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A BIAS-REDUCED LOG-PERIODOGRAM REGRESSION
ESTIMATOR FOR THE LONG-MEMORY PARAMETER

By Donald W. K. Andrews and Patrik Guggenberger1

In this paper, we propose a simple bias-reduced log-periodogram regression estimator,
d̂r , of the long-memory parameter, d, that eliminates the first- and higher-order biases
of the Geweke and Porter-Hudak (1983) (GPH) estimator. The bias-reduced estimator is
the same as the GPH estimator except that one includes frequencies to the power 2k for
k= 1� � � � � r , for some positive integer r , as additional regressors in the pseudo-regression
model that yields the GPH estimator. The reduction in bias is obtained using assumptions
on the spectrum only in a neighborhood of the zero frequency.
Following the work of Robinson (1995b) and Hurvich, Deo, and Brodsky (1998),

we establish the asymptotic bias, variance, and mean-squared error (MSE) of d̂r , deter-
mine the asymptotic MSE optimal choice of the number of frequencies, m, to include in
the regression, and establish the asymptotic normality of d̂r . These results show that the
bias of d̂r goes to zero at a faster rate than that of the GPH estimator when the normal-
ized spectrum at zero is sufficiently smooth, but that its variance only is increased by a
multiplicative constant.
We show that the bias-reduced estimator d̂r attains the optimal rate of convergence for

a class of spectral densities that includes those that are smooth of order s ≥ 1 at zero when
r ≥ �s−2	/2 and m is chosen appropriately. For s > 2, the GPH estimator does not attain
this rate. The proof uses results of Giraitis, Robinson, and Samarov (1997).
We specify a data-dependent plug-in method for selecting the number of frequencies m

to minimize asymptotic MSE for a given value of r .
Some Monte Carlo simulation results for stationary Gaussian ARFIMA�1�d�1	 and

�2�d�0	 models show that the bias-reduced estimators perform well relative to the standard
log-periodogram regression estimator.

Keywords: Asymptotic bias, asymptotic normality, bias reduction, frequency domain,
long-range dependence, optimal rate, plug-in estimator, rate of convergence, strongly
dependent time series.

1� introduction

We consider a semiparametric model for a stationary Gaussian long-
memory time series Yt � t = 1� � � � � n�. The spectral density of the time series is
given by

f ��	= ���−2dg��	�(1.1)

where d ∈ �−0�5�0�5	 is the long-memory parameter, g�·	 is an even function on
�−���� that is continuous at zero with 0<g�0	 <�, and f ��	 is integrable over

1 The first author gratefully acknowledges the research support of the National Science Foundation
via Grant Number SBR-9730277. The second author thanks the Cowles Foundation for research
support via a Cowles Prize. The authors thank Marc Henry, Peter Robinson, Alain Monfort, and
three anonymous referees for helpful comments.
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676 d. w. k. andrews and p. guggenberger

�−���	. The parameter d determines the low frequency properties of the series.
When d > 0, the series exhibits long memory. The function g�·	 determines the
high frequency properties of the series, i.e., its short-term correlation structure.
The widely used log-periodogram regression estimator of the long-memory

parameter d proposed by Geweke and Porter-Hudak (1983) (GPH) has been
criticized because of its finite-sample bias (see Agiakloglou, Newbold, and Wohar
(1993)). In this paper, we investigate the asymptotic and finite sample proper-
ties of a new bias-reduced log-periodogram estimator d̂r of the long memory
parameter d. Let �j = 2�j/n for j = 1� � � � � �n/2� denote the fundamental fre-
quencies for a sample of size n. The estimator d̂r is defined to be the least
squares (LS) estimator of the coefficient on −2 log�j in a regression of the log
of the periodogram evaluated at �j on a constant, −2 log�j , and �2j � �

4
j � � � � � �

2r
j

for j = 1� � � � �m, where r is a (fixed) nonnegative integer. We take m such that
m→� and m/n→ 0 as n→�. When r = 0� d̂r is asymptotically equivalent to
the well-known GPH estimator d̂GPH .
The motivation for the estimator d̂r is the local polynomial estimator for non-

parametric regression functions (see Fan (1992) and additional references in
Härdle and Linton (1994)). The latter is a popular nonparametric estimation
method that is found to perform well for low order polynomials, such as linear or
quadratic polynomials. Analogously, we expect the bias-reduced log-periodogram
estimator to perform well for small values of r , such as r = 1 or r = 2. That is,
although the asymptotic results established below hold for arbitrary large values
of r , we do not recommend using large values in practice because the asymptotic
properties will not be reflected in finite samples.
We determine the asymptotic bias, variance, and MSE of d̂r , calculate the MSE

optimal choice of m for d̂r , and establish the asymptotic normality of d̂r . The
proofs of these results rely heavily on results of Robinson (1995b) and Hurvich,
Deo, and Brodsky (1998) (HDB). We find that the asymptotic bias of d̂r is of
orderm2+2r /n2+2r provided g is sufficiently smooth, whereas that of d̂GPH is of the
larger order m2/n2. The asymptotic variances of d̂r and d̂GPH are both of order
m−1. In consequence, the optimal rate of convergence to zero of the MSE of d̂r

is of order n−�4+4r	/�5+4r	 whereas that of d̂GPH is of the larger order n−4/5. For
example, for r = 2, this is n−12/13. The rate of convergence of d̂r also exceeds
that of the local Whittle estimator (see Robinson (1995a)) and the average peri-
odogram estimator (see Robinson (1994)), provided g is sufficiently smooth.
We find that m1/2�d̂r −d	 is asymptotically normal with mean zero provided

m = o�n�4+4r	/�5+4r		. In contrast, d̂GPH is asymptotically normal only under the
more stringent condition m= o�n4/5	.
We determine the optimal rate of convergence of a minimax risk criterion for

estimators of d when the true normalized spectral density lies in a class that
includes densities that are smooth to order s at zero for some s ≥ 1. The optimal
rate is n−s/�2s+1	. The estimator d̂r is shown to achieve this rate of convergence
provided r ≥ �s− 2	/2 and m is chosen suitably. In contrast, when s > 2, the
GPH estimator does not achieve this rate. The proof of the optimal rate results
utilizes results of Giraitis, Robinson, and Samarov (1997) (GRS).
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We provide a consistent estimator of the only unknown constant in the for-
mula for the MSE optimal choice of m for a given value of r . This yields a data-
dependent plug-in method for choosing m. This procedure does not, however,
achieve the optimal MSE rate of convergence. This occurs because the smooth-
ness conditions imposed to yield consistency of the estimator of the unknown
constant imply that taking a larger value of r is needed to obtain the optimal
MSE rate of convergence. We do not find this troubling because we feel that
using a small value of r is preferable in practice in terms of finite sample perfor-
mance.
Some Monte Carlo simulations show that the bias-reduced estimators d̂1 and

d̂2 have lower biases, higher standard deviations, and slightly lower root mean-
squared errors (RMSE’s) compared to the standard log-periodogram estima-
tor d̂0 (which is a slight variant of d̂GPH) for a variety of stationary Gaussian
ARFIMA(1�d�1) and (2�d�0) processes, as the asymptotic results suggest.
(Details of the ARFIMA(2�d�0) results are not reported in the paper, but are
available from the authors.) The lower biases lead to good confidence interval
(CI) coverage probabilities for CI’s based on d̂1 and d̂2 over a wider range of m
values than for d̂0. On the other hand, the lower standard deviation of d̂0 leads
to shorter CI intervals than CI’s based on d̂1 and d̂2. The RMSE graphs for d̂1
and d̂2 are flatter as a function of m than those for d̂0, which implies that d̂1
and d̂2 are less sensitive to the choice of m than is d̂0. This corroborates asymp-
totic results which show that the slope of the RMSE function, as a function of m,
declines to zero faster when r > 0 than when r = 0.
For all three estimators, d̂0� d̂1, and d̂2, performance depends primarily on the

value of the autoregressive coefficient in ARFIMA(1�d�1) processes and the sum
of the autoregressive coefficients in ARFIMA(2�d�0) processes. When these are
close to one, biases and RMSE’s are high and CI coverage probabilities are low.
The simulation results are virtually the same for the three values of d consid-

ered: −�4�0, and �4. The basic pattern of results (in terms of the shapes of the
bias, standard deviation, RMSE, and coverage probability graphs as functions of
m) are the same for sample sizes n= 128�512, and 2048. However, the ratio of
the minimum RMSE over m ∈ �1�n/2� for d̂1 or d̂2 to that of d̂0 decreases as n
increases. This is in accord with the asymptotic theory.
Simulation results utilizing the plug-in choice of m show that the estimators

d̂1 and d̂2 exhibit reduced bias, increased standard deviations, and for some
parameter combinations reduced RMSE compared to d̂0. The estimators d̂1 and
d̂2 deliver CI’s with much better coverage probabilities than the estimator d̂0.
The estimation error in the plug-in method causes a substantial increase in the
RMSE of all three estimators d̂0� d̂1, and d̂2 compared to the (infeasible) case
in which the unknown in the formula is known. This is to be expected, because
the unknown in the plug-in formula is a higher-order derivative that must be
estimated nonparametrically.
In sum, the simulations indicate that for stationary Gaussian ARFIMA(1�d�1)

and �2�d�0	 processes the estimators d̂1 and d̂2 usually deliver bias reductions,
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small RMSE reductions, and improved CI coverage probabilities in finite samples
that reflect the asymptotic results.
A closely related paper to this one is Robinson and Henry (2003) (RH). RH

introduces a class of narrow-band semiparametric estimators that utilize higher-
order kernels to obtain bias-reduction. In contrast to the results given here, the
asymptotic results in RH are determined using formal expansions and are not
given rigorous proofs.
Other related papers include Hurvich and Brodsky (2001), Bhansali and

Kokoszka (1997), Moulines and Soulier (1999), and Hurvich (2001). Each of
these papers considers semiparametric estimation of d by specifying a parametric
model and letting the number of parameters in the model increase with the sam-
ple size. These estimators of d, like d̂r , attain rates of convergence that exceed
the rate n2/5 of the GPH estimator. These estimators differ from the bias-reduced
estimator considered here in that they are broad-band estimators that use all of
the frequencies in the range �0���. Correspondingly, they rely on assumptions
on the spectrum over the whole interval �0���. In contrast, the bias-reduced esti-
mator considered here is a narrow-band estimator. It only relies on assumptions
on the spectrum at the origin.
Still other related papers include Delgado and Robinson (1996), Henry and

Robinson (1996), Hurvich and Deo (1999), and Henry (2001). Each of these
papers considers a regression of the periodogram or the log-periodogram on sev-
eral regressors including the squared frequency. The results of these regressions
are used to obtain data-dependent bandwidth choices for the GPH, local Whittle,
and average periodogram estimators. These papers do not consider bias-reduced
estimation of d based on these regressions.
The bias-reduction method utilized here can be extended to a number of other

procedures. Andrews and Sun (2001) consider a bias-reduced local polynomial
Whittle estimator. The bias-reduction method also could be applied to the pooled
and/or multivariate log-periodogram regression estimators of Robinson (1995b),
the pooled and/or tapered log-periodogram regression estimators for stationary
non-Gaussian series analyzed by Velasco (2000), the modified log-periodogram
estimator of Kim and Phillips (1999b) for nonstationary time series, the tapered
log-periodogram estimator of Velasco (1999) for nonstationary time series, and
the adaptive log-periodogram regression estimator of Giraitis, Robinson, and
Samarov (2000). In addition, one could analyze the properties of the bias-reduced
log-periodogram estimator with nonstationary time series, along the lines of Kim
and Phillips (1999a).
The remainder of this paper is organized as follows. Section 2 motivates the

bias-reduced estimator by reviewing results for the GPH estimator. Section 3
establishes the asymptotic bias, variance, and MSE of the bias-reduced log-
periodogram estimator, and shows that it is asymptotically normal. Section 4 gives
the optimal rate of convergence results. Section 5 provides results for a plug-in
method for choosing the bandwidth. Section 6 describes the simulation results.
An Appendix provides proofs.
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2� the gph estimator

An alternative parameterization of the model in (1.1) that is often used in the
literature (e.g., see HDB) is

f ��	= �1−exp�−i�	�−2df ∗��	�(2.1)

where f ∗�·	 satisfies the same conditions as g�·	. The models in (1.1) and (2.1)
are equivalent because �1−exp�−i�	�−2d = ���−2d�1+o�1		 as �→ 0.
Using the parameterization in (2.1), GPH proposed an estimator of d based

on the first m periodogram ordinates

Ij =
1

2�n

∣∣∣∣ n∑
t=1

Yt exp�i�jt	

∣∣∣∣2 for j = 1� � � � �m�(2.2)

where �j = 2�j/n and m is a positive integer smaller than n. The GPH estimator
is given by −1/2 times the LS estimator of the slope parameter in a regression
of log Ij � j = 1� � � � �m� on a constant and the regressor variable X̃j = log �1−
exp�−i�j	� = �1/2	 log�2−2 cos�j	. By definition, the GPH estimator is

d̂GPH = −0�5∑m
j=1

(
X̃j − �̃

X
)
log Ij∑m

j=1
(
X̃j − �̃

X
)2 �(2.3)

where �̃
X = �1/m	

∑m
j=1 X̃j .

This estimator can be motivated heuristically using model (2.1) by writing

log Ij = �log f ∗
0 −C	−2dX̃j + log�f ∗

j /f
∗
0 	+ j�(2.4)

where  j = log�Ij/fj	 + C�fj = f ��j	� f
∗
j = f ∗��j	� f

∗
0 = f ∗�0	, and C =

0�577216� � � is the Euler constant. Equation (2.4) is a pseudo-regression model.
If the pseudo-errors log�f ∗

j /f
∗
0 	+ j � j = 1� � � � �m� behave like iid random vari-

ables, then the regression estimator d̂GPH is a reasonable estimation procedure.
In fact, Robinson (1995b) shows that a variant of d̂GPH , which trims out small

values of j from the regression, is consistent and asymptotically normal provided
m→� as n→� at a rate that is not too quick. Robinson’s (1995b) estimator
also differs from the GPH estimator in that he uses the model parameterization
in (1.1) and, hence, replaces the regressor X̃j by

Xj =−2 log�j(2.5)

(and correspondingly drops the −0�5 term from the definition of d̂GPH). The
use of Xj rather than X̃j has no effect on the asymptotic bias, variance, MSE,
or normality of the estimator. The form of the regressor X̃j = log �1−exp�−i�j	�
used by GPH comes from the spectrum of a fractionally differenced time series.
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Since �1− exp�−i�	�−2d = ���−2d�1+ o�1		 as � → 0 and the GPH estimator is
a consistent estimator of d for a more general class of time series models than
fractionally differenced time series, the simpler form for the regressor given in
(2.5) is appropriate.
HDB provide further justification for log-periodogram regression estimators.

They consider the GPH estimator d̂GPH exactly as defined in (2.3). They establish
the asymptotic bias, variance, and MSE of d̂GPH , calculate the MSE optimal
choice of m, and establish the asymptotic normality (with mean zero) of d̂GPH

when m → � at a rate slower than the MSE optimal rate. In addition, it is
straightforward to see that their results continue to hold with the regerssor X̃j

replaced by Xj .
Using the parameterization of (2.1), HDB suppose that m and f ∗ satisfy the

following assumptions:

Assumption HDB1: m=m�n	→� and �m�logm	/n	→ 0 as n→�.

Assumption HDB2: f ∗ is three times continuously differentiable in a neighbor-
hood of zero and f ∗′�0	= 0.2

Under these assumptions, HDB establish that

Ed̂GPH −d = −2�2

9
f ∗′′�0	
f ∗�0	

m2

n2
+o

(
m2

n2

)
+O

(
log3m
m

)
�

var�d̂GPH	=
�2

24m
+o

(
1
m

)
� and

MSE�d̂GPH	= E�d̂GPH −d	2 = 4�4

81

(
f ∗′′�0	
f ∗�0	

)2m4

n4
+ �2

24m
+o

(
m4

n4

)
+O

(
m log3m

n2

)
+o

(
1
m

)
�

(2.6)

HDB point out that the choice of m that minimizes MSE(d̂GPH) is given by

mGPH�opt =
(

27
128�2

) 1
5
(
f ∗�0	
f ∗′′�0	

) 2
5

n
4
5 �(2.7)

provided f ∗′′�0	 �= 0. With this choice of m, the MSE of d̂GPH is of order O�n−4/5	.

2 HDB do not actually assume that f ∗�3	 is continuous, but they use this assumption when taking
a three term Taylor expansion of log f ∗

j in the proof of their Lemma 1. HDB also assume that f ∗

is continuous and bounded away from zero and infinity on �−����, but these assumptions are not
used in their proofs.
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The dominant bias term of d̂GPH in (2.6) comes from the term log�f ∗
j /f

∗
0 	,

rather than the E j term, in the pseudo-regression model (2.4). Under
Assumption HDB2, a Taylor series expansion gives

log�f ∗
j /f

∗
0 	=

�2j

2
f ∗′′�0	
f ∗�0	

+O��3j 	�(2.8)

It is the first term on the right-hand side of (2.8) that is responsible for the
dominant bias term of d̂GPH . This suggests that the elimination of this term will
yield an estimator with reduced bias. This term can be eliminated by adding the
regressor �2j to the pseudo-regression model (2.4). Furthermore, additional bias
terms can be eliminated by adding the regressors �4j � � � � � �

2r
j for some r ≥ 2. This

is established rigorously in the next section.

3� bias-reduced log-periodogram regression

3�1� Asymptotic Bias and Variance

In this section, we define the bias-reduced estimator d̂r , calculate its asymp-
totic bias and variance, and provide conditions under which it is asymptotically
normal. We assume throughout that the model is given by (1.1). Thus, we utilize
the regressor Xj , as in Robinson (1995b), rather than X̃j .
The bias-reduced estimator d̂r is the LS estimator of the coefficient on Xj

from the regression of log Ij on 1, Xj��
2
j � �

4
j � � � � � �

2r
j for j = 1� � � � �m for some

nonnegative integer r . It is defined explicitly in (3.8) below. Note that only even
powers of �j are employed in the regression. Odd powers of �j do not help in
reducing the asymptotic bias because they have coefficients equal to zero in the
Taylor expansion of log�g��j	/g�0		, which determines the asymptotic bias of
d̂r , as in (2.8). (These coefficients are zero due to the oddness of the odd order
derivatives of logg��	 and their continuity at zero.)
We assume that g is smooth of order s at zero for some s ≥ 1, which is defined

as follows. Let �s� denote the integer part of s. We say that a real function
h defined on a neighborhood of zero is smooth of order s > 0 at zero if h
is �s� times continuously differentiable in some neighborhood of zero and its
derivative of order �s�, denoted h��s�	, satisfies a Hölder condition of order s− �s�
at zero, i.e., �h��s�	��	−h��s�	�0	� ≤C���s−�s� for some constant C <� and all � in
a neighborhood of zero.
We use the following assumptions:

Assumption 1: m=m�n	→� and m/n→ 0 as n→�.

Assumption 2: g is an even function on �−���� that is smooth of order s at
zero for some s ≥ 1�0< g�0	 <��−1/2 < d < 1/2, and

∫ �

−� ���−2dg��	d� <�.

For example, Assumption 2 holds for ARFIMA(p�d�q) processes and frac-
tional Gaussian noise for all s finite.
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Assumption 2 allows one to develop an �s� term Taylor expansion of logg��j	
about �= 0:3

log�gj/g0	=
�s�∑
k=1

bk
k!�

k
j +Remj � where

max
1≤j≤m

�Remj/�
s
j � =O�1	 as n→��

gj = g��j	� g0 = g�0	�

bk =
dk

d�k
logg��	

∣∣∣∣
�=0

�

(3.1)

The function logg��	 is an even function and its first derivative is a continuous
odd function. All continuous odd functions equal zero at zero. Thus, b1 = 0. By
analogous reasoning, bk = 0 for all odd integers k ≤ �s�. In consequence,

log�gj/g0	=
�s/2�∑
k=1

b2k
�2k	!�

2k
j +Remj �(3.2)

For example, b2 = g�2	�0	/g�0	 and b4 = g�4	�0	/g�0	−3g�2	�0	/g�0	.
We break up the Taylor expansion into the part that is eliminated by the regres-

sors �2kj for k = 1� � � � � r and the remainder:

log�gj/g0	=
min�s/2��r�∑

k=1

b2k
�2k	!�

2k
j +Rj� where(3.3)

Rj =
�s/2�∑

k=min�s/2�� r�+1

b2k
�2k	!�

2k
j +Remj

= 1�s ≥ 2+2r	 b2+2r
�2+2r	!�

2+2r
j +Rem∗

j �

max
1≤j≤m

�Rem∗
j /�

q
j � =O�1	� and

q =mins�4+2r��
If s is an integer, then max1≤j≤m �Remj/�

s
j � = o�1	 and max1≤j≤m �Rem∗

j /�
q
j � = o�1	

by the continuity of the sth order derivative of g.
Let

Qk�j = �k
j for j = 1� � � � �m and k = 1�2� � � � �(3.4)

Let log I�X�Qk�R, and  denote column m-vectors whose jth elements are
log Ij�Xj�Qk� j �Rj , and  j , respectively where  j = log�Ij/fj	+C and fj = f ��j	.

3 The proof that Remj satisfies the condition in (3.1) requires some care. But, for brevity, we do
not give the proof.
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Let Q denote the m× r matrix whose kth column is Q2k for k = 1� � � � � r . Let
1m denote a column m-vector of ones. Let b�r	 denote the column r-vector
whose kth element is b2k/�2k	! for k = 1� � � � �min�s/2�� r� and 0 for k =
min�s/2�� r�+ 1� � � � � r . Combining (3.3) and (2.4) (with f ∗ replaced by g and
−2Xj replaced by Xj), we can write in m-vector notation:

log I = �logg0−C	1m+Xd+Qb�r	+R+ �(3.5)

We define the deviation from column mean regressor vector X∗ and matrix
Q∗ as

X∗ =X−1m �X and

Q∗ =Q−1m�Q′� where

�X = 1
m
X ′1m and �Q = 1

m
Q′1m�

(3.6)

The pseudo-regression model in deviation from mean form is

log I =K1m+X∗d+Q∗b�r	+R+ � where

K = logg0−C+ �Xd+ �Q′b�r	�

(3.7)

The bias-reduced estimator d̂r equals the LS estimator of the coefficient on
X∗ in the regression of log I on 1m�X∗, and Q∗. By the partitioned regression
formula,

d̂r = �X∗′MQ∗X∗	−1X∗′MQ∗ log I� where

MQ∗ = Im−Q∗�Q∗′Q∗	−1Q∗′�

(3.8)

(For r = 0, we define MQ∗ = Im.)
Taking the expectation of d̂r in (3.8) and using (3.7), we obtain

Ed̂r = d+ �X∗′MQ∗X∗	−1X∗′MQ∗�R+E 	�(3.9)

because X∗′1m = 0 and Q∗′1m = 0. The term Q∗b�r	 in (3.7), which includes the
�2kj terms for k= 1� � � � �min�s/2�� r� in the Taylor expansion of log�gj/g0	, does
not appear in (3.9) because it is eliminated by the inclusion of the Q∗ regressors.
In consequence, the bias of d̂r is of smaller order than that of d̂GPH .
We now introduce several quantities that arise in the expressions for the asymp-

totic bias and variance of d̂r . Let +r be a column r-vector with kth element +r�k

and ,r be an r× r matrix with �i�k	 element given by �,r �i�k, where

+r�k =
2k

�2k+1	2 for k = 1� � � � � r�(3.10)

�,r �i�k =
4ik

�2i+2k+1	�2i+1	�2k+1	 for i� k = 1� � � � � r�
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For r = 0, let +r = 0 and ,r = 1. We show below that the asymptotic variance of
d̂r is proportional to

cr = �1−+′
r,

−1
r +r	

−1�(3.11)

For example, c0 = 1� c1 = 9/4� c2 = 3�52� c3 = 4�79, and c4 = 6�06.
Let .r be a column r-vector with kth element .r�k, where

.r�k =
2k�3+2r	

�2r+2k+3	�2k+1	 for k = 1� � � � � r�(3.12)

Let

/r =−�2�	2+2r �2+2r	cr
2�3+2r	!�3+2r	 �1−+′

r,
−1
r .r 	�(3.13)

For example, /0 =−2�19� /1 = 2�23� /2 =−0�793� /3 = �146, and /4 =−0�0164.
We now state the asymptotic bias and variance of d̂r .

Theorem 1: Suppose Assumptions 1 and 2 hold. Then:
�a	 Ed̂r −d = 1�s ≥ 2+2r	/rb2+2r m2+2r

n2+2r �1+o�1		+O�m
q

nq
	+O� log

3m

m
	 and

�b	 var�d̂r 	= �2

24
cr
m
+o� 1

m
	.

If s is an integer, part (a) holds with O�mq/nq	 replaced by o�mq/nq	. In particular,
if s= 2+2r, part (a) holds with O�mq/nq	 replaced by o�mq/nq	= o�m2+2r /n2+2r 	.

Comments: 1. When s≥ 2+2r , the dominant bias term is /rb2+2rm2+2r /n2+2r

whenever m grows at rate n1 for 1 > �2+ 2r	/�3+ 2r	 and 1 < 1. As shown
below, the MSE-optimal choice of m satisfies this condition. When s < 2+2r , the
dominant bias term is O�ms/ns	 whenever m grows at rate n1 for 1 > s/�s+1	
and 1 < 1.
2. Comparing the results of the theorem with (2.6), one sees that the conver-

gence to zero of the bias of d̂r is faster than that of d̂GPH , whereas its variance
differs only by the multiplicative constant cr .
3. The slope of the bias term /rb2+2rm2+2r /n2+2r as a function of m is �2+

2r	/rb2+2rm1+2r /n2+2r . Note that the slope converges to zero more quickly when
r > 0 than when r = 0. That is, the bias term is flatter as a function of m for
r > 0 than for r = 0, at least for large sample sizes.
4. Theorem 1 holds when the regressor Xj is replaced by X̃j and d̂r is

−0�5 times the LS coefficient on the regressor X̃j from the regression of log Ij
on 1� X̃j��

2
j � �

4
j � � � � � �

2r
j for j = 1� � � � �m.4

5. The proof of Theorem 1 relies on various lemmas given in HDB.

4 This can be proved using the fact that X̃j = −�1/2	Xj + �1/2	 log cos2j , where 0 ≤ 2j ≤ �j ; see
Hurvich and Beltrao (1994, p. 299).
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We now consider the MSE optimal choice of m for the bias-reduced estima-
tor, i.e., the choice that maximizes the rate of convergence to zero of its MSE.
Straightforward calculations show that the MSE optimal choice of m is

m∼ n23/�23+1	� where 3=mins�2+2r�(3.14)

and m∼ n23/�23+1	 means that limn→�m/n23/�23+1	 ∈ �0��	.
For this choice,

MSE�d̂r 	=O
(
n−23/�23+1	)�(3.15)

Hence, given s ≥ 1, if m ∼ n2s/�2s+1	 and r ≥ �s − 2	/2, then MSE�d̂r 	 =
O�n−2s/�2s+1		. Alternatively, given r ≥ 0, if m∼ n�4+4r	/�5+4r	 and s ≥ 2+2r , then
MSE�d̂r 	=O�n−�4+4r	/�5+4r		.
If s and r are arbitrarily large, then MSE�d̂r 	 converges to zero at a rate

arbitrarily close to the rate n−1 of parametric estimators. This result is primarily
of theoretical interest. Except for extremely large sample sizes one would choose
a small value of r , because the variance of d̂r for fixed m increases fairly quickly
as r increases.
The MSE of the GPH estimator satisfies the formula above with r = 0. In

consequence, when s≤ 2, the maximal rates of convergence to zero of the MSE of
the GPH estimator and the bias-reduced estimator d̂r with r ≥ 1 are the same,
viz., n−2s/�2s+1	. When s > 2, however, the GPH estimator has maximal rate of
convergence to zero equal to n−4/5, whereas d̂r with r ≥ 1 has maximal rate of
convergence equal to the faster rate n−�23	/�23+1	 (which equals n−�4+4r	/�5+4r	 when
s ≥ 2r+2). In fact, when s > 2� d̂r with r ≥ 1 has a faster rate of convergence of
MSE to zero than the GPH estimator whenever d̂r and d̂GPH are defined with
the same value m∼ n1 and 4/5< 1 < 1.
Next, we derive an explicit formula for the MSE optimal choice of m for d̂r

when g is sufficiently smooth that s ≥ 2+ 2r . Suppose that m ∼ n1 for some
0<1 < 1. In this case, the results of Theorem 1 and some calculations show that
the MSE of d̂r equals

MSE�d̂r 	= /2r b
2
2+2r

m4+4r

n4+4r
�1+o�1		+O

(
m1+2r log3m

n2+2r

)
(3.16)

+ �2

24
cr
m
�1+o�1		�

(The second term on the right-hand side comes from the squared bias term
O�m2+2r /n2+2r 	O�log3�m	/m	. The other remainder terms from the squared
bias are dominated by the three terms in (3.16).) If 1 > �2+ 2r	/�3+ 2r	,
then the O�·	 term in (3.16) is of smaller order than the other two terms. Ignor-
ing the O�·	 term, straightforward calculations yield the value of m that mini-
mizes the asymptotic MSE:

mopt�1 =
[(

�2cr
24�4+4r	/2r b22+2r

)1/�5+4r	
n�4+4r	/�5+4r	

]
�(3.17)
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where �a� denotes the integer part of a and the expression for mopt only applies
when /r �= 0� b2+2r �= 0, and cr <�. Note that the MSE optimal growth rate of
n�4+4r	/�5+4r	 allows one to ignore the O�·	 term in (3.16).
Simulations show that a better estimator of the variance of d̂r than ��2/24	×

�cr/m	 is obtained by using the finite sample expressionm�X∗′MQ∗X∗	−1 in place
of cr/4. Thus, it is more accurate in finite samples to use ��2/6	�X∗′MQ∗X∗	−1

in place of ��2/24	�cr/m	 in (3.16). This motivates an alternative specification
of the value of m that minimizes the asymptotic MSE, which we denote mopt�2.
mopt�2 is defined to be the value of m that minimizes

/2r b
2
2+2r

m4+4r

n4+4r
+ �2

6
�X∗′MQ∗X∗	−1(3.18)

over m ∈ �m0�n/2� for some small positive integer m0. We have mopt�1/mopt�2 → 1
as n→� because m�X∗′MQ∗X∗	−1 → cr/4; see Lemma 2(j) in the Appendix.
In Section 5 below, we usemopt�1 andmopt�2 to specify data-dependent selection

rules for m by replacing b2+2r with a consistent estimator b̂2+2r .
It is desirable that the MSE of d̂r , as a function of m, be relatively flat, because

then a wide range of values of m yield MSE that is close to the value at mopt.
We can analyze the slope of the asymptotic MSE function in the region around
mopt by letting m grow at the MSE optimal rate, i.e., m=An�4+4r	/�5+4r	 for some
constant A, and computing the derivative of the dominant terms of the MSE in
(3.16) with respect to the tuning parameter A. For m=An�4+4r	/�5+4r	, we have

MSE�d̂r 	=
(
A4+4r /2r b

2
2+2r +A−1�

2

24
cr

)
n−�4+4r	/�5+4r	�1+o�1		�(3.19)

Ignoring the o�1	 term, the derivative of this expression with respect to A is(
�4+4r	A3+4r /2r b

2
2+2r −A−2�

2

24
cr

)
n−�4+4r	/�5+4r	�(3.20)

Hence, the slope of the asymptotic MSE function as a function of the tuning
parameter A converges to zero faster for r > 0 than for r = 0. This suggests that
the MSE of d̂r is flatter around mopt for r > 0 than for r = 0, at least in large
samples.

3�2� Asymptotic Normality

We now show that the bias-reduced estimator d̂r is asymptotically normal with
mean zero providedm increases to infinity at a slower rate than the MSE-optimal
rate. We suppose that m is chosen to satisfy the following assumption.

Assumption 3: m= o�n23/�23+1		, where 3=mins�2+2r�� s ≥ 1, and s is as
in Assumption 2.

We note that Assumption 3 implies Assumption 1.
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Theorem 2: Suppose Assumptions 2 and 3 hold. Then,

m1/2�d̂r −d	→d N

(
0�

�2

24
cr

)
as n→��

Comments: 1. Assumption 3 allows one to take m much larger for d̂r than
for the GPH estimator provided g is sufficiently smooth. In consequence, by
appropriate choice of m, one has asymptotic normality of d̂r with a faster rate
of convergence than is possible with d̂GPH .
2. Assumption 3 prohibits m from growing at the MSE-optimal rate

n�4+4r	/�5+4r	 (when s ≥ 2+ 2r). However, Theorem 2 can be extended easily to
cover this case. Suppose Assumption 2 holds, Assumption 3 holds with o�·	
replaced by O�·	, and s ≥ 2+2r . Then,

m1/2�d̂r −d	−/2b2+2r
m�5/2	+2r

n2+2r
→d N

(
0�

�2

24
cr

)
as n→��5

3. The proof of Theorem 2 relies on the proof of Theorem 2 of HDB, which,
in turn, relies on the proofs of Theorems 3 and 4 of Robinson (1995b).

4� optimal rate of convergence

In this section, we determine the optimal rate of convergence of a minimax risk
criterion for any estimator of d in model (1.1) for stationary Gaussian processes
when the true function g is in a class of functions that includes those that are
smooth of order s at zero for given s ≥ 1. The optimal rate is n−s/�2s+1	, which is
arbitrarily close to n−1/2 if s is arbitrarily large. We show that the bias-reduced
log-periodogram estimator d̂r achieves this rate provided r ≥ �s−2	/2 and m is
chosen appropriately.
Our results are obtained by establishing a lower bound for risk via the method

of GRS, but we consider least favorable spectral densities that are continuous,
rather than discontinuous. Then, we use the asymptotic bias and variance results
of the previous section to show that the lower bound is achieved uniformly over
the class of densities by the estimator d̂r . This yields the optimal rate of conver-
gence result plus its achievement by the bias-reduced log-periodogram estimator.
Our optimal rate results are essentially the same as those of GRS when 1 ≤

s ≤ 2. For s > 2, the results differ. Roughly speaking, GRS consider a class of
spectral densities of the form f ��	 = ���−2dg��	, where g��	 = g�0	+O����s	.
Functions that are smooth of order s at zero only satisfy this condition if all the
coefficients of the Taylor expansion of g��	 about � = 0 to order �s� are zero.
That is, g�k	�0	 = 0 for all k = 1� � � � � �s�. For this class of spectral densities,

5 The proof of this result just requires altering the last equality in (7.22) in the proof of Theorem 2.
(Note that when s = 2+2r , O�mq+0�5/nq	 is actually o�mq+0�5/nq	 = o�1	 in (7.22) by the last para-
graph of the proof of part (a) of Theorem 1.)
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they show that the GPH estimator (with frequencies close to zero trimmed out)
attains the optimal rate of convergence.
For s > 2, it is restrictive to focus attention only on functions g��	 that have

derivatives up to order �s� equal to zero at � = 0. For example, an ARFIMA
process has nonzero derivatives of all positive even orders at zero. This is true
even if the process after differencing is white noise. A fractionally differenced
process satisfies g��	= g�0	+O����s	 only for s= 2, even though its g�·	 function
is smooth of order s at zero for all s finite; see Remark 3.1 on p. 57 of GRS.
(Note that if an ARFIMA process is white noise after differencing, then the g��	
function has derivatives of all orders equal to zero if one uses the alternative
local specification f ��	= �2 sin��/2	�−2dg��	.)
When we expand the class of functions to include functions g��	 that are

smooth of order s and may have nonzero derivatives of some positive even orders
less than or equal to s at �= 0, the optimal rate of GRS does not change, but the
GPH estimator no longer achieves the optimal rate of convergence. However,
the bias-reduced log-periodogram estimator does achieve the optimal rate.
Let s and the elements of a= �a0� a00� a1� � � � � a�s/2�	

′� 9= �91� 92� 93	
′, and K =

�K1�K2�K3	
′ be positive finite constants with a0 < a00 and 91 < 1/2. We consider

the following class of spectral densities:

� �s�a�9�K	={
f �f ��	=���−2df g��	��df �≤�1/2	−91�

∫ �

−�
f ��	d�≤(4.1)

K1� and g is an even function on �−���� that satisfies

(i) a0≤g�0	≤a00� (ii) g��	=g�0	+
�s/2�∑
k=1

gk�
2k+:��	

for some constants gk with �gk�≤ak for k=1�� � � ��s/2�
and some function :��	 with �:��	�≤K2�

s

for all 0≤�≤92� (iii) �g��1	−g��2	�≤K3��1−�2�
for all 0<�1<�2≤93

}
�

If g is an even function on �−���� that is smooth of order s ≥ 1 at zero
and f ��	 = ���−2df g��	 for some �df � < 1/2, then f is in � �s� a�9�K	 for some
a�9, and K. Condition (ii) of � �s� a�9�K	 holds in this case by taking a Taylor
expansion of g��	 about � = 0. The constants gk equal g�2k	�0	/�2k	! for k =
1� � � � � �s/2� and :��	 is the remainder in the Taylor expansion. Condition (iii)
of � �s� a�9�K	 holds in this case by the mean value expansion because g has a
bounded first derivative in a neighborhood of zero.
Next, we define a sequence of sets of values of m for which the bias-reduced

estimator achieves the optimal rate of convergence. For D0 > 1, let

Jn�s�D0	=
{
m � m is an integer and D−1

0 n2s/�2s+1	 ≤m≤D0n
2s/�2s+1	}�(4.2)
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The optimal rate results are given in the following theorem:

Theorem 3: Let s and the elements of a = �a0� a00� a1� � � � � a�s/2�	
′� 9 =

�91� 92� 93	
′, and K = �K1�K2�K3	

′ be any positive real numbers with s ≥ 1� a0 <
a00� 91 < 1/2, and K1 ≥ 2�a00. Then:
(a) there is a constant C > 0 such that

lim inf
n→� inf

d̂�n	
sup

f∈� �s� a�9�K	

Pf �n
s/�2s+1	�d̂�n	−df � ≥ C	 > 0�

where the inf is taken over all estimators d̂�n	 of df ; and
(b) for r ≥ �s−2	/2 and any D0 > 1,

lim sup
n→�

max
m∈Jn�s�D0	

sup
f∈� �s� a�9�K	

ns/�2s+1	�Ef �d̂r�m−df 	
2	1/2 <��

where d̂r�m denotes the bias-reduced estimator d̂r calculated using m frequencies.
Here Pf and Ef denote probability and expectation, respectively, when the true spec-
tral density is f .

Comments: 1. The lower bound for risk stated in part (a) is for the 0-1
loss function =�x	 = 1��x� > C	. As noted in GRS, the result implies a similar
result for any loss function =�·	 for which =�x	 ≥  1��x� > C	 for all x for some
 > 0, such as the pth power absolute error loss function =�x	 = �x�p for any
p > 0. The upper bound on the risk of d̂r given in part (b) is for the quadratic
loss function. This result implies a similar result for any loss function =�·	 for
which Ef =�n

s/�2s+1	�d̂r�m−df 		≤h�ns/�2s+1	�Ef �d̂r�m−df 	
2	1/2	 for any monotone

positive function h�·	, such as h�x	 = x2 or h�x	 = x. In consequence, part (b)
holds with the 0-1 loss function of part (a) and the pth power absolute error loss
function for any 1≤ p ≤ 2.
2. The restriction that s ≥ 1 and condition (iii) of � �s� a�9�K	 are used in

place of Assumption 2 of Robinson (1995b), which requires g to be differentiable
in a neighborhood of zero. The former conditions are used in the proof of part
(b) of the theorem. In particular, see Lemma 3 and its proof.
3. The restrictions that �df ��

∫ �

−� f ��	d�, and g�0	 are bounded away from
1/2��, and 0, respectively, in � �s� a�9�K	 are imposed to ensure that uniformity
over f ∈� �s� a�9�K	 holds in the theorem. See the proof of Lemma 3 for further
discussion. The condition K1 ≥ 2�a00 in the theorem ensures that the bound on
the integral of f ∈ � �s� a�9�K	 is not too severe relative to the scale of f , which
is determined by g�0	 �≤a00	.

5� bandwidth choice

In this section, we briefly discuss the choice of the number of frequencies m
to employ in the log-periodogram regression. We refer to m as the bandwidth.
There are several approaches in the literature for choosing the bandwidth. First,
one can circumvent the problem somewhat by reporting results for a range of
bandwidths and showing the extent to which the estimate of d depends on the
bandwidth.
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Second, if one is interested in constructing a confidence interval, one can try
to choose m such that the coverage probability of the confidence interval is as
close as possible to the nominal coverage probability. A recent paper by Giraitis
and Robinson (2000) proposes a procedure for doing so for the local Whittle
estimator.
Third, one may wish to choose the bandwidth to minimize the root mean-

squared error of the estimator of d. Methods of doing so have been proposed
by many authors, including Hurvich and Deo (1999), Giriatis, Robinson, and
Samarov (2000), and Iouditsky, Moulines, and Soulier (2000). The latter two
papers choose m to adapt to the unknown smoothness of g��	. In this section,
we show that the method of Hurvich and Deo (1999) can be extended to the
bias-reduced log-periodogram estimators considered in this paper. However, we
note that this method has two drawbacks. First, one has to specify an initial
bandwidth L, implying that the method is not fully automatic. Second, the finite
sample properties of the procedure can be sensitive to L and can be relatively
poor for some g��	 functions. On the other hand, for a variety of other g��	
functions, the method works fairly well. See Section 6 for details.
The method is to replace b2+2r by a consistent estimator b̂2+2r in the formulae

formopt�1 andmopt�2 in (3.17) and (3.18). This gives the following plug-in selection
rules for choosing m:

m̂opt�1 =
[(

�2cr

24�4+4r	/2r b̂22+2r

)1/�5+4r	
n�4+4r	/�5+4r	

]
(5.1)

and m̂opt�2 is the value of m that minimizes

/2r b̂
2
2+2r

m4+4r

n4+4r
+ �2

6
�X∗′MQ∗X∗	−1(5.2)

over m ∈ �mlow�n/2�. Clearly, m̂opt�1/mopt�1 →p 1 as n → � provided b̂2+2r →p

b2+2r as n→�. If b̂2+2r →p b2+2r and mlow →� as n→�, then it is straightfor-
ward to show that m̂opt�2/mopt�2 →p 1 as n→�.
It remains to specify an estimator of b2+2r and show that it is consistent. Such

an estimator can be obtained from a log-periodogram regression that includes
one more regressor, �2+2rj , than the regression used to obtain the estimator of d.
That is, one regresses log Ij on a constant, −2 log�j��

2
j � � � � � �

2r
j , and �2+2rj . Let

L denote the number of frequencies used in this regression. The estimator b̂2+2r
is �2+2r	! times the LS coefficient estimator on the regressor �2+2rj .
To establish conditions under which b̂2+2r is consistent, it is simplest notation-

ally to determine conditions on m under which the LS estimator, b̂�r	, of the
r-vector b�r	 is consistent in the regression (3.5) that includes only r powers of
�j . Using this notation, we have

b̂2+2r = �2+2r	!b̂�r+1	r+1�(5.3)

where b̂�r+1	r+1 denotes the �r+1	st element of b̂�r+1	.
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The estimator b̂�r	 of b�r	 is defined by

b̂�r	= �Q∗′MX∗Q∗	−1Q∗′MX∗ log I� where

MX∗ = Im−X∗�X∗′X∗	−1X∗′�

(5.4)

We define the following quantities:

Dn�r = diag
{(

2�m
n

)2

� � � � �

(
2�m
n

)2r}
and

@r =
�2�	2+2r �2+2r	
�3+2r	!�3+2r	 �

(5.5)

The bias and variance of b̂�r	, normalized by Dn�r , are given in the following
theorem.

Theorem 4: Suppose Assumptions 1 and 2 hold. Then:
(a) Dn�r�Eb̂�r	− b�r		 = 1�s ≥ 2+ 2r	�,r −+r+

′
r 	

−1�.r −+r	@rb2+2r
m2+2r
n2+2r �1+

o�1		+O�m
q

nq
	+O� log

3m

m
	 and

(b) var�Dn�r b̂�r		= �,r −+r+
′
r 	

−1 �2

6m�1+o�1		.
If s is an integer, part (a) holds with O�mq/nq	 replaced by o�mq/nq	. In particular,
if s= 2+2r, part (a) holds with O�mq/nq	 replaced by o�mq/nq	= o�m2+2r /n2+2r 	.

We now use the results of Theorem 4 to determine the asymptotic bias and
variance of b̂2+2r when L frequencies are employed in the regression used to
obtain b̂2+2r :

Eb̂2+2r −b2+2r(5.6)

= 1�s ≥ 4+2r	��,r+1−+r+1+
′
r+1	

−1�.r+1−+r+1	�r+1�2+2r	!@r+1
×b4+2r �2�	

−�2+2r	 L
2

n2
�1+o�1		+O

(
Lqr+1−�2+2r	

nqr+1−�2+2r	

)
+O

(
n2+2r log3L

L3+2r

)
and

var�b̂2+2r 	

= [
�,r+1−+r+1+

′
r+1	

−1]
r+1��2+2r	!	2�2�	−�4+4r	

�2

6
n4+4r

L5+4r �1+o�1		�

where qr+1=mins�6+2r� and �v�r+1 denotes the �r+1	st element of the �r+1	-
vector v.
Hence, if s ≥ 4 + 2r , the bias and variance of b̂2+2r are o�1	 provided

n4+4r /L5+4r → 0 as n → �. Thus, b̂2+2r is consistent if L = Cn9 for 9 ∈ ��4+
4r	/�5+ 4r	�1	. As stated in the Introduction, for better finite sample perfor-
mance, we recommend using a relatively small value of r , such as one or two,
even if g��	 is fairly smooth. In such a case, the condition s ≥ 4+ 2r is not
restrictive.
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A rate-optimal choice of L in terms of minimizing the asymptotic MSE of
b̂2+2r is

L= Cn�8+4r	/�9+4r	 for some constant C > 0�6(5.7)

Given this choice of L, the rate of convergence of b̂2+2r is n−2/�9+4r	. That is,
n2/�9+4r	�b̂2+2r−b2+2r 	=Op�1	. This rate is quite slow, especially when r > 0. This
is due to the fact that estimation of b2+2r is a nonparametric estimation problem.
When r > 0� b2+2r is a higher-order derivative than when r = 0. In consequence,
the rate of convergence of b̂2+2r is slower when r > 0 than when r = 0.
We note that for the case where r = 0 and s= 3, Hurvich and Deo (1999) show

that the bias of b̂2 is O�L/n	 provided L=An9 for 9∈ �3/4�1	 and some constant
A> 0. Equation (5.6) shows that this rate is not sharp if s > 3. In particular, for
all s≥ 4, the sharp rate is O�L2/n2	. (Their result is not sharp when s > 3 because
the coefficient on the cubed frequency in the Taylor expansion of logg��	, using
our notation, in their equation (6) is zero by the symmetry of g��	 about zero.)
Hurvich and Deo (1999) state that the optimal growth rate of L for minimizing

the asymptotic mean-squared error of b̂2 is n6/7. This is true only if s = 3. For
s > 3 the optimal rate is faster and for s < 3 the optimal rate is slower. For all
s ≥ 4, the optimal rate is n8/9.

6� monte carlo experiment

6�1� Experimental Design

In this section, we compare the finite sample behavior of the estimators
d̂0� d̂1, and d̂2. The estimator d̂0 is the standard log-periodogram estimator,
whereas d̂1 and d̂2 are bias-reduced log-periodogram estimators. We consider
stationary Gaussian ARFIMA(1�d�1) processes with autoregressive parameter
(AR) 3 and moving average (MA) parameter B. When d = 0, the model is

Yt = 3Yt−1+ t −B t−1 for t = 1� � � � � n�(6.1)

where  t � t = 0� � � � � n� are iid standard normal random variables.
We consider the processes that correspond to all possible combinations of

d = 0� �4� −�4�
3= �9� �6� �3� 0� −�3� −�6� −�9� and

B = �9� �6� �3� 0� −�3� −�6� −�9�

(6.2)

We consider sample sizes n = 128�512, and 2048. We use 20,000 simulation
repetitions.

6 The optimal constant can be determined straightforwardly from (5.6), but it depends on the
unknown b4+2r .
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The results are quite similar for a wide variety of parameter combinations, so
we only explicitly report results for a small subset of the parameter combinations.
We calculate the biases, standard deviations, and RMSE’s of d̂0� d̂1, and d̂2

as functions of m for m = 4�5� � � � � n/2 for n = 128 and 512 and for m =
10�11� � � � � n/2 for n = 2048. For a given parameter combination, we report
these quantities in three graphs—one each for the bias, standard deviation, and
RMSE. In each graph, values of m are given on the horizontal axis. For ease of
comparison, the axes have the same scales in each of the three graphs.
In addition, we calculate the coverage probabilities, as functions of m, of the

nominal 90% CI’s that are obtained by using the asymptotic normality result
of Theorem 2. When constructing these CI’s, we estimate the standard error of
m1/2�d̂r −d	 using the finite sample expression �X∗′MQ∗X∗/m	−1 rather than its
limit cr/4 (see Lemma 2(j) in the Appendix), because it yields better finite sample
results for all parameter combinations and estimators considered. In particular,
the CI’s are[

d̂r−z�95

(
�2

6X∗′MQ∗X∗

)1/2

�d̂r+z�95

(
�2

6X∗′MQ∗X∗

)1/2]
for r=0�1�2�(6.3)

where z�95 is the �95 quantile of the standard normal distribution. We compute
the average lengths of the CI’s as functions of m. These lengths do not depend
on the parameter combination considered and, hence, are only reported for one
parameter combination.
We evaluate the performance of the data-dependent choices m̂opt�1 and m̂opt�2.

The number of frequencies L used to obtain the estimator b̂2+2r is given by the
rate-optimal formula (5.7). Two values of the constant C are considered, viz.,
C = �3 and C = �4. These values were chosen because they perform reasonably
well in an overall sense for a wide range of ARFIMA(1�d�1) processes.

6�2� Simulation Results

6�2�1� Basic Results

We discuss the results for d = 0 and n = 512 first. We find that for any given
positive AR parameter 3 the pattern of results does not vary much across MA
parameter values B < 3. In addition, cases where B > 3 are ones in which the
first two autocorrelations of the process are negative, which is of relatively low
empirical relevance; cases in which B = 3 all reduce to the iid case; and cases
in which the AR parameter is negative are of relatively low empirical relevance.
In consequence, we focus on reporting results for nonnegative values of the AR
parameter and these results can be well summarized by considering the param-
eter combinations in which the MA parameter B is zero. When 3 = B = 0, the
process is iid, none of the estimators are biased for any value of m, and the
results are as expected. Hence, for the case when 3= 0, it is more interesting to
consider results for B =−�9, which yields a MA(1) process with positive autocor-
relation. In consequence, we report in Figures 1 and 2 results for �3�B	= ��9�0	
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Figure 1.—Performance of the log-periodogram regression estimators d̂0, d̂1, and d̂2 for an
AR(1) process with AR parameter 3= �9, for sample size n= 512, computed using 20,000 simulation
repetitions.
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and ��6�0	, respectively, where in each case d = 0 and n = 512. In addition, we
describe, but do not present figures for, results for the cases where �3�B	= ��3�0	
and �0�−�9	.
Figure 1 provides results for the AR(1) model with AR parameter �9. The

bias graphs in Figure 1(a) show that the bias of the standard log-periodogram
estimator d̂0 grows very rapidly as m increases, whereas the biases of d̂1 and
especially d̂2 grow much more slowly. It is apparent that the bias-reducing fea-
tures of d̂1 and d̂2 that are established in the asymptotic results are reflected in
this finite sample scenario. The standard deviation graphs in Figure 1(b) show
that the standard deviation of d̂0 is less than that of d̂1 and d̂2 for all values of
m, as predicted by the asymptotic results. For each estimator, the standard devi-
ation declines at the approximate rate 1/

√
m as m increases because m indexes

the effective sample size used to estimate d. We note that the standard devia-
tion graphs for all �3�B	 combinations (including those that are not reported)
are essentially the same; whereas the bias graphs and, hence, the RMSE graphs,
vary across parameter combinations.
The RMSE graph in Figure 1(c) shows that the minimum RMSE across val-

ues of m is somewhat smaller for d̂1 and d̂2 than for d̂0, which is in accord
with the asymptotic results. The actual minimum RMSE values for d̂0� d̂1, and
d̂2 are �337� �328, and �327, respectively (see column three of Table II below). In
addition, one sees that the RMSE graph for d̂0 rises very steeply from its mini-
mal value, whereas the RMSE graphs for d̂1 and d̂2 rise more slowly. In conse-
quence, d̂1 and d̂2 have low RMSE’s over wider ranges of m values and, hence,
are not as sensitive to the choice of m as d̂0. This reflects the asymptotic result
that the slope of the RMSE function converges to zero more quickly when r > 0
than when r = 0.
The CI coverage probability graphs in Figure 1(d) show that d̂0 has true cov-

erage probability close to �9 only for very small values of m. This is due to the
bias of d̂0 for larger values of m. In contrast, the coverage probabilities of d̂1 and
d̂2 are close to �9 for a wider range of values of m, due to their smaller biases.
Thus, d̂1 and d̂2 yield CI’s that are more robust to the choice of m than does
d̂0. On the other hand, the larger standard deviations of d̂1 and d̂2 lead to larger
average lengths of their CI’s than those of d̂0, as is shown in Figure 1(e).
Figure 2 provides results for the AR(1) model with AR parameter .6. Given

the lower level of dependence in the data, the bias of d̂0 increases more slowly
as m increases than in Figure 1(a). The biases of d̂1 and d̂2 are reduced quite
considerably as well. They are sufficiently small that a wide range of values
of m yield good coverage probabilities in Figure 2(d). The RMSE’s of d̂1 and
d̂2 in Figure 2(c) are slightly lower than those of d̂0 due to their lower biases.
In particular, the minimum RMSE values for d̂0� d̂1, and d̂2 are �150� �143, and
�142, respectively. In addition, the RMSE graphs for d̂1 and d̂2 are quite flat in
Figure 2(c), which implies that a wide range of values of m yield low RMSE.
For the AR(1) model with AR parameter .3, the biases of all three estimators

are reduced further from those reported in Figures 1 and 2. In fact, the biases
of d̂1 and d̂2 are quite small across the entire range of m values. As a result,
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Figure 2.—Performance of the log-periodogram regression estimators d̂0, d̂1, and d̂2 for an
AR(1) process with AR parameter 3= �6, for sample size n= 512, computed using 20,000 simulation
repetitions.

the coverage probabilities of the CI’s based on d̂1 and d̂2 are quite robust to the
choice of m—much more so than d̂0. The minimum RMSE values of d̂0� d̂1, and
d̂2 are .099, .094, and .093, respectively. So, again, the estimators d̂1 and d̂2 have
lower minimum RMSE’s than d̂0. The RMSE’s of all three estimators are fairly
flat, which indicates that all three are relatively robust to the choice of m.
For the MA(1) model with MA parameter −�9, the results are similar to those

of the AR(1) model with AR parameter .3 except that the bias of d̂1 is negative
and the bias and RMSE of d̂0 rise more sharply for large values of m. The biases
of d̂1 and d̂2 are quite close to zero over a wide range of values of m, which
yields low RMSE’s and CI coverage probabilities that are close to the nominal
level .9 for a wide range of values of m. The minimum RMSE values for d̂0� d̂1,
and d̂2 are .085, 0.79, and .090, respectively. Thus, in this case, d̂1 has a lower
RMSE than d̂0, but d̂2 does not.
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Next, we discuss the results for d= �4 and d=−�4. The results are so similar to
those for d= 0 that there is no point in presenting graphs of any of these results.
For most parameter combinations the differences across values of d are so small
that they cannot be detected by the eye. In the few cases where differences can
be detected, they are small differences in the magnitudes of the biases for quite
large values of m. Additional simulations for d = �49 and d = −�49 also show
very little sensitivity of the results to the value of d.
Finally, we discuss the results for the larger and smaller sample sizes n= 2048

and 128. For all sample sizes, the horizontal scaling of the graphs is such that
m varies from 0 to n/2. The results are relatively easy to describe. For every
�3�B	 parameter combination, the bias and coverage probability graphs are quite
similar to their n = 512 counterparts and the standard deviation, RMSE, and
average CI length graphs are quite similar in shape to those for n = 512 but
are shifted down toward the horizontal axis for n= 2048 and are shifted up for
n= 128. Similarity of the results is very close for n= 2048 and somewhat less so
for n= 128. For brevity, we do not report any figures for n= 2048 and n= 128.
The similarity of the bias graphs for n = 128�512, and 2048 is due to the

horizontal scaling of the graphs in which m varies from 0 to n/2 and a given
horizontal distance corresponds to the same fraction of the sample size in all
graphs. For a given value of m the bias is noticeably smaller when n = 2048
and noticeably larger when n = 128 than when n = 512, but for m equal to
a given fraction of the sample size, the bias is found to be almost the same.
The similarities of the bias graphs yield similarities of the coverage probability
graphs. On the other hand, the standard deviation graphs shift downward when
n is increased to 2048 and upward when n = 128 because a given fraction of
the sample size corresponds to a larger value of m and it is the value of m that
primarily determines the standard deviation. In consequence, the RMSE and
average CI lengths also shift downward when n is increased to 2048 and upward
when n is decreased to 128.
Table I provides a comparison for sample sizes n = 128�512, and 2048 of the

minimum RMSE’s of d̂0� d̂1, and d̂2 for a variety of ARFIMA(1�d�0) processes.
(For n= 128 and 512, the minima are taken over m∈ 4� � � � � n/2�. For n= 2048,
the minima are taken over m ∈ 10� � � � � n/2�.) The numbers in parentheses in
Table I give the ratios of the RMSE’s of d̂1 and d̂2 to that of d̂0 for each �3�n	
combination. The results of Table I show that d̂0 has the lowest minimum RMSE
for most values of the AR parameter 3 when n= 128 and d̂1 is a close second.
When the sample size is increased to 512, the estimator d̂1 has smaller minimum
RMSE than d̂0 by 3% to 18% for all values of 3 except 3= 0. When the sample
size is increased further to 2048, both d̂1 and d̂2 have smaller minimum RMSE’s
than d̂0 by 5% to 19% for all values of 3 except 3= 0. It is clear from the table
that the larger the sample size, the better the performance of d̂1 and d̂2 relative
to d̂0 in terms of minimum RMSE for ARFIMA(1�d�0) processes.
In sum, the Monte Carlo simulation results show that d̂1 and d̂2 have lower

biases, higher standard deviations, and slightly lower RMSE’s compared to d̂0
for a wide range of stationary Gaussian ARFIMA(1�d�1) processes and sample
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TABLE I
Minimum RMSE’s for d̂0, d̂1, and d̂2 for Sample Sizes 128, 512,
and 2048 for Gaussian ARFIMA�1�d�0	 Processes with AR

Parameter 3 and d = 0

Sample Size n
AR Parameter Estimator d̂r

3 r 128 512 2048

�3 0 �184∗ �099 �054
1 �186 �1�01	 �094 ��95	 �049 ��91	
2 �201 �1�09	 �093∗ ��94	 �048∗ ��89	

�6 0 �299 �150 �080
1 �294 ��98	 �143 ��95	 �073 ��91	
2 �293∗ ��98	 �142∗ ��95	 �072∗ ��90	

�9 0 �680∗ �337 �166
1 �682 �1�00	 �328 ��97	 �157 ��95	
2 �682 �1�00	 �327∗ ��97	 �155∗ ��93	

−�3 0 �148∗ �077 �042
1 �149 �1�01	 �069∗ ��90	 �034∗ ��81	
2 �196 �1�32	 �084 �1�09	 �040 ��95	

−�6 0 �161 �083 �045
1 �148∗ ��92	 �068∗ ��82	 �038∗ ��84	
2 �196 �1�22	 �085 �1�02	 �040 ��89	

−�9 0 �164∗ �084 �045
1 �171 �1�04	 �079∗ ��94	 �040∗ ��89	
2 �204 �1�24	 �089 �1�06	 �043 ��96	

0 0 �090∗ �042∗ �020∗

1 �146 �1�62	 �065 �1�55	 �031 �1�55	
2 �195 �2�17	 �083 �1�98	 �039 �1�95	

Notes: The numbers in parentheses are the ratios of the minimum RMSE’s of d̂r to those of
d̂0 for each �3�n	 combination. Asterisks denote the smallest minimum RMSE over d̂0, d̂1, and
d̂2 for each �3�n	 combination.

sizes 512 or 2048. These results are consistent with the asymptotic results. The
lower biases lead to good CI coverage probabilities for d̂1 and d̂2 over a wider
range of m values than for d̂0. On the other hand, the lower standard deviation of
d̂0 leads to shorter CI intervals than CI’s based on d̂1 and d̂2. The RMSE graphs
for d̂1 and d̂2 are flatter than those for d̂0, which implies that d̂1 and d̂2 are less
sensitive to the choice of m than is d̂0. The results are essentially the same for
the three values of d considered: −4�0, and �4. The basic pattern of results is
the same for sample sizes n= 128�512, and 2048. However, the minimum RMSE
values move in favor of d̂1 and d̂2 as the sample size is increased.

6�2�2� Plug-in Selection of m Results

Table II presents results for the plug-in selection estimator m̂opt�2 for n= 512
and d = 0. Results for m̂opt�1 are similar, but not quite as good. Table II provides
the RMSE’s and CI coverage probabilities (in the columns headed 90% CI)
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TABLE II
Minimum RMSE and Results for Plug-in Selection of m for d̂0, d̂1, and d̂2 for

ARFIMA�1�d�0	 Processes with AR Parameter 3�d = 0, and n= 512

Data-dependent m: C = �3 Data-dependent m: C = �4
Estimator Min

3 r RMSE RMSE 90% CI Bias Std Dev Avg m RMSE 90% CI Bias Std Dev Avg m

�3 0 �099 �119∗ �742 �045 �110 77 �117 �678 �059 �101 94
1 �094 �125 �875 �011 �125 99 �110∗ �853 �021 �108 129
2 �093∗ �146 �890∗ �003 �146 110 �125 �884∗ �008 �124 145

�6 0 �150 �186 �576 �129 �134 58 �198 �460 �159 �119 65
1 �143 �156 �755 �077 �136 95 �168 �631 �113 �123 119
2 �142∗ �155∗ �859∗ �041 �149 109 �149∗ �791∗ �072 �130 143

�9 0 �337 �568 �015 �551 �137 53 �625 �001 �614 �117 69
1 �328 �507 �046 �486 �147 86 �568 �007 �554 �127 111
2 �327∗ �450∗ �138∗ �420 �160 104 �513∗ �032∗ �494 �137 135

−�3 0 �077 �105∗ �819 −�020 �103 79 �099∗ �769 −�030 �094 101
1 �069∗ �123 �884 −�001 �123 100 �105 �882 −�001 �105 130
2 �084 �146 �891∗ �001 �146 110 �124 �886∗ �001 �124 145

−�6 0 �083 �119∗ �795 −�031 �115 79 �121 �743 −�045 �113 98
1 �068∗ �124 �883 �001 �124 100 �105∗ �882 �003 �105 130
2 �085 �146 �889∗ �001 �146 110 �124 �887∗ �001 �124 145

−�9 0 �084 �131 �789 −�036 �126 79 �141 �737 −�052 �131 97
1 �079∗ �125∗ �880 �002 �124 100 �107∗ �869 �008 �107 130
2 �089 �146 �888∗ �001 �146 110 �124 �885∗ �000 �124 145

0 0 �042∗ �098∗ �875 �001 �098 81 �083∗ �874 �001 �083 105
1 �065 �123 �885 −�001 �123 100 �105 �885 �000 �105 130
2 �083 �146 �891∗ �001 �146 110 �124 �887∗ �001 �124 145

obtained using m̂opt�2 (for two values of the constant C that is used to define
the number of frequencies L employed in obtaining b̂2+2r). Asymptotically, m̂opt�2

selects m values that are too large to yield CI’s with coverage probability 90%.
Nevertheless, it is of interest to see what coverage probabilities are obtained in
finite samples. Table II also provides information on the bias, standard deviation,
and average m values obtained by m̂opt�2.
In Table II, the estimator with the lowest RMSE varies with 3. However, it

seems that d̂1 with C = �4 is the best estimator overall in terms of RMSE. It
is better than d̂0 with C = �4 for 3 = �3� �6� �9�−�6, and −�9. It is as good as or
better than d̂0 with C = �3 for 3= �3� �6� �9�−�3�−�6, and −�9. It is better than d̂2
with C = �3 or .4 for 3 = �3�−�3�−�6�−�9, and 0. Nevertheless, the differences
between the estimators in terms of RMSE is not large and each estimator is best
for some values of 3.
One can compare the finite sample minimum RMSE to the RMSE deliv-

ered by the plug-in selection method m̂opt�2 by comparing the third column
of Table II to the fourth and ninth columns. For example, the percentage
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increases in RMSE due to estimating b4 using C = �4 for use with d̂1 for 3 =
�3� �6� �9�−�3�−�6�−�9�0 are 17�17�73�52�54�35�62, respectively. One obtains
similar percentage increases for d̂0 with C = �3 or .4—some smaller and some
larger. The percentage increases for d̂2 with C = �4 are somewhat lower. Given
that estimation of b2+2r is a nonparametric estimation problem requiring estima-
tion of a higher-order derivative, increases in RMSE of this magnitude should
not be unexpected.
The CI coverage probability results of Table II show that d̂2 performs best and

d̂1 is a close second. d̂0 performs noticeably worse. The coverage probabilities of
d̂1 and d̂2 are pretty good for all 3 values except 3 = �6 and .9. For 3 = �9, all
estimators have coverage probabilities that are far too low.
In Table II, the biases of d̂1 and d̂2 using m̂opt�2 are smaller than those of d̂0 for

all values of 3 except 3= 0. The absolute bias decreases with r . The differences
in bias are appreciable. For example, the ratios of the bias of d̂0 to that of
d̂1 with C = �4 for 3= �3� �6� �9�−�3�−�6�−�9 are 2�8�1�4�1�1�30�0�−15�0�−6�5,
respectively.
The opposite is true for the standard deviations. The standard deviations

increase with r in most cases in Table II. The ratios of standard deviations
of d̂1 to d̂0 with C = �4 for 3 = �3� �6� �9�−�3�−�6�−�9�0 are 1�07�1�03�1�09,
1�12� �93� �82�1�27, respectively. It is apparent that the estimators d̂1 and d̂2 with
m chosen via m̂opt�2 provide different ratios of bias to standard deviation than d̂0.
It is the smaller biases for d̂1 and d̂2 that yield better CI coverage probabilities
than for d̂0.
The average m values selected by m̂opt�2 increase with r in all cases. For any

given estimator, the average m decreases as 3 increases from 0 to .9 (except for
d̂2 with C = �4).
The conclusions from Table II are as follows. The estimators d̂1 and d̂2 using

m̂opt�2 are certainly competitive with d̂0. Of the estimators considered, the best
estimator in terms of overall RMSE and CI coverage probability performance is
d̂1 with C = �4. The date-dependent choice of m significantly increases RMSE’s
over the finite sample minimum RMSE’s. This is not too surprising because
the plug-in choice of m relies on estimation of b2+2r , which is a nonparametric
estimation problem. Nevertheless, it may be possible to derive data-dependent
choices of m that outperform the method m̂opt�2 that is considered here.
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APPENDIX: Proofs

The estimator d̂r is unchanged if we replace the regressor matrix Q∗ by a matrix that spans the
same column space. To simplify some of the expressions below, we replace Q∗ by such a matrix Z∗,
which rescales the columns of Q∗. Let

Zk�j = �j/m	k�(7.1)

Let Zk denote the m-vector whose jth element is Zk�j for k = 1�2� � � � . Let Z denote the m× r
matrix whose kth column is Z2k for k = 1� � � � � r . Let Z∗ denote the m× r deviation from column
mean matrix defined by

Z∗ = Z−1m�Z′� where �Z = 1
m
Z′1m�(7.2)

Similarly, let Z∗
k =Zk−1m�Zk, where �Zk = �1/m	Z′

k1m. Let MZ∗ = Im−Z∗�Z∗′Z∗	−1Z∗′. (If r = 0, we
take MZ∗ = Im.)
The proof of Theorem 1 uses the following lemmas:

Lemma 1: Suppose Assumptions 1 and 2 hold. Then:
(a) 1′mX = 2m�logn− logm+1− log�2�		+O�logm	,
(b) 1′mZk = 1

k+1m+O�1	,
(c) Z′

iZk = 1
i+k+1m+O�1	,

(d) �X+1m2 log�2�/n		′Zk =− 2
k+1m logm+ 2

�k+1	2m�1+o�1		,

(e) 1′mR= 1�s ≥ 2+2r	 �2�	2+2r b2+2r
�3+2r	!

m3+2r
n2+2r �1+O� 1

m
		+O�mq+1

nq
	,

(f) Z′
kR= 1�s ≥ 2+2r	 �2�	2+2r b2+2r

�2+2r	!�3+2r+k	
m3+2r
n2+2r �1+o�1		+O�mq+1

nq
	,

(g) 1′m�E � =O�log2m	, and
(h) Z′

kE =O�logm	,
for i� k= 1�2� � � � , where �E � denotes the m-vector of absolute values of the elements of E . When s is
an integer, the results in parts (e) and ( f) hold with O�mq+1/nq	 replaced by o�mq+1/nq	.

Lemma 2: Suppose Assumptions 1 and 2 hold. Then:
(a) X∗′X∗ = 4m�1+o�1		,
(b) Z∗′

i Z
∗
k = ik

�i+k+1	�i+1	�k+1	m�1+o�1		,
(c) X∗′Z∗

k =− 2k
�k+1	2m�1+o�1		,

(d) X∗′R=−1�s ≥ 2+2r	 2�2�	2+2r �2+2r	b2+2r
�3+2r	!�3+2r	

m3+2r
n2+2r �1+o�1		+O�mq+1

nq
	,

(e) Z∗′
k R= 1�s ≥ 2+2r	 �2�	2+2r �2+2r	kb2+2r

�3+2r	!�3+2r+k	�k+1	
m3+2r
n2+2r �1+o�1		+O�mq+1

nq
	,

(f) X∗′E =O�log3 m	,
(g) Z∗′

k E =O�log2m	,
(h) Z∗′Z∗ = ,rm�1+o�1		,
(i) Z∗′X∗ = −2+rm�1+o�1		,
(j) X∗′MZ∗X∗ = �4m/cr	�1+o�1		, and
(k) max1≤j≤m ��MZ∗X∗�j � =O�logm	,

for i� k = 1�2� � � � , provided ,r is nonsingular in parts ( j) and (k). When s is an integer, the results in
parts (d) and (e) hold with O�mq+1/nq	 replaced by o�mq+1/nq	.

Proof of Theorem 1: We prove part (a) first. Using (3.9), we just have to approximate the
following three terms: (i) X∗′MZ∗X∗, (ii) X∗′MZ∗R, and (iii) X∗′MZ∗E . The term in (i) equals
�4m/cr	�1+o�1		 by Lemma 2( j).
Suppose s ≥ 2+2r . Then, by Lemma 2(e) and the definition of .r ,

Z∗′R= �2�	2+2r �2+2r	b2+2r
�3+2r	!�3+2r	 .r

m3+2r

n2+2r
�1+o�1		+O

(
mq+1

nq

)
�(7.3)
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Combining this with Lemma 2(d), (h), and (i) gives

X∗′MZ∗R=−2�2�	2+2r �2+2r	
�3+2r	!�3+2r	

(
1−+′

r,
−1
r .r

)
b2+2r

m3+2r

n2+2r
�1+o�1		+O

(
mq+1

nq

)
�(7.4)

Next, suppose s < 2+2r . Then, by Lemma 2(d), (e), (h), and (i),

X∗′MZ∗R=X∗′R−X∗′Z∗�Z∗′Z∗	−1Z∗′R=O

(
ms+1

ns

)
�(7.5)

Finally, by Lemma 2(f)–(i),

X∗′MZ∗E =O�log3m	+2+′
r,

−1
r 1r �1+o�1		O�log2m	=O�log3m	�(7.6)

Equations (3.9), (7.4), and (7.6), Lemma 2(j), and the definition of /r combine to establish part
(a) when s ≥ 2+2r . Equations (3.9), (7.5), and (7.6), and Lemma 2(j) combine to establish part (a)
when s < 2+2r . When s is an integer, the O�·	 terms are o�·	 in (7.3)–(7.5) because the same holds
in the definition of Rj in (3.3).
To prove part (b), we use (3.8) and the proof of Theorem 1 of HDB. We replace their 4S2xx by

�X∗′MZ∗X∗	2 = �4m/cr	
2�1+o�1		 and note that their proof goes through with the variance of their

term T2 =
∑m

j=1+log6 m
aj j equal to K0�

2m/6+o�m	 for any triangular array aj � j = 1� � � � �mG m≥ 1�
for which

max
1≤j≤m

�aj � =O�logm	 and
m∑
j=1

a2j =K0m�1+o�1		 for some K0 > 0�(7.7)

In our case, aj = �MZ∗X∗�j and
∑m

j=1 a
2
j =X∗′MZ∗X∗ = �4m/cr	�1+o�1		 by Lemma 2(j). The first

condition of (7.7) holds by Lemma 2(k). The second holds with K0 = 4/cr . From the proof of
Theorem 1 of HDB, we have

var
(
d̂r

)= 1
�X∗′MZ∗X∗	2

4m
cr

�2

6
�1+o�1		= �2

24
cr
m
�1+o�1		�(7.8)

We note that the Lemmas of HDB, which are relied on here and in the proof of Lemma 1(g) and
(h), utilize Theorem 2 of Robinson (1995b). The latter uses Assumption 2 of Robinson (1995b) that
f �1	��	=O����−1−2d	 as �→ 0. This assumption is implied by our Assumption 2. Q.E.D.

Proof of Lemma 1: Part (a) holds because Xj = −2 log�j ,
∑m

j=1 log�j = −m logn +
m log�2�	+∑m

j=1 log j by the definition of �j , and
∑m

j=1 log j =m logm−m+O�logm	 by estimat-
ing the sum by integrals. Parts (b), (c), and (d) are established by estimating sums by integrals. In
particular, for part (d) we use

m∑
j=1

jk log j = 1
k+1m

k+1 logm− 1
�k+1	2m

k+1+o
(
mk+1)�(7.9)

The proofs of parts (e) and (f) are straightforward using the definition of Rj in (3.3) and the fact
that

∑m
j=1 j

k =mk+1/�k+1	+O�mk	 for any integer k ≥ 1.
We now prove part (g). By Lemma 5 of HDB, lim supn→� sup1≤j≤m E log2�Ij/fj 	 <�. By Jensen’s

inequality, E log�Ij/fj 	�2 ≤ E log2�Ij/fj 	. Thus,

max
1≤j≤m

�E j � = max
1≤j≤m

�E log�Ij/fj 	+C� =O�1	�(7.10)

Furthermore, by Lemma 6 of HDB, there exists a constant C <� such that

�E j � ≤ C
log j
j

for all log2m≤ j ≤m and n sufficiently large�(7.11)
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We have
∑m

j=�log2m�+1 log�j	/j = O�log2m	 by bounding the sum by an integral. Combining these
results gives

m∑
j=1

�E j � =
�log2m�∑
j=1

�E j �+
m∑

j=�log2m�+1
�E j � =O�log2m	�(7.12)

Part (h) is proved using (7.9)–(7.11):

∣∣Z′
k E 

∣∣ ≤ ∣∣∣∣�log2m�∑
j=1

�j/m	kE j

∣∣∣∣+
∣∣∣∣∣ m∑
j=�log2m�+1

�j/m	kE j

∣∣∣∣∣(7.13)

=O�1	
�log2m�∑
j=1

�j/m	k +O

(
1
mk

) m∑
j=�log2m�+1

jk−1 log j =O�logm	� Q.E.D.

Proof of Lemma 2: Part (a) is established as follows:

X∗′X∗ = �X+1m2 log�2�/n		′�X+1m2 log�2�/n		− �1′m�X+1m2 log�2�/n			2/m(7.14)

= 4
m∑
j=1
log2 j− �−2m logm+2m+O�logm		2/m�

using Lemma 1(a). In addition,
∑m

j=1 log
2 j =m log2m−2m logm+2m+O�log2m	 by estimating the

sum by an integral. These results combine to give part (a).
Part (b) follows from Lemma 1(b) and (c). Part (c) follows from Lemma 1(a), (b), and (d).
For part (d), by the definition of Rj in (3.3) and Lemma 2(c), we have

X∗′R= 1�s ≥ 2+2r	 b2+2r
�2+2r	!X

∗′Z∗
2+2r �2�m/n	2+2r +

m∑
j=1

(
Xj − �X )

Rem∗
j(7.15)

=−1�s ≥ 2+2r	2�2�	
2+2r �2+2r	b2+2r

�3+2r	!�3+2r	
m3+2r

n2+2r
�1+o�1		+

m∑
j=1

(
Xj − �X )

Rem∗
j �

Next, we have∣∣∣∣ 12 m∑
j=1

(
Xj − �X )

Rem∗
j

∣∣∣∣=
∣∣∣∣ m∑
j=1

(
logm− log j−1+O

(
logm
m

))
Rem∗

j

∣∣∣∣(7.16)

≤O�1	
m∑
j=1

�
q
j

(
logm− log j+

∣∣∣∣1+O

(
logm
m

)∣∣∣∣)=O

(
mq+1

nq

)
�

using Lemma 1(a), the triangle inequality, (7.9), max1≤j≤m �Rem∗
j /�

q
j � = O�1	, and

∑m
j=1 j

q = mq+1/
�q+1	+O�mq	. Equations (7.15) and (7.16) combine to establish part (d). When s is an integer, O�1	
and O�mq+1/nq	 are o�1	 and o�mq+1/nq	, respectively, in (7.16) because max1≤j≤m �Rem∗

j /�
q
j � = o�1	

in (3.3).
Part (e) is established by applying Lemma 1(b), (e), and (f) to Z∗′

k R= Z′
kR− �1/m	1′mZk1′mR.

To prove part (f), we write �X∗
j � ≤ �Xj+2 log�2�/n	�+��X+2 log�2�/n	�. Then, by Lemma 1(a), we

obtain maxj=1� � � � �m �X∗
j � = O�logm	. This and Lemma 1(g) give the desired result: �X∗′E � ≤

O�logm	1′m�E � =O�log3 m	.
Part (g) is established using Lemma 1(b), (g), and (h): Z∗′

k E = Z′
kE − �1/m	1′mZk1′mE =

O�log2m	. Parts (h) and (i) hold by Lemma 2(b) and (c) and the definitions of ,r and +r . Part (j)
holds by Lemma 2(a), (h), and (i) using the definition of cr .
Lastly, we establish part (k). Using max1≤j≤m �X∗

j � = O�logm	 (proved above) and Lemma 2(h)
and (i), we obtain

MZ∗X∗ =X∗ −Z∗�Z∗′Z∗	−1Z∗′X∗ =O�logm	1m+2Z∗, −1
r +r �1+o�1		�(7.17)

Thus, max1≤j≤m ��MZ∗X∗�j � =O�logm	+O�1	=O�logm	. Q.E.D.
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The proofs of Theorems 2 and 3 use the following lemma, of which part (a) is a variant of
Theorem 2 of Robinson (1995b). Part (a) is also a variant of Lemma 3 and other results stated on
p. 23 of HDB. Part (b) is a variant of (3.5) and (3.6) of GRS. Define

H��	= 1
�2�n	1/2

n∑
t=1

Yt exp�i�j t	 and u��	= H��	/f 1/2��	�(7.18)

Lemma 3: (a) Suppose Assumption 2 holds. Then, there exist constants 0<J< 1 and CJ <� such
that for all 1≤ k < j ≤ nJ and all n≥ 1,

(i) �Eu��k	u��k	−1� ≤ CJ
log�k+1	

k
,

(ii) �Eu��k	u��k	� ≤ CJ
log�k+1	

k
,

(iii) �Eu��j	u��k	� ≤ CJ
log�j+1	

k
, and

(iv) �Eu��j	u��k	� ≤ CJ
log�j+1	

k
.

(b) The results (i)–(iv) of part (a) hold uniformly over f ∈ � �s� a�9�K	.

Proof of Lemma 3: A density f that satisfies our Assumption 2 satisfies Assumptions 1 and 2
of Robinson (1995b). In consequence, results (i)–(iv) of part (a) follow from Theorem 2 of Robinson
(1995b) using the normalization of H��	 by f 1/2��	 rather than g�0	1/2���−d . The remainder term in
(i) is different from that in Robinson (1995b) because the proof only requires (4.1), and not (4.2), of
Robinson (1995b) to hold. Also, the results of part (a) are stronger than those stated in Theorem 2
of Robinson (1995b) because of the uniformity of the bounds over all 1≤ k < j ≤ nJ, but Robinson’s
proof still gives the desired results.
Part (b) follows by inspection of the proof of Theorem 2 of Robinson (1995b) using the following

condition in place of his Assumption 2: For all 0< �1 < �2 ≤ 9̃=min92� 93�,

�f ��1	− f ��2	� ≤ C��1�−1−2df ��1−�2�(7.19)

for some constant C <� that is independent of f ∈ � �s� a�9�K	. (This condition is used to show
that the left-hand side of (4.6) of Robinson (1995b) is O� jj 	. It is also used for similar calculations
in the proofs of parts (b)–(d) of Theorem 2 of Robinson (1995b).)
The condition in (7.19) holds for any f ∈ � �s� a�9�K	 by the following calculation:

�f ��1	− f ��2	� = ��−2df
1 g��1	−�

−2df
2 g��2	�(7.20)

≤ �
−2df
1 �g��1	−g��2	�+ �g��2	� · ��

−2df
1 −�

−2df
2 �

≤K3�
−2df
1 ��1−�2�+2�df �C5�

−1−2df
1 ��1−�2�

for all 0 < �1 < �2 ≤ 9̃, where the second inequality holds using condition (iii) of � �s� a�9�K	, a
mean value expansion of �

−2df
1 about �2, and the fact that sup0≤�≤92 �g��	� ≤ C5 for some constant

C5 <� by condition (ii) of � �s� a�9�K	.
In the division of the domain of integration of the integrals in the proof of Theorem 2 of Robinson

(1995b), we replace his  by 9̃.
Note that we impose the restriction �df � ≤ 1/2−91 in the definition of � �s� a�9�K	, whereas GRS

allow �df � < 1/2, because in the proof of part (b) of the theorem we use it to obtain uniformity
of the convergence results. In particular, we were not able to verify that Theorem 2 of Robinson
(1995b) holds uniformly without this restriction, although GRS state that it does. Our difficulty came
in verifying that the stated order of the integral

∫ �
�j /2

in the eleventh to last line on p. 1061 and the

integrals
∫ �j /2

−�j /2 in the first and last equations on p. 1062 hold uniformly over �df �< 1/2. The difficulty
in the former case is bounding

sup
−1/2<df <0

n−1�d−1/2
j

∫ 1

�j /2
�−��3/2	+df 	 d�
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by C log�j+1	/j for arbitrary 1 > 0. In the latter case the difficulty is that sup0<df <1/2
∫ �j /2

0 �−2df d�=
�.
We impose the condition

∫ �

−� f ��	d� ≤ K1 in � �s� a�9�K	 because it is needed on line 7 of
p. 1061 of Robinson’s (1995b) proof of Theorem 2 to obtain uniformity of the results over f ∈
� �s� a�9�K	. Q.E.D.

Proof of Theorem 2: Part of the proof of Theorem 2 is analogous to the proof of Theorem 2
in HDB and part uses an alteration of the asymptotic normality proof of (5.14) in Robinson (1995b).
The quantities S �=X∗′MZ∗X∗ and Aj �= �MZ∗X∗�j play the roles of 4Sxx and −2aj in HDB, respec-
tively, and  j is the same as in HDB.
Using (3.7), (3.8), 1′mX

∗ = 0, 1′mZ
∗ = 0, and Lemma 2(j), we have

m1/2�d̂r −d	=m1/2�X∗′MZ∗X∗	−1X∗′MZ∗ �R+ 	(7.21)

=m1/2�X∗′MZ∗X∗	−1X∗′MZ∗R+ �1+o�1		
cr

4m1/2

m∑
j=1

�X∗′MZ∗ �j j �

By Lemma 2(j) and (7.4), when s ≥ 2+2r ,

m1/2�X∗′MZ∗X∗	−1X∗′MZ∗R=O

(
m2�5+2r

n2+2r

)
+O

(
mq+0�5

nq

)
= o�1	�(7.22)

using Assumption 3 to obtain the second equality. By Lemma 2(j) and (7.5), when s < 2+2r ,

m1/2�X∗′MZ∗X∗	−1X∗′MZ∗R=O

(
ms+0�5

ns

)
= o�1	�(7.23)

using Assumption 3 to obtain the second equality.
Hence, it suffices to show that

m−1/2
m∑
j=1

Aj j →d N

(
0�

4
cr

�2

6

)
�(7.24)

We write

m−1/2
m∑
j=1

Aj j = T1+T2+T3� where T1 �=m−1/2
log8m∑
j=1

Aj j �

T2 �=m−1/2
m0�5+9∑

j=1+log8m
Aj j � and T3 �=m−1/2

m∑
j=1+m0�5+9

Aj j

(7.25)

for some 0< 9< 0�5. (Here and below, for notational simplicity, we let log8m and m0�5+9 denote the
integer parts of these expressions.) The proofs in HDB that T1 = op�1	 and T2 = op�1	 also are valid
in our case, because max1≤j≤m �Aj � =O�logm	 by Lemma 2(k).
The remainder of the proof (i.e., showing the asymptotic normality of T3) differs from that in

HDB, because following the line of argument in HDB leads to a restriction on the growth rate of
m that is excessive for our purposes, although not for theirs. In particular, HDB’s proof relies on
Robinson’s (1995b) asymptotic normality result (5.14), which uses the third part of his Assumption 6
with J= K= 2 in the proof of his (5.14) and this requires m= o�n4/5	. (The third part of Robinson’s
Assumption 6 is used in the first two equations on p. 1068 of Robinson (1995b), which are part of
the proof of (5.14).) Note that Robinson’s (1995b) J equals mins�2� in our notation, so that a large
value of s does not increase J above 2.
Instead of using the method of HDB, we show that T3c1/2r /2→d N�0��2/6	 by altering the asymp-

totic normality result given in (5.14) of Robinson (1995b). (An alternative method of establishing
this result would be to utilize results in Soulier (2001).) Robinson’s (5.14) states that

m−1/2
m∑

j=1+m0�5+9
ajUj →d N�0�MU 	 as n→��(7.26)
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where aj � j = 1� � � � �mGm ≥ 1� is a triangular array of constants that satisfies (i)
maxj∈1+m0�5+9� � � � �m� �aj � = o�m	, (ii) m−1∑m

j=1+m0�5+9 a
2
j = 1+o�1	, (iii) m−1∑m

j=1+m0�5+9 �aj �p =O�1	 for
all p ≥ 1, Uj � j = 1� � � � �m� are the random variables defined by

Uj �=  j + logg��j	/g�0	��(7.27)

using our notation, and MU is defined by m−1∑m

j=1+m0�5+9 U
2
j →p MU . (This is actually a special case

of Robinson’s result when his J = 1, l =m0�5+9, and O = 1.)
We alter this result by replacing the Uj by  j and prove the altered result using an alteration of

the proof given by Robinson. Specifically, the altered result is

m−1/2
m∑

j=1+m0�5+9
aj j →d N�0�M 	 as n→��(7.28)

where M is defined by m−1∑m

j=1+m0�5+9  
2
j →p M , provided our Assumptions 2 and 3 hold and the

constants aj � j = 1� � � � �mGm≥ 1� satisfy conditions (i)–(iii).
Robinson’s proof of (7.26) relies on writing Uj as a function of vg��	 (using his notation), which is

the discrete Fourier transform (his wg��	) divided by Cg ���−dg �=g1/2�0	���−d in our notation). That
is, Uj = h�vg��		 for some function h�·	. Simple calculations show that  j is the same function h�·	
of the discrete Fourier transform wg��	 divided by f 1/2gg ��	 �=f 1/2��	= g1/2��	���−d in our notation).
In consequence, if we alter Robinson’s definition of vg��	 to be wg��	/f

1/2
gg ��	, then all of his proof

goes through as stated except the first two equations on p. 1068, which depend on the properties of
vg��	 (through the second moment matrix Ev∗

j v
∗′
k ). The requisite properties of vg��	 for these two

equations are established in Theorem 2 of Robinson (1995b). For our altered definition of vg��	, the
results hold by Lemma 3(a). In consequence, the properties of the altered vg��	 needed in the first
two equations of p. 1068 hold without imposing the third part of Robinson’s Assumption 6. (We also
note that the second part of Robinson’s Assumption 6 is satisfied when ==m0�5+9, although this part
of his Assumption 6 is not used in his proof of (7.26).) This completes the proof of (7.28).
Now, we apply (7.28) with aj �= Ajc

1/2
r /2. Condition (i) on aj� holds by Lemma 2(k). Condi-

tion (ii) on aj� holds because

m∑
j=1+m0�5+9

A2
j =

m∑
j=1

A2
j −

m0�5+9∑
j=1

A2
j = 4m/cr +o�m	�(7.29)

using Lemma 2(j) and (k). Condition (iii) on aj� holds because

m∑
j=1+m0�5+9

�Aj �p ≤ 2p−1
m∑

j=1+m0�5+9
�X∗

j �p +2p−1
m∑

j=1+m0�5+9
�Z̃∗′

j �Z
∗′Z∗	−1Z∗′X∗�p(7.30)

=O�m	

for all p ≥ 1, where Z̃∗
j denotes the jth row of Z∗ written as a column vector of dimension r . The

equality in (7.30) uses (A18) of HDB for the term involving X∗
j and Lemma 2(h) and (i), plus the

fact that the absolute values of the elements of Z̃∗
j are bounded by one for all j , for the other term.

Hence, conditions (i)–(iii) on aj� hold. Using Lemmas 6 and 7 of HDB, we find that the asymptotic
covariance matrix M is �2/6. This completes the proof. Q.E.D.

Proof of Theorem 3: The proof of part (a) is a variant of the proof of Theorem 1 of GRS.
We take their least favorable densities fn � n ≥ 1�, which are discontinuous, and adjust them to be
continuous and satisfy a Lipschitz condition. Call the adjusted densities f ∗

n � n ≥ 1�. We show that
(1) f ∗

n ∈ � �s� a�9�K	 for n sufficiently large and (2) the result of Lemma 1(ii) of GRS holds for
f ∗

n � n≥ 1�. The latter result is∫ �

−�
�f ∗

n ��	− f0��		
2 d�≤ C0n

−1 for some constant C0 <��(7.31)
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where f0��	 = 1 for � ∈ �−����. In consequence, the results of Lemma 2 of GRS hold with fn
replaced by f ∗

n , because the proof of their Lemma 2 holds for any sequence of densities that satisfies
the result of their Lemma 1(ii), is bounded away from zero, and is in L2 (which implies square
summability of the corresponding covariances). The densities f ∗

n satisfy these conditions.
Next, GRS’s proof of their Theorem 1 holds for any sequence of densities f̃n that satisfies the

results of their Lemma 2 and is of the form

f̃n��	= c̃n���−hn �1+ :̃n��		�(7.32)

where c̃n � n≥ 1� are bounded constants, hn = Qn−s/�2s+1	 for some Q > 0, and �:̃n��	� ≤ K̃���s for all
� in a neighborhood of zero for some K̃ <�. We show below that the densities f ∗

n are of this form
and, hence, the result of Theorem 1 of GRS holds for the class of functions � �s� a�9�K	, which
establishes part (a) of our Theorem 3.
The reason that we consider the densities f ∗

n , rather than fn as in GRS, is that the functions fn
do not satisfy Robinson’s (1995b) Assumption 2 nor condition (iii) of � �s� a�9�K	. This is relevant
because the proof of part (b) of our Theorem 3 relies on the lemmas of HDB, which in turn rely on
the proof of Theorem 2 of Robinson (1995b). The latter utilizes his Assumption 2 that the spectral
density f is differentiable in a neighborhood of zero with derivative that is O����−1−2df 	 as �→ 0.
Robinson’s Assumption 2 can be avoided if one takes the remainder in each part of his Theorem 2
to have the additional term O��j/n	s	; see GRS and Giraitis, Robinson, and Samarov (2000). This
additional term, however, is too large for our purposes. Instead, we replace Robinson’s Assumption 2
with the Lipschitz condition (iii) of � �s� a�9�K	. Lemma 3 shows that this condition is sufficient to
obtain the desired analogues of Robinson’s Theorem 2. The least favorable functions fn used in GRS
do not satisfy condition (iii) of � �s� a�9�K	, so we replace them by the functions f ∗

n , which do.
GRS’s function fn is an even function that is defined as follows:

fn��	=
{
cn�

−hn for � ∈ �0� 9n��
1 for � ∈ �9n����

(7.33)

= cn�
−hn �1+:n��		� where

hn = Q9sn for some Q > 0� 9n = n−1/�2s+1	� cn = 1+ log9hnn � and

:n��	=
{
0 for � ∈ �0� 9n��
c−1n �hn −1 for � ∈ �9n����

(Note that in the notation of GRS s is K.)
We define the function f ∗

n to be an even function that equals fn on �0� 9n� and equals the constant
fn�9n	= cn9

−hn
n on �9n���. In consequence, f ∗

n is continuous on �0���. We can write f ∗
n as follows:

f ∗
n ��	=

{
cn�

−hn for � ∈ �0� 9n��
cn9

−hn
n for � ∈ �9n����

(7.34)

= cn�
−hn �1+:∗

n��		

= �−hng∗
n��	� where

:∗
n��	=

{
0 for � ∈ �0� 9n��
��/9n	

hn −1 for � ∈ �9n����
and

g∗
n = cn�1+:∗

n��		�

Now we show that f ∗
n ∈ � �s� a�9�K	 for n large and Q small (where Q appears in the definition

of hn). First, �hn/2� ≤ 1/2− 91 for n large, because hn → 0 as n → �. Second, we have �:∗
n��	� ≤

�:n��	� ≤K2�
s for all � ∈ �0��� for Q sufficiently small. The first inequality holds because cn9−hn

n ≤ 1,
as shown below in (7.41). The second inequality holds by Lemma 1(i) of GRS. Thus, f ∗

n is of the
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form (7.32) and g∗
n satisfies condition (ii) of � �s� a�9�K	 with gk = 0 for k = 1� � � � � �s/2� for any

92 ∈ �0���.
Third, we have g∗

n�0	= cn. Below we show that cn → 1 as n→�, so condition (i) of � �s� a�9�K	 is
satisfied for n sufficiently large provided a0< 1<a00. If the latter condition is not satisfied, then f ∗

n can
be rescaled by multiplication by �a0+a00	/2 so that g∗

n�0	= cn�a0+a00	/2→ �a0+a00	/2 ∈ �a0� a00	.
Fourth, we show that g∗

n satisfies condition (iii) of � �s� a�9�K	 for n large. If �1��2 ∈ �0� 9n�, then
g∗
n��1	−g∗

n��2	= 0, so condition (iii) holds. If �1��2 ∈ �9n���, then

�g∗
n��1	−g∗

n��2	� = ��hn
1 f ∗

n ��1	−�
hn
2 f ∗

n ��2	�(7.35)

≤ ��hn
1 � · �f ∗

n ��1	− f ∗
n ��2	�+ �f ∗

n ��2	� · ��hn
1 −�

hn
2 �

≤ Rhn�
hn−1∗ ��1−�2��

where �∗ lies between �1 and �2, the first inequality holds by the triangle inequality, and the second
inequality holds using f ∗

n ��1	 = f ∗
n ��2	� �f ∗

n ��2	� ≤ R for all n for some constant R ≥ 1, which follows
from 9hnn → 1 and cn → 1 as n→�, as shown below, and a mean value expansion of �hn

1 about �2.
We have

hn�
hn−1∗ ≤ hn9

hn−1
n = �hn/9n	�1+o�1		(7.36)

= Qn−�s−1	/�2s+1	�1+o�1		= QO�1	≤K3/R

for n large and Q small, where the first equality holds because 9hnn → 1 as n→�, as shown below.
Equations (7.35) and (7.36) combine to yield �g∗

n��1	−g∗
n��2	� ≤K3��1−�2� for n sufficiently large.

If �1 ∈ �0� 9n� and �2 ∈ �9n���, then

�g∗
n��1	−g∗

n��2	� ≤ �g∗
n��1	−g∗

n�9n	�+ �g∗
n�9n	−g∗

n��2	�(7.37)

≤K3��1−�2��

where the second inequality holds by the previous results for �1��2 ∈ �0� 9n� and �1��2 ∈ �9n���.
Thus, g∗

n satisfies condition (iii) of � �s� a�9�K	 for n large.
Fifth, we have∫ �

−�
f ∗
n ��	d�/2 =

∫ 9n

0
cn�

−hn d�+
∫ �

9n

cn9
−hn
n d�(7.38)

= cn9
1−hn
n

1−hn

+cn9
−hn
n ��−9n	= �+o�1	�

because cn → 1� 9n → 0, hn → 0, and 9hnn → 1 as n → �, as shown below. If multiplication of f ∗
n

by �a0 + a00	/2 is necessary for the third point above, then the right-hand side in (7.38) is ��a0 +
a00	/2+o�1	, which is less than or equal to K1/2 for n large because 2�a00 ≤K1 by assumption.
Next, we show that (7.31) holds. Let .n = 1−cn9

−hn
n . We show below that .n =O�n−2s/�2s+1	 log2 n	.

We have ∫ �

−�
�f ∗

n ��	− f0��		
2 d�= 2

∫ 9n

0
�fn��	− f0��		

2 d�+2
∫ �

9n

.2n d�(7.39)

≤ C0n
−1+O�n−4s/�2s+1	 log4 n	

for some constant C0 > 0, where the inequality uses Lemma 1(ii) of GRS for the bound on the first
term. Thus, (7.31) holds provided s > 1/2, which is assumed.
We now show that 9hnn → 1 and cn → 1 as n → � and .n = O�n−2s/�2s+1	 log2 n	. Because

log�nQ1n
−1
	 = Q1n

−1 logn → 0 for any Q1 ∈ R and 1 > 0, we have nQ1n
−1 → 1 as n → �. Tak-

ing Q1 = −Q/�2s+ 1	 and 1 = s/�2s+ 1	, this gives 9hnn → 1 as n → �. In turn, this implies that
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cn = 1+ log9hnn → 1 as n → �. Next, we can write .n as a function of 9hnn � .n = 1− cn9
−hn
n =

�9hnn −1− log9hnn 	/9hnn . By a mean value expansion about x = 0, nx = 1+ �nx1 logn	x for x1 between
0 and x. Taking x = Q1n

−1 for Q1 and 1 as above, this gives

9hnn = nQ1n
−1 = 1+ �nx1n logn	Q1n

−1 = 1+O�n−s/�2s+1	 logn	�(7.40)

where x1n lies between 0 and Q1n
−1 .

A Taylor expansion of logx about x = 1 gives logx = x−1− �x−1	2/�2x2∗	, where x∗ lies between
x and 1. Thus, 0< �x−1− logx	/x =O��x−1	2	 as x→ 1. Taking x = 9hnn and using (7.40) gives

0< .n =
(
9hnn −1− log9hnn

)
/9hnn =O

((
9hnn −1)2)=O

(
n−2s/�2s+1	 log2 n

)
�(7.41)

Next, we prove part (b) of the theorem. The function log�1+x	 satisfies

log�1+x	=
�s/2�∑
w=1

�−1	w−1

w
xw +1�x	�(7.42)

where �1�x	� ≤ C1x
�s/2�+1 for all �x� ≤ x0 for some fixed x0 > 0 and C1 <�. Let g be a function that

satisfies conditions (i) and (ii) of � �s� a�9�K	. Then,

log�g��	/g�0		= log�1+h��		=
�s/2�∑
w=1

�−1	w−1

w
h��	w +1�h��		� where(7.43)

h��	=
�s/2�∑
k=1

�gk/g�0		�
2k +:��	/g�0	�

Multiplying out the h��	w terms and rearranging gives

log�g��	/g�0		=
�s/2�∑
k=1

g̃k�
2k + R��	�(7.44)

where the real numbers g̃k and R��	 are defined implicitly and R��	 satisfies �R��	� ≤ C2�
s for all

0 < � ≤ �0 for some constants C2 < � and �0 > 0 that do not depend on q, but may depend on
�s� a�9�K	. Hence, an expansion of log�gj/g0	 of the form (3.2) holds with remainder R��j	 that
satisfies �R��j	� ≤ C2�

s
j uniformly over functions g that satisfy conditions (i)–(iii) of � �s� a�9�K	.

Now, the result of part (b) holds for the estimator d̂r�mn
for a single density f ∈ � �s� a�9�K	

and a single sequence mn � mn ∈ Jn�s�D0	�n ≥ 1� by Theorem 1, because (i) Assumption 1 holds,
(ii) Assumption 2 holds except that g is not necessarily smooth of order s ≥ 1, (iii) the expansion
(7.44) holds, which is of the form of (3.2), (iv) the proof of Theorem 1 goes through with Assump-
tion 2 replaced by (3.2) or by an expansion of this form, such as (7.44), (v) Theorem 2 of Robinson
(1995b), which is utilized in the proof of Theorem 1, can be replaced by Lemma 3(b) in the proof of
Theorem 1, and (vi) the restriction r ≥ �s−2	/2 implies that Ef d̂r�mn

−df =O�ms/ns	=O�n−s/�2s+1		
and varf �d̂r�mn

	 =O�m−1	 =O�n−2s/�2s+1		. Hence, it suffices to show that the results of Theorem 1
hold uniformly over f ∈ � �s� a�9�K	 and m ∈ Jn�s�D0	. This can be seen by inspection of the proof
of Theorem 1 plus the proofs of Lemmas 5 and 6 and Theorem 1 of HDB, using Lemma 3(b) in
place of Theorem 2 of Robinson (1995b) in the proof of Theorem 1 and using the uniformity of
(7.44) over functions g that satisfy conditions (i)–(iii) of � �s� a�9�K	.
Note that we impose the condition g�0	≥ a0 in � �s� a�9�K	 so that gk/g�0	 in (7.44) is uniformly

bounded and R��	 in (7.44) satisfies �R��	� ≤ C2�
s . Q.E.D.

Proof of Theorem 4: We prove part (a) first. We have

Dn�r �b̂�r	−b�r		=�D−1
n�rQ

∗′MX∗Q∗D−1
n�r 	

−1D−1
n�rQ

∗′MX∗ logI−Dn�rb�r	(7.45)

=�Z∗′MX∗Z∗	−1Z∗′MX∗ �K1m+X∗d+Q∗b�r	+R+ 	

−Dn�rb�r	

=�Z∗′MX∗Z∗	−1Z∗′MX∗ �R+ 	�
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where the second equality holds using Q∗D−1
n� r = Z∗ and (3.7) and the third equality holds using

MX∗1m = 0 and Q∗ = Z∗Dn�r .
Next, we have

Z∗′MX∗Z∗ = �,r −+r+
′
r 	m�1+o�1		(7.46)

by Lemma 2(a), (h), and (i). In addition,

Z∗′X∗�X∗′X∗	−1X∗′R= 1�s ≥ 2+2r	@r+rb2+2r
m3+2r

n2+2r
�1+o�1		+O

(
mq+1

nq

)
(7.47)

by Lemma 2(a), (d), and (i). Combining (7.3) and (7.47) gives

Z∗′MX∗R= 1�s ≥ 2+2r	@r �.r −+r	b2+2r
m3+2r

n2+2r
�1+o�1		+O

(
mq+1

nq

)
�(7.48)

In the previous two equations, the O�·	 term is actually o�·	 if s is an integer.
By Lemma 2(a), (f), (g), and (i),

Z∗′MX∗E =O�log3m	�(7.49)

Combining (7.45)–(7.49) gives part (a).
To establish part (b), we calculate the asymptotic variance of c′Dn�r b̂�r	 for arbitrary c ∈ Rr . By

(7.45),

var�c′Dn�r b̂�r		= var�c′�Z∗′MX∗Z∗	−1Z∗′MX∗ 	�(7.50)

As in the proof of Theorem 1, we use the proof of Theorem 1 of HDB. We replace their 4S2xx by m
2

and aj by �mc′�Z∗′MX∗Z∗	−1Z∗′MX∗ �j , where �v�j denotes the jth element of the vector v. It suffices
to show that the two conditions of (7.7) hold. We have

m∑
j=1

a2j =m2c′�Z∗′MX∗Z∗	−1c =mc′�,r −+r+
′
r 	

−1c�1+o�1		(7.51)

using (7.46). So, the second condition of (7.7) holds with K0 = c′�,r −+r+
′
r 	

−1c.
To show that the first condition of (7.7) holds, note that mc′�Z∗′MX∗Z∗	−1 = O�1	 by (7.46). In

consequence, it suffices to show that

max
1≤j≤m

∣∣�Z∗′
2kMX∗ �j

∣∣=O�logm	 for k = 1� � � � � r�(7.52)

We have ��Z∗
2k�j � = �j/m	2k ≤ 1. In addition,

max
1≤j≤m

∣∣�Z∗′
2kX

∗�X∗′X∗	−1X∗′�j
∣∣≤ ∣∣Z∗′

2kX
∗�X∗′X∗	−1

∣∣max
1≤j≤m

�X∗
j �=O�logm	�(7.53)

where the second equality holds because
∣∣Z∗′

2kX
∗�X∗′X∗	−1

∣∣ = O�1	 by Lemma 2(a) and (c) and
max1≤j≤m ��X∗�j � = O�logm	 by the proof of Lemma 2(f). These results combine to establish
(7.52). Q.E.D.
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