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It is well known that a one-step scoring estimator that starts from anyN102-
consistent estimator has the same first-order asymptotic efficiency as the maxi-
mum likelihood estimator+ This paper extends this result tok-step estimators and
test statistics fork $ 1, higher order asymptotic efficiency, and general extremum
estimators and test statistics+

The paper shows that ak-step estimator has the same higher order asymptotic
efficiency, to any given order, as the extremum estimator toward which it is step-
ping, provided~i! k is sufficiently large, ~ii ! some smoothness and moment con-
ditions hold, and~iii ! a condition on the initial estimator holds+

For example, for the Newton–Raphsonk-step estimator based on an initial es-
timator in a wide class, we obtain asymptotic equivalence to integer orders pro-
vided 2k $ s1 1+ Thus, for k 5 1, 2, and 3, one obtains asymptotic equivalence to
first, third, and seventh orders, respectively+ This means that the maximum differ-
ences between the probabilities that the~N102-normalized! k-step and extremum
estimators lie in any convex set areo~1!, o~N2302!, ando~N23!, respectively+

1. INTRODUCTION

In this paper, we consider the differences between statistics that are based on
an extremum estimatorZuN and corresponding statistics that are based on ak-step
estimator ZuN, k that starts from some initial estimatorZuN,0 and takesk steps to-
ward ZuN + Robinson~1988, Theorem 2! shows that the stochastic difference be-
tween such estimators declines to zero asN r ` and that the magnitude of the
difference declines very quickly as a function ofk+ Here, we show that the
convex variational distance~defined subsequently! between the distributions of
such estimators declines to zero very quickly asN r ` at a rate that increases
very quickly as a function ofk+ This result establishes the equivalence of the
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higher order asymptotic efficiency of thek-step and extremum estimators+ The
magnitude of the order of equivalence depends onk, on moment and smooth-
ness conditions, and on the initial estimator+

We also establish analogous results that hold under the null hypothesis for
the t,Wald, Lagrange multiplier~LM !, quasi-likelihood ratio~QLR!, andJ test
statistics based on thek-step and extremum estimators+ The results hold for a
variety of different types ofk-step estimators, including Newton–Raphson~NR!,
default NR, line-search NR, and Gauss–Newton~GN! k-step estimators+ The
results hold for stationary asymptotically weakly dependent time series obser-
vations and also for independent and identically distributed~i+i+d+! observa-
tions+ The results hold for a variety of different extremum estimators, including
generalized method of moments~GMM !, maximum likelihood~ML !, and least
squares~LS! estimators+ The results cover GMM estimators with a fixed weight
matrix, called FW-GMM estimators, and GMM estimators with an estimated
weight matrix based on a preliminary FW-GMM estimator, called EW-GMM
estimators+

Let BL denote the class of all convex Borel measurable sets inRL+ The con-
vex variational~CV! distance between the distributions of twoLY-valued ran-
dom vectorsY1 andY2 is defined to be

dCV~Y1,Y2! 5 sup
B[BLY

6P~Y1 [ B! 2 P~Y2 [ B!6+ (1.1)

We say that twoN102-consistent estimatorsZu1,N and Zu2,N of a parameteru0 [
Q , RLu have equals-order asymptotic efficiency if

dCV~N102~ Zu1,N 2 u0!, N102~ Zu2,N 2 u0!! 5 o~N2a! for a 5 ~s2 1!02+ (1.2)

Analogously, two test statisticsT1,N and T2,N have equals-order asymptotic
efficiency if dCV~T1,N ,T2,N ! 5 o~N2a! for a 5 ~s 2 1!02+1,2

Higher order asymptotic efficiency is defined in terms of CV distances rather
than stochastic differences, because the main use of asymptotic results is to
provide approximations to the distributions of statistics+ The magnitudes of the
errors of these approximations are assessed directly by CV distances+ Higher
order asymptotic efficiency measures the rate at which these errors go to zero
asN r `+

We now summarize some of the results for the case where the estimator
used to initiate thek-step estimator satisfies anN102-consistency type of con-
dition that is shown to hold for a broad class of estimators+3 For the NR, de-
fault NR, and line-search NRk-step estimators, we show that the CV distance
between the distributions of the~N102-normalized! k-step estimator and the
corresponding extremum estimator is of ordero~N2a! for any a $ 0 with 2a
an integer, provided 2k $ 2a 1 2+ In terms of equality ofs-order asymptotic
efficiency, the requirement is 2k $ s 1 1+ Hence, for k 5 2, we havea 5 1
ands 5 3; for k 5 3, we havea 5 3 ands 5 7; for k 5 4, we havea 5 7 and

ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS 1041



s 5 15; etc+ Analogous results are shown to hold fort, Wald, and LM test
statistics+ For the QLR statistic based on an EW-GMM estimator and for the
J-statistic for testing overidentifying restrictions, somewhat weaker conditions
suffice: 2k $ 2a 1 1 or 2k $ s+ For the QLR statistic in likelihood contexts,
even weaker conditions suffice: 2k11 $ 2a 1 3 or 2k11 $ s 1 2+

For GN k-step estimators, we show that the CV distance between the distri-
butions of the~N102-normalized! k-step estimator and the corresponding extre-
mum estimator is of ordero~N2a! for any a $ 0 with 2a an integer, provided
k $ 2a 1 1+ In terms of equality ofs-order asymptotic efficiency, the require-
ment isk $ s+ Hence, in this scenario, for k 5 2, we havea 5 1

2
_ ands5 2; for

k 5 3, we havea 5 1 ands 5 3; for k 5 4, we havea 5 3
2
_ and s 5 4; etc+

Analogous results are shown to hold fort, Wald, and LM test statistics+ For the
QLR statistic based on an EW-GMM estimator and for theJ-statistic, weaker
conditions suffice: k $ 2a or k $ s 2 1+ For the QLR statistic in likelihood
contexts, even weaker conditions suffice: 2k $ 2a 1 1 or 2k $ s+

The results of the paper can be useful in practice to obtain an estimator that
has the same desirable higher order asymptotic efficiency properties as some
extremum estimator without having to compute the extremum estimator+ The
results show that it suffices to compute any extremum estimator based on a
well-behaved criterion function and to take a sufficiently large number of steps
k from it and toward the extremum estimator of interest+ The results also can
be useful to obtain aN102-consistent estimator, which may have desirable first-
or higher order asymptotic efficiency properties, starting from an initial estima-
tor that is onlyN2c-consistent for somec [ ~0, 12_!+

On the other hand, one has to be careful in applying the theoretical results of
the paper, because they rely on the initial estimator being in a neighborhood of
the true value+ If the initial estimator is far from the true value and the extre-
mum estimator criterion function at hand has multiple local minima, then the
asymptotic results will not be reflected closely in the finite sample behavior+

The results of the paper extend results of Pfanzagl~1974!, Pfanzagl and
Wefelmeyer~1978!, Janssen, Jureckova, and Veraverbeke~1985!, Robinson
~1988!, and others+ One-step estimators were first considered by Fisher~1925!
and LeCam~1956!+ Papers in the literature that consider higher order asymp-
totic efficiency of estimators include Pfanzagl~1974!, Pfanzagl and Wefel-
meyer~1978!, Akahira and Takeuchi~1981!, Rothenberg~1984!, and Robinson
~1988!, among others+ Papers that considerk-step bootstrap estimators include
Davidson and MacKinnon~1999! and Andrews~2002!+ Davidson and MacKin-
non~1999! point out thatk-step likelihood ratio bootstrap statistics require fewer
steps than otherk-step bootstrap test procedures, which is analogous to what
we find here+

Proofs in this paper rely heavily on methods used by Hall and Horowitz
~1996!, who consider higher order properties of bootstrap procedures for GMM
estimators+ In turn, the methods of Hall and Horowitz~1996! build on those of
Bhattacharya and Ghosh~1978! and Götze and Hipp~1983, 1994!+ Parts of our
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proofs are similar to those of Robinson~1988!+ The methods of Robinson~1988!
are related to those of Pfanzagl~1974! and to results in the numerical analysis
literature on convergence of iterative optimization algorithms~e+g+, see Dennis
and Schnabel, 1983, Sect+ 5+2!+

Throughout the paper, lnb~N! denotes~ ln~N!!b+
The remainder of the paper is organized as follows+ Section 2 provides an

outline of the results and their proof+ Section 3 defines the extremum estima-
tors and test statistics+ Section 4 introduces thek-step estimators and test sta-
tistics+ Section 5 presents the assumptions used+ Section 6 states the higher order
equivalence results+ Section 7 contains proofs of the results+

2. OUTLINE OF THE RESULTS

In this section, we provide an outline of the methods and results established in
detail in the sections that follow+

An extremum estimatorZuN of a parameteru [ Q is defined to minimize a
criterion functionJN~u! over Q+ For example, JN~u! could be a GMM or an
ML criterion function+ The true parameter value isu0+

Let ZuN,0 denote the estimator used to initiate thek-step estimator+ The k-step
estimator is defined recursively as follows:

ZuN, j 5 ZuN, j21 2 ~QN, j21!21
]

]u
JN ~ ZuN, j21! for j 5 1, + + + , k, (2.1)

where QN, j21 is a matrix that depends onZuN, j21+ For NR steps, QN, j21 5
~]20]u]u '! JN~ ZuN, j21!+ In this case, the definition of ZuN, k is motivated by the
approximation of~]0]u!JN~u! at thek 2 1 step by the affine function

AN, k21~u! 5 ~]0]u!JN ~ ZuN, k21! 1 ~]20]u]u ' !JN ~ ZuN, k21!~u 2 ZuN, k21!+ (2.2)

The value ofu that solves the approximate first-order conditionsAN, k21~u! 5 0
is easily seen to beZuN, k+ For brevity, in this section we only consider the NR
choice ofQN, j21+

We want to show for somea $ 0, where 2a is an integer, that

sup
B[BLu

6P~N102~ ZuN, k 2 u0! [ B! 2 P~N102~ ZuN 2 u0! [ B!6 5 o~N2a!+ (2.3)

This implies thatN102~ ZuN, k 2 u0! and N102~ ZuN 2 u0! are asymptotically
equivalent to integer orders 5 2a 1 1+ First, we show that the distribution of
N102~ ZuN 2 u0! possesses a well-behaved Edgeworth expansion with remainder
of order o~N2a!+ In consequence, a small change inz yields a small change
in P~N102~ ZuN 2 u0! 1 z [ B!+ This is used to show that~2+3! holds if
N102~ ZuN, k 2 u0! andN102~ ZuN 2 u0! are close in the sense that

P~7N102~ ZuN, k 2 u0! 2 N102~ ZuN 2 u0!7 . vN ! 5 o~N2a! (2.4)
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for some constantsvN 5 o~N2a!+ Note that the left-hand side of~2+4! equals
P~7 ZuN, k 2 ZuN7 . N2102vN !+

The initial estimator ZuN,0 is assumed to satisfy the following condition+ For
some finite constantC1,

P~7 ZuN,0 2 u07 . C1gN ! 5 o~N2a!, (2.5)

where$gN :N $ 1% is a sequence of constants that satisfies limNr`gN 5 0 and
gN $ ~ ln~N!0N!102 for all N $ 1+ For example, we show that~2+5! holds with
gN 5 ~ ln~N!0N!102 if ZuN,0 is an extremum estimator, provided the estimator
criterion function is sufficiently smooth and terms that arise in its Taylor ex-
pansion aboutu0 have sufficiently many finite moments+ ~See Lemma 1, which
follows+! But, it could be the case that the initial estimator converges more
slowly andgN 5 N2c for somec [ ~0, 12_!+ For example, this occurs if one min-
imizes an extremum estimator criterion function over a discrete grid of fixed
points or over a set of randomly selected points~see Robinson, 1988, Theorem 8!+

Given that the initial estimator satisfies~2+5! for some sequence$gN :N $ 1% ,
we show that~2+4! holds withvN 5 C3 N102gN

2k

for someC3 , ` for the NR
choice ofQN, j21+ The expressionvN 5 C3 N102gN

2k

corresponds to quadratic
convergence of ZuN, k to ZuN as the number of stepsk increases, which is very
fast+

In the leading case wheregN 5 ~ ln~N!0N!102, we havevN 5 o~N2a! ~as is
required for~2+4!! provided 2k $ 2a 1 2+ For k 5 2, this holds fora 5 1, which
corresponds to asymptotic equivalence ofZuN, k and ZuN to orders 5 3, because
s 5 2a 1 1+ For k 5 3, this holds fora 5 3, which corresponds to asymptotic
equivalence to orders 5 7+

For an initial estimator for whichgN 5 N2c for c [ ~0, 12_ !, vN 5
C3 N102gN

2k

5 o~N2a! provided 2k . ~a 1 1
2
_!0c+ For example, for c 5 1

4
_ and

k 5 2, this holds fora 5 0, which corresponds to asymptotic equivalence of
orders 5 1+ For c 5 1

4
_ andk 5 3, this holds fora 5 1, which corresponds to

asymptotic equivalence of orders 5 3+ For c 5 1
4
_ and k 5 4, this holds for

a 5 3 ands 5 7+ A larger number of stepsk are needed to achieve a given
orders of asymptotic equivalence when the initial estimatorZuN,0 has a slower
rate of convergence+

For the GN choice ofQN, j21, the expression forvN is different from
C3 N102gN

2k

, the rate convergence ofZuN, k to ZuN is slower, and k needs to be
larger to obtain the same order of asymptotic equivalence ofZuN, k and ZuN +

To establish~2+4!, we show that~i! the difference betweenZuN, k and ZuN

depends on the difference between~]0]u!JN~u! and its affine approximation
AN, k21~u! both evaluated atu 5 ZuN and ~ii ! the latter difference is a quadratic
function of the difference betweenZuN, k21 and ZuN + Our proof parallels the stan-
dard proof in the numerical analysis literature of the quadratic convergence of
the NR algorithm~e+g+, see Dennis and Schnabel, 1983, Sect+ 5+2!+ For nota-
tional simplicity, let ¹2JN, k21 denote~]20]u]u '!JN~ ZuN, k21!+ By the definition
of ZuN, k,
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ZuN, k 2 ZuN 5 ZuN, k21 2 ~¹2JN, k21!21
]

]u
JN ~ ZuN, k21! 2 ZuN

5 ~¹2JN, k21!21S ]

]u
JN ~ ZuN ! 2

]

]u
JN ~ ZuN, k21!

2 ¹2JN, k21~ ZuN 2 ZuN, k21!D
5 ~¹2JN, k21!21S ]

]u
JN ~ ZuN ! 2 AN, k21~ ZuN !D, (2.6)

where the second equality holds because~]0]u!JN~ ZuN ! 5 0 with probability
1 2 o~N2a! by the first-order conditions forZuN + Element by element Taylor
expansions of~]0]u!JN~ ZuN ! about ZuN, k21 give

]

]u
JN ~ ZuN ! 2 AN, k21~ ZuN !

5 F~ ZuN 2 ZuN, k21!'
]3

]uu]u]u '
JN ~uN, k21,u

1 !~ ZuN 2 ZuN, k21!02G
vec

, (2.7)

where @bu#vec denotes a vector whoseuth element isbu and uN, k21,u
1 lies be-

tween ZuN and ZuN, k21+
Combining~2+6! and~2+7! gives

7 ZuN, k 2 ZuN7 # zN7 ZuN, k21 2 ZuN72, where

zN 5 max
j51, + + + , k

7~¹2JN, j21!21!7{(
u51

Lu

** ]3

]uu]u]u '
JN ~uN, j21,u

1 !02**+ (2.8)

We show that there exists a constantK , ` such that

P~zN . K ! 5 o~N2a!+ (2.9)

Repeated substitution into the right-hand side of the inequality in~2+8! gives

7 ZuN, k 2 ZuN7 # zN
f7 ZuN,0 2 ZuN72

k

, (2.10)

wheref 5 (j51
k 2 j21+

We show that the extremum estimatorZuN satisfies the following conditions+
For some finite constantC4,

P~7 ZuN 2 u07 . C4~ ln~N!0N!102! 5 o~N2a!+ (2.11)

Equations~2+5! and~2+11! and the triangle inequality combine to yield

P~7 ZuN,0 2 ZuN7 . CgN ! 5 o~N2a!, (2.12)

whereC 5 max$C1,C4%02+
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Combining~2+9!, ~2+10!, and ~2+12! gives the following result+ For some fi-
nite constantC3,

P~7 ZuN, k 2 ZuN7 . C3gN
2k

!

# P~zN
f7 ZuN,0 2 ZuN72

k

. C3gN
2k

!

# P~K f~CgN !2k

. C3gN
2k

! 1 o~N2a!

5 o~N2a!, (2.13)

where the equality holds forC3 sufficiently large+ This establishes~2+4! with
vN 5 C3 N102gN

2k

, as desired+
The proof of analogous results for the GNk-step estimator is similar, though

more complicated, and requiresk to be larger for a given value ofa+ The rea-
son thatk needs to be larger for the GNk-step estimator than the NRk-step
estimator is that additional terms arise in~2+6! when QN, j21 does not equal
¹2JN, k21 and these terms increase the difference betweenZuN, k and ZuN +

The proofs for results concerningt, Wald, LM , QLR, and J test statistics
under the null hypothesis also are similar to the proof outlined earlier but more
complicated+ The conditions relatingk anda required for thet, Wald, and LM
statistics are the same as those for the normalized estimatorN102~ ZuN, k 2 u0!,
because the differences between thek-step and extremum versions of these test
statistics are approximately linear functions ofN102~ ZuN, k 2 ZuN !+ The conditions
required for the QLR andJ-statistics are weaker than for the other statistics+
The reason is that the differences between thek-step and extremum versions of
these statistics are approximately quadratic functions ofN102~ ZuN, k 2 ZuN ! and
N102~ NuN, k 2 NuN !, where NuN, k and NuN are restricted analogues ofZuN, k and ZuN that
satisfy the null hypothesis+

3. EXTREMUM STATISTICS

In this section, we define the extremum estimators and corresponding test sta-
tistics that are considered+ We consider extremum estimators that are either
GMM estimators or estimators that minimize a sample average+ We call
the latter “minimumr estimators,” because the sample average is taken to be
N21 (i51

N r~Xi ,u!, whereXi [ RLx is a random vector, u [ Q , RLu is an
unknown parameter, andr~{,{! is a known real function+ ML , LS, and regres-
sion M estimators are examples of minimumr estimators+ GMM estimators
are based on the moment conditionsEg~Xi ,u0! 5 0, whereg~{,{! is a known
Lg-valued function, Xi is as before, u0 [ Q , RLu is the true unknown param-
eter, andLg $ Lu+

Minimum r estimators can be written as GMM estimators withg~Xi ,u! 5
~]0]u! r~Xi ,u!+ It is useful to consider minimumr estimators separately, how-
ever, for two reasons+ First, thek-step estimator may differ depending on whether
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the extremum estimator is written in minimumr or GMM form+ The tradi-
tional one-step scoring estimator is obtained by writing the ML estimator as a
minimumr estimator, not as a GMM estimator+ Second, the identification con-
dition for consistency of a minimumr estimator requires that there is a unique
minimum of Er~Xi ,u! over u [ Q, whereas the identification condition for
consistency of the GMM estimator based on the first-order conditions of the
minimum r estimator requires that there is a unique solution to the equations
E~]0]u!r~Xi ,u! 5 0 overu [ Q+ The latter may have multiple solutions even
though the former has a unique minimum+

The observations are$Xi : i 5 1, + + + , n%+ They are assumed to be from a
~strictly! stationary and ergodic sequence of random vectors+ We assume that
the true moment functions$g~Xi ,u0! : i $ 1% ~for a GMM or minimumr esti-
mator! are uncorrelated beyond lags of lengthk for some 0# k , `+ That
is, Eg~Xi ,u0!g~Xi1j ,u0!' 5 0 for all j . k+ This assumption is satisfied with
k 5 0 in many time series models in which the estimator moment functions
form a martingale difference sequence as a result of optimizing behavior by
economic agents, because of inheritance of this property from a regression
error term, or because of the martingale difference property of the ML score
function+ It also holds with 0, k , ` in many models with rational expec-
tations and0or overlapping forecast errors, such as Hansen and Hodrick~1980!,
Brown and Maital~1981!, and Hansen and Singleton~1982!+ For additional
references, see Hansen and Singleton~1996!+

A consequence of the assumption thatEg~Xi , u0!g~Xi1j , u0!' 5 0 for all
j . k is that the covariance matrix estimator and the asymptotically optimal
weight matrix for the GMM estimator only depend on terms of the form
g~Xi ,u!g~Xi1j ,u!' for 0 # j # k+ This means that the covariance matrix esti-
mator and the weight matrix can be written as sample averages, which allows
us to use the Edgeworth expansion results of Götze and Hipp~1983, 1994!
for sample averages of stationary dependent random vectors, as in Hall and
Horowitz ~1996!+

To this end, we let

FXi 5 ~Xi
' ,Xi11

' , + + + ,Xi1k
' !' for i 5 1, + + + , n 2 k+ (3.1)

All of the statistics considered subsequently can be closely approximated by
sample averages of functions of the random vectorsFXi in the samplexN :

xN 5 $ FXi : i 5 1, + + + ,N%, (3.2)

whereN 5 n 2 k+
We consider two types of GMM estimator+ The first is a FW-GMM estimator

that utilizes anLg 3 Lg nonrandom positive-definite symmetric weight matrix
V+ In practice, V is often taken to be the identity matrixILg

+ The second is an
EW-GMM estimator that uses a weight matrix that depends on a preliminary
FW-GMM estimator and is asymptotically optimal to first order+ In the litera-
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ture this estimator is sometimes called atwo-step GMM estimator+ We do not
use this terminology, because we reserve the termk-step GMM estimatorfor
the iterative estimator that is the main focus of this paper+

The FW-GMM estimator, ZuN , minimizesJN~u! over Q, where

JN ~u! 5 SN21 (
i51

N

g~Xi ,u!D'VSN21 (
i51

N

g~Xi ,u!D+ (3.3)

The EW-GMM estimator, which, for economy of notation, we also denote
by ZuN , minimizesJN~u, DuN ! over Q, where

JN ~u, DuN ! 5 SN21 (
i51

N

g~Xi ,u!D'VN ~ DuN !SN21 (
i51

N

g~Xi ,u!D, where

VN ~u! 5 RWN
21~u!,

RWN ~u! 5 N21 (
i51

N Sg~Xi ,u!g~Xi ,u!' 1 (
j51

k

H~Xi ,Xi1j ,u!D,
H~Xi ,Xi1j ,u! 5 g~Xi ,u!g~Xi1j ,u!' 1 g~Xi1j ,u!g~Xi ,u!', (3.4)

and DuN minimizes~3+3!+4

The minimumr estimator, which we also denote byZuN , minimizesrN~u!
over Q, where

rN ~u! 5 N21 (
i51

N

r~Xi ,u!+ (3.5)

For this estimator, we let g~Xi ,u! denote~]0]u!r~Xi ,u!+
The asymptotic covariance matrix, s, of the extremum estimatorZuN is

s 5 5
~D 'VD!21D 'VV0

21VD~D 'VD!21 for FW-GMM

~D 'V0 D!21 for EW-GMM

D21V0
21D21 for minimumr, where

V0 5 ~E RWN ~u0!!21 and D 5 E
]

]u '
g~Xi ,u0!+ (3.6)

A consistent estimator ofs is

sN 5 sN ~ ZuN !, where

sN ~u! 5 5
~DN
' ~u!VDN ~u!!21DN ~u!'VVN

21~u!VDN ~u!

3 ~DN ~u!VDN ~u!!21 for FW-GMM

~DN ~u!'VN ~u!DN ~u!!21 for EW-GMM

DN
21~u!VN

21~u!DN
21~u! for minimumr,
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and

DN ~u! 5 N21 (
i51

N ]

]u '
g~Xi ,u!+ (3.7)

Let ur , u0, r , and~ ZuN !r denote therth elements ofu, u0, and ZuN , respectively+5

Let ~sN !rr denote the~r, r !th element ofsN + The t-statistic for testing the null
hypothesisH0 : ur 5 u0, r is

TN 5 N102~~ ZuN !r 2 u0, r !0~sN !rr
102+ (3.8)

UnderH0 and the assumptions given subsequently, TN has an asymptoticN~0,1!
distribution+

Let h~u! be anRLh -valued function~for some integerLh $ 1! that is contin-
uously differentiable atu0+ The Wald statistic for testingH0 : h~u0! 5 0 versus
H1 : h~u0! Þ 0 is

WN 5 Nh~ ZuN !'S ]

]u '
h~ ZuN !sNS ]

]u '
h~ ZuN !D'D21

h~ ZuN !+ (3.9)

UnderH0 and the assumptions given subsequently, WN has an asymptotic chi-
squared distribution withLh degrees of freedom+

Next, we consider the LM statistic for testingH0 : b 5 0 versusH1 : b Þ 0,
whereu 5 ~t ', b '!' andb [ RLb+ By definition, the restricted FW-GMM esti-
mator, denoted NuN 5 ~ StN

' ,0' !' , minimizesJN~u! overQ0 5 $u [ Q : u 5 ~t ',0'!'

for somet [ RLt %+ The restricted EW-GMM and minimumr estimators, also
denoted by NuN 5 ~ StN

' ,0' !' , minimize JN ~u,uN
*! and rN~u!, respectively, over

Q0, whereuN
* denotes the restricted FW-GMM estimator+

The LM statistic is

LMN 5 UN ~ NuN !'UN ~ NuN !, where

UN ~u! 5 U1,N ~u!U2,N ~u!,

U1,N ~u! 5 ~ @0IILb
#sN ~u!@0IILb

# ' !2102 @0IILb
# , and

U2,N ~u! 5 5
N102~DN ~u!VDN ~u!!21

]

]u
JN ~u! for FW-GMM

N102~DN ~u!VN ~u!DN ~u!!21
]

]u
JN ~u,uN

*! for EW-GMM

N102DN
21~u!

]

]u
rN ~u! for minimumr+

(3.10)

UnderH0 and the assumptions given subsequently, LMN has an asymptotic chi-
squared distribution withLb degrees of freedom+
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The QLR statistic for testingH0 : b 5 0 versusH1 : b Þ 0 is

QLRN 5 HN~JN ~ NuN ,uN
*! 2 JN ~ ZuN , DuN !! for EW-GMM

2N~ rN ~ NuN ! 2 rN ~ ZuN !! for minimumr+
(3.11)

Under H0 and the assumptions given subsequently, QLRN has an asymptotic
chi-squared distribution withLb degrees of freedom whenQLRN is based on
the EW-GMM estimator+ When QLRN is based on the minimumr estimator,
the asymptotic chi-squared result requiresD 5 V0

21+ For example, the latter
holds in an ML context by the information matrix equality, provided the model
is correctly specified+

We do not consider aQLRN -statistic that is based on the FW-GMM estima-
tor, because such a statistic has an asymptotic chi-squared null distribution only
if V 5 V0

21+ The latter is rarely satisfied in practice, because one rarely knows
V0+

The J-statistic for testing overidentifying restrictions is

JN 5 KN ~ ZuN !'KN ~ ZuN !, where

KN ~u! 5 VN
102~ DuN !N2102 (

i51

N

g~Xi ,u!, (3.12)

ZuN is the EW-GMM estimator, and DuN is the FW-GMM estimator+ If Lg . Lu

and the overidentifying restrictions hold, thenJN has an asymptotic chi-squared
distribution withLg 2 Lu degrees of freedom under the assumptions given sub-
sequently+ ~This is not true if ZuN is the FW-GMM estimator andVN

102~ DuN ! is
replaced byV102 in ~3+12!+!

4. k-STEP STATISTICS

Here, we define thek-step estimators andk-step t, Wald, LM , QLR, and
J-statistics+ Thek-step estimator is denotedZuN, k+ The starting value for thek-step
estimator is a consistent estimatorZuN,0+ For the FW-GMM estimator, we define
recursively

ZuN, j 5 ZuN, j21 2 ~QN, j21!21
]

]u
JN ~ ZuN, j21! for 1 # j # k+ (4.1)

For EW-GMM and minimumr estimators, ZuN, k is defined in the same way
with ~]0]u!JN~ ZuN, j21! replaced by~]0]u!JN ~ ZuN, j21, DuN, k1

! and N21 (i51
N 3

g~Xi , ZuN, j21!, respectively, where the derivative is taken with respect to the
first argument ofJN~{,{! and DuN, k1

denotes thek1-step FW-GMM estimator,
defined in ~4+1!, that starts from the same estimatorZuN,0 as thek-step EW-
GMM estimator+ We assume thatk1 $ k+

TheLu 3 Lu random matrixQN, j21 depends onZuN, j21+ It determines whether
the k-step estimator is an NR, a default NR, a line-search NR, a GN, or some
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otherk-step estimator+ The NR, default NR, and line-search NR choices ofQN, j21

yield k-step estimators that have the same higher order asymptotic efficiency+
The results that follow show that they require fewer steps, k, to approximate
the extremum estimatorZuN to a specified accuracy than does the GNk-step
estimator+ The NR choice ofQN, j21 is

QN, j21
NR 5 5

]2

]u]u '
JN ~ ZuN, j21! for FW-GMM

]2

]u]u '
JN ~ ZuN, j21, DuN, k1

! for EW-GMM

DN ~ ZuN, j21! for minimumr,

(4.2)

where the derivatives ofJN~{,{! are with respect to its first argument andDuN, k1

is defined as before+ Note that the expression forZuN, k for a minimumr estima-
tor with the NR matrixQN, j21

NR is just the usual one-step scoring estimator start-
ing from ZuN, k21 in the case of the ML estimator with score functiong~x,u!
~5 ~]0]u!r~x,u!!+ It is possible for that NR steps may move one away from
the target extremum estimator+ For this reason, we also consider default and
line-search NR matricesQN, j21+

The default NR choice ofQN, j21, denotedQN, j21
D , equalsQN, j21

NR if QN, j21
NR

leads to an estimatorZuN, j via ~4+1! for which JN~ ZuN, j ! # JN~ ZuN, j21! for the FW-
GMM estimator, but it equals some other matrix otherwise+ In practice, one
wants this other matrix to be such thatJN~ ZuN, j ! , JN~ ZuN, j21! ~but the theoreti-
cal results do not require this!+ For example, one might use the matrix~10«! ILu

for some small« . 0+ ~For a result that indicates that such a choice will de-
crease the criterion function, see Ortega and Rheinboldt, 1970, Theorem 8+2+1+!
For the EW-GMM and minimumr estimators, JN~{! is replaced byJN ~{, DuN, k1

!
andrN~{!, respectively+

The line-search NR choice ofQN, j21, denotedQN, j21
LS , uses a scaled version

of the NR matrixQN, j21
NR that optimizes the step length+ Specifically, let A be a

finite subset of~0,1# of step lengths that includes 1+ One computes ZuN, j via
~4+1! for QN, j21 5 ~10a!QN, j21

NR for eacha [ A+ One takesQN, j21
LS to be the

matrix ~10a!QN, j21
NR for the value ofa that minimizesJN~ ZuN, j ! over all a [ A

for the FW-GMM estimator+ ~If the minimizing of value ofa is not unique,
one takes the largest minimizing value ofa in A+! For the EW-GMM and
minimum r estimators, one replacesJN~ ZuN, j ! by JN ~ ZuN, j , DuN, k1

! and rN~ ZuN, j !,
respectively+

The GN choice ofQN, j21, denotedQN, j21
GN , uses a matrix that differs from,

but is a close approximation to, the NR matrixQN, j21
NR + In particular,

QN, j21
GN 5 5

2DN, j21
' VDN, j21 for FW-GMM

2DN, j21
' VN ~ DuN, k1

!DN, j21 for EW-GMM

DN, j21 for minimumr,

(4.3)
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whereDN, j21 is determined by some functionD~{,{! as follows:

DN, j21 5 N21 (
i51

N

D~ FXi , ZuN, j21! [ RLg3Lu and

ED~ FXi ,u0! 5 E
]

]u '
g~Xi ,u0!+ (4.4)

The latter condition is responsible forDN, j21 being a close approximation
to DN~ ZuN, j21!, which appears inQN, j21

NR + Note that, for the FW-GMM and
EW-GMM estimators, QN, j21

NR is the sum of two terms, one of which contains
N21 (i51

N ~]20]u]u ' ! g~Xi , ZuN, j21!+ The latter term is omitted inQN, j21
GN + It is

close to zero, because it is multiplied by the factorN21 (i51
N g~Xi , ZuN, j21!,

which is close to zero+
For an example of a GN matrix for FW-GMM or EW-GMM estimators, con-

sider a nonlinear instrumental variables~IV ! estimator for which

g~Xi ,u! 5 U~Xi ,u!L~Zi ,u! and E~U~Xi ,u0!6Zi ! 5 0 a+s+, (4.5)

whereU~Xi ,u! [ R is a residual, L~Zi ,u! [ RLg is a function of some IVsZi ,
andZi is a subvector ofXi + In this case,

]

]u '
g~Xi ,u! 5 L~Zi ,u!

]

]u '
U~Xi ,u! 1 U~Xi ,u!

]

]u '
L~Zi ,u!+ (4.6)

The GN choice ofQN, j21 omits the second summand of~]0]u '!g~Xi ,u! in DN, j21

becauseEU~Xi ,u0!~]0]u '!L~Zi ,u0! 5 0+ That is, QN, j21
GN is as in~4+3! and~4+4!

with

D~ FXi ,u! 5 L~Zi ,u!
]

]u '
U~Xi ,u!+ (4.7)

For an example of a GN matrix for a minimumr estimator, consider the LS
estimator of a nonlinear regression model:

Yi 5 q~Zi ,u0! 1 Ui for i 5 1, + + + , n,

r~Xi ,u! 5 ~Yi 2 q~Zi ,u!!202,

g~Xi ,u! 5 2~Yi 2 q~Zi ,u!!
]

]u
q~Zi ,u!, and

]

]u '
g~Xi ,u! 5

]

]u
q~Zi ,u!

]

]u '
q~Zi ,u! 1 ~Yi 2 q~Zi ,u!!

]2

]u]u '
q~Zi ,u!,

(4.8)

whereYi is a scalar dependent variable, Zi is a vector of regressor variables,
Ui is an unobserved scalar error withE~Ui 6Zi ! 5 0 a+s+, andq~{,{! is a known
real function that is twice differentiable in its second argument+ The GN ma-
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trix QN, j21
GN omits the second summand of~]0]u '!g~Xi ,u!, becauseE~Yi 2

q~Zi ,u0!! ~]20]u]u '!q~Zi ,u0! 5 0+ That is, QN, j21
GN is as in~4+3! ~for minimum

r estimators! and ~4+4! with

D~ FXi ,u! 5
]

]u
q~Zi ,u!

]

]u '
q~Zi ,u!+ (4.9)

A second example of a GN matrixQN, j21
GN for a minimumr estimator is the

sample outer-product estimator of the information matrix in a ML scenario+ Sup-
pose thatrN~u! is a normalized negative log likelihood function andg~Xi ,u! 5
~]0]u!r~Xi ,u! is the negative score~or conditional score! function for theXi th
observation+ By the information matrix equality,

E
]

]u '
g~Xi ,u0! 5 Eg~Xi ,u0!g~Xi ,u0!' (4.10)

when the model is correctly specified+ In this case, the NR matrixQN, j21
NR is the

sample analogue of the expectation on the left-hand side of~4+10!: QN, j21
NR 5

N21 (i51
N ~]0]u ' !g~Xi , ZuN, j21!+ The GN matrixQN, j21

GN is the sample analogue
of the expectation on the right-hand side of~4+10!+ Thus, QN, j21

GN is as in~4+3!
~for minimum r estimators! and~4+4! with

D~ FXi ,u! 5 g~Xi ,u!g~Xi ,u!'+ (4.11)

The GN matrix does not require calculation of the second derivative of the log
likelihood function+

Alternatively, in an ML scenario, one can use a GN matrixQN, j21 based on
the expected information matrix:

QN, j21
GN2 5 Eu

]

]u '
g~ FXi ,u!*

u5 ZuN, j21

, (4.12)

whereEu denotes expectation when the true parameter isu+ In this case, the
function D~ FXi ,u! of ~4+4! is Eu~]0]u '!g~ FXi ,u!, which is nonrandom and does
not depend on FXi + The expected information matrix is often used in the statis-
tical literature on one-step andk-step estimators in likelihood scenarios~e+g+,
see Pfanzagl, 1974!+

For GMM estimators that have the same number of moment conditions as the
dimension ofu, such as ML estimators defined via the likelihood equations, ZuN, k

is the same whether defined usingV or VN ~ DuN, k1
! ~because the moment condi-

tionsN21 (i51
N g~Xi ,u! have an exact zero with probability that goes to one at

an appropriate rate asN r `!+
Next, we define the restrictedk-step estimatorStN, k of t that is used by the

k-step LM and QLR statistics when the null hypothesis isH0 : b 5 0+ The re-
stricted estimatorStN, k of t yields the corresponding restricted estimatorNuN, k 5
~ StN, k
' ,0' !' of u+ The starting value for the restrictedk-step estimator is an esti-
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mator NuN,0 5 ~ StN,0
' ,0' !' that is consistent underH0 : b 5 0+ For the restricted

FW-GMM estimator, we define StN, k recursively via

StN, j 5 StN, j21 2 ~QN, j21
t !21

]

]t
JN ~ NuN, j21! for 1 # j # k, (4.13)

where~]0]t!JN~u! denotes the vector of partial derivatives ofJN~u! with re-
spect to the firstLt elements ofu andQN, j21

t is anLt 3 Lt matrix that depends
on StN, j21+ The matrixQN, j21

t determines whether the restrictedk-step estimator
is an NR, a default NR, a line-search NR, a GN, or some otherk-step estimator+
Often, QN, j21

t equals the upperLt 3 Lt block of QN, j21 defined with NuN, j21 in
place of ZuN, j21+

For EW-GMM and minimumr estimators, StN, k is defined as in~4+13! with
~]0]t!JN~ NuN, j21! replaced by~]0]t!JN ~ NuN, j21,uN, k1

* ! and ~]0]t!rN~ StN, j21!, re-
spectively, where the derivative is taken with respect to the firstLt elements of
the first argument ofJN~{,{! anduN, k1

* denotes the restrictedk1-step FW-GMM
estimator that starts at the same estimatorNuN,0 as the restrictedk-step EW-
GMM estimator+ We assume thatk1 $ k+

The restricted NR matrix, QN, j21
t,NR , default NR matrix, QN, j21

t,D , line-search
NR matrix, QN, j21

t, LS , and GN matrix, QN, j21
t,GN , are defined as in~4+2!–~4+4!

but with ]20]u]u ', ZuN, j21, DuN, j21, DN~u!, andDN, j21 replaced by]20]t]t ', NuN, j21,
uN, j21
* , the first Lt rows of DN~u!, and the first Lt rows of DN, j21,

respectively+
We define thek-stept-statistic, TN, k,Wald statistic,WN, k, LM statistic, LMN, k,

QLR statistic, QLRN, k, andJ-statistic, JN, k, as in ~3+8!–~3+12!, but with ~ ZuN !r ,
ZuN , DuN , NuN , anduN

* , replaced by ZuN, k, r , ZuN, k, DuN, k1
, NuN, k, anduN, k1

* , respectively,
in all parts of their definitions, where ZuN, k, r denotes therth element of ZuN, k,
DuN, k1

denotes thek1-step FW-GMM estimator, anduN, k1

* denotes the restricted
k1-step FW-GMM estimator+

5. ASSUMPTIONS

We now introduce the assumptions+ They apply to the FW-GMM, EW-GMM,
or minimumr estimator+

Let a be a non-negative constant such that 2a is an integer+ The following
assumptions depend ona and are used to show that the CV distances between
the distributions of thek-step and the extremum statistics areo~N2a!+ This cor-
responds to equality ofs5 2a 1 1–order asymptotic efficiency+ The larger isa,
the stronger are the assumptions+

Let f ~ FXi , u! denote the vector containing the unique components ofXi ,
g~Xi , u!, and g~Xi , u!g~Xi1j , u!' for j 5 0, + + + ,k, and their derivatives with
respect tou through orderd 5 max$2a 1 2,3% + Let f ~ FXi ! 5 f ~ FXi , u0!+ Let
~] j0]u j !g~Xi ,u! denote the vector of partial derivatives with respect tou of
order j of g~Xi ,u!+ For a matrixA, 7A7 denotes~ tr~A'A!!102+
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Assumption 1+ There is a sequence of i+i+d+ vectors$«i : i 5 2`, + + + ,`% of
dimension L« $ Lx and an Lx 3 1 function h such that f ~ FXi ! 5
h~«i ,«i21,«i22, + + + !+ There are constantsK , ` and j . 0 such that for all
m $ 1

E7h~«i ,«i21, + + + ! 2 h~«i ,«i21, + + + ,«i2m,0,0, + + + !7 # K exp~2jm!+

Assumption 2+ ~a! Q is compact andu0 is an interior point ofQ+ ~b! Either
~i! ZuN minimizes JN~u! or JN~u, DuN ! over u [ Q; u0 is the unique solution
in Q to Eg~X1, u! 5 0; for some functionCg~x!, 7g~x, u1! 2 g~x, u2!7 #
Cg~x!7u1 2 u27 for all x in the support ofX1 and all u1, u2 [ Q; and
ECg

q0~X1! , ` and E7g~X1,u!7q0 , ` for all u [ Q for q0 5 max$2a 1 1,
2% or ~ii ! ZuN minimizes rN~u! over u [ Q; u0 is the unique minimum of
Er~X1,u! over u [ Q; and E6r~X1,u!6q0 , ` for all u [ Q and
E supu[Q7g~X1,u!7q0 , ` for q0 5 max$2a 1 1, 2%, where g~x,u! 5
~]0]u!r~x,u!+

Assumption 3+ ~a! Eg~X1,u0!g~X11j ,u0!' 5 0 for all j . k for 0 # k , `+
~b! V and V0 are positive definite andD is full rank Lu+ ~c! g~x,u! is d 5
max$2a 1 2, 3% times differentiable with respect tou on N0, some neigh-
borhood ofu0, for all x in the support ofX1+ ~d! E7 f ~ FX1!7q1 , ` for q1 5
2a 1 3+ ~e! There is a functionC]f ~ FX1! such that7 f ~ FX1,u! 2 f ~ FX1,u0!7 #

C]f ~ FX1!7u 2 u07 for all u [ N0 andEC]f
q1~ FX1! , ` for q1 5 2a 1 3+ ~f ! If the

Wald statistic is considered, the RLh -valued functionh~{! is d times continu-
ously differentiable atu0 and ~]0]u '!h~u0! is full rank Lh # Lu+ If the LM or
QLR statistic is considered, the true parameteru0 5 ~t0

' ,0' !' underH0 is such
that t0 is in the interior of$t : ~t ',0'!' [ Q0%+

Assumption 4+ There exist constantsK1 , ` andd . 0 such that for arbi-
trarily large z . 1 and all integersm [ ~d21,N! and t [ Rdim~ f ! with d ,
7t 7 , Nz,

E*ESexpSM21t ' (
s51

2m11

f ~ FXs!D*$«j : 6 j 2 m6 . K1%D* # exp~2d!+

Assumption 5+ The initial estimator ZuN,0 satisfies the following conditions+
For some finite constantC1 and for some sequence of constants$gN :N $ 1%
with limNr`gN 5 0 andgN $ ~ ln~N!0N!102 for all N $ 1, we have

P~7 ZuN,0 2 u07 . C1gN ! 5 o~N2a!+

If the LM or QLR statistic is considered, the restricted initial estimatorNuN,0 5
~ StN,0
' ,0' !' satisfies the same condition underH0+

Assumption 6+ The matrices$QN, j21 : j 5 1, + + + , k% satisfy the following con-
ditions+ For some finite constantC2 and for some sequences of constants
$cN, j21 :N $ 1% for j 5 1, + + + , k that satisfy either~i! cN, j21 5 0 for all N $ 1
and j 5 1, + + + , k or ~ii ! cN, j21 5 max$gN

2 j21
, ~ ln~N!0N!102% , we have
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PS7QN, j21 2
]2

]u]u '
JN ~ ZuN, j21!7 . C2cN, j21D5 o~N2a! for j 5 1, + + + , k

for FW-GMM estimators+ For EW-GMM and minimum r estimators,
analogous conditions hold with~]20]u]u ' !JN ~ ZuN, j21! replaced by
~]20]u]u ' !JN ~ ZuN, j21, DuN, k1

! and DN~ ZuN, j21!, respectively+ If the LM or QLR
statistic is considered, $QN, j21

t : j 5 1, + + + , k% satisfy the same condition with
the same constants$cN, j21 :N $ 1% but with ~]20]t]t '!JN~ NuN, j21! in place of
~]20]u]u '!JN~ ZuN, j21! for the restricted FW-GMM estimator and analogously
for the restricted EW-GMM and minimumr estimators+

When considering theQLRN, k-statistic, we use the following assumption+

Assumption 7+ TheQLRN -statistic has an asymptoticx2 expansion with re-
maindero~N2a!+ That is, there exist polynomials$pi ~z! : i 5 1, + + + , @a#% in z
whose coefficients areO~1! such that

sup
B[B1

6P~AN [ B! 2E
B
S11 (

i51

@a#

N2ipi ~z!D fx2~z! dz6 5 o~N2a!,

wherefx2~{! denotes the density of somex2 random variable+

Assumption 1 is the same as condition~1! of Götze and Hipp~1994!+ It is an
assumption of asymptotically weak temporal dependence of the sequence of
random vectors$ f ~ FXi ! : i $ 1%+ It implies that$ f ~ FXi ! : i $ 1% are strong mixing+
Assumption 1 holds automatically if$Xi : i $ 1% are i+i+d+ Assumption 2 is a
standard assumption used to obtain consistency of extremum estimators+ As-
sumption 3 is similar to conditions in the literature used to obtain asymptotic
normality of extremum estimators+ But, whena . 0, it imposes stronger smooth-
ness and moments restrictions than is typical+ In addition, Assumption 3~a! is
more restrictive than usual+ See Section 3 for a discussion of Assumption 3~a!+
Assumption 4 is the same as condition~4! of Götze and Hipp~1994!+ It re-
duces to the standard Cramér condition if$Xi : i $ 1% are i+i+d+

The conditiongN $ ~ ln~N!0N!102 in Assumption 5~concerning the initial
estimator ZuN,0! is not restrictive because Assumption 5 typically does not hold
for constantsgN that are smaller than~ ln~N!0N!102+ For some estimators, As-
sumption 5 may hold only whengN . ~ ln~N!0N!102, such asgN 5 N2104+

On the other hand, the following lemma shows that for initial estimators in a
broad class of extremum estimators Assumption 5 holds withgN given by the
minimal values

gN 5 ~ ln~N!0N!102+ (5.1)

LEMMA 1 + Suppose ZuN,0 is an extremum estimator that minimizes a crite-
rion function JN,0~u!, JN,0~u, DuN,0!, or rN,0~u! overQ, where JN,0~u!, JN,0~u, DuN,0!,
andrN,0~u! are defined as in (3.3)–(3.5), respectively, with g~Xi ,u!, V, VN~{!,
DuN, r~Xi ,u!, and f~ FXi ,u! replaced by some quantities g0~Xi ,u!, V0, VN,0~{!,
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DuN,0, r0~Xi ,u!, and f0~ FXi ,u!, respectively. Suppose Assumptions 1–4 hold with
the same changes. SupposeNuN,0 is a restricted extremum estimator that mini-
mizes one of the preceding criterion functions overQ0 but with DuN,0 replaced by
uN,0
* in JN,0~u, DuN,0!, whereuN,0

* minimizes JN,0~u! over Q0. Then, Assumption 5
holds withgN 5 ~ ln~N!0N!102.

Remarks+

~1! Given the result of Lemma 1, the leading case of interest forgN in Assumption 5
is gN 5 ~ ln~N!0N!102+ Much of the discussion that follows focuses on this case+
But, we provide results that allow for initial estimators that have a slower rate of
convergence, such as those for whichgN 5 N2c for c [ ~0, 12_!+ This occurs with
an initial estimator that is defined by minimizing a criterion function over a dis-
crete grid of points or over a set of randomly selected points, rather than all points
in the parameter space+

~2! In Lemma 1, the condition ond in Assumption 3 for the initial estimatorsZuN,0

and NuN,0 can be weakened tod $ 3+ ~This holds because the proof of Lemma 1
only relies on Lemma 5 in Section 7 and not on Lemma 8 or 9+ See the remark
following Lemma 9 in Section 7+!

Next, we provide sufficient conditions for Assumption 6 for the NR, default
NR, line-search NR, and GN choices of matricesQN, j21+ Other choices of ma-
tricesQN, j21 are possible+

LEMMA 2 + Suppose Assumptions 1–5 hold for some a$ 0 with 2a an inte-
ger. Then, Assumption 6 holds withcN, j 5 0 for all N $ 1 and j 5 1, + + + , k
for theNR, defaultNR, and line-searchNR choices of QN, j21. In addition, As-
sumption 6 holds withcN, j21 5 max$gN

2 j21
, ~ ln~N!0N!102% for theGN choice of

QN, j21 for j 5 1, + + + , k, provided Assumptions 1 and 4 hold with the elements
of D~ FXi , u0! (defined in (4.4)) added to f~ FXi ! , the functionD~{,{! satisfies
E~D~ FXi , u0! 2 ~]0]u ' !g~Xi , u0!! 5 0, D~ FXi , u! is continuously differenti-
able in u for u [ N0, E7D~ FXi , u0! 2 ~]0]u ' !g~Xi , u0!!72a13 , `, and
E supu[N0

7~]0]ur !D~ FXi ,u!7q2 , ` for all r 51, + + + , Lu for q2 5 max$2a11, 2%.

Remark+ Suppose Assumption 5 holds withgN 5 ~ ln~N!0N!102, as Lemma 1
shows occurs for a broad class of extremum estimators+ Then, for GN choices
of QN, j21, Assumption 6 holds by Lemma 2 withcN, j21 5 ~ ln~N!0N!102 for all
N $ 1 andj 5 1, + + + , k+

Assumption 7 is shown to hold under regularity conditions in i+i+d+ likeli-
hood contexts by Chandra and Ghosh~1979, Sect+ 4!+ Furthermore, it should
be possible to use the same line of argument in the non-i+i+d+ likelihood case
and in the EW-GMM case making use of the lemmas given in Section 7+ How-
ever, the arguments for these cases would be quite long and involved+ For brev-
ity, we do not provide such results+
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6. EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY
OF k-STEP AND EXTREMUM STATISTICS

The higher order asymptotic equivalence of thek-step and extremum statistics
is established in parts~b!–~d! of Theorem 1, which follows+ Part~b! gives con-
ditions under which the CV distances between~N102~ ZuN, k 2 u0!,TN, k,
WN, k, LMN, k! and~N102~ ZuN 2 u0!,TN ,WN , LMN !, respectively, areo~N2a! for
somea $ 0+ Part ~c! does likewise for~QLRN, k, JN, k! and ~QLRN , JN ! when
QLRN is based on the EW-GMM estimator+ Part ~d! does likewise forQLRN, k

andQLRN whenQLRN is based on the minimumr estimator+ The conditions
required for part~d! are weaker than those for part~c!, which, in turn, are weaker
than those for part~b!+

In part ~a! of the theorem, the difference between thek-step estimator and
the corresponding extremum estimator is shown to be of greater magnitude than
mN, k with probability o~N2a!, where

mN, k 5 5
gN

2k

when Assumption 6 holds withcN, j21 5 0

gN )
j51

k

cN, j21

when Assumption 6 holds withcN, j21

5 max$gN
2 j21
, ~ ln~N!0N!102%+

(6.1)

Thus, mN, k 5 gN
2k

for NR, default NR, and line-search NR matrices andmN, k 5
gN ) j51

k cN, j21 for GN matrices+
If Assumption 5 holds withgN 5 ~ ln~N!0N!102, as it does for the extremum

estimators of Lemma 1, then for GN matricescN, j21 5 ~ ln~N!0N!102 5 gN and
mN, k simplifies to

mN, k 5 gN
k11+ (6.2)

We see that for the NR procedures the difference, mN, k ~5 gN
2k

!, decreases
very quickly ask increases, whereas for GN procedures the difference, mN, k

~5 gN
k11!, decreases more slowly ask increases+ Simplified formulae formN, k

for GN matrices whengN 5 N2c for c , 1
2
_ are given in Remark 3 following

the theorem+
The key condition in part~b! of Theorem 1 is

mN, k 5 o~N2~a1102! !, (6.3)

where 2a is a non-negative integer+ Given this condition, the CV distances be-
tween thek-step and extremum statistics areo~N2a!, and these statistics have
equal asymptotic efficiency to orders 5 2a 1 1+

If Assumption 5 holds withgN 5 ~ ln~N!0N!102, as it does for initial estima-
tors that are extremum estimators, and Assumption 6 holds withcN, j 5 0, as it
does for NR, default NR, and line-search NR procedures, then~6+3! holds if

2k $ 2a 1 2 or, equivalently, 2k $ s1 1, (6.4)
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where 2a and s are integers+ Thus, for k 5 1, we havea 5 0 ands 5 1; for
k 5 2, we havea 5 1 ands5 3; for k 5 3, we havea 5 3 ands5 7; for k 5 4,
we havea 5 7 ands 5 15; etc+

If Assumption 5 holds withgN 5 ~ ln~N!0N!102 and Assumption 6 holds with
cN, j 5 ~ ln~N!0N!102, as it does for GN procedures under the conditions in
Lemma 2, then~6+3! holds if

k $ 2a 1 1 or, equivalently, k $ s, (6.5)

where 2a and s are integers+ Thus, for k 5 1, we havea 5 0 ands 5 1; for
k 5 2, we havea 5 1

2
_ and s 5 2; for k 5 3, we havea 5 1 ands 5 3; for

k 5 4, we havea 5 3
2
_ ands 5 4; etc+

Conditions under which~6+3! holds when Assumption 5 holds withgN 5
N2c for c [ ~0, 12_! are given in Remarks 2 and 3 following the theorem+

The conditions used in parts~c! and~d! of the theorem forQLRN, k andJN, k

are discussed in Remarks 4 and 5 following the theorem+
The main result of the paper is the following theorem+ It holds when ZuN, k is

the FW-GMM, EW-GMM, or minimumr k-step estimator+ As previously, BL

denotes the class of convex sets inRL+

THEOREM 1+ Suppose Assumptions 1–6 hold for some a$ 0 with 2a an
integer in parts (a)–(d), which follows. When considering test statistics in parts
(a)–(d), the null hypothesis is assumed to hold.

(a) Then, for some finite constant C3,

P~7 ZuN, k 2 ZuN7 . C3 mN, k! 5 o~N2a!,

P~6TN, k 2 TN 6 . C3 N102mN, k! 5 o~N2a!,

P~6WN, k 2 WN 6 . C3 N102mN, k! 5 o~N2a!,

P~6LMN, k 2 LMN 6 . C3 N102mN, k! 5 o~N2a!,

P~6QLRN, k 2 QLRN 6 . C3qN mN, k! 5 o~N2a!

when ZuN and NuN are EW-GMM estimators,

P~6QLRN, k 2 QLRN 6 . C3 NmN, k
2 ! 5 o~N2a!

when ZuN and NuN are minimumr estimators, and

P~6JN, k 2 JN 6 . C3qN mN, k! 5 o~N2a!,

where qN 5 max$ ln~N!,NmN, k%.
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(b) SupposemN, k 5 o~N2~a1102! !. Then,

sup
B[BLu

6P~N102~ ZuN, k 2 u0! [ B! 2 P~N102~ ZuN 2 u0! [ B!6 5 o~N2a!,

sup
B[B1

6P~TN, k [ B! 2 P~TN [ B!6 5 o~N2a!

under H0,

sup
B[B1

6P~WN, k [ B! 2 P~WN [ B!6 5 o~N2a!

under H0,

and

sup
B[B1

6P~LMN, k [ B! 2 P~LMN [ B!6 5 o~N2a!

under H0+

(c) SupposemN, k 5 o~N2aqN
21!. Suppose Assumption7 holds when consid-

ering the QLRN, k-statistic. Then, for the QLRN, k-statistic based on the
EW-GMM estimator and for the JN, k-statistic,

sup
B[B1

6P~QLRN, k [ B! 2 P~QLRN [ B!6 5 o~N2a! under H0 and

sup
B[B1

6P~JN, k [ B! 2 P~JN [ B!6 5 o~N2a! under H0+

(d) SupposemN, k 5 o~N2~a11!02! and Assumption 7 holds. Then, for the
QLRN, k-statistic based on the minimumr estimator,

sup
B[B1

6P~QLRN, k [ B! 2 P~QLRN [ B!6 5 o~N2a! under H0+

Remarks+
1+ Whena 5 0, part ~a! gives the stochastic differences between the statis-

tics ZuN, k and ZuN , etc+, as in Robinson~1988! ~although Robinson, 1988, does
not consider test statistics!+Whena 5 0 andgN 5 N2c for somec [ ~0, 12_!, the
results of part~a! for GN procedures are stronger than those in Robinson~1988!
because we exploit the fact that Assumption 6 holds with lower boundscN, j

that decrease inj in this case, rather than being independent ofj+ Whena . 0,
part ~a! gives stronger results than stochastic difference results+ It shows that
the difference betweenk-step and extremum statistics is very small except on
sets with very small probabilities+ These stronger results are used to establish
parts~b!–~d! of the theorem+ Parts~b!–~d! show that the cv distances between
the distributions ofN102~ ZuN, k 2 u0! andN102~ ZuN 2 u0!, etc+, areo~N2a!+ Parts
~b!–~d! establish that thek-step and extremum estimators and test statistics have
equals-order asymptotic efficiency fors 5 2a 1 1+
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2+ Here we discuss the conditionmN, k 5 o~N2~a1102! ! in part~b! of the theo-
rem when Assumption 5 holds withgN 5 N2c for somec [ ~0, 12_! and NR,
default NR, or line-search NR procedures are employed+ In this case, mN, k 5
N2c2k

and the condition holds if 2k . ~a 1 1
2
_!0c+ For example, if c 5 1

4
_ , it holds

if 2 k . 4a 1 2+ If c 5 1
4
_ andk 5 2, the condition holds witha 5 0 ands5 1+ If

c 5 1
4
_ andk 5 3, the condition holds witha 5 1 ands 5 3+

3+ Some calculations show that if Assumption 5 holds withgN 5 N2c for
c [ @22b,22b11! for someb [ $2,3, + + + %, then for GN matricesmN, k satisfies

mN, k 5 gN
2k

for k , b

mN, k 5 gN
2b21

~ ln~N!0N!~k2b11!02 for k $ b+
(6.6)

In this case, cN, j21 5 gN
2k21

for j , b andcN, j21 5 ~ ln~N!0N!102 for j $ b+
SupposegN 5 N2c for c [ @ 1

4
_ , 12_!; thenb 5 2, mN, k 5 N22c for k 5 1, and

mN, k 5 N22c~ ln~N!0N!~k11!02 for k $ 2+ In this case, the conditionmN, k 5
o~N2~a1102! ! in part ~b! of the theorem holds fork 5 1 if c . a02 1 1

4
_ , which

holds for a 5 0 ands 5 1 providedc . 1
4
_ and does not hold even fora 5 0

whenc 5 1
4
_ + The conditionmN, k 5 o~N2~a1102! ! holds fork $ 2 if k . 2a 2

4c+ For k 5 2, this condition holds witha 5 1 ands 5 3 for c 5 1
4
_ and with

a 5 3
2
_ and s 5 4 for c . 1

4
_ + For k 5 3, the condition holds witha 5 3

2
_ and

s 5 4 for c 5 1
4
_ and witha 5 2 ands 5 5 for c . 1

4
_ +

4+ Here we discuss the conditionmN, k 5 o~N2aqN
21! in part ~c! of the theo-

rem+ When Assumption 5 holds withgN 5 ~ ln~N!0N!102, as it does for extre-
mum estimators under the conditions of Lemma 1, and Assumption 6 holds
with cN, j 5 0, as it does for the NR, default NR, and line-search NR proce-
dures, thenqN 5 ln~N! and the conditionmN, k 5 o~N2aqN

21! holds provided

2k $ 2a 1 1 or, equivalently, 2k $ s+ (6.7)

Thus, for k 5 1, we havea 5 1
2
_ ands5 2; for k 5 2, we havea 5 3

2
_ ands5 4;

for k 5 3, we havea 5 7
2
_ ands5 8; for k 5 4, we havea 5 15

2
_ ands5 16; etc+

If Assumption 5 holds withgN 5 ~ ln~N!0N!102 and Assumption 6 holds with
cN, j 5 ~ ln~N!0N!102, as it does for the GN procedure under the conditions in
Lemma 2, then qN 5 ln~N! and the conditionmN, k 5 o~N2aqN

21! in part ~c!
holds if

k $ 2a or, equivalently, k $ s2 1, (6.8)

where 2a and s are integers+ Thus, for k 5 1, we havea 5 1
2
_ and s 5 2; for

k 5 2, we havea 5 1 ands 5 3; for k 5 3, we havea 5 3
2
_ and s 5 4; for

k 5 4, we havea 5 2 ands 5 5; etc+
When Assumption 5 holds withgN 5 N2c for c [ ~0, 12_! and Assumption 6

holds with cN, j 5 0, then the conditionmN, k 5 o~N2aqN
21! in part ~c! holds

provided 2k . max$a0c, ~a 1 1!0~2c!%+ For example, if c 5 1
4
_ and k 5 1, the

condition does not hold even witha 5 0+ If c 5 1
4
_ and k 5 2, the condition

holds witha 5 1
2
_ ands5 2+ If c 5 1

4
_ andk 5 3, the condition holds witha 5 3

2
_

ands 5 4+
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5+ Next, we discuss the conditionmN, k 5 o~N2~a11!02! in part ~d!+ When
Assumption 5 holds withgN 5 ~ ln~N!0N!102 and when Assumption 6 holds
with cN, j 5 0, as it does for the NR, default NR, and line-search NR proce-
dures, this condition holds provided

2k11 $ 2a 1 3 or, equivalently, 2k11 $ s1 2+ (6.9)

Thus, for k51, we havea5 1
2
_ ands5 2; for k5 2, we havea5 5

2
_ ands5 6; for

k 5 3, we havea 5 13
2
_ ands5 14; for k 5 4, we havea 5 29

2
_ ands5 30; etc+

If Assumption 5 holds withgN 5 ~ ln~N!0N!102 and Assumption 6 holds
with cN, j 5 ~ ln~N!0N!102 for all j 5 1, + + + , k, as it does for GN procedures
under the conditions in Lemma 2, then the conditionmN, k 5 o~N2~a11!02! in
part ~d! holds if

2k $ 2a 1 1 or, equivalently, 2k $ s, (6.10)

where 2a and s are integers+ Thus, for k 5 1, we havea 5 1
2
_ and s 5 2; for

k 5 2, we havea 5 3
2
_ and s 5 4; for k 5 3, we havea 5 5

2
_ and s 5 6; for

k 5 4, we havea 5 7
2
_ ands 5 8; etc+

When Assumption 5 holds withgN 5 N2c for c [ ~0, 12_! and Assumption 6
holds withcN, j 5 0, then the conditionmN, k 5 o~N2~a11!02! in part ~d! holds
provided 2k . ~a 1 1!0~2c!+ For example, if c 5 1

4
_ and k 5 1, the condition

does not hold even witha 5 0+ If c 5 1
4
_ andk 5 2, the condition holds with

a 5 1
2
_ ands5 2+ If c 5 1

4
_ andk 5 3, the condition holds witha 5 5

2
_ ands5 6+

6+ The condition onmN, k in part ~d! of the theorem is weaker than those in
parts ~b! and ~c!+ Also, the condition onmN, k in part ~c! of the theorem is
weaker than that in part~b!+ The reason this occurs is that part~a! of the
theorem holds for the statistics considered in parts~c! and ~d! with the lower
bounds in the probability being ln~N!mN, k and NmN, k

2 , respectively, rather
than the larger quantityN102mN, k, which is the lower bound for the statistics
considered in part~b!+

The reason for these results in part~a! is as follows+ Consider theQLRN, k-
statistic based on the minimumr estimator, for which part~a! holds with lower
boundNmN, k

2 + We have

QLRN, k 2 QLRN 5 2N~ rN ~ ZuN, k! 2 rN ~ ZuN !! 2 2N~ rN ~ NuN, k! 2 rN ~ NuN !!+

(6.11)

The first and second terms on the right-hand side are quadratic forms inZuN, k 2
ZuN and NuN, k 2 NuN , respectively+ Hence, 6QLRN, k 2 QLRN 6 is of the same order

asN7 ZuN, k 2 ZuN72 andN7 NuN, k 2 NuN72+ The result of part~a! for 7 ZuN, k 2 ZuN7 and
7 NuN, k 2 NuN7 holds with lower boundmN, k+ Thus, the result of part~a! for
6QLRN, k 2 QLRN 6 holds with lower boundNmN, k

2 +
The reason that the first term on the right-hand side of~6+11! is a quadratic

form in ZuN, k 2 ZuN is that a two-term Taylor expansion ofrN~ ZuN, k! about ZuN

gives
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rN ~ ZuN, k! 2 rN ~ ZuN ! 5
1

2
~ ZuN, k 2 ZuN !'

]2

]u]u '
rN ~uN

1!~ ZuN, k 2 ZuN !, (6.12)

where the linear term inZuN, k 2 ZuN is zero with probability 12 o~N2a!, because
~]0]u!rN~ ZuN ! 5 0 by the first-order conditions forZuN + An analogous result holds
for rN~ NuN, k! 2 rN~ NuN !+

For the QLRN, k-statistic based on the EW-GMM estimator and theJN, k-
statistic, the preceding calculations need to be altered somewhat because of
the difference between~]0]u!JN ~ ZuN , DuN, k1

! and ~]0]u!JN~ ZuN , DuN !+ The former
appears in the Taylor expansion~with respect to the first argument! of
JN ~ ZuN, k, DuN, k1

! about ZuN , which is analogous to the Taylor expansion of
~6+12!+ But, it is the latter, ~]0]u!JN~ ZuN , DuN !, that equals zero with probability
1 2 o~N2a!+ Hence, the linear term in the Taylor expansion is not identically
zero+ In consequence, the lower bounds in part~a! for theQLRN, k-statistic based
on the EW-GMM estimator and theJN, k-statistic are larger than for theQLRN, k-
statistic based on the minimumr estimator but smaller than for the other sta-
tistics considered+ In turn, this implies that the condition needed in part~c! is
stronger than that required in part~d! but weaker than that required in part~b!+

7+ Results analogous to those given previously for test statistics under the
null hypothesis could be established under local alternatives+ For brevity, we
do not do so+

7. PROOFS

In Section 7+1, we state Lemmas 3–9, which are used in the proofs of Lemmas
1 and 2 and Theorem 1+ In Section 7+2, we prove Theorem 1+ In Section 7+3,
we prove Lemmas 1–9+

Throughout this section, a denotes a constant that satisfiesa $ 0 and 2a is
an integer+

7.1. Lemmas

LEMMA 3 + Suppose Assumption 1 holds.

(a) Let m~{! be a matrix-valued function that satisfies Em~ FXi ! 5 0 and
E7m~ FXi !7 p , ` for p . 2a and p$ 2. Then, for all« . 0,

PS**N21 (
i51

N

m~ FXi !** . «D5 o~N2a!+

(b) Let m~{! be a matrix-valued function that satisfies E7m~ FXi !7 p , ` for p . 2a
and p$ 2. Then, there exists K, ` such that

PS**N21 (
i51

N

m~ FXi !** . KD 5 o~N2a!+
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(c) Suppose Assumptions 3(c), 3(d), and 4 also hold. Then, for all constants C4 .
~2a!102,

PS**N2102 (
i51

N

~ f ~ FXi ! 2 Ef ~ FXi !!** . C4 ln102~N!D 5 o~N2a!+

LEMMA 4 + Suppose Assumptions 1–3 hold. LetNu1,N and Nu2,N denote
any estimators that satisfy the following condition. For all« . 0, P~7 Nuj,N 2
u07 . «! 5 o~N2a! for j 5 1,2. Then, for all« . 0 and some K, `,

P~7DN ~ Nu1,N ! 2 D7. «! 5 o~N2a!,

P~7VN ~ Nu1,N ! 2 V07. «! 5 o~N2a!,

PS** ]2

]u]u '
JN ~ Nu1,N , Nu2,N ! 2 2D 'V0 D** . «D 5 o~N2a!,

PS** ]3

]u3 JN ~ Nu1,N , Nu2,N !** . KD 5 o~N2a!,

PS**N21 (
i51

N

g~Xi , Nu1,N !** . «D 5 o~N2a!,

and analogous results hold for~]20]u]u ' !JN ~ Nu1,N ! 2 2D 'VD and ~]30
]u3!JN~ Nu1,N ! , where ~]30]u3!JN~ Nu1,N , Nu2,N ! denotes a vector containing all
of the partial derivatives of order three of JN~ Nu1,N , Nu2,N ! with respect to its
first argument and likewise for~]30]u3!JN~ Nu1,N !.

LEMMA 5 + Suppose Assumptions 1–4 hold. LetZuN denote theFW-GMM,
EW-GMM, or minimumr estimator. Then, for some finite constant C5,

P~7 ZuN 2 u07 . C5~ ln~N!0N!102! 5 o~N2a!+

LEMMA 6 + Let $AN :N $ 1% be a sequence of LA 3 1 random vectors
with an Edgeworth expansion or asymptoticx2 expansion with coefficients
of order O~1! and remainder of order o~N2a! . (That is, in the case of
an Edgeworth expansion, there exist polynomials$pi ~z! : i 5 1, + + + ,2a% in
z whose coefficients are O~1! such that supB[BLA

6P~AN [ B! 2 *B~1 1

(i51
2a N2i02pi ~z!!fSN

~z! dz6 5 o~N2a!, wherefSN
~z! is the density function

of an N~0,SN ! random variable,SN has eigenvalues that are bounded away
from zero and infinity as Nr `, andBLA

denotes the class of all convex sets
in RLA. In the case of an asymptoticx2 expansion, LA 5 1 and there exist
polynomials$pi ~z! : i 5 1, + + + ,a% in z whose coefficients are O~1! such that
supB[B1

6P~AN [ B! 2 *B~1 1 (i51
@a# N2ipi ~z!! fx2~z! dz6 5 o~N2a!, where

fx2~z! is the density function of ax2 random variable.) Let$jj,N :N $ 1% be a
sequence of random vectors with P~7jj,N7 . vN ! 5 o~N2a! for some con-
stantsvN 5 o~N2a! for j 5 1,2, wherej1,N [ RLA and j2,N [ R. Then,
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sup
B[BLA

6P~AN 1 j1,N [ B! 2 P~AN [ B!6 5 o~N2a! and

sup
B[B1

6P~AN
' AN 1 j2,N [ B! 2 P~AN

' AN [ B!6 5 o~N2a!+

For any functionm~ FXi ,u!, let mN~u! 5 N21 (i51
N m~ FXi ,u!+

LEMMA 7 + Suppose Assumption 1 holds, m~ FXi ,u! is differentiable with re-
spect tou, and Esupu[N0

7~]0]u!m~ FX1,u!7 p , ` for p 5 max$2a 1 1,2%. Let
Nu1,N and Nu2,N be any estimators that satisfy P~7 Nu1,N 2 u07 . «! 5 o~N2a! for

all « . 0 and P~7 Nu2,N 2 Nu1,N7 . vN ! 5 o~N2a! for some sequence of con-
stants$vN :N $ 1% for which vN r 0. Then, for some finite constant C6,

P~7mN ~ Nu2,N ! 2 mN ~ Nu1,N !7 . C6vN ! 5 o~N2a!+

Let SN 5 N21 (i51
N f ~ FXi ,u0! andS5 ESN +

Let HN~u! 5 ~~]0]u '!h~u!sN~u!~~]0]u '!h~u!!'!2102 N102h~u!+

LEMMA 8 + Suppose Assumptions 1–4 hold. LetDN denote N102~ ZuN 2 u0!,
TN, HN~ ZuN !, UN~ ZuN !, or KN~ ZuN ! (where the statistics may be defined usingFW-
GMM, EW-GMM, or minimumr estimators in each case except KN~ ZuN !, in
which case ZuN is theEW-GMM estimator). Let L denote the dimension ofDN.
For each definition ofDN, there is an infinitely differentiable function G~{! with
G~S! 5 0 such that

sup
B[BL

6P~DN [ B! 2 P~N102G~SN ! [ B!6 5 o~N2a!+

We now establish Edgeworth expansions for the random vectorss2102 3
N102~ ZuN 2 u0!, TN , HN~ ZuN !, UN~ ZuN !, andKN~ ZuN !+ Let f~{! denote the density
function of a vector of independent standard normal random variables+ Let BL

denote the class of convex Borel measurable sets inRL+

LEMMA 9 + Suppose Assumptions 1–4 hold. Then, there exist (vector-valued)
polynomialspui ~d!, pTi~d!, pHi ~d!, pUi ~d!, and pKi ~d! in d 5 ]0]z for i 5
1, + + + ,2a such that

sup
B[BLu

*P~s2102N102~ ZuN 2 u0! [ B! 2E
B
F11 (

i51

2a

N2i02pui ~d!Gf~z! dz* 5 o~N2a!,

sup
B[B1

*P~TN [ B! 2E
B
F11 (

i51

2a

N2i02pTi ~d!Gf~z! dz* 5 o~N2a!,

sup
B[BLh

*P~HN ~ ZuN ! [ B! 2E
B
F11 (

i51

2a

N2i02pHi ~d!Gf~z! dz* 5 o~N2a!,

sup
B[BLu

*P~UN ~ ZuN ! [ B! 2E
B
F11 (

i51

2a

N2i02pUi ~d!Gf~z! dz* 5 o~N2a!,
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and

sup
B[BLg

*P~KN ~ ZuN ! [ B! 2E
B
F11 (

i51

2a

N2i02pKi ~d!Gf~z! dz* 5 o~N2a!+

Remark+ The conditions ond in Assumption 3 are not needed in all of the
preceding lemmas+ In particular, Lemmas 4 and 5 only used 5 3+

7.2. Proof of Theorem 1

We establish the first result of part~a! first+ To start, suppose ZuN is the FW-
GMM estimator+ A Taylor expansion aboutZuN, k21 gives

0 5
]

]u
JN ~ ZuN !

5
]

]u
JN ~ ZuN, k21! 1

]2

]u]u '
JN ~ ZuN, k21!~ ZuN 2 ZuN, k21! 1 RN, k

5
]

]u
JN ~ ZuN, k21! 1 QN, k21~ ZuN, k 2 ZuN, k21! 1 QN, k21~ ZuN 2 ZuN, k!

1 S ]2

]u]u '
JN ~ ZuN, k21! 2 QN, k21D~ ZuN 2 ZuN, k21! 1 RN, k

5 QN, k21~ ZuN 2 ZuN, k! 1 S ]2

]u]u '
JN ~ ZuN, k21! 2 QN, k21D~ ZuN 2 ZuN, k21!

1 RN, k, where

RN, k 5 F~ ZuN 2 ZuN, k21!'
]3

]uu]u]u '
JN ~uN, k21,u

1 !~ ZuN 2 ZuN, k21!02G
Lu

, (7.1)

@ju#Lu
denotes anLu vector whoseuth element isju, uN, k21,u

1 lies between
ZuN and ZuN, k21, the first equality holds with probability 12 o~N2a! by

Lemma 5, and the fourth equality holds because~]0]u!JN~ ZuN, k21! 1 QN, k21 3
~ ZuN, k 2 ZuN, k21! 5 0 by the definition of ZuN, k+ Rearranging~7+1! yields

7 ZuN, k 2 ZuN7 # 7~QN, k21!21RN, k7

1 **~QN, k21!21S ]2

]u]u '
JN ~ ZuN, k21! 2 QN, k21D~ ZuN, k21 2 ZuN !**

# zN ~7 ZuN, k21 2 ZuN72 1 cN, j217 ZuN, k21 2 ZuN7!, where

zN 5 max
j51, + + + , k

H7~QN, j21!217{(
u51

Lu

** ]3

]uu]u]u '
JN ~uN, j21,u

1 !02**
1 7~QN, j21!217{ DcN, j21** ]2

]u]u '
JN ~ ZuN, j21! 2 QN, j21** 1 1J ,

(7.2)

where DcN, j21 5 cN, j21
21 if cN, j21 . 0 and DcN, j21 5 0 if cN, j21 5 0+
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For the case wherecN, j21 5 0 for all j, repeated substitution into the right-
hand side of the inequality in~7+2! gives the upper bound

zN
f7 ZuN,0 2 ZuN72

k

# CzN
f7 ZuN,0 2 u072

k

1 CzN
f7 ZuN 2 u072

k

(7.3)

for someC , `, wheref 5 (j51
k 2 j21+ By Lemma 4 and Assumptions 3~b!

and 6, there exists a finite constantK such thatP~zN . K ! 5 o~N2a!+ Com-
bining these results gives

P~7 ZuN, k 2 ZuN7 . C3 mN, k! # P~CzN
f7 ZuN, k 2 u072

k

. C3gN
2k

02!

1 P~CzN
f7 ZuN 2 u072

k

. C3~ ln~N!0N!2K21
02!

5 o~N2a!, (7.4)

where the inequality usesmN, k 5 gN
2k

andgN $ ~ ln~N!0N!102 and the equality
uses Assumption 5 and Lemma 5+

For the case where Assumption 6 holds withcN, j21 5 max$gN
2 j21
,

~ ln~N!0N!102% , we argue as follows+ Let xk 5 7 ZuN, k 2 ZuN7+ By Assumption 5,
Lemma 5, and the triangle inequality, x0 # C1gN 1 C5~ ln~N!0N!102 # K1gN

with probability 1 2 o~N2a! for some constantK1 , `+ As before,
P~zN # K ! 5 1 2 o~N2a!+ Hence, using~7+2!, xk # K~xk21

2 1 cN, k21xk21! with
probability 12 o~N2a!+ Note thatcN,0 5 gN andcN, j $ gN cN, j21+ Combining
these results, with probability 12 o~N2a!, we have

x1 # Kx0~x0 1 cN,0! # KK1gN ~K1gN 1 cN,0!

# KK1~K1 1 1!gN cN,0 5 K 'gN cN,0 and

x2 # Kx1~x1 1 cN,1! # K~K 'gN cN,0!~K 'gN cN,0 1 cN,1!

# KK '~K ' 1 1!gN cN,0cN,1+ (7.5)

Proceeding recursively, we obtainxk # C3gN ) j51
k cN, j21 5 C3mN, k for some

constantC3 ,` with probability 12 o~N2a!, which is the desired result+ Hence,
the first result of part~a! of the theorem holds for the FW-GMM estimator+

The proof of the first result of part~a! for the minimumr estimator is the
same as for the FW-GMM estimator withJN~u! replaced byrN~u! throughout+

The proof for the EW-GMM estimator is similar to that given previously for
the FW-GMM estimator withJN~u! replaced byJN~u, DuN ! or JN ~u, DuN, k1

! in the
appropriate places+ However, two additional terms arise on the right-hand side
of ~7+1! becauseJN ~u, DuN, k1

! Þ JN~u, DuN !+ These terms are

M1,N 5 S ]2

]u]u '
JN ~ ZuN, k21, DuN ! 2

]2

]u]u '
JN ~ ZuN, k21, DuN, k1

!D~ ZuN 2 ZuN, k21! and

M2,N 5
]

]u
JN ~ ZuN, k21, DuN ! 2

]

]u
JN ~ ZuN, k21, DuN, k1

!+ (7.6)
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These terms can be shown to satisfy the following condition+ For some finite
constantC,

P~7Mj,N7 . CmN, k! 5 o~N2a! for j 5 1,2+ (7.7)

In consequence, the result of part~a! of the theorem holds for the EW-GMM
estimator+

To prove~7+7!, we first show that, for some finite constantC6,

P~7VN
21~ DuN, k1

! 2 VN
21~ DuN !7 . C6 mN, k! 5 o~N2a! (7.8)

using Lemma 7 withmN~u! 5 VN
21~u!, Nu1,N 5 DuN , Nu2,N 5 DuN, k1

, and vN 5
C3mN, k+ The conditions of Lemma 7 are verified using the result of part~a! of
the theorem for the FW-GMM estimator, the assumption thatk1 $ k, and
Lemma 5+ The proof of ~7+7! also uses the first, second, and fifth results of
Lemma 4 with Nu1,N 5 ZuN, k21, where the condition onNu1,N holds by applying
the proof of part~a! of the theorem for the EW-GMM estimator recursively
for k 5 1,2, + + + + The proof of~7+7! also usesP~7 ZuN 2 ZuN, k217 . K ! 5 o~N2a!
for some 1# K , `, which holds by applying the current proof recursively
becauseK $ mN, k21+

Next, we establish the second result of part~a! of the theorem+ Let sr denote
~sN !rr + Let sk, r denotesr with ZuN replaced by ZuN, k in all parts of its definition
in ~3+7!+ We use the following expression:

6TN, k 2 TN 6 # N1027 ZuN, k 2 ZuN70sk, r
102

1 N1027 ZuN 2 u07{6sk, r
102 2 sr

10260~sk, r sr !102+ (7.9)

By ~7+9!, the second result of part~a! is implied by the first result plus the
following condition+ There exist constantsC , `, K , `, andd . 0 such that

P~6sk, r
102 2 sr

1026. CmN, k! 5 o~N2a!, (7.10)

P~7 ZuN 2 u07. K ! 5 o~N2a!, (7.11)

P~sk, r , d! 5 o~N2a!, and (7.12)

P~sr , d! 5 o~N2a!+ (7.13)

Equation ~7+11! holds by Lemma 5+ Equations~7+12! and ~7+13! hold by
Lemma 5, the first result of part~a! of the theorem, and the first and second
results of Lemma 4+

By a mean value expansion, ~7+10! is implied by~7+12!, ~7+13!, and

P~6sk, r 2 sr 6 . DCmN, k! 5 o~N2a! (7.14)
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for some finite constant DC+ Equation~7+14! is implied by

P~7DN ~ ZuN, k! 2 DN ~ ZuN !7. C 'mN, k! 5 o~N2a! and

P~7VN
21~ ZuN, k! 2 VN

21~ ZuN !7. C 'mN, k! 5 o~N2a! (7.15)

for some finite constantC '+ These results hold by Lemma 7 withvN 5 C3mN, k,
Nu1,N 5 ZuN , and Nu2,N 5 ZuN, k, using Lemma 5, the first result of part~a! of the

theorem, and Assumption 3+
We now prove the third result of part~a!+ Let HN 5 HN~ ZuN ! and HN, k 5

HN~ ZuN, k!+ We have

6WN, k 2 WN 6 5 6~HN, k 2 HN !'HN, k 1 HN
' ~HN, k 2 HN !6

# 7HN, k 2 HN7~7HN, k71 7HN7!+ (7.16)

Hence, it suffices to show that, for some finite constantC,

P~7HN, k 2 HN7. CN102mN, k! 5 o~N2a! and

P~7HN7. M ! 5 o~N2a! for someM , `+ (7.17)

The second result of~7+17! holds by Lemma 9 by appropriate choice of the set
B+ The first result of~7+17! is implied by the matrix version of~7+14!, mean
value expansions ofh~ ZuN, k! and~]0]u!h~ ZuN, k! about ZuN , and the first result of
part ~a! of the theorem+

The proof of the fourth result of part~a! is analogous to that of the third
result withHN~u! replaced byUN~u!+

To prove the sixth result of part~a!, a Taylor expansion ofrN~ ZuN, k! about ZuN

yields

N~ rN ~ ZuN, k! 2 rN ~ ZuN !! 5 N~ ZuN, k 2 ZuN !'
]2

]u]u '
rN ~uN

1!~ ZuN, k 2 ZuN !02 (7.18)

with probability 12 o~N2a!, whereuN
1 lies between ZuN, k and ZuN + The linear

term in ZuN, k 2 ZuN in the Taylor expansion is zero because~]0]u!rN~ ZuN ! 5 0
with probability 12 o~N2a! by the first-order conditions for minimization of
rN~u! over Q using Lemma 5 and Assumption 2~a!+ By ~7+18!, part ~a! of the
theorem for7 ZuN, k 2 ZuN7, and the first result of Lemma 4, we obtain

P~N6rN ~ ZuN, k! 2 rN ~ ZuN !6 . CNmN, k
2 ! # P~7 ZuN, k 2 ZuN72 . C 'mN, k

2 ! 1 o~N2a!

5 o~N2a! (7.19)

for some finite constantsC andC '+
By an analogous argument, ~7+19! also holds with ZuN, k and ZuN replaced

by NuN, k and NuN , respectively, using the first-order conditions forStN + Because
QLRN, k 2 QLRN 5 2N~ rN~ NuN, k! 2 rN~ NuN !! 2 2N~ rN~ ZuN, k! 2 rN~ ZuN !!, this
result and~7+19! imply the sixth result of part~a!+
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Next, we prove the seventh result of part~a!+ By the triangle inequality, we
have

6JN, k 2 JN 6 # N6JN ~ ZuN, k, DuN, k1
! 2 JN ~ ZuN, k, DuN !6

1 N6JN ~ ZuN, k, DuN ! 2 JN ~ ZuN , DuN !6+ (7.20)

To bound the second summand on the right-hand side of~7+20!, a Taylor ex-
pansion ofJN~ ZuN, k, DuN ! about ZuN yields

JN ~ ZuN, k, DuN ! 2 JN ~ ZuN , DuN !

5 N~ ZuN, k 2 ZuN !'
]2

]u]u '
JN ~uN

1 , DuN !~ ZuN, k 2 ZuN !02 (7.21)

with probability 12 o~N2a!, whereuN
1 lies between ZuN, k and ZuN and the deriv-

atives here and in the subsequent discussion are taken with respect to the first
argument ofJN~{,{!+ The linear term in ZuN, k 2 ZuN in the Taylor expansion is
zero because~]0]u!JN~ ZuN , DuN ! 5 0 with probability 12 o~N2a! by the first-
order conditions for minimization ofJN~u, DuN ! overQ using Lemma 5 and As-
sumption 2~a!+

By ~7+21!, part ~a! of the theorem for7 ZuN, k 2 ZuN7, and the third result of
Lemma 4, we obtain

P~N6JN ~ ZuN, k, DuN ! 2 JN ~ ZuN , DuN !6 . CNmN, k
2 !

# P~7 ZuN, k 2 ZuN72 . C 'mN, k
2 ! 1 o~N2a!

5 o~N2a! (7.22)

for some finite constantsC andC '+
The first summand on the right-hand side of~7+20! is

BN, k 5 *N2102 (
i51

N

g~Xi , ZuN, k!' @VN ~ DuN, k1
! 2 VN ~ DuN !#N2102 (

i51

N

g~Xi , ZuN, k!*+
(7.23)

The term in square brackets satisfies

P~7VN ~ DuN, k1
! 2 VN ~ DuN !7 . CmN, k! 5 o~N2a! (7.24)

for some finite constantC, by ~7+8!, the second result of Lemma 4, and the
nonsingularity ofV0+ By a mean value expansion aboutu0,

N2102 (
i51

N

g~Xi , ZuN, k! 5 N2102 (
i51

N

g~Xi ,u0! 1 N21 (
i51

N ]

]u '
g~Xi ,uN

1!

3 @N102~ ZuN, k 2 ZuN ! 1 N102~ ZuN 2 u0!# , (7.25)
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whereuN
1 lies between ZuN, k andu0+ The terms on the right-hand side of~7+25!

satisfy

PS**N2102 (
i51

N

g~Xi ,u0!** . C4 ln102~N!D 5 o~N2a!, (7.26)

P~N1027 ZuN, k 2 ZuN7. C3 N102mN, k! 5 o~N2a!, (7.27)

P~N1027 ZuN 2 u07. C5 ln102~N!! 5 o~N2a!, and (7.28)

PS**N21 (
i51

N ]

]u '
g~Xi ,uN

1!** . KD 5 o~N2a! for someK , `, (7.29)

where ~7+26! holds by Lemma 3~c!, ~7+27! holds by part~a! of the theorem,
~7+28! holds by Lemma 5, and~7+29! holds by the first result of Lemma 4+

Combining~7+25!–~7+29! gives

PS**N2102 (
i51

N

g~Xi , ZuN, k!** . C max$ ln102~N!,N102mN, k%D5 o~N2a! (7.30)

for some finite constantC+ Combining~7+23!, ~7+24!, and~7+30! gives

P~BN, k . C max$ ln~N!,NmN, k
2 %mN, k! 5 o~N2a! (7.31)

for some finite constantC+ Combining ~7+20!, ~7+22!, and ~7+31! and noting
that max$NmN, k

2 , ln~N!mN, k,NmN, k
3 % 5 qN mN, k gives the seventh result of part

~a! of the theorem+
To establish the fifth result of part~a!, we writeQLRN, k andQLRN asJN, k 2
NJN, k andJN 2 NJN , respectively, where NJN, k and NJN denote thek-stepJ-statistic

and theJ-statistic both based onStN , rather than ZuN + The seventh result of part
~a! ~for the JN, k-statistic! and an analogous result for theNJN, k-statistic~which
holds by applying the seventh result of part~a! to the criterion function
JN~~t ',0'!'!! gives the fifth result of part~a!+

To establish part~b! of the theorem, we apply Lemma 6 four times
with vN 5 C3N102mN, k and with ~AN , jj ,N ! equal to ~N102~ ZuN 2 u0!,
N102~ ZuN, k 2 ZuN !!, ~TN , TN, k 2 TN !, ~HN ~ ZuN !, WN, k 2 WN !, and ~UN ~ ZuN !,
LMN, k 2 LMN !+ In the first two cases, we use the first result of Lemma 6+ In
the third and fourth cases, we use the second result of Lemma 6+ By the as-
sumption thatmN, k 5 o~N2~a1102! !, we havevN 5 o~N2a!, as required
by Lemma 6+ The condition of Lemma 6 onjj,N holds by part~a! of the theo-
rem+ As required by Lemma 6, the random vectorss2102N2102~ ZuN 2 u0!, TN ,
HN~ ZuN !, and UN~ ZuN ! have Edgeworth expansions with remaindero~N2a! by
Lemma 9+

To establish part~c! of the theorem for theJN, k-statistic, we apply Lemma 6
with vN 5 C3qN mN, k and with~AN ,j2,N ! equal to~KN~ ZuN !, JN, k 2 JN !+ By the
assumption thatmN, k 5 o~N2aqN

21!, we havevN 5 o~N2a!, as required by
Lemma 6+ The condition of Lemma 6 onj2,N holds by part~a! of the theorem+
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The random vectorKN~ ZuN ! has an Edgeworth expansion with remaindero~N2a!
by Lemma 9+

To establish part~c! of the theorem for theQLRN, k-statistic based on the
EW-GMM estimator, we apply Lemma 6 withvN 5 C3qN mN, k and with
~AN ,j1,N ! equal to~QLRN , QLRN, k 2 QLRN !+ By the assumption thatmN, k 5
o~N2aqN

21!, we havevN 5 o~N2a!+ The condition of Lemma 6 onj1,N holds
by part ~a! of the theorem+ The random vectorQLRN has an asymptoticx2

expansion with remaindero~N2a! by Assumption 7+
To establish part~d! of the theorem, we apply Lemma 6 withvN 5 C3 NmN, k

2

and with ~AN ,j1,N ! equal to~QLRN , QLRN, k 2 QLRN !+ By the assumption
that mN, k 5 o~N2~a11!02!, we havevN 5 o~N2a!+ The condition of Lemma 6
on j1,N holds by part~a! of the theorem+ The random variableQLRN has an
asymptoticx2 expansion with remaindero~N2a! by Assumption 7+ n

7.3. Proofs of Lemmas

7.3.1. Proof of Lemma 1The result holds forZuN by Lemma 5 withg~Xi ,u!,
etc+, changed as stated in Lemma 1+ The result holds forStN by Lemma 5 withu
replaced byt, with the same changes tog~Xi ,u!, etc+, as before and withQ
replaced by$t : u 5 ~t ',0'!' [ Q% using Assumption 3~f ! to ensure that the true
value t0 lies in the interior of the latter set+ The result of the lemma forStN

implies that the result holds forNuN + n

7.3.2. Proof of Lemma 2 The NR result of the lemma holds by definition
of QN, j21

NR + We now establish the default NR result of the lemma+ Let ZuN, j de-
note the NRj-step FW-GMM estimator forj 5 1, + + + , k+ For the FW-GMM es-
timator, it suffices to show that

P~JN ~ ZuN, j ! 2 JN ~ ZuN, j21! . 0! 5 o~N2a!, (7.32)

for all j 5 1, + + + , k, because this implies thatP~QN, j21
D Þ QN, j21

NR for some
j 5 1, + + + , k! 5 o~N2a!+ When ZuN, j Þ ZuN, j21, a Taylor expansion ofJN~ ZuN, j !
about ZuN, j21 gives

JN ~ ZuN, j ! 2 JN ~ ZuN, j21!

5
]

]u '
JN ~ ZuN, j21!zN, j fN, j

1
1

2
zN, j
'

]2

]u]u '
JN ~ ZuN, j21!zN, j fN, j

2 1 GN, j fN, j
3

5 2
1

2
zN, j
'

]2

]u]u '
JN ~ ZuN, j21!zN, j fN, j

2 1 GN, j fN, j
3 , where

GN, j 5
1

6 (
r51

Lu

zN, j, r zN, j
'

]3

]ur ]u]u '
JN ~uN, j21

1 !zN, j ,

zN, j 5 ~ ZuN, j 2 ZuN, j21!07 ZuN, j 2 ZuN, j217, fN, j 5 7 ZuN, j 2 ZuN, j217, (7.33)
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wherezN, j, r denotes therth element ofzN, j and uN, j21
1 lies between ZuN, j and

ZuN, j21+ The second equality holds by the definition ofZuN, j + Using ~7+33!, the
left-hand side of~7+32! is less than or equal to

PS2lminS ]2

]u]u '
JN ~ ZuN, j21!DY2 1 GN, j fN, j . 0D, (7.34)

wherelmin~A! denotes the minimum eigenvalue of the matrixA+ The latter is
o~N2a!, because ford 5 lmin~D 'VD!02 . 0,

PSlminS ]2

]u]u '
JN ~ ZuN, j21!D, dD 5 o~N2a!,

P~6GN, j 6. K ! 5 o~N2a! for someK , `, and

P~fN, j . «! 5 o~N2a!, (7.35)

where the first result holds by the third result of Lemma 4 for the FW-GMM
estimator with Nu1,N 5 ZuN, j21 and Assumption 3~b!, the second holds by the fourth
result of Lemma 4, and the third holds by two applications of part~a! of Theo-
rem 1 for the NR FW-GMM estimator—one withk 5 j 2 1 and one withk 5 j+
This completes the proof for the FW-GMM estimator+ The proofs for the EW-
GMM and minimumr estimators are analogous+

We now establish the line-search NR result of the lemma+ We consider the
FW-GMM estimator first+ Let ZuN, j be the NRj-step estimator:

ZuN, j 5 ZuN, j21 2 wN, j21pN, j21, where

wN, j21 5 **~QN, j21
NR !21

]

]u
JN ~ ZuN, j21!** and

pN, j21 5 ~QN, j21
NR !21

]

]u
JN ~ ZuN, j21!0wN, j21+ (7.36)

Let

ZuN, j
a 5 ZuN, j21 2 a~QN, j21

NR !21
]

]u
JN ~ ZuN, j21! 5 ZuN, j 1 ~12 a!wN, j21pN, j21+

(7.37)

It suffices to show that

P~ infa[A,aÞ1 JN ~ ZuN, j
a ! 2 JN ~ ZuN, j ! , 0! 5 o~N2a! (7.38)

for all j 5 1, + + + , k, because this implies thatP~QN, j21
LS Þ QN, j21

NR for some
j 5 1, + + + , k! 5 o~N2a!+
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A Taylor expansion ofJN ~ ZuN, j
a ! about ZuN, j gives

JN ~ ZuN, j
a ! 2 JN ~ ZuN, j !

5 ~12 a!wN, j21pN, j21
'

]

]u
JN ~ ZuN, j !

1
1

2
~12 a!2wN, j21

2 pN, j21
'

]2

]u]u '
JN ~ ZuN, j !pN, j21

1
1

6
~12 a!3wN, j21

3 (
u51

Lu

pN, j21, r pN, j21
'

]3

]uu]u]u '
JN ~uN, j

1 !pN, j21,

(7.39)

whereuN, j
1 lies between ZuN, j

a and ZuN, j and pN, j21,u denotes theuth element of
pN, j21+

Element by element Taylor expansions of~]0]u!JN~ ZuN, j ! about ZuN, j21 give

]

]u
JN ~ ZuN, j ! 5

]

]u
JN ~ ZuN, j21! 1

]2

]u]u '
JN ~ ZuN, j21!~ ZuN, j 2 ZuN, j21!

1
1

2 F~ ZuN, j 2 ZuN, j21!'
]3

]ur ]u]u '
JN ~uN, j21, r

11 !~ ZuN, j 2 ZuN, j21!G
Lu

5 0 1
1

2
wN, j21

2 FpN, j21
'

]3

]ur ]u]u '
JN ~uN, j21, r

11 !pN, j21G
Lu

, (7.40)

whereuN, j21, r
11 lies between ZuN, j and ZuN, j21 and the second equality holds using

the definition of ZuN, j +
The following properties hold+ For d 5 lmin~D 'VD! . 0 and all« . 0,

PSlminS ]2

]u]u '
JN ~ ZuN, j21!D, dD 5 o~N2a!,

PS** ]3

]u3 JN ~uN, j21
11 !** . KD 5 o~N2a! for someK , `, and

P~wN, j . «! 5 o~N2a! (7.41)

for j 5 1, + + + , k, where the first result of~7+41! holds by the third result of
Lemma 4 with Nu1,N 5 ZuN, j21 and Assumption 3~b!, the second holds by the
fourth result of Lemma 4 with Nu1,N 5 uN, j21

11 , and the third holds by the third
result of Lemma 4 with Nu1,N 5 ZuN, j21 and Assumption 3~b! to ensure that
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~QN, j
NR!21 is well behaved and by a mean value expansion of~]0]u!JN~ ZuN, j21!

about ZuN , application of part~a! of Theorem 1 withk 5 j 2 1, and the first
result of Lemma 4+ The second result of~7+41! also holds withuN, j21

11 replaced
by uN, j21

1 +
Substituting~7+40! into the right-hand side of~7+39!, dividing ~7+39! by

wN, j21
2 ~when wN, j21 . 0!, and applying~7+41! yields the resultant first and

third terms on the right-hand side of~7+39! to have norm greater than« . 0
with probability o~N2a! and the second term to be strictly positive with prob-
ability 1 2 o~N2a! ~uniformly over a [ A with a Þ 1!, which gives~7+38!+
This completes the proof for the FW-GMM estimator+ The proofs for the EW-
GMM and minimumr estimators are analogous+

Last, we establish the GN result of the lemma+ Let aN 5 ~ ln~N!0N!102 and
OcN, j21 5 mN, j21 ∨ aN for j 51, + + + , k, whereb ∨ c5 max$b,c%+We have OcN, j21 5

cN, j21 for j 5 1, + + + , k+ This holds because

mN, j 5 gN )
,51

j

~gN
2,21

∨ an! for j 5 1, + + + , k and

OcN, j21 5 SgN )
,51

j21

~gN
2,21

∨ an!D ∨ aN

5 SgN )
,51

j21

gN
2,21D ∨ aN

5 gN
2 j21

∨ aN 5 cN, j21, (7.42)

where the second equality forOcN, j21 usesgN
j1aN

j2 # aN for all j1 $ 0 andj 2 $ 1
becausegN # 1 andaN # 1+

Given that OcN, j21 5 cN, j21, for the minimumr estimator, it suffices to show
that

PS**N21 (
i51

N SD~ FXi , ZuN, j21! 2
]

]u '
g~Xi , ZuN, j21!D** . C2 OcN, j21D5 o~N2a!+

(7.43)

For the FW-GMM estimator, we also need to show that

PS**N21 (
i51

N

g~Xi , ZuN, j21!'VN21 (
i51

N ]2

]uu]u '
g~Xi , ZuN, j21!** . C OcN, j21D

5 o~N2a! (7.44)

ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS 1075



for u 51, + + + ,Lg, for some finite constantC+ For the EW-GMM estimator, ~7+44!
must hold withV replaced byVN ~ DuN, k1

!+
First, we establish~7+43!+ By mean value expansions aboutu0 and the trian-

gle inequality,

**N21 (
i51

N SD~ FXi , ZuN, j21! 2
]

]u '
g~Xi , ZuN, j21!D**

# **N21 (
i51

N SD~ FXi ,u0! 2
]

]u '
g~Xi ,u0!D**

1 N21 (
i51

N

sup
u[N0,u#Lu

** ]

]uu

D~ FXi ,u! 2
]2

]uu]u '
g~Xi ,u!**{7 ZuN, j21 2 u07+

(7.45)

In addition, 7 ZuN, j21 2 u07 # 7 ZuN, j21 2 ZuN7 1 7 ZuN 2 u07+ Hence, it suffices to
show that

~ i! PS**N21 (
i51

N SD~ FXi ,u0! 2
]

]u '
g~Xi ,u0!D** . C4~ ln~N!0N!102D5 o~N2a!,

~ ii ! PSN21 (
i51

N

sup
u[N0,u#Lu

** ]

]uu

D~ FXi ,u! 2
]2

]uu]u '
g~Xi ,u!** . KD5 o~N2a!,

~ iii ! P~7 ZuN, j21 2 ZuN7 . C3 mN, j21! 5 o~N2a!, and

~ iv! P~7 ZuN 2 u07 . C5~ ln~N!0N!102! 5 o~N2a! (7.46)

for all j 5 1, + + + , k and someCj , K , `+ Condition~i! holds by Lemma 3~c!, ~ii !
holds by Lemma 3~b! with p 5 q2, ~iv! holds by Lemma 5, ~iii ! holds for j 5 1
by the assumption on the initial estimatorZuN,0 and Lemma 5, and~iii ! holds for
j 5 2, + + + , k by recursively applying part~a! of Theorem 1 withk 5 j 2 1, which
holds without assuming Assumption 6 by the present proof that the result of
Assumption 6 holds forQN, i for i # j 2 1 under the assumptions+

Next, we establish~7+44!+ Element by element mean value expansions give

N21 (
i51

N

g~Xi , ZuN, j21! 5 N21 (
i51

N

g~Xi ,u0!

1 N21 (
i51

N ]

]u '
g~Xi ,uN, j21

1 !~ ZuN, j21 2 u0!, (7.47)

where uN, j21
1 lies between ZuN, j21 and u0+ By Lemma 3~c!, P~7N21 (i51

N 3
g~Xi ,u0!7 . C4~ ln~N!0N!102! 5 o~N2a!+ Combining this with results~iii ! and
~iv! of ~7+46!, the first result of Lemma 4, and ~7+47! gives
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PS**N21 (
i51

N

g~Xi , ZuN, j21!** . DC OcN, j21D5 o~N2a! (7.48)

for some DC , `+
By mean value expansions aboutu0,

PS**N21 (
i51

N ]2

]uu]u '
g~Xi , ZuN, j21!** . KD 5 o~N2a! (7.49)

for someK , `, using Lemma 3~b! applied withm~ FXi ! 5 ~]20]uu]u '!g~Xi ,u0!
and results~iii ! and~iv! of ~7+46!+ Equations~7+48! and~7+49! combine to yield
~7+44!+ Equation~7+44! holds withV replaced byVN ~ DuN, k1

! by the second re-
sult of Lemma 4 with Nu1,N 5 DuN, k1

and the preceding proof of~7+44!+
The results of the lemma for the restricted matricesQN, i

t,NR, QN, i
t,D , QN, i

t, LS, and
QN, i

t,GN are proved by the same arguments as for the unrestricted matrices by
replacingu by t in the appropriate places+ n

7.3.3. Proof of Lemma 3 A strong-mixing moment inequality of Yokoyama
~1980! and Doukhan~1995, Theorem 2 and Remark 2, pp+ 25–30! gives
E7(i51

N m~ FXi !7 p , CNp02 providedp $ 2+ Application of Markov’s inequal-
ity and the Yokoyama–Doukhan inequality yields the left-hand side in part~a!
of the lemma to be less than or equal to

«2pN2pE**(
i51

N

m~ FXi !**
p

# «2pCN2p02 5 o~N2a!+ (7.50)

Part ~b! follows from part ~a! applied tom~ FXi ! 2 Em~ FX1! and the triangle
inequality+

To establish part~c!, we use the Edgeworth expansion given in Theorem 1+1
of Götze and Hipp~1994! ~with our f ~ FXi ! equal to theirZj and their function
h~Zj , + + + ,Zj1p21! equal toZj , which makes theirXj equal to theirZj !+ This theo-
rem is a special case of Corollary 2+9 of Götze and Hipp~1983!+ Conditions
~2!–~4! of Götze and Hipp~1994! hold by Assumptions 1, 3~c!, 3~d!, and 4+
Because the result of the lemma can be proved element by element, we con-
sider an arbitrary elementfv~{! of f ~{!+ Let sn

2 denote the variance offn~ FXi !+We
assumesn

2 . 0; otherwise, the desired result holds trivially+ Let F~{! denote
the standard normal distribution function+ By the Edgeworth expansion, there
are homogeneous polynomialspi ~d! in d 5 ]0]z for i 5 1, + + + ,2a such that

sup
z[R

*PSsn
21N2102 (

i51

N

fv~ FXi ! 2 Efv~ FXi ! # zD2S11 (
i51

2a

N2i02pi ~d!DF~z!*
5 o~N2a!+ (7.51)
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This implies that for any constantzN

PS*sn
21N2102 (

i51

N

fv~ FXi ! 2 Efv~ FXi !* . zND
5 12S11 (

i51

2a

N2i02pi ~d!D~F~zN ! 2 F~2zN !! 1 o~N2a!

5 2F~2zN ! 2S(
i51

2a

N2i02pi ~d!D~F~zN ! 2 F~2zN !! 1 o~N2a!+ (7.52)

Let zN 5 C4 ln102~N! for C4 . ~2a!102+ The latter inequality implies that, for
some« . 0, C4

202 5 a 1 «+ Using this andF~2z! # C exp~2z202! for some
constantC and allz . 1, we have

F~2zN ! # C exp~2C4
2 ln~N!02! 5 C exp~2~a 1 «! ln~N!!

5 CN2~a1«! 5 o~N2a!+ (7.53)

The expressionpi ~d!F~zN ! is a finite sum of terms of the formbzN
j f~zN !

for some integerj and real numberb, where f~{! denotes the standard
normal density+ By an analogous calculation to that in~7+53!, zN

j f~zN ! 5
C4

j ln j02~N!~2p!2102 exp~2C4
2 ln~N!02! 5 o~N2a!+ This completes the proof+

n

7.3.4. Proof of Lemma 4 The second result of the lemma follows from

P~7VN
21~ Nu1,N ! 2 VN

21~u0!7. «! 5 o~N2a!, (7.54)

P~7VN
21~u0! 2 EVN

21~u0!7. «! 5 o~N2a!, and (7.55)

EVN
21~u0! 5 V0

21+ (7.56)

To establish~7+54!, we take mean value expansions aboutu0, apply Lemma 3~b!
with m~ FXi ! 5 supu[N0

7g~Xi ,u!7{7~]0]u ' !g~Xi1j ,u!7 for j 5 2k, + + + ,k and
p 5 q1, and use the assumption onNu1,N + To establish~7+55!, we use Lemma
3~a! with m~ FXi ! 5 g~Xi , u0!g~Xi1j , u0!' 2 Eg~X1, u0!g~X11j , u0!' for j 5
2k, + + + ,k andp 5 q1+ Equation~7+56! holds by definition ofV0+

The third, fourth, and fifth results of the lemma follow from the first two re-
sults of the lemma and the following conditions+ For someK ,` and all« . 0,

PS**N21 (
i51

N ] j

]u j g~Xi , Nu1,N !** . KD 5 o~N2a! for j 5 1,2,3, and (7.57)

PS**N21 (
i51

N

g~Xi , Nu1,N !** . «D 5 o~N2a!+ (7.58)
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The first result of the lemma, ~7+57!, and ~7+58! hold by mean value ex-
pansions aboutu0, multiple applications of Lemma 3~b! with m~ FXi ! 5
~] j0]u j !g~Xi ,u0! for j 5 0, + + + ,3 or m~ FXi ! 5 Cg~Xi !, multiple applications of
Lemma 3~a! with m~ FXi ! 5 ~] j0]u j ! g~Xi ,u0! 2 E~] j0]u j ! g~Xi ,u0! for j 5
0,1 andp 5 q1, and the assumption onNu1,N + n

7.3.5. Proof of Lemma 5 First, we show that for all« . 0,

PSsup
u[Q

**N21 (
i51

N

Gu~Xi ,u!** . «D5 o~N2a! for u 5 1,2, where

G1~Xi ,u! 5 g~Xi ,u! 2 Eg~X1,u! and G2~Xi ,u! 5 r~Xi ,u! 2 Er~X1,u!+

(7.59)

Let B~u,«! denote the ball centered atu with radius«+ By Assumption 2~a!, Q
is compact+ Hence, for anyh . 0, there exist points$uj [ Q : j # J% such that
øj51

J B~uj ,h! containsQ+ For u 5 1, the left-hand side of~7+59! is less than or
equal to

PSmax
j#J

sup
u[B~uj ,h!

S**N21 (
i51

N

G1~Xi ,u! 2 G1~Xi ,uj !**
1 **N21 (

i51

N

G1~Xi ,uj !**D . «D
# PSmax

j#J
sup

u[B~uj ,h!
N21 (

i51

N

~Cg~Xi ! 1 ECg~Xi !!7u 2 uj 7 .
«

2D
1 PSmax

j#J **N21 (
i51

N

G1~Xi ,uj !** .
«

2D
# PSN21 (

i51

N

~Cg~Xi ! 1 ECg~Xi !!h .
«

2D
1 (

j51

J

PS**N21 (
i51

N

G1~Xi ,uj !** .
«

2D
5 o~N2a!, (7.60)

where the first inequality uses Assumption 2~b! and the equality holds by
Lemma 3~b! with p 5 q0 by takingh sufficiently small and Lemma 3~a! with
p 5 q0+ The proof for u 5 2 is the same except thatCg~{! is replaced by
supu[Q7~]0]u!r~{,u!7+

Now, we prove thatP~7 ZuN 2 u07 . «! 5 o~N2a! for « . 0 for the minimum
r estimator under Assumption 2~b!~ii !+ Let r~u! 5 Er~X1,u!+ Given « . 0,
there exists ad . 0 such that7u 2 u07 . « implies thatr~u! 2 r~u0! $ d . 0+
Thus,
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P~7 ZuN 2 u07. «! # P~ r~ ZuN ! 2 rN ~ ZuN ! 1 rN ~ ZuN ! 2 r~u0! . d!

# P~ r~ ZuN ! 2 rN ~ ZuN ! 1 rN ~u0! 2 r~u0! . d!

# PS2 sup
u[Q
6rN ~u! 2 r~u!6 . dD

5 o~N2a! (7.61)

using~7+59! with u 5 2+ The corresponding proof for the FW-GMM estimator
under Assumption 2~b!~i! is analogous withr~u! andrN~u! replaced byJ~u! 5
Eg~X1,u!'VEg~X1,u! andJN~u!, respectively+

For the minimumr estimator, the result thatP~7 ZuN 2 u07 . «! 5 o~N2a!
and the assumption thatu0 is in the interior ofQ imply that with probability
1 2 o~N2a! ZuN is in the interior ofQ, N21 (i51

N g~Xi , ZuN ! 5 0, and ZuN mini-
mizes not onlyrN~u! butJN~u! ~defined with an arbitrary positive definite weight
matrix V! over u [ Q+ In consequence, in the remainder of this proof, we can
treat the minimumr estimator as a FW-GMM estimator+

Next, we prove the result of the lemma for the FW-GMM estimator+We have
the following conditions: ZuN is in the interior ofQ and~]0]u!JN~ ZuN ! 5 0 with
probability 12 o~N2a!+ Hence, element by element mean value expansions of
~]0]u!JN~ ZuN ! aboutu0 and rearrangement give

ZuN 2 u0 5 2S ]2

]u]u '
JN ~uN

1!D21 ]

]u
JN ~u0! (7.62)

with probability 12 o~N2a!, whereuN
1 lies between ZuN andu0 and may differ

across rows+ In consequence, the result of the lemma follows from the third
result of Lemma 4 for the FW-GMM estimator withNu1,N 5 uN

1 , the first result
of Lemma 4 with Nu1,N 5 u0, and P~7N2102 (i51

N g~Xi ,u0!7 . C4 ln102~N!! 5
o~N2a!, which holds by Lemma 3~c! with m~ FXi ! 5 g~Xi ,u0! using the assump-
tion thatq1 $ 2a 1 3+

Given the second result of Lemma 4, the proof of the lemma for the EW-
GMM estimator is analogous to that for the FW-GMM estimator+ n

7.3.6. Proof of Lemma 6 For any convex setB , RLA and anyt . 0, let
Bt

1 5 $x [ RLA : 7x 2 y7 # t for somey [ B% + We have

P~AN 1 j1,N [ B! 2 P~AN [ B!

5 P~AN 1 j1,N [ B,7j1,N7# vN ! 2 P~AN [ B!

1 P~AN 1 j1,N [ B,7j1,N7 . vN !

# ~P~AN [ BvN

1 ! 2 P~AN [ B!! 1 P~7j1,N7 . vN !+ (7.63)

The second term on the right-hand side iso~N2a! by assumption+ When AN

has an Edgeworth expansion with remaindero~N2a!, the first term on the last
line of ~7+63! is less than or equal to
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E
BvN

1
S11 (

i51

@2a#

N2i02pi ~z!DfSN
~z! dz2E

B
S11 (

i51

@2a#

N2i02pi ~z!DfSN
~z! dz

1 o~N2a! (7.64)

uniformly over convex setsB+ The difference between the integrals isO~vN ! 5
o~N2a! uniformly over convex setsB , RLA, becausefSN

~z! and its deriva-
tives of all orders are bounded overz [ RLA given the assumptions onSN +
Hence, P~AN 1 j1,N [ B! 2 P~AN [ B! # o~N2a! uniformly over convex
setsB+

Let Bt
2 5 $x [ B : 7x 2 y7 $ t for all y [ Bc%, where Bc denotes the

complement ofB+ We haveP~AN 1 j1,N [ B,7j1,N7 # vN ! $ P~AN [ BvN

2 !+
Using this, an analogous argument shows thatP~AN [ B! 2 P~AN 1
j1,N [ B! # o~N2a! uniformly over convex setsB, which completes the proof
of the first result of the lemma+

The proof of the second result is analogous withB , RLA andAN replaced
by B , R andAN

' AN , respectively, in ~7+63! andBvN
, B, andfSN

~{! replaced
by $x [ RLA : x 'x [ BvN

%, $x [ RLA : x 'x [ B%, and fx2~{!, respectively, in
~7+64!+ Again, the difference between the integrals isO~vN ! 5 o~N2a! uni-
formly over convex setsB+ n

7.3.7. Proof of Lemma 7 By a mean value expansion and the triangle
inequality,

7mN ~ Nu2,N ! 2 mN ~ Nu1,N !7

# SN21 (
i51

N

sup
u[N0

7~]0]u!m~ FXi ,u!7D{7 Nu2,N 2 Nu1,N7+ (7.65)

Hence, the lemma holds by the assumption on7 Nu2,N 2 Nu1,N7 and Lemma 3~b!
with m~ FXi ! 5 supu[N0

7~]0]u!m~ FXi ,u!7+ n

7.3.8. Proof of Lemma 8 First, we establish the result of the lemma with
DN 5 N102~ ZuN 2 u0!, where ZuN is the FW-GMM estimator+ By Lemma 5 and
Assumption 2~a!, ZuN is in the interior ofQ and ~]0]u!JN~ ZuN ! 5 0 with proba-
bility 1 2 o~N2a!+ Element by element Taylor expansions of~]0]u!JN~ ZuN ! about
u0 of orderd 2 1 give

0 5
]

]u
JN ~ ZuN ! 5

]

]u
JN ~u0! 1 (

j51

d21 1

j!
D j

]

]u
JN ~u0!~ ZuN 2 u0, + + + , ZuN 2 u0!

1 zN , where

zN 5
1

j! SDd21
]

]u
JN ~uN

1! 2 Dd21
]

]u
JN ~u0!D ~ ZuN 2 u0, + + + , ZuN 2 u0!, (7.66)
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uN
1 lies between ZuN and u0, and D j ~]0]u!JN~u0!~ ZuN 2 u0, + + + , ZuN 2 u0! de-

notesD j ~]0]u!JN~u0! as aj-linear map, whose coefficients are partial deriva-
tives of ~]0]u!JN~u0! of order j, applied to thej-tuple ~ ZuN 2 u0, + + + , ZuN 2 u0!+
Let RN denote the column vector whose elements are the unique components
of ~]0]u!JN ~u0!, D 1~]0]u!JN ~u0!, + + + ,D d21~]0]u!JN ~u0!+ Each element of
RN is an infinitely differentiable function ofSN + Let R denote the probability
limit of RN + Let eN 5 ~zN

' ,0, + + + ,0!' be conformable toRN + The first equa-
tion in ~7+66! can be written asn~RN 1 eN , ZuN 2 u0! 5 0, wheren~{,{! is an
infinitely differentiable function, n~R,0! 5 0, and ~]0]x!n~R, x!6x50 5
plimNr`~]20]u]u '!JN~u0! 5 2V is positive definite by Assumption 3~b!+ Hence,
the implicit function theorem can be applied ton~{,{! at the point~R,0! to
obtain

ZuN 2 u0 5 L~RN 1 eN ! (7.67)

with probability 12 o~N2a!, whereL is a function that does not depend onN,
is infinitely differentiable in a neighborhood ofR, and satisfiesL~R! 5 0+

We apply Lemma 6 withAN 5 N102L~RN ! and jN 5 N102~L~RN 1 eN ! 2
L~RN !! to obtain

lim
Nr`

sup
B[BLu

Na 6P~N102L~RN 1 eN ! [ B! 2 P~N102L~RN ! [ B!6 5 0+ (7.68)

Lemma 6 applies because~i! P~7jN7 . vN ! # P~CN1027eN7 . vN ! by a mean
value expansion, ~ii ! 7eN7 5 7zN7, ~iii ! zN satisfies7zN7 # C7 ZuN 2 u07d with
probability 12 o~N2a!, ~iv! vN , which is defined to equalN1022d02 lnd~N!, is
o~N2a! becaused $ 2a 1 2 by Assumption 3~c!, ~v! P~N1027eN7 . vN ! #
P~CN1027 ZuN 2 u07d . vN ! 1 o~N2a! 5 o~N2a! by Lemma 5, ~vi! L~RN ! can
be written asG~SN !, whereG~{! is infinitely differentiable andG~S! 5 0, and
~vii ! AN 5 N102L~RN ! 5 N102G~SN ! has an Edgeworth expansion by the proof
of Lemma 9, which follows+

Equations~7+67! and~7+68! andL~RN ! 5 G~SN ! yield the result of the lemma+
The proof for the minimumr estimator is identical because the latter satis-

fies ~]0]u!JN~ ZuN ! 5 0 with probability 12 o~N2a! by Lemma 5+
Next, suppose ZuN is the EW-GMM estimator+We take a Taylor expansion of

order d 2 1 of ~]0]u!JN~ ZuN , DuN ! about ~ ZuN , DuN ! 5 ~u0,u0!+ Applying the im-
plicit function theorem as before, there exists an infinitely differentiable func-
tion L*~{,{! such that

ZuN 2 u0 5 L*~RN
* 1 eN

* , DuN 2 u0! (7.69)

with probability 1 2 o~N2a!, where L*~R*,0! 5 0 and RN
* , R*, eN

* 5
~zN
*' ,0, + + + ,0!', andzN

* are defined analogously toRN , R, eN , andzN + Substitut-
ing ~7+67! with ZuN replaced by DuN into ~7+69! and applying Lemma 6 as before
gives a result analogous to~7+68! with L~RN 1 eN ! and L~RN ! replaced by
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L*~RN
* 1 eN

* ,L~RN 1 eN !! and L*~RN
* ,L~RN !!, respectively+ We can write

L*~RN
* ,L~RN !! as G~SN !, where G~{! is an infinitely differentiable function

and G~S! 5 L*~R*,L~R!! 5 L*~R*,0! 5 0+ Combining this, the analogue of
~7+68!, and~7+69! gives the result of the lemma for the EW-GMM estimator+

Each of the remaining forms ofDN ~namely, TN , HN~ ZuN !, UN~ ZuN !, andKN~ ZuN !!
is a function of ZuN and, possibly, DuN + We take a Taylor expansion ofDN 0N102

about~ ZuN , DuN ! 5 ~u0,u0! to orderd 2 1 to obtain

DN 5 N102~L**~SN , ZuN 2 u0, DuN 2 u0! 1 zN
**!, (7.70)

where L** is an infinitely differentiable function, L**~S,0,0! 5 0, zN
** is

the remainder term in the Taylor expansion, and 7zN
**7 5 O~7 ZuN 2 u07d! 1

O~7 DuN 2 u07d!+ Substituting~7+67! and0or ~7+69! into ~7+70! gives DN 5
N102~L**~SN , L*~RN

* 1 eN
* , L~RN 1 eN !!, L~RN 1 eN !! 1 zN

**!+ We apply
Lemma 6 again, using the preceding result for7zN

**7, to obtain an analogue of
~7+68! with AN 5 N102L**~SN ,L*~RN

* ,L~RN !!, L~RN !!+ We can writeG~SN ! 5
L**~SN , L*~RN

* ,L~RN !!, L~RN !!, where G~{! is infinitely differentiable and
G~S! 5 L**~S, L*~R*,L~R!!, L~R!! 5 L**~S,0,0! 5 0+ Combining this, the ana-
logue of ~7+68!, and ~7+70! gives the result of the lemma forDN equal toTN ,
HN~ ZuN !, UN~ ZuN !, or KN~ ZuN !+ n

7.3.9. Proof of Lemma 9 Given Lemma 8 and the triangle inequality, it
suffices to show that the random vectorsN102G~SN ! of Lemma 8 possess Edge-
worth expansions with remaindero~N2a!+ First, we obtain an Edgeworth ex-
pansion forN102~SN 2 S! via Theorem 1+1 of Götze and Hipp~1994!, as in
the proof of Lemma 3~c!+ The Edgeworth expansion forN102G~SN ! is now
obtained from that ofN102~SN 2 S! by the argument in Bhattacharya~1985,
proof of Theorem 1! or Bhattacharya and Ghosh~1978, proof of Theorem 2!
using the smoothness ofG~{!, G~S! 5 0, and Assumption 3~b!+ n

NOTES

1+ Note that some authors, e+g+, Rothenberg~1984!, say that two statistics have equals-order
asymptotic efficiency if their distributions are of CV distanceo~N2~s21! ! apart, rather than
o~N2~s21!02!+

2+ As stated, these definitions of equivalence of higher order asymptotic efficiency apply for a
single data generating process~DGP!+ They could be altered to cover multiple DGPs+ For an esti-
mator, one could require that the CV distance iso~N2~s21!02! for all DGPs that correspond to a true
parameteru0 [ Q+ For a test statistic, one could require that the CV distance iso~N2~s21!02! for all
distributions in the null hypothesis+ The results of the paper cover definitions of this sort+ One just
needs the assumptions stated in Section 5 to hold for all DGPs of interest and then the results given
apply to all such DGPs+

3+ Specifically, the results stated in the second and third paragraphs following equation~1+2! hold
when the initial estimator satisfiesP~7 ZuN,0 2 u07 . C1gN ! 5 o~N2a! with gN 5 ~ ln~N!0N!102 for
some finite constantC1+ A wide class of extremum estimators satisfies this condition; see Lemma 1+
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4+ The matrix RWN~u! is positive definite with probability that goes to one at a rate that is suf-
ficiently fast for the results of the paper to hold+ In finite samples, however, RWN~u! is not neces-
sarily positive definite+ If RWN~u! is not positive definite, VN~u! can be defined in an arbitrary
fashion, and the results of the paper hold+ For example, one could compute RWN~u! with k replaced
by a smaller value for which RWN~u! is positive definite+

5+ The rth element of ZuN is denoted~ ZuN !r , rather than ZuN, r , to distinguish it from thek-step
estimator, ZuN, k, defined in Section 4+
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