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ADAPTIVE LOCAL POLYNOMIAL WHITTLE ESTIMATION OF
LONG-RANGE DEPENDENCE

BY DONALD W. K. ANDREWS AND YIXIAO SUN1

The local Whittle (or Gaussian semiparametric) estimator of long range depen-
dence, proposed by Künsch (1987) and analyzed by Robinson (1995a), has a relatively
slow rate of convergence and a finite sample bias that can be large. In this paper, we
generalize the local Whittle estimator to circumvent these problems. Instead of approx-
imating the short-run component of the spectrum, ϕ(λ)� by a constant in a shrinking
neighborhood of frequency zero, we approximate its logarithm by a polynomial. This
leads to a “local polynomial Whittle” (LPW) estimator. We specify a data-dependent
adaptive procedure that adjusts the degree of the polynomial to the smoothness of ϕ(λ)
at zero and selects the bandwidth. The resulting “adaptive LPW” estimator is shown to
achieve the optimal rate of convergence, which depends on the smoothness of ϕ(λ) at
zero, up to a logarithmic factor.

KEYWORDS: Adaptive estimator, asymptotic bias, asymptotic normality, bias reduc-
tion, local polynomial, long memory, minimax rate, optimal bandwidth, Whittle likeli-
hood.

1. INTRODUCTION

IN THIS PAPER, we consider estimation of the long-memory parameter d0 for
a stationary process {xt}� The spectral density, f (λ), of {xt} is taken to be of
the form

f (λ)= |λ|−2d0ϕ(λ)�(1.1)

where d0 ∈ [d1� d2], −1/2< d1 < d2 < 1/2, and 0<ϕ(0) <∞.
The parameter d0 determines the long-memory properties of {xt} and ϕ(λ)

determines its short-run dynamics. To maintain generality of the short-run dy-
namics of {xt}, we do not impose a specific functional form on ϕ(λ). Instead,
we take ϕ(λ) to belong to a family that is characterized by regularity condi-
tions near frequency zero. This is a narrow-band semiparametric approach to
estimating the long-memory parameter.

Examples in the literature of the narrow-band approach include the widely
used GPH estimator introduced by Geweke and Porter-Hudak (1983) and the
local Whittle estimator (also known as the Gaussian semiparametric estimator)
suggested by Künsch (1987) and analyzed by Robinson (1995a). These meth-
ods approximate the logarithm of ϕ(λ) by a constant in a shrinking neighbor-
hood of the origin. In consequence, the typical rate of convergence is just n−2/5,
no matter how regular ϕ(λ) is. In addition, these estimators can be quite biased
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anonymous referees for comments; and Carol Copeland for proofreading the paper. Andrews
thanks the National Science Foundation for research support via Grant Numbers SBR-9730277
and SES-0001706. Sun thanks the Cowles Foundation for support under a Cowles prize.
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due to contamination from high frequencies (e.g., see Agiakloglou, Newbold,
and Wohar (1993)).

To alleviate these problems, we approximate the logarithm of ϕ(λ) near zero
by a constant plus an even polynomial of degree 2r� viz., logG− ∑r

k=1 θkλ
2k�

The choice of an even polynomial reflects the symmetry of the spectrum about
zero. This approximation is used to specify a local polynomial Whittle (LPW)
likelihood function. We consider estimators of d0 that are determined by
the LPW likelihood.

Motivation for LPW estimators comes from the nonparametric regression
literature. In that literature, one of the most popular estimators, especially
among the cognoscente, is a local polynomial estimator. For example, see Fan
(1992) and references in Härdle and Linton (1994). Also, the LPW estima-
tor can be viewed as a semiparametric local (to frequency zero) version of
an approximate maximum likelihood estimator of a parametric FEXP model
considered by Diggle (1990) and Beran (1993) that utilizes polynomials, rather
than trigonometric polynomials.

Let m denote the number of frequencies near zero used in the LPW likeli-
hood. Results of Andrews and Guggenberger (2003) (AG), which in turn rely
on results of Giraitis, Robinson, and Samarov (1997), show that the optimal
choices of r and m (in terms of the rate of convergence of the estimator of d0)
depend on the smoothness of ϕ(λ) at zero. We provide an adaptive estimator
of d0� denoted the ALPW estimator, based on the method of Lepskii (1990),
that uses the data to select r and the exponent on m (although not the con-
stant). This estimator is shown to obtain the optimal rate of convergence, up
to a logarithmic factor. If ϕ(λ) is infinitely smooth at zero, then this estima-
tor is n1/2−δ-consistent for all δ > 0 and, hence, has rate of convergence that is
arbitrarily close to the parametric rate.

In comparison to the adaptive GPH estimator in Giraitis, Robinson, and
Samarov (2000) (GRS), our estimator has the following advantages: (i) its rate
of convergence is faster for spectral densities that are smooth of order s for
s > 2� (ii) it does not delete two-thirds of the frequencies or require tapering,
which avoids substantial inflation of its variance, (iii) its asymptotic proper-
ties are shown to hold for non-Gaussian processes with finite fourth moments,
and (iv) it does not impose an upper bound on the amount of smoothness
and, in consequence, achieves rates of convergence that are arbitrarily close
to the parametric rate in the infinitely smooth case. Points (iii) and (iv) also
are in contrast to the procedure of Lepskii (1990). Point (iii) is typical for local
Whittle estimators; see Robinson (1995a). Part of the reason that we are able
to establish advantages (iii) and (iv) is that we consider zero–one loss rather
than squared-error loss. Results for zero–one loss are sufficient to obtain rates
of convergence, which is the item of greatest interest here. On the other hand,
computationally, the LPW estimator requires minimization of a globally con-
vex criterion function whereas the adaptive GPH estimator has a closed form.

In comparison to the adaptive FEXP estimators of Iouditsky, Moulines, and
Soulier (2002) (IMS) and Hurvich, Moulines, and Soulier (2002) (HMS), our
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estimator has the following advantages: (i) its asymptotic properties hold with-
out any restrictions on the spectral density of the process outside a neighbor-
hood of the origin, which allows for a much wider class of processes, (ii) it
does not require tapering or the deletion of some fraction of the frequencies,
which circumvents inflation of its variance, and (iii) its asymptotic properties
are shown to hold for non-Gaussian processes.

Our method suffers the same drawback as those of Lepskii (1990), GRS,
IMS, and HMS in that there are constants in the adaptive procedure that are
arbitrary. In the simulation section, we specify values of these constants that
work fairly well in the contexts considered.

If desired, one can adjust the choice of m used by the ALPW estimator to
be slightly smaller than the choice that is optimal (in terms of rate of con-
vergence). The adjustment can be done so that the adaptive estimator with
data-dependent r and m is asymptotically normal with zero asymptotic mean,
but has a slightly slower rate of convergence than the optimal rate. This result
holds for all finite values of the smoothness index of ϕ(λ) at zero except for
values in a set with Lebesgue measure zero.

Although the results of this paper are for stationary processes, they also can
be utilized when the underlying process is nonstationary. Suppose the long-
memory parameter d0 lies in the interval (−�5�1�5)� which is plausible for
most economic data (and which corresponds to a nonstationary process when
d0 ≥ �5). Suppose one has a preliminary consistent estimator of d0 for d0 in this
range, such as the estimator of Velasco (1999), Velasco and Robinson (2000),
or Shimotsu and Phillips (2002). Consider the following procedure: One first
differences the data if this estimator exceeds �5 and one leaves the data as is
otherwise. Then, one applies the adaptive LPW estimator to the data. If the
data are differenced the estimator of d0 equals the adaptive LPW estimator
plus one. Otherwise the estimator of d0 is just the adaptive LPW estimator.

With probability that goes to one as n→ ∞� the data are properly differ-
enced or left in levels, provided d0 �= �5� and the results of this paper are
applicable to the differenced or levels data. The advantage of applying the
adaptive LPW estimator considered in this paper over other estimators, such
as one that is consistent for d0 ∈ (−�5�1�5), is that it achieves the optimal rate
of convergence (up to a logarithmic factor). If one believes a priori that d0 is
near �5, then one can �5-difference the data (as in Gil-Alaña and Robinson
(1997, p. 249)), rather than first difference it, and the estimator of d0 is the
adaptive LPW estimator plus �5.

The asymptotic properties of the adaptive LPW estimator are obtained by
first establishing results for an LPW estimator with a fixed value of r and values
of m that depend on the sample size n, but not on the data. Because these
results are somewhat unusual, we briefly describe them here.

First, we concentrate out the constantG from the LPW log-likelihood. Then,
for fixed nonnegative integer r, we let (d̂(r)� θ̂(r)) denote the LPW estimator
that minimizes the (negative) concentrated LPW log-likelihood with respect
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to (d�θ) over the parameter space [d1� d2] ×Θ, where θ= (θ1� � � � � θr)
′ and Θ

is a compact and convex subset of R
r . One can show that the LPW estima-

tor, d̂(r), is consistent for d0 by extending the argument of Robinson (1995a)
(see Andrews and Sun (2001)). To establish asymptotic normality of d̂(r), a typ-
ical argument would first establish consistency of (d̂(r)� θ̂(r)). But, showing
that (d̂(r)� θ̂(r)) is consistent is problematic, because the concentrated LPW
log-likelihood becomes flat as a function of θ as n→ ∞ and the rate at which
it flattens differs for each element of θ.

To circumvent this problem, we establish consistency and asymptotic nor-
mality of the LPW estimator simultaneously using the following steps. First,
we show: (i) there exists a solution (d̃(r)� θ̃(r)) to the first-order conditions
(FOC’s) with probability that goes to one as n→ ∞ and this solution is con-
sistent and asymptotically normal. The FOC approach is effective because one
can use different normalizations of the FOC’s for the different parameters
d�θ1� � � � � θr . By doing so, one can ensure that the gradient and Hessian matrix
of the normalized log-likelihood are asymptotically nondegenerate.

Next, we show: (ii) the (negative) concentrated LPW log-likelihood is a
strictly convex function of (d�θ). This implies that it has a unique minimum.
Furthermore, it implies that if there exists a solution to the FOC’s, then it is
unique and equals the minimizing value. In consequence, (d̂(r)� θ̂(r)) equals
(d̃(r)� θ̃(r)) with probability that goes to one as n→ ∞ and, hence, is con-
sistent and asymptotically normal. These results hold when ϕ(λ) is smooth
of order s at zero (defined precisely below), where s > 2r and s ≥ 1. Strict
convexity of the LPW log-likelihood also yields obvious computational advan-
tages for the LPW estimator over typical nonlinear estimators. Local minima
and multiple solutions to the FOC’s do not exist. (Note that Marinucci and
Robinson (2001, p. 237) point out the convexity of the negative local Whittle
log-likelihood.)

Our method of proof has some advantages even in the context of establishing
consistency and asymptotic normality of the local Whittle estimator analyzed
in Robinson (1995a). It is comparable to a proof of asymptotic normality with
consistency given and, hence, circumvents the need for a separate proof of
consistency, which occupies about six pages in Robinson (1995a).

Suppose m is chosen to diverge to infinity at what is found to be the as-
ymptotically MSE-optimal rate, viz., limn→∞mφ+1/2/nφ = A ∈ (0�∞), where
φ= min{s�2 + 2r}. Also, suppose that s ≥ 2 + 2r. Then, the asymptotic normal
result is

m1/2
(
d̂(r)− d0

) →d N(Ab2+2rτr� cr/4) as n→ ∞�(1.2)

where τr and cr are known constants (specified below) for which cr increases
in r and c0 = 1 and b2+2r is the (2 + 2r)-th derivative of logϕ(λ) at λ= 0. This
yields the consistency, asymptotic normality, “asymptotic bias,” and “asymp-
totic mean-squared error” of d̂(r)� In this case, nφ/(2φ+1)(d̂(r) − d0) = Op(1).
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If m is chosen to diverge at a slower rate, then the mean in the asymptotic
normal distribution is zero.

Our results show that the effect of including the polynomial
∑r

k=1 θkλ
2k in

the local Whittle likelihood is to increase the asymptotic variance of d̂(r) by
the multiplicative constant cr , but to reduce its asymptotic bias by an order
of magnitude provided ϕ(λ) is smooth of order s > 2. The asymptotic bias
goes from O(m2/n2) when r = 0 to O(mφ/nφ) with φ > 2 when r > 0 and
s > 2� In consequence, the rate of convergence of d̂(r) is faster when r > 0
than when r = 0 provided s > 2 (and m is chosen appropriately). For example,
for r > 0, s ≥ 2 + 2r, and m chosen as in (1.2), the rate of convergence of d̂(r)
is n−(2+2r)/(5+4r) , whereas the rate of convergence for d̂(0) is n−2/5.

When r and m are selected adaptively, using the data, the rate of conver-
gence of the (adaptive) estimator depends on the smoothness of ϕ(λ). For ex-
ample, if ϕ(λ) is smooth of order s, then the rate of convergence is shown to
be n−s/(2s+1)ζ(n), where ζ(n) is less than log2 n. This is the optimal rate up to
the factor ζ(n).

We note that the results of the paper provide some new results for the local
Whittle estimator d̂(0) considered by Robinson (1995a). The results show that
this estimator has an asymptotic bias (defined as m−1/2 times the mean of its
asymptotic normal distribution) that is the same as that of the GPH estimator.
Robinson’s (1995a, 1995b) results show that the asymptotic variance of the
local Whittle estimator is smaller than that of the GPH estimator. Combining
these results establishes that the asymptotic mean-squared error of the local
Whittle estimator is smaller than that of the GPH estimator (provided m is
chosen appropriately). Also, the results of this paper establish the validity of
an adaptive procedure for selecting m for the local Whittle estimator that is
analogous to the method of GRS for the GPH estimator.

The results of this paper are similar to those of AG, who consider adding
the regressors λ2

j � � � � � λ
2r
j to a log-periodogram regression that is used to esti-

mate d0. But, AG does not consider adaptive selection of r and m. In addition,
for fixed r� the estimator considered by AG has the same asymptotic bias as
the LPW estimator d̂(r), but larger variance. For any r� its variance is larger by
the factor (π2/24)÷ (1/4)= 1�645. The properties of the estimator of AG are
determined under the assumption of Gaussianity of {xt}, whereas the proper-
ties of the LPW estimator considered here are determined without requiring
{xt} to be Gaussian.

The LPW estimators considered in this paper also are related to estimators
introduced by Robinson and Henry (2003). They consider a general class of
semiparametric M-estimators of d0 that utilize higher-order kernels to obtain
bias-reduction like that of the LPW estimator. Other papers in the literature
that are related to this paper include Henry and Robinson (1996) and Hurvich
and Deo (1999). These papers approximate logϕ(λ) by a more flexible func-
tion than a constant in order to obtain a data-driven choice of m.
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In the paper, we compare the root mean-squared error performance of the
ALPW estimator with the adaptive estimators of GRS and IMS, the FEXP
estimator coupled with a local CL criterion, as in Hurvich (2001), and the
Gaussian ARFIMA(1� d�0) Whittle quasi-maximum likelihood (QML) esti-
mator analyzed by Fox and Taqqu (1986). We consider two or three variants
of each estimator—one that is theoretically justified by results in the literature
(or is close to it) and one or more that are not. We consider three models:
ARFIMA(1� d�0); DARFIMA(1� d�0), which is a model whose spectral den-
sity is discontinuous and equals that of the ARFIMA(1� d�0) model for fre-
quencies on an interval [0�λ0] and zero elsewhere, where λ0 = π/2 in the
present case; and long-memory component (LMC) models, which are designed
to have smoothness of the short-run component of the spectral density to
be finite—equal to 1.5 in the present case. We consider three different dis-
tributions for the innovations: normal, t5, and χ2

2. Sample sizes n = 512 and
n= 4,096 are considered.

The Monte Carlo results can be summarized as follows. (i) The simulation
results are not sensitive to the value of d0 (within the stationary region) or
the innovation distribution. (ii) The RMSE of the ALPW estimator is lower
than those of the theoretically-justified GRS and IMS adaptive estimators and
the Hurvich (2001) FEXP estimator, often by a substantial margin, in all but a
few of the fifty cases reported in the tables. Hence, of the theoretically-justified
adaptive estimators or the Hurvich (2001) FEXP estimator, the ALPW estima-
tor is clearly the best. (iii) Both trimming and tapering of the GRS estimator,
as required for the theoretical results in GRS, hurt the performance of the
adaptive GRS estimator. Similarly, tapering of the IMS estimator, as required
for the theoretical results of IMS, hurts the performance of the adaptive IMS
estimator. (iv) The best estimators in an overall sense are the ALPW estimator,
the GRS estimator without trimming or tapering, and the IMS estimator with-
out tapering but with some pooling. (v) As expected, the parametric Whittle
QML estimator performs very well when the parametric model is correctly
specified; moderately well when the degree of misspecification is moderate;
and very poorly when the degree of misspecification is large.

The remainder of the paper is organized as follows. Section 2 defines the
LPW log-likelihood function. Section 3 states the assumptions used. Section 4
shows that there exists a sequence of solutions to the FOC’s that is consis-
tent and asymptotically normal. Section 5 shows that this sequence is the LPW
estimator and, hence, the LPW estimator is consistent and asymptotically nor-
mal. Section 6 establishes that the LPW estimator attains the optimal rate of
convergence for estimation of d0. Section 7 introduces the adaptive method
for choosing the order, r� of the polynomial and the bandwidth, m. Section 8
provides the Monte Carlo simulation results. An Appendix contains proofs.

Throughout the paper, wp→ 1 abbreviates “with probability that goes to one
as n→ ∞” and ‖ · ‖ signifies the Euclidean norm.
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2. DEFINITION OF THE LPW LOG-LIKELIHOOD

The jth fundamental frequency λj , the discrete Fourier transform wj of {xt},
and the periodogram Ij of {xt} are defined by

λj = 2πj/n� wj = 1√
2πn

n∑
t=1

xt exp(itλj)� and(2.1)

Ij = |wj|2�

The local polynomial Whittle log-likelihood is −m/2 times

Qr(d�G�θ)=m−1
m∑
j=1

{
log

[
Gλ−2d

j exp(−pr(λj� θ))
]

(2.2)

+ Ij

Gλ−2d
j exp(−pr(λj� θ))

}
� where

pr(λj� θ)=
r∑
k=1

θkλ
2k
j and θ= (θ1� � � � � θr)

′�

The log-likelihood is local to frequency zero, because m is taken such that
1/m + m/n → 0 as n → ∞. The log-likelihood is based on approximating
logϕ(λ) by logG− pr(λ�θ) for λ near zero. The local Whittle log-likelihood
considered in Robinson (1995a) is obtained by setting θ= 0.

Concentrating Qr(d�G�θ) with respect to G ∈ (−∞�∞) yields the (nega-
tive) concentrated LPW log-likelihoodRr(d�θ):

Rr(d�θ)= log Ĝ(d�θ)−m−1
m∑
j=1

pr(λj� θ)(2.3)

− 2dm−1
m∑
j=1

logλj + 1� where

Ĝ(d�θ)=m−1
m∑
j=1

Ij exp(pr(λj� θ))λ2d
j �

The LPW estimator (d̂(r)� θ̂(r)) of (d�θ) solves the following minimiza-
tion problem:(

d̂(r)� θ̂(r)
) = arg min

d∈[d1�d2]�θ∈Θ
Rr(d�θ)�(2.4)
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where Θ is a compact and convex set in R
r . Existence and uniqueness of

(d̂(r)� θ̂(r)) is a consequence of strict convexity of Rr(d�θ) (shown below) and
convexity and compactness of the parameter space.

By definition, the estimator of G is

Ĝ(r)= Ĝ(
d̂(r)� θ̂(r)

)
�(2.5)

3. ASSUMPTIONS

We now introduce the assumptions that are employed to establish the con-
sistency and asymptotic normality of (d̂(r)� θ̂(r)). These assumptions utilize
the following definition. Let [s] denote the integer part of s. We say that a
real function h defined on a neighborhood of zero is smooth of order s > 0 at
zero if h is [s] times continuously differentiable in some neighborhood of zero
and its derivative of order [s], denoted h([s]) , satisfies a Hölder condition of or-
der s−[s] at zero, i.e., |h([s])(λ)−h([s]) (0)| ≤ C|λ|s−[s] for some constant C <∞
and all λ in a neighborhood of zero.

ASSUMPTION 1: f (λ) = |λ|−2d0ϕ(λ), where ϕ(λ) is continuous at 0,
0<ϕ(0) <∞, and d0 ∈ [d1� d2] with −1/2< d1 < d2 < 1/2.

ASSUMPTION 2: ϕ(λ) is smooth of order s at λ= 0, where s > 2r and s ≥ 1.

Assumption 2 imposes the regularity on the function ϕ(λ) that characterizes
the semiparametric nature of the model. Under Assumption 2, logϕ(λ) has
a Taylor expansion of the form:

logϕ(λ)= logϕ(0)+
[s/2]∑
k=1

b2k

(2k)!λ
2k +O(λs) as λ→ 0+� where(3.1)

bk = dk

dλk
logϕ(λ)

∣∣∣∣
λ=0

�

The true values forG and θ are G0 = ϕ(0) and θ0 = (θ0�1� � � � � θ0�r)
′, where

θ0�k = − b2k

(2k)! for k= 1� � � � � r�(3.2)

ASSUMPTION 3: (a) The time series {xt : t = 1� � � � � n} satisfies

xt −Ex0 =
∞∑
j=0

αjεt−j�
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where
∞∑
j=0

α2
j <∞� E(εt|Ft−1)= 0 a. s.� E(ε2

t |Ft−1)= 1 a. s.�

E(ε3
t |Ft−1)= σ3 a. s.�

E(ε4
t |Ft−1)= σ4 a. s. for t = � � � �−1�0�1� � � � �

and Ft−1 is the σ-field generated by {εs : s < t}.
(b) There exists a random variable ε with Eε2 <∞ such that for all ν > 0 and

some K > 0, P(|εt|> ν) <KP(|ε|> ν).
(c) In some neighborhood of the origin, (d/dλ)α(λ) = O(|α(λ)|/λ) as

λ→ 0+, where α(λ)= ∑∞
j=1αje

−ijλ.

Assumption 3 states that the time series {xt} is a linear process with
martingale difference innovations. Unlike most results for log-periodogram
regression estimators, Assumption 3 allows for non-Gaussian processes.
Assumptions 3(a) and (b) are the same as Assumption A3′ of Robinson
(1995a). Assumption 3(c) is the same as Assumption A2′ of Robinson (1995a).
It should be possible to weaken the assumption that E(ε4

t |Ft−1)= σ4 a.s. along
the lines of Robinson and Henry (1999).

ASSUMPTION 4: m2r+1/2/n2r → ∞ and mφ+1/2/nφ = O(1) as n→ ∞, where
φ= min{s�2 + 2r}.

The two conditions in Assumption 4 are always compatible because s > 2r
by Assumption 2. The first condition of Assumption 4 is used to ensure that
the matrix Bn that is used to normalize the gradient and Hessian of mRr(d�θ)
satisfies λmin(Bn) → ∞, which is required for consistency of (d̂(r)� θ̂(r)).
The second condition of Assumption 4 is used to guarantee that the normal-
ized gradient of mRr(d0� θ0) is Op(1)� which is required for asymptotic nor-
mality of (d̂(r)� θ̂(r)).

If r = 0 and Assumption 2 holds with s = 2, then Assumption A1′ of
Robinson (1995a) holds with β= 2. His Assumption A4′ onm is weakest when
β= 2 and in this case it requires that 1/m+m5(log2m)/n4 → 0. In contrast,
if r = 0 and our Assumption 2 holds with s = 2, then our Assumption 4 re-
quires 1/m→ 0 and m5/n4 = O(1)� which is slightly weaker than Robinson’s
Assumption A4′. (It seems that the log2m term in Robinson’s Assumption A4′

is superfluous. It is used on p. 1644 of Robinson’s proof of Theorem 2 to
bound (4.11), but does not appear to be necessary because νj − νj+1 = O(j−1)
and νm =O(1)� where νj := log j −m−1

∑m

k=1 logk.)

ASSUMPTION 5: Θ is compact and convex and θ0 lies in the interior of Θ.
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4. EXISTENCE OF SOLUTIONS TO THE FIRST-ORDER CONDITIONS

We start this section by stating a general lemma that provides sufficient con-
ditions for the existence of a consistent sequence of solutions to the FOC’s
of a sequence of stochastic optimization problems. The lemma also provides
an asymptotic representation of the (normalized) solutions. Next, we apply
the lemma to the LPW log-likelihood. The lemma has numerous antecedents
in the literature; e.g., see Weiss (1971, 1973), Crowder (1976), Heijmans and
Magnus (1986), and Wooldridge (1994). The lemma given here is closest to
that of Wooldridge (1994, Theorem 8.1).

Let {Ln(γ) : n ≥ 1} be a sequence of minimands for estimation of the para-
meter γ0 ∈ Γ ⊂ R

k, where Γ is the parameter space. Denote the gradient and
Hessian of Ln(γ) by ∇Ln(γ) and ∇2Ln(γ) respectively.

LEMMA 1: Suppose γ0 is in the interior of Γ , Ln(γ) is twice continuously differ-
entiable on a neighborhood of γ0, and there exists a sequence of k×k nonrandom
nonsingular matrices Bn such that:

(i) ‖B−1
n ‖ → 0 as n→ ∞,

(ii) (B−1
n )

′∇Ln(γ0)=Op(1) as n→ ∞,
(iii) for some η> 0, λmin((B

−1
n )

′∇2Ln(γ0)B
−1
n ≥ η wp→ 1, and

(iv) supγ∈Γ :‖Bn(γ−γ0)‖≤Kn ‖(B−1
n )

′(∇2Ln(γ)−∇2Ln(γ0))B
−1
n ‖ = op(1) as n→ ∞

for some sequence of scalar constants {Kn : n≥ 1} for which Kn → ∞ as n→ ∞.
Then, there exists a sequence of estimators {γ̃n : n ≥ 1} that satisfy the first-order
conditions ∇Ln(γ̃n)= 0 wp→ 1 and

Bn(γ̃n − γ0)= −Yn + op(1)=Op(1)� where

Yn = (
(B−1

n )
′∇2Ln(γ0)B

−1
n

)−1
(B−1

n )
′∇Ln(γ0)�

The proofs of Lemma 1 and other results below are given in the Appendix
of Proofs.

We apply Lemma 1 with γ = (d�θ′)′, Ln(γ) =mRr(d�θ), and Bn equal to
the (r+1)×(r+1) diagonal matrix with jth diagonal element [Bn]jj defined by

[Bn]11 =m1/2 and(4.1)

[Bn]jj =
(

2πm
n

)2j−2

m1/2 for j = 2� � � � � r + 1�

The first condition of Assumption 4 guarantees that ‖B−1
n ‖ → 0, as required by

condition (i) of Lemma 1.
To verify conditions (ii)–(iv) of Lemma 1, we need to establish some prop-

erties of the normalized score (i.e., gradient) and Hessian of mRr(d�θ).
The score vector and Hessian matrix of mRr(d�θ) are denoted Sn(d�θ) =



ADAPTIVE LOCAL POLYNOMIAL ESTIMATION 579

m∇Rr(d�θ) and Hn(d�θ)=m∇2Rr(d�θ) respectively. Some algebra gives

Sn(d�θ)= Ĝ−1(d�θ)
m∑
j=1

(
yj(d�θ)−m−1

m∑
k=1

yk(d�θ)

)
Xj and(4.2)

Hn(d�θ)

= Ĝ−2(d�θ)

(
Ĝ(d�θ)

m∑
j=1

yj(d�θ)XjX
′
j −m

(
m−1

m∑
j=1

yj(d�θ)Xj

)

×
(
m−1

m∑
j=1

yj(d�θ)Xj

)′ )
�

where

yj(d�θ)= Ij exp(pr(λj� θ))λ2d
j and(4.3)

Xj = (2 log j�λ2
j � � � � � λ

2r
j )

′�

We show below that the normalized Hessian, B−1
n Hn(d0� θ0)B

−1
n , converges

in probability to the (r + 1)× (r + 1) matrix Ωr defined by

Ωr =
(

4 2µ′
r

2µr Γr

)
�(4.4)

where µr is a column r-vector with kth element µr�k, Γr is an r × r matrix
with (i�k)th element [Γr]i�k,

µr�k = 2k
(2k+ 1)2

for k= 1� � � � � r� and(4.5)

[Γr]i�k = 4ik
(2i+ 2k+ 1)(2i+ 1)(2k+ 1)

for i�k= 1� � � � � r�

For r = 0, define Ωr = 4.
We show below that the asymptotic bias of the normalized score, B−1

n Sn(d0�
θ0), is −νn(r� s), where

νn(r� s)=mφ+1/2n−φ(1(s ≥ 2 + 2r)b2+2rκrξ
+
r(4.6)

+ 1(2r < s < 2 + 2r)O(1)
)

= 1(s ≥ 2 + 2r)m5/2+2rn−(2+2r)b2+2rκrξ
+
r

+ 1(2r < s < 2 + 2r)O(ms+1/2n−s)�
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and

ξ+
r =

(
2
ξr

)
�(4.7)

ξr = (ξr�1� � � � � ξr�r)′�

ξr�k = 2k(3 + 2r)
(2r + 2k+ 3)(2k+ 1)

for k= 1� � � � � r� and

κr = − (2π)
2+2r(2 + 2r)

(3 + 2r)!(3 + 2r)
�

The following lemma establishes the asymptotic properties of the normal-
ized score and Hessian, which are needed to verify conditions (ii)–(iv) of
Lemma 1. The following quantities arise in the lemma:

Dm(η)= {d ∈ [d1� d2] : (log5m)|d− d0|<η} for η> 0 and(4.8)

Jn =
m∑
j=1

(
Xj −m−1

m∑
k=1

Xk

)(
Xj −m−1

m∑
k=1

Xk

)′

�

LEMMA 2: Under Assumptions 1–5, as n→ ∞, we have
(a) B−1

n JnB
−1
n →Ωr ,

(b) ‖B−1
n (Hn(d0� θ0)− Jn)B−1

n ‖ = op(1),
(c) supθ∈Θ ‖B−1

n (Hn(d0� θ)−Hn(d0� θ0))B
−1
n ‖ = op(1),

(d) supd∈Dm(ηn)�θ∈Θ ‖B−1
n (Hn(d�θ)−Hn(d0� θ))B

−1
n ‖ = op(1) for all sequences

of constants {ηn : n≥ 1} for which ηn = o(1),
(e) B−1

n Sn(d0� θ0)+ νn(r� s)→d N(0�Ωr).

COMMENTS: 1. Part (c) of the lemma is unusual. It states that the normal-
ized Hessian matrix Hn(d0� θ) does not depend on θ up to op(1) uniformly
over θ ∈Θ. In most nonlinear estimation problems, this does not hold.

2. The proof of Lemma 2 relies heavily on the proof of Theorem 2 of
Robinson (1995a), as well as Theorem 2 of Robinson (1995b) and Theo-
rem 5.2.4 of Brillinger (1975).

We now use the results of Lemma 2 to verify the conditions (ii)–(iv) of
Lemma 1. Condition (ii) holds by Lemma 2(e) and the second condition of
Assumption 4. Condition (iii) holds by Lemma 2(a) and (b) and the positive
definiteness of Ωr� Condition (iv) holds with Kn =m1/2ηn log−5m for some se-
quence ηn that goes to zero sufficiently slowly thatKn → ∞� e.g.,ηn = log−1m�
by Lemma 2(c) and (d).

In consequence, the application of Lemma 1 with Ln(γ)=mRr(d�θ) com-
bined with the convergence results of Lemma 2 gives the following theorem:
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THEOREM 1: Under Assumptions 1–5, there exist solutions (d̃(r)� θ̃(r)) to the
first-order conditions (∂/∂(d�θ′)′)Rr(d�θ)= 0 wp→ 1 and

Bn

(
d̃(r)− d0

θ̃(r)− θ0

)
−Ω−1

r νn(r� s)→d N(0�Ω−1
r )�

5. CONSISTENCY AND ASYMPTOTIC NORMALITY

We start by showing that the Hessian Hn(d�θ) is positive definite (pd) for
all (d�θ). By (4.2), for any c ∈ R

1+r with c �= 0,

c′Hn(d�θ)c · Ĝ2(d�θ)/m(5.1)

= Ĝ(d�θ)m−1
m∑
j=1

yj(d�θ)(c
′Xj)

2 −
(
m−1

m∑
j=1

yj(d�θ)c
′Xj

)2

�

The right-hand side can be written as a′a · b′b − (a′b)2 > 0� where a and b
are m-vectors with aj = (m−1yj(d�θ))

1/2 and bj = (m−1yj(d�θ))
1/2c′Xj for

j = 1� � � � �m and the inequality holds by the Cauchy–Schwarz inequality.
This establishes the following lemma.

LEMMA 3: The (negative) concentrated LPW log-likelihood, Rr(d�θ), is
strictly convex on [d1� d2] ×Θ.

The LPW log-likelihoodRr(d�θ) is a continuous function defined on a com-
pact set. Hence, the LPW estimator exists. Strict convexity of Rr(d�θ) implies
that the LPW estimator is unique. Furthermore, strict convexity and twice
continuous differentiability of Rr(d�θ) imply that if a solution (d̃(r)� θ̃(r)) to
the FOC’s exists, then it minimizes Rr(d�θ) over the parameter space and,
hence, equals (d̂(r)� θ̂(r)). This can be shown by a two term Taylor expan-
sion. Let γ̃(r)= (d̃(r)� θ̃(r)′)′. Then, for all γ = (d�θ′)′ �= γ̃(r) in the parame-
ter space,

mRr(γ)−mRr(γ̃(r))(5.2)

= Sn(γ̃(r))′(γ− γ̃(r))+ 1
2
(γ− γ̃(r))′Hn(γ(r))(γ− γ̃(r))

= 1
2
(γ− γ̃(r))′Hn(γ(r))(γ− γ̃(r)) > 0�

where γ(r) lies between γ and γ̃(r), the second equality holds by the
FOC’s, and the inequality holds because the Hessian is pd for all γ = (d�θ′)′

by strict convexity.
In consequence, Theorem 1 and Lemma 3 imply the following consistency

and asymptotic normality result for the LPW estimator.
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THEOREM 2: Under Assumptions 1–5, the LPW estimator (d̂(r)� θ̂(r)) satisfies(
m1/2(d̂(r)− d0)

m1/2 Diag((2πm/n)2� � � � � (2πm/n)2r)(θ̂(r)− θ0)

)
−Ω−1

r νn(r� s)

→d N(0�Ω−1
r )

as n→ ∞.

COMMENTS: 1. By the formula for a partitioned inverse,

Ω−1
r =

 cr

4
−cr

2
µ′
rΓ

−1
r

−cr
2
Γ −1
r µr Γ −1

r + crΓ −1
r µrµ

′
rΓ

−1
r

 � where(5.3)

cr = (1 −µ′
rΓ

−1
r µr)

−1 for r > 0 and c0 = 1�

Hence, the asymptotic variance of m1/2(d̂(r) − d0)) is cr/4� which is free of
nuisance parameters. The use of the polynomial pr(λj� θ) in the specifica-
tion of the local Whittle likelihood increases the asymptotic variance of d̂(r)
by the multiplicative constant cr . For example, c1 = 9/4, c2 = 3�52, c3 = 4�79,
and c4 = 6�06.

2. The “asymptotic bias” of d̂(r) equals the first element of m−1/2Ω−1
r ×

νn(r� s). Using (5.3) and the definition of νn(r� s) in (4.6), the asymptotic bias
of d̂(r) equals

1(s ≥ 2 + 2r)τrb2+2rm
2+2rn−(2+2r)

+ 1(2r < s < 2 + 2r)O(ms/ns)� where(5.4)

τr = κrcr

2
(1 −µ′

rΓ
−1
r ξr)�

For example, τ0 = −2�19, τ1 = 2�23, τ2 = −�793, τ3 = �146, and τ4 = −�0164.
3. By (5.4), the asymptotic bias of d̂(r) is of order mφ/nφ� where φ =

min{s�2 + 2r}. In contrast, the asymptotic bias of d̂(0) is of order m2/n2. The
asymptotic bias of d̂(r) is smaller than that of d̂(0) by an order of magnitude
provided ϕ(·) is smooth of order s > 2� because in this case φ> 2.

4. If s ≥ 2 + 2r and limn→∞m5/2+2r/n2+2r =A ∈ (0�∞), then(
m1/2(d̂(r)− d0)

m1/2 Diag((2πm/n)2� � � � � (2πm/n)2r)(θ̂(r)− θ0)

)
(5.5)

→d N(Ab2+2rκrΩ
−1
r ξ

+
r �Ω

−1
r )�

The only unknown quantity in the asymptotic distribution is b2+2r . The asymp-
totic bias and variance of m1/2(d̂(r)− d0) are Aτrb2+2r and cr/4 respectively.
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5. If s ≥ 2 + 2r� then using Comments 1 and 2, the “asymptotic MSE”
of d̂(r) is

AMSE(d̂(r))= τ2
r b

2
2+2r

(
m

n

)4+4r

+ cr

4m
�(5.6)

Minimization over m of AMSE(d̂(r)) gives the AMSE-optimal choice of m:

mopt =
[(

cr

16(1 + r)τ2
r b

2
2+2r

)1/(5+4r)

n(4+4r)/(5+4r)

]
�(5.7)

where [a] denotes the integer part of a. When r = 0 and s = 2, this gives the
same formula for mopt as in Henry and Robinson (1996) (where their Eβ(H)
equals our b2/2). The formula formopt contains only one unknown, b2+2r .

6. Assumption 4 allows one to take m much larger for d̂(r) than for d̂(0).
In consequence, by appropriate choice of m, one has asymptotic normality
of d̂(r) with a faster rate of convergence (as a function of the sample size n)
than is possible with d̂(0). See Section 7 for an adaptive choice ofm and r.

7. Inflation of the asymptotic variance by the factor cr due to the addi-
tion of parameters (see Comment 1) also is found in AG for a bias-reduced
log-periodogram regression estimator of d0. In consequence, the LPW esti-
mator d̂(r) maintains exactly the same advantage over the bias-reduced log-
periodogram regression estimator, in terms of having a smaller asymptotic
variance, as the local Whittle estimator has over the GPH log-periodogram
regression estimator. For any r ≥ 0� the ratio of their asymptotic variances is
(cr/4)÷ (π2cr/24)� �608.

8. The asymptotic bias in (5.4) is the same as that found in AG for the
bias-reduced log-periodogram estimator of d0. Hence, the LPW estimator has
the same asymptotic bias, but smaller asymptotic variance, than the latter esti-
mator of d0.

Theorem 2 provides new results for the local Whittle estimator d̂(0) that is
analyzed in Robinson (1995a).

COROLLARY 1: Under Assumptions 1–5, m1/2(d̂(0) − d0) − νn(0� s)/4 →d

N(0�1/4) as n→ ∞.

COMMENTS: 1. The “asymptotic bias” of d̂(0) is

m−1/2νn(0� s)/4 = −1(s ≥ 2)(2π2/9)(m2/n2)b2

+ 1(1 ≤ s < 2)O(ms/ns)�
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2. An analogous result to Corollary 1, but for the GPH estimator, is given by
Hurvich and Deo (1999, Theorem 2). A comparison of Corollary 1 with Theo-
rem 2 of Hurvich and Deo (1999) shows that the local Whittle estimator of d0

has the same asymptotic bias as that of the GPH estimator when s ≥ 2, but
smaller asymptotic variance. The latter is well known, but the former is a new
result. This result implies that the local Whittle estimator dominates the GPH
estimator in terms of asymptotic mean-squared error (where the latter is de-
fined to be the second moment of the asymptotic distribution of the estimator)
provided m is chosen appropriately.

3. Robinson (1995a) does not provide an expression for the asymptotic bias
of the local Whittle estimator. His Assumption A4′ restricts the growth rate
of m such that νn(0� s)= op(1). Henry and Robinson (1996) provide a heuris-
tic expression for the asymptotic bias of the local Whittle estimator in their
equation (1.3).2

6. OPTIMAL RATE OF CONVERGENCE

In this section, we show that the LPW estimator attains the optimal rate of
convergence for estimation of d0 established in AG for Gaussian processes.
The LPW estimator attains this rate whether or not the process is Gaussian.
The optimal rate established in AG is related to, and relies on, results of
Giraitis, Robinson, and Samarov (1997).

We consider a minimax risk criterion with 0–1 loss. The class of spectral
density functions that are considered includes functions that are smooth of
order s ≥ 1. The optimal rate is n−s/(2s+1) , which is arbitrarily close to the para-
metric rate n−1/2 if s is arbitrarily large. We show that the LPW estimator, d̂(r),
attains this rate when r is the largest integer less than s/2 and m is chosen ap-
propriately.

Let s and the elements of a = (a0� a00� a1� � � � � a[s/2])′, δ = (δ1� δ2� δ3)
′, and

K = (K1�K2�K3)
′ be positive finite constants with a0 < a00 and δ1 < 1/2.

We consider the following class of spectral densities:

F(s� a�δ�K)(6.1)

=
{
f : f (λ)= |λ|−2df ϕ(λ)� |df | ≤ 1/2 − δ1�

∫ π

−π
f (λ)dλ≤K1�

and ϕ is an even function on [−π�π] that satisfies

2Henry and Robinson’s (1996) expressions in (1.3) for the bias contain two typos. All three
of their expressions are missing a minus sign because the preceding expression for Ĥ − H is
missing a minus sign. Also, their right-hand side expression in (1.3) should have 1/2 in place of 2
in the numerator. With these corrections, their expressions for the asymptotic bias are equivalent
to ours.
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(i) a0 ≤ ϕ(0)≤ a00�

(ii) ϕ(λ)= ϕ(0)+
[s/2]∑
k=1

ϕkλ
2k +∆(λ) for some constants ϕk

with |ϕk| ≤ ak for k= 1� � � � � [s/2] and some function ∆(λ)

with |∆(λ)| ≤K2λ
s for all 0 ≤ λ≤ δ2�

(iii) |ϕ(λ1)−ϕ(λ2)| ≤K3|λ1 − λ2| for all 0<λ1 <λ2 ≤ δ3

}
�

If ϕ is an even function on [−π�π] that is smooth of order s ≥ 1 at
zero and f (λ) = |λ|−2df ϕ(λ) for some |df | < 1/2� then f is in F(s� a�δ�K)
for some a, δ, and K. Condition (ii) of F(s� a�δ�K) holds in this case by
taking a Taylor expansion of ϕ(λ) about λ = 0. The constants ϕk equal
ϕ(2k)(0)/(2k)! for k= 1� � � � � [s/2] and ∆(λ) is the remainder in the Taylor ex-
pansion. Condition (iii) of F(s� a�δ�K) holds in this case by a mean value ex-
pansion because ϕ has a bounded first derivative in a neighborhood of zero.

The optimal rate results are given in the following theorem. Part (a) is from
Theorem 3 of AG.

THEOREM 3: Let s and the elements of a = (a0� a00� a1� � � � � a[s/2])′, δ =
(δ1� δ2� δ3)

′, and K = (K1�K2�K3)
′ be any positive real numbers with s ≥ 1,

a0 < a00, δ1 < 1/2, and K1 ≥ 2πa00.
(a) Suppose {xt} is a sequence of Gaussian random variables with spectral den-

sity function f ∈F(s� a�δ�K). Then, there is a constant C > 0 such that

lim inf
n→∞

inf
d̂n

sup
f∈F(s�a�δ�K)

Pf
(
ns/(2s+1)|d̂n − df | ≥ C

)
> 0�

where the inf is taken over all estimators d̂n of df and Pf denotes probability when
the true spectral density is f .

(b) Suppose {xt} is a sequence of random variables that has spectral density
function f ∈F(s� a�δ�K) and satisfies Assumptions 3 and 5 with the innovations
{εt : t = � � � �0�1� � � � } in Assumption 3 having distribution that does not depend
on f ∈F(s� a�δ�K) and with theO(·) term in Assumption 3(c) holding uniformly
over f ∈ F(s� a�δ�K). Let m = ψ1n

2s/(2s+1) for some constant ψ1 ∈ (0�∞) and
let r ≥ 0 be the largest integer (strictly) less than s/2. Then,

lim
C→∞

lim sup
n→∞

sup
f∈F(s�a�δ�K)

Pf
(
ns/(2s+1)|d̂(r)− df | ≥ C

) = 0�
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COMMENT : Part (b) of the theorem is proved by showing that �n :=
m1/2(d̂(r) − df ) − [Ω−1

r νn(r� s)]1 is asymptotically normal uniformly over
f ∈ F(s� a�δ�K), where [v]1 denotes the first element of the vector v. For a
fixed spectral density f� asymptotic normality of Ψn is established by showing
that the normalized score, B−1

n Sn(d0� θ0), can be written as
∑4

u=1 Tu�n� where
T1�n = op(1), T2�n = o(1), T3�n →d N(0�Ωr), and T4�n + νn(r� s)→ 0; see the
proof of Lemma 2(e). Hence, asymptotic normality of Ψn is driven by the
term T3�n. The key to the proof of part (b) is that the distribution of T3�n

does not depend on f� One obtains asymptotic normality of Ψn uniformly over
f ∈ F(s� a�δ�K) provided the other terms behave appropriately uniformly
over f ∈F(s� a�δ�K).

7. AN ADAPTIVE LPW ESTIMATOR

The definition of d̂(r) depends on r� the degree of the local polynomial.
In turn, a suitable choice of bandwidth m depends on r. In this section, we de-
velop a procedure to choose r and m so they adapt to the smoothness of ϕ(λ).
The basic method comes from Lepskii (1990) and has been used in the con-
text of estimation of the long-memory parameter by GRS, IMS, and HMS.
We show that an adaptive LPW estimator achieves, up to a logarithmic fac-
tor, the optimal rate of convergence established in the previous section uni-
formly over values of the smoothness parameter s ∈ [s∗� s∗], where s∗ and s∗
are constants that satisfy 1 ≤ s∗ ≤ s∗ <∞. Furthermore, the same estimator
achieves this result for all s∗ < ∞� so there is no need to select an upper
bound s∗. This contrasts with the procedures considered in Lepskii (1990) and
GRS. The adaptive procedure achieves this rate of convergence without as-
suming Gaussianity of the process, which contrasts with the results of GRS,
IMS, and HMS.

Let s ∈ [s∗�∞) for s∗ ≥ 1. For a positive constant ψ1� set

m(s)=ψ1n
2s

2s+1 and(7.1)

r(s)=w for s ∈ (2w�2w+ 2] for w= 0�1� � � � �

Equivalently, r(s)= [s/2] if s/2 /∈ N and r(s)= s/2 − 1 if s/2 ∈ N.
Denote d̂s = d̂(r(s)) when the bandwidth ism(s). Let h= 1/ logn and Sh be

the h-net of the interval [s∗�∞): Sh = {τ : τ= s∗ + kh, k= 0�1�2� � � � }. Define

ŝ= sup
{
s ∈ Sh : |d̂τ − d̂s| ≤m−1/2(τ)ψ2(cr(τ)/4)1/2ζ(n)

for all τ ≤ s� τ ∈ Sh
}
�(7.2)

ζ(n)= (logn)(log log(n))1/2�

where ψ2 is a positive constant. Graphically, one can view the bound in the
definition of ŝ as a function of τ. Then, ŝ is the largest value of s ∈ Sh such that
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|d̂τ − d̂s| lies below the bound for all τ ≤ s� τ ∈ Sh. Calculation of ŝ is carried
out by considering successively larger s values s∗, s∗ + h, s∗ + 2h� � � � until for
some s the deviation |d̂τ − d̂s| exceeds the bound for some τ ≤ s, τ ∈ Sh.

The adaptive estimator d̂̂s satisfies the following result.

THEOREM 4: Let the elements of a= (a0� a00� a1� � � � � a[s/2])′� δ= (δ1� δ2� δ3)
′,

and K = (K1�K2�K3)
′ be any positive real numbers with a0 < a00, δ1 < 1/2, and

K1 ≥ 2πa00. Suppose {xt} is a sequence of random variables that has spectral den-
sity function f ∈ F(s� a�δ�K) and satisfies Assumptions 3 and 5 with the inno-
vations {εt : t = � � � �0�1� � � � } in Assumption 3 having a distribution that does not
depend on f ∈ F(s� a�δ�K) and with the O(·) term in Assumption 3(c) holding
uniformly over f ∈F(s� a�δ�K). Let s∗ ≥ 1� For all s∗ ∈ [s∗�∞),

lim
C1→∞

lim sup
n→∞

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

Pf
(
n

s
2s+1 ζ−1(n)|d̂̂s − df | ≥ C1

) = 0�

COMMENTS: 1. By Theorem 3, for f ∈ F(s� a�δ�K)� the optimal rate of
convergence of an estimator of df for a given value of s is n−s/(2s+1) . Theorem 4
shows that the adaptive LPW estimator, d̂̂s , achieves this rate up to the loga-
rithmic factor ζ(n) uniformly over s ∈ [s∗� s∗] for any s∗ ∈ [s∗�∞).

2. Theorem 4 does not require {xt} to be a Gaussian process. In fact,
it only requires xt to have finite fourth moments.

3. For a density f that is in F(s� a�δ�K) for all s <∞, Theorem 4 shows
d̂̂s is n1/2−δ-consistent for all δ > 0� That is, d̂̂s has a rate of convergence that is
arbitrarily close to the parametric rate. For example, this is the rate obtained
for ARFIMA(p�d�q) processes.

4. In the simulations reported in Section 8, we take s∗ = 1� which allows
for the smoothness of ϕ(λ) to be any s ≥ 1.

5. We note that the adaptive procedure considered here is not fully data-
dependent. The constants ψ1 and ψ2 must be specified. In the simulation
section below, we take ψ1 = �3 and ψ2 = �2. These choices work well for a va-
riety of different models and parameter values. Note that analogous constants
also appear (or are set equal to arbitrary values) in the adaptive procedures of
Lepskii (1990), GRS, IMS, and HMS.

6. Suppose r(s) is defined to equal zero, which corresponds to the stan-
dard local Whittle estimator, and ŝ is otherwise defined as above. Then, the
result of Theorem 4 still holds, but only for the class of spectral densities
F(s� a�δ�K) for which ak = 0 for k = 1�2� � � � . This class of spectral densi-
ties is analogous to that considered by GRS. As discussed in AG, this condi-
tion is quite restrictive. Spectral densities that are smooth of order s at zero
only satisfy this condition if all the coefficients of the Taylor expansion of ϕ(λ)
about λ= 0 to order [s] are zero.

7. The adaptive estimator of Theorem 4 is not necessarily asymptotically
normal. However, at the cost of a slower rate of convergence, an adaptive es-
timator can be constructed that is asymptotically normal with zero asymptotic
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bias by altering the definition of m(s) so that m(s) diverges to infinity at a
slower rate than n2s/(2s+1) . For example, suppose one defines ŝ as above but with

m(s)=ψ1n
4r(s)/(4r(s)+1)�(7.3)

Then, it can be shown that the result of Theorem 4 holds but with ns/(2s+1)

replaced by nr(s)/(2r(s)+1) . Now, suppose the true spectral density of {xt} is f
and Assumptions 3 and 5 hold as in Theorem 4. Let sf be the supremum
of {s : f ∈ F(s� a�δ�K) for some (a�δ�K)� where (a�δ�K) are as in Theo-
rem 4}. Provided sf <∞ and sf is not an even integer, Theorems 3 and 4 imply
that r( ŝ )= r(sf ) wp→ 1� Thus, r( ŝ ) and m( ŝ ) are essentially nonrandom for
large n. In consequence, the asymptotic normality result of Theorem 2 applies
to the adaptive estimator d̂̂s with r = r(sf ) and νn(r(sf )� sf ) = o(1) in the re-
sult of Theorem 2, where o(1) holds by (4.6) with sf ∈ (2r(sf )�2 + 2r(sf )),
m = m(sf), and m(sf)

sf+1/2n−sf = o(1). Of course, one would expect that
a given level of accuracy of approximation by the normal distribution would re-
quire a larger sample size when r andm are adaptively selected than otherwise.

8. MONTE CARLO SIMULATIONS

8.1. Experimental Design

In this section, we present some simulation results that compare the root
mean-square error (RMSE) performance of the adaptive LPW estimator with
several adaptive estimators in the literature. Additional simulation results for
nonadaptive LPW estimators are given in Andrews and Sun (2001).

We consider three models and several parameter combinations for each
model.

The first model we consider for the time series {xt : t ≥ 1} is a first-order
autoregressive fractionally integrated (ARFIMA(1� d�0)) model with autore-
gressive (AR) parameter φ and long-memory parameter d0:

(1 −φL)(1 −L)d0xt = ut�(8.1)

where the innovations {ut : t = � � � �0�1� � � � } are iid random variables andL de-
notes the lag operator. We consider three distributions for ut : standard normal,
t5� and χ2

2. The t5 and χ2
2 distributions are considered because they exhibit thick

tails and asymmetry, respectively. All of the estimators of d0 that we consider
are invariant with respect to the mean and variance of the time series. In con-
sequence, the choice of location and scale of the innovations is irrelevant. Note
that the spectral density of an ARFIMA(1� d�0) process is continuous and in-
finitely differentiable on (0�π].

The second model we consider is a stationary ARFIMA(1� d�0)-like model
that has a discontinuity in its spectral density at frequency λ = λ0� We call
this model a DARFIMA(1� d�0) model. Its spectral density is that of an
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ARFIMA(1� d�0) process for λ ∈ (0�λ0], but is zero for λ ∈ (λ0�π].
A DARFIMA(1� d�0) process {xt : t ≥ 1} is defined as in (8.1), but with in-
novations {ut : t = � � � �0�1� � � � } that are an iid Gaussian process filtered by a
low pass filter. Specifically,

ut =
∞∑

j=−∞
cjεt−j for t = � � � �0�1� � � � � where(8.2)

cj =


λ0

π
for j = 0,

sin(λ0j)

jπ
for j �= 0,

and {εt : t = � � � �0�1� � � � } are iid random variables with standard normal, t5�
or χ2

2 distribution. The spectral density fu(λ) of {ut : t ≥ 1} equals σ 2
u/(2π)

for 0 < λ ≤ λ0 and equals 0 for λ0 < λ ≤ π� where σ 2
u denotes the variance

of ut ; e.g., see Brillinger (1975, equation (3.3.25), p. 58). The spectral den-
sity of {xt : t ≥ 1} is fu(λ) times the spectral density of the ARFIMA(1� d�0)
process that has the same AR parameter. Thus, the spectral density of a
DARFIMA process is a truncated discontinuous version of that of the cor-
responding ARFIMA process.

The third model we consider is a model that we call a long-memory compo-
nents (LMC) model. It is designed to have a finite degree of smoothness s0 at
frequency zero in the short-run part, ϕ(λ)� of its spectral density. The process
{xt : t ≥ 1} is defined by

(1 −L)d0xt = ut + k(1 −L)s0/2vt�(8.3)

where {ut : t ≥ 1} and {vt : t ≥ 1} are independent iid processes both with nor-
mal, t5� or χ2

2 distribution. The spectral density function of {ut +k(1−L)s0/2vt :
t ≥ 1} is

ϕs0�k(λ)= σ 2

2π
+ k2σ 2

2π
|1 − eiλ|s0�(8.4)

where σ 2 denotes the variance of ut and vt � Because |1 − eiλ| ∼ λ as λ→ 0� the
smoothness of ϕs0�k(λ) at λ= 0 is s0 for non-integer s0.

For the ARFIMA and DARFIMA models, we consider seven values of φ,
viz., 0, �3, �6, �9, −�3, −�6, and −�9. For the DARFIMA model, we take λ0 to
equal π/2� For the LMC model, we take s0 = 1�5 and consider five values of k�
viz., 1/3, 1/2, 1�2, and 3. For all three models, we consider three values of d0�
viz., d0 = −�4�0, and �4. For each model, we consider two sample sizes n= 512
and n = 4,096. In all cases, 1,000 simulation repetitions are used. This pro-
duces simulation standard errors that are roughly 3% of the magnitudes of the
reported RMSE’s.
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The estimators that we consider include the adaptive LPW (ALPW) estima-
tor defined in the previous section, the adaptive log-periodogram regression
estimator of GRS, the adaptive FEXP estimator of IMS, and the FEXP esti-
mator of Hurvich (2001) (H) with the number of terms in the expansion chosen
by his local CL method. Each of these estimators requires the specification of
certain constants in the adaptive or localCL procedure. In addition, the estima-
tor analyzed by GRS requires trimming of frequencies near zero and tapering
of the periodogram, and the estimator analyzed by IMS requires tapering of
the periodogram and allows for pooling of the periodogram.

The constants in the adaptive procedures are tuned to the Gaussian
ARFIMA model with φ = �6 with n = 512. That is, they are determined by
simulation to be the values (from a grid) that yield the smallest RMSE for the
Gaussian ARFIMA model with φ = �6 and n = 512. These values are then
used for all of the processes considered in the experiment. For the ALPW
procedure, the grid for the constant ψ1 is {�1� �2� � � � � �5} and the grid for ψ2

is {�05� �10� � � � � �70}. For the GRS procedure, their constant β∗ is taken to be
two (as suggested on their p. 192). In addition, we introduce two constants
ψ1 and ψ2 that are analogous to the constants that appear in the adaptive pro-
cedure for ALPW.3 The grid for ψ1 is {�1� �2� � � � �1�0} and the grid for ψ2 is
{�05� �10� � � � � �70}. The constants ψ1 and ψ2 are introduced in order to give the
GRS adaptive procedure a degree of flexibility that is comparable to that of
the ALPW procedure. For the IMS procedure, their constant κ is analogous
to the constant ψ2 of the ALPW estimator and is chosen from the same grid
as ψ2 and the pooling size (m in IMS’s notation and denoted pool below) is
determined simultaneously with the constant κ from the grid {1�2� � � � �6}.4

We analyze several versions of the adaptive estimators. The first version is a
version that is closest to being covered by the theoretical results in the litera-
ture. We refer to these as being the “theoretically-justified” estimators and they
are denoted ALPW1, GRS1, and IMS1. (The ALPW1 estimator is covered by
the results of this paper. The GRS1 estimator uses constantsψ1 andψ2 that are
not covered by the results of GRS and the IMS1 estimator uses a constant κ
and an upper bound on the number p of Fourier terms that are not covered by
the results of IMS; see footnote 4.) The GRS1 estimator uses the cosine-bell

3The constants ψ1 and ψ2 appear as multiplicative constants on the right-hand side of GRS’s
formulae for the bandwidthm(γ) in their (3.6) and for d(β′) in their (3.8), respectively.

4IMS require that their constant κ > 6� Such a choice provides poor finite sample performance
for all of the cases that we considered. In consequence, we did not impose this bound and we
selected κ from the same grid {�05� �10� � � � � �70} as for the analogous constant ψ2 for the ALPW
and GRS procedures. The selected κ value was not at the upper end of the grid.

In addition, IMS require that the number of terms, p� in their Fourier series expansion be less
than a bound (their Kεn) that is very restrictive. For example, with pool = 1� the bound allows
for at most zero terms when n ≤ 18,000 and at most one term when n ≤ 58,000. The bound is
more restrictive when pool > 1� We do not impose this bound because it would eviscerate the
semiparametric nature of the estimator. Instead, we required that p≤ 20.
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taper with two out of every three frequencies dropped (as in GRS) and three
frequencies near the origin are trimmed (trim = 3) when n = 512 and six are
trimmed (trim = 6) when n= 4,096. The IMS1 estimator uses the Hurvich ta-
per (of order one) with one frequency dropped between each pool group of
frequencies, as in Section 2.2 of HMS. (Note that for the case where no differ-
encing is carried out to eliminate potential trends, the IMS and HMS adaptive
estimators are essentially the same except that HMS uses a scheme that deletes
fewer frequencies, which we employ here.)

The second and third versions of the adaptive estimators that we consider do
not have known theoretical properties. The ALPW2 estimator is the same as
the ALPW1 estimator except that a bound is placed on the degree of the poly-
nomial. Specifically, ŝ is defined as in (7.2), the bandwidth is taken to bem( ŝ ),
and the degree of the polynomial is taken to be min{r( ŝ )�2}, when n = 512
and min{r( ŝ )�4}, when n= 4,096.

The estimator GRS2 differs from GRS1 in that it does not trim any frequen-
cies near zero. The estimator GRS3 differs from GRS1 in that it does not trim
frequencies near zero, use a taper, or drop two out of every three frequencies.
The estimator IMS2 differs from IMS1 in that it does not use a taper or drop
any frequencies.

The constants determined by simulation are: ALPW1: (ψ1�ψ2) = (�3� �2);
ALPW2: (ψ1�ψ2) = (�3� �5); GRS1: (ψ1�ψ2) = (�6� �5); GRS2: (ψ1�ψ2) =
(�3� �6); GRS3: (ψ1�ψ2) = (�2� �25); IMS1: (pool�κ) = (2� �65); and IMS2:
(pool�κ)= (2� �45).

The H procedure requires the specification of a constant α. We consider the
two values α = �5 and α = �8 that are considered in the Hurvich paper. The
corresponding estimators are denoted H1 and H2. (The value α = �8 turns
out to minimize RMSE of the FEXP estimator for the ARFIMA process with
φ= �6 and n= 512 over α values in {�1� �2� � � � � �8}�5) The theoretical properties
of the H procedure, such as its rate of convergence, are not given in Hurvich
(2001). For this reason, we do not put the H1 and H2 estimators in with the
first group of “theoretically-justified” estimators.

The final estimator that we consider is the parametric Whittle quasi-
maximum likelihood (QML) estimator for a Gaussian ARFIMA(1� d�0)
model. This estimator is misspecified when the model under consideration is
the DARFIMA(1� d�0) model or the LMC model. This estimator is included
in the simulations for comparative purposes.

8.2. Monte Carlo Results

Tables I–III give the results for the three models. Each table has a separate
panel of results for n = 512 and n = 4,096. The numbers reported in the ta-
bles are the RMSE’s of the estimators. The first three rows of each panel give

5Note that α= �9 is not included in the grid because it does not yield a local CL criterion given
that m= n�9 ≥ n/2.
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TABLE I

RMSE FOR ARFIMA(1� d�0) PROCESSES WITH AR PARAMETER φ

d = 0 d = 0 d = �4
Normal t5 Normal
φ φ φ

Estimator 0 .3 .6 .9 .6 .9 .6 .9

(a) n= 512

ALPW1 �145 �142 �145 �423 �140 �420 �151 �425
GRS1 (taper� trim = 3) �160 �197 �397 �855 �393 �864 �394 �857
IMS1 (pool = 2� taper) �234 �252 �291 �448 �311 �460 �379 �579

ALPW2 (r ≤ 2) �098 �098 �118 �551 �121 �552 �126 �551
GRS2 (taper�no trim) �164 �172 �244 �662 �254 �657 �253 �668
GRS3 (no taper�no trim) �131 �133 �159 �502 �157 �501 �166 �499
IMS2 (pool = 2�no taper) �203 �209 �217 �315 �215 �320 �222 �301

H1 (α= �5) �288 �309 �321 �438 �308 �420 �310 �436
H2 (α= �8) �182 �206 �233 �459 �235 �457 �241 �480

Parametric Whittle QML �066 �128 �134 �112 �141 �107 �140 �156

(b) n= 4096

ALPW1 �061 �061 �060 �207 �058 �201 �062 �213
GRS1 (taper� trim = 6) �056 �081 �169 �586 �168 �581 �169 �587
IMS1 (pool = 2� taper) �045 �133 �122 �218 �120 �220 �142 �273

ALPW2 (r ≤ 4) �041 �041 �045 �336 �043 �333 �048 �340
GRS2 (taper�no trim) �063 �066 �108 �396 �109 �388 �114 �401
GRS3 (no taper�no trim) �052 �052 �065 �222 �064 �219 �070 �228
IMS2 (pool = 2�no taper) �046 �076 �073 �155 �073 �154 �071 �145

H1 (α= �5) �067 �076 �083 �125 �082 �123 �084 �132
H2 (α= �8) �052 �062 �073 �147 �075 �144 �077 �156

Parametric Whittle QML �013 �028 �046 �025 �045 �025 �045 �032

results for the “theoretically-justified” adaptive estimators. The next four rows
give results for the adaptive estimators that do not have theoretical justifica-
tion (currently). The last three rows give results for the H1, H2, and parametric
Whittle QML estimators.

For brevity, the tables do not provide results for all combinations of para-
meters considered. For example, results for φ = −�3, −�6, −�9 are not given
because they are quite close to those for φ = 0� �3. We only give selected re-
sults for d = �4 and we give no results for d = −�4, because the value of d has
only a small effect on RMSE (except for the IMS1 estimator, which exhibits
some sensitivity to d). Similarly, we only give selected results for t5 innovations
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TABLE II

RMSE FOR DARFIMA(1� d�0) PROCESSES WITH λ0 = π/2 AND AR PARAMETER φ

d = 0 d = 0 d = �4
Normal t5 Normal
φ φ φ

Estimator 0 .3 .6 .9 .6 .9 .6 .9

(a) n= 512

ALPW1 �143 �142 �146 �423 �149 �430 �146 �425
GRS1 (taper� trim = 3) �160 �200 �390 �857 �395 �868 �394 �859
IMS1 (pool = 2� taper) �448 �448 �445 �464 �468 �490 �520 �578

ALPW2 (r ≤ 2) �181 �185 �244 �676 �248 �676 �244 �637
GRS2 (taper�no trim) �176 �181 �243 �656 �254 �657 �253 �668
GRS3 (no taper�no trim) �131 �142 �159 �503 �157 �501 �165 �499
IMS2 (pool = 2�no taper) �268 �266 �262 �303 �252 �311 �246 �299

H1 (α= �5) �356 �348 �317 �404 �326 �401 �309 �427
H2 (α= �8) �396 �393 �384 �389 �403 �409 �363 �429

Parametric Whittle QML �866 �616 �949 1�202 �951 1�209 �852 �855

(b) n= 4096

ALPW1 �060 �060 �059 �207 �055 �204 �061 �213
GRS1 (taper� trim = 6) �056 �081 �169 �586 �168 �581 �169 �587
IMS1 (pool = 2� taper) �146 �146 �146 �127 �148 �130 �121 �120

ALPW2 (r ≤ 4) �096 �096 �091 �334 �089 �327 �091 �303
GRS2 (taper�no trim) �063 �066 �108 �396 �109 �388 �114 �401
GRS3 (no taper�no trim) �051 �052 �066 �222 �064 �219 �070 �229
IMS2 (pool = 2�no taper) �096 �096 �096 �106 �093 �103 �100 �125

H1 (α= �5) �126 �125 �123 �117 �124 �119 �110 �127
H2 (α= �8) �120 �120 �119 �113 �122 �119 �119 �139

Parametric Whittle QML �346 �579 �930 1�256 �933 1�257 �905 1�068

and we give no results for χ2
2 innovations, because the innovation distribution

turns out to have a small effect on RMSE.
We start by noting two broad features of the results presented in the tables.

First, the results for d = 0 and t5 innovations are quite similar to those for d = 0
and normal innovations. Second, with one exception, the results for d = �4 and
normal innovations are quite similar to those for d = 0 and normal innovations.
The exception is: the IMS1 estimator is noticeably worse with d = �4 than with
d = 0 for all ARFIMA models and for the DARFIMA models with n= 512.

Now, we compare the estimators. Among the three theoretically-justified
estimators, the ALPW1 estimator performs the best across all three models
and both sample sizes. Its performance in the ARFIMA and DARFIMA mod-
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TABLE III

RMSE FOR LMC MODEL WITH SMOOTHNESS INDEX s0 = 1�5 AND WEIGHT k

d = 0 d = 0 d = �4
Normal t5 Normal
k k k

Estimator 1/3 1/2 1 2 3 1/2 2 1/2 2

(a) n= 512

ALPW1 �139 �139 �139 �168 �216 �145 �171 �138 �164
GRS1 (taper� trim = 3) �172 �190 �230 �384 �486 �172 �384 �177 �375
IMS1 (pool = 2� taper) �247 �249 �264 �298 �336 �262 �297 �307 �323

ALPW1 (r ≤ 2) �096 �097 �106 �167 �245 �098 �167 �098 �164
GRS2 (taper�no trim) �165 �173 �175 �262 �337 �182 �269 �181 �265
GRS3 (no taper�no trim) �131 �131 �136 �181 �245 �121 �184 �128 �176
IMS2 (pool = 2�no taper) �207 �207 �209 �209 �229 �194 �215 �215 �233

H1 (α= �5) �264 �265 �276 �303 �333 �259 �307 �271 �311
H2 (α= �8) �178 �182 �199 �241 �298 �169 �229 �182 �245

Parametric Whittle QML �064 �069 �129 �273 �368 �064 �269 �069 �274

(b) n= 4096

ALPW1 �061 �060 �060 �065 �100 �060 �068 �061 �058
GRS1 (taper� trim = 6) �061 �066 �108 �213 �305 �066 �210 �066 �212
IMS1 (pool = 2� taper) �056 �075 �123 �136 �166 �075 �138 �070 �105

ALPW2 (r ≤ 4) �043 �043 �045 �067 �113 �041 �070 �041 �067
GRS2 (taper�no trim) �068 �068 �079 �137 �201 �067 �137 �066 �135
GRS3 (no taper�no trim) �051 �052 �056 �085 �122 �053 �087 �049 �080
IMS2 (pool = 2�no taper) �050 �058 �070 �085 �085 �058 �086 �062 �089

H1 (α= �5) �072 �073 �078 �089 �100 �078 �089 �079 �091
H2 (α= �8) �056 �058 �065 �087 �107 �060 �089 �061 �087

Parametric Whittle QML �023 �033 �104 �236 �320 �032 �235 �031 �232

els is almost the same, as desired. This is due to its narrow-band character
and the adaptive nature of the bandwidth selection method. In these models
the performance of ALPW1 does not vary much with φ except for φ = �9�
When φ= �9, its performance deteriorates because of the difficulty of distin-
guishing an AR root close to unity from the long memory parameter d0� The
same deterioration occurs for most of the other estimators. In the LMC model,
the performance of the ALPW1 estimator is best when k is small and worst
when k is large. This is to be expected and is true of all of the other estima-
tors as well. Not surprisingly, the performance of the ALPW1 and all other
estimators improves substantially as n increases from 512 to 4,096.
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The GRS1 estimator performs poorly, in an absolute sense and relative to
ALPW1, when φ= �6 or �9 and when k= 1�2� or 3� In contrast, the IMS1 esti-
mator performs poorly, in an absolute sense and relative to ALPW1, forφ≤ �6
in the ARFIMA models; for most values of φ in DARFIMA models; and for
many values of k in LMC models. The performance of the IMS1 estimator de-
teriorates for DARFIMA models compared to ARFIMA models. This reflects
its broad-band character, which is not designed to be robust against discontin-
uous spectral densities.

Next, we consider the non-theoretically-justified adaptive estimators
ALPW2, GRS2, GRS3, and IMS2. The ALPW2 estimator outperforms
the ALPW1 estimator and all other semiparametric estimators for both
ARFIMA and LMC processes except when φ = �9 or k = 3� However, its
performance deteriorates for DARFIMA processes. It is outperformed by
ALPW1 for most cases with DARFIMA processes. In consequence, it is not
possible to order the overall relative performance of ALPW1 and ALPW2.

The GRS2 and GRS3 estimators perform noticeably better than GRS1, es-
pecially when φ or k is large. Hence, trimming is found to have a negative
impact. The GRS3 estimator outperforms the GRS2 estimator across all cases
and all models considered. Hence, tapering also is found to have a negative
impact. In an overall sense, the GRS3 estimator performs quite well relative to
other semiparametric estimators. Compared to the ALPW1 estimator, it does
better for small values of φ and k� but worse for large values.

The IMS2 estimator outperforms the IMS1 estimator in all cases but one.
In many cases, the difference is substantial. Hence, again we find the effect of
tapering to be negative. Compared with the other semiparametric estimators,
IMS2 performs very well (in fact, the best) in the cases where the short-run
serial correlation is highest, i.e., φ= �9 or k= 3� But, in most other cases, it is
outperformed by the ALPW1, ALPW2, and GRS3 estimators. It appears that
the relative performance of the IMS2 estimator compared to the narrow-band
ALPW and GRS estimators improves as the sample size increases from 512
to 4,096.

The H1 and H2 estimators perform well when the sample size is 4,096 and
either φ= �9 or k= 3. In other cases, they do not perform well relative to the
ALPW1, ALPW2, or GRS3 estimators. In particular, they perform poorly for
DARFIMA processes except when φ = �9. The relative strengths of the H1
and H2 estimators are similar to those of the IMS1 and IMS2 estimators. This
is not surprising, because all of these estimators are broadband FEXP estima-
tors. The H2 estimator outperforms the H1 estimator for ARFIMA and LMC
processes, but the opposite is true for DARFIMA processes with n= 512. In an
overall sense, H2 outperforms H1.

The parametric Whittle QML estimator performs as expected. ForARFIMA
processes, it outperforms all semiparametric estimators by a substantial margin
especially whenφ= �9 or when n= 4,096. For DARFIMA processes, for which
it is misspecified, it performs very poorly. It is substantially outperformed by all
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semiparametric estimators. For LMC processes, for which it is misspecified, it
outperforms the semiparametric estimators for small values of k, which are
close to ARFIMA processes. But, it is outperformed for larger values of k.

To conclude, among the three theoretically-justified estimators, the ALPW1
estimator is clearly the best. Trimming hurts the performance of the GRS1 es-
timator. Tapering hurts the performance of the GRS1 and IMS1 estimators.
Of all the semiparametric estimators, the three best ones in an overall sense
are the ALPW1, GRS3, and IMS2 estimators. The narrow-band estimators,
ALPW1 and GRS3, perform well over a broad range of parameter values, but
are outperformed by the broad-band estimator, IMS2, when the serial cor-
relation in the short-run part of the spectrum is quite large. The broadband
estimator IMS2 performs relatively well when the sample size is large and the
amount of serial correlation is high. The parametric Whittle QML estimator
performs very well when the model is correctly specified, moderately well when
the amount of misspecification is modest, and poorly when the amount of mis-
specification is large.
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APPENDIX: PROOFS

PROOF OF LEMMA 1: Let Γn0 = {γ ∈ Γ : ‖Bn(γ − γ0)‖ ≤ Kn� ‖γ − γ0‖ < δ} for some δ > 0
such thatLn(γ) is twice differentiable on {γ ∈Rk : ‖γ−γ0‖<δ} and {γ ∈Rk : ‖γ−γ0‖< δ} ⊂ Γ .
Using condition (iv), a Taylor expansion about γ0� and some algebra, we obtain: for γ ∈ Γn0,

Ln(γ)−Ln(γ0) = ∇Ln(γ0)
′(γ − γ0)+ 1

2
(γ− γ0)

′∇2Ln(γ0)(γ− γ0)+ ρn(γ)(A.1)

= 1
2
(Bn(γ − γ0)+Yn)′

[
(B−1

n )
′∇2Ln(γ0)B

−1
n

]
(Bn(γ− γ0)+Yn)

− 1
2
Y ′
n(B

−1
n )

′∇Ln(γ0)+ ρn(γ)�

where for all γ ∈ Γn0,

|ρn(γ)| ≤ sup
γ∈Γn0

∣∣(γ − γ0)
′(∇2Ln(γ)− ∇2Ln(γ0)

)
(γ− γ0)

∣∣(A.2)

≤ ‖Bn(γ − γ0)‖2 sup
γ∈Γn0

∥∥(B−1
n )

′(∇2Ln(γ)− ∇2Ln(γ0)
)
B−1
n

∥∥
= ‖Bn(γ − γ0)‖2op(1)�
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Let γ∗
n = γ0 − B−1

n Yn� Conditions (ii) and (iii) imply that Yn = Op(1)� This and condition (i)
imply that γ∗

n ∈ Γn0 wp→ 1� In consequence, by (A.1) and (A.2),

Ln(γ
∗
n)−Ln(γ0)= −1

2
Y ′
n(B

−1
n )

′∇Ln(γ0)+ ρn(γ∗
n) and(A.3)

ρn(γ
∗
n)= op(1)�

For any ε > 0 and n ≥ 1, let Γn(ε) = {γ ∈ Γ : ‖Bn(γ − γ0) + Yn‖ ≤ ε}. Note that γ∗
n is in the

interior of Γn(ε) wp→ 1. We have Γn(ε)⊂ Γn0 wp→ 1� and so, supγ∈Γn(ε) |ρn(γ)| = op(1) by (A.2).
Let ∂Γn(ε) denote the boundary of Γn(ε). Combining (A.1)–(A.3), for γ ∈ ∂Γn(ε),

Ln(γ)−Ln(γ∗
n)=

1
2
µ′
n(B

−1
n )

′∇2Ln(γ0)B
−1
n µn + op(1)(A.4)

for some k-vector µn with ‖µn‖ = ε > 0� The right-hand side is bounded away from zero wp→ 1
uniformly over all k-vectors µn with ‖µn‖ = ε by condition (iii). Hence, the minimum of Ln(γ)
over γ ∈ ∂Γn(ε) is greater than its value at the interior point γ∗

n . In consequence, the minimum of
Ln(γ) over γ ∈ Γn(ε) is attained at a point, say γ̃n(ε) (not necessarily unique), in the interior of
Γn(ε) wp→ 1. This point satisfies the first-order conditions ∇Ln(γ̃n(ε))= 0 wp→ 1.

In consequence, for all J ≥ 1, P(∇Ln(γ̃n(1/j)) = 0 ∀ j = 1� � � � � J) → 1 as n → ∞. Thus,
there is a sequence {Jn : n ≥ 1} such that Jn ↑ ∞ and P(∇Ln(γ̃n(1/j)) = 0 ∀ j = 1� � � � � Jn)→ 1
as n→ ∞. For example, take J1 = 2� Jn = Jn−1 + 1 if P(∇Ln(γ̃n(1/j)) = 0 ∀ j ≤ Jn−1 + 1) >
1 − 1/Jn−1, and Jn = Jn−1 otherwise, for n = 2�3� � � � . Define γ̃n = γ̃n(1/Jn) for n ≥ 1. Then,
P(∇Ln(γ̃n) = 0) ≥ 1 − 1/Jn−1 → 1 as n→ ∞. In addition, γ̃n ∈ Γn(1/Jn) for all n ≥ 1� Hence,
Bn(γ̃n − γ0)= −Yn + op(1)=Op(1). Q.E.D.

PROOF OF LEMMA 2(a): Part (a) holds by approximating sums by integrals. See Lemma 2(a),
(h), and (i) in AG for details (noting that Xj = −2 logλj in AG). Q.E.D.

PROOF OF LEMMA 2(b): The normalized Hessian can be written as

B−1
n Hn(d�θ)B

−1
n(A.5)

= Ĝ−2(d� θ)

(
Ĝ(d� θ)m−1

m∑
j=1

yj(d� θ)X̃jX̃
′
j −

(
m−1

m∑
j=1

yj(d� θ)X̃j

)

×
(
m−1

m∑
j=1

yj(d� θ)X̃j

)′ )
� where

X̃j =
(
2 log j� (j/m)2� � � � � (j/m)2r

)′
�

Let

Ĝa�b(d� θ)=m−1
m∑
j=1

Ij exp(pr(λj� θ))λ2d
j (2 log j)a(j/m)2b(A.6)

for a= 0�1�2 and b= 0� � � � � r . The (1�1)� (1� k)� and (k� �) elements of B−1
n Hn(d�θ)B

−1
n for k,

�= 2� � � � � r + 1 are

Ĝ−2
0�0(Ĝ0�0Ĝ2�0 − Ĝ2

1�0)�(A.7)

Ĝ−2
0�0(Ĝ0�0Ĝ1�k−1 − Ĝ1�0Ĝ0�k−1)� and

Ĝ−2
0�0(Ĝ0�0Ĝ0�k+�−2 − Ĝ0�k−1Ĝ0��−1)�
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respectively, where the dependence on (d� θ) has been suppressed for simplicity.
Let Ja�b be defined as Ĝa�b(d� θ) is defined, but with Ij exp(pr(λj� θ))λ2d

j replaced by G0.
That is,

Ja�b =G0m
−1

m∑
j=1

(2 log j)a(j/m)2b(A.8)

for a = 0�1�2 and b = 0� � � � � r. The elements of B−1
n JnB

−1
n are given by the formulae in (A.7)

with Ĝa�b(d0� θ0) replaced by Ja�b. Note that Ja�b =O(loga m) and J0�0 =G0 > 0. Hence, to prove
Lemma 2(b), it suffices to show that

∆a�b := |Ĝa�b(d0� θ0)/G0 − Ja�b/G0| = op(log−2m)(A.9)

for a= 0�1�2 and b= 0� � � � � r .
Let

gj = λ−2d0
j G0 exp(−pr(λj� θ0))�(A.10)

By summation by parts, we have

∆a�b =
∣∣∣∣∣m−1

m∑
j=1

(
Ij

gj
− 1

)
(2 log j)a

(
j

m

)2b
∣∣∣∣∣(A.11)

≤
∣∣∣∣∣m−1

m−1∑
k=1

[
(2 logk)a

(
k

m

)2b

− (2 log(k+ 1))a
(
k+ 1
m

)2b] k∑
j=1

(
Ij

gj
− 1

)∣∣∣∣∣
+

∣∣∣∣∣(2 logm)am−1
m∑
j=1

(
Ij

gj
− 1

)∣∣∣∣∣
:= ϑ1�a�m +ϑ2�a�m�

Using the triangle inequality and then mean-value expansions, we obtain

ϑ1�a�m ≤ m−1
m−1∑
k=1

(∣∣∣∣(2 logk)a
(
k

m

)2b

− (2 logk)a
(
k+ 1
m

)2b∣∣∣∣(A.12)

+
∣∣∣∣(2 logk)a

(
k+ 1
m

)2b

− (2 log(k+ 1))a
(
k+ 1
m

)2b∣∣∣∣)
∣∣∣∣∣
k∑
j=1

(
Ij

gj
− 1

)∣∣∣∣∣
≤ 2am−1

m−1∑
k=1

(
(logk)a2b

(
k+ 1
m

)2b−1

m−1 + a(log(k+ 1))a−1k−1

(
k+ 1
m

)2b)

×
∣∣∣∣∣
k∑
j=1

(
Ij

gj
− 1

)∣∣∣∣∣
≤ 2a(logm)a(2b+ a)m−1

m−1∑
k=1

k−1

∣∣∣∣∣
k∑
j=1

(
Ij

gj
− 1

)∣∣∣∣∣�
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By altering the statement and proof of (4.8) of Robinson (1995a), as described in Andrews and
Sun (2001), and using (4.9) of Robinson (1995a) without change, or by (A.58) below, we obtain:

k∑
j=1

(
Ij

gj
− 2πIεj

)
=Op(k1/3 log2/3 k+ kφ+1n−φ + k1/2n−1/4) and(A.13)(i)

k∑
j=1

(2πIεj − 1)=Op(k1/2)� where(A.13)(ii)

Iεj = |wε(λj)|2 and wε(λ)= (2πn)−1/2
n∑
t=1

εte
itλ�

as n → ∞ uniformly over k = 1� � � � �m� Combining (A.11)–(A.13), ϑ1�a�m and ϑ2�a�m are
Op((loga m)m−1/2 + (loga m)mφn−φ) = op(log−2m)� where the equality uses Assumption 4.6

Q.E.D.

PROOF OF LEMMA 2(c): By (A.9) and Ja�b = O(loga m), we obtain Ĝa�b(d0� θ0)= Op(loga m)
for a= 0�1�2 and b= 0� � � � � r and Ĝ0�0(d0� θ0)=G0 + op(log−2m), where G0 > 0. These results
and (A.7) imply that it suffices to show that

sup
θ∈Θ

|Ĝa�b(d0� θ)− Ĝa�b(d0� θ0)| = op(log−2m)(A.14)

for all a= 0�1�2 and b= 0� � � � � r� The left-hand side of (A.14) equals

sup
θ∈Θ

∣∣∣∣∣m−1
m∑
j=1

Ij[exp(pr(λj� θ))− exp(pr(λj� θ0))]λ2d0
j (2 log j)a(j/m)2b

∣∣∣∣∣(A.15)

≤ sup
θ∈Θ�k=1�����m

|exp{pr(λk� θ)−pr(λk� θ0)} − 1|

×m−1
m∑
j=1

Ij exp(pr(λj� θ0))λ
2d0
j (2 log j)a

=O(λ2
m)Ĝa�0(d0� θ0)�

=Op
(
(m/n)2(loga m)

)
= op(log−2m)�

where the first equality holds by a mean-value expansion using the compactness of Θ� the sec-
ond equality holds by (A.9) and Ja�b = O(loga m), and the third equality holds by Assump-
tion 4. Q.E.D.

PROOF OF LEMMA 2(d): We have (i) Ĝa�b(d0� θ) = Ja�b + op(log−2m) by (A.9) and (A.14),
(ii) Ja�b = O(loga m), (iii) J0�0J2�0 − J2

1�0 = O(1) by elementary calculations replacing sums by in-
tegrals and noting that the part of J0�0J2�0 that is O(log2m) cancels with an identical term in J2

1�0,

6Note that the summing of terms of the sort O(ka) over k= 1� � � � �m� which is done implicitly
here and explicitly below, is notationally convenient and is justified provided the O(·) holds uni-
formly over k = 1� � � � �m� The requisite uniformity holds here, as is stated explicitly. Robinson
(1995a, 1995b) also utilizes this notation.
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(iv) J0�0J1�k−1 − J1�0J0�k−1 = O(1) by the same sort of argument as for (iii), and (v) J0�0 =G0 > 0.
Given (i)–(v) and (A.7), to establish Lemma 2(d) it suffices to show that

sup
d∈Dm(ηn)�θ∈Θ

|Ĝa�b(d� θ)− Ĝa�b(d0� θ)| = op(log−2m)�(A.16)

Define Êa�b(d� θ) as Ĝa�b(d� θ) is defined, but with λ2d
j replaced by j2d� The formulae in (A.7)

for the elements of B−1
n Hn(d�θ)B

−1
n also hold with Ĝa�b(d� θ) replaced by Êa�b(d� θ). Hence, it

suffices to show that

Za�b(ηn) := sup
d∈Dm(ηn)�θ∈Θ

|Êa�b(d� θ)− Êa�b(d0� θ)| = op(n2d0 log−2m)(A.17)

for all a= 0�1�2� and b= 0� � � � � r�
We note that in Robinson’s (1995a) proof of the asymptotic normality of the local Whittle

estimator H̃ (using his notation), he shows that the Hessian is well behaved for H ∈ M =
{H : (log3m)|H −H0| ≤ ε} on p. 1642 and he shows that (log3m)(H̃ −H0) = op(1). There is
a slight error in his proof (which can be fixed without difficulty) that leads us to define Dm(ηn)
with log5m rather than log3m in the statement of Lemma 2(d). In particular, the second equal-
ity in his equation following (4.9) on p. 1643 is not correct. The left-hand side of this equality is
unchanged if E is replaced by F and op(n2H0−1) is replaced by op(1) throughout. The problem in
his proof is that F̂2(H0)= Op(log2m), not Op(1), so that F̂2(H0)op(1)= op(log2m), not op(1)�
as is necessary for the stated equality to hold. To obtain the desired result, one needs to show that
Êk(H̃)− Êk(H0)= op(n2H0−1 log−k m) for k= 0�1�2� rather than op(n2H0−1), in (4.4) on p. 1642.
This can be achieved by (i) redefining M on p. 1642 to be M = {H : (log5m)|H −H0| ≤ ε} and
(ii) showing that (log5m)|H̃ −H0| = op(1). The latter holds by the same argument as given by
Robinson (1995a, pp. 1642–1643) except that the left-hand side of (4.6) needs to be op(log−10m),
which holds by the argument given on p. 1643.

The proof of (A.17) is similar to a proof of Robinson (1995a, p. 1642). We have

Za�b(ηn) = sup
d∈Dm(ηn)�θ∈Θ

∣∣∣∣∣m−1
m∑
j=1

Ij exp(pr(λj� θ))(2 log j)a(j/m)2bj2d0(j2(d−d0) − 1)

∣∣∣∣∣(A.18)

≤ C sup
d∈Dm(ηn)

m−1
m∑
j=1

Ij(log j)aj2d0
∣∣j2(d−d0) − 1

∣∣
≤ 2Ce2ηn log−4 m sup

d∈Dm(ηn)
m−1

m∑
j=1

Ij(log j)a+1j2d0 |d− d0|

≤ ηn(log−2m)2Ce2ηn log−4 mm−1
m∑
j=1

Ijλ
2d0
j (2π/n)

−2d0

for some constant C <∞� where the first inequality uses the fact that sup0≤λ≤2π�θ∈Θ exp(pr(λ�
θ)) <∞ since Θ is compact, the second inequality uses

|j2(d−d0) − 1|/|d − d0| ≤ 2m2|d−d0| log j ≤ 2m2ηn log−5 m log j = 2e2ηn log−4m log j

for d ∈Dm(ηn) by a mean-value expansion and using mlog−1 m = e, and the third inequality uses
d ∈ Dm(ηn)� We have m−1

∑m
j=1 Ijλ

2d0
j = Ĝ0�0(d0�0) = G0 + op(log−2m) by (A.9) and (A.14).

In consequence, the left-hand side of (A.18) is op(n2d0 log−2m), as desired. Q.E.D.
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PROOF OF LEMMA 2(e): Using (4.2) and (A.10), the normalized score is

B−1
n Sn(d0� θ0) = Ĝ−1(d0� θ0)m

−1/2
m∑
j=1

(
yj(d0� θ0)−m−1

m∑
k=1

yk(d0� θ0)

)
X̃j(A.19)

= (1 + op(1))m−1/2
m∑
j=1

(
Ij

gj
− 1

)(
X̃j −m−1

m∑
k=1

X̃k

)
�

where the second equality uses Ĝ(d0� θ0)= Ĝ0�0(d0� θ0)=G0 + op(1) by (A.9).7 The right-hand
side, with (1 + op(1)) deleted, can be written as

T1�n + T2�n + T3�n + T4�n� where

T1�n =m−1/2
m∑
j=1

(
Ij

gj
− 2πIεj −E

(
Ij

gj
− 2πIεj

))(
X̃j −m−1

m∑
k=1

X̃k

)
�(A.20)

T2�n =m−1/2
m∑
j=1

(
EIj

fj
− 1

)
fj

gj

(
X̃j −m−1

m∑
k=1

X̃k

)
�

T3�n =m−1/2
m∑
j=1

(2πIεj − 1)

(
X̃j −m−1

m∑
k=1

X̃k

)
�

T4�n =m−1/2
m∑
j=1

(
fj

gj
− 1

)(
X̃j −m−1

m∑
k=1

X̃k

)
�

and fj = f (λj)� using the fact that E2πIεj = 1� We show that T1�n = op(1), T2�n = o(1),
T3�n →d N(0�Ωr), and T4�n = −νn(r� s)+ o(1).

To show T1�n = op(1)� we use the following result, which is proved below:

k∑
j=1

(
Ij

gj
− 2πIεj −E

(
Ij

gj
− 2πIεj

))
(A.21)

=Op(k1/3 log2/3 k+ kφ+1/2n−φ + k1/2n−1/4)

as n→ ∞ uniformly over k= 1� � � � �m� By summation by parts,

T1�n = m−1/2
m−1∑
k=1

k∑
j=1

(
Ij

gj
− 2πIεj −E

(
Ij

gj
− 2πIεj

))(
X̃k − X̃k+1

)
(A.22)

+m−1/2
m∑
j=1

(
Ij

gj
− 2πIεj −E

(
Ij

gj
− 2πIεj

))(
X̃m −m−1

m∑
k=1

X̃k

)

7It might seem, and indeed it was suggested to us by a discussant, that the proof given below can
be simplified and the assumptions onm weakened by establishing the asymptotic normality of the
right-hand side of (A.19) with gj replaced by fj�Ostensibly, this replacement would be justified by
noting that fj/gj is uniformly bounded away from infinity and zero. Such a replacement, however,
is not correct. If it were, the normalized score would be asymptotically normal with mean zero,
which is not the case.
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= m−1/2
m−1∑
k=1

Op(k
1/3 log2/3 k+ kφ+1/2n−φ + k1/2n−1/4)O(k−1)

+m−1/2Op(m
1/3 log2/3m+mφ+1/2n−φ +m1/2n−1/4)O(1)

= Op
(
m−1/6 log2/3m+ (m/n)φ + n−1/4)

= op(1)�

where the second equality uses X̃k − X̃k+1 = O(k−1) uniformly over k = 1� � � � �m (because
logk − log(k + 1) = O(k−1) by a mean-value expansion and |(k/m)2i − ((k + 1)/m)2i| =
(k/m)2i|1 − (1 + k−1)2i| = O(k−1) for i = 1� � � � � r) and X̃m − m−1 ∑m

k=1 X̃k = O(1) because
logm−m−1

∑m
k=1 logk= logm−m−1(m logm−m+O(logm))= 1 +O((logm)/m) by approx-

imating sums by integrals and (m/m)2i −m−1 ∑m
j=1(j/m)

2i =O(1) for i= 1� � � � � r�
To show T2�n = o(1)� we use the result that

EIj/fj = 1 +O(j−1 log j)(A.23)

uniformly over j = 1� � � � �m� Because Assumptions 1 and 2 imply Assumptions 1–3 of Robinson
(1995b), this holds by Theorem 2 of Robinson (1995b) using the normalization of Ij by fj rather
than G0λ

−2d0
j . The remainder term in (A.23) is different from that in Theorem 2 of Robinson

(1995b) because the proof of (A.23) only requires (4.1), and not (4.2), of Robinson (1995b) to
hold, given the normalization by fj .

By (A.23),

T2�n = m−1/2
m∑
j=1

O(j−1 log j)O(1)

(
X̃j −m−1

m∑
k=1

X̃k

)
(A.24)

= O

(
m−1/2 logm

m∑
j=1

j−1 log j

)

= O(m−1/2 log3m)= o(1)�

We show that β′T3�n →d N(0�β′Ωrβ) for all β �= 0 using the same proof as Robinson’s (1995a,
pp. 1644–1647) proof that m−1/2 ∑m

j=1(2πIεj − 1)2νj →d N(0�4), except with Robinson’s 2νj =
2 log j−m−1 ∑m

k=1 2 logk replaced by ζj =β′(X̃j −m−1 ∑m
k=1 X̃k). Robinson’s proof goes through

with the asymptotic variance 4 replace by β′Ωrβ because (i) m−1 ∑m
j=1 ζ

2
j → β′Ωrβ as n→ ∞ by

Lemma 2(d) and (ii) |ζj−ζj+1| ≤ ‖β‖·‖X̃j −X̃j+1‖ ≤ Cj−1 for some constantC <∞ independent
of j, which is needed in (4.21) of Robinson’s proof.

Next, we show that T4�n = −νn(r� s)+ o(1). By (3.1),

log(fj/gj)= logϕ(λj)− logG0 +pr(λj� θ0)(A.25)

= 1(s ≥ 2 + 2r)
b2+2r

(2 + 2r)!λ
2+2r
j +O(λqj ) and

fj/gj = 1 + 1(s ≥ 2 + 2r)
b2+2r

(2 + 2r)!λ
2+2r
j +O(λqj )� where

q= min{s�4 + 2r}�
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uniformly over j = 1� � � � �m� using ex = 1 + x+ x2ex∗/2 for x∗ between 0 and x. (If s = 2 + 2r,
the remainder O(λqj ) is actually o(λqj )= o(λ2+2r

j )�) Hence, if s ≥ 2 + 2r,

T4�n = m−1/2
m∑
j=1

(
b2+2r

(2 + 2r)!λ
2+2r
j +O(λqj )

)(
X̃j −m−1

m∑
k=1

X̃k

)
(A.26)

= m5/2+2rn−(2+2r)m−1
m∑
j=1

(2π)2+2rb2+2r

(2 + 2r)!
(
j

m

)2+2r
(
X̃j −m−1

m∑
k=1

X̃k

)

+m−1/2
m−1∑
j=1

(X̃j − X̃j+1)

j∑
i=1

O(λ
q
i )+m−1/2

m∑
j=1

O(λ
q
j )

(
X̃m −m−1

m∑
k=1

X̃k

)
�

where the second equality uses summation by parts. The second and third summands on the right-
hand side of (A.26) are O(mq+1/2n−q) because X̃j − X̃j+1 = O(j−1) uniformly over j = 1� � � � �m
and X̃m −m−1

∑m
k=1 X̃k = 1 + o(1) by the calculations following (A.22).

The following results are proved by approximating sums by integrals; see the proof of Lemma 1
in AG for details. Supposem→ ∞; then for k= 1� � � � � r�

1
m

m∑
j=1

(
j

m

)2+2r
((

j

m

)2k

− 1
m

m∑
i=1

(
i

m

)2k
)

(A.27)

= 1
2r + 2k+ 3

− 1
(3 + 2r)(2k+ 1)

+ o(1)

= (2 + 2r)
(3 + 2r)2

ξr�k + o(1) and

1
m

m∑
j=1

(
j

m

)2+2r
(

2 log j − 1
m

m∑
i=1

2 log i

)
= 2(2r + 2)
(3 + 2r)2

+ o(1)�

For the case where s > 2 + 2r� the combination of (A.26) and (A.27) gives T4�n =
−νn(r� s) + o(1), using Assumption 4. When s = 2 + 2r, the term O(mq+1/2n−q) is really
o(mq+1/2n−q) in (A.26) and the latter is o(1) using Assumption 4. Hence, in this case too,
T4�n = −νn(r� s)+ o(1).

When 2r < s < 2 + 2r� T4�n is given by the right-hand side of (A.26) with the term that con-
tains b2+2r deleted and with q= s�Hence, by the remarks following (A.26), T4�n =O(ms+1/2n−s)=
−νn(r� s).

Now we prove (A.21). Parts of the proof are similar to parts of Robinson’s (1995a) proof of his
equation (4.8). Let �= k1/3 log2/3 k. We have

�∑
j=1

(
Ij

gj
− 2πIεj −E

(
Ij

gj
− 2πIεj

))
=Op(k1/3 log2/3 k) as n→ ∞(A.28)

by the same argument as in Robinson (1995a, p. 1648). We write

k∑
j=�+1

(
Ij

gj
− 2πIεj −E

(
Ij

gj
− 2πIεj

))
(A.29)

=
k∑

j=�+1

((
Ij

fj
− 2πIεj

)
fj

gj
−E

(
Ij

fj
− 2πIεj

)
fj

gj

)
+ 2π

k∑
j=�+1

(Iεj −EIεj)
(
fj

gj
− 1

)
:=A1 +A2�
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We have

EA2
1 ≤ E

(
k∑

j=�+1

(
Ij

fj
− 2πIεj

)
fj

gj

)2

=O(k2/3 log4/3 k+ kn−1/2)�(A.30)

where the equality holds by the same proof as in Robinson (1995a, pp. 1648–1651) for the quan-
tity given in the third equation on his p. 1648. The only difference is that the factor fj/gj does
not appear in Robinson (1995a). It can be shown that this factor has no impact on the proof
because fj/gj = 1 + o(1) uniformly over j = 1� � � � �m�

Next, we have

EA2
2 = 4π2

k∑
j=�+1

var(Iεj)
(
fj

gj
− 1

)2

+ 8π2
k∑

i=�+1

i−1∑
j=�+1

cov(Iεi� Iεj)
(
fi
gi

− 1
)(
fj

gj
− 1

)
(A.31)

= O(1)
k∑

j=�+1

λ2φ
j +O(n−1)

k∑
i=�+1

i−1∑
j=�+1

λφi λ
φ
j

= O

(
k

(
k

n

)2φ)
+O

(
k2

n

(
k

n

)2φ)

= O

(
k

(
k

n

)2φ)
�

where the second equality uses (A.25) and Theorem 5.2.4 of Brillinger (1975, p. 125), which
states that var(Iεj) = O(1) and cov(Iεi� Iεj) = O(n−1) uniformly over i� j = 1� � � � � n with i �= j.
Brillinger’s Assumption 2.6.2(1) imposes strict stationarity, which does not hold in the present
case. However, his proof only requires fourth-order stationarity. The fourth-order cumulant spec-
trum of {εt : t = 1�2� � � � } is the same as that of an iid process with finite fourth moment, which
is sufficient.

Combining (A.28)–(A.31) gives (A.21). Q.E.D.

PROOF OF THEOREM 3(b): The choice of r as the largest integer less than s/2 implies that
s > 2r and s ≤ 2 + 2r. Hence, νn(r� s) = O(ms+1/2n−s) = O(1)� By the definition of m, m1/2 =
ψ1/2

1 n
s/(2s+1). In consequence, the result of Theorem 3(b) follows from

sup
f∈F(s�a�δ�K)

∣∣∣∣∣Pf
((

m1/2(d̂(r)− d0)
m1/2 Diag((2πm/n)2� � � � � (2πm/n)2r)(θ̂(r)− θ0)

)
(A.32)

−Ω−1
r νn(r� s)≤ x

)
− (Ω1/2

r x)

∣∣∣∣∣ → 0

as n→ ∞ for all x ∈ R
r+1.

To prove (A.32), we use the results of Sections 4 and 5. We show that these results hold uni-
formly over f ∈ F(s� a� δ�K)� To this end, we note that although ϕ(λ) is not necessarily smooth
of order s for f ∈ F(s� a� δ�K)� conditions (ii) and (iii) of F(s� a� δ�K) provide the Taylor expan-
sion of logϕ(λ) which is all that is needed in the proofs of Lemma 2(b) and (e), where smoothness
of order s is used.

Let unif-f abbreviate uniformly over f ∈ F(s� a� δ�K).
The proof of Lemma 1 goes through unif-f provided conditions (ii)–(iv) hold unif-f and

{Kn : n≥ 1} in condition (iv) does not depend on f . In consequence, the conclusion of the lemma
is that a solution to the FOC’s holds wp→ 1 unif-f and Bn(γ̃n − γ0) = −Yn + op(1) unif-f . To
verify that conditions (ii)–(iv) of Lemma 1 hold unif-f whenLn(γ)=mRr(d�θ), we need to show
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that parts (b)–(d) of Lemma 2 hold with op(1) holding unif-f . Inspection of their proofs shows
that they do. Part (a) of Lemma 2 does not depend on f , so uniformity over f is not an issue.

Inspection of the proof of part (e) of Lemma 2 shows that T1�n = op(1) unif-f ; T2�n = o(1)
unif-f because Theorem 2 of Robinson (1995b) holds unif-f by Lemma 3(b) of AG; and
T4�n = −νn(r� s)+ o(1) unif-f using the definition of F(s� a� δ�K). The term T3�n, which is as-
ymptotically normal, does not depend on f . Hence, its distribution function differs from that of
a normal distribution function unif-f trivially. Combining these results yields

sup
f∈F(s�a�δ�K)

∣∣Pf (B−1
n Sn(d0� θ0)+ νn(r� s)≤ x

) −Φ(Ω−1/2
r x)

∣∣ → 0 as n→ ∞(A.33)

for all x ∈ R
r+1.

Given the above unif-f extensions of the results of Lemmas 1 and 2, Theorems 1 and 2
have analogous extensions. The result of the extended Theorem 1 is the same as that of (A.32)
with d̂(r) replaced by d̃(r). The result of the extended Theorem 2 is exactly (A.32). Q.E.D.

Before proving Theorem 4, we introduce some notation and state two lemmas. The proofs
of the lemmas are given after that of Theorem 4. Let Rr(τ)�τ(d� θ), Bn�τ , Sn�τ(d� θ)� Hn�τ(d� θ),
Xj�τ, Dm(τ)(η), and Jτn be defined as the corresponding quantities without the τ subscripts (or
superscript) are defined in the text, but with m and r replaced by m(τ) and r(τ), respectively.
(We use the symbol Jτn rather than Jn�τ because Ja�b is used for a different quantity in Proof of
Lemma 2(b) above and also below.) Let θ0 denote θ0 defined as in (3.2) with r = r(τ). Let d̂τ
and θ̂τ denote the LPW estimators with m=m(τ) and r = r(τ).

Let 1 ≤ s∗ ≤ s∗ <∞. For any sequences of sets {En�τ : n≥ 1} for τ ∈ [s∗� s∗], we say that the sets
{En�τ : n≥ 1} are “uniformly ζ−2(n) small” if for some positive finite constant C

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈[s∗�s]

Pf (En�τ)≤ Cζ−2(n) for all n≥ 1�(A.34)

LEMMA 4: Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. Then, for each s∗ ∈ [s∗�∞),
the LPW estimators {(d̂τ� θ̂τ) : n≥ 1} satisfy

Bn�τ

(
d̂τ − df
θ̂τ − θ0

)
= −Ω−1

r(τ)B
−1
n�τSn�τ(df � θ0)+ εn�τ�

where the sets {{‖εn�τ‖>C∗ζ(n)} : n≥ 1} are uniformly ζ−2(n) small for all C∗ > 0.

The dimensions of θ, Sn�τ(d� θ),Hn�τ(d� θ),Xj�τ, and Jτn depend on τ through r(τ), the degree
of the polynomial. But, by definition, r(τ) is constant for all τ ∈ Tw, where

Tw = (2w�2w+ 2] for w= 0�1� � � � �(A.35)

Given this, in the following lemma, we consider τ ∈ Tw ∩ [s∗� s] separately for a finite number of
values w rather than considering τ ∈ [s∗� s] all at once.

LEMMA 5: Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. For each s∗ ∈ [s∗�∞), each
integer w in the set {0�1� � � � � [(s∗ − 2)/2]+ 1}, and each constant C∗ > 0, there exists a positive finite
constant C such that

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈Tw∩[s∗�s]

Pf
(‖B−1

n�τSn�τ(df � θ0)‖>C∗ζ(n)
) ≤ Cζ−2(n)�

PROOF OF THEOREM 4: We write

Pf
(
n

s
2s+1 ζ−1(n)|d̂̂s − df | ≥ C1

) :=Π+
n +Π−

n � where(A.36)

Π+
n = Pf

(
n

s
2s+1 ζ−1(n)|d̂̂s − df | ≥ C1� ŝ ≥ s) and

Π−
n = Pf

(
n

s
2s+1 ζ−1(n)|d̂̂s − df | ≥ C1� ŝ < s

)
�
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We want to show that limC1→∞ lim supn→∞ sups∈[s∗�s∗] supf∈F(s�a�δ�K) Π
+
n = 0 and likewise for Π−

n .
We consider Π+

n first. By the triangle inequality and the definition of ŝ, we have

Π+
n ≤ Pf

(
n

s
2s+1 ζ−1(n)|d̂̂s − d̂s| ≥C1/2� ŝ ≥ s)(A.37)

+ Pf
(
n

s
2s+1 ζ−1(n)|d̂s − df | ≥ C1/2

)
≤ Pf

(
n

s
2s+1 ζ−1(n)m−1/2(s)ψ2(cr(s)/4)1/2ζ(n)≥ C1/2

)
+ Pf

(
n

s
2s+1 ζ−1(n)|d̂s − df | ≥ C1/2

)
:= Π+

n�1 +Π+
n�2�

We have

lim
C1→∞

lim sup
n→∞

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

Π+
n�1(A.38)

= lim
C1→∞

1
(
ψ

−1/2
1 ψ2(cr(s∗)/4)1/2 ≥ C1/2

) = 0

using the fact that cr is nondecreasing in r and r(s) is nondecreasing in s.
Note that the (1�1) element of the diagonal matrix Bn�τ is m1/2(τ). Thus, Lemmas 4 and 5 and

the nonsingularity of Ωr(τ) combine to give: for each C∗ > 0 there is a constant C <∞ such that

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈[s∗�s]

Pf
(
m1/2(τ)|d̂τ − df |>C∗ζ(n)

) ≤ Cζ−2(n)�(A.39)

This establishes the desired result for Π+
2�n.

Next, we consider Π−
n . We have

Π−
n =

∑
τ∈Sh :τ+h<s

Pf
(
n

s
2s+1 ζ−1(n)|d̂τ − df | ≥ C1� ŝ= τ

)
(A.40)

+ Pf
(
n

s
2s+1 ζ−1(n)|d̂τs − df | ≥ C1� ŝ = τs

)
≤

∑
τ∈Sh :τ+h<s

Pf (ŝ = τ)+ Pf
(
n

s
2s+1 ζ−1(n)|d̂τs − df | ≥ C1

)
:= Π−

n�1 +Π−
n�2�

where τs ∈ Sh and s − h≤ τs < s.
Now, we bound Pf (ŝ = τ). By the definition of ŝ, if ŝ = τ, there exists τ′ ≤ τ, τ′ ∈ Sh such that

|d̂τ+h − d̂τ′ |>m−1/2(τ′)ψ2(cr(τ′ )/4)
1/2ζ(n). In consequence, for all τ ∈ Sh with τ+ h < s,

Pf (ŝ = τ) ≤
∑

τ′∈Sh :τ′≤τ
Pf

(|d̂τ+h − d̂τ′ |>m−1/2(τ′)ψ2(cr(τ′ )/4)
1/2ζ(n)

)
(A.41)

≤
∑

τ′∈Sh :τ′≤τ
Pf

(
m1/2(τ+ h)|d̂τ+h − df |> κζ(n)

)
+

∑
τ′∈Sh:τ′≤τ

Pf
(
m1/2(τ′)|d̂τ′ − df |> κζ(n)

)
�

≤ 2(s∗ − s∗)(logn) sup
τ′′<s

Pf
(
m1/2(τ′′)|d̂τ′′ − df |> κζ(n)

)
�

where κ=ψ2(cr(s∗)/4)
1/2/2. The third inequality holds because there are at most (s∗ − s∗)(logn)

elements τ′ ∈ Sh for which τ′ ≤ τ. Note that the third inequality only applies for τ such
that τ+ h< s. It is for this reason that we decompose Π−

n into Π−
n�1 +Π−

n�2 in (A.40).
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Equations (A.39)–(A.41) give: for some C <∞,

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

Π−
n�1 ≤ 2(s∗ − s∗)2(logn)2Cζ−2(n)(A.42)

= O((log logn)−1)= o(1) as n→ ∞�
Next, we have

ns/(2s+1)n−τs/(2τs+1) ≤ ns/(2s+1)n−(s−h)/(2s−2h+1) = nκs�hh ≤ nh = nlog−1 n = e�(A.43)

where κs�h = (2s + 1)−1(2s − 2h+ 1)−1 ≤ 1� This, τs < s, and (A.39) give: for some C <∞,

ns/(2s+1) ≤m1/2(τs)eψ
−1/2
1 and(A.44)

Π−
n�2 ≤ Pf

(
m1/2(τs)|d̂τs − df | ≥ C1e

−1ψ
1/2
1 ζ(n)

)
≤ Cζ−2(n)= o(1) as n→ ∞�

This completes the proof of the theorem. Q.E.D.

Next, we prove Lemma 4. For convenience, what we show is that for some C <∞,

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈[s∗�s]

Pf (‖εn�τ‖>Cζ(n))≤ Cζ−2(n) for all n≥ 1�(A.45)

This is sufficient because the proof of (A.45) goes through unchanged with ζ(n) replaced
by C̃ζ(n) for all constants C̃ > 0.

To show (A.45), we establish three lemmas that reflect the same steps as are used in the text
to prove Theorem 2. We start by establishing an analogue to Lemma 1. Let {Ln�τ(γ) : n ≥ 1}
be a sequence of minimands for estimation of the parameter γ0 ∈ Γ ⊂ R

k, where Γ is the
parameter space and τ ∈ T indexes different minimands. Suppose the distribution of Ln�τ(γ)
depends on f ∈ F , where F denotes some index set. Let G ⊂ T × F . Denote the gradient and
Hessian of Ln�τ(γ) by ∇Ln�τ(γ) and ∇2Ln�τ(γ) respectively. Let {ζ(n) : n ≥ 1} be a sequence
of positive constants for which ζ(n) → ∞ as n → ∞. In our application of the lemma, we
take ζ(n)= (logn)(log log(n))1/2.

LEMMA 6: Suppose γ0 is in the interior of Γ , Ln�τ(γ) is twice continuously differentiable in γ on
a neighborhood of γ0 for all τ ∈ T , and there exist a positive finite constant C and sequences of k×k
nonrandom nonsingular matrices Bn�τ such that

(i) supτ∈T ‖B−1
n�τ‖ζ(n)→ 0 as n→ ∞,

(ii) sup(τ�f )∈G Pf (‖(B−1
n�τ)

′∇Ln�τ(γ0)‖>Cζ(n))≤ Cζ−2(n) for all n≥ 1,
(iii) sup(τ�f )∈G Pf (λmin((B

−1
n�τ)

′∇2Ln�τ(γ0)B
−1
n�τ) < C)≤ Cζ−2(n) for all n≥ 1� and

(iv)

sup
(τ�f )∈G

Pf

(
sup

γ∈Γ :‖Bn�τ(γ−γ0)‖≤Kn�τ

∥∥(B−1
n�τ)

′(∇2Ln�τ(γ)− ∇2Ln�τ(γ0)
)
B−1
n�τ

∥∥>Cζ−1(n)

)
≤ Cζ−2(n) for all n≥ 1

for some sequences of scalar constants {Kn�τ : n ≥ 1} for which Kn�τζ−1(n) → ∞ as n→ ∞ for
each τ ∈ T .

Then, there exist a positive finite constant C1 and sequences of estimators {γ̃n�τ : n ≥ 1} for
each τ ∈ T such that the probability that the first-order conditions do not hold at γ̃n�τ goes to zero
at the following rate:

sup
(τ�f )∈G

Pf
(∇Ln�τ(γ̃n�τ) �= 0

) ≤ C1ζ
−2(n) for all n≥ 1
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and

Bn�τ(γ̃n�τ − γ0)= −Yn�τ + εn�τ� where

Yn�τ = (
(B−1

n�τ)
′∇2Ln�τ(γ0)B

−1
n�τ

)−1
(B−1

n�τ)
′∇Ln�τ(γ0) and

sup
(τ�f )∈G

Pf
(‖εn�τ‖>C1ζ(n)

) ≤ C1ζ
−2(n)�

PROOF OF LEMMA 6: Throughout letC ′ denote a positive finite constant that may differ across
equations. Let

Γn0 = {
γ ∈ Γ : ‖Bn�τ(γ − γ0)‖ ≤Kn�τ�‖γ− γ0‖< δ

}
(A.46)

for some δ > 0 such that Ln�τ(γ) is twice differentiable on {γ ∈ R
k : ‖γ − γ0‖< δ} and {γ ∈ R

k :
‖γ− γ0‖<δ} ⊂ Γ .

By a Taylor expansion about γ0 and some algebra, we obtain: for γ ∈ Γn0,

Ln�τ(γ)−Ln�τ(γ0)(A.47)

= ∇Ln�τ(γ0)
′(γ − γ0)+ 1

2
(γ− γ0)

′∇2Ln�τ(γ0)(γ− γ0)+ ρn�τ(γ)

= 1
2
(Bn�τ(γ− γ0)+Yn�τ)′

[
(B−1

n�τ)
′∇2Ln�τ(γ0)B

−1
n�τ

]
(Bn�τ(γ− γ0)+Yn�τ)

− 1
2
Y ′
n�τ(B

−1
n�τ)

′∇Ln�τ(γ0)+ ρn�τ(γ)�
where for all γ ∈ Γn0�

|ρn�τ(γ)| ≤ ‖Bn�τ(γ − γ0)‖2 sup
γ∈Γn0

∥∥(B−1
n�τ)

′(∇2Ln�τ(γ)− ∇2Ln�τ(γ0)
)
B−1
n�τ

∥∥�(A.48)

Let γ∗
n�τ = γ0 −B−1

n�τYn�τ� Conditions (ii) and (iii) imply that for some C ′,

sup
(τ�f )∈G

Pf (‖Yn�τ‖>C ′ζ(n))≤ C ′ζ−2(n) for all n≥ 1�(A.49)

This,Kn�τζ−1(n)→ ∞ as n→ ∞, and condition (i) imply that sup(τ�f )∈G Pf (γ
∗
n�τ /∈ Γn0)≤ C ′ζ−2(n)

for all n≥ 1. In consequence, by (A.47), (A.48), and condition (iv), for some C ′,

Ln�τ(γ
∗
n�τ)−Ln�τ(γ0)= −1

2
Y ′
n�τ(B

−1
n�τ)

′∇Ln�τ(γ0)+ ρn�τ(γ∗
n�τ)�(A.50)

|ρn�τ(γ∗
n�τ)| ≤ ‖Yn�τ‖2 sup

γ∈Γn0

∥∥(B−1
n�τ)

′(∇2Ln�τ(γ)− ∇2Ln�τ(γ0)
)
B−1
n�τ

∥∥� and

sup
(τ�f )∈G

Pf
(|ρn�τ(γ∗

n�τ)|>C ′ζ(n)
) ≤ C ′ζ−2(n) for all n≥ 1�

Let C ′′ be any positive finite constant. Define

Γn�τ(x)= {γ ∈ Γ : ‖Bn�τ(γ − γ0)+Yn�τ‖ ≤ x} and(A.51)

Cn = C ′′ζ(n)�

Note that γ∗
n�τ is in the interior of Γn�τ(Cn) unless γ∗

n�τ is not in Γ . The latter occurs with probability
less than or equal to C ′ζ−2(n) for n large by (A.49) and condition (i).

We have Γn�τ(Cn)⊂ Γn0 except on a sequence of sets with small probabilities:

sup
(τ�f )∈G

(
1 − Pf (Γn�τ(Cn)⊂ Γn0)

) ≤ C ′ζ−2(n)(A.52)
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for n large, by (A.49) and the assumption that Kn�τζ−1(n) → ∞ as n → ∞. In consequence,
for some C ′,

sup
(τ�f )∈G

Pf

(
sup

γ∈Γn�τ(Cn)
|ρn�τ(γ)|>C ′ζ(n)

)
≤ C ′ζ−2(n)(A.53)

using (A.48) and condition (iv).
Let ∂Γn�τ(Cn) denote the boundary of Γn�τ(Cn)� Combining (A.47), (A.50), and (A.53),

for all γ ∈ ∂Γn�τ(Cn) and some C ′,(
Ln�τ(γ)−Ln�τ(γ∗

n�τ)
)
C−2
n = 1

2
µ′
n(B

−1
n�τ)

′∇2Ln�τ(γ0)B
−1
n�τµn + λn�τ(γ)�(A.54)

for some k-vector µn with ‖µn‖ = 1, where

λn�τ(γ)= (
ρn�τ(γ)− ρn�τ(γ∗

n�τ)
)
(C ′′)−2ζ−2(n) and(A.55)

sup
(τ�f )∈G

Pf

(
sup

γ∈Γn�τ(Cn)
|λn�τ(γ)|>C ′ζ−1(n)

)
≤ C ′ζ−2(n)�

Let An�τ be the set on which the first summand on the right-hand side of (A.54) is greater
than C > 0 uniformly over all k-vectors µn with ‖µn‖ = 1 and supγ∈Γn�τ(Cn) |λn�τ(γ)| < C� Then,
the complement of An�τ� i.e., Ac

n�τ� satisfies for some C ′

sup
(τ�f )∈G

Pf (A
c
n�τ)≤ C ′ζ−2(n)(A.56)

for n large by condition (iii) and (A.55). Hence, the minimum of Ln�τ(γ) over γ ∈ ∂Γn(Cn)
is greater than its value at the interior point γ∗

n�τ except on Ac
n�τ . In consequence, for each n

large and all τ ∈ T , the minimum of Ln�τ(γ) over γ ∈ Γn(Cn) is attained at a point, say γ̃n�τ
(not necessarily unique), in the interior of Γn(Cn) except on Ac

n�τ. These points satisfy the
first-order conditions ∇Ln(γ̃n�τ) = 0 except on Ac

n�τ� In addition, γ̃n�τ ⊂ Γn(Cn) and, hence,
‖Bn�τ(γ̃n�τ − γ0) + Yn‖ ≤ C ′′ζ(n) except on Ac

n�τ . Given (A.56), this completes the proof of
the lemma. Q.E.D.

Next, we apply Lemma 6 with Ln�τ(γ) = m(τ)Rr(τ)�τ(d� θ), γ = (d� θ′)′, and F =⋃
s∈[s∗�s∗] F(s� a� δ�K)� We apply Lemma 6 a finite number of times—each time with

T = Tw ∩ [s∗� s∗] and G = Gw = {(τ� f ) : τ ∈ Tw ∩ [s∗� s]� f ∈ F(s� a� δ�K) for some s ∈ [s∗� s∗]} for
some w ∈ W = {0�1� � � � � [(s∗ −2)/2]+1}—to get results that hold for all (τ� f ) ∈ ⋃

w∈W Gw. Note
that the supremum of a function over (τ� f ) ∈ ⋃

w∈W Gw equals the supremum over s ∈ [s∗� s∗],
f ∈ F(s� a� δ�K), and τ ∈ [s∗� s].

The definition of m(τ) guarantees that ‖B−1
n�τ‖ζ(n) → 0� as required by condition (i) of

Lemma 6. Condition (ii) holds by Lemma 5. To verify conditions (iii) and (iv) of Lemma 6,
we need to establish some properties of the Hessian of m(τ)Rr(τ)�τ(d� θ)� viz., Hn�τ(d� θ). This
is done in the following lemma.

LEMMA 7: Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. For each s∗ ∈ [s∗�∞) and
each integer w in the set W , there exists a positive finite constant C such that

sup
τ∈Tw∩[s∗�s∗]

‖B−1
n�τJ

τ
nB

−1
n�τ −Ωr(τ)‖ → 0 as n→ ∞�(a)

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈Tw∩[s∗�s]

Pf
(∥∥B−1

n�τ(Hn�τ(df � θ0)− Jτn)B−1
n�τ

∥∥>Cζ−1(n)
)

(b)

≤ Cζ−2(n)�



610 D. W. K. ANDREWS AND Y. SUN

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈Tw∩[s∗�s]

Pf

(
sup
θ∈Θ

∥∥B−1
n�τ

(
Hn�τ(df � θ)−Hn�τ(df � θ0)

)
B−1
n�τ

∥∥(c)

>Cζ−1(n)

)
≤ Cζ−2(n)� and

sup
s∈[s∗�s∗]

sup
f∈F(s�a�δ�K)

sup
τ∈Tw∩[s∗�s]

Pf

(
sup

d∈Dm(τ)(ηn)�θ∈Θ

∥∥B−1
n�τ

(
Hn�τ(d� θ)−Hn�τ(df � θ)

)
B−1
n�τ

∥∥(d)

>Cζ−1(n)

)
≤ Cζ−2(n)� where ηn = ζ−2(n)�

PROOF OF LEMMA 7(a): For τ ∈ Tw ∩ [s∗� s∗], B−1
n�τJ

τ
nB

−1
n�τ −Ωr(τ) does not depend on τ and the

proof of Lemma 2(a) applies. Q.E.D.

PROOF OF LEMMA 7(b): We employ the same definitions as in Proof of Lemma 2(b), but
with m = m(τ) and r = r(τ). By (A.7), (A.8), Ja�b = O(log2a(m(τ)), and some fairly standard
manipulations, it suffices to show that the sets {|Ĝa�b − Ja�b| > Cζ−1(n) log−2m(τ) : n ≥ 1} are
uniformly ζ−2(n) small for a = 0�1�2, b = 0�1� � � � � r(τ). By Markov’s inequality, the latter is
implied by

Ef |Ĝa�b(df � θ0)− Ja�b|2 ≤ 2G0(Efϑ
2
1�a�m +Efϑ2

2�a�m)=O(
ζ−4(n) log−4m(τ)

)
(A.57)

uniformly over s ∈ [s∗� s∗]� f ∈ F(s� a� δ�K), τ ∈ Tw ∩ [s∗� s], for a = 0�1�2. The inequality
in (A.57) holds by (A.11).

To show the equality in (A.57) holds, we use the following results:

Ef

(
k∑
j=1

(
Ij

gj
− 2πIεj

))2

=O(k2/3 log4/3 k+ k2+2τn−2τ + kn−1/2) and(A.58)(i)

Ef

(
k∑
j=1

(2πIεj − 1)

)2

=O(k) as n→ ∞(A.58)(ii)

uniformly over k ∈ {1�2� � � � �m(τ)}, s, f , and τ. Using (A.12), the Cauchy–Schwarz inequality,
and (A.58), we obtain: for some C <∞ independent of s, f , and τ,

Efϑ
2
1�a�m ≤ C(log2a m)m−2

(
m−1∑
k=1

k−1

)
m−1∑
k=1

k−1E

(
k∑
j=1

(
Ij

gj
− 1

))2

(A.59)

≤ C(log2a+1m)m−2
m−1∑
k=1

k−1O(k+ k2/3 log4/3 k+ k2+2τn−2τ + kn−1/2)

≤ C(log2a+1m)(m−1 +m2τn−2τ)�

wherem=m(τ). Using (A.12) and (A.58), we have

Efϑ
2
2�a�m ≤ C(log2a m)m−2O(m+m2/3 log4/3m+m2+2τn−2τ +mn−1/2)(A.60)

≤ C(log2a m)(m−1 +m2τn−2τ)

uniformly over s, f , and τ. The right-hand side in (A.59) and (A.60) is o(ζ−4(n) log−4m), so the
equality in (A.57) holds.
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Finally, we prove (A.58). Part (ii) follows from Robinson’s (1995a, p. 1647) proof of his (4.9).
To prove part (i), we choose an integer �≤ k and write Ef (

∑k
j=1(Ij/gj − 2πIεj))2/3 as

Ef

(
�∑
j=1

(
Ij

gj
− 2πIεj

)
+

k∑
j=�+1

(
Ij

gj
− Ij

fj

)
+

k∑
j=�+1

(
Ij

fj
− 2πIεj

))2/
3(A.61)

≤ Ef
(

�∑
j=1

(
Ij

gj
− 2πIεj

))2

+Ef
(

k∑
j=�+1

Ij

gj

(
1 − gj

fj

))2

+Ef
(

k∑
j=�+1

(
Ij

fj
− 2πIεj

))2

�

The first expectation on the right-hand side of (A.61) divided by two is uniformly bounded by

Ef

(
�∑
j=1

Ij

gj

)2

+Ef
(

�∑
j=1

2πIεj

)2

≤ �
�∑
j=1

Ef (Ij/gj)
2 + �

�∑
j=1

Ef (2πIεj)2 =O(�2)�(A.62)

where the last equality follows from the fact that Ef (Ij/gj)2 =O(1) and Ef (2πIεj)2 = O(1) uni-
formly over j ∈ {1�2� � � � �m(τ)}, s, f , and τ. The second expectation on the right-hand side
of (A.61) is uniformly bounded by

k

k∑
j=�+1

Ef
I2
j

g2
j

(
1 − gj

fj

)2

=O
(
k

k∑
j=�+1

λ2τ
j

)
=O(

k2(k/n)2τ
)
�(A.63)

where the first equality uses Ef (Ij/gj)2 =O(1) and a Taylor expansion of logϕ(λ) to order 2r(τ)�
The third expectation on the right-hand side of (A.61) is uniformly bounded by

O
(
log2 k+ (k log2 k)/�+ k1/2 logk+ kn−1/2

)
�(A.64)

which follows from Robinson’s (1995a) proof on pp. 1648–1651. Setting � = k1/3 log2/3 k,
(A.61)–(A.64) combine to give part (i) of (A.58). Q.E.D.

PROOF OF LEMMA 7(c): As in the proof of Lemma 7(b), it suffices to show that

Ef sup
θ∈Θ

(
Ĝa�b(df � θ0)− Ĝa�b(df � θ)

)2 =O(ζ−4(n) log−4m(τ))(A.65)

uniformly over s, f , and τ, for all a= 0�1�2 and b= 0� � � � � r(τ). Using (A.15) and the definition
of Ĝa�0(df � θ0) in (A.6), the left-hand side of (A.65) is bounded by

O(λ2
m(τ))Ef Ĝ

2
a�0(df � θ0)=O(

(m(τ)/n)2(log2a m(τ))
)
�(A.66)

where the equality holds by (A.57) and Ja�0 = O(log2a m(τ)). The right-hand side of (A.66) is
O(ζ−4(n) log−4m(τ)) by the definitions of m(τ) and ζ(n). Q.E.D.

PROOF OF LEMMA 7(d): As in the proof of part (c) above, it suffices to show that the expec-
tation of the square of the left-hand side of (A.16) is O(ζ−4(n) log−4m(τ)) uniformly over s, f ,
and τ. As in (A.17), this is implied by

EfZ
2
a�b(ηn)=O(

n4df ζ−4(n) log−4m(τ)
)

(A.67)
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uniformly over s� f� and τ for all a = 0�1�2, and b = 0� � � � � r(τ), where Za�b(ηn) is defined
in (A.17). Equation (A.67) holds because (A.18) and Ĝ0�0(df �0)= O(1) (by (A.57) and (A.65))
imply that EfZ2

a�b(ηn)=O(η2
n(log−4m(τ))n4df ). Q.E.D.

We now use the results of Lemma 7 to verify conditions (iii) and (iv) of Lemma 6 with G = Gw
for each w ∈ W . Condition (iii) holds by Lemma 7(a) and (b) and the positive definiteness
of Ωr(τ). Condition (iv) holds with Kn�τ =m(τ)1/2ηn log−5m(τ), where ηn = ζ−2(n)� by Lemma
7(c) and (d). In consequence, the following lemma holds.

LEMMA 8: Suppose the assumptions of Theorem 4 hold. Let s∗ ≥ 1. Then, for each s∗ ∈ [s∗�∞),
there exist solutions (d̃τ� θ̃τ) to the FOC’s (∂/∂(d�θ′)′) Rr(τ)�τ(d� θ)= 0 except on sets that are uni-
formly ζ−2(n) small and

Bn�τ

(
d̃τ − df
θ̃τ − θ0

)
= −Ω−1

r(τ)B
−1
n�τSn�τ(df � θ0)+ εn�τ�

where the sets {{‖εn�τ‖>C∗ζ(n)} : n≥ 1} are uniformly ζ−2(n) small for all C∗ <∞.

Using strict convexity of Rr(d�θ), the solutions (d̃τ� θ̃τ) to the FOC’s equal the LPW esti-
mators (d̂τ� θ̂τ) except on sets that are uniformly ζ−2(n) small (by the argument given at the
beginning of Section 5). Hence, Lemma 8 implies Lemma 4.

It remains to prove Lemma 5.

PROOF OF LEMMA 5: For convenience, we show that: for some C <∞, the result of Lemma 5
holds with C∗ replaced by C . This is sufficient because the proof of the latter holds without change
with ζ(n) replaced by C̃ζ(n) for all constants C̃ > 0.

By (A.19) and (A.20),

B−1
n�τSn�τ(df � θ0)= Ĝ−1(df � θ0)

4∑
k=1

Tk�n�τ�(A.68)

where Tk�n�τ denotes Tk�n� defined in (A.20), with m =m(τ) and r = r(τ) for k = 1�2�3�4 and
Ĝ(df � θ0) is defined in (2.3) with m =m(τ). By definition, Ĝ(df � θ0) = Ĝ0�0(df � θ0). By (A.57)
and Markov’s inequality, for some C <∞,

Pf
(|Ĝ0�0(df � θ0)− J0�0|>Cζ(n)

) ≤ Cζ−2(n)�(A.69)

where the inequality holds for all τ ≤ s, f ∈ F(s� a� δ�K), and s ∈ [s∗� s∗]. Note that J0�0 =G0 > 0.
In consequence, it suffices to show that for some C <∞,

Pf (‖Tk�n�τ‖>Cζ(n))≤ Cζ−2(n) for k= 1�2�3�4�(A.70)

where the inequality holds for all τ ≤ s, f ∈ F(s� a� δ�K)� and s ∈ [s∗� s∗].
For k= 2 and k= 4, (A.70) holds because

T2�n�τ = o(1) and T4�n�τ =O(1)(A.71)

uniformly over τ ≤ s� f ∈ F(s� a� δ�K)� and s ∈ [s∗� s∗]� where the former result holds by
(A.23) and (A.24) and the latter holds by (A.25)–(A.27).

To establish (A.70) for k= 3, let hj(τ)= X̃j −m−1(τ)
∑m(τ)

k=1 X̃k . Then, by Markov’s inequality,
we have

Pf (‖T3�n�τ‖ ≥ Cζ(n)) = Pf

(∥∥∥∥∥m−1/2(τ)

m(τ)∑
j=1

(2πIεj − 1)hj(τ)

∥∥∥∥∥ ≥ Cζ(n)
)

(A.72)

≤ C−2ζ−2(n)m−1(τ)E

∥∥∥∥∥
m(τ)∑
j=1

(2πIεj − 1)hj(τ)

∥∥∥∥∥
2

�
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By the second last paragraph of the proof of Lemma 2(e), var(Iεj)=O(1) and
cov(Iεj � Iεk)=O(n−1) uniformly over j� k = 1� � � � � n with j �= k. Also, by Lemma 2(a) of AG,
m−1(τ)

∑m(τ)
j=1 hj(τ)

′hj(τ)=O(1) uniformly over τ ≤ s. In consequence,

E

∥∥∥∥∥
m(τ)∑
j=1

(2πIεj − 1)hj(τ)

∥∥∥∥∥
2

(A.73)

= (2π)2
m(τ)∑
j=1

var(Iεj)hj(τ)′hj(τ)+ 8π2
m(τ)∑

j�k=1�j �=k
cov(Iεj � Iεk)hj(τ)′hk(τ)

=O(m(τ))
uniformly over τ ≤ s, f ∈ F(s� a� δ�K), and s ∈ [s∗� s∗]. Combining (A.72) and (A.73) estab-
lishes (A.70) for k= 3.

For k = 1, (A.70) holds using (A.21)–(A.22) and the proof of (A.21) given in (A.28)–(A.31).
In particular, the moment bounds in (A.30) and (A.31) are used to bound the tail probabilities of
interest using Markov’s inequality. Q.E.D.
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