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This paper considers the problem of choosing the number of bootstrap repetitions
B to use with theBC, bootstrap confidence intervals introduced by Eff@a87,
Journal of the American Statistical Associati8g 171-200. Because the simu-
lated random variables are ancillawye seek a choice dB that yields a confi-
dence interval that is close to the ideal bootstrap confidence interval for which
B = 0. We specify a three-step method of choosBithat ensures that the lower
and upper lengths of the confidence interval deviate from those of the ideal boot-
strap confidence interval by at most a small percentage with high probability

1. INTRODUCTION

In this paperwe consider the problem of choosing the number of bootstrap
repetitionsB for the BC, bootstrap confidence intervals introduced by Efron
(1987). We propose a three-step method for choodththat is designed to
achieve a desired level of accura®y accuracy we mean closeness of the
BC, confidence interval based dhrepetitions to the ideal bootstr&C, con-
fidence interval for whiclB = co. We desire accuracy of this sptiecause we
do not want to be able to obtain a “different answer” from the same data merely
by using different simulation draws

More preciselywe measure accuracy in terms of the percentage deviation of
the lower and upper lengths of the bootstrap confidence interval for a given
value ofB, from the lower and upper lengths of the ideal bootstrap confidence
interval By definition, the lower lengthof a confidence interval for a param-
eterd based on a parameter estimatés the distance between the lower end-
point of the confidence interval and the parameter estirfatée upper length
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is defined analogouslyVe want both lengthsnot just the total length of the
interval to be accurate

The accuracy obtained by a given choiceBois random because the boot-
strap simulations are randorifo determine an appropriate value Bf we
specify a bound on the percentage deviatidenotedpdh and we require that
the actual percentage deviation is less than this bound with a specified
probability 1 — 7, close to oneThe three-step method takeslb and 7 as
given and specifies a data-dependent method of determining a vaBiedef
noted B*, such that the desired level of accuracy is achievear example
one might take(pdh 7) = (10,.05). In this casethe three-step method deter-
mines a valueB* such that the percentage deviation of the upper and lower
confidence interval lengths is less than 10% each with approximate probabil-
ity .95.

The idea behind the three-step method is as foll@anditional on the orig-
inal sample the BC, confidence interval endpoints based Bmepetitions are
sample quantiles with random percentage poivs approximate their distri-
butions by their asymptotic distributions &— oo. The parameters of these
asymptotic distributions are estimated in the first and second steps of the three-
step methodThese estimates include estimates of a density at two pdints
this purposewe use an estimator of Siddiqyi960 with an optimal data-
dependent smoothing parametehich is a variant of that proposed by Hall
and Sheathe1988. The asymptotic distributions evaluated at these estimates
are used in the third step to determine how laBgaust be to attain the desired
level of accuracy

The three-step method is applicable whenev&Ga confidence interval is
applicable This includes parametricemiparametricand nonparametric mod-
els with independent and identically distributéd.d.) datg independent and
nonidentically distributedi.n.i.d.) datg and time series dat@egarding the lat-
ter, see Gotze and Kiinsch996. The method is applicable when the bootstrap
employed is the standard nonparametiicli bootstrap a moving block boot-
strap for time seriesa parametric or semiparametric bootstrapa bootstrap
for regression models that is based on bootstrapping residtsdentially the
results are applicable whenever the bootstrap samples are simulateditd.be i
acrossdifferent bootstrap sample§The simulations need not be.d. within
each bootstrap sample

We examine the small sample performance of the proposed method via sim-
ulation for two common applications in the econometrics and statistics litera-
ture The first application is to a linear regression modete second is to a
correlation coefficient between two random variabMg find that the number
of bootstrap repetitions needed to attain accurate estimates of the ideal boot-
strap confidence interval is quite latg&/e also find that for both applications
the proposed three-step method performs fairly wadthough it is overly con-
servative That is the finite sample probabilities that the percentage deviations
of the lower and upper lengths of the bootstrap confidence intervals are less
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than or equal tgpdb are somewhat greater than their theoretical value 7,
for most(a, pdb 7) combinations considered

The three-step method considered here is closely related to that specified in
Andrews and Buchinsky2000 for choosingB for bootstrap standard error es-
timates percentilet confidence intervalstests for a given significance level
p-values and bias correctianThe results of Andrews and Buchinsk2000
are not applicable tBC, confidence intervaldbecause they only apply to boot-
strap sample quantiles féixed percentage pointé\nalysis of the performance
of the three-step method of Andrews and BuchingR900 is given in An-
drews and Buchinsky2001).

The asymptotic approximations utilized here are equivalent to those used in
Efron (1987, Sect 9). We provide a proof of the validity of these approx-
imations This proof is complicated by the fact that the sample quantiles in
question are from an underlying distribution that is discreteleast for the
nonparametric bootstra@and the percentage points are randoit fixed

Note that Hall(1986 considers the effect d on theunconditionalcover-
age probabilities of some confidence intervébsit not BC, confidence inter-
vals). The unconditional coverage probability is the probability with respect to
the randomness in the data and the bootstrap simulatiorc®ntrast we con-
sider conditional coverage probabilitiesi.e., coverage probabilities with re-
spect to the randomness in the data conditional on the bootstrap simulations
We do so because we do not want to be able to obtain “different answers” from
the same data as a result of the use of different simulation draws

The remainder of this paper is organized as follo®ection 2 introduces
notation and defines thRC, confidence intervalsSection 3 describes the three-
step method for choosing for these confidence intervalSection 4 describes
the asymptotic justification of the three-step meth8dction 5 presents some
Monte Carlo simulation results that assess the ability of the three-step method
to chooseB to achieve the desired accuracy in finite samphes Appendix
provides a proof of the asymptotic justification of the three-step method

2. NOTATION AND DEFINITIONS

We begin by introducing some notation and definitiobst X = (Xy,..., X;)’
denote the observed dataet § = §(X) be an estimator of an unknown scalar
parametep,. We wish to construct an equal-tailed confidence intervabfoof
(approximate confidence level 10 — 2a)% for some 0< o < 1.

We assume that the normalized estimattfd — 6,) has an asymptotic nor-
mal distribution as1 — oo. Let 0(32 denote its asymptotic variancé/e allow for
K # 3 to cover nonparametric estimatpssich as nonparametric estimators of a
density or regression function at a point

Define a bootstrap sampl¢* = (X3,..., X)" and a bootstrap estimatét =
6(X*). Let 6@ denote thex quantile of*. Because the bootstrap estimator
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6* has a discrete distributiofat least for the nonparametric bootstragere
typically is no constang’® that satisfies the equatioR*(6* = 6:@) = «
exactly whereP*(-) denotes probability with respect to the bootstrap sample
X* conditional on the original sampké. Thus to be precisewe defined(* =
inf{k: P*(6* = k) = a}.

The ideal bootstrap equal-tailed percentile confidence interval of approxi-
mate confidence level 1Q0 — 2a)% is

(02,051 (1)

This confidence interval does not improve upon confidence intervals based on
first-order asymptotics in terms of coverage probabhilityconsequenceEfron
(1987 introduced the bias-corrected and acceleréB@,) confidence interval
that adjusts the quantiles and 1— « in such a way that it exhibits higher
order improvementq For a detailed discussion of these higher order improve-
ments see Hal) 1988 Hall, 1992 Sect 3.10. For an introductory discussion of
BC, confidence intervals and software to calculate theeg Efron and Tibshi-
rani, 1993 Sect 14.3 and Appendiy

The ideal bootstraBC, confidence interval of approximate confidence level
1001 - 2a)% is

Cl,, = [§xlec=) @] where
@ 20, + ot 2 and
w =
b 0% " 1- a2y, +2')

o2, + —2= 2 )
Ay oo = (%) AlS — °
" 0 1-a(2,, +2z2%)

Here®(-) is the standard normal distribution function azi/ is thea quantile
of the standard normal distributiofihe termz, ., is the “ideal bias correction”
and is defined by

2000 = D H(P* (6" < 0)), 3)

where®1(.) denotes the inverse of the standard normal distribution function

The termain (2) is the “acceleration constahtt can be defined in different
ways For examplein i.i.d. contexts it can be defined to equal a jackknife
estimate

4)
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whered;, = (X)), X, denotes the original sample with théh observation
deleted andd, = =, 6, /n.

Note that when the ideal bias correctidg ., and the ideal acceleration con-
stanta equal zerpay ., = ®(z2'*) = @ anda o, = ®(z %) =1 — a. In this
case the BC, confidence interval reduces to the equal-tailed percentile confi-
dence interval of1).

Analytic calculation of the ideal bootstr&C, confidence interval is usually
intractable Neverthelessone can approximate it using bootstrap simulations
ConsiderB bootstrap samplegs<;,: b =1,..., B} that are independent acroBs
each with the same distribution XS. The correspondin@ bootstrap estima-
tors are{fs = A(X;):b=1,...,B}.

Let {é;,b: b = 1,...,B} denote the ordered sample of bootstrap esti-
mators Define thea sample quantile of the bootstrap estimators t@e’ =
05 B+ 1a) TOr @ = 3 and 3@ = 05 (g1 1)a) fOr @ > 3, where|a| denotes the
largest integer less than or equaladi.e., the integer part of) and[a] de-
notes the smallest integer greater than or equal. tdf | (B + 1)a| = 0O for
somea = 3, then letdz@ = 63 ,. If [(B + 1)a] = B + 1 for somea > 3,
then letdg® = 5 5.)

The BC, confidence interval of approximate confidence level {00 2«)%
based orB bootstrap repetitions is

Clg = [65(@c®), 65l@us)],  where

25+ 2@
apg = @(20,5 + 1 A(zgn+ z<“>)> and
X 205 +20®
ayg = q)(zo,s + 1—a(zg5+ Z(la)))'
The termz, g is the bias correction based dhbootstrap repetitions and is
defined by

B
- q,_1<1 S (6 < é>). ©
B =1

We note thatz, g is a random function of the bootstrap estimatofig: b =
1,...,B}. In consequencea, g and «, g are random functions o{é;;:b =
1,...,B}. This affects the three-step method of determirinthat is introduced
subsequentlyWe also note that the acceleration consi@nas defined in(4),
does not depend on the bootstrap estimatlirgs a function of the original
sample only

®)

3. A THREE-STEP METHOD FOR DETERMINING THE NUMBER
OF BOOTSTRAP REPETITIONS

In this sectionwe introduce a three-step method for determirirfgr the boot-
strap confidence intervallg defined previouslyOur main interest is in deter-
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mining B such thatCl; is close to the ideal bootstrap confidence intei@&).
A secondary interest is in the unconditional coverage probabilit@lgfiwhere
“unconditional” refers to the randomness in both the datdthe simulations

Our primary interest is the formebecause the simulated random variables
are ancillary with respect to the parametigr Hence the principle of ancillar-
ity or conditionality(e.g., see Kiefey 1982 and references thergiimplies that
we should seek a confidence interval that has a confidence level tlagipgsox-
imately) 100(1 — 2«)% conditional on the simulation drawbo obtain such an
interval we need to choosB to be sufficiently large tha€lg is close toCl..
Otherwise two researchers using the same data and the same statistical method
could reach different conclusions due only to the use of different simulation
draws

We could measure the closenessaf to Cl,, by considering their relative
lengths However these confidence intervalarhich are based on the param-
eter estimatd, are not necessarily symmetric ab@utin consequences more
refined measure of the closenessGig to Cl, is to consider the closeness of
both their lower and upper lengthBy definition, the lower lengthof the con-
fidence intervalClg, denoted. ,(Clg), is the distance between the lower bound
6z@®) and 6. Its upper length denotedL (Clg), is the distance frond to
65*we) That is

L,(Clg) = 6 — 63“® and L,(Clg) = 63 — 4. (7)

The lower and upper lengths @fl., are defined analogously witB replaced
by co.

We measure the closeness@i; to Cl., by comparing the percentage devi-
ations of the lower and upper lengths of the two intervalse percentage de-
viation of the upper length oflg from the upper length o€l is

|é;(au,8) _ éo";(au,oo) |

é;;(au,oc) — é

100 8)

The percentage deviation of the lower lengthGdg to the lower length oI,
is defined analogously

Let 1 — 7 denote a probability close to onsuch as.95. Let pdb be a
bound on the percentage deviation of the lower or upper lengtbigto the
corresponding length oEl,. For the upper lengthwe want to determin® =
B(pdh 7) such that

|é§(au,8) _ é*(au,w)|
P*{ 100575 — =pdb) =1-7. €)

For the lower lengthwe want to determine an analogous valueBafith o g
ande, ., replaced by, g anda,, ,, respectively
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The three-step method of determinifyfor Clg is designed to obtain a
specified desired level of accurapgb for both lengthseach with probability
approximately equal to + 7 (based on the asymptotic justification given
subsequently

The three-step method relies on estimators of the reciprocals of two density
functions evaluated at two pointwhich appear in the asymptotic distributions
of the sample quantile&;“-#’ andg;(*#). For this we use Siddiqui'1960
estimator(analyzed by Bloch and Gastwirti968 Hall and Sheatherl988
with plug-in estimators of the bandwidth parameters that are chosen to maxi-
mize the higher order asymptotic coverage probability of the resultant confi-
dence intervalas calculated by Hall and Sheatli@®88. To reduce the noise
of the plug-in estimatomwe take advantage of the fact that we know the asymp-
totic values of the densitieand we use them to generate our estimators of the
unknown coefficients in the plug-in formula&€he density estimate makes use
of the following formula which is utilized in step 2which follows

( 1.5(2(1701/2) )2¢2(Z(1*a)) >1/3
C, = .

2(z179)2 +1

(10)

The three-step method is defined as follows
Step 1 Compute a preliminary number of bootstrap repetitiBavia
B; =[10,000(a(1 - @) — 2a¢(z'*)/$(0) + $*(2'*)/$*(0) (27 7?)?/
(2 (z'*)pdb?]. 11

Step 2 SimulateB; bootstrap estimator&ét’;‘ :b = 1,...,By}; order the bootstrap es-
timators which are denotedés ,:b =1,...,B,}; and calculate

12
29, =®7" B_lzl(0§<9) )

X 29, + 2
aje=maxq®|( 25 g + m ,.01%,

_ . 2, + 207
= miny®| 255 + 1— a2 + 20y ,.99%,

vie =By + Daygl, vay = [ (By + Dayyl,

mhy, =[C

a1e

Bl M =[Ciq, Bl

n% O O * 0% % 0%
031, vie? 031» Vi’ 0317”1«*"7110’ 031, vietiges 051, vag— My’ 051, vagt iy

12)
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Step 3 Take the desired number of bootstrap repetitj@isto equalB* = max{By,
Boy, BZu}> where

B2 = [10000(a (1.~ ) ~ 209(2)/6(0) + §2(2)/g2(O) (272

Bl 2 A A 2/((A A 2
X om (08, 010y, — 08, vy—my)7((0 — 05, ,.,)pdb) and
1¢

B2 = [10000(a (L~ @) = 209(2)/9(0) + 42(2)/9(0) (2072

Bl 2 j ) 2/((p* ) 2
X (08, 1y — 08, vpy—ry,) 7 (05, ., — ) pdbD)“ . (13)
2y,

Note thatz'®), ¢(-), and®(-) denote thex quantile density and distribution
function respectivelyof a standard normal distribution

In step 2 @y, anday, are truncated to be greater than or equaltband less
than or equal ta99, respectively This is done to prevent potentially erratic
behavior of the density estimator in step 3 if the formulae otherwise would call
for estimation of the density very far in the tallhis truncation implies that the
three-step methqds definedis suitable only whemy = .01

Having determined®*, one obtains the finadBC, confidence interval by sim-
ulatingB* — B, (= 0) additional bootstrap estimatofé;:b =B, + 1,..., B*},
ordering theB* bootstrap estimatorsvhich are denoteeﬂég*,b: b=1,...,B},
and calculating, g+, @ g, @y, 0p*®”, and §5*+#” using the formulae
given in step 2 withB; replaced byB*. The resultingBC, confidence interval
based orB* bootstrap repetitionss equal to

Clg: = [6:°°", 055", (14)

wherea, g+ ande,, g+ are defined by5) with B replaced byB™.

Steps 2 and 3 could be iterated with little additional computational burden
by replacingB; in step 2 byB, = max{B,, By, B,,}, replacing(B,, B,,) in
step 3 by(B,, B,), and takingB* = max{B,., B,,, B1}. In some casesghis
may lead to closer finite sample and asymptotic properties of the three-step
procedure

The three-step method introduced here is based on a scalar par#neter
When one is interested in separate confidence intervals for several parameters
say M parametersone can apply the three-step method for each of the param-
eters to obtairB(y), B3, ..., B(, and takeB* to equal the maximum of these
values

4. ASYMPTOTIC JUSTIFICATION OF THE THREE-STEP METHOD

We now discuss the justification of the three-step method introduced previ-
ously The three-step method relies on the fact #égat:®’ andé;@# are sam-
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ple quantiles with data-dependent percentage points based ondasample
of random variables each with distribution given by the bootstrap distribution
of #*. If the bootstrap distribution of* was absolutely continuous &g«
then BY2(9z@ — 6:(@) would be asymptotically normally distributed as
B — oo for fixed n with asymptotic variance given by (1 — a)/f 2(6:®),
wheref(-) denotes the density af*. (Here and subsequentlwe condition
on the dataand the asymptotics are based on the randomness of the bootstrap
simulations aloneWe point out that it makes sense to speak of asymptotics as
B — oo for fixed n becausgeven though the distribution of the bootstrap sam-
ple is discrete and has a finite numb@r of atoms in the case of the nonpara-
metric bootstrapone can draw as many bootstrap samjdsom this discrete
distribution as one likedt is not the case tha® = n".)

But, the bootstrap distribution of* is a discrete distributioriat least for
the nonparametric bootstraghich is based on the empirical distributjomn
consequencehe asymptotic distribution dBY/2(45® — 6:(®)) asB — oo for
fixed n is a pointmass at zerdor all « values except for those in a set of
Lebesgue measure zefd@he latter set is the set of values that the distribution
function of §* takes on at its points of support

Although#* has a discrete distribution in the case of the nonparametric boot-
strap its distribution is very nearly continuous even for small valuesnof
The largest probabilityr, of any of its atoms is very smallkr, = nl/n" ~
(2mn)¥2e™" provided the original samplX consists of distinct vectors and
distinct bootstrap sample$* give rise to distinct values of* (as is typically
the casesee Hal) 1992 Appendix I). This suggests that we should consider
asymptotics as — oo, and alsoB — oo, in order to account for the essentially
continuous nature of the distribution @F. If we do sq then BY2(95® —
6 has a nondegenerate asymptotic distribution with asymptotic variance
that depends on the value of a density at a pgust as in the case where the
distribution of §* is continuous This is what we dolt is in accord with the
view of Hall (1992 p. 285 that “for many practical purposes the bootstrap
distribution of a statistic may be regarded as contindous

We note that thépotentia) discreteness af* significantly increases the com-
plexity of the asymptotic justification of the three-step method given sub-
sequently and its proof

The asymptotic justification of the three-step method also has to take ac-
count of the fact that the confidence interval endpoints dependanand
ay g, Which depend on the simulation randomness through the bootstrap bias
correctionzy g = @~ H(Sp_, (6 < 0)/B). The quantitiesy, g ande, g are cor-
related in finite samples and asymptotically witt{*’ for any « (see the proof
of equation(18) given in the Appendix In fact the randomness af, g and
a, g is sufficiently large that it is responsible for more than half of the asymp-
totic variances oBY2(9; @8 — §x(@) and BY2(4i(*us) — 9:1-®)) (in the
calculations carried out in Sed).

We now introduce a strengthening of the assumption of asymptotic normal-
ity of the normalized estimata“(é — 6,) that is needed for the asymptotic
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justification of the three-step method/e make the following assumptiofor
some¢ > 0 and all sequences of constafits: n = 1} for which x,, — o;z(®
or x, — 03z% %, we have

P(n*(6 — 6y) = X,) =P(0;Z=x,) + O(n¢) asn— o and
P*(n“(6* — ) = x,) = P(03,Z=x,) + O(n"¢) asn— oo, (15)

whereZ ~ N(0,1). (The assumption on*(#* — ) is assumed to hold with
probability one with respect to the randomness in the,dagawith respect to
P(-).)

Assumption(15) holds whenever the normalized estimatti(d — 6,) and
the normalized bootstrap estimatof(§* — §) have one-term Edgeworth ex-
pansionsThis occurs in a wide variety of contexta.g., see Bhattacharya and
Ghosh 1978 Hall, 1992 Sects 2.4, 4.4, and 45; Hall and Horowitz 1996. In
particular it holds in any context in which 8C, confidence interval yields a
higher order improvement in the coverage probabilgge Efron 1987 Hall,
1988. Whenk = 3, then (15) typically holds withé = 3. Whenk < 3, as
occurs with nonparametric estimatdtsthen (15) typically holds with¢ < 2
(see Hall 1992 Ch. 4, and references therein

The preceding discussion considers lettihg> co. This is not really appro-
priate because we war® to be determined endogenously by the three-
step methodRathey we consider asymptotics in which the accuracy measure
pdb — 0 and thisin turn, forcesB — oo. Thus the asymptotic justification of
the three-step method of choosiB{ is in terms of the limit adoth pdb— 0
andn — oo jointly, not sequentially

We assume thgidb — 0 sufficiently slowly that

pdbX né - o asn— oo, (16)

where¢ is as in(15).
We assume that

4—>0 asn—w 17)

with probability one with respect to the randomness in the original. ddtes
assumption holds for any appropriate choice of acceleration corétant
The asymptotic justification of the three-step method is that

|Gse?) = |
P*| 100 |Jé*(ajw) my <pdb| 51-7 aspdb— 0 andn— oo,

forj=¢,u. (18)

As before the probabilityP*(-) denotes probability with respect to the simula-
tion randomness conditional on the infinite sequence of data vetiader the
previous assumptionshis conditional result holds with probability one with
respect to the randomness in the datee proof of(18) is given in the Appendix
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Equation(18) implies that the three-step method attains precisely the desired
level of accuracy for the lower and upper lengths of the confidence interval
using “smallpdb and largen” asymptotics

5. MONTE CARLO SIMULATION
5.1. Monte Carlo Design

In this sectionwe introduce the design of the simulation experimeWws pro-

vide simulation results for a linear regression model and a correlation coeffi-
cient There are two purposes of the experimemtge first purpose is to illustrate
the magnitudes of the values Bfthat are necessary to achieve different levels
of accuracy Here accuracymeans closeness of tH&C, confidence interval
based orB repetitions to the ideal bootstr&C, confidence interval for which

B = co. The second purpose is to see whether the three-step method yields val-
ues of B with the desired level of accuracilore specifically for the upper
length of the confidence interyalve want to see how cloge*(100|4; 8 —
6x(aue)| /(fx(@u=) — §) = pdb) is to 1 — 7 for values ofB specified by the
three-step methqdor a range of values dfx, pdh 7). We are also interested in
the corresponding results for the lower lengtte consider the performance of
B, By, Boy, B = max{Bi, Bs¢}, B = max{B,, B,,}, and alsoB*.

Linear Regression Model. The linear regression model is
Yi =X Bty (19)

fori =1,...,n, wheren = 25 X; = (y;,%/{) are ii.d. overi =1,...,n, x; =
(1, X4i,..., Xs5)" € R, (Xy,...,Xs) are mutually independent normal random
variables x; is independent ofi;, andu; has at distribution with five degrees
of freedom(denoteds). The simulation results are invariant with respect to the
means and variances of the random regressors and the value of the regression
parametep, so we need not be specific as to their valugse results also are
invariant with respect to changes in the scale of the eprors

We estimateB by least squareéLS). We focus attention on the first slope
coefficient Thus the paramete# of the previous sections i8,, the second
element ofB, and the estimatof is the LS estimator of,.

Correlation Coefficient. The correlation coefficient model consists of an
i.i.d. sample of pairs of random variablé6x;,y;):i = 1,...,n} with n = 25
and correlation coefficient. The random variables andw; have independent
t5 distributions andy; is given by

yi = (1/\/§)Xi + W

The parametef of the previous sections is the correlation coefficjgny, be-
tweenx; andy;. That is 6 = p,, = Cov(x;, yi)/(Var(x,)Var(y;))% We esti-
matep,, using the sample correlation coefficieny:
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z(xi -3y —Y)

0=ry= ,
n n 1/2
(E(xi =22 (v, —W—‘)
i=1 i=1
wherex = XL x;/nandy = >,y /n.

Experimental Design. For each of the two modelsve simulate 100 sam-
ples For each of the 100 samplewe computed and simulated’“«=) and
6:(*u=) using 250000 bootstrap repetitiondHere we explicitly assume that
250000 repetitions is close enough to infinity to accurately estinggté:-
and §3(®u=)_ Given 6, (=) and (=) we compute the lower and upper
lengths of the ideal bootstrap confidence intervals for each sample

Next, we compute D00 Monte Carlo repetitions for each of the 100 sam-
ples for a total of 200000 simulationsFor a given samplehe Monte Carlo
repetitions differ from each other only because of the different simulated re-
samples used to construct the bootstrap samptesach Monte Carlo repeti-
tion, we computeB,,, B,,, andB* for each(a, pdh 7) combination for which
1— 2ais .95 0r.90, pdbis 20% 15% or 10% and 1— 7 is .975 .95, or .90.

For each sample and, pdh, 7) combination we calculate the meamedian
minimum, and maximum ofB,, and B,, over the 2000 Monte Carlo repeti-
tions In Tables 1 and 2we report the averages of these values over the 100
samples(For examplein column(14) of Table 1 which is headed “Med the
numbers provided are the averages of the mediarB,pbver the 100 sam-
ples) For comparative purposegwe also report the value @, for each(e,

pdh 7) combination These results indicate the magnitudes of Bhealues
needed to obtain the accuracy specified by diffefgrith ) combinations

In each Monte Carlo repetitiogrwe also comput@jo(“fvﬂ) for B = B;, By,

Bi, and B* and §}(®«® for B = B,, B,,, B, and B*. The calculations are
repeated for all of thga, pdh7) combinations considered previouskor
each (a, pdh7) combination and for each repetitionve check whether
6l@uea) satisfies

165 @uen) — fx(@ue) |
0

100 - é*(a:‘;) = pdh (20)

We compute the fraction of times this condition is satisfied out of tjRQ@
Monte Carlo repetitionsThen we compute the average of this fraction over
the 100 sampledNVe call this fraction theempirical levelfor B,, for the upper
length of theBC, confidence intervalThe empirical levels foB,, B}, andB*

for the upper length also are calculatédhey are defined as before wiy,
By, andB* in place ofB,,, respectively In addition the empirical levels for
B,, By, Bi, and B* for the lower length of théBC, confidence interval are
calculated (They are defined analogously within place ofu.) Finally, we
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TABLE 1. Simulation results for the regression model

Empirical Levels Based Empirical Levels with
on Three-Step Method “True” Density
Upper Joint Upper Joint Bou

1-2a pdb 1-71 B, B,y B B* B* Bout B B B, Mean Med Min Max
(1) 2 ) @ (5 (6 (7) ® 9 (10) (11 (12 (13 (14 (15 (16)

.950 20 975 .850 .949 .983 .995 .990 .937 .989 .976 368 2697 1767 102 31302
.950 15 975 .868 .947 .984 .998 .996 .937 .990 .980 655 5312 3996 389 31409
.950 10 975 .883 .944 .981 .997 .993 .937 .990 .982 1474 7831 7133 1345 24997
.950 20 .950 799 925 .965 .985 972 910 .980 .957 281 1789 1129 51 28957
.950 15 .950 .818 .929 971 .995 991 .908 .981 .961 501 4042 2810 203 3679
.950 10 .950 .834 922 967 .994 .989 .909 .981 966 1127 7,849 6962 1030 27109
.950 20 .900 727 .873 917 .953 914 .864 .962 917 198 890 588 16 1843
.950 15 .900 .740 .895 .942 981 .965 .863 .961 .923 352 2504 1633 96 30702
.950 10 .900 761 .890 .943 .989 979 .862 961 929 794 6219 4997 527 30816
.900 20 975 .902 957 .982 .997 .995 .949 991 .982 386 2795 1945 171 26115
.900 15 975 912 .954 981 .996 .992 .948 991 .984 686 3946 3192 425 20080
.900 10 .975 .920 .952 979 .995 .990 .948 1992 .985 1544 5632 5232 1382 17121
.900 20 .950 .856 .939 .969 .995 .990 .923 .982 .964 295 2159 1409 98 25625
.900 15 .950 .868 934 .966 .993 .986 .922 .983 967 524 3525 2650 278 23192
.900 10 .950 .878 .929 .962 .989 .980 .922 .983 .969 1181 4864 4391 1,005 17266
.900 20 .900 779 .908 .943 .985 .973 .878 .962 .926 207 1417 865 51 24649
.900 15 .900 794 .902 .939 .986 974 .878 962 931 369 2680 1842 156 26655
.900 10 .900 .807 .892 .930 .978 .960 .877 .962 .934 831 4189 3546 591 18837

Note The reported numbers are averages over 100 samples of the simulation results for eachEachgample consists of 25 observatidfsr each samp]e2,000 Monte Carlo
repetitions are used
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calculate thgoint empirical levelfor B*, which is the fraction of times both the
upper length conditioi20) and the corresponding lower length condition hold
with B* in place ofB,, averaged over the 100 sampl&¥e report all of the
empirical levels for all of thé«, pdh 7) combinations

The empirical levels listed previously are subject to three types of :error
(i) noisy estimates of the density gfod the upper or lower lengths of the
confidence interval used in step 3 of the three-step procediiyénaccuracy
of the normal approximatiofeven when the density and confidence interval
length estimates are accurgtand (iii) simulation errorTo assess the magni-
tude of the first type of errgorwe report empirical levels for the infeasible
three-step procedure that uses estimates of the density and lengths of the con-
fidence intervals in step 3 that are basedBr 250000 rather thaB = B;.
That is we calculate all the quantitie@xceptB*) in steps 2 and 3 wittB;
replaced by 25000 Let By, By, and B denote the analogs @&,,, B,
and B* using the “true” density and confidence interval lengttBy defini-
tion, By = max{B, B, Bou:}.) We calculate the empirical levels for the upper
lengths of theBC, confidence interval that correspond By, and B, and
also the empirical levels for the lower lengths that corresponB,tpand By".
In addition we calculate the joint empirical level fd@;. We call these results
the empirical levels with the “true” density

5.2. Simulation Results

Table 1 provides the simulation results for the linear regression moaele 1

only reports results for upper lengths because symmetry the exact finite
sample results for lower lengths are the same as for upper lengths in this model
Table 2 provides the results for the correlation coefficiditte first three col-
umns of Tables 1 and 2 specify the differént pdh 7) combinations that are
considered in the rows of the tabléhe last five columns of Table 1 and the
last nine columns of Table 2 give the values Bf and the meanmedian
minimum, and maximum values oB,, (and B,, for the correlation coeffi-
cieny averaged over the 100 samples for edahpdh ) combination The
fourth to eleventh columns of Table 1 and the fourth to seventeenth columns
of Table 2 give the empirical level results for the two models for gaglpdh, 7)
combination

Linear Regression Model.Column (14) of Table 1 gives the mediaB,,
values The median values indicate that a large number of bootstrap repetitions
are required For example the reasonable choice 01 — 2«,pdhl — 7) =
(.90,15,.95) has a mediam,, value of 2650 The value does not change much
when 1— 2« is increased t095. This is indicative of the general insensitivity
of the results tax. On the other handhe values oB,, depend greatly on the
magnitudes ofpdb and 1— 7, especiallypdh As pdb decreases and + 7
increasesthe mediarB,, values increase significantliFor examplethe com-



9.6

TABLE 2. Simulation Results for the Correlation Coefficient

Empirical Levels Based on Three-Step Method Empirical Levels with “True” Density
Lower Upper Joint Lower Upper Joint

1-2a« pdb 1-7 B B, B B* B, Bau B B* B* Baxt B; Bout B; B

1) e () @ &6 66 o © e w a 1 @3 @1 @5 1§ 19
.950 20 975 .883 959 987 993 977 926 .995 .998 991 928 972 919 998 .970
.950 15 975 901 959 .988 996 .981 924 995 999 995 938 978 919 997 976
.950 10 975 917 956 .986 .993 987 925 995 999 992 944 981 920 .998 .979
.950 20 950 .837 .936 970 979 958 900 .985 995 974 893 950 .886 .994 946
.950 15 950 .853 941 977 990 963 899 989 998 .988 908 959 886 .994 .954
.950 10 950 874 936 .974 .988 972 .896 .988 .998 986 .917 964 887 994  .959
.950 20 900 .772 884 925 938 .922 851 959 983 923 837 908 .836 .986  .897
.950 15 900 .779 .908 .948 967 .928 .857 969 991 959 855 922 834 985 911
.950 10 900 .804 .906 .951 976 .938 .852 971 994 972 869 .932 832 984 919
.900 20 975 920 .968 986 .992 982 934 992 999 993 955 983 933 998  .982
.900 15 975 931 966 .985 .992 985 935 992 998 991 959 985 934 998 .984
.900 10 975 938 965 .983 .994 987 936 .992 998 .990 .961 .987 934 998 .985
.900 20 950 .873 952 974 979 963 907 983 997 .986 .929 967 .902 995 .963
.900 15 950 .888 .949 972 980 968 .906 .982 996 .983 935 971 902 995 967
.900 10 950 899 946 969 .981 .972 906 .981 996 978 .938 973 901 995 .969
.900 20 900 .799 923 949 971 920 865 .960 .990 .963 .881 .933 .849 985 .923
.900 15 900 .818 .921 .948 .968 .931 .860 .960 .991 966 .892 941 849 985 .930

.900 10 900 .833 913 941 965 .938 .856 956 .988 955 .899 946 .850 985 .934
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B2 Bau

1-2a pdb 1-7 B; Mean Med Min Max Mean Med Min Max
1) v (©) (18) (19 (20) (21) (22) (23 (24) (25 (26)

.950 20 975 368 1804 1322 92 17725 503 403 34 548
.950 15 .975 655 3901 3033 324 25184 1000 839 106 f59
.950 10 .975 1474 6136 5539 1118 22519 1760 1611 382 6627
.950 20 .950 281 1200 857 45 1424 358 279 18 225
.950 15 .950 501 2785 2101 192 22046 726 597 67 Z63
.950 10 .950 1127 6440 5591 835 24500 1728 1515 277 7940
.950 20 .900 198 634 464 14 ,848 216 165 8 38
.950 15 .900 352 1667 1220 82 16811 470 376 31 320
.950 10 .900 794 4772 3840 448 26259 1235 1056 148 6947
.900 20 .975 386 249 1644 165 20640 598 482 65 401
.900 15 .975 686 3568 2879 424 19187 1040 890 159 06
.900 10 .975 1544 5301 4888 1265 16959 1797 1667 493 5826
.900 20 .950 295 1678 1188 97 18756 458 358 40 057
.900 15 .950 524 2998 2311 279 21086 807 672 109 286
.900 10 .950 1181 4577 4069 911 17131 1553 1385 344 6555
.900 20 .900 207 1064 735 45 1433 311 235 22 279
.900 15 .900 369 2146 1561 150 1907 571 459 61 287
.900 10 .900 831 3913 3271 545 18192 1228 1065 207 5942

Note The reported numbers are averages over 100 samples of the simulation results for eachEachpgample consists of 25 observatidfsr each samp]e2,000 Monte Carlo
repetitions are usedhe true correlation coefficient is,, = .5.
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bination (1 — 2a,pdh1 — 7) = (.90,20,.90) has mediarB,, value of 865
whereaq.90,20,.975 has mediarB,, value of 1945 and(.90,10,.90) has me-

dian B,, value of 3546 Although the magnitudes of thB,, values are large

the computation time required for the applications considered here is relatively
smalt always less than one minute

The results of columng§l13)—(16) of Table 1 also show that thB,, values
have a skewed distribution—the median is well below the mean number of boot-
strap repetitionsin some caseghe required number of bootstrap repetitions is
very large(see columr(16)). Comparison of column&l2) and(14) shows that
the mediarB,, values are much larger than the initBy values This suggests
that relying on just the first step of the three-step methwamely By, is ill
advisedAll three steps of the three-step method are needed

Column (4) of Table 1 reports the empirical levels basedBynfor the re-
gression modelThese empirical levels are well below their theoretical coun-
terparts reported in column3), for all (1 — 2a, pda 1 — 7) combinationsThis
corroborates the preceding supposition that reliance oBthalues is ill ad-
vised The empirical levels increase significantly whBg, simulations are em-
ployed (see column(5)). But the empirical levels foB,, are still below the
1 — 7 values of column(3) in most casesThe empirical levels for th&; val-
ues given in column(6), increase furthern fact, for all cases in which &
is .975 (.95, respectively, the empirical levels are withitD09 (.02, respec-
tively) of the exact 1— 7 value given in column(3). This indicates that the
three-step method is performing well in terms of matching the finite sample
accuracy with the desired theoretical accuracy

The empirical levels foB* are given in column(7). These empirical levels
are higher than the empirical levels B for the upper lengthAs it turns out
it is difficult to accurately estimate either the upper length of the confidence
interval or the lower lengthin consequencene of the two sides of the confi-
dence interval usually requires a relatively large number of bootstrap repeti-
tions As a result the empirical levels based @i are quite highwell above
their theoretical counterparts for sorffle— 2a, pdh 1 — 7) combinationsThe
joint empirical levels foB*, given in column(8), are somewhat lower than the
upper empirical levels foB*. But, they still tend to be conservatiyvee., greater
than 1— 7.

The empirical levels with the “true” density are reported in colun@s-
(112). For most(1 — 2a, pdh1 — 7) combinationsthese results do not differ
very much from the results discussed previouslgwever when 1— 7 is .90Q
which generates relatively smélvalues there is a noticeable differencEhese
results indicate that estimation of the density and the confidence interval length
is not a large source of inaccuracy of the three-step method unless is
relatively small

Correlation Coefficient. The results for the correlation coefficient are re-
ported in Table 2The general picture for the lower length results in Table 2 is
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very similar to that for the upper length for the regression model in Table 1
(which is the same for the upper length by symmgtifowever there is a
significant difference between the two experimeriigst, the B,, values are
much smaller than th®&,, values for the correlation coefficient experiment
Second the empirical levels for the upper length basedRnrepetitions are
quite high for the correlation coefficient experimemhese features are a con-
sequence of the fact that the correlation coefficient is bounded betw&emd
1, the true value iy, = 3, and hence an asymmetry occurs between the re-
sults for the lower and upper lengthiEhe “density” of the bootstrap distribu-
tion of § is much larger at the + « quantile than at ther quantile which
yields much smalleB,, values tharB,, values

Table 2 indicates that even for a simple statissiach as the correlation co-
efficient, the required number of bootstrap repetitions can be quite .|l&ge
example for a 95% confidence interval estimated wigb= 10 and 1—- 7 =
.95, the median number of bootstrap repetitions required is 0y&915

The empirical levels for the lower confidence intervals are quite similar to
those reported for the upper confidence interval for the regression niduk|
B, values for the upper confidence intervals are too langevevey which leads
to upper empirical levels foB;, Bj;, andB* that are too highln consequence
the three-step method is conservatilteproduces larger numbers of bootstrap
repetitions than are required for the specifigatib, 7) combinations

The empirical levels with the “true” density show a similar pattern as in the
regression modeHowever somewhat more of the inaccuracy of the three-step
method is attributable to the estimation of the density and confidence interval
length in the correlation coefficient experiment
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APPENDIX OF PROOFS

We prove(18) for j = u. The proof forj = ¢ is analogousFirst we show that18) holds
with B* replaced by the nonrandom quantBy. Note thatB; — co aspdb — 0 andB;
does not depend om

Define the 1— « sample quantile of theaormalizedbootstrap estimates to be

Ay gp=N(034Y = 0) = (B3 mrnaay—0) fora<i. (A1)

Let A, . denote the I « quantile ofn<(6* — §). Thatis A1 4o = N<(:3~%) — §).
Note that the percentage deviation of the upper lengtiClgfto the upper length of
Cl,, given in(8), can be written as

| Xﬂu,B, B }tauym,oo|
100 —=——==—, (A2)
A

We establish the asymptotic distribution®'2(,,, . s, — Aa,.....) aspdb— 0 and
n — oo, using an argument developed for proving the asymptotic distribution of the
sample median based on and. sample of random variables that are absolutely contin-
uous at their population medige.g., see Lehmann1983 Theorem 53.2, p. 354). (In
contrast )1% s.B; IS the samplex, g, quantile of B, i.i.d. observations each with the
bootstrap distribution of*(d* — @), which depends om and may be discretavhere
@, g, is random and data dependgnt

We have the following expressioRor anyx € R,

P*(BY/*(A Ayee) =X) = PN (05,1 8,4 1y 5,1~ 0) = A0 + X/BI2).

ay, By, B1

(A.3)

Let S be the number of values*(; — 6)'s for b = 1,...,B that exceed\,, ., +
x/Bi/2. Herg we considelS;,. Subsequentlywe considelS;-. (In both casegthe cutoff
pointA,, .. + x/Bi’*> depends orB,.) We have

N(03, 1 81+ Dags] — 0) = Ao T X/BY2if and only if Sy = B, — [ (B, + Dy g,].

(A.4)
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The random variabl&;, has a binomial distribution with parametd,, pg, ,), where

Pe,n=1—P*(n(dz—6)=A +Xx/BH2). (A.5)

The probability in(A.3) equals
P*(Ss, =B —[(By+ Daypg,l)
= P*(Bfl/z(s_’,l - Bl pBl,n) + BJ:_L/Z(au, By au,oo)

= B/%(1— Pg,n~ @uo) — Bi "2y, + 0(2)). (A.6)

We now determine the limits of the terms in the right-hand-side probabilityAds).
Using the assumptions ¢17) and(15), we havea = o(1),

200 = P HPH(6* < 0)) = @ Y(P(Z< 0) + 0(1)) = 0(1), and

204 + 2079
Ay =@ <20,Oo + 1 éiio,m n Z(l"‘))) =0(z¥ ) +ol)=1—-a+0(1), (A7)
whereZ ~ N(0,1). These results and the assumption18) yield
Moo = INFAPH(N4(0" = 0) = 1) = .}

=inf{A:P(o;Z=))+0(}) =1—«a}

=0;z%% +0(1) asn— co. (A.8)

Next, we have
B12(1 = Pg,.n — @)
= BY2(P (n“(6* = 0) = A, _ ..+ X/BY2) = P*(n*(8* — ) = A, ..))

=BI2(P(0yZ= A, o+ X/BY?) = P(oyZ= A, ..)) +0(1)

= ¢({g, n/0g)X/05+ 0(1)
- ¢p(z89)x/o; aspdb— 0 and n— co. (A.9)
The first equality of(A.9) holds by the definitions ofg, , and A, . The second

equality holds by(15) and (16) using the fact that the latter and the definition Bf
imply thatB¥2 = O(1/pdb) = n¢0(1/( pdb X n¢)) = o(n¢). The third equality holds for
some(g, , that lies between,, ., + x/BY2andA,__ ., by a mean value expansion
The convergence result 6A. 9) holds by(A.8).

Note that(A.7) and(A.9) imply thatpg, , — o aspdb— 0 andn — co.
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Now, we have

1 1
B11/220,31 - B%/z <(D1< bE: l(eb h 0)) <§>>
1 1

NN Y
- <¢<0><1+op<1>>> B}/? < =0 2)
1 1 . N
<m> 172 E (l(Hb <0)— P*(65 < 6)) +0,(1), (A.10)
P

where the second equality holds by a mean value expansion and the third equality holds
because&15) and (16) imply thatBY2(P*(6; < 6) — 1) — 0.
Next we have

Bil/z(au, By au,oo)

20, + 27 20,0 + 207
—pv2(ofs . + 0,B; N P 0,00
' ( ( 1 alzgp, +2°°) ° T 1 a2, 2)
= B2 )1+ 0,(1) B

- 29p, +20° , 20 + 2179
OB 1 —A(255,+25) 0T 1—a(Zy,, +207Y)

= ¢(Z(17“))Bll/2(220, B, ~ 2200, — 2(1—a)a(20, B, ~ 20,,0)) (1 + 0,(1))

= 2¢(207)B1%20 5,(1+ 0,(1)) + 0,(1)

2¢(Z(l_a_)) 1 s (% A
"o Jer2 E (162 < 6) — P*(6 < 6)(1+ 0,(1) + 0,(1), (A.11)

where the second equality holds by the mean value theorem becgyse—, O,
20, —p 0, anda — 0; the third equality holds because— 0; the fourth equality holds
becauseBi’?2, g, = Op(1) by (A. 10) and the Llndeberg central limit theore@ — 0,
andB}22, ., = BY2(® 1(P*(n*(8; — §) < 0)) — @ %(3)) = 0,(1) by a mean value
expansion(15), and(16), and the fifth equality holds usingA.10).

Equation(A.11) gives

81—1/2(581 —Bipg,.n) t Bll/z(au, B~ Yuoo)

= (1+ Op(l)) Bl/z E ((n (eb é) > }\auyw,oo + X/B]].-/z) - pBl,n

+ (2¢(2* %) /$(0))
X (L(n*(fg — 6) < 0) — P*(n“(fz — 6) < 0))) + 0,(1)

d)(z(a)) N ¢2(Z(a)))
#(0) $%(0)

N(O,a(l—a) - (A.12)
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aspdb — 0 andn — oo, where the convergence rgsult bolds by the Lindeberg central
limit theorem and the fact thats, , — o andP*(n“(6; — ) < 0) — 3.
Equations(A.3), (A.6), (A.9), and(A.12) yield

P*(BJ:I.-/Z()A\&U)BP B, }\\au‘w,oo) = X)

(a) 2(5(a)y\1/2
—>®(X¢(Z(“))/<Ug<a(1—a)—2ad)(z ), ¢ )> )) and

$(0) $2(0)
B2 (Auy 5,8~ Aayce)
(a) 2(7(a)
45N (0,0'(;2 <a(l— a) — 2a d)(;z(o) ) + ¢¢(22(0) )>/¢2(Z(“))> (A.13)

aspdb— 0 andn — co.
This resulf (11), (A.2), and(A.8) imply that

1§ (@) — §*(@usn)|
p* 100W < pdb

|;\au,Bl,Bl - Aauﬁx,oo‘
= P*| 100 3 =100 a(1— ) — 2«

¢(0) $2(0)

@y, o0,00

2(1*7/2) 1
x <Z(1a)BiL/2> <¢(Z(la>)>(1 + 0(1))>

—1-—7 aspdb—-0 and n— oo. (A.14)

$2) ¢2<z<w>>>1/2

Thus (18) holds withB* replaced withB;.
Next we show that

B,,/B, ~>1 aspdb—0 and n-— oo (A.15)

(with respect to the simulation randomness conditional on the).dByaan analogous
argumentB,;/B; —, 1 aspdb— 0 andn — co. These results imply that

B*/B, %1 aspdb—0 and n-— . (A.16)
Equation(A.15) follows from

A A4 P~ _(1-
N(08,.0,, — ) = A{By+ D118y 1.8, —> G327 and

1
¢ (652%9/65)/65

A17
2y, (A.17)

2
( Bl > (nK(é§1~V1u+mlu - é) - nk(égla"lu_mlu - é))Z i>
aspdb — 0 andn — co. The former holds by the argument 4.8) and (A.13) using
the fact thate;, — 1 — a (provided 1— « = .99) aspdb — 0 andn — oo because
258, = 0 by (A.10) anda — 0 by (17). The latter holds by an analogous argument to
that given in Andrews and Buchinsk00Q Appendix Proofs for the Confidence In-
terval Confidence Regignand Test Applications Sectin
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Now we use equatiofA.16) and the preceding proof thét8) holds with the random
quantityB* replaced by the nonrandom quantBy to establish(18) as is
First, we have the following resulfor anyx € R,

P*(BY*(Aeygr.8® = Auynce) = X)
= P*(nk(éé*,[(awl)awq -0) = ;\au,m,oo +x/Bi?). (A.18)

(Note that we take the normalization factor to Bg not B*.) Let S;- be as defined
earlier By the same argument as used/M4), the probability in(A.18) equals

P* (S =B —[(B" + Dey g+l
= P*((B") V3(Ss — B*pg,,n) + (B")"?(ay g — ay00)
= (B")Y2(1— pg,n — @) — (B*) 2ay, g« + 0(2)). (A.19)
By the same argument as given(ih.7)—(A.12), we obtain

(B*) V2(Sg+ = B*Pg, n) + (B)V2(ay g+ — oy 00)

1 B A A
= (1+0,(D) B2 bgl((nk((ﬂf? =0)> Aoy 0o T X/BY?) = Pg, 1

+ (26(219)/(0) (L(n*(B; — 6) < 0) — P*(n“(f — 6) < 0))) + 0,(2)

¢(z«)) N cbz(z(“)))
¢(0) $2(0)

aspdb — 0 andn — oo. The convergence result holds by the central limit theorem of
Doeblin-Anscombede.g., see Chow and Teichet978 Theorem 9.1, p. 317) because
(i) the convergence result holds whBi is replaced by the nonrandom quantiy and
(if) B*/By —p 1 by (A.16).

Now, by the argument ofA.13) and (A.14), (18) holds as statedvhich concludes
the proof

We finish by showing that the formula given {@0) for C,, which is used to deter-
mine the bandwidth parametefig, andrh,, for the Siddiqui estimatoicorresponds to
that given by Hall and Sheath€t988. In our notation Hall and Sheather’s formula is

( L5(z1 /)% £ () )1/3

4N (O,a(l —a) - 2a (A.20)

A.21
3 (Qra)? — Fey ) () ) (A-21)

wheref(-) denotes the density of the.d. random variables upon which the sample
guantile is based '(-) andf ”(-) denote the first two derivatives df-), q;_, denotes
the population quantileandz®*~*/2) is as previouslyln our casewe use the asymptotic
analogs off (-) and g, _,, namely ¢(-/65)/64 and 63z, respectivelyin the for-
mula Note thate’ (x) = —x¢(X) andg” (X) = (X% — 1) (X). Thus f(gr_o) = $(z3)/
69, ' (Qu-0) = $(20)/6Z, andf " (qr-n) = ((24*)% — 1)¢(23~*)/67. Plugging
these formulae int¢A.21) gives the definition of the constaq, in (10).



