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END-OF-SAMPLE INSTABILITY TESTS

BY D. W. K. ANDREWS1

This paper considers tests for structural instability of short duration, such as at the
end of the sample. The key feature of the testing problem is that the number, m, of
observations in the period of potential change is relatively small—possibly as small as
one. The well-known F test of Chow (1960) for this problem only applies in a linear
regression model with normally distributed iid errors and strictly exogenous regressors,
even when the total number of observations, n+m, is large.

We generalize the F test to cover regression models with much more general error
processes, regressors that are not strictly exogenous, and estimation by instrumental
variables as well as least squares. In addition, we extend the F test to nonlinear models
estimated by generalized method of moments and maximum likelihood.

Asymptotic critical values that are valid as n→ ∞ with m fixed are provided using a
subsampling-like method. The results apply quite generally to processes that are strictly
stationary and ergodic under the null hypothesis of no structural instability.

KEYWORDS: Instrumental variables estimator, generalized method of moments esti-
mator, least squares estimator, parameter change, structural instability test, structural
change.

1. INTRODUCTION

THIS PAPER CONSIDERS the problem of testing for structural instability over a
short time interval, such as at the end of a sample. Most tests in the literature
are designed for detecting instability that lasts for a relatively long period of
time starting somewhere in the middle of the sample; e.g., see Andrews and
Fair (1988), Ghysels and Hall (1990), Hansen (1992), Andrews (1993), An-
drews and Ploberger (1994), Ghysels, Guay, and Hall (1997), and other refer-
ences listed in Stock (1994). These tests use asymptotics in which the number
of observations before a potential changepoint, n, and the number after the
potential changepoint, m, both go to infinity. Such tests are not appropriate
in the case considered here in which the number of observations in the period
of potential instability, m, is small—perhaps as small as one. In this paper, we
design a test that is appropriate in this case because it is asymptotically valid
when n→ ∞ with m fixed. The primary difficulty in constructing this test is in
obtaining asymptotically valid critical values.

Dufour, Ghysels, and Hall (1994) (DGH) also consider the above testing
problem. They specify three different methods of obtaining critical values.
But, each of the three methods has some drawback. The first method requires

1The author thanks Ray Fair for suggesting the testing problem considered in this paper. He
thanks Patrik Guggenberger, Ray Fair, three referees, and the co-editor for helpful comments. In
particular, he is very grateful to a referee who suggested the simplified motivation for the test sta-
tistic presented in Section 2.2. The author thanks Alastair Hall for pointing out the closely related
paper by Dufour, Ghysels, and Hall (1994). The author gratefully acknowledges the research sup-
port of the National Science Foundation via Grant Numbers SBR-9730277 and SES-0001706.

1661



1662 D. W. K. ANDREWS

strong distributional assumptions, such as normality of the errors. The second
method relies on a bound obtained using Markov’s inequality and, hence, is
not exact even in large samples. The third method utilizes semi-nonparametric
density estimation methods, which involves the usual problems associated with
choosing the most appropriate basis functions and truncation values.

The results of this paper differ from those of DGH primarily in the specifica-
tion of the critical values. The critical values considered here apply under very
weak distributional assumptions, do not involve any bounding, do not require
the specification of any truncation or smoothing parameters, and are quick to
compute. The test statistics that we consider are similar to those of DGH, but
different in some cases. In particular, the tests that we propose are more pow-
erful than those of DGH in the case where m exceeds the number of regressors
in a linear regression testing problem.

We start by considering the F test for parameter change in a linear regression
model with iid normal errors and strictly exogenous regressors, as in Chow
(1960). The F test is restrictive because it is asymptotically valid when m is
small only under the stated conditions. Even normality of the errors is needed.

The main contribution of this paper is to introduce a variant of the F test,
called the S test, that is valid under weak assumptions and applies to a wide
variety of models. We do so by constructing critical values using a subsampling-
like method. In the linear regression model, the S test is asymptotically valid
with nonnormal, heteroskedastic, conditionally heteroskedastic, and/or auto-
correlated errors and with regressors that are not strictly exogenous. The ob-
servations and/or errors could even possess long memory. The main require-
ment is that the observations are strictly stationary and ergodic under the null
hypothesis. Furthermore, the S test applies to regression models estimated by
instrumental variables (IV) and to nonlinear models estimated by generalized
method of moments (GMM) and maximum likelihood (ML).

The bulk of this paper discusses the S test for structural instability at the end
of the sample. Extending the S test to the case of potential instability at the
beginning, rather than the end, of the sample is trivial. This test can be used to
determine the start of the sample period that is most appropriate for a given
model. In addition, we show how the S test can be used to test for structural
instability that occurs over a small number of observations in the middle of the
sample. For example, the S test can be used to test for instability during war
years or during a short regime shift, such as the Federal Reserve Bank policy
regime of 1979–82. Standard tests for structural instability are not appropri-
ate in these situations because the number of observations in the period of
change, m, is small and, hence, asymptotics that rely on m→ ∞ often lead to
distortions in the null rejection rates of the tests.

Note that the S test with m= 1 can be used to test for a single outlier in the
errors at a known time. There is a considerable literature in statistics on outlier
detection; e.g., see Belsley, Kuh, and Welsch (1980) and Cook and Weisberg
(1982), to which the S test makes a contribution.
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We now briefly describe the S test for a regression model. The S test is a vari-
ant of the F test that is obtained after transforming the model to account for
serial correlation of the errors. In particular, the S test statistic is a quadratic
form in a transformed post-change residual vector evaluated at the full sample
least squares (LS) estimator. The transformation is by the square root of the
inverse of an estimator of the m×m covariance matrix of the errors. Like the
F statistic (see Chow (1960)), the weight matrix of the quadratic form depends
on whether the number of post-change observations, m, is greater than or less
than the number of regressors d. When m> d, the weight matrix is the projec-
tion matrix onto the column space of the transformed post-change regressor
matrix. When m ≤ d, the weight matrix is the inverse of the transformation
matrix squared.

Critical values for the S test statistic are obtained by a subsampling-like
method that we call parametric subsampling. One computes the n−m+ 1 test
statistics that are analogous to the S test statistic but are for testing for struc-
tural instability over the m observations that start at the jth observation, rather
than for instability starting at the (n+1)th observation, for j = 1
 � � � 
 n−m+1.
The 1 − α sample quantile of these statistics is the significance level α critical
value for the end-of-sample instability test statistic. Computation of the critical
value is relatively easy. It just requires calculation of n−m+ 1 versions of the
original S statistic. The critical value is asymptotically valid even in the pres-
ence of serial correlation of the errors because the critical value behaves like
a sample quantile based on stationary and ergodic random variables when the
sample size is large and such a sample quantile is consistent.

If the errors are believed to be uncorrelated or close to being uncorrelated,
then the S test can be simplified by replacing the transformation matrix by
the identity matrix. The resulting test is asymptotically valid whether or not
the errors are correlated. But, it has lower power than the S test if there is
significant correlation in the errors.

The parametric subsampling critical values rely on subsamples of length m,
the number of post-change observations. There is no arbitrary smoothing pa-
rameter or block length parameter to select. Also, no heteroskedasticity and
autocorrelation consistent covariance matrix estimator is required. These crit-
ical values are not pure subsampling critical values because the test statistic
for a given value of j depends on observations other than those indexed by
j
 � � � 
 j +m− 1 through the parameter estimator that is used to compute the
residuals. See Politis, Romano, and Wolf (1999) for an in-depth treatment of,
and references on, subsampling methods.

Part of the maintained hypothesis of the S test is structural stability over
the first n observations. This can be tested using standard tests for struc-
tural stability over a relatively long period of time, such as those referenced
above.

Given that m is fixed as n → ∞, the S test is not a consistent test. How-
ever, it typically is asymptotically unbiased. The power of the S test depends
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on the magnitude of the structural change relative to the error variance, as
well as on the magnitude of m. The larger is m, the greater is the power ce-
teris paribus. For small m, the power may be low if the magnitude of structural
change is not large. In consequence, failure to reject the null hypothesis should
not necessarily be interpreted as strong evidence in favor of structural stabil-
ity.

The paper presents some Monte Carlo simulation results for end-of sam-
ple instability tests for linear regression models with first-order autoregres-
sive (AR) errors and regressors. The AR parameters considered are ρ= 0
 �4,
and �8. The AR innovations considered are normal, chi-square with two de-
grees of freedom, t3, and uniform. The pre-change sample sizes are n = 100
and 250 and the post-change sample sizes are m = 10
5, and 1. We find that
the S test has null rejection probabilities that are quite close to the nominal size
of the test over the range of cases considered. On the other hand, the null re-
jection probabilities of the F test are too large whenever ρ > 0 and m> 1 and
too small whenever ρ= 0 and the errors and regressors are uniform. When the
errors are uncorrelated, the power of the S test is comparable to that of the F
test after both have been corrected to have the same null rejection probability.
When the errors are correlated, the S test has higher power than the F test
(because the S test utilizes a transformation to account for correlation of the
errors).

The S test has been used effectively by Fair (2003). Fair (2003) finds evidence
of structural change in a U.S. stock market equation in the late 1990’s, but
no structural change in most other U.S. macroeconometric equations that he
considers.

We note that the S test can be applied to pth order autoregressive models
that may have a unit root by differencing the observations and applying the
tests to the differenced data. Andrews and Kim (2002) provide closely related
tests for cointegration breakdown over short time intervals in linear cointegra-
tion models with nonstationary observations.

The remainder of this paper is organized as follows. All sections of the paper
except Section 4 discuss tests for instability that occurs at the end of the sam-
ple. Section 2 considers the linear regression model estimated by LS and pro-
vides motivation for the statistic considered in this model and others. Section 3
considers moment condition models estimated by GMM. Section 4 discusses
tests for structural instability that occurs at the beginning or in the middle of
the sample. Section 5 briefly discusses application of the tests to simple mod-
els with integrated variables. Section 6 introduces high-level assumptions, pro-
vides sufficient conditions for these assumptions for LS, linear IV, and GMM
cases, and states the main asymptotic results. Section 7 provides some Monte
Carlo results. An Appendix contains proofs.
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2. LINEAR REGRESSION MODEL

2.1. Introduction

In this section, we consider a linear regression model with d regressors, n ob-
servations before the potential changepoint, and m observations after the po-
tential changepoint:

Yi =
{
X ′

iβ0 +Ui for i= 1
 � � � 
 n


X ′
iβ1i +Ui for i= n+ 1
 � � � 
 n+m�

(2.1)

We assume that EUiXi = 0, EXiX
′
i is positive definite, and {(Yi
Xi) : i ≥ 1}

are stationary and ergodic under the null hypothesis (which implies that the
error variance, σ 2

0 
 is constant under the null hypothesis).
The null and alternative hypotheses of interest are

H0 :
{
β1i = β0 for all i= n+ 1
 � � � 
 n+m and
{(Yi
Xi) : i≥ 1} are stationary and ergodic


(2.2)

H1 :

β1i 
= β0 for some i= n+ 1
 � � � 
 n+m and/or
the distribution of (Un+1
 � � � 
Un+m) differs from
that of (Ui
 � � � 
Ui+m−1) for i= 1
 � � � 
 n−m+ 1�

The hypotheses of interest also can be expressed as

H0 :
{
E(Yi −X ′

iβ0)Xi = 0 for all i= 1
 � � � 
 n+m and
{(Yi
Xi) : i≥ 1} are stationary and ergodic


(2.3)

H1 :


E(Yi −X ′

iβ0)Xi = 0 for all i= 1
 � � � 
 n
 and
E(Yi −X ′

iβ0)Xi 
= 0 for some i= n+ 1
 � � � 
 n+m and/or
the distribution of (Un+1
 � � � 
Un+m) differs from
that of (Ui
 � � � 
Ui+m−1) for i= 1
 � � � 
 n−m+ 1�

For linear regression models estimated by LS, the hypotheses in (2.2) and
(2.3) are equivalent. But, for overidentified moment condition models esti-
mated by GMM, which are considered below, hypotheses that are analogous
to those in (2.3) allow for more general structural change than those in (2.2).
In particular, in addition to parameter change and change in the error distribu-
tion, they allow for change in overidentifying restrictions; see Ghysels and Hall
(1990) and Hall and Sen (1999). For the GMM case, the hypotheses that we
consider are analogues of (2.3), rather than (2.2) (although one could design
tests for (2.2) if desired).
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Let

Yr
s = (Yr
 � � � 
Ys)
′


Xr
s = (Xr
 � � � 
Xs)
′
 and(2.4)

Ur
s = (Ur
 � � � 
Us)
′

for 1 ≤ r ≤ s ≤ n+m.
For notational simplicity, we abbreviate the subscript “n+1
 n+m” by “n+.”

For example, Yn+ = Yn+1
n+m.

2.2. Motivation for the Test Statistic

In this subsection, we consider the standard F statistic for a one-time shift
in the parameters in the fixed-regressor normal linear regression model. This
statistic motivates the form of the test statistics considered in the paper for
more general models—both regression models and others. The F statistic that
we consider is based on a one-time shift in the parameters, but it has power
against more general types of structural change.

We note that the standard F test should not be used for the model and hy-
potheses in (2.1) and (2.3) because it is asymptotically valid only if the errors
are normal, iid, and homoskedastic. (This occurs because the number of post-
change observations, m, is fixed as n → ∞.) These conditions on the errors
are very restrictive. There are few applications in economics in which a test
of structural change is of interest and these conditions are satisfied. In conse-
quence, we propose alternative tests to the F test that utilize critical values that
allow for much more general error processes. We consider test statistics that
are slight variants of the F statistic, as we now describe.

We distinguish between the “test-generating” model and hypotheses consid-
ered in this subsection and the more general model and hypotheses of interest
specified in (2.1) and (2.3). Let β0 denote the parameter vector for the first n
observations. Suppose β0 is known. The test-generating model for the last m
observations can be written in matrix notation as

Yn+ − Xn+β0 = Xn+δ0 + Un+�(2.5)

The test-generating null and alternative hypotheses are δ0 = 0 and δ0 
= 0, re-
spectively, where δ0 is a d-vector. Suppose the errors are iid normal and the
regressors are fixed (i.e., exogenous). Then, the F test for testing δ0 = 0 has
well-known optimality properties; e.g., see Scheffé (1959, Sec. 2.10). These
optimality properties are the motivation for constructing test statistics below
based on the F statistic.
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The F statistic is based on the difference between the restricted and unre-
stricted sums of squares:

SSRR = (Yn+ − Xn+β0)
′(Yn+ − Xn+β0) and

SSRU = (Yn+ − Xn+β0)
′(Im − PXn+)(Yn+ − Xn+β0)


(2.6)

where PXn+ is the projection matrix onto the column space of the post-change
regressor matrix Xn+. In particular, the numerator of the F statistic is

SSRR − SSRU = (Yn+ − Xn+β0)
′PXn+(Yn+ − Xn+β0)�(2.7)

The denominator of the F statistic is given by an estimator of the error vari-
ance times a constant. The denominator is employed to yield a test that is in-
variant to the error variance. It does not add to the power of the test. For the
tests introduced below, we use a subsampling critical value that does not re-
quire estimation of the error variance to achieve invariance. In consequence,
the test statistic we consider is based on the numerator of the F statistic as
given in (2.7).

If the errors are serially correlated, then a more powerful test can be ob-
tained by transforming the model (2.5) using the m×m covariance matrix Σ0

of Un+. Suppose Σ0 is known and is positive definite. Then, the transformed
test-generating model is

Y∗
n+ − X∗

n+β0 = X∗
n+δ0 + U∗

n+
 where(2.8)

Y∗
n+ = Σ−1/2

0 Yn+


X∗
n+ = Σ−1/2

0 Xn+
 and

U∗
n+ = Σ

−1/2
0 Un+�

The numerator of the F statistic for the transformed model is

(Y∗
n+ − X∗

n+β0)
′PX∗

n+(Y
∗
n+ − X∗

n+β0)�(2.9)

When the number of post-change observations, m, is greater than or equal to
the dimension of the regression parameter vector, d (and Xn+ has full column
rank d), the numerator of the F statistic can be written as

(Yn+ − Xn+β0)
′Σ−1

0 Xn+(X′
n+Σ

−1
0 Xn+)−1X′

n+Σ
−1
0 (Yn+ − Xn+β0)�(2.10)

When the number of post-change observations, m, is less than or equal to the
dimension of the regression parameter vector, d (and Xn+ has rank m), the
projection matrix PX∗

n+ equals Im and the numerator of the F statistic reduces
to

(Yn+ − Xn+β0)
′Σ−1

0 (Yn+ − Xn+β0)�(2.11)
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Note that when m= d, Xn+ is a square invertible matrix and the two formulae
coincide.

The test statistics that we consider below are based on the formulae of (2.10)
and (2.11) for the cases where m≥ d and m≤ d, respectively.

2.3. Definition of the S Test Statistic

In this subsection we define the recommended test statistic S for the model
and hypotheses specified in (2.1) and (2.3). It is based on the formulae of (2.10)
and (2.11) with β0 and Σ0 replaced by estimators. This replacement does not
affect the asymptotic properties of the test because the estimators of β0 and
Σ0 are based on n+m observations, where n+m→ ∞, whereas the quadratic
forms in (2.10) and (2.11) are based on only m observations, where m� ∞.

We now define S. Let

β̂n+m = LS estimator of β using observations indexed(2.12)
by i= 1
 � � � 
 n+m�

The estimator of the m× m covariance matrix of the errors, Σ0 = EU1
mU′
1
m,

is

Σ̂n+m = (n+ 1)−1
n+1∑
j=1

Ûj
j+m−1Û′
j
j+m−1
 where(2.13)

Ûj
j+m−1 = Yj
j+m−1 − Xj
j+m−1β̂n+m�

(Note that by stationarity and ergodicity under H0, Σ0 = EUj
j+m−1U′
j
j+m−1 for

any j = 1
 � � � 
 n+ 1�)
When m≥ d, the statistic S is defined as

S = Sn+1(β̂n+m
 Σ̂n+m),(2.14)

where

Sj(β
Σ)=Aj(β
Σ)
′V −1

j (Σ)Aj(β
Σ)


Aj(β
Σ)= X′
j
j+m−1Σ

−1(Yj
j+m−1 − Xj
j+m−1β)
(2.15)

Vj(Σ)= X′
j
j+m−1Σ

−1Xj
j+m−1


β ∈ Rd , and Σ is a nonsingular m×m matrix, for j = 1
 � � � 
 n+ 1. (Note that
we define Sj(β
Σ), Aj(β
Σ), and Vj(Σ) for j = n+ 1 and j 
= n+ 1 in (2.15)
because for j 
= n+ 1 these quantities are used in the subsample statistics in-
troduced below.)

The statistic S is a positive definite quadratic form given by the projec-
tion of the transformed m-vector of post-change residuals, Σ̂−1/2

n+m(Yj
j+m−1 −
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Xj
j+m−1β̂n+m), onto the column space of the post-change transformed regres-
sor matrix Σ̂−1/2

n+mXj
j+m−1. If the null hypothesis is true, the post-change residuals
are centered around zero and the quadratic form has a distribution that is rel-
atively close to zero. On the other hand, if the alternative hypothesis is true,
the post-change residuals are not centered around zero, because the LS esti-
mator β̂n+m is not a consistent estimator of the post-change β1i vectors, and
the quadratic form has a distribution that is farther from zero. Thus, a large
value of S is evidence against the null hypothesis.

When m≤ d, the statistic S is defined as

S = Pn+1(β̂n+m
 Σ̂n+m)
 where(2.16)

Pj(β
Σ)= (Yj
j+m−1 − Xj
j+m−1β)
′Σ−1(Yj
j+m−1 − Xj
j+m−1β)(2.17)

and β̂n+m and Σ̂n+m are as defined above.
When m ≤ d, S is the sum of squared transformed post-change residuals.

Again, large values of S provide evidence against the null hypothesis.
The test statistic Pn+1(β̂n+m
 Σ̂n+m) is well defined even if m> d. For conve-

nience, for all m and d, we define

P = Pn+1(β̂n+m
 Σ̂n+m)�(2.18)

(Hence, for m ≤ d, S = P�) In Section 7, a test based on P is compared via
simulation to one based on S when m > d to see whether projection on the
space spanned by the transformed post-change regressor matrix improves per-
formance.

2.4. Critical Values and p-Values

Critical values for the statistic S are obtained as follows. Under the null,
{Sj(β
Σ) : j ≥ 1} are stationary and ergodic for all β and Σ because {(Yi
Xi) :
i ≥ 1} are stationary and ergodic. In addition, β̂n+m and Σ̂n+m are consistent
estimators of β0 and Σ0 respectively. In consequence, the asymptotic null dis-
tribution of Sn+1(β̂n+m
 Σ̂n+m) is the distribution of S1(β0
Σ0) (see Theorem 1
below). The empirical distribution function (df) of {Sj(β
Σ) : j = 1
 � � � 
 n −
m+ 1} is a consistent estimator of the df of S1(β
Σ) for all β and Σ. This holds
under the null and the alternative because {Sj(β
Σ) : j = 1
 � � � 
 n − m + 1}
only depends on the stationary and ergodic pre-change observations {(Yi
Xi) :
i = 1
 � � � 
 n}. Hence, one can consistently estimate the df of S1(β0
Σ0) by us-
ing the empirical df of {Sj(β
Σ) : j = 1
 � � � 
 n−m+ 1} evaluated at consistent
estimators of β0 and Σ0 (see Theorem 1 below).

We evaluate Sj(β
Σ) at the following consistent estimator of β0. Let

β̂2(j) = LS estimator of β using observations indexed by i= 1
 � � � 
 n(2.19)
with i 
= j
 � � � 
 j + �m/2� − 1
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where �m/2� denotes the smallest integer that is greater than or equal to m/2,
for j = 1
 � � � 
 n−m+ 1. Thus, β̂2(j) is a LS estimator that leaves out the �m/2�
observations that start at observation j. The choice of leaving out �m/2� obser-
vations is based on small sample considerations discussed in detail in Andrews
(2002) and discussed briefly below.

When m≥ d, the statistics {Sj : j = 1
 � � � 
 n−m+ 1} are defined as

Sj = Sj(β̂2(j)
 Σ̂n+m)
(2.20)

where Σ̂n+m and Sj(·
 ·) are defined in (2.13) and (2.15), respectively.
When m≤ d, the statistics {Sj : j = 1
 � � � 
 n−m+ 1} are defined as

Sj = Pj(β̂2(j)
 Σ̂n+m)
(2.21)

where Σ̂n+m and Pj(·
 ·) are defined in (2.13) and (2.17), respectively.
For a test with asymptotic significance level α, the critical value for S is the

1 − α sample quantile, q̂S
1−α, of {Sj : j = 1
 � � � 
 n−m+ 1}. That is,

q̂S
1−α = inf{x ∈R : F̂S
n(x)≥ 1 − α}
(2.22)

where F̂S
n(x) denotes the empirical df of {Sj : j = 1
 � � � 
 n−m+1}. One rejects
H0 if S > q̂S
1−α. Equivalently, one rejects H0 if S exceeds 100(1 − α)% of the
values {Sj : j = 1
 � � � 
 n−m+ 1}—that is, if

(n−m+ 1)−1
n−m+1∑
j=1

1(S > Sj)≥ 1 − α�(2.23)

The p-value for the S test is

pvS = (n−m+ 1)−1
n−m+1∑
j=1

1(S ≤ Sj)�(2.24)

(Note that, although Sj(β
Σ), Aj(β
Σ), and Vj(Σ) are defined for j =
1
 � � � 
 n+ 1, the sums in (2.23) and (2.24) are only over j = 1
 � � � 
 n−m+ 1�)

These critical values and p-values allow for nonnormal, dependent, het-
eroskedastic errors. The main assumptions for their asymptotic validity are
that {(Yi
Xi) : i ≥ 1} is stationary and ergodic under the null hypothesis,
EU1X1 = 0, EX1X

′
1 is positive definite, U1 has an absolutely continuous distri-

bution, and some moment conditions hold. (Assumptions are stated formally
in Section 6 below.)

The motivation for leaving out �m/2� observations in the definition of β̂2(j)

is as follows. Suppose the estimator β̂n+m is used in the definition of the sub-
sample statistics Sj . Then, the resulting test has the correct asymptotic null
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rejection rate, but simulations show that it rejects the null hypothesis too of-
ten in samples of sizes 100 and 250. That is, the subsample statistics are not
variable enough relative to the statistic S to yield a test with the desired null
rejection probability.

One can make the subsample statistics more variable by using the estimator,
β̂(j), that leaves out the m observations starting at the jth observation because
then β̂(j) does not depend on the observations used in the quadratic form.
However, simulations show that the resulting test does not reject the null hy-
pothesis often enough in samples of sizes 100 and 250. A compromise between
the two estimators β̂n+m and β̂(j) for use in the jth subsample statistic is the es-
timator β̂2(j). Simulations show that this choice yields very good null rejection
probabilities for a wide variety of different error processes and sample sizes
100 and 250; see Section 7 below. See Andrews (2002) for additional simula-
tion results for several different statistics.

Simulation results reported in Andrews (2002) indicate that the estimation
of Σ0 via Σ̂n+m, as compared to using Im in place of Σ̂n+m in both S and Sj ,
does not distort null rejection probabilities and costs little or nothing in terms
of power when the errors are uncorrelated. But, it yields considerable gains in
power when the errors exhibit significant serial correlation. In consequence,
our recommended test S employs estimation of Σ0.

Critical values and p-values for the test based on P are defined analogously
to those for S. Specifically, they are based on the subsample statistics

Pj = Pj(β̂2(j)
 Σ̂n+m)(2.25)

for j = 1
 � � � 
 n−m+ 1.

2.5. Issues of Power

The null hypothesis H0 imposes stationarity of {(Yi
Xi) : i ≥ 1}. Hence, a
change in the distribution of the regressors {Xi : i ≥ 1} is not part of H0. In
many cases, this is not desirable. One does not want to reject the null hypoth-
esis due to just a change in the regressor distribution.

As it turns out, this is not a problem. When m≤ d, the S test has no power
asymptotically against changes in the regressor distribution because the test
statistic depends only on the residuals for i = n+ 1
 � � � 
 n+m. When m> d,
the S test has no power against location and/or scale changes in the regressor
distribution. Furthermore, Monte Carlo simulations show that changes in the
shape of the regressor distribution beyond location and scale changes have
very little effect on the rejection rates of the S test when the parameters are
constant and the error distribution is constant; see Section 7.2.3. Hence, the
S test appears to have little to no power against changes just in the regressor
distribution.
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On the other hand, when m ≤ d the S test has power against changes in
the error distribution that increase the 1 − α quantile of the distribution of
the quadratic form U′

n+Σ
−1
0 Un+. Similarly, when m > d, the S test has power

against changes in the error distribution that increase the 1 −α quantile of the
distribution of Σ−1/2

0 Un+ after projection onto the column space spanned by
the transformed post-change regressors Σ−1/2

0 Xn+. For example, a sufficiently
large increase in the variance of the errors causes the test to reject the null
hypothesis.

The S test obviously has power against changes in the parameter vector β0.
Hence, rejection of the null hypothesis by S provides evidence that either the
parameter vector has changed or the error distributions have became more
variable (roughly speaking).

3. GENERALIZED METHOD OF MOMENTS

3.1. Introduction

In this section, we extend the S test for the linear regression model to mo-
ment condition models estimated by GMM. This extension covers tests of
structural change for linear regression models estimated by IV. It also cov-
ers models estimated by ML by taking the GMM moment function g(Wi
β) to
be the ML score function for the ith observation conditional on the previous
observations.

We consider GMM moment conditions given by

Eg(Wi
β0)= 0
(3.1)

where g(·
 ·) is a vector-valued function. As in the linear regression case, the
observations are indexed by i = 1
 � � � 
 n+m and the potential changepoint is
at i= n.

The two cases distinguished in the linear regression section, namely, m≥ d
and m≤ d, also arise here, but the distinction depends on the number of mo-
ments, rather than on the dimension of Xi. Hence, in the GMM case, we let d
denote the dimension of the function g(·
 ·) and we let dβ denote the dimen-
sion of the parameter β. We assume that d ≥ dβ.

The null and alternative hypotheses of interest are

H0 :
{
Eg(Wi
β0)= 0 for all i= 1
 � � � 
 n+m and
{Wi : i≥ 1} are stationary and ergodic


(3.2)

H1 :


Eg(Wi
β0)= 0 for all i= 1
 � � � 
 n and
Eg(Wi
β0) 
= 0 for some i= n+ 1
 � � � 
 n+m and/or
the distribution of {g(Wn+1
β0)
 � � � 
 g(Wn+m
β0)}differs from
that of {g(Wi
β0)
 � � � 
 g(Wi+m−1
β0)} for i= 1
 � � � 
 n−m+ 1�
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The alternative hypothesis H1 covers parameter instability, i.e., β1i 
= β0 for
some i = n + 1
 � � � 
 n + m and instability in the validity of the moment con-
ditions, i.e., Eg(Wi
β0) 
= 0 for some i = n + 1
 � � � 
 n + m. Tests have power
against instability in the validity of the moment conditions only if there are
overidentifying restrictions, i.e., d > dβ. Hence, the alternative effectively en-
compasses parameter instability and instability in overidentifying restrictions;
see Hall and Sen (1999).

The main assumptions are that {Wi : i ≥ 1} are stationary and ergodic un-
der the null hypothesis and Eg(Wi
β0) = 0 for all i = 1
 � � � 
 n + m for some
β0 ∈Rdβ under the null hypothesis. See Section 6 for additional regularity con-
ditions.

A special case of the GMM moment condition model is the linear IV model.
In this case, the model is as in (2.1), but with regressors that may be correlated
with the errors, and one has a d-vector Zi of IV’s for i= 1
 � � � 
 n+m. For the
linear IV model, the function g(Wi
β) is

g(Wi
β)= (Yi −X ′
iβ)Zi�(3.3)

In this model, the null and alternative hypotheses of (3.2) are the same as in
(2.3) but with the LS moments, E(Yi −X ′

iβ0)Xi, replaced by the IV moments,
E(Yi −X ′

iβ0)Zi.

3.2. GMM Estimators

We consider one-step, two-step, and continuously updated (CU) GMM es-
timators. The GMM estimator using the observations indexed by i = 1
 � � � 

n+m, denoted β̂n+m, is defined to minimize one of the following three criteria
over the parameter space B:

Q(1)
n+m(β)=

(
n+m∑
i=1

g(Wi
β)

)′

V−1
n+m∑
i=1

g(Wi
β)


Q(2)
n+m(β)=

(
n+m∑
i=1

g(Wi
β)

)′

V−1
n+m(β̃n+m)

n+m∑
i=1

g(Wi
β)
 and(3.4)

Q(CU)
n+m (β)=

(
n+m∑
i=1

g(Wi
β)

)′

V−1
n+m(β)

n+m∑
i=1

g(Wi
β)


where Q(1)
n+m(β), Q

(2)
n+m(β), and Q(CU)

n+m (β) are the one-step, two-step, and CU
GMM criterion functions, respectively; the one-step weight matrix V is some
fixed nonstochastic matrix, such as Id; the weight matrix Vn+m(β) depends on
the observations; and the estimator β̃n+m that appears in the two-step weight
matrix is the one-step GMM estimator.
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For j = 1
 � � � 
 n − m + 1, the one-step, two-step, and CU GMM criterion
functions, Q(k)

2(j)(β) for k= 1, 2, CU and estimators β̂2(j) are defined using the
same weight matrix but taking the sum

∑n+m
i=1 g(Wi
β) only over the observa-

tions indexed by i= 1
 � � � 
 n with i 
= j
 � � � 
 j + �m/2� − 1.
In the special case of the linear IV model, all three full-sample GMM esti-

mators reduce to the linear IV estimator:

β̂n+m = (X′
1
n+mPZ1
n+m

X1
n+m)−1X′
1
n+mPZ1
n+m

Y1
n+m
 where(3.5)

Z1
n+m = (Z1
 � � � 
Zn+m)′ and

PZ1
n+m
= Z1
n+m(Z′

1
n+mZ1
n+m)−1Z′
1
n+m�

The estimator β̂2(j) in the linear IV model is defined as in (3.5), but with the
rows of Y1
n+m, X1
n+m, and Z1
n+m indexed by i = j
 � � � 
 j + �m/2� − 1 elimi-
nated.

3.3. GMM: Case 1

First, we consider the case where the moment conditions are of the form:

g(Wi
β)=U(Wi
β)Z(Wi
β)
(3.6)

where U(Wi
β) ∈ R, Ui = U(Wi
β0) is an error term, and Z(Wi
β) is a d-
vector of instruments.

In this case, the (S
Sj) statistics are given by

S =
{
Sn+1(β̂n+m
 Σ̂n+m) when m≥ d


and
Pn+1(β̂n+m
 Σ̂n+m) when m≤ d


(3.7)

Sj =
{
Sj(β̂2(j)
 Σ̂n+m) when m≥ d


Pj(β̂2(j)
 Σ̂n+m) when m≤ d


where Sj(β
Σ) and Pj(β
Σ) are defined by

Sj(β
Σ)=Aj(β
Σ)
′V −1

j (Σ)Aj(β
Σ)

(3.8)

Pj(β
Σ)= Uj
j+m−1(β)
′Σ−1Uj
j+m−1(β)


Uj
j+m−1(β)= (U(Wj
β)
 � � � 
U(Wj+m−1
β))
′
(3.9)

Aj(β
Σ)= Zj
j+m−1(β)
′Σ−1Uj
j+m−1(β)


(3.10)
Zj
j+m−1(β)= (Z(Wj
β)
 � � � 
Z(Wj+m−1
β))

′
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Vj(Σ)= Vj(β̂n+m
Σ)

(3.11)

Vj(β
Σ)= Zj
j+m−1(β)
′Σ−1Zj
j+m−1(β)


and

Σ̂n+m = Σ̂n+m(β̂n+m)

(3.12)

Σ̂n+m(β)= (n+ 1)−1
n+1∑
j=1

Uj
j+m−1(β)Uj
j+m−1(β)
′�

Note that the (S
Sj) statistics have the same definition as in the LS case,
but with Uj
j+m−1(β) in place of Yj
j+m−1 − Xj
j+m−1β and Zj
j+m−1(β) in place of
Xj
j+m−1.

Critical values and p-values for the S test in the GMM context are con-
structed in the same way as in Section 2.4 for the linear regression model.

As stated above, the S test has power against parameter instability and inva-
lidity of overidentifying restrictions. In addition, when the moment conditions
are of the form (3.6), the S test has power against changes in the error dis-
tribution that increase the variability of the errors, as in the linear regression
case.

The GMM version of the test based on P is defined as in (2.18) and (2.25),
but with Pj(β
Σ), β̂n+m, and Σ̂n+m as defined above.

3.4. GMM: Case 2

When the moment conditions are not of the form (3.6), S cannot be defined
as in (3.6) because the matrices Σ0 and Σ̂n+m are not defined. For example, for
models estimated by ML, the score function is not of the form (3.6) (except
for normal linear or nonlinear regression models). In this case, we define the
statistics S and Sj as follows:

S = Sn+1(β̂n+m) and Sj = Sj(β̂2(j))
 where(3.13)

Sj(β)=Aj(β)
′V −1

j (β)Aj(β)


Aj(β)=
j+m−1∑
i=j

g(Wi
β)


and Vj(β)= V (Wj
 � � � 
Wj+m−1
β) is some positive definite weight matrix that
is a function of the observations Wj
 � � � 
Wj+m−1 and the parameter β for j =
1
 � � � 
 n+ 1. When m≥ d, one can take

Vj(β)=
j+m−1∑
i=j

g(Wi
β)g(Wi
β)
′�(3.14)
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When m< d, one can take

Vj(β)= 1
n+m

n+m∑
i=1

g(Wi
β)g(Wi
β)
′(3.15)

or Vj(β)= Im. The asymptotic results given below cover both choices and any
other choice of Vj(β) that satisfies the stated assumptions.

Note that the above definition of S is essentially the same as that given in
the previous subsection but with Σ̂n+m = Im and with a slightly different weight
matrix.

There is no GMM version of P in case 2 because there is no scalar error
U(Wi
β) upon which to base it.

4. TESTS FOR INSTABILITY AT THE BEGINNING
OR IN THE MIDDLE OF THE SAMPLE

The tests introduced above can be altered to detect instability occurring at
the beginning or in the middle of the sample. We consider the case of testing
for structural instability for the m observations indexed by i= i0
 � � � 
 i0 +m−1
when the total number of observations is n+m.

For the GMM case, the null and alternative hypotheses are given by

H0 :
{
Eg(Wi
β0)= 0 for all i= 1
 � � � 
 n+m and
{Wi : i≥ 1} are stationary and ergodic


(4.1)

H1 :


Eg(Wi
β0)= 0 for all i= 1
 � � � 
 i0 − 1
 i0 +m
 � � � 
 n+m and
Eg(Wi
β0) 
= 0 for some i= i0
 � � � 
 i0 +m− 1 and/or
the distribution of {g(Wi0
β0)
 � � � 
 g(Wi0+m−1
β0)}differs from
that of {g(Wi
β0)
 � � � 
 g(Wi+m−1
β0)} for i= 1
 � � � 
 i0 −m

i0 +m
 � � � 
 n+ 1�

One can construct tests for these hypotheses by first computing β̂n+m
and Σ̂n+m using the formulae given above. Then, one moves the summands
{g(Wi
β) : i = i0
 � � � 
 i0 + m − 1} to the end of the sample and shifts the ob-
servations following {g(Wi
β) : i= i0
 � � � 
 i0 +m− 1} up to eliminate the gap.
In this way, the original observations {g(Wi
β) : i= i0
 � � � 
 i0 +m− 1} become
indexed by i = n + 1
 � � � 
 n + m and the original observations {g(Wi
β) : i =
i0 + m
 � � � 
 n + m} become indexed by i = i0
 � � � 
 n. After making this shift,
one computes the statistics S and Sj using the formulae given above. (The
weight matrix used to compute the GMM estimator β̂2(j) is the same as that
used to compute β̂n+m above.) One constructs critical values and/or p-values
as above, but only using the subsample statistics {Sj : j = 1
 � � � 
 n + m − 1
with j 
= max(i0 − m + 1
1)
 � � � 
min(i0 − 1
 n− m + 1)}. Thus, in (2.23) and
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(2.24), the sum is over fewer than n+m− 1 terms (unless i0 = 1 or n+ 1) and
the multiplicand (n+m− 1)−1 is replaced by the reciprocal of the number of
subsample values being employed.

The reason that some subsample statistics are dropped is that there is a join
point between the observations indexed by i = i0 − 1 and i = i0 in the shifted
sample. These adjacent observations really occur m time periods apart. Af-
ter dropping the subsample statistics indicated above, none of the subsample
statistics are based on observations indexed by both i= i0 − 1 and i= i0.

At most m− 1 subsample statistics are dropped due to the join point issue.
If i0 <m or i0 > n − m + 2, then fewer than m − 1 are dropped. If i0 = 1 or
n+ 1, none are dropped.

For the linear regression testing problem, the same procedure as above is
followed taking g(Wi
β)= (Yi −X ′

iβ)Xi.

5. APPLICATION TO MODELS WITH I(1) VARIABLES

The tests introduced above can be applied to some models with integrated
variables of order one (I(1)). For example, consider two common (p + 1)th
order autoregressive models with possible unit roots written in Dickey–Fuller
representation:

Yi = µ+ αYi−1 + γ1.Yi−1 + · · · + γp.Yi−p +Ui and
(5.1)

Yi = µ+βi+ αYi−1 + γ1.Yi−1 + · · · + γp.Yi−p +Ui�

The second model contains a time trend. If α = 1, the models have unit roots
and are nonstationary. However, if the characteristic polynomial associated
with the parameters (α
γ1
 � � � 
 γp) has at most one unit root and all other
roots lie outside the unit circle, then differenced versions of these models are
strictly stationary for |α| ≤ 1 under suitable conditions on the errors Ui:

.Yi = (α+ γ1).Yi−1 + (γ2 − γ1).Yi−2 + · · ·
+ (γp − γp−1).Yi−p−2 − γp.Yi−p−1 +.Ui and

(5.2)
.Yi = β+ (α+ γ1).Yi−1 + (γ2 − γ1).Yi−2 + · · ·

+ (γp − γp−1).Yi−p−2 − γp.Yi−p−1 +.Ui�

In consequence, in the unit root case, one can test for structural instability at
the end of the sample by applying the tests above to the models written in
differenced form (5.2).

6. ASYMPTOTIC RESULTS

In this section, we show that the S test introduced above is asymptotically
valid under suitable conditions.
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6.1. Assumptions

In order to determine the behavior of the random critical values defined
above under both H0 and H1, it is convenient to consider a sequence of random
variables {W0
i : i ≥ 1} that are stationary and ergodic under both H0 and H1.
Under H0, the observations are Wi = W0
i for i = 1
 � � � 
 n+m. Under H1, the
observations are from a triangular array, rather than a sequence, because the
changepoint n changes as n → ∞. Under H1, the observations are Wi = W0
i

for i = 1
 � � � 
 n and Wi = Wn
i for i = n + 1
 � � � 
 n + m, where {Wn
i : i = n +
1
 � � � 
 n+m} are some random variables whose joint distribution is different
from that of {W0
i : i = n + 1
 � � � 
 n + m}. We assume that the distribution of
{Wn
i : i= n+ 1
 � � � 
 n+m} is independent of n. That is, we consider fixed, not
local, alternatives.

For simplicity and generality, we state one set of high-level conditions that
applies to linear regression and moment condition models. Then, we provide
primitive sufficient conditions for the linear regression model estimated by LS,
the linear regression model estimated by IV, and the moment condition model
estimated by GMM.

Let B(β0
 ε) denote a ball centered at β0 with radius ε > 0. Let ∂/∂(β
Σ−1)
denote partial differentiation with respect to β and the nonredundant ele-
ments of Σ−1.

ASSUMPTION 1: {W0
i : i≥ 1} are stationary and ergodic.

ASSUMPTION 2: (a) ‖β̂n+m − β0‖ →p 0 and supj=1
���
n−m+1 ‖β̂2(j) − β0‖ →p 0
n→ ∞ with m fixed under H0 and H1.

(b) supβ∈B(β0
εn)
‖Σ̂n+m(β) − Σ0‖ →p 0 as n → ∞ for some nonsingular ma-

trix Σ0, for all sequences of constants {εn : n≥ 1} for which εn → 0 as n→ ∞.

ASSUMPTION 3: (a) Sn+1(β
Σ) is continuously differentiable in a neighbor-
hood of (β0
Σ0) with probability one under H0 and H1, where Σ0 is as in As-
sumption 2(b), when m> d and likewise for Pn+1(β
Σ) when m≤ d.

(b) Either

E sup
β∈B(β0
ε)
Σ∈N(Σ0)

‖(∂/∂(β
Σ−1))S1(β
Σ)‖<∞

or

(n−m+ 1)−1
n−m+1∑
j=1

sup
β∈B(β0
ε)
Σ∈N(Σ0)

‖(∂/∂(β
Σ−1))Sj(β
Σ)‖ =Op(1)

for some ε > 0, where Σ0 is as in Assumption 2(b) and N(Σ0) denotes some
neighborhood of Σ0, when m> d and likewise for Pj(β
Σ) when m≤ d.
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(c) The distribution function of S1(β0
Σ0) is continuous and increasing at its
1 − α quantile, where Σ0 is as in Assumption 2(b), when m> d and likewise for
P1(β0
Σ0) when m≤ d.

Assumption 1 is fairly general compared to many assumptions in the test-
ing literature. It allows for both asymptotically weakly dependent processes,
such as mixing and near epoch dependent processes, as well as long-memory
processes. It allows for conditional variation in all moments, including condi-
tional heteroskedasticity.

Assumptions 2 and 3 hold for LS, linear IV, and GMM estimators under
appropriate regularity conditions. The following are sufficient:

ASSUMPTION LS:
(a) EU1X1 = 0.
(b) EU2

1 <∞ and E‖X1‖2+δ <∞ for some δ > 0.
(c) EX1X

′
1 and Σ0 =EU1
mU′

1
m are positive definite.
(d) The df of S1(β0
Σ0) is continuous and increasing at its 1 −α quantile when

m> d and likewise for P1(β0
Σ0) when m≤ d.

ASSUMPTION IV:
(a) EU1Z1 = 0.
(b) EU2

1 <∞, E‖X1‖2 <∞, and E‖Z1‖2+δ <∞ for some δ > 0.
(c) EZ1Z

′
1 and Σ0 = EU1
mU′

1
m are positive definite and EX1Z
′
1 has full row

rank.
(d) The df of S1(β0
Σ0) is continuous and increasing at its 1 −α quantile when

m> d and likewise for P1(β0
Σ0) when m≤ d.

ASSUMPTION GMM:
(a) Eg(W1
β)= 0 for β ∈ B if and only if β= β0 ∈ B.
(b) B is compact.
(c) g(W1
β) is continuous on B almost surely and Eg(W1
β) is continuous

on B.
(d) E supβ∈B ‖g(W1
β)‖1+δ <∞ for some δ > 0.
(e) The one-step GMM weight matrix V is nonstochastic and positive definite;

the two-step GMM weight matrix function Vn+m(β) satisfies supβ∈B(β0
ε)
|Vn+m(β)

−V(β)| →p 0 for some ε > 0, for some symmetric positive definite nonstochastic
function V(β) defined on B(β0
 ε) that is continuous at β0; and the CU weight
matrix function Vn+m(β) satisfies analogous convergence conditions on B.

(f) When S is defined as in case 2, (i) g(W1
β) is continuously differen-
tiable on a neighborhood of β0 almost surely, (ii) E supβ∈B(β0
ε)

‖g(W1
β)‖2

< ∞, (iii) E supβ∈B(β0
ε)
(‖(∂/∂β′)g(W1
β)‖ · ‖g(W1
β)‖) < ∞, (iv) Vj(β) =

V (Wj
 � � � 
Wj+m−1
β) is a positive definite weight matrix that is a function
of the observations Wj
 � � � 
Wj+m−1 and the parameter β and is continuously
differentiable in β on a neighborhood of β0 almost surely for j = 1
 � � � 
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n+1, (v) supj=1
���
n−m+1 supβ∈B(β0
ε)
(‖V −1

j (β)‖+‖(∂/∂βr)V
−1
j (β)‖)=Op(1) for

r = 1
 � � � 
 dβ for some ε > 0. When S is defined as in case 1, EU1
mU′
1
m

is positive definite and E supβ∈B(β0
ε)
U2(W1
β) < ∞. When S is defined as

in case 1 and m> d, U(W1
β) and Z(W1
β) are continuously differen-
tiable on a neighborhood of β0 almost surely, E supβ∈B(β0
ε)

‖Z(W1
β)‖2 < ∞,
E supβ∈B(β0
ε)

‖(∂/∂β′)U(W1
β)‖2 <∞, E supβ∈B(β0
ε)
‖(∂/∂β′)Z(W1
β)‖2 <∞,

conditions (iv) and (v) hold with Vj(β) replaced by Vj(β
Σ), the suprema
also taken over Σ in some neighborhood N(Σ0) of Σ0, and ∂/∂βr replaced by
∂/∂(β
Σ−1)r , where the latter denotes partial differentiation with respect to the rth
element of the vector comprised ofβ and the nonredundant elements ofΣ−1. When
S is defined as in case 1 and m≤ d, U(W1
β) is continuously differentiable on a
neighborhood of β0 almost surely and E supβ∈B(β0
ε)

‖U(W1
β)(∂/∂β)U(W1
β)‖
<∞.

(g) The df of S1(β0
Σ0) is continuous and increasing at its 1 −α quantile when
m> d and likewise for P1(β0
Σ0) when m≤ d.

Assumptions LS, IV, and GMM(a)–(d) only place restrictions on the distrib-
ution of the first observation. By stationarity, this has implications for the distri-
butions of all of the observations under H0 and for the “pre-change” observa-
tions under H1. Assumptions LS, IV, and GMM(a)–(d) place no restrictions on
the distributions of the “post-change” observations even though Assumptions
2 and 3 are required to hold under H0 and H1. Nevertheless, Assumptions LS,
IV, and GMM are each sufficient for Assumptions 2 and 3. This is possible be-
cause in Assumption 2 the post-change observations only affect the estimators
β̂n+m and Σ̂n+m and their behavior is dominated by the pre-change observations
and in Assumption 3 the post-change observations only affect Sn+1(β0
Σ0) or
Pn+1(β0
Σ0) and whether they are continuously differentiable does not depend
on the distribution of the observations.

A simple sufficient condition for Assumptions LS(d) and IV(d) is that U1

has an absolutely continuous distribution. A simple sufficient condition for As-
sumption GMM(g) is that U(W1
β0) has an absolutely continuous distribution
when S is defined as in case 1 and that g(W1
β0) has an absolutely continuous
distribution when S is defined as in case 2.

Assumptions GMM(a)–(e) are used to verify Assumption 2(a). Assump-
tion GMM(f) is used to verify Assumptions 2(b), 3(a), and 3(b). Assumption
GMM(g) is equivalent to Assumption 3(c).

LEMMA 1: (a) Assumptions 1 and LS imply that Assumptions 2 and 3 hold for
the linear regression model estimated using the LS estimator.

(b) Assumptions 1 and IV imply that Assumptions 2 and 3 hold for the IV
regression model estimated using the IV estimator.

(c) Assumptions 1 and GMM imply Assumptions 2 and 3 hold for the moment
condition model estimated using a GMM estimator with S defined as in case 1
or 2.
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6.2. Results

In this subsection, we state the asymptotic results that justify the use of the
data-dependent critical values that are introduced above.

Let F̂S
n(x) denote the empirical df based on {Sj : j = 1
 � � � 
 n−m+1}. That
is,

F̂S
n(x)= 1
n−m+ 1

n−m+1∑
j=1

1(Sj ≤ x)�(6.1)

Let FS(x) denote the df at x of S1(β0
Σ0) when m > d and of P1(β0
Σ0)
when m≤ d. (Note that the distributions of S1(β0
Σ0) and P1(β0
Σ0) are the
same as those of Sj(β0
Σ0) and Pj(β0
Σ0) for all j = 1
 � � � 
 n under H0 and H1

by stationarity.) Let qS
1−α denote the 1 −α quantile of S1(β0
Σ0) when m> d
and of P1(β0
Σ0) when m≤ d. Let q̂S
1−α denote the 1 − α sample quantile of
{Sj : j = 1
 � � � 
 n−m+ 1}, as defined in (2.22).

Let S∞ be a random variable with the same distribution as Sn+1(β0
Σ0) when
m> d and as Pn+1(β0
Σ0) when m ≤ d. Under Assumptions 1–3 and H0, the
distribution of Sn+1(β0
Σ0) equals that of S1(β0
Σ0) and the distribution of
Pn+1(β0
Σ0) equals that of P1(β0
Σ0). Also, the distributions of Sn+1(β0
Σ0)
and Pn+1(β0
Σ0) do not depend on n under either H0 or H1. Under H0, this
holds by stationarity. Under H1, this holds because we take the distribution of
{Wn
i : i = n + 1
 � � � 
 n + m} to be independent of n, which is appropriate for
fixed alternatives.

THEOREM 1: Suppose Assumptions 1–3 hold. Then, as n→ ∞,
(a) S →d S∞ under H0 and H1,
(b) F̂S
n(x)→p FS(x) for all x in a neighborhood of qS
1−α under H0 and H1,
(c) q̂S
1−α →p qS
1−α under H0 and H1, and
(d) P(S > q̂S
1−α)→ α under H0.

COMMENTS: 1. Part (a) gives the asymptotic distribution of S under the null
hypothesis and fixed alternatives.

2. Part (c) of the Theorem shows that the random critical value q̂S
1−α has
the same asymptotic behavior under H1 as under H0. This is desirable for the
power of the test.

3. Part (a) shows that S does not diverge to infinity as n → ∞ under H1.
Hence, S is not a consistent test. However, if Sn+1(β0
Σ0) is stochastically
greater than S1(β0
Σ0) under H1 when m > d and Pn+1(β0
Σ0) is stochasti-
cally greater than P1(β0
Σ0) under H1 when m≤ d, then S is an asymptotically
unbiased test.

4. Stationarity under H0 is not essential for the tests considered in the Theo-
rem to be asymptotically valid. For example, in a linear regression model what
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is essential is stationarity of the error but not stationarity of the regressor. Pro-
vided the regressor behaves in a way that yields consistent estimators of β0

and Σ0, i.e., Assumption 2 holds, the S test for m ≤ d has the correct size as-
ymptotically. To verify Assumption 2, one could use near epoch dependence
(NED) or mixing conditions in place of stationarity and ergodicity. We use the
stationarity and ergodicity condition here because it allows for more general
dependence, such as long-memory dependence, and is simpler and more ele-
gant than NED or mixing conditions.

5. The idea of the proof of part (b) of the Theorem is to show that (i) the
difference between F̂S
n(x) and a smoothed version of it, say F̂S
n(x
hn), con-
verges in probability to zero, where hn indexes the amount of smoothing and
hn → 0 as n→ ∞, (ii) the difference between F̂S
n(x
hn) and an analogous df
with β̂2(j) replaced by β0 converges in probability to zero, (iii) the difference
between the latter and the empirical df of {Sj(β0
Σ0) : j = 1
 � � � 
 n−m+ 1)}
converges in probability to zero as n → ∞ (when m ≥ d), and (iv) the differ-
ence between the latter and its expectation, FS(x), is asymptotically negligible.
The reason for considering a smoothed version of F̂S
n(x) is that it is a smooth
function of β̂2(j) and, hence, result (ii) can be established by taking a mean-
value expansion about β0. Result (iv) holds by the ergodic theorem (which
states that the sample average of mean zero stationary and ergodic random
variables converges in probability to zero as n → ∞; e.g., see Hannan (1970,
Ch. IV, Sec. 2)) because {Sj(β0
Σ0) : j = 1
 � � � 
 n−m+ 1)} is a finite subset of
stationary and ergodic random variables using Assumption 1.

7. MONTE CARLO EXPERIMENT

In this section, we describe some Monte Carlo results that are designed to
assess the null rejection probabilities (NRP’s) and the power properties of the
S and P tests and to compare them to the F test.

7.1. Experimental Design

We consider linear regression models estimated by LS, as in (2.1). Two pre-
change sample sizes, n, are considered: 100 and 250. Three post-change sam-
ple sizes, m, are considered: 10, 5, and 1. The number of regressors, d, is taken
to be five. One regressor is a constant; the other four are independent of each
other. Each of the latter regressors and the error is generated by an autoregres-
sive process of order one (AR(1)) with the same AR parameter ρ. We consider
three values of ρ: 0, �4, and �8. The innovations for the AR(1) processes are
iid. We consider four different distributions for the innovations: standard nor-
mal, chi-square with two degrees of freedom (recentered and rescaled to have
mean zero and variance one), t3 (rescaled to have variance one), and uniform
on [−√

12/2

√

12/2] (which has mean zero and variance one). (Note that the
NRP results, but not the power results, are invariant with respect to the error
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variance.) The initial observations used to start up the AR(1) processes are
taken to have the same distribution as the innovations, but are scaled to yield
variance stationary processes. The χ2, t3, and uniform distributions are chosen
because they exhibit asymmetry, thick tails, and thin tails, respectively.

Under the null hypothesis, the sample of n + m observations is computed
using the regression parameter vectors β0 = β1i = 0 for i = n+ 1
 � � � 
 n+m.
(The NRP results are invariant with respect to the value of β0 (= β1i)�) Under
the alternative hypothesis, β0 = 0 and β1i = β1 ∝ (1
1
1
1
1)′ for i = n +
1
 � � � 
 n+m, where ∝ denotes “is proportional to.” For most results, we take
‖β1‖ = 1�75, where ‖β1‖ denotes the Euclidean norm. For some results, we
take ‖β1‖ = 7�0.

Results are reported for tests with nominal size .05.
The power results that we report are for NRP-corrected tests because we

do not want to confound power differences with NRP distortions (which are
quite large for the F test in some scenarios). For the F test, NRP correc-
tion is straightforward. By simulation we determine critical values that yield
the desired NRP, .05, for each distribution and each n, m, and ρ value when
β0 = β1i = 0 (which are the pseudo-true values of the parameters under the al-
ternative hypothesis). These critical values are employed when computing the
power of the F test.

For the S and P tests, NRP correction is not as straightforward because their
critical values are sample quantiles, not constants. For each of these tests, we
determine by simulation the nominal significance levels that yield the finite
sample NRP to be as close to the desired NRP, .05, as possible for each dis-
tribution and each n, m, and ρ value when β0 = β1i = 0. (The NRP’s cannot
be made exactly equal to .05 because the sample quantile functions are not
continuous. But, the differences are fairly small.) These significance levels are
employed when computing the power of the tests. Note that this method of
NRP correction is equivalent to the method in which the critical value is ad-
justed for any test that has a nonrandom critical value.

The number of simulation repetitions used is 40,000 for each case consid-
ered. This yields simulation standard errors of (approximately) �001 for the
simulated NRP’s of nominal �05 tests and simulated standard errors in the in-
terval (�0020, �0025) for the simulated power when power is in the interval (�20,
�80).

7.2. Monte Carlo Results

7.2.1. Null Rejection Probabilities

Table I presents the NRP’s for nominal �05 tests. When m= 5 or 1, separate
results are not given for P because P = S by definition.
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TABLE I
TRUE NULL REJECTION PROBABILITIES OF TESTS WITH NOMINAL SIGNIFICANCE LEVEL .05

USING NORMAL, χ2
2, t3, AND UNIFORM REGRESSORS AND ERRORS

Normal χ2
2 t3 Uniform

n n n n

m ρ Test 100 250 100 250 100 250 100 250

10 0 S .046 .052 .056 .055 .058 .055 .043 .048
P .063 .060 .072 .060 .075 .065 .048 .052
F .051 .050 .088 .089 .090 .085 .028 .024

10 .4 S .047 .050 .056 .058 .058 .057 .042 .049
P .062 .056 .072 .065 .078 .065 .048 .050
F .123 .115 .131 .125 .140 .129 .105 .101

10 .8 S .053 .055 .061 .058 .064 .060 .049 .054
P .062 .058 .076 .063 .080 .066 .050 .055
F .329 .286 .318 .270 .314 .255 .334 .288

5 0 S (= P) .047 .052 .049 .056 .050 .055 .040 .045
F .050 .049 .103 .102 .099 .089 .007 .004

5 .4 S (= P) .050 .053 .050 .054 .052 .056 .041 .048
F .071 .068 .099 .094 .102 .093 .040 .036

5 .8 S (= P) .056 .055 .060 .057 .061 .058 .049 .055
F .146 .125 .142 .118 .147 .125 .141 .123

1 0 S (= P) .048 .048 .053 .053 .053 .049 .034 .039
F .050 .052 .055 .057 .054 .049 .008 .002

1 .4 S (= P) .051 .049 .053 .050 .053 .050 .046 .046
F .054 .052 .052 .050 .055 .052 .030 .025

1 .8 S (= P) .072 .058 .068 .056 .069 .058 .073 .059
F .074 .059 .068 .054 .075 .061 .072 .059

The main results are as follows:

1. The F test has (exactly) correct NRP for all values of (n
m) when the
distribution is normal and ρ = 0. The F test also has fairly good NRP when
m= 1 and the distribution is normal, χ2, or t3.

2. In most other cases, the NRP of the F test is poor and, in some cases, it
is very poor. Across all of the cases considered, the NRP of the F test varies
between �002 and �329. The standard deviation of the NRP of the F test from
the desired value �05 across the 72 cases in Table I is �095, which is very high.
When ρ = 0, the F test over-rejects when the distribution is χ2 and t3 and
under-rejects when the distribution is uniform. For example, for ρ= 0, m= 5,
n= 250, and χ2 distribution, the NRP is �102; while for ρ= 0, m= 5, n= 250,
and uniform distribution, the NRP is �004. When ρ= �4 or �8, the F test over-
rejects for all distributions, including the normal, except for one case with the
t3 distribution. For example, for ρ= �4, m= 10, n= 250, and normal distribu-
tion, the NRP is �115. For the same case except with ρ = �8, the NRP is �286.
The reason for the poor performance of the F test when either ρ 
= 0 or the
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distribution is not normal is that the F test does not have correct NRP asymp-
totically in these cases.

3. The S test performs very much better than the F test in terms of NRP.
In addition, the NRP performance of S is quite good in an absolute sense.
Except for the case of m= 1 and uniform distribution, the NRP’s of the S test
vary between �040 and �058 when ρ= 0 or �4 and between �049 and �073 when
ρ= �8. Across all cases, the standard deviation of the NRP’s for the S test from
the desired value �05 is only �008. The S test has better NRP when m= 10 or 5
than when m= 1. When m= 10 or 5, its NRP varies between �040 and �064.

4. The P test also performs very much better than the F test in terms of
NRP’s. For the case in which the P and S tests differ, i.e., when m = 10, the
P test over-rejects the null hypothesis somewhat. In consequence, the S test
outperforms the P test in terms of its NRP performance.

5. In general, for all tests, the rejection rates tend to be somewhat lower for
the uniform and normal distributions and higher for the χ2 and t3 distributions,
although the differences are not great except for the F test. For all tests, the
rejection rates are higher for n = 100 than for n = 250. This is because the
estimator of β is a constant in the asymptotic approximations and this is closer
to being true when n= 250 than when n= 100. For all tests, the rejection rates
increase as ρ increases, but the extent of the increase varies dramatically across
different tests. For the F test, the increase is very large. For the S and P tests,
however, the increase is slight. For all tests, the rejection rates do not vary
much with m when ρ = 0. When ρ = �4 or �8, the rejection rates of the F test
increase in m. For the S and P tests, the rejection rates do not vary much with
m even when ρ= �4 or �8, although the rates tend to be highest for m= 1 and
ρ= �8.

To conclude, the NRP results of Table I show that the F test performs poorly
in many of the cases considered. The S and P tests greatly outperform the F
test. But, the P test over-rejects the null hypothesis somewhat when m = 10.
The S test performs best and its performance in an absolute sense is quite
good.

7.2.2. Power

Next, we consider Table II which provides the NRP-corrected power results.
The principle findings are as follows:

1. The S test is more powerful than the P test by 35�5% on average when
m = 10 (which is the only case in which the two tests differ). Hence, there
is a substantial gain in power by using a weight matrix that projects onto the
column space of the transformed post-change regressors rather than using an
identity weight matrix.

2. The F test is 4�1% more powerful than the S test on average when ρ= 0.
The F test is 1�8% more powerful on average when ρ= �4. The F and S tests
have essentially the same power when ρ = �8 and m = 1. The S test is 51�3%
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TABLE II
POWER OF SIGNIFICANCE LEVEL .05 NRP-CORRECTED TESTS USING NORMAL, χ2

2, t3, AND
UNIFORM REGRESSORS AND ERRORS

Normal χ2
2 t3 Uniform

n n n n

‖β1‖ m ρ Test 100 250 100 250 100 250 100 250

1.75 10 0 S .90 .94 .67 .78 .67 .78 .93 .96
P .80 .88 .39 .57 .39 .41 .92 .95
F .94 .95 .79 .82 .81 .83 .96 .97

1�75 10 .4 S .85 .91 .62 .72 .61 .70 .89 .94
P .74 .85 .36 .45 .36 .37 .88 .93
F .83 .86 .67 .71 .69 .71 .87 .89

1�75 10 .8 S .76 .87 .56 .71 .53 .64 .90 .80
P .68 .81 .35 .48 .33 .41 .90 .79
F .42 .47 .36 .44 .40 .40 .49 .44

1�75 5 0 S (= P) .66 .72 .33 .42 .34 .43 .79 .83
F .70 .73 .41 .44 .44 .46 .81 .83

1.75 5 .4 S (= P) .61 .67 .30 .39 .32 .39 .74 .79
F .60 .63 .36 .41 .40 .43 .68 .71

1�75 5 .8 S (= P) .54 .63 .31 .38 .30 .37 .65 .73
F .36 .38 .34 .35 .30 .32 .39 .40

1�75 1 0 S (= P) .31 .32 .25 .25 .29 .29 .41 .42
F .32 .32 .24 .25 .28 .29 .40 .41

1�75 1 .4 S (= P) .31 .32 .24 .27 .29 .29 .36 .36
F .32 .32 .26 .27 .29 .29 .36 .37

1�75 1 .8 S (= P) .30 .30 .31 .29 .27 .27 .31 .31
F .30 .30 .29 .29 .28 .28 .31 .31

7 1 0 S (= P) .77 .78 .72 .72 .76 .77 .81 .82
7 1 .4 S (= P) .77 .78 .72 .74 .76 .76 .79 .80
7 1 .8 S (= P) .76 .76 .76 .75 .74 .75 .77 .77

more powerful than the F test when ρ= �8 and m= 10 or 5. Hence, the S test
has power close to or equal to that of the F test when ρ = 0 and �4 and when
m= 1 and noticeably higher power when ρ= �8 and m= 10 or 5. (Of course,
the results of Table I indicate that the F test is not a viable competitor to the S
test because of its NRP distortions.)

3. For all tests, power increases greatly in m and only marginally in n. This
is because m indexes the number of residuals upon which the tests depend. An
increase in n provides a less variable estimator of β, which improves power,
but not by nearly as much as an increase in m. For all tests, power is highest
for the uniform distribution and lowest for the χ2 and t3 distributions. For all
tests, power decreases sharply as ρ increases when m= 10 or 5, but is more or
less independent of ρ when m= 1. This occurs because increasing ρ increases
the correlation between the post-change residuals when m > 1, which can be
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viewed as reducing the effective post-change sample size. When m = 1, there
is only one post-change observation, so increasing ρ only reduces the precision
with which β can be estimated, but does not affect the effective post-change
sample size.

Based on the NRP and power results discussed above, we recommend using
the S test. The S test has the best NRP performance. Its NRP performance is
far superior to that of the F test. In addition, the NRP-corrected power of the
S test is close to that of the F test when the errors are uncorrelated and better
when the errors have noticeable correlation. The NRP-corrected power of the
S test is noticeably superior to that of the P test when m= 10.

7.2.3. Change in Regressor Distribution

We carry out some simulations to see whether a change in the regressor dis-
tribution alone causes the S test to reject the null hypothesis more frequently
than when there is no change in the regressor distribution, the parameters, or
the error distribution. Six cases are considered. In each case, the pre-change
regressor innovation distribution is N(0
1), recentered and rescaled χ2

2, or
U[−√

12

√

12] and the post-change regressor innovation distribution is one
of these three distributions but a different one. We consider the same values
of n, m, and ρ as above.

The NRP’s of the S test in the above cases are always within .006 of their
rejection rates for the corresponding cases that have the same pre-change re-
gressor innovation distributions and no change in this distribution after i = n.
This indicates that the S test does not reject the null with probability greater
than �05 when the only instability present is instability in the regressor distrib-
ution. This is a desirable feature of the tests.
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APPENDIX: PROOFS

PROOF OF THEOREM 1: For notational simplicity, we start by proving parts (a)–(d) for the
case in which S and Sj are defined with Σ̂n+m replaced by Σ0 and m≥ d. Let Sj(β)= Sj(β
Σ0).

We prove part (a) first. By Assumption 2(a), β̂n+m →p β0. In consequence, there exists
a sequence of nonnegative constants {εn : n ≥ 1} for which εn → 0 and P(Kn) → 1, where
Kn = {‖β̂n+m − β0‖ < εn}. Let x ∈ R be a continuity point of the df of Sn+1(β0). Let Kc

n denote
the complement of the set Kn. We have

P
(
Sn+1(β̂n+m)≤ x

)
(A.1)

= P
({Sn+1(β̂n+m)≤ x} ∩Kn

)+ P
({Sn+1(β̂n+m)≤ x} ∩Kc

n

)
≤ P

(
inf

‖β−β0‖≤εn
Sn+1(β)≤ x

)
+ o(1)
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= P(Sn+1(β0)≤ x)+ o(1)

= P(S∞ ≤ x)+ o(1)


where the second equality holds because Assumptions 3(a) and (b) imply that inf‖β−β0‖≤ε Sn+1(β)
→ Sn+1(β0) as ε → 0 a.s. and Sn+1(β) has a distribution that does not depend on n and the last
equality holds by definition of S∞. If the inf is replaced by sup, then the first ≤ in the third line is
replaced by ≥. In consequence, P(Sn+1(β̂n+m)≤ x)→ P(S∞ ≤ x) and part (a) is proved.

Next, we prove part (b). We introduce the following notation. For some random or nonrandom
vectors {βj : j = 1
 � � � 
 n−m+ 1}, let F̂n(x
 {βj}) denote the empirical df based on {Sj(βj) : j =
1
 � � � 
 n−m+ 1}. That is,

F̂n(x
 {βj})= 1
n−m+ 1

n−m+1∑
j=1

1(Sj(βj)≤ x)(A.2)

for x ∈R. Note that F̂S
n(x) = F̂n(x
 {β̂2(j)}).
We define a smoothed version of the df F̂n(x
 {βj}) as follows. Let k(·) be a monotone de-

creasing, everywhere differentiable, real function on R with bounded derivative and such that
k(x) = 1 for x ∈ (−∞
0], k(x) ∈ [0
1] for x ∈ (0
1), and k(x) = 0 for x ∈ [1
∞). For example,
one could take k(x) = cos(πx)/2 + 1/2 for x ∈ (0
1). For some random or nonrandom vectors
{βj : j = 1
 � � � 
 n−m+ 1}, we define the smoothed df

F̂n(x
 {βj}
 hn)= 1
n−m+ 1

n−m+1∑
j=1

k((Sj(βj)− x)/hn)
(A.3)

where {hn : n≥ 1} is a sequence of positive constants such that hn → 0 and supj=1
���
n−m+1 ‖β̂2(j) −
β0‖/hn →p 0 as n→ ∞. Such a sequence exists by Assumption 2(a).

We have

∣∣F̂S
n(x)− FS(x)
∣∣ ≤ 4∑

:=1

D:
n
 where(A.4)

D1
n = ∣∣F̂S
n(x)− F̂n(x
 {β̂2(j)}
 hn)
∣∣


D2
n = ∣∣F̂n(x
 {β̂2(j)}
 hn)− F̂n(x
 {β0}
 hn)
∣∣


D3
n = ∣∣F̂n(x
 {β0}
 hn)− F̂n(x
 {β0})
∣∣
 and

D4
n = ∣∣F̂n(x
 {β0})− FS(x)
∣∣�

We have D4
n →p 0 under H0 and H1 by the ergodic theorem. This holds because {S1(β0)
 � � � 

Sn−m+1(β0)} only depend upon the observations {W1
 � � � 
Wn}, which come from the stationary
and ergodic sequence {W0
i : i≥ 1}, and not on the “post-change” observations {Wn+1
 � � � 
Wn+m}.
Each term Sj(β0) is the same measurable function of m observations {Wj
 � � � 
Wj+m−1} for
j = 1
 � � � 
 n−m+ 1, where m is fixed and finite. Hence, {S1(β0)
 � � � 
 Sn−m+1(β0)} is a finite sub-
sequence of a stationary and ergodic sequence of random variables that depend on {W0
i : i ≥ 1}
and the ergodic theorem applies.

We have

D1
n ≤ 1
n−m+ 1

n−m+1∑
j=1

1
(
Sj(β̂2(j))− x ∈ (0
 hn)

)

(A.5)

because F̂S
n(x) and F̂n(x
 {β̂2(j)}
 hn) only differ when (Sj(β̂2(j))− x)/hn ∈ (0
1).
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By Assumption 2(a), there exists a sequence of positive constants {εn : n≥ 1} such that εn → 0
and P(Ln)→ 1, where Ln = {‖β̂2(j) −β0‖ ≤ εn , ∀j = 1
 � � � 
 n−m+ 1}. Now, for all δ > 0,

P(D1
n > δ)(A.6)

≤ P((D1
n > δ)∩Ln)+ P(Lc
n)

≤ P

(
1

n−m+ 1

n−m+1∑
j=1

sup
‖β−β0‖≤εn

1(Sj(β)− x ∈ (0
 hn)) > δ

)
+ o(1)

≤ E sup
‖β−β0‖≤εn

1
(
S1(β)− x ∈ (0
 hn)

)
/δ+ o(1)

≤ E1
(
S1(β0)− x ∈

(
−εn sup

‖β−β0‖≤εn

∥∥∥∥ ∂

∂β
S1(β)

∥∥∥∥
 hn + εn sup
‖β−β0‖≤εn

∥∥∥∥ ∂

∂β
S1(β)

∥∥∥∥))/δ
+ o(1)


where Lc
n denotes the complement of the set Ln , the third inequality uses Markov’s inequality

and the identical distributions of Sj(·) for j = 1
 � � � 
 n− m+ 1, and the fourth inequality holds
by a mean-value expansion of S1(β) about β0 using Assumption 3(a). The right-hand side of
(A.6) is o(1) by the dominated convergence theorem using f (·)= 1 as the dominating function,
because εn → 0, hn → 0, lim supn→∞ sup‖β−β0‖≤εn ‖(∂/∂β)S1(β)‖ < ∞ a.s. by Assumption 3(b),
and S1(β0) 
= x a.s. by Assumption 3(c). Hence, D1
n →p 0.

An analogous, but simpler, argument shows that D3
n →p 0.
For part (b), it remains to show that D2
n →p 0. By mean-value expansions about β0, we have

D2
n =
∣∣∣∣∣ 1
n−m+ 1

n−m+1∑
j=1

k′((Sj(β̃2(j))− x)/hn)
∂

∂β′ Sj(β̃2(j))(β̂2(j) −β0)/hn

∣∣∣∣∣(A.7)

≤
(

1
n−m+ 1

n−m+1∑
j=1

B sup
‖β−β0‖≤ε

∥∥∥∥ ∂

∂β
Sj(β)

∥∥∥∥
)

sup
r=1
���
n−m+1

‖β̂2(r) −β0‖/hn

= Op(1)op(1)


where k′(·) denotes the derivative of k(·), β̃2(j) lies between β̂2(j) and β0, B < ∞ denotes the
bound on the derivative of k(·), the inequality holds with probability that goes to one because
supj=1
���
n−m+1 ‖β̃2(j) − β0‖ < ε for some ε > 0 with probability that goes to one by Assump-
tion 2(a), and the second equality holds by Assumptions 3(a) and (b) (either directly by assump-
tion or by Markov’s inequality) and by the fact that hn is defined such that supr=1
���
n−m+1 ‖β̂2(r) −
β0‖/hn →p 0. This completes the proof of part (b).

Part (c) is implied by part (b) using Assumption 3(c). This is a standard result. It follows from
the fact that for all small ε > 0, F̂S
n(qS
1−α−ε)→p FS(qS
1−α−ε) < 1−α and F̂S
n(qS
1−α+ε)→p

FS(qS
1−α + ε) > 1 −α.
Part (d) is implied by parts (a) and (c) using Assumption 3(c).
This completes the proof for the case in which S and Sj are defined with Σ̂n+m replaced by

Σ0 and m ≥ d. The corresponding proof when m < d is the same but with Sj(·) replaced by
Pj(·)= Pj(·
Σ0) for j = 1
 � � � 
 n+ 1.

The proof for the case in which S and Sj are defined with Σ̂n+m, rather thanΣ0, is essentially the
same as that given above, but with Sj(β) replaced by Sj(β
Σ) when m≥ d and by Pj(β
Σ) when
m< d and with β, β0, β̂n+m , β̂2(j), and βj replaced by the vectors comprised of the nonredundant
elements of (β
Σ), (β0
Σ0), (β̂n+m
 Σ̂n+m), (β̂2(j)
 Σ̂n+m), and (βj
Σj), respectively, where Σj is
some random or nonrandom m×m matrix. In addition, the mean-value expansions in β around
β0 in the proof are replaced by expansions in (β
Σ−1) around (β0
Σ

−1
0 ). Q.E.D.
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PROOF OF LEMMA 1: We start by showing that Assumptions 1 and LS imply that
supj=1
���
n−m+1 ‖β̂2(j) − β0‖ →p 0 for the LS case and Assumptions 1 and IV imply the same
result for the IV case. We use the following result. Suppose that {ξi : i ≥ 1} is a stationary and
ergodic sequence of mean zero random variables and E‖ξi‖1+δ < ∞ for some δ > 0� Let m be
fixed and suppose n→ ∞. For notational simplicity, let := �m/2�. Then,

sup
j=1
���
n−:+1

∥∥∥∥(n− :)−1
∑

i=1
���
n;i 
=j
���
j+:−1

ξi

∥∥∥∥(A.8)

≤ sup
j=1
���
n−m+1

∥∥∥∥∥(n− :)−1

( ∑
i=1
���
n;i 
=j
���
j+:−1

ξi −
n∑
i=1

ξi

)∥∥∥∥∥+
∥∥∥∥∥(n− :)−1

n∑
i=1

ξi

∥∥∥∥∥
= sup

j=1
���
n−m+1

∥∥∥∥(n− :)−1
∑

i=j
���
j+:−1

ξi

∥∥∥∥+ op(1)


where the equality holds by the ergodic theorem. Let τj =∑
i=j
���
j+:−1 ξi . For all ε > 0,

P
(
(n− :)−1 sup

j≤n−m+1
‖τj‖> ε

)
= P

(
n−m+1⋃
j=1

{‖τj‖> (n− :)ε}
)

(A.9)

≤
n−m+1∑
j=1

P(‖τj‖> (n− :)ε)

≤ (n−m+ 1)E‖τj‖1+δ(n− :)−(1+δ)ε−(1+δ)

= o(1)


where the second inequality uses Markov’s inequality. Hence, the right-hand side of (A.8)
is op(1).

The estimator β̂2(j) in the LS case satisfies

sup
j=1
���
n−m+1

‖β̂2(j) −β0‖(A.10)

= sup
j=1
���
n−m+1

∥∥∥∥((n− :)−1
∑

i=1
���
n;i 
=j
���
j+:−1

XiX
′
i

)−1

(n− :)−1
∑

i=1
���
n;i 
=j
���
j+:−1

XiUi

∥∥∥∥
≤ ∥∥(EX1X

′
1 + op(1))−1(EX1U1 + op(1)

∥∥
=Op(1)


where the inequality holds by applying (A.8) and (A.9) twice with ξi = XiX
′
i − EXiX

′
i and ξi =

XiUi and, in consequence, the op(1) terms hold uniformly over j = 1
 � � � 
 n−m+ 1.
The proof of the same result for the linear IV estimator is quite similar using the definition

of the IV estimator in (3.5). In this case, (A.8) and (A.9) are applied with ξi = XiZ
′
i , ξi = ZiZ

′
i ,

and ξi = ZiUi . (Note that EU2
1 < ∞ and E‖Z1‖2+δ < ∞ imply that E‖U1Z1‖1+δ1 < ∞ for some

δ1 > 0 by Hölder’s inequality.)
The proof that ‖β̂n+m − β0‖ →p 0 under H0 and H1 for the LS and IV estimators is fairly

standard and, hence, is not given. (Note that the proof underH1 uses the fact that the distribution
of {Wn
i : i= n+ 1
 � � � 
 n+m} is independent of n.) Thus, Assumption 2(a) holds for the LS and
IV estimators.

It is straightforward to verify Assumption 2(b) for the LS and IV estimators.
Assumption 3(a) holds for the LS and IV estimators because Sj(β
Σ) and Pj(β
Σ) are

quadratic functions of β and quite simple functions of Σ−1.
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Next, we verify Assumption 3(b) for the LS and IV estimators. Let Y
 X
 and Z abbreviate
Yj
j+m−1, Xj
j+m−1, and Zj
j+m−1, respectively. First, we suppose m≥ d. For the LS estimator,

∂

∂β
Sj(β
Σ)= −2X′Σ−1(Y − Xβ)�(A.11)

We have E supβ∈B(β0
ε)
Σ∈N(Σ0)
‖(∂/∂β)S1(β
Σ)‖ < ∞ because EU2

1 < ∞, E‖X1‖2 < ∞, and
infΣ∈N(Σ0)λmin(Σ) > 0 for some neighborhood N(Σ0) of Σ0, where λmin(Σ) denotes the smallest
eigenvalue of Σ. An analogous result holds when Σ= Im .

Let ωk
: denote the (k
 :) element of Σ−1. For the LS estimator,

∂

∂ωk
:

Sj(β
Σ) = 2(Y − Xβ)′Σ−1X(X′Σ−1X)−1X′ ∂

∂ωk
:

(Σ−1)(Y − Xβ)(A.12)

+ (Y − Xβ)′Σ−1X
∂

∂ωk
:

[(X′Σ−1X)−1]X′Σ−1(Y − Xβ)�

We find that E supβ∈B(β0
ε)
Σ∈N(Σ0)
‖(∂/∂ωk
:)S1(β
Σ)‖ < ∞ because EU2

1 < ∞, E‖X1‖2 < ∞,
infΣ∈N(Σ0)λmin(Σ) > 0, and (∂/∂α)(A−1) = −A−1((∂/∂α)A)A−1 , where A is a nonsingular ma-
trix that depends on α.

For the IV estimator,

∂

∂β
Sj(β
Σ) = −2X′Σ−1Z(Z′Σ−1Z)−1Z′Σ−1(Y − Xβ)(A.13)

= −2X′Σ−1/2PΣ−1/2ZΣ
−1/2(Y − Xβ)


where PΣ−1/2Z is the projection matrix that projects onto the column space of Σ−1/2Z. Let Ỹ, X̃,
and Z̃ denote Σ−1/2Y, Σ−1/2X, and Σ−1/2Z
 respectively. We can consider the columns of X̃ one at
a time. So, for notational simplicity, we just suppose X̃ is a vector. Then, by the Cauchy–Schwarz
inequality, ∣∣X̃′PZ̃(Ỹ − X̃β)

∣∣ ≤ (
X̃′PZ̃X̃

)1/2(
(Ỹ − X̃β)′PZ̃(Ỹ − X̃β)

)1/2(A.14)

≤ (
X̃′X̃

)1/2(
(Ỹ − X̃β)′(Ỹ − X̃β)

)1/2
�

The supremum of the right-hand side over β ∈ B(β0
 δ) and Σ ∈ N(Σ0) has finite expectation
because EU2

1 <∞, E‖X1‖2 <∞, infΣ∈N(Σ0)λmin(Σ) > 0. Hence,

E sup
β∈B(β0
ε)
Σ∈N(Σ0)

∥∥∥∥ ∂

∂β
S1(β
Σ)

∥∥∥∥<∞(A.15)

for the IV estimator when m≥ d. Note that we apply the Cauchy-Schwarz inequality in (A.14) in
order to eliminate the (Z̃′Z̃)−1 term that appears in the left-hand side, which cannot be bounded
on its own.

An analogous result to (A.15) holds with ∂/∂β replaced by ∂/∂ωk
l by combining
the calculations in (A.12) and (A.14). To bound the second term of (A.12), which involves
(∂/∂ωk
l)[(Z′Σ−1Z)−1] in the IV case, we make use of the formula for the derivative of the inverse
of a matrix given above and the inequality

|x′P̃AP̃x| ≤
m∑
r=1

m∑
s=1

|ar
s| · ‖P̃x‖ ≤
m∑
r=1

m∑
s=1

|ar
s| · ‖x‖
(A.16)

where x is a vector, P̃ is a projection matrix, and A is a matrix with (r
 s) element ar
s.
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Now, suppose m< d. In this case, for both the LS and IV estimators, we have

∂

∂β
Pj(β
Σ)= −2X′Σ−1(Y − Xβ) and

(A.17)
∂

∂ωk
:

Pj(β
Σ)= (Y − Xβ)′ ∂

∂ωk
:

(Σ−1)(Y − Xβ)�

The expectation of the supremum over β ∈ B(β0
 ε) and Σ ∈N(Σ0) of the right-hand side of the
second equation in (A.17) is finite because EU2

1 <∞ and E‖X1‖2 <∞. Also, the right-hand side
of the first equation in (A.17) is the same as in (A.11). Hence, Assumption 3(b) holds by the same
argument as above.

Assumption 3(c) holds for the LS and IV estimators by Assumptions LS(d) and IV(d).
We now prove part (c) of the Lemma, which concerns the GMM estimator. To show that

supj=1
���
n−m+1 ‖β̂2(j) − β0‖ →p 0, we extend the standard proof of consistency for nonlinear ex-
tremum estimators. First, we verify that for k= 1, 2, and CU and all ε > 0,

sup
β∈B

sup
j=1
���
n−m+1

∣∣Q(k)
2(j)(β)−Q(k)(β)

∣∣→p 0 and(A.18)

Q(k)(β0) < inf
β/∈B(β0
ε)∩B

Q(k)(β)
 where(A.19)

Q(1)(β)= Eg(W1
β)
′V−1Eg(W1
β)


Q(2)(β)= Eg(W1
β)
′V−1(β0)Eg(W1
β)
 and(A.20)

Q(CU)(β) =Eg(W1
β)
′V−1(β)Eg(W1
β)�

Condition (A.18) holds provided

sup
β∈B

sup
j=1
���
n−m+1

∣∣∣∣(n− :)−1
∑

i=1
���
n;i 
=j
���
j+:−1

g(Wi
β)−Eg(W1
β)

∣∣∣∣→p 0
(A.21)

where : = �m/2� as above, because Assumption GMM(e) insures that the weight matrices are
well-behaved. Equation (A.21) holds pointwise in β for all β ∈ B by applying (A.8) and (A.9)
with ξi = g(Wi
β) − Eg(W1
β) using Assumptions 1 and GMM(d). Then, a generic uniform
convergence result strengthens pointwise convergence to uniform convergence over β ∈ B. In
particular, Theorem 5 of Andrews (1992) using Assumption TSE-1D gives the desired result
under Assumptions 1 and GMM(b)–(d).

Condition (A.19) holds by Assumption GMM(a)–(c) and (e).
Next, we use (A.18) and (A.19) to show that supj=1
���
n−m+1 ‖β̂2(j) −β0‖ →p 0. By (A.19), given

δ > 0 there exists ε > 0 such that ‖β− β0‖> ε implies that Q(k)(β)−Q(k)(β0) > δ for k= 1, 2,
and CU . Hence, we have

P
(

sup
j=1
���
n−m+1

‖β̂2(j) −β0‖> ε
)

(A.22)

≤ P
(

sup
j=1
���
n−m+1

Q(k)(β̂2(j))−Q(k)(β0) > δ
)

= P
(

sup
j=1
���
n−m+1

(
Q(k)(β̂2(j))−Q(k)

2(j)(β̂2(j))+Q(k)
2(j)(β̂2(j))−Q(k)(β0)

)
> δ

)
≤ P

(
sup

j=1
���
n−m+1

(
Q(k)(β̂2(j))−Q(k)

2(j)(β̂2(j))+Q(k)
2(j)(β0)−Q(k)(β0)

)
> δ

)
≤ P

(
2 sup
j=1
���
n−m+1

∣∣Q(k)
2(j)(β)−Q(k)(β)

∣∣>δ
)

= op(1)
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where the second inequality holds because β̂2(j) minimizes Q(k)
2(j)(β) over β ∈ B and the second

equality holds by (A.18).
The proof that ‖β̂n+m − β0‖ →p 0 is standard (and is a special case of the proof above) and,

hence, is not given. This completes the verification of Assumption 2(a) for the GMM case.
To verify Assumption 2(b) (which only applies to case 1 GMM estimators), we write

sup
β∈B(β0
εn)

‖Σ̂n+m(β)−Σ0‖ ≤ sup
β∈B(β0
εn)

‖Σ̂n+m(β)−Σ(β)‖ + sup
β∈B(β0
εn)

‖Σ(β)−Σ0‖
(A.23)

where Σ(β) = EU1
m(β)U1
m(β)
′ . The second term on the right-hand side is o(1) by the

dominated convergence theorem because U(Wi
β) is continuous at β0 almost surely and
E supβ∈B(β0
ε)

U2(Wi
β) <∞ by Assumption GMM(f). For any fixed β, the first term on the right-
hand side is op(1) by the ergodic theorem. A generic uniform convergence result strengthens
pointwise convergence to uniform convergence over β ∈ B(β0
 ε) for some ε > 0. For example,
Theorem 5 of Andrews (1992) using Assumption TSE-1D gives the desired result under Assump-
tions 1 and GMM(f).

Assumption 3(a) holds for GMM estimators by Assumption GMM(f). Next, to establish As-
sumption 3(b) for case 2 GMM estimators, we verify that

Bn := (n−m+ 1)−1
n−m+1∑
j=1

sup
β∈B(β0
ε)

∥∥∥∥ ∂

∂β
Sj(β)

∥∥∥∥=Op(1)�

We have

∂

∂βr

Sj(β
Σ) = 2

(
j+:−1∑
i=j

∂

∂βr

g(Wi
β)

)′

V −1
j (β)

j+:−1∑
i=j

g(Wi
β)(A.24)

+
j+:−1∑
i=j

g(Wi
β)
′
(

∂

∂βr

(V −1
j (β))

) j+:−1∑
i=j

g(Wi
β)

for r = 1
 � � � 
 dβ. The matrices V −1
j (β) and (∂/∂βr)V

−1
j (β) have stochastically bounded Euclid-

ean norms uniformly over β in a neighborhood of β0 and over j = 1
 � � � 
 n − m + 1 using
Assumption GMM(f). In consequence, it suffices to show the desired result with V −1

j (β) and
(∂/∂βr)V

−1
j (β) replaced by Id . The latter holds by Markov’s inequality given the moment condi-

tions in Assumption GMM(f).
For case 1 GMM estimators, the verification of Assumption 3(b) for GMM estimators is es-

sentially the same as that for IV estimators with Yj
j+m−1 − Xj
j+m−1β and Zj
j+m−1 replaced by
Uj
j+m−1(β) and Zj
j+m−1(β), respectively, using Assumption GMM(f).

Assumption 3(c) holds for GMM estimators by Assumption GMM(g). Q.E.D.
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