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ON THE NUMBER OF BOOTSTRAP
REPETITIONS FOR BCa

CONFIDENCE INTERVALS

DOOONNNAAALLLDDD W.K. ANNNDDDRRREEEWWWSSS
Yale University

MOOOSSSHHHEEE BUUUCCCHHHIIINNNSSSKKKYYY
Brown University

This paper considers the problem of choosing the number of bootstrap repetitions
B to use with theBCa bootstrap confidence intervals introduced by Efron~1987,
Journal of the American Statistical Association82, 171–200!+ Because the simu-
lated random variables are ancillary, we seek a choice ofB that yields a confi-
dence interval that is close to the ideal bootstrap confidence interval for which
B 5`+ We specify a three-step method of choosingB that ensures that the lower
and upper lengths of the confidence interval deviate from those of the ideal boot-
strap confidence interval by at most a small percentage with high probability+

1. INTRODUCTION

In this paper, we consider the problem of choosing the number of bootstrap
repetitionsB for the BCa bootstrap confidence intervals introduced by Efron
~1987!+ We propose a three-step method for choosingB that is designed to
achieve a desired level of accuracy+ By accuracy, we mean closeness of the
BCa confidence interval based onB repetitions to the ideal bootstrapBCa con-
fidence interval for whichB 5 `+ We desire accuracy of this sort, because we
do not want to be able to obtain a “different answer” from the same data merely
by using different simulation draws+

More precisely, we measure accuracy in terms of the percentage deviation of
the lower and upper lengths of the bootstrap confidence interval for a given
value ofB, from the lower and upper lengths of the ideal bootstrap confidence
interval+ By definition, the lower lengthof a confidence interval for a param-
eteru based on a parameter estimateZu is the distance between the lower end-
point of the confidence interval and the parameter estimateZu+ Theupper length
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is defined analogously+ We want both lengths, not just the total length of the
interval, to be accurate+

The accuracy obtained by a given choice ofB is random, because the boot-
strap simulations are random+ To determine an appropriate value ofB, we
specify a bound on the percentage deviation, denotedpdb, and we require that
the actual percentage deviation is less than this bound with a specified
probability, 1 2 t, close to one+ The three-step method takespdb and t as
given and specifies a data-dependent method of determining a value ofB, de-
noted B*, such that the desired level of accuracy is achieved+ For example,
one might take~ pdb,t! 5 ~10, +05!+ In this case, the three-step method deter-
mines a valueB* such that the percentage deviation of the upper and lower
confidence interval lengths is less than 10% each with approximate probabil-
ity +95+

The idea behind the three-step method is as follows+ Conditional on the orig-
inal sample, the BCa confidence interval endpoints based onB repetitions are
sample quantiles with random percentage points+ We approximate their distri-
butions by their asymptotic distributions asB r `+ The parameters of these
asymptotic distributions are estimated in the first and second steps of the three-
step method+ These estimates include estimates of a density at two points+ For
this purpose, we use an estimator of Siddiqui~1960! with an optimal data-
dependent smoothing parameter, which is a variant of that proposed by Hall
and Sheather~1988!+ The asymptotic distributions evaluated at these estimates
are used in the third step to determine how largeB must be to attain the desired
level of accuracy+

The three-step method is applicable whenever aBCa confidence interval is
applicable+ This includes parametric, semiparametric, and nonparametric mod-
els with independent and identically distributed~i+i+d+! data, independent and
nonidentically distributed~i+n+i+d+! data, and time series data~regarding the lat-
ter, see Götze and Künsch, 1996!+ The method is applicable when the bootstrap
employed is the standard nonparametric i+i+d+ bootstrap, a moving block boot-
strap for time series, a parametric or semiparametric bootstrap, or a bootstrap
for regression models that is based on bootstrapping residuals+ Essentially, the
results are applicable whenever the bootstrap samples are simulated to be i+i+d+
acrossdifferent bootstrap samples+ ~The simulations need not be i+i+d+ within
each bootstrap sample+!

We examine the small sample performance of the proposed method via sim-
ulation for two common applications in the econometrics and statistics litera-
ture+ The first application is to a linear regression model+ The second is to a
correlation coefficient between two random variables+We find that the number
of bootstrap repetitions needed to attain accurate estimates of the ideal boot-
strap confidence interval is quite large+ We also find that for both applications
the proposed three-step method performs fairly well, although it is overly con-
servative+ That is, the finite sample probabilities that the percentage deviations
of the lower and upper lengths of the bootstrap confidence intervals are less
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than or equal topdb are somewhat greater than their theoretical value, 1 2 t,
for most~a, pdb,t! combinations considered+

The three-step method considered here is closely related to that specified in
Andrews and Buchinsky~2000! for choosingB for bootstrap standard error es-
timates, percentilet confidence intervals, tests for a given significance level,
p-values, and bias correction+ The results of Andrews and Buchinsky~2000!
are not applicable toBCa confidence intervals, because they only apply to boot-
strap sample quantiles forfixedpercentage points+ Analysis of the performance
of the three-step method of Andrews and Buchinsky~2000! is given in An-
drews and Buchinsky~2001!+

The asymptotic approximations utilized here are equivalent to those used in
Efron ~1987, Sect+ 9!+ We provide a proof of the validity of these approx-
imations+ This proof is complicated by the fact that the sample quantiles in
question are from an underlying distribution that is discrete~at least for the
nonparametric bootstrap! and the percentage points are random, not fixed+

Note that Hall~1986! considers the effect ofB on theunconditionalcover-
age probabilities of some confidence intervals~but not BCa confidence inter-
vals!+ The unconditional coverage probability is the probability with respect to
the randomness in the data and the bootstrap simulations+ In contrast, we con-
sider conditional coverage probabilities, i+e+, coverage probabilities with re-
spect to the randomness in the data conditional on the bootstrap simulations+
We do so because we do not want to be able to obtain “different answers” from
the same data as a result of the use of different simulation draws+

The remainder of this paper is organized as follows+ Section 2 introduces
notation and defines theBCa confidence intervals+ Section 3 describes the three-
step method for choosingB for these confidence intervals+ Section 4 describes
the asymptotic justification of the three-step method+ Section 5 presents some
Monte Carlo simulation results that assess the ability of the three-step method
to chooseB to achieve the desired accuracy in finite samples+ An Appendix
provides a proof of the asymptotic justification of the three-step method+

2. NOTATION AND DEFINITIONS

We begin by introducing some notation and definitions+ Let X 5 ~X1, + + + ,Xn!'

denote the observed data+ Let Zu 5 Zu~X! be an estimator of an unknown scalar
parameteru0+We wish to construct an equal-tailed confidence interval foru0 of
~approximate! confidence level 100~1 2 2a!% for some 0, a , 1+

We assume that the normalized estimatornk~ Zu 2 u0! has an asymptotic nor-
mal distribution asn r `+ Let s Zu

2 denote its asymptotic variance+We allow for
k Þ 1

2
_ to cover nonparametric estimators, such as nonparametric estimators of a

density or regression function at a point+
Define a bootstrap sampleX *5 ~X1

*, + + + ,Xn
*!' and a bootstrap estimatorZu*5

Zu~X *!+ Let Zu`*~a! denote thea quantile of Zu*+ Because the bootstrap estimator
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Zu* has a discrete distribution~at least for the nonparametric bootstrap!, there
typically is no constant Zu`*~a! that satisfies the equationP*~ Zu* # Zu`*~a!! 5 a
exactly, whereP*~{! denotes probability with respect to the bootstrap sample
X * conditional on the original sampleX+ Thus, to be precise, we define Zu`*~a! 5
inf $k :P*~ Zu* # k! $ a%+

The ideal bootstrap equal-tailed percentile confidence interval of approxi-
mate confidence level 100~1 2 2a!% is

@ Zu`*~a! , Zu`*~12a!# + (1)

This confidence interval does not improve upon confidence intervals based on
first-order asymptotics in terms of coverage probability+ In consequence, Efron
~1987! introduced the bias-corrected and accelerated~BCa! confidence interval
that adjusts the quantilesa and 12 a in such a way that it exhibits higher
order improvements+ ~For a detailed discussion of these higher order improve-
ments, see Hall, 1988; Hall, 1992, Sect+ 3+10+ For an introductory discussion of
BCa confidence intervals and software to calculate them, see Efron and Tibshi-
rani, 1993, Sect+ 14+3 and Appendix+!

The ideal bootstrapBCa confidence interval of approximate confidence level
100~1 2 2a!% is

CI` 5 @ Zu`*~a,,` ! , Zu`*~au,` ! # , where

a,,` 5 FS [z0,`1
[z0,`1 z~a!

12 [a~ [z0,`1 z~a! !D and

au,` 5 FS [z0,`1
[z0,`1 z~12a!

12 [a~ [z0,`1 z~12a! !D+ (2)

HereF~{! is the standard normal distribution function andz~a! is thea quantile
of the standard normal distribution+ The term [z0,` is the “ideal bias correction”
and is defined by

[z0,` 5 F21~P*~ Zu* , Zu!!, (3)

whereF21~{! denotes the inverse of the standard normal distribution function+
The term [a in ~2! is the “acceleration constant+” It can be defined in different

ways+ For example, in i+i+d+ contexts, it can be defined to equal a jackknife
estimate:

[a 5

(
i51

n

~ Zu~{! 2 Zu~i ! !
3

6S(
i51

n

~ Zu~{! 2 Zu~i ! !
2D302

, (4)
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where Zu~i ! 5 Zu~X ~i !!, X ~i ! denotes the original sample with thei th observation
deleted, and Zu~{! 5 (i51

n Zu~i ! 0n+
Note that, when the ideal bias correction[z0,` and the ideal acceleration con-

stant [a equal zero, a,,` 5 F~z~a! ! 5 a andau,` 5 F~z~12a!! 5 1 2 a+ In this
case, the BCa confidence interval reduces to the equal-tailed percentile confi-
dence interval of~1!+

Analytic calculation of the ideal bootstrapBCa confidence interval is usually
intractable+ Nevertheless, one can approximate it using bootstrap simulations+
ConsiderB bootstrap samples$Xb

* : b 5 1, + + + ,B% that are independent acrossB,
each with the same distribution asX *+ The correspondingB bootstrap estima-
tors are$ Zub

* 5 Zu~Xb
* ! : b 5 1, + + + ,B% +

Let $ ZuB,b
* : b 5 1, + + + ,B% denote the ordered sample of bootstrap esti-

mators+ Define thea sample quantile of the bootstrap estimators to beZuB
*~a! 5

ZuB, {~B11!a}
* for a # 1

2
_ and ZuB

*~a! 5 ZuB, [ ~B11!a]
* for a . 1

2
_ , where{a} denotes the

largest integer less than or equal toa ~i+e+, the integer part ofa! and [a] de-
notes the smallest integer greater than or equal toa+ ~If {~B 1 1!a} 5 0 for
somea # 1

2
_ , then let ZuB

*~a! 5 ZuB,1
* + If [ ~B 1 1!a] 5 B 1 1 for somea . 1

2
_ ,

then let ZuB
*~a! 5 ZuB,B

* +!
TheBCa confidence interval of approximate confidence level 100~12 2a!%

based onB bootstrap repetitions is

CIB 5 @ ZuB
*~a,,B! , ZuB

*~au,B! # , where

a,,B 5 FS [z0,B 1
[z0,B 1 z~a!

12 [a~ [z0,B 1 z~a! !D and

au,B 5 FS [z0,B 1
[z0,B 1 z~12a!

12 [a~ [z0,B 1 z~12a! !D+ (5)

The term [z0,B is the bias correction based onB bootstrap repetitions and is
defined by

[z0,B 5 F21S 1

B (
b51

B

~ Zub
* , Zu!D+ (6)

We note that [z0,B is a random function of the bootstrap estimators$ Zub
* : b 5

1, + + + ,B% + In consequence, a,,B and au,B are random functions of$ Zub
* : b 5

1, + + + ,B% + This affects the three-step method of determiningB that is introduced
subsequently+ We also note that the acceleration constant[a, as defined in~4!,
does not depend on the bootstrap estimators+ It is a function of the original
sample only+

3. A THREE-STEP METHOD FOR DETERMINING THE NUMBER
OF BOOTSTRAP REPETITIONS

In this section, we introduce a three-step method for determiningB for the boot-
strap confidence intervalCIB defined previously+ Our main interest is in deter-

966 DONALD W.K. ANDREWS AND MOSHE BUCHINSKY



mining B such thatCIB is close to the ideal bootstrap confidence intervalCI`+
A secondary interest is in the unconditional coverage probability ofCIB ~where
“unconditional” refers to the randomness in both the dataand the simulations!+

Our primary interest is the former, because the simulated random variables
are ancillary with respect to the parameteru0+ Hence, the principle of ancillar-
ity or conditionality~e+g+, see Kiefer, 1982, and references therein! implies that
we should seek a confidence interval that has a confidence level that is~approx-
imately! 100~12 2a!% conditional on the simulation draws+ To obtain such an
interval, we need to chooseB to be sufficiently large thatCIB is close toCI`+
Otherwise, two researchers using the same data and the same statistical method
could reach different conclusions due only to the use of different simulation
draws+

We could measure the closeness ofCIB to CI` by considering their relative
lengths+ However, these confidence intervals, which are based on the param-
eter estimateZu, are not necessarily symmetric aboutZu+ In consequence, a more
refined measure of the closeness ofCIB to CI` is to consider the closeness of
both their lower and upper lengths+ By definition, the lower lengthof the con-
fidence intervalCIB, denotedL,~CIB!, is the distance between the lower bound
ZuB
*~a,,B! and Zu+ Its upper length, denotedLu~CIB!, is the distance from Zu to
ZuB
*~au,B! + That is,

L,~CIB! 5 Zu 2 ZuB
*~a,,B! and Lu~CIB! 5 ZuB

*~au,B! 2 Zu+ (7)

The lower and upper lengths ofCI` are defined analogously withB replaced
by `+

We measure the closeness ofCIB to CI` by comparing the percentage devi-
ations of the lower and upper lengths of the two intervals+ The percentage de-
viation of the upper length ofCIB from the upper length ofCI` is

100
6 ZuB
*~au,B! 2 Zu`*~au,` ! 6

Zu`*~au,` ! 2 Zu
+ (8)

The percentage deviation of the lower length ofCIB to the lower length ofCI`
is defined analogously+

Let 1 2 t denote a probability close to one, such as+95+ Let pdb be a
bound on the percentage deviation of the lower or upper length ofCIB to the
corresponding length ofCI`+ For the upper length, we want to determineB 5
B~ pdb,t! such that

P*S100
6 ZuB
*~au,B! 2 Zu`*~au,` ! 6

Zu`*~au,` ! 2 Zu
# pdbD5 1 2 t+ (9)

For the lower length, we want to determine an analogous value ofB with au,B

andau,` replaced bya,,B anda,,`, respectively+
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The three-step method of determiningB for CIB is designed to obtain a
specified desired level of accuracypdb for both lengths, each with probability
approximately equal to 12 t ~based on the asymptotic justification given
subsequently!+

The three-step method relies on estimators of the reciprocals of two density
functions evaluated at two points, which appear in the asymptotic distributions
of the sample quantilesZuB

*~a,,B! and ZuB
*~au,B!+ For this, we use Siddiqui’s~1960!

estimator~analyzed by Bloch and Gastwirth, 1968; Hall and Sheather, 1988!
with plug-in estimators of the bandwidth parameters that are chosen to maxi-
mize the higher order asymptotic coverage probability of the resultant confi-
dence interval, as calculated by Hall and Sheather~1988!+ To reduce the noise
of the plug-in estimator, we take advantage of the fact that we know the asymp-
totic values of the densities, and we use them to generate our estimators of the
unknown coefficients in the plug-in formulae+ The density estimate makes use
of the following formula, which is utilized in step 2, which follows:

Ca 5 S1+5~z~12a02! !2f2~z~12a! !

2~z~12a! !2 1 1
D103

+ (10)

The three-step method is defined as follows+

Step 1+ Compute a preliminary number of bootstrap repetitionsB1 via

B1 5 [10,000~a~12 a! 2 2af~z~a! !0f~0! 1 f2~z~a! !0f2~0!!~z~12t02! !20

~z~a!f~z~a! !pdb!2]+ (11)

Step 2+ SimulateB1 bootstrap estimators$ Zub
* : b 5 1, + + + ,B1% ; order the bootstrap es-

timators, which are denoted$ ZuB1,b
* : b 5 1, + + + ,B1% ; and calculate

[z0,B1
5 F21S 1

B1
(
b51

B1

~ Zub
* , Zu!D,

a1, 5 maxHFS [z0,B1
1

[z0,B1
1 z~a!

12 [a~ [z0,B1
1 z~a! !D, +01J ,

a1u 5 minHFS [z0,B1
1

[z0,B1
1 z~12a!

12 [a~ [z0,B1
1 z~12a! !D, +99J ,

n1, 5 {~B1 1 1!a1,}, n1u 5 [ ~B1 1 1!a1u],

[m1, 5 [Ca1,
B1

203], [m1u 5 [C12a1u
B1

203],

ZuB1,n1,

* , ZuB1,n1u

* , ZuB1,n1,2 [m1,

* , ZuB1,n1,1 [m1,

* , ZuB1,n1u2 [m1u

* , ZuB1,n1u1 [m1u

* +

(12)
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Step 3+ Take the desired number of bootstrap repetitions, B*, to equalB* 5 max$B1,
B2,,B2u%, where

B2, 5

10,000~a~12 a! 2 2af~z~a! !0f~0! 1 f2~z~a! !0f2~0!!~z~12t02! !2

3 S B1

2 [m1,
D2

~ ZuB1,n1,1 [m1,

* 2 ZuB1,n1,2 [m1,

* !20~~ Zu 2 ZuB1,n1,

* !pdb!2
and

B2u 5

10,000~a~12 a! 2 2af~z~a! !0f~0! 1 f2~z~a! !0f2~0!!~z~12t02! !2

3 S B1

2 [m1u
D2

~ ZuB1,n1u1 [m1u

* 2 ZuB1,n1u2 [m1u

* !20~~ ZuB1,n1u

* 2 Zu!pdb!2
+ (13)

Note thatz~a!, f~{!, andF~{! denote thea quantile, density, and distribution
function, respectively, of a standard normal distribution+

In step 2, a1, anda1u are truncated to be greater than or equal to+01 and less
than or equal to+99, respectively+ This is done to prevent potentially erratic
behavior of the density estimator in step 3 if the formulae otherwise would call
for estimation of the density very far in the tail+ This truncation implies that the
three-step method, as defined, is suitable only whena $ +01+

Having determinedB*, one obtains the finalBCa confidence interval by sim-
ulatingB* 2 B1 ~$ 0! additional bootstrap estimators$ Zub

* : b 5 B1 1 1, + + + ,B*%,
ordering theB* bootstrap estimators, which are denoted$ ZuB*,b

* : b 5 1, + + + ,B*%,
and calculating [z0,B* , a,,B* , au,B* , ZuB*

*~a,,B* ! , and ZuB*
*~au,B* ! using the formulae

given in step 2 withB1 replaced byB*+ The resultingBCa confidence interval,
based onB* bootstrap repetitions, is equal to

CIB* 5 @ ZuB*
*~a,,B* ! , ZuB*

*~au,B* ! # , (14)

wherea,,B* andau,B* are defined by~5! with B replaced byB*+
Steps 2 and 3 could be iterated with little additional computational burden

by replacingB1 in step 2 by OB1 5 max$B1,B2,,B2u%, replacing~B2,,B2u! in
step 3 by~ OB2,, OB2u!, and takingB* 5 max$ OB2,, OB2u, OB1%+ In some cases, this
may lead to closer finite sample and asymptotic properties of the three-step
procedure+

The three-step method introduced here is based on a scalar parameteru0+
When one is interested in separate confidence intervals for several parameters,
say, M parameters, one can apply the three-step method for each of the param-
eters to obtainB~1!

* , B~2!
* , + + + , B~M !

* and takeB* to equal the maximum of these
values+

4. ASYMPTOTIC JUSTIFICATION OF THE THREE-STEP METHOD

We now discuss the justification of the three-step method introduced previ-
ously+ The three-step method relies on the fact thatZuB

*~a,,B! and ZuB
*~au,B! are sam-
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ple quantiles with data-dependent percentage points based on an i+i+d+ sample
of random variables each with distribution given by the bootstrap distribution
of Zu*+ If the bootstrap distribution of Zu* was absolutely continuous atZuB

*~a! ,
then B102~ ZuB

*~a! 2 Zu`*~a!! would be asymptotically normally distributed as
B r ` for fixed n with asymptotic variance given bya~1 2 a!0f 2~ Zu`*~a!!,
where f ~{! denotes the density ofZu*+ ~Here and subsequently, we condition
on the data, and the asymptotics are based on the randomness of the bootstrap
simulations alone+ We point out that it makes sense to speak of asymptotics as
B r ` for fixed n because, even though the distribution of the bootstrap sam-
ple is discrete and has a finite numbernn of atoms in the case of the nonpara-
metric bootstrap, one can draw as many bootstrap samplesB from this discrete
distribution as one likes+ It is not the case thatB # nn+!

But, the bootstrap distribution ofZu* is a discrete distribution~at least for
the nonparametric bootstrap, which is based on the empirical distribution!+ In
consequence, the asymptotic distribution ofB102~ ZuB

*~a! 2 Zu`*~a!! asB r ` for
fixed n is a pointmass at zerofor all a values except for those in a set of
Lebesgue measure zero+ ~The latter set is the set of values that the distribution
function of Zu* takes on at its points of support+!

Although Zu* has a discrete distribution in the case of the nonparametric boot-
strap, its distribution is very nearly continuous even for small values ofn+
The largest probabilitypn of any of its atoms is very small: pn 5 n!0nn '
~2pn!102e2n provided the original sampleX consists of distinct vectors and
distinct bootstrap samplesX * give rise to distinct values ofZu* ~as is typically
the case; see Hall, 1992, Appendix I!+ This suggests that we should consider
asymptotics asn r `, and alsoB r `, in order to account for the essentially
continuous nature of the distribution ofZu*+ If we do so, then B102~ ZuB

*~a! 2
Zu`*~a!! has a nondegenerate asymptotic distribution with asymptotic variance

that depends on the value of a density at a point, just as in the case where the
distribution of Zu* is continuous+ This is what we do+ It is in accord with the
view of Hall ~1992, p+ 285! that “for many practical purposes the bootstrap
distribution of a statistic may be regarded as continuous+”

We note that the~potential! discreteness ofZu* significantly increases the com-
plexity of the asymptotic justification of the three-step method given sub-
sequently and its proof+

The asymptotic justification of the three-step method also has to take ac-
count of the fact that the confidence interval endpoints depend ona,,B and
au,B, which depend on the simulation randomness through the bootstrap bias
correction [z0,B 5 F21~(b51

B ~ Zub
* , Zu!0B!+ The quantitiesa,,B andau,B are cor-

related in finite samples and asymptotically withZuB
*~a! for anya ~see the proof

of equation~18! given in the Appendix!+ In fact, the randomness ofa,,B and
au,B is sufficiently large that it is responsible for more than half of the asymp-
totic variances ofB102~ ZuB

*~a,,B! 2 Zu`*~a!! and B102~ ZuB
*~au,B! 2 Zu`*~12a!! ~in the

calculations carried out in Sect+ 5!+
We now introduce a strengthening of the assumption of asymptotic normal-

ity of the normalized estimatenk~ Zu 2 u0! that is needed for the asymptotic
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justification of the three-step method+ We make the following assumption+ For
somej . 0 and all sequences of constants$xn : n $ 1% for which xn r s Zu z~a!

or xn r s Zu z~12a!, we have

P~nk~ Zu 2 u0! # xn! 5 P~s Zu Z # xn! 1 O~n2j ! asn r ` and

P*~nk~ Zu* 2 Zu! # xn! 5 P~s Zu Z # xn! 1 O~n2j ! asn r `, (15)

whereZ ; N~0,1!+ ~The assumption onnk~ Zu* 2 Zu! is assumed to hold with
probability one with respect to the randomness in the data, i+e+, with respect to
P~{!+!

Assumption~15! holds whenever the normalized estimatornk~ Zu 2 u0! and
the normalized bootstrap estimatornk~ Zu* 2 Zu! have one-term Edgeworth ex-
pansions+ This occurs in a wide variety of contexts~e+g+, see Bhattacharya and
Ghosh, 1978; Hall, 1992, Sects+ 2+4, 4+4, and 4+5; Hall and Horowitz, 1996!+ In
particular, it holds in any context in which aBCa confidence interval yields a
higher order improvement in the coverage probability~see Efron, 1987; Hall,
1988!+ When k 5 1

2
_ , then ~15! typically holds withj 5 1

2
_ + When k , 1

2
_ , as

occurs with nonparametric estimatorsZu, then ~15! typically holds withj , 1
2
_

~see Hall, 1992, Ch+ 4, and references therein!+
The preceding discussion considers lettingB r `+ This is not really appro-

priate because we wantB to be determined endogenously by the three-
step method+ Rather, we consider asymptotics in which the accuracy measure
pdbr 0 and this, in turn, forcesB r `+ Thus, the asymptotic justification of
the three-step method of choosingB* is in terms of the limit asboth pdbr 0
andn r ` jointly, not sequentially+

We assume thatpdbr 0 sufficiently slowly that

pdb3 nj r ` asn r `, (16)

wherej is as in~15!+
We assume that

[a r 0 asn r ` (17)

with probability one with respect to the randomness in the original data+ This
assumption holds for any appropriate choice of acceleration constant[a+

The asymptotic justification of the three-step method is that

P*S100
6 ZuB2j

*~aj,B* ! 2 Zu`*~aj,` ! 6

6 Zu`*~aj,` ! 2 Zu6
# pdbDr 12 t aspdbr 0 andn r `,

for j 5 ,,u+ (18)

As before, the probabilityP*~{! denotes probability with respect to the simula-
tion randomness conditional on the infinite sequence of data vectors+ Under the
previous assumptions, this conditional result holds with probability one with
respect to the randomness in the data+ The proof of~18! is given in the Appendix+
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Equation~18! implies that the three-step method attains precisely the desired
level of accuracy for the lower and upper lengths of the confidence interval
using “smallpdb and largen” asymptotics+

5. MONTE CARLO SIMULATION

5.1. Monte Carlo Design

In this section, we introduce the design of the simulation experiments+We pro-
vide simulation results for a linear regression model and a correlation coeffi-
cient+ There are two purposes of the experiments+ The first purpose is to illustrate
the magnitudes of the values ofB that are necessary to achieve different levels
of accuracy+ Here, accuracymeans closeness of theBCa confidence interval
based onB repetitions to the ideal bootstrapBCa confidence interval for which
B 5`+ The second purpose is to see whether the three-step method yields val-
ues ofB with the desired level of accuracy+ More specifically, for the upper
length of the confidence interval, we want to see how closeP*~1006 ZuB

*~au,B! 2
Zu`*~au,` ! 60~ Zu`*~au,` ! 2 Zu! # pdb! is to 1 2 t for values ofB specified by the

three-step method, for a range of values of~a, pdb,t!+We are also interested in
the corresponding results for the lower length+We consider the performance of
B1, B2,, B2u, B,

* 5 max$B1,B2,%, Bu
* 5 max$B1,B2u%, and alsoB*+

Linear Regression Model.The linear regression model is

yi 5 xi
'b 1 ui (19)

for i 5 1, + + + , n, wheren 5 25, Xi 5 ~ yi , xi
'!' are i+i+d+ over i 5 1, + + + , n, xi 5

~1, x1i , + + + , x5i !
' [ R6, ~x1i , + + + , x5i ! are mutually independent normal random

variables, xi is independent ofui , andui has at distribution with five degrees
of freedom~denotedt5!+ The simulation results are invariant with respect to the
means and variances of the random regressors and the value of the regression
parameterb, so we need not be specific as to their values+ ~The results also are
invariant with respect to changes in the scale of the errors+!

We estimateb by least squares~LS!+ We focus attention on the first slope
coefficient+ Thus, the parameteru of the previous sections isb2, the second
element ofb, and the estimatorZu is the LS estimator ofb2+

Correlation Coefficient. The correlation coefficient model consists of an
i+i+d+ sample of pairs of random variables$~xi , yi ! : i 5 1, + + + , n% with n 5 25
and correlation coefficient12

_ + The random variablesxi andwi have independent
t5 distributions, andyi is given by

yi 5 ~1YYM3!xi 1 wi +

The parameteru of the previous sections is the correlation coefficient, rxy, be-
tweenxi and yi + That is, u 5 rxy 5 Cov~xi , yi !0~Var~xi !Var~ yi !!

102+ We esti-
materxy using the sample correlation coefficientrxy:
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Zu 5 rxy 5

(
i51

n

~xi 2 Sx!~ yi 2 Sy!

S(
i51

n

~xi 2 Sx!2 (
i51

n

~ yi 2 Sy!2D102
,

where Sx 5 (i51
n xi 0n and Sy 5 (i51

n yi 0n+

Experimental Design. For each of the two models, we simulate 100 sam-
ples+ For each of the 100 samples, we compute Zu and simulate Zu`*~a,,` ! and
Zu`*~au,` ! using 250,000 bootstrap repetitions+ Here we explicitly assume that

250,000 repetitions is close enough to infinity to accurately estimateZu`*~a,,` !

and Zu`*~au,` !+ Given Zu, Zu`*~a,,` ! , and Zu`*~au,` ! , we compute the lower and upper
lengths of the ideal bootstrap confidence intervals for each sample+

Next, we compute 2,000 Monte Carlo repetitions for each of the 100 sam-
ples, for a total of 200,000 simulations+ For a given sample, the Monte Carlo
repetitions differ from each other only because of the different simulated re-
samples used to construct the bootstrap samples+ In each Monte Carlo repeti-
tion, we computeB2,, B2u, andB* for each~a, pdb,t! combination for which
1 2 2a is +95 or +90, pdb is 20%, 15%, or 10%, and 12 t is +975, +95, or +90+
For each sample and~a, pdb, t! combination, we calculate the mean, median,
minimum, and maximum ofB2, and B2u over the 2,000 Monte Carlo repeti-
tions+ In Tables 1 and 2, we report the averages of these values over the 100
samples+ ~For example, in column~14! of Table 1, which is headed “Med,” the
numbers provided are the averages of the medians ofB2u over the 100 sam-
ples+! For comparative purposes, we also report the value ofB1 for each~a,
pdb, t! combination+ These results indicate the magnitudes of theB values
needed to obtain the accuracy specified by different~ pdb,t! combinations+

In each Monte Carlo repetition, we also compute Zu`*~a,,B! for B 5 B1, B2,,
B,
*, and B* and Zu`*~au,B! for B 5 B1, B2u, Bu

*, and B*+ The calculations are
repeated for all of the~a, pdb, t! combinations considered previously+ For
each ~a, pdb, t! combination and for each repetition, we check whether
Zu`
*~au,B2u

! satisfies

100
6 Zu`
*~au,B2u

! 2 Zu`*~au,` ! 6

Zu 2 Zu`*~au,` ! # pdb+ (20)

We compute the fraction of times this condition is satisfied out of the 2,000
Monte Carlo repetitions+ Then, we compute the average of this fraction over
the 100 samples+ We call this fraction theempirical levelfor B2u for the upper
length of theBCa confidence interval+ The empirical levels forB1, Bu

*, andB*

for the upper length also are calculated+ ~They are defined as before withB1,
Bu
*, andB* in place ofB2u, respectively+! In addition, the empirical levels for

B1, B2,, B,
*, and B* for the lower length of theBCa confidence interval are

calculated+ ~They are defined analogously with, in place ofu+! Finally, we
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Table 1. Simulation results for the regression model

Empirical Levels Based
on Three-Step Method

Empirical Levels with
“True” Density

Upper Joint Upper Joint B2u

1 2 2a pdb 1 2 t B1 B2u Bu
* B* B* B2ut Bt

* Bt
* B1 Mean Med Min Max

~1! ~2! ~3! ~4! ~5! ~6! ~7! ~8! ~9! ~10! ~11! ~12! ~13! ~14! ~15! ~16!

+950 20 +975 +850 +949 +983 +995 +990 +937 +989 +976 368 2,697 1,767 102 31,302
+950 15 +975 +868 +947 +984 +998 +996 +937 +990 +980 655 5,312 3,996 389 31,409
+950 10 +975 +883 +944 +981 +997 +993 +937 +990 +982 1,474 7,831 7,133 1,345 24,997

+950 20 +950 +799 +925 +965 +985 +972 +910 +980 +957 281 1,789 1,129 51 28,957
+950 15 +950 +818 +929 +971 +995 +991 +908 +981 +961 501 4,042 2,810 203 32,679
+950 10 +950 +834 +922 +967 +994 +989 +909 +981 +966 1,127 7,849 6,962 1,030 27,109

+950 20 +900 +727 +873 +917 +953 +914 +864 +962 +917 198 890 588 16 17,843
+950 15 +900 +740 +895 +942 +981 +965 +863 +961 +923 352 2,504 1,633 96 30,702
+950 10 +900 +761 +890 +943 +989 +979 +862 +961 +929 794 6,219 4,997 527 30,316

+900 20 +975 +902 +957 +982 +997 +995 +949 +991 +982 386 2,795 1,945 171 26,115
+900 15 +975 +912 +954 +981 +996 +992 +948 +991 +984 686 3,946 3,192 425 20,080
+900 10 +975 +920 +952 +979 +995 +990 +948 +992 +985 1,544 5,632 5,232 1,382 17,121

+900 20 +950 +856 +939 +969 +995 +990 +923 +982 +964 295 2,159 1,409 98 25,625
+900 15 +950 +868 +934 +966 +993 +986 +922 +983 +967 524 3,525 2,650 278 23,192
+900 10 +950 +878 +929 +962 +989 +980 +922 +983 +969 1,181 4,864 4,391 1,005 17,266

+900 20 +900 +779 +908 +943 +985 +973 +878 +962 +926 207 1,417 865 51 24,549
+900 15 +900 +794 +902 +939 +986 +974 +878 +962 +931 369 2,680 1,842 156 26,555
+900 10 +900 +807 +892 +930 +978 +960 +877 +962 +934 831 4,189 3,546 591 18,837

Note: The reported numbers are averages over 100 samples of the simulation results for each sample+ Each sample consists of 25 observations+ For each sample, 2,000 Monte Carlo
repetitions are used+
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calculate thejoint empirical levelfor B*, which is the fraction of times both the
upper length condition~20! and the corresponding lower length condition hold
with B* in place ofB2u averaged over the 100 samples+ We report all of the
empirical levels for all of the~a, pdb,t! combinations+

The empirical levels listed previously are subject to three types of error:
~i! noisy estimates of the density and0or the upper or lower lengths of the
confidence interval used in step 3 of the three-step procedure, ~ii ! inaccuracy
of the normal approximation~even when the density and confidence interval
length estimates are accurate!, and ~iii ! simulation error+ To assess the magni-
tude of the first type of error, we report empirical levels for the infeasible
three-step procedure that uses estimates of the density and lengths of the con-
fidence intervals in step 3 that are based onB 5 250,000 rather thanB 5 B1+
That is, we calculate all the quantities~exceptB*! in steps 2 and 3 withB1

replaced by 250,000+ Let B2ut, B2,t , and Bt
* denote the analogs ofB2u, B2,,

and B* using the “true” density and confidence interval lengths+ ~By defini-
tion, Bt

* 5 max$B1,B2,t ,B2ut%+! We calculate the empirical levels for the upper
lengths of theBCa confidence interval that correspond toB2ut and Bt

*, and
also the empirical levels for the lower lengths that correspond toB2,t andBt

*+
In addition, we calculate the joint empirical level forBt

*+ We call these results
the empirical levels with the “true” density+

5.2. Simulation Results

Table 1 provides the simulation results for the linear regression model+ Table 1
only reports results for upper lengths because, by symmetry, the exact finite
sample results for lower lengths are the same as for upper lengths in this model+
Table 2 provides the results for the correlation coefficient+ The first three col-
umns of Tables 1 and 2 specify the different~a, pdb,t! combinations that are
considered in the rows of the tables+ The last five columns of Table 1 and the
last nine columns of Table 2 give the values ofB1 and the mean, median,
minimum, and maximum values ofB2u ~and B2, for the correlation coeffi-
cient! averaged over the 100 samples for each~a, pdb,t! combination+ The
fourth to eleventh columns of Table 1 and the fourth to seventeenth columns
of Table 2 give the empirical level results for the two models for each~a, pdb,t!
combination+

Linear Regression Model.Column ~14! of Table 1 gives the medianB2u

values+ The median values indicate that a large number of bootstrap repetitions
are required+ For example, the reasonable choice of~1 2 2a, pdb,1 2 t! 5
~+90,15, +95! has a medianB2u value of 2,650+ The value does not change much
when 12 2a is increased to+95+ This is indicative of the general insensitivity
of the results toa+ On the other hand, the values ofB2u depend greatly on the
magnitudes ofpdb and 12 t, especiallypdb+ As pdb decreases and 12 t
increases, the medianB2u values increase significantly+ For example, the com-
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Table 2. Simulation Results for the Correlation Coefficient

Empirical Levels Based on Three-Step Method Empirical Levels with “True” Density

Lower Upper Joint Lower Upper Joint

1 2 2a pdb 1 2 t B1 B2l Bl
* B* B1 B2u Bu

* B* B* B2lt Bt
* B2ut Bt

* Bt
*

~1! ~2! ~3! ~4! ~5! ~6! ~7! ~8! ~9! ~10! ~11! ~12! ~13! ~14! ~15! ~16! ~17!

+950 20 +975 +883 +959 +987 +993 +977 +926 +995 +998 +991 +928 +972 +919 +998 +970
+950 15 +975 +901 +959 +988 +996 +981 +924 +995 +999 +995 +938 +978 +919 +997 +976
+950 10 +975 +917 +956 +986 +993 +987 +925 +995 +999 +992 +944 +981 +920 +998 +979

+950 20 +950 +837 +936 +970 +979 +958 +900 +985 +995 +974 +893 +950 +886 +994 +946
+950 15 +950 +853 +941 +977 +990 +963 +899 +989 +998 +988 +908 +959 +886 +994 +954
+950 10 +950 +874 +936 +974 +988 +972 +896 +988 +998 +986 +917 +964 +887 +994 +959

+950 20 +900 +772 +884 +925 +938 +922 +851 +959 +983 +923 +837 +908 +836 +986 +897
+950 15 +900 +779 +908 +948 +967 +928 +857 +969 +991 +959 +855 +922 +834 +985 +911
+950 10 +900 +804 +906 +951 +976 +938 +852 +971 +994 +972 +869 +932 +832 +984 +919

+900 20 +975 +920 +968 +986 +992 +982 +934 +992 +999 +993 +955 +983 +933 +998 +982
+900 15 +975 +931 +966 +985 +992 +985 +935 +992 +998 +991 +959 +985 +934 +998 +984
+900 10 +975 +938 +965 +983 +994 +987 +936 +992 +998 +990 +961 +987 +934 +998 +985

+900 20 +950 +873 +952 +974 +979 +963 +907 +983 +997 +986 +929 +967 +902 +995 +963
+900 15 +950 +888 +949 +972 +980 +968 +906 +982 +996 +983 +935 +971 +902 +995 +967
+900 10 +950 +899 +946 +969 +981 +972 +906 +981 +996 +978 +938 +973 +901 +995 +969

+900 20 +900 +799 +923 +949 +971 +920 +865 +960 +990 +963 +881 +933 +849 +985 +923
+900 15 +900 +818 +921 +948 +968 +931 +860 +960 +991 +966 +892 +941 +849 +985 +930
+900 10 +900 +833 +913 +941 +965 +938 +856 +956 +988 +955 +899 +946 +850 +985 +934
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B2l B2u

1 2 2a pdb 1 2 t B1 Mean Med Min Max Mean Med Min Max

~1! ~2! ~3! ~18! ~19! ~20! ~21! ~22! ~23! ~24! ~25! ~26!

+950 20 +975 368 1,804 1,322 92 17,725 503 403 34 3,648
+950 15 +975 655 3,901 3,033 324 25,184 1,000 839 106 6,159
+950 10 +975 1,474 6,136 5,539 1,118 22,519 1,760 1,611 382 6,627

+950 20 +950 281 1,200 857 45 14,424 358 279 18 2,925
+950 15 +950 501 2,785 2,101 192 22,046 726 597 67 4,763
+950 10 +950 1,127 6,440 5,591 835 24,500 1,728 1,515 277 7,940

+950 20 +900 198 634 464 14 6,948 216 165 8 1,738
+950 15 +900 352 1,667 1,220 82 16,811 470 376 31 3,320
+950 10 +900 794 4,772 3,840 448 26,259 1,235 1,056 148 6,947

+900 20 +975 386 2,249 1,644 165 20,640 598 482 65 4,601
+900 15 +975 686 3,568 2,879 424 19,187 1,040 890 159 6,006
+900 10 +975 1,544 5,301 4,888 1,265 16,959 1,797 1,667 493 5,826

+900 20 +950 295 1,678 1,188 97 18,756 458 358 40 4,057
+900 15 +950 524 2,998 2,311 279 21,086 807 672 109 5,286
+900 10 +950 1,181 4,577 4,069 911 17,131 1,553 1,385 344 6,555

+900 20 +900 207 1,064 735 45 14,133 311 235 22 2,979
+900 15 +900 369 2,146 1,561 150 19,907 571 459 61 4,287
+900 10 +900 831 3,913 3,271 545 18,192 1,228 1,065 207 5,942

Note: The reported numbers are averages over 100 samples of the simulation results for each sample+ Each sample consists of 25 observations+ For each sample, 2,000 Monte Carlo
repetitions are used+ The true correlation coefficient isrxy 5 +5+
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bination ~1 2 2a, pdb,1 2 t! 5 ~+90,20, +90! has medianB2u value of 865,
whereas~+90,20, +975! has medianB2u value of 1,945, and~+90,10, +90! has me-
dian B2u value of 3,546+ Although the magnitudes of theB2u values are large,
the computation time required for the applications considered here is relatively
small; always less than one minute+

The results of columns~13!–~16! of Table 1 also show that theB2u values
have a skewed distribution—the median is well below the mean number of boot-
strap repetitions+ In some cases, the required number of bootstrap repetitions is
very large~see column~16!!+ Comparison of columns~12! and~14! shows that
the medianB2u values are much larger than the initialB1 values+ This suggests
that relying on just the first step of the three-step method, namely, B1, is ill
advised+ All three steps of the three-step method are needed+

Column ~4! of Table 1 reports the empirical levels based onB1 for the re-
gression model+ These empirical levels are well below their theoretical coun-
terparts, reported in column~3!, for all ~12 2a, pdb,12 t! combinations+ This
corroborates the preceding supposition that reliance on theB1 values is ill ad-
vised+ The empirical levels increase significantly whenB2u simulations are em-
ployed ~see column~5!!+ But the empirical levels forB2u are still below the
1 2 t values of column~3! in most cases+ The empirical levels for theBu

* val-
ues, given in column~6!, increase further+ In fact, for all cases in which 12 t
is +975 ~+95, respectively!, the empirical levels are within+009 ~+021, respec-
tively! of the exact 12 t value given in column~3!+ This indicates that the
three-step method is performing well in terms of matching the finite sample
accuracy with the desired theoretical accuracy+

The empirical levels forB* are given in column~7!+ These empirical levels
are higher than the empirical levels forBu

* for the upper length+ As it turns out,
it is difficult to accurately estimate either the upper length of the confidence
interval or the lower length+ In consequence, one of the two sides of the confi-
dence interval usually requires a relatively large number of bootstrap repeti-
tions+ As a result, the empirical levels based onB* are quite high, well above
their theoretical counterparts for some~1 2 2a, pdb,1 2 t! combinations+ The
joint empirical levels forB*, given in column~8!, are somewhat lower than the
upper empirical levels forB*+ But, they still tend to be conservative, i+e+, greater
than 12 t+

The empirical levels with the “true” density are reported in columns~9!–
~11!+ For most~1 2 2a, pdb,1 2 t! combinations, these results do not differ
very much from the results discussed previously+ However, when 12 t is +900,
which generates relatively smallB values, there is a noticeable difference+ These
results indicate that estimation of the density and the confidence interval length
is not a large source of inaccuracy of the three-step method unless 12 t is
relatively small+

Correlation Coefficient. The results for the correlation coefficient are re-
ported in Table 2+ The general picture for the lower length results in Table 2 is
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very similar to that for the upper length for the regression model in Table 1
~which is the same for the upper length by symmetry!+ However, there is a
significant difference between the two experiments+ First, the B2u values are
much smaller than theB2, values for the correlation coefficient experiment+
Second, the empirical levels for the upper length based onB1 repetitions are
quite high for the correlation coefficient experiment+ These features are a con-
sequence of the fact that the correlation coefficient is bounded between21 and
1, the true value isrxy 5 1

2
_ , and, hence, an asymmetry occurs between the re-

sults for the lower and upper lengths+ The “density” of the bootstrap distribu-
tion of Zu is much larger at the 12 a quantile than at thea quantile, which
yields much smallerB2u values thanB2, values+

Table 2 indicates that even for a simple statistic, such as the correlation co-
efficient, the required number of bootstrap repetitions can be quite large+ For
example, for a 95% confidence interval estimated withpdb5 10 and 12 t 5
+95, the median number of bootstrap repetitions required is over 5,591+

The empirical levels for the lower confidence intervals are quite similar to
those reported for the upper confidence interval for the regression model+ The
B1 values for the upper confidence intervals are too large, however, which leads
to upper empirical levels forB1, Bu

*, andB* that are too high+ In consequence,
the three-step method is conservative+ It produces larger numbers of bootstrap
repetitions than are required for the specified~ pdb,t! combinations+

The empirical levels with the “true” density show a similar pattern as in the
regression model+ However, somewhat more of the inaccuracy of the three-step
method is attributable to the estimation of the density and confidence interval
length in the correlation coefficient experiment+

REFERENCES

Andrews, D+W+K+ & M + Buchinsky~2000! A three-step method for choosing the number of boot-
strap repetitions+ Econometrica68, 23–51+

Andrews, D+W+K+ & M + Buchinsky~2001! Evaluation of a three-step method for choosing the num-
ber of bootstrap repetitions+ Journal of Econometrics103, 345–386+

Bhattacharya, R+N+ & J+K+ Ghosh~1978! On the validity of the formal Edgeworth expansion+ An-
nals of Statistics6, 434–451+

Bloch, D+A+ & J+L+ Gastwirth~1968! On a simple estimate of the reciprocal of the density function+
Annals of Mathematical Statistics39, 1083–1085+

Chow, Y+S+ & H + Teicher ~1978! Probability Theory: Independence Interchangeability Martin-
gales+ New York: Springer-Verlag+

Efron, B+ ~1987! Better bootstrap confidence intervals~with discussion!+ Journal of the American
Statistical Association82, 171–200+

Efron, B+ & R+ Tibshirani~1993! An Introduction to the Bootstrap+ New York: Chapman and Hall+
Götze, F+ & H +R+ Künsch~1996! Second-order correctness of the blockwise bootstrap for station-

ary observations+ Annals of Statistics24, 1914–1933+
Hall, P+ ~1986! On the number of bootstrap simulations required to construct a confidence interval+

Annals of Statistics14, 1453–1462+
Hall, P+ ~1988! Theoretical comparison of bootstrap confidence intervals~with discussion!+ Annals

of Statistics16, 927–985+

BOOTSTRAP REPETITIONS FOR BCa CONFIDENCE INTERVALS 979



Hall, P+ ~1992! The Bootstrap and Edgeworth Expansion+ New York: Springer-Verlag+
Hall, P+ & J+L+ Horowitz ~1996! Bootstrap critical values for tests based on generalized-method-of-

moments estimators+ Econometrica64, 891–916+
Hall, P+ & S+J+ Sheather~1988! On the distribution of a studentized quantile+ Journal of the Royal

Statistical Society, Series B50, 381–391+
Kiefer, J+ ~1982! Conditional inference+ In S+ Kotz, N+L+ Johnson, & C+B+ Read~eds+!, Encyclope-

dia of Statistical Sciences, vol+ 2, pp+ 103–109+ New York: Wiley+
Lehmann, E+L+ ~1983! Theory of Point Estimation+ New York: Wiley+
Siddiqui, M+M+ ~1960! Distribution of quantiles in samples from a bivariate population+ Journal of

Research of the National Bureau of Standards B64, 145–150+

APPENDIX OF PROOFS

We prove~18! for j 5 u+ The proof forj 5 , is analogous+ First we show that~18! holds
with B* replaced by the nonrandom quantityB1+ Note thatB1 r ` aspdbr 0 andB1

does not depend onn+
Define the 12 a sample quantile of thenormalizedbootstrap estimates to be

Zl12a,B 5 nk~ ZuB
*~12a! 2 Zu! 5 nk~ ZuB,[ ~B11!~12a!]

* 2 Zu! for a , 2
1
2+ (A.1)

Let Zl12a,` denote the 12 a quantile ofnk~ Zu*2 Zu!+ That is, Zl12a,`5 nk~ Zu`*~12a! 2 Zu!+
Note that the percentage deviation of the upper length ofCIB to the upper length of
CI`, given in ~8!, can be written as

100
6 Zlau,B,B 2 Zlau,`,`6

Zlau,`,`
+ (A.2)

We establish the asymptotic distribution ofB1
102~ Zlau,B1,B1

2 Zlau,`,` ! aspdbr 0 and
n r `, using an argument developed for proving the asymptotic distribution of the
sample median based on an i+i+d+ sample of random variables that are absolutely contin-
uous at their population median~e+g+, see Lehmann, 1983, Theorem 5+3+2, p+ 354!+ ~In
contrast, Zlau,B1,B1

is the sampleau,B1
quantile ofB1 i+i+d+ observations each with the

bootstrap distribution ofnk~ Zu* 2 Zu!, which depends onn and may be discrete, where
au,B1

is random and data dependent+!
We have the following expression+ For anyx [ R,

P*~B1
102~ Zlau,B1,B1

2 Zlau,`,` ! # x! 5 P*~nk~ ZuB1,[ ~B111!au,B1]
* 2 Zu! # Zlau,`,`1 x0B1

102!+

(A.3)

Let SB be the number of valuesnk~ Zub
* 2 Zu! ’s for b 5 1, + + + ,B that exceed Zlau,`,` 1

x0B1
102+ Here, we considerSB1

+ Subsequently, we considerSB* + ~In both cases, the cutoff
point Zlau,`,` 1 x0B1

102 depends onB1+! We have

nk~ ZuB1,[ ~B111!au,B1]
* 2 Zu! # Zlau,`,`1 x0B1

102 if and only if SB1
# B1 2 [ ~B1 1 1!au,B1

]+

(A.4)
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The random variableSB1
has a binomial distribution with parameters~B1, pB1,n!, where

pB1,n 5 12 P*~nk~ Zub
*2 Zu! # Zlau,`,`1 x0B1

102!+ (A.5)

The probability in~A+3! equals

P*~SB1
# B1 2 [ ~B1 1 1!au,B1

] !

5 P*~B1
2102~SB1

2 B1 pB1,n! 1 B1
102~au,B1

2 au,` !

# B1
102~12 pB1,n 2 au,` ! 2 B1

2102au,B1
1 o~1!!+ (A.6)

We now determine the limits of the terms in the right-hand-side probability of~A+6!+
Using the assumptions of~17! and~15!, we have [a 5 o~1!,

[z0,` 5 F21~P*~ Zu* , Zu!! 5 F21~P~Z , 0! 1 o~1!! 5 o~1!, and

au,` 5 FS [z0,`1
[z0,`1 z~12a!

12 [a~ [z0,`1 z~12a! !D5 F~z~12a! ! 1 o~1! 5 1 2 a 1 o~1!, (A.7)

whereZ ; N~0,1!+ These results and the assumption of~15! yield

Zlau,`,` 5 inf $l :P*~nk~ Zu* 2 Zu! # l! $ au,` %

5 inf $l :P~s Zu Z # l! 1 o~1! $ 1 2 a%

5 s Zu z~12a! 1 o~1! asn r `+ (A.8)

Next, we have

B1
102~12 pB1,n 2 au,` !

5 B1
102~P*~nk~ Zu* 2 Zu! # Zlau,`,`1 x0B1

102! 2 P*~nk~ Zu* 2 Zu! # Zlau,`,` !!

5 B1
102~P~s Zu Z # Zlau,`,`1 x0B1

102! 2 P~s Zu Z # Zlau,`,` !! 1 o~1!

5 f~zB1,n0s Zu !x0s Zu 1 o~1!

r f~z~12a! !x0s Zu aspdbr 0 and n r `+ (A.9)

The first equality of~A+9! holds by the definitions ofpB1,n and Zlau,`,`+ The second
equality holds by~15! and ~16! using the fact that the latter and the definition ofB1

imply thatB1
102 5 O~10pdb! 5 njO~10~ pdb3 nj!! 5 o~nj!+ The third equality holds for

somezB1,n that lies betweenZlau,`,` 1 x0B1
102 and Zlau,`,` by a mean value expansion+

The convergence result of~A+9! holds by~A+8!+
Note that~A+7! and~A+9! imply that pB1,n r a aspdbr 0 andn r `+
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Now, we have

B1
102 [z0,B1

5 B1
102SF21S 1

B1
(
b51

B1

1~ Zub
* , Zu!D2 F21S1

2DD
5 S 1

f~0!~11 op~1!!D 1

B1
102 (

b51

B1 S1~ Zub
* , Zu! 2

1

2D
5 S 1

f~0!~11 op~1!!D 1

B1
102 (

b51

B1

~1~ Zub
* , Zu! 2 P*~ Zub

* , Zu!! 1 op~1!, (A.10)

where the second equality holds by a mean value expansion and the third equality holds
because~15! and~16! imply that B1

102~P*~ Zub
* , Zu! 2 1

2
_! r 0+

Next, we have

B1
102~au,B1

2 au,` !

5 B1
102SFS [z0,B1

1
[z0,B1

1 z~12a!

12 [a~ [z0,B1
1 z~12a! !D2 FS [z0,`1

[z0,`1 z~12a!

12 [a~ [z0,`1 z~12a! !DD
5 f~z~12a! !~11 op~1!!B1

102

3 S [z0,B1
1

[z0,B1
1 z~12a!

12 [a~ [z0,B1
1 z~12a! !

2 [z0,`2
[z0,`1 z~12a!

12 [a~ [z0,`1 z~12a! !D
5 f~z~12a! !B1

102~2 [z0,B1
2 2 [z0,`2 z~12a! [a~ [z0,B1

2 [z0,` !!~11 op~1!!

5 2f~z~12a! !B1
102 [z0,B1

~11 op~1!! 1 op~1!

5 S2f~z~12a! !

f~0!
D 1

B1
102 (

b51

B1

~1~ Zub
* , Zu! 2 P*~ Zub

* , Zu!!~11 op~1!! 1 op~1!, (A.11)

where the second equality holds by the mean value theorem because[z0,B1
rp 0,

[z0,`rp 0, and [a r 0; the third equality holds because[a r 0; the fourth equality holds
becauseB1

102 [z0,B1
5 Op~1! by ~A+10! and the Lindeberg central limit theorem, [a r 0,

and B1
102 [z0,` 5 B1

102~F21~P*~nk~ Zub
* 2 Zu! , 0!! 2 F21~ 1

2
_!! 5 op~1! by a mean value

expansion, ~15!, and~16!, and the fifth equality holds using~A+10!+
Equation~A+11! gives

B1
2102~SB1

2 B1 pB1,n! 1 B1
102~au,B1

2 au,` !

5 ~11 op~1!!
1

B1
102 (

b51

B1

~~nk~ Zub
*2 Zu! . Zlau,`,`1 x0B1

102! 2 pB1,n

1 ~2f~z~12a! !0f~0!!

3 ~1~nk~ Zub
*2 Zu! , 0! 2 P*~nk~ Zub

*2 Zu! , 0!!! 1 op~1!

d
&& NS0,a~12 a! 2 2a

f~z~a! !

f~0!
1

f2~z~a! !

f2~0!
D (A.12)
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aspdbr 0 andn r `, where the convergence result holds by the Lindeberg central
limit theorem and the fact thatpB1,n r a andP*~nk~ Zub

* 2 Zu! , 0! r 1
2
_ +

Equations~A+3!, ~A+6!, ~A+9!, and~A+12! yield

P*~B1
102~ Zlau,B1,B1

2 Zlau,`,` ! # x!

r FSxf~z~a! !YSs ZuSa~12 a! 2 2a
f~z~a! !

f~0!
1

f2~z~a! !

f2~0!
D102DD and

B1
102~ Zlau,B1,B1

2 Zlau,`,` !

d
&& NS0,s Zu

2Sa~12 a! 2 2a
f~z~a! !

f~0!
1

f2~z~a! !

f2~0!
D0f2~z~a! !D (A.13)

aspdbr 0 andn r `+
This result, ~11!, ~A+2!, and~A+8! imply that

P*S100
6 ZuB
*~au,B1! 2 Zu`*~au,` ! 6

Zu`*~au,` ! 2 Zu
# pdbD

5 P*S100
6 Zlau,B1,B1

2 Zlau,`,`6

Zlau,`,`
# 100Sa~12 a! 2 2a

f~z~a! !

f~0!
1

f2~z~a! !

f2~0! D102

3 S z~12t02!

z~12a!B1
102D S 1

f~z~12a! !D~11 o~1!!D
r 12 t aspdbr 0 and n r `+ (A.14)

Thus, ~18! holds withB* replaced withB1+
Next, we show that

B2u0B1
p
&& 1 aspdbr 0 and n r ` (A.15)

~with respect to the simulation randomness conditional on the data!+ By an analogous
argumentB2,0B1 rp 1 aspdbr 0 andn r `+ These results imply that

B*0B1
p
&& 1 aspdbr 0 and n r `+ (A.16)

Equation~A+15! follows from

nk~ ZuB1,n1u

* 2 Zu! 5 Zl[ ~B111!~12a!]0~B111!,B1

p
&& [s Zu z~12a! and

S B1

2 [m1u
D2

~nk~ ZuB1,n1u1 [m1u

* 2 Zu! 2 nk~ ZuB1,n1u2 [m1u

* 2 Zu!!2 p
&&

1

f~ [s Zu z~12a!0 [s Zu !0 [s Zu
(A.17)

aspdbr 0 andn r `+ The former holds by the argument of~A+8! and ~A+13! using
the fact thata1u r 1 2 a ~provided 12 a # +99! as pdb r 0 andn r ` because
[z0,B1

r 0 by ~A+10! and [a r 0 by ~17!+ The latter holds by an analogous argument to
that given in Andrews and Buchinsky~2000, Appendix, Proofs for the Confidence In-
terval, Confidence Region, and Test Applications Section!+
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Now we use equation~A+16! and the preceding proof that~18! holds with the random
quantityB* replaced by the nonrandom quantityB1 to establish~18! as is+

First, we have the following result+ For anyx [ R,

P*~B1
102~ Zlau,B* ,B

* 2 Zlau,`,` ! # x!

5 P*~nk~ ZuB*,[ ~B*11!au,B*]
* 2 Zu! # Zlau,`,`1 x0B1

102!+ (A.18)

~Note that we take the normalization factor to beB1, not B*+! Let SB* be as defined
earlier+ By the same argument as used in~A+4!, the probability in~A+18! equals

P*~SB* # B* 2 [ ~B* 1 1!au,B*] !

5 P*~~B* !2102~SB* 2 B*pB1,n! 1 ~B* !102~au,B* 2 au,` !

# ~B* !102~12 pB1,n 2 au,` ! 2 ~B* !2102au,B* 1 o~1!!+ (A.19)

By the same argument as given in~A+7!–~A+12!, we obtain

~B* !2102~SB* 2 B*pB1,n! 1 ~B* !102~au,B* 2 au,` !

5 ~11 op~1!!
1

~B* !102 (
b51

B*

~~nk~ Zub
*2 Zu! . Zlau,`,`1 x0B1

102! 2 pB1,n

1 ~2f~z~12a! !0f~0!!~1~nk~ Zub
*2 Zu! , 0! 2 P*~nk~ Zub

*2 Zu! , 0!!! 1 op~1!

d
&& NS0,a~12 a! 2 2a

f~z~a! !

f~0!
1

f2~z~a! !

f2~0!
D (A.20)

aspdbr 0 andn r `+ The convergence result holds by the central limit theorem of
Doeblin-Anscombe~e+g+, see Chow and Teicher, 1978, Theorem 9+4+1, p+ 317! because
~i! the convergence result holds whenB* is replaced by the nonrandom quantityB1 and
~ii ! B*0B1 rp 1 by ~A+16!+

Now, by the argument of~A+13! and ~A+14!, ~18! holds as stated, which concludes
the proof+

We finish by showing that the formula given in~10! for Ca, which is used to deter-
mine the bandwidth parameters[m1, and [m1u for the Siddiqui estimator, corresponds to
that given by Hall and Sheather~1988!+ In our notation, Hall and Sheather’s formula is

Ca 5 S 1+5~z~12a02! !2 f 4~q12a!

3f '~q12a!2 2 f ~q12a! f ''~q12a!D103

, (A.21)

where f ~{! denotes the density of the i+i+d+ random variables upon which the sample
quantile is based, f '~{! and f ''~{! denote the first two derivatives off ~{!, q12a denotes
the population quantile, andz~12a02! is as previously+ In our case, we use the asymptotic
analogs off ~{! and q12a, namely, f~{0 [s Zu!0 [s Zu and [s Zu z~12a!, respectively, in the for-
mula+ Note thatf '~x! 5 2xf~x! andf ''~x! 5 ~x2 21!f~x!+ Thus, f ~q12a! 5 f~z~12a!!0
[s Zu, f '~q12a! 5 f~z~12a! !0 [s Zu

2, andf ''~q12a! 5 ~~z~12a!!2 2 1!f~z~12a! !0 [s Zu
3+ Plugging

these formulae into~A+21! gives the definition of the constantCa in ~10!+
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