy (z) is the density function
of an N(0,=y) random variable 3\ has eigenvalues that are bounded away
from zero and infinity as N» co, and B, denotes the class of all convex sets
in R4, In the case of an asymptotjg® expansion, |, = 1 and there exist
polynomials{mi(z):i = 1,...,a} in z whose coefficients are (0 such that
SURses, |P(Ay € B) — [s(1 + 212} N7'm(2)f,2(2) dz| = o(N~?), where
f,2(2) is the density function of &2 random variable.) Lefé; n:N =1} be a
sequence of random vectors with(|B, | > wy) = 0(N~?) for some con-
stantswy = 0(N72) for j = 1,2, whereé; y € R*~ and &,y € R. Then,
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sup |P(Ay + &,y EB) —P(AyEB)|=0(N"?) and

BEB,,

sup|P(ALAy + é,n EB) — P(AVAL E B)| = o(N7?).
BEB,

For any functionm(X;, ), let my(6) = N"1 3, m(X;,8).

LEMMA 7. Suppose Assumption 1 holds(Xq, 0) is differentiable with re-
spect tod, and Esup,ey,[(9/00)m(Xy, )P < oo for p = max{2a + 1,2}. Let
01 n and 6, be any estimators that satisfy(|®, n — 60| > €) = o(N~?) for
all e > 0and (|6, — 6.n] > wn) = o(N?) for some sequence of con-
stants{wy: N = 1} for whichwy — 0. Then, for some finite constantC

P( mN(éZ N) mN(a_l N > Cown) =0(N72).

LetSy=N"13N, f(X,6,) andS= ES,.
Let Hy(8) = ((9/00")n(6)on(0)((9/06")n(6))') 2 N¥2n(6).

LEMMA 8. Suppose Assumptions 1-4 hold. hetdenote N/2(6y — 6,),
Tns Hu(Bn), Un(n), or Ky (6y) (Where the statistics may be defined usiy-
GMM, EW-GMM, or minimump estimators in each case excepy(ty), in
which casedy is the EW-GMM estimator). Let L denote the dimension/qy.
For each definition oAy, there is an infinitely differentiable function(@ with
G(S) = 0 such that

sup|P(Ay € B) — P(NY2G(S,) € B)] = o(N2@).
BEB,

We now establish Edgeworth expansions for the random veetof$® x
NY2(8y — 6o), Tn, Hu(On), Un(6y), andKy(6y). Let ¢ () denote the density
function of a vector of independent standard normal random variabé3,
denote the class of convex Borel measurable seR-in

LEMMA 9. Suppose Assumptions 1—-4 hold. Then, there exist (vector-valued)
polynomialsm; (8), m1i(8), mwi(8), mui(8), and m;(5) in & = d/dz for i =
1,...,2a such that

sup P(o~¥2N¥2(fy — 6,) € B) — f [1 2 '/Zwai(a)_wz)dz =o(N"?),
BsEqu1 P(Ty €B) — B[1+|2§N 20 (6) ¢(z)dz| = o(N72),

Bseup P(Hy(6y) € B) L{HiElN‘”ZwHi(é) ¢(2)dz| = o(N"?),

Sup P(Uy(fy) EB) - B[HfﬁtN—Vzm(a):(b(z)dz =0o(N™?),
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and
2a
sup |P(Ky(6y) € B) —f {1+ > N‘/ZwKi(B)}q&(z) dz| = o(N~2).
BEB, B i=1

Remark The conditions ord in Assumption 3 are not needed in all of the
preceding lemmadn particular Lemmas 4 and 5 only usg= 3.

7.2. Proof of Theorem 1

We establish the first result of pafa) firstA. To start supposedy is the FW-
GMM estimator A Taylor expansion abouy x—; gives

ad N
0= 25 Won)

2

J A
= — WOk + 7

90 } 9090" ‘]N(BN 1) (O — 9N,k—1) + Ry k

Jd R ~ ~ o ~
=9 IN(On k1) T Qnk=1(On k — Onk—1) + Qnk—1(On — On i)

92 R o
! (aaaa' InlOniea) = QN’“>(9N — Oni-1) + Ry

2

= QN,k—l(éN - éN,k) + ( JN(ON k—1) QN,kl)(éN - éN,k—l)

+ Ry Where

0600’

3
InCON k-1,0) (O — ON,k—l)/2:| , (7.1)

Lo

Rk = | (B = Oy pen) ———
N, k [( N N, k 1) 96,0000
[Agu]Le dgnotes arL, vector whoseuth element is¢,, 0y 1, lies between
Oy and Oy k-1, the first equality holds with probabili}y T o(N72) by

Lemma 5 and the fourth equality holdg becaugédf)In(Onk-1) + Qn k-1 X

(On.k — Onk—1) = O by the definition offy . Rearranging7.1) yields

HéN,k - éN ” = ||(QN,k71)71RN,kH

92 ) )
l(@a@@' JN(GN k-1) ~ QN, k1>(6N, k1~ 6n)

SgN(”éNk 1_0N||2+l/ij 1”0Nk 1_9NH), where

3

JN(elijl,u)/zH

= max
I { 1196,0006"

2

+1,

(7.2)

In(Onj-1) — Quj1

- d
+ Yy ——
H(QN,] 1) H "/,N,j 1 96006’

wherel//NJ 1= wNJ L1 P j— 1>0and¢,\,J 1=0if ;-1 =0.
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For the case whergy ;_, = O for all j, repeated substitution into the right-
hand side of the inequality if7.2) gives the upper bound

N A~ Kk A k A~ k
00100 — 00117 = CLY 00 — 00l1% + CLE 16y — 65)12 (7.3)

for someC < oo, where¢ = E}‘:l 2171 By Lemma 4 and Assumptions(8)
and 6 there exists a finite constakit such thatP(/y > K) = o(N~2). Com-
bining these results gives

P(”éN,k - éN |>Ciuni) = P(Cé’rﬁ)”éN K HOHZk > C3v4 /2)
+ P(CL 16y — 6o > Co(In(N)/N)Z/2)
=0o(N72), (7.4)

where the inequality usesy x = v2“ andyy = (IN(N)/N)¥2 and the equality
uses Assumption 5 and Lemma 5

For the case where Assumption 6 holds wme . = max{y ,
(In(N)/N)¥2}, we argue as followslet x, = |y — 6n]. By Assumption 5
Lemma 5 and the triangle inequalitky = C;yn + Cs(IN(N)/N)Y2 = Kyyy
with probability 1 — o(N~2) for some constant; < co. As before
P({n =K)=1—0(N"?). Hence using(7.2), X, = K(XZ_1 + ¢y k—1Xk—1) With
probability 1— o(N™?). Note thatyn o = yn andyn,j = ynihn, j—1. Combining
these resultswith probability 1— o(N~?2), we have

= KXo(Xo + ¢n,0) = KKy yn (Kiyw + ¥in0)
= KKy(Ky + Dyn o = K'yn oo and
Xo = KXq (X1 + 1) = KK yn o) (K yn o + na)
= KK'(K" + D) ynno¥n 1 (7.5)

Proceeding recursivelyve obtainx, = Csyy 1'[J 1 mpNJ 1 = Caun,k for some
constantC; < oo with probability 1— o(N~2), which is the desired resultdence
the first result of parta) of the theorem holds for the FW-GMM estimator

The proof of the first result of part@) for the minimump estimator is the
same as for the FW-GMM estimator wifk (6) replaced bypy (6) throughout

The proof for the EW-GMM estimator is similar to that given previously for
the FW-GMM estimator withly (6) replaced bydy (6, 0y) or Iy (6, 0y ) in the
appropriate placesHowever two additional terms arise on the right-hand side
of (7.1) becausely (6, Oy,y,) # In(6,60y). These terms are

Ml,N

92 . - 92 P
<8686’ IN(On k=1, On) — 2090 ‘]N(HN k— 1’0N k1)>('9N —Oyk-1) and

Jd ~ - J ~ -
Mz,N = £ JN(GN,k—l, On) — % JN(QN,k—l, 6N,k1)- (7.6)
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These terms can be shown to satisfy the following conditior some finite
constantC,

P(IM; nl > Cun) =0(N77) forj=12 (7.7)

In consequencehe result of par{a) of the theorem holds for the EW-GMM
estimator
To prove(7.7), we first show thatfor some finite constan€s,

P(Hﬂﬁl(éN,kl) - Qﬁl(éN)H = C6/-LN,k) =0(N"?) (7-8)

using Lemma 7 withmy(6) = Qy*(0), Oy = O, Oon = Oyi,, and oy =
Csun k- The conditions of Lemma 7 are verified using the result of (axof
the theorem for the FW-GMM estimatothe assumption thak, = k, and
Lemma 5 The proof of(? 7) also uses the firstsecond and fifth results of
Lemma 4 withf, \ = 9,\, -1, Where the condition o, y holds by applying
the proof of part(a) of the theorem for the EW-GMM estimator recursively
for k=1,2,.... The proof of(7.7) also use®(|fy — bn 1] > K) = o(N~?)
for some 1= K < oo, which holds by applying the current proof recursively
becauseK = up k-1.

Next, we establish the second result of p@jtof the theoremLet o, denote
(o) - Let gy, denotea, with 6y replaced bydy  in all parts of its definition
in (3.7). We use the following expression

I Tak— Tnl = NY2[0 = 4 ]/02?
+ NY2|y — 0ol | 022 — 2| /(o , 0 ) V2 (7.9)

By (7.9), the second result of pafg) is implied by the first result plus the
following condition There exist constants < oo, K < o0, andé > 0 such that

P(lowi® — 0772 > Cpn) = 0(N79), (7.10)
P(|6y — 65 >K) = o(N~?), (7.11)

P(o, <8) =0o(N"®), and (7.12)

P(o, <8) = o(N2). (7.13)

Equation(7.11) holds by Lemma 5Equations(7.12) and (7.13) hold by
Lemma § the first result of par{a) of the theoremand the first and second
results of Lemma 4

By a mean value expansip(v.10) is implied by(7.12), (7.13), and

P(lor — oy > Cun i) = 0(N7?) (7.14)
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for some finite constan€. Equation(7.14) is implied by
P( DN(éN,k) - DN(éN)” >C'uyk) =0(N"%) and
PIQ8 (Bx 1) — QN (B0 > C i) = 0(N72) (7.15)

for some finite constarnt’. These results hold by Lemma 7 widly = C3 s
61n = O, andf, y = Oy, using Lemma 5the first result of par(a) of the
theorem and Assumption 3

We now prove the third result of pats). Let Hy = Hy(6y) and Hak =
Hn (6n,1). We have

Wik = Wl = [(Hy e = Hy) 'Hyg + HU(Hyg o= Hy) |
= [Hnx = Hnl(HN el + THND. (7.16)
Hence it suffices to show thatfor some finite constant,
P(IHn,k = Hyl > CNY2uy ) = o(N"#) and
P(|Hny[ > M) = o(N™?) for someM < co. (7.17)

The second result df7.17) holds by Lemma 9 by appropriate choice of the set
B. The first result of(7.17) is implied by the matrix version of7.14), mean
value expansions af(6y ) and(9/06)n(6y,,) aboutdy, and the first result of
part(a) of the theorem

The proof of the fourth result of par®) is analogous to that of the third
result withHy (0) replaced byUy (6).

To prove the sixth result of pata), a Taylor expansion o,ﬁN(éN, «) aboutéy
yields

2

N(pn (1) — pn(0n)) = N(By  — Oy)' pn(08) (B — O4)/2  (7.18)

0006’
with probability 1— o(N~?), where#y; lies betweerfy , and dy. The linear
term in Ay, — Oy in the Taylor expansion is zero becaugig) py(dy) = 0
with probability 1— o(N~2) by the first-order conditions for minimization of
pn(6) over ® using Lemma 5 and Assumption(&@. By (7.18), part (a) of the
theorem for|Ay, — 6y, and the first result of Lemma, 4ve obtain

P(N|pN(éN,k) — pn(By)] > CNug W) = P(”éN,k — 002 > C'ufw +0o(N"2)
= 0o(N72) (7.19)

for some finite constant€ andC'.

By an analogous argument7.19) also holds WithéN,k and 6y replaced
by 6y« and by, respectively using the first-order condjtions fcﬂ’N.ABecause
QLRy,k — QLRy = 2N(pn(Onk) — pn(On)) — 2N(pn(On,) — pn(6n)), this
result and(7.19) imply the sixth result of parta).
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Next, we prove the seventh result of pag). By the triangle inequalitywe
have

Ik — Il = N|JN(éN,k7éN,k1) _‘JN(éN,kaéNH
+ NJJy (B On) — In (B, 04). (7.20)

To bound the Asecqnd sumnland on the right-hand sidg.ab), a Taylor ex-
pansion ofdy (6 k. On) aboutby yields

‘]N(HN,k’eN) - JN(GNv‘gN)
. L, 02 IS .
= N = )" == I (6 0) O — )2 (7.21)

with probability 1— o(N~?), whered,; lies betweerdy,  andéy and the deriv-
atives here and in the subsequent discussion are taken with respect to the first
argument ofJy(-,-). The linear term ir‘é,\,,k — 6y in the Taylor expansion is
zero becaus/d6)Jy(6y,0y) = 0 with probability 1— o(N~2) by the first-
order conditions for minimization afy (6, 6y) over ® using Lemma 5 and As-
sumption Za).

By (7.21), part (a) of the theorem for|dy  — 6x[, and the third result of
Lemma 4 we obtain

P(N|J\ (.1 On) — In (B, 00)| > CNud )
= P(HéN,k —Oy)? > C',U«ﬁn,k) +0o(N"?)
=0o(N"?) (7.22)

for some finite constant€ andC'.
The first summand on the right-hand side(@f20) is

N N
Bk = N2 g(xi’éN,k)/[QN(éN,kl) — QN (BINTY2 S g(Xi, 010 |-

i=1 i=1
(7.23)
The term in square brackets satisfies
PN (On,k,) — Qn ()] > Cuy) = 0(N72) (7.24)

for some finite constan€, by (7.8), the second result of Lemma 4nd the
nonsingularity ofQ}g. By a mean value expansion abalygt

N R N N 9
N"Y23 g(Xi,6n ) = N"V2 > 9(Xi,0) +N* EY T g(X;,6%)

i=1 i=1 i=1

X [Nl/z(éN,k - éN) + Nl/z(éN - 00)], (7-25)
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wheregy lies betweerﬁ,\,,k andé,. The terms on the right-hand side @f.25)
satisfy

<H o E 90X, fo) | > Cq nW(N)) = o(N™9), (7.26)
P(NY2fy 1 — O] > CsNY2py 1) = 0(N~2), (7.27)
P(NY?[ 6y — 90“ > C5InY2(N)) = o(N"%), and (7.28)
<H o 2 vy, Q(X.,ON) ) =0(N™?) forsomeK < oo, (7.29)

where (7.26) holds by Lemma &), (7.27) holds by part(a) of the theorem
(7.28) holds by Lemma 5and(7.29) holds by the first result of Lemma. 4
Combining(7.25)—(7.29) gives

N
([ G
i=1

for some finite constan€. Combining(7.23), (7.24), and(7.30) gives

> Cmax{In¥2(N), Nl/z/.LN,k}> =0o(N"3) (7.30)

P(By,x > Cmax{In(N), Nuf i} sn ) = 0(N72) (7.31)

for some finite constan€. Combining (7.20), (7.22), and (7.31) and noting
that maXNud i, IN(N) sy N b = O nk gives the seventh result of part
(a) of the theorem

To establish the fifth result of patt), we write QLRy x andQLRy asJy «x —
Juk andJy — Jy, respectivelywhereJy  and Jy denote thek-step J-statistic
and theJ-statistic both based ofy, rather thardy. The seventh result of part
(@) (for the Jy -statistio and an analogous result for tlg (-statistic (which
holds by applying the seventh result of pdd) to the criterion function
Ju((7,0"))) gives the fifth result of parta).

To establish part(b) of the theorem we apply Lemma 6 four times
with wy = CsN Y2un and with (An,&n) equal to (NY2(6y — o),
Nl/Z(HN k = On)), (Tn, Tk — Tn)s (Hn (00, Wy,k — Wa), and (Un(6n),
LMy k — LMy). In the first two caseswe use the first result of Lemma &
the third and fourth casesve use the second result of LemmaB3 the as-
sumption thatuy , = o(N~@*¥2) we havewy = o(N?), as required
by Lemma 6 The condition of Lemma 6 o#;  holds by part(a) of the theo-
rem As required by Lemma,&he random vectors - V2N-Y2(9y — 6,), Tn,
Hn(Ay), and Uy (6y) have Edgeworth expansions with remaind¢N—2) by
Lemma 9

To establish parfc) of the theorem for théy ,-statistic we apply Lemma 6
with wy = Csqy .« and with(Ay, €, ) equal to(Ky (By), .« — Ju). By the
assumption thapy x = o(N2gy?), we havewy = o(N™?), as required by
Lemma 6 The condition of Lemma 6 o8, y holds by parta) of the theorem
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The random vectoKy (6y) has an Edgeworth expansion with remaind@x ~2)
by Lemma 9

To establish partc) of the theorem for th&QLRy «-statistic based on the
EW-GMM estimatoy we apply Lemma 6 withwy = Cs0y un,x and with
(An, €1.n) equal to(QLRy, QLRy x — QLRy). By the assumption thaiy =
o(N~2qgy?), we havewy = o(N~?). The condition of Lemma 6 o#, y holds
by part(a) of the theoremThe random vectoQLR, has an asymptotig?
expansion with remaindes(N~?) by Assumption 7

To establish partd) of the theoremwe apply Lemma 6 withoy = C3Nu3 i
and with (Ay, &1 n) equal to(QLRy, QLRykx — QLRy). By the assumption
that uy x = o(N~@*D/2) 'we havewy = o(N~2). The condition of Lemma 6
on &,y holds by part(a) of the theoremThe random variabl®LRy has an
asymptoticy? expansion with remainder(N~2) by Assumption 7 u

7.3. Proofs of Lemmas

7.3.1. Proof of Lemma 1 The result holds foéy by Lemma 5 withg(X;, 0),
etc, changed as stated in LemmaThe result holds fofy by Lemma 5 withd
replaced byr, with the same changes ®( X, ), etc, as before and witl®
replaced by{7: 6 = (7/,0’)’ € ®} using Assumption &) to ensure that the true
value 7q lies in the interior of the latter sefThe result of the lemma fofy
implies that the result holds fdf. u

7.3.2. Proof of Lemma 2The NR result of the lemma holds by definition
of QNR_;. We now establish the default NR result of the lemrbet 6y ; de-
note the NRj-step FW-GMM estimator fof = 1,...,k For the FW-GMM es-
timator, it suffices to show that

P(JN(éN,j) - JN(éNj 1) >0)=0(N"93), (7.32)

for all j = 1,...,k because this implies tha?(QN, L F QN, , for some
i=1...,k) = o(N 2). When BN, * GNJ 1, @ Taylor expansion oﬂN(ON,)
abouteN, j—1 gives

In(By;) = IOy 1)

d A
= — (O j—1) N P

a0
2
EgNj 9000" JN(HNJ 1)§N]¢N] +FNJ¢NJ
2
= gNj 9006’ ‘]N(HNJ 1)§N]¢N]+FNJ¢NJ, where
1 Le 33
FN,j == 2 fNJ rfN; 96, 9000" JN(Hlijfl)gN,j,

{N,j = (GN,j 9N,j—1)/H9N,j 0N,j—1H, d)N,j = ”éN,j - éN,j—lH, (7.33)



ASYMPTOTIC EFFICIENCY OF 4STEP AND EXTREMUM STATISTICS 1073

Where{,\,] . denotes theth element offy; and 6y ;- lies betweenﬁiNJ and
0NJ 1. The second equality holds by the definition &n‘J Using (7.33), the
left-hand side 0f7.32) is less than or equal to

82
P<_/\min<8080’ ‘]N(HNJ 1))/2 +Injdng > 0>, (7.34)

whereA,in(A) denotes the minimum eigenvalue of the mathixThe latter is
o(N™®), because fob = A,in(D'QD)/2 > 0,

62
P</\min<3030' ‘]N(aNJ 1)) <6> - O(N a)

P(|Ty ;| >K) =0(N"?) forsomeK <, and
P(¢n,; >e) = 0(N7?), (7.35)

where the first result holds by the third result of Lemma 4 for the FW-GMM
estimator withd, y = éN,j,l and Assumption @), the second holds by the fourth
result of Lemma 4and the third holds by two applications of p&aj of Theo-
rem 1 for the NR FW-GMM estimator—one with= j — 1 and one withk = j.
This completes the proof for the FW-GMM estimat®he proofs for the EW-
GMM and minimump estimators are analogaus

We now establish the line-search NR result of the lemWiea consider the
FW-GMM estimator first Let éN,J- be the NRj-step estimator

HN,j = 6N,j—1 - @N,j—lWN,j—l’ where

In(fy;-1)| and

d
_ NR -1
PN,j-1 = H(QN,jl) Py

TN,j—1 = (QNJ 1) ! JN(ONJ 1)/€0NJ 1- (7.36)

Let

« N Jd A R
05 = Oy -1 — a(QNF-) Py In(Onj-1) =Onj + (L= @) oy j-17N -1

(7.37)
It suffices to show that
P(infae;\,mJN(éﬁ,j) — In(fy;) <0 =0(N"?) (7.38)
for all j = ,k, because this implies tha?(QN, L F QN, , for some

j=1..k = O(N ).
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A Taylor expansion ofly (4 ;) aboutdy; gives

JN(éﬁ,j) - ‘]N(éN,j)

=Q1- a)QDN] 17TNJ 1y ‘JN(HNJ)

2

1 5 5 ) «
+ > (I—a)f j—17 -1 IN(Onj) T j—1

9606’
Ly 3

—(1—0[) ¢NJ 1E7TNJ 1r N] 1 ‘JN(GF\IJ)WNJ—D

96,0000
(7.39)

wheredy; lies betweerds ; and dy ; and 7y 1, denotes theith element of
TN, j—1-
Element by element Taylor expansmns(@;aH)JN(aN i) abouteN -1 give

2

Jd R J A R
By In(Onj) = By} INOnj-1) + ‘]N(GNJ 1)(0N] On,j-1)

06000’

3

1l . .
+ 2By — b)) —————
2{( N~ Onjea) 96,0000

IO 10) (O — éN,Jl)]
Lo

3

1 2 ’
=0+ EgDN’j_l T

Ni-139 Ja007 JN(HQT—Lr)WN,j—l} , (7.40)
r

Lo

wherefy 1, , lies betweerﬂN, and¢9NJ ; and the second equality holds using
the definition offy ;.

The following properties hold~or § = A,,in(D'QD) > 0 and alle > 0,

62
P<)\min<aaaa, ‘JN(GNj 1)) <8> - O(N a)

‘]N (HN j— 1)

H603 > K) = 0o(N"?) forsomeK < co, and

P(gy; > &) = 0(N72) (7.41)

for j = 1,...,k where the first result 0of7.41) holds by the third result of
Lemma 4 withf, y = éN, . and Assumption @), the second holds by the
fourth result of Lemma 4 wittf; N = = 0y -1, and the third holds by the third
result of Lemma 4 withd, y = 0N, , and Assumption @) to ensure that
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(QNF)~* is well behaved and by a mean value expansm(ﬁ;ﬁﬁ@)JN(6’NJ 1)
aboutfy, application of part(@) of Theorem 1 withk = j — 1, and the first
result of Lemma 4The second result af7.41) also holds withgy |, replaced
by 65 ;-1

Substituting(7.40) into the right-hand side 0f7.39), dividing (7.39) by
(p,g,’j,l (when ¢y j—1 > 0), and applying(7.41) yields the resultant first and
third terms on the right-hand side ¢7.39) to have norm greater than> 0
with probability o(N~?) and the second term to be strictly positive with prob-
ability 1 — o(N~2) (uniformly overa € A with @ # 1), which gives(7.38).
This completes the proof for the FW-GMM estimat®he proofs for the EW-
GMM and minimump estimators are analogaus

Last we establish the GN result of the lemmaet ay = (In(N)/N)¥2 and
nj-1= pnj-1 Oay forj =1,...,k whereb Oc = max{b, c}. We havejy, ;-1 =
Y j—1 forj =1,...,k This holds because

—yNH(yN Oa,) forj=1,...,k and

-1 -
WN,j—l = <7N ﬁ ('}’ﬁt ' Dan)) Oay
(=1

<7N H 72( 1) Oay
2171 _
=y Uay= l//N,j—l’ (7.42)

where the second equality fg& ;1 uses%\, aN =ayforallj;=0andj, =1
becauseyy = 1 anday = 1.

Given thaty j—1 = ¥ j—1, for the minimump estimatoy it suffices to show
that

d N _
<H -t 2 <A(X|76Nj 1)~ PYY g(XheN,j—l))H > C2¢N,j—1> =0(N7?).

(7.43)

For the FW-GMM estimatgmwe also need to show that

N 2

a(X;, éN,jfl)

N
P(IN-? X, 0y ) QN? > Cifr i
<H g,lg( i»Onj-1) 2 40.00" N, | 1)

=o(N™?) (7.44)
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foru=1,...,Lg, for some finite constar. For the EW-GMM estimatoi(7.44)
must hold with(Q) replaced byQy (O ,).

First, we establisi7.43). By mean value expansions abdgtand the trian-
gle inequality

N - A Jd A
HN_l 2 <A(Xi,0N,j1) YD g(xi’ON,j1)>H

i=1

A 9
=[N (A(Xi,ﬂo) - — g(xi,90)>
i=1 00
N 9 2 A
+ N7t su — A(X;,0) — (x.,g)H. b —0..
leeeNo,LPng a0, ' 960,00’ gl I6n, -1 — bol

(7.45)

In addition [fy,;-1 — O] = [0n,j-1 — On]l + [6n — 6ol. Hence it suffices to
show that

N _ d
(i) P(HN1Z(A(xi,00)—£g(xi,0o)>
i=1

> C4(|n(N)/N)l/2> =0o(N™9),

N 9 _ 2
i) PN su — A(Xi,0) — ———
(i) ( 3 swp |0 AR,0) - o

i=1 0Ny, u=L,

Q(Xiﬁ)H > K) =0o(N"9),

(iii) P(”éN,j—l - éN [ > Caunj—1) =0(N7?), and
(iv) P(|6y — 6o > Cs(IN(N)/N)¥2) = o(N"?) (7.46)

forallj=1,...,kand someC;, K < co. Condition(i) holds by Lemma &), (ii)
holds by Lemma &) with p = gy, (iv) holds by Lemma 5(iii ) holds forj = 1
by the assumption on the initial estimaﬁuo and Lemma 5and(iii ) holds for
j = 2,...,kby recursively applying paii) of Theorem 1 withk =j — 1, which
holds without assuming Assumption 6 by the present proof that the result of
Assumption 6 holds foQy; for i =j — 1 under the assumptions

Next, we establish(7.44). Element by element mean value expansions give

N N
N~ g(Xi, 0 j-1) = N~ g(X;,6p)
i-1 i-1

N
d A
+NTTY a_e,g(xi,eri—l,jfl)(gN,jfl_ 6o), (7.47)
i-1

where 6y, lies betweendy ;_; and f,. By Lemma 3c), P(IN"* 3], X
g(X;,0p) > C4(In(N)/N)¥2) = o(N~3). Combining this with resultsiii ) and
(iv) of (7.46), the first result of Lemma 4and(7.47) gives
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<H lEQ(XwaNJ 1)

> C‘//NJ 1> =0(N"?) (7.48)

for someC < co.
By mean value expansions abdiygt

N 82 .
PN X, On.i -
<H i:laauae, g( i N, j 1)

for someK < oo, using Lemma 8b) applied withm(X;) = (0%/06,06")g(X;, o)
and resultgiii ) and(iv) of (7.46). Equationq7.48) and(7.49) combine to yield
(7.44). Equation(7.44) holds withQ replaced byQy (6 ,) by the second re-
sult of Lemma 4 withdy y = 6y, k, and the preceding proof @7.44).

The results of the lemma for the restricted matriQgs', QL P, Q% S, and
Qi N are proved by the same arguments as for the unrestricted matrices by
replacingé by 7 in the appropriate places u

> K) =0(N79) (7.49)

7.3.3. Proof of Lemma 3 A strong-mixing moment inequality of Yokoyama
(1980) and Doukhan(1995 Theorem 2 and Remark, p. 25-30 gives
E|ISN, m(X)|P < CNP2 providedp = 2. Application of Markov’s inequal-
ity and the Yokoyama—Doukhan inequality yields the left-hand side in (aart
of the lemma to be less than or equal to

P
& PNPE =& PCN P2 =o(N"2). (7.50)
<

Part (b) follows from part(a) applied tom(X;) — Em(X;) and the triangle
inequality

To establish partc), we use the Edgeworth expansion given in Theorein 1
of Gotze and Hipp(1994 (with our f(X;) equal to theirZ; and their function
h(zZj,...,Z;p-1) equal toZ;, which makes theiX; equal to theiiz;). This theo-
rem is a special case of Corollary92of Gotze and Hipg1983. Conditions
(2)—(4) of Gotze and Hipp(1994 hold by Assumptions ,13(c), 3(d), and 4
Because the result of the lemma can be proved element by eleweron-
sider an arbitrary elemefi(-) of f(-). Let o2 denote the variance éf(X;). We
assumer? > 0; otherwise the desired result holds triviallet ®(-) denote
the standard normal distribution functioBy the Edgeworth expansiothere
are homogeneous polynomiats(é) in 6 = d/dzfor i = 1,...,2a such that

sup
zER

N 2a
P(afN”Z > 1,(%) — ER(X) = z) - <1+ > N‘%(&)cb(z)

i=1 i=1

=0o(N"?). (7.51)
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This implies that for any constaaf,

|

N
o, INTV2 Y A(X) - Efv(xi)‘ > ZN>

i=1

2a
=1- (1+ > Ni/zm(5)>(¢>(ZN) —®(=2zy)) +o(N"?)

i=1

2a

=20(-2zy) - (2 Ni/zm(ﬁ))(@(zr\n) —®(—zy)) +o(N"?). (7.52)
i=1

Let zy = C4InY2(N) for C, > (2a)Y2 The latter inequality implies thafor

somee > 0, C?/2 = a + . Using this andb(—z) = Cexp(—z%/2) for some

constantC and allz > 1, we have

O (—2zy) = Cexp(—CZIn(N)/2) = Cexp(—(a+ &)In(N))
= CN-@) = g(N~2). (7.53)

The expressionr;(6)®(zy) is a finite sum of terms of the forrbz,{,¢(z,\,)
for some integerj and real numbeb, where ¢(-) denotes the standard
normal density By an analogous calculation to that {7.53), z¢(zy) =
CJIn12(N)(27r) Y2 exp(—C2In(N)/2) = o(N~2). This completes the proof
|

7.3.4. Proof of Lemma 4 The second result of the lemma follows from

Pl (61n) — O (6p)] > &) = o(N7?), (7.54)
P(1Qn(60) — EQn'(60)] > &) = o(N?), and (7.55)
EQnY(6y) = Q. (7.56)

To establish(7.54), we take mean value expansions ab@apply Lemma 8b)
with m(X;) = supen,l9(Xi,0)[-[(3/00")9(X;;,0)[ for j = —«,...,x and
p = q;, and use the assumption @qy. To establish(7.55), we use Lemma
3(a) with m(X;) = g(Xi,00)9(Xi+j,00)" — EQ(X1,00)9(X14j,00)" for j =
.,k andp = g,. Equation(7.56) holds by definition ofQ),.
The third fourth, and fifth results of the lemma follow from the first two re-
sults of the lemma and the following conditiof®r someK < co and alle > 0,

<H 12_g(x|’01N)

> K) =0o(N™®) forj=123, and (7.57)

<H 1Eg(xl’01N)

> s> = o(N73). (7.58)
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The first result of the lemma(7.57), and (7.58) hold by mean value ex-
pansions abou#,, multiple applications of Lemma () with m(X;) =
(91/001)g(X;, 6) for j = 0,...,3 or m(X;) = C4(X;), multiple applications of
Lemma 3a) with m(X;) = (8%/06') g(X;,0y) — E(9'/06") g(X,6) for j =
0,1 andp = g, and the assumption ofy y. u

7.3.5. Proof of Lemma 5 First, we show that for alk > 0,

N
P(sup N~ Gu(xi,e)H > s) =0o(N"2) foru=12, where
0E0 i=1
Gi(Xi,0) = 9(X;,0) —Eg(X,0) and Gy(X;,0) = p(X;,0) — Ep(Xy,0).

(7.59)

Let B(#, &) denote the ball centered éiwith radiuse. By Assumption 2a), ®
is compactHence for anyn > 0, there exist point§, € ©:j = J} such that
U,—Ll B(6;,m) contains®. Foru = 1, the left-hand side of7.59) is less than or
equal to

N
P<max sup (HNlZGl(Xi,H)—
i=1

i=J oeB(g;,m)

i»Yj

)=
<P<max sup N~ lE(C (X)) + ECy(X))[6 — 9|>§>

i=J oeB(g;,m) i=
>
> —
2

+ P(ma% N~
j=J

N

i=1
J &
+ > PN > —
=1 2

= o(N72), (7.60)

where the first inequality uses Assumptiofib? and the equality holds by
Lemma 3b) with p = g, by takingn sufficiently small and Lemma (@) with
p = do. The proof foru = 2 is the same except th&l,(-) is replaced by
SUReo(3/00)p(-,0)].

Now, we prove thaP(||6y — 6| > &) = o(N~?) for £ > 0 for the minimum
p estimator under Assumption(l) (ii). Let p(#) = Ep(Xy,60). Givene > 0,
there exists @ > 0 such thaflé — 6| > & implies thatp () — p(6y) =6 > 0.
Thus

isYj

N
N—lz Gy(

i»Yj

i»Yj
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P(HéN - 90” >eg) = P(P(éN) - pN(éN) + pN(éN) - P(ao) > §)
= P(p(By) — pn(Oy) + pn () — p(6p) > 6)

= p(z suppn (6) — p(6)] > 5)
0EO

= o(N"2) (7.61)

using(7.59) with u = 2. The corresponding proof for the FW-GMM estimator
under Assumption () (i) is analogous witlp (6) andpy () replaced byl (0) =
Eg(X4,0)' QEQ(X4,6) andJy(0), respectively

For the minimump estimatoy the result thaP(||fy — 6] > &) = o(N~2)
and the assumption thap is in the interior of® imply that with probability
1 — o(N"2) dy is in the interior of®, N"1 3N, g(X;,8y) = 0, and 6y mini-
mizes not onlypy () butJy(6) (defined with an arbitrary positive definite weight
matrix ) overf € 0. In consequencgan the remainder of this propfve can
treat the minimunp estimator as a FW-GMM estimator

Next we prove the result of the lemma for the FW-GMM estimate have
the following conditionséy is in the interior of® and(8/06)Jy(Ay) = 0 with
probability 1— o(N~2). Hence element by element mean value expansions of
(9/36) Iy (6y) aboutb, and rearrangement give

. 02 19
O — 60 = <8080’ In(On )) £ In(6p) (7.62)
with probability 1— o(N~2), where#;} lies betweerdy and6d, and may differ
across rowsln consequencethe result of the lemma follows from the third
result of Lemma 4 for the FW-GMM estimator WiﬁlN = 0y, the first result
of Lemma 4 withdy y = 6, andP(IN"Y23, g(X;,6,)| > C4lnY2(N)) =
o(N~®), which holds by Lemma &) with m(X;) = g(X;, 6,) using the assump-
tion thatg, = 2a + 3.

Given the second result of Lemma the proof of the lemma for the EW-
GMM estimator is analogous to that for the FW-GMM estimator u

7.3.6. Proof of Lemma 6 For any convex seB C R-» and anyr > 0, let
Bf = {x € RtA:|x — y| = 7 for somey € B}. We have
P(Ay + é1.n EB) — P(Ay EB)
=P(Ay+ &8 EBE NI = wy) — P(Ay E B)
+P(Ay+ €n EB|Exn] > wn)
= (P(Ay € B;,) = P(Ay € B)) + P([ €1 ] > o). (7.63)

The second term on the right-hand sideoidN ~2) by assumptionWhen Ay
has an Edgeworth expansion with remaindéX ~2), the first term on the last
line of (7.63) is less than or equal to
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J.

wN

[2a] [2a]
(1+ > Ni/zm(z)>¢zN(z)dz—f <1+ > Ni/zm(z)>¢2N(z)dz
B

+0o(N?) (7.64)

uniformly over convex setB. The difference between the integralQ$wy ) =
o(N~2) uniformly over convex set8 C R“~, becauseps  (z) and its deriva-
tives of all orders are bounded overe R-+ given the assumptions ofy.
Hence P(Ay + é1.n € B) — P(Ay € B) = o(N™?) uniformly over convex
setsB.

Let B, = {x € B:||[x — y| = 7 for all y € B¢}, where B¢ denotes the
complement oB. We haveP(Ay + &,y € B,[é1n]l = wn) = P(Ay € B,).
Using this an analogous argument shows tiRtAy € B) — P(Ay +
&1y € B) = 0o(N7?) uniformly over convex setB, which completes the proof
of the first result of the lemma

The proof of the second result is analogous vBtliC R4 and Ay replaced
by B C RandA{Ay, respectivelyin (7.63) andB,, , B, and ¢ (-) replaced
by {x € R:x'x € B, }, {x € R*:x'x € B}, andf,z(-), respectivelyin
(7.64). Again, the difference between the integrals@gwy) = 0o(N~?) uni-
formly over convex set8. u

7.3.7. Proof of Lemma 7By a mean value expansion and the triangle
inequality

”mN(g_Z,N) - mN(él,N)H

i=1 6N,

N
= <N_l E SUp|(a/39)m()~<i,9)”> : Héz,N - éLNH- (7.65)

Hence tbe lemma holds by the~assumption B N — 61n] and Lemma 8o)
with m(X;) = supen,[(9/00)m(X;,0)]. u

7.3.8. Proof of Lemma 8First, we establish the result of the lemma with
Ay = NY2(6y — 6), wheredy is the FW-GMM estimatorBy Lemma 5 and
Assumption 2a), fy is in the interior of® and (3/36)Jy(6y) = 0 with proba-
bility 1 — o(N~2). Element by element Taylor expansiong@f36)Jy(fy) about
0, of orderd — 1 give

0 . ) 1 9 . .
0= @JN(QN) = %JNWO) + jgl ]_I D! %JN(GO)(GN — 6o,...,0n — 65)
+ N, Where

1 d—1 J + d-1 d ) )
gN: ]_I D E\]N(GN)_D E\]N(GO) (HN_eo,,eN_eo), (766)
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65 lies betweendy and 6y, and D1(9/36)In(60) (6 — 6o,...,0n — 6o) de-
notesD1(9/90)Jy(6,) as aj-linear map whose coefficients are partial deriva-
tives of (9/06)Jy(6,) of orderj, applied to the-tuple (Ay — 6o, ..., 0y — 6o).
Let Ry denote the column vector whose elements are the unique components
of (8/060)JIn(60), D(9/90)In(6p),..., D4 1(8/90)In(6,). Each element of
Ry is an infinitely differentiable function o8y. Let R denote the probability
limit of Ry. Let ey = (£,0,...,0)" be conformable tdRy. The first equa-
tion in (7.66) can be written a® (Ry + ey, 0y — 6o) = 0, wherev(-,-) is an
infinitely differentiable function »(R0) = 0, and (9/dX)v (R, X)|y—q =
PliMy_, 0. (0%/06000") Iy (6,) = 20 is positive definite by Assumption(B). Hence
the implicit function theorem can be applied #@-,-) at the point(R,0) to
obtain

~

with probability 1— o(N~2), whereA is a function that does not depend Nn
is infinitely differentiable in a neighborhood &, and satisfies\(R) = 0.

We apply Lemma 6 withAy = NY2A(Ry) and &y = NY2(A(Ry + ey) —
A(Ry)) to obtain

lim sup N3|P(NY2A(Ry + &y) € B) — P(NY?A(Ry) €EB)| =0.  (7.68)

N— oo BEB,,

Lemma 6 applies becau$ig P(|én| > wy) = P(CNY?|ey| > wy) by @a mean
value expansian(ii) ey] = <], (i) ¢y satisfies|{n]| = CllOn — 6o with
probability 1— o(N~2), (iv) wy, Which is defined to equal¥2~%¥2In9(N), is
0o(N~?) becaused = 2a + 2 by Assumption &), (v) P(NY?|ey| > wy) =
P(CNY2|fy — 60| > wy) + 0(N~2) = 0(N~?) by Lemma 5 (vi) A(Ry) can
be written asG(Sy), whereG(+) is infinitely differentiable and>(S) = 0, and
(vii) Ay = NY2A(Ry) = N¥2G(S,) has an Edgeworth expansion by the proof
of Lemma 9 which follows

Equationq7.67) and(7.68) andA(Ry) = G(S,) yield the result of the lemma

The proof for the minimunp estimator is identical because the latter satis-
fies (9/06)Jy(6y) = O with probability 1— o(N~2) by Lemma 5

Next supposé) is the EW-GMM estimatoWe take a Taylor expansion of
orderd — 1 of (3/36)Jx(6y,6n) about(fy,6y) = (6o,6,). Applying the im-
plicit function theorem as beforé¢here exists an infinitely differentiable func-
tion A*(-,-) such that

Oy — 0o = N (R + €, 0y — 65) (7.69)

with probability 1 — o(N~2), where A*(R*,0) = 0 and Ry, R*, € =
(£y,0,...,0), and{y are defined analogously Ry, R, ey, and{y. Substitut-
ing (7.67) with 6y replaced bydy into (7.69) and applying Lemma 6 as before
gives a result analogous 1@.68) with A(Ry + ey) and A(Ry) replaced by
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AN(RY + ey, A(Ry + ey)) and A*(R{, A(Ry)), respectively We can write
AN (R{, A(Ry)) as G(Sy), where G(-) is an infinitely differentiable function
and G(S) = A*(R* A(R)) = A*(R*0) = 0. Combining this the analogue of
(7.68), and(7.69) gives the result of the lemma for the EW-GMM estimator

Each of the remaining forms afy, (namely Ty, Hx(6x), Un(6y), andKy (6y))
is a function offy and possibly fy. We take a Taylor expansion afy /N2
about(fy, fy) = (6o, 6,) to orderd — 1 to obtain

Ay = NY2(A™(Sy, Oy — 00, Oy — 0p) + {35, (7.70)

where A** is an infinitely differentiable function A**(S0,0) = 0, " is
the remainder term in the Taylor expansi@nd || = O(|0n — 6o]°) +
O(|l6n — 6o]9). Substituting(7.67) and/or (7.69) into (7.70) gives Ay =
NY2(A™*(Sy, A"(RY + &, ARy + ey)), ARy + ey)) + {\). We apply
Lemma 6 againusing the preceding result fg¢ 5|, to obtain an analogue of
(7.68) with Ay = NY2A™ (S, A* (R, A(Ry)), A(Ry)). We can writeG(Sy) =
A (S, AM(RY, A(Ry)), A(Ry)), where G(-) is infinitely differentiable and
G(S) = A**(S§ A*(R*, A(R)), A(R)) = A**(S§0,0) = 0. Combining thisthe ana-
Iogug of(7.6§), and(?.?p) gives the result of the lemma fdyy equal toTy,
Hn(On), Un (), or Ky(6n). u

7.3.9. Proof of Lemma 9Given Lemma 8 and the triangle inequality
suffices to show that the random vectdi§?G(S,) of Lemma 8 possess Edge-
worth expansions with remaindefN ~?2). First we obtain an Edgeworth ex-
pansion forN¥2(Sy — S) via Theorem 11 of Gétze and Hipp(1994), as in
the proof of Lemma &). The Edgeworth expansion fod¥?G(Sy) is now
obtained from that oNY2(S, — S) by the argument in Bhattachary4985
proof of Theorem 1 or Bhattacharya and Ghogh978 proof of Theorem 2
using the smoothness &(-), G(S) = 0, and Assumption ). |

NOTES

1. Note that some autharge.g., Rothenberg1984), say that two statistics have equabrder
asymptotic efficiency if their distributions are of CV distanoéN~s~Y) apart rather than
O(Nf(sfl)/Z).

2. As statedthese definitions of equivalence of higher order asymptotic efficiency apply for a
single data generating proced3GP). They could be altered to cover multiple DGFr an esti-
mator one could require that the CV distanceoid\N ~(s~V/2) for all DGPs that correspond to a true
paramete#), € 0. For a test statistioone could require that the CV distanceoid\ ~(s~2/2) for all
distributions in the null hypothesi3he results of the paper cover definitions of this s@me just
needs the assumptions stated in Section 5 to hold for all DGPs of interest and then the results given
apply to all such DGPRs

3. Specifically the results stated in the second and third paragraphs following eq@a@phold
when the initial estimator satisfié®(]6y,o — o] > C1yn) = o(N~2) with yy = (In(N)/N)¥?2 for
some finite constart;. A wide class of extremum estimators satisfies this condjtse® Lemma 1
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4. The matrixWy (6) is positive definite with probability that goes to one at a rate that is suf-
ficiently fast for the results of the paper to hola finite sampleshowevey Wy (6) is not neces-
sarily positive definite If Wy (6) is not positive definite Qy(6) can be defined in an arbitrary
fashion and the results of the paper hokbr exampleone could comput&\ (9) with « replaced
by a smaller value for whick\(0) is positive definite

5. The rth element offly is denoted(dy),, rather thandy,,, to distinguish it from thek-step
estimatoy fy «, defined in Section 4
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