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THE BLOCK–BLOCK BOOTSTRAP: IMPROVED
ASYMPTOTIC REFINEMENTS

BY DONALD W. K. ANDREWS1

The asymptotic refinements attributable to the block bootstrap for time series are
not as large as those of the nonparametric iid bootstrap or the parametric bootstrap.
One reason is that the independence between the blocks in the block bootstrap sam-
ple does not mimic the dependence structure of the original sample. This is the join-
point problem.

In this paper, we propose a method of solving this problem. The idea is not to alter
the block bootstrap. Instead, we alter the original sample statistics to which the block
bootstrap is applied. We introduce block statistics that possess join-point features that
are similar to those of the block bootstrap versions of these statistics. We refer to the
application of the block bootstrap to block statistics as the block–block bootstrap. The
asymptotic refinements of the block–block bootstrap are shown to be greater than those
obtained with the block bootstrap and close to those obtained with the nonparametric
iid bootstrap and parametric bootstrap.

KEYWORDS: Asymptotics, block bootstrap, block statistics, Edgeworth expansion,
extremum estimator, generalized method of moments estimator, maximum likelihood
estimator, t statistic, test of over-identifying restrictions.

1. INTRODUCTION

THE PRINCIPAL THEORETICAL ATTRIBUTE of bootstrap procedures is the as-
ymptotic refinements they provide. That is, when properly applied, bootstrap
tests have errors in null rejection probabilities that are of a smaller order of
magnitude as the sample size, N , goes to infinity than those of standard asymp-
totic tests based on the delta method. Similarly, bootstrap confidence intervals
(CI’s) have coverage probability errors of a smaller order of magnitude than
those of standard asymptotic CI’s based on the delta method.

This paper is concerned with the magnitude of the asymptotic refinements
of the block bootstrap for time series. These asymptotic refinements are not as
large as those of the nonparametric iid bootstrap or the parametric bootstrap.
For example, for iid observations, the error in rejection probability (ERP) of a
one-sided bootstrap t test based on the nonparametric iid bootstrap is O(N−1);
e.g., see Hall (1992). In contrast, for stationary strong mixing observations,
the ERP of a one-sided bootstrap t test based on nonoverlapping or over-
lapping blocks is O(N−1/2−ξ) for 0 < ξ < 1/4, where ξ depends on the block
length; see Andrews (2002a), hereafter denoted A2002, and Zvingelis (2003).
For the parametric bootstrap, the ERP of a one-sided bootstrap t test is essen-
tially the same as that for the nonparametric iid bootstrap. This holds for iid

1The author thanks a coeditor and two referees for helpful comments. The author grate-
fully acknowledges the research support of the National Science Foundation via Grant Numbers
SBR-9730277 and SES-0001706.
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observations as well as for stationary strong mixing Markov observations; see
Andrews (2004).

There are two reasons why the asymptotic refinements of the block boot-
strap are less than those of the nonparametric iid bootstrap. The first is that
the independence between the blocks in the block bootstrap sample does not
mimic the dependence structure of the original sample. This is the join-point
problem. The second reason is that the use of blocks of length greater than one
increases the variability of various moments calculated under the block boot-
strap distribution in comparison to their variability under the nonparametric
iid bootstrap distribution. The reason is that the variability is determined by
the amount of averaging that occurs over the blocks and longer blocks yield
fewer blocks and, hence, fewer terms in the averages.

In this paper, we propose a method of solving the join-point problem. We do
not alter the block bootstrap, because there does not seem to be a way to avoid
its join-point feature. Rather, we alter the original sample statistics to which
the block bootstrap is applied. We introduce block statistics (for the original
sample) that have join-point features that resemble those of the block boot-
strap versions of these statistics. We call the application of the block bootstrap
to block statistics the block–block bootstrap.

The asymptotic refinements obtained by the block–block bootstrap are
shown to be greater than those obtained by the standard block bootstrap.
In fact, the block length can be chosen such that the magnitude of the as-
ymptotic refinements of the block–block bootstrap is arbitrarily close to that
obtained in the iid context using the nonparametric iid bootstrap. In practice,
however, one would not expect the block–block bootstrap to perform as well
as the nonparametric iid bootstrap for iid data. But, the asymptotic results sug-
gest that it should outperform the block bootstrap in terms of ERP’s and CI
coverage probabilities.

A block statistic is constructed by taking a statistic that depends on one or
more sample averages and replacing the sample averages by averages with
some summands deleted. Let � denote the block length to be used by the block
bootstrap. We take � such that � ∝ Nγ for some 0 < γ < 1. The join points
of the block bootstrap sample are � + 1, 2� + 1� � � � � (b − 1)�, where b is the
number of blocks and N = b�. We delete the �π�� summands before each of
the join points, where �π�� denotes the smallest integer greater than or equal
to π�, π ∈ (0�1), and π = πN → 0 and π� − C log(N) → ∞ as N → ∞ for
all constants 0 < C < ∞. For example, π ∝ N−δγ satisfies these conditions for
any 0 < δ< 1. Note that π is the fraction of observations that are deleted from
each block and from the whole sample.

For example, consider an estimator that minimizes a sample average of sum-
mands that depend on the observations and an unknown parameter θ, such
as a quasi-maximum likelihood or least squares estimator. The corresponding
block estimator minimizes the same sample average but with the summands
described above deleted. A block t statistic for θ is based on a block estimator
of θ normalized by a block standard deviation estimator.
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Consider a sample average that appears in the definition of a block statistic.
The last nonzero summand in one block is separated from the first summand
in the next block by �π�� time periods, where �π�� → ∞ as N → ∞. In con-
sequence, for an asymptotically weakly dependent time series, such as a strong
mixing process, the blocks are asymptotically independent. On the other hand,
the blocks that appear in the bootstrap version of the block statistic are inde-
pendent by construction.

Independence of the bootstrap blocks mimics the asymptotic independence
of the original sample blocks sufficiently well that the join-point problem is
solved. That is, join points do not affect the magnitude of the asymptotic re-
finements of the block–block bootstrap. See Section 2 of Andrews (2002b) for
a detailed discussion of why this is true. Also, the join-point correction factors
introduced in Hall and Horowitz (1996) and employed in A2002 for use with
the block bootstrap are not needed with the block–block bootstrap.2 Further-
more, in the case of an m-dependent process, the block length can be finite
with the block–block bootstrap, whereas it must diverge to infinity with the
standard block bootstrap.

Although the block–block bootstrap solves the join-point problem, the
block–block bootstrap yields moments that are more variable than moments
under the nonparametric iid bootstrap distribution—just as the standard block
bootstrap does. In consequence, the asymptotic refinements obtained by the
block–block bootstrap still depend on the block length. In particular, they are
decreasing in the block length. In this paper, we show that the ERP of a one-
sided bootstrap t test using the block–block bootstrap is O(N−1/2−ξ) for all
ξ < 1/2 − γ. In consequence, if γ is taken close to zero, the ERP is close
to O(N−1), which is the ERP of a one-sided nonparametric iid bootstrap t test.

In practice, one has to use a block length � and a deletion fraction π that are
large enough to accommodate the dependence in the data. Hence, one cannot
just take γ arbitrarily close to zero. Thus, the above asymptotic result does not
imply that one would expect the block–block bootstrap to work as well as the
nonparametric iid bootstrap does with iid data. However, it does suggest that
the block–block bootstrap should have smaller ERP’s when γ < 1/4 than does
the block bootstrap.

Block statistics have the same first-order asymptotic efficiency as the stan-
dard statistics upon which they are based, because π → 0 as N → ∞. Hence,
block–block bootstrap tests have the same asymptotic local power as stan-
dard asymptotic tests and as block bootstrap tests. Nevertheless, block statistics
sacrifice some higher-order asymptotic efficiency and finite sample efficiency

2These correction factors alleviate, but do not solve, the join-point problem for the block boot-
strap applied to standard statistics. They allow the block bootstrap to attain ERP’s for two-sided
t tests of magnitude O(N−1−ξ) for ξ < 1/4, but these are still noticeably larger than those attained
by the nonparametric iid bootstrap. Correction factors are not needed for one-sided t tests to
yield asymptotic refinements.
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because some observations are deleted. This is a drawback of the use of the
block–block bootstrap.

A second drawback of the block–block bootstrap is that it requires the spec-
ification of the deletion fraction π, as well as the block length �. It may be pos-
sible to use higher-order expansions to determine suitable choices of π and �.
This is beyond the scope of the present paper. However, we do suggest a data-
dependent method for choosing π and � based on a nested bootstrap-type
procedure and assess its performance using simulations.

This paper presents some Monte Carlo results that are designed to assess the
finite sample performance of the block–block bootstrap. A dynamic regression
model with regressors given by a constant, a lagged dependent variable, and
three autoregressive variables is considered. Two-sided CI’s for the coefficient
on the lagged dependent variable are analyzed.

Standard delta method CI’s are found to perform very poorly. For exam-
ple, across the six cases considered with the coefficient on the lagged depen-
dent variable ranging from .8 to .95 and sample size fifty, a nominal 95%
delta method CI has average coverage probability of .766. Block and block–
block bootstrap CI’s are found to outperform the delta method CI by a notice-
able margin. For example, the usual nominal 95% symmetric nonoverlapping
block bootstrap CI with block length � = 8 has average coverage probability
of .914 across the six cases. The block–block bootstrap is found to improve
upon the block bootstrap in terms of coverage probability. With deletion frac-
tion π = �125 and block length � = 8, its average coverage probability is .928
across the six cases. Using the data-dependent method for selecting π and �,
the average coverage probability of the block–block bootstrap is .933 or .923
depending upon the version employed.

On the other hand, the block bootstrap yields longer CI’s than the delta
method and the block–block bootstrap yields longer CI’s than the block boot-
strap. The average length of the delta method CI’s over the six cases to which
we refer above is .63. In contrast, the average lengths for the block bootstrap
with � = 8, the block–block bootstrap with π = �125 and � = 8, and the block–
block bootstrap with the two versions of the data-dependent method of choos-
ing π and � are 1.03, 1.15, 1.23, and 1.19, respectively. All of the CI’s are shorter
than they need to be in order to achieve coverage probabilities of .95. But, part
of the increase in the lengths of the block–block bootstrap CI’s over the delta
method and block bootstrap CI’s is due to the blocking of the original sam-
ple estimator.

In sum, the Monte Carlo results illustrate that the block–block bootstrap
improves the finite sample coverage probabilities of the block bootstrap in the
dynamic regression models that are considered. The results also show that any
of the bootstrap methods considered outperforms the delta method by a sub-
stantial margin.

We now discuss some alternative bootstraps for time series to the block
bootstrap. One alternative is the parametric bootstrap for Markov time se-
ries. See Andrews (2004) and Andrews and Lieberman (2004) for analyses of
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the higher-order improvements of this bootstrap. An obvious restriction of the
parametric bootstrap is that it requires the existence of a parametric model or,
at least, a conditional parametric model given some covariates.

Another alternative bootstrap procedure for Markov processes, that does
not require a parametric model, is the Markov conditional bootstrap (MCB).
Under some conditions, the MCB yields asymptotic refinements that exceed
those of the block bootstrap; see Horowitz (2003). The MCB utilizes a non-
parametric density estimator of the Markov transition density. This density
has dimension equal to the product of the dimension of the observed data vec-
tor and the order of the Markov process plus one. For example, for a bivari-
ate time series and a first-order Markov process, a four-dimensional density
needs to be estimated. Since nonparametric density estimators are subject to
the curse of dimensionality, they are reliable only when the density has dimen-
sion less than or equal to three or, perhaps, four. In consequence, the range of
application of the MCB is restricted to cases in which it suffices to estimate a
low-dimensional density.

The tapered bootstrap of Paparoditis and Politis (2001, 2002) (PP) is an-
other alternative to the block bootstrap. The tapered bootstrap is a variant of
the block bootstrap in which the observations near the ends of the bootstrap
blocks are down-weighted. PP show that the tapered bootstrap is asymptoti-
cally correct to first order and that it reduces the asymptotic bias of the boot-
strap variance estimator. PP do not address the issue of asymptotic refinements
of the tapered bootstrap.

When the standard block bootstrap is applied to block statistics, as it is in this
paper, the resulting bootstrap is a tapered bootstrap in which the tapering func-
tion is rectangular. Hence, the bootstrap procedure considered here is related
to the tapered bootstrap of PP.3 However, the key to obtaining the improved
asymptotic refinements of the block–block bootstrap over the block bootstrap
is that both the original sample statistic and the block bootstrap down-weight
observations near the end of the blocks. This is not considered in PP and it
differentiates the approach taken in this paper from that of PP.

The discussion above indicates that the available alternatives to the block
bootstrap for time series are useful, but are either only applicable in restrictive
contexts or are not known to produce asymptotic refinements. In consequence,
the problem addressed in this paper of how to increase the asymptotic refine-
ments of the block bootstrap remains an important problem.

The results of this paper apply using the same assumptions and for the
same cases as considered in A2002. In particular, two types of block bootstrap
are considered—the nonoverlapping block bootstrap, introduced by Carlstein

3Furthermore, one could consider block statistics that are defined using a smooth tapering
function. The block bootstrap applied to such statistics would be a tapered bootstrap. It is likely
that the block bootstrap applied to such statistics would yield asymptotic refinements akin to
those obtained in this paper.
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(1986), and the overlapping block bootstrap, introduced by Künsch (1989).
The results apply to extremum estimators, including quasi-maximum likeli-
hood, least squares, and generalized method of moment (GMM) estimators.
The results cover t statistics, Wald statistics, and J statistics based on the ex-
tremum estimators. One-sided, symmetric two-sided, and equal-tailed two-
sided t tests and CI’s are covered by the results. Tests of over-identifying
restrictions are covered.

A key assumption made throughout the paper is that the estimator mo-
ment conditions are uncorrelated beyond some finite integer κ ≥ 0, which
implies that the covariance matrix of the estimator can be estimated using at
most κ correlation estimates. This assumption is satisfied with κ = 0 in many
time series models in which the estimator moment conditions form a martin-
gale difference sequence due to optimizing behavior by economic agents, due
to inheritance of this property from a regression error term, or due to the
martingale difference property of the ML score function. It also holds with
0 <κ<∞ in many models with rational expectations and/or overlapping fore-
cast errors, such as McCallum (1979), Hansen and Hodrick (1980), Brown and
Maital (1981), and Hansen and Singleton (1982). For additional references,
see Hansen and Singleton (1996). This assumption is also employed in A2002
and Hall and Horowitz (1996).

Some papers in the literature that do not impose the uncorrelatedness re-
striction beyond κ lags are Götze and Künsch (1996), Lahiri (1996), and
Inoue and Shintani (2000). However, if the uncorrelatedness restriction does
not hold and one employs a heteroskedasticity and autocorrelation consis-
tent covariance matrix estimator, then the asymptotic refinements of the block
bootstrap are smaller than otherwise and they depend on the choice of the
smoothing parameter. The use of block statistics also may prove to have ad-
vantages in such cases. This is left to further research.

The proofs of the results in this paper make extensive use of the results
of A2002. That paper, in turn, relies heavily on the methods used by Hall and
Horowitz (1996), Bhattacharya and Ghosh (1978), Chandra and Ghosh (1979),
Götze and Hipp (1983, 1994), and Bhattacharya (1987).

The paper A2002 considers the k-step block bootstrap as well as the stan-
dard block bootstrap. The asymptotic refinements established in this paper
for the block–block bootstrap also hold for the k-step block bootstrap ap-
plied to block statistics provided the condition in A2002 on the magnitude of k
is satisfied.

The remainder of the paper is organized as follows: Section 2 defines the
block extremum estimators. Section 3 defines the overlapping and nonover-
lapping block–block bootstraps. Section 4 states the assumptions. Section 5
establishes the asymptotic refinements of the block–block bootstrap. Section 6
presents a data-dependent method of choosing π and �. Section 7 reports some
Monte Carlo results. An Appendix contains proofs of the results.
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2. BLOCK EXTREMUM ESTIMATORS AND TESTS

In this section, we define the block statistics that are considered in the pa-
per. As much as possible, we use the same notation as A2002 and Hall and
Horowitz (1996). The observations are {Xi : i = 1� � � � � n}, where Xi ∈RLx . The
observations are assumed to be from a (strictly) stationary ergodic sequence of
random vectors. We consider block versions of extremum estimators of an un-
known parameter θ ∈ Θ ⊂ RLθ . The estimators we consider are either GMM
estimators or estimators that minimize a sample average, which we call “min-
imum ρ estimators.” Examples of minimum ρ estimators are maximum likeli-
hood (ML), least squares (LS), and regression M estimators.

The GMM estimators that we consider are based on the moment conditions
Eg(Xi, θ0) = 0, where g(·� ·) is a known Lg-valued function, Xi is as above,
θ0 ∈ Θ ⊂ RLθ is the true unknown parameter, and Lg ≥ Lθ� The minimum
ρ estimators that we consider minimize a sample average of terms ρ(Xi� θ),
where ρ(·� ·) is a known real function. Minimum ρ estimators can be written as
GMM estimators with g(Xi� θ)= (∂/∂θ)ρ(Xi� θ).

We assume that the true moment vectors {g(Xi� θ0) : i ≥ 1} (for a GMM
or minimum ρ estimator) are uncorrelated beyond lags of length κ for some
0 ≤ κ < ∞. That is, Eg(Xi� θ0)g(Xi+j� θ0)

′ = 0 for all j > κ. In consequence,
the covariance matrix estimator and the asymptotically optimal weight matrix
for the GMM estimator only depend on terms of the form g(Xi� θ)g(Xi+j� θ)

′

for 0 ≤ j ≤ κ. This means that the covariance matrix estimator and the weight
matrix can be written as sample averages, which allows us to use the Edgeworth
expansion results of Götze and Hipp (1983, 1994) for sample averages of sta-
tionary dependent random vectors, as in A2002 and Hall and Horowitz (1996).
For this reason, we let

X̃i = (X ′
i �X

′
i+1� � � � �X

′
i+κ)

′ for i = 1� � � � � n− κ�(2.1)

All of the statistics considered below can be closely approximated by sample
averages of functions of the random vectors X̃i in the sample χN :

χN = {X̃i : i = 1� � � � �N}�(2.2)

where N = [(n−κ)/�]� for block bootstraps with block length � and [·] denotes
the integer part of ·. Thus, as in A2002, Hall and Horowitz (1996), and Götze
and Künsch (1996), some observations X̃i are dropped if (n − κ)/� is not an
integer to ensure that the sample size N is an integer multiple of the block
length �.4

4For convenience, we state that limits are as N → ∞ below, although, strictly speaking, they
are limits as n→ ∞.
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Block statistics are based on sample averages of functions with certain sum-
mands deleted. The fraction of observations deleted is π, where π satisfies the
conditions stated in the Introduction. As above, τ = 1 − π and � is the block
length. Given a function such as g(Xi� θ), we let gπ(Xi� θ) denote the function
that is zero if the time subscript i corresponds to an observation that is one of
the �π�� observations before a join point and is g(Xi� θ) otherwise. Thus,

gπ(Xi� θ)=

g(Xi� θ) if i ∈ [(j − 1)�+ 1� j�− �π��]

for some j = 1� � � � � b,
0 otherwise.

(2.3)

We consider two forms of block GMM estimator. The first is a one-step block
GMM estimator that utilizes an Lg ×Lg nonrandom positive-definite symmet-
ric weight matrix Ω. In practice, Ω is often taken to be the identity matrix ILg .
The second is a two-step block GMM estimator that utilizes an asymptotically
optimal weight matrix. It relies on a one-step block GMM estimator to define
its weight matrix.

The one-step block GMM estimator, θ̂N , solves

min
θ∈Θ

JN�π(θ) =
(
(Nτ)−1

N∑
i=1

gπ(Xi� θ)

)′

Ω

(
(Nτ)−1

N∑
i=1

gπ(Xi� θ)

)
�(2.4)

The two-step block GMM estimator which, for economy of notation, we also
denote by θ̂N , solves

min
θ∈Θ

JN�π(θ� θ̃N) =
(
(Nτ)−1

N∑
i=1

gπ(Xi� θ)

)′

ΩN�π(θ̃N)(2.5)

×
(
(Nτ)−1

N∑
i=1

gπ(Xi� θ)

)
� where

ΩN�π(θ)=W
−1

N�π(θ)�

W N�π(θ)= (Nτ)−1
N∑
i=1

(
gπ(Xi� θ)gπ(Xi� θ)

′ +
κ∑

j=1

Hπ(Xi�Xi+j� θ)

)
�

Hπ(Xi�Xi+j� θ)= gπ(Xi� θ)g(Xi+j� θ)
′ + g(Xi+j� θ)gπ(Xi� θ)

′�

and θ̃N solves (2.4). By definition, Hπ(Xi�Xi+j� θ) equals zero or not depend-
ing on the value of i� not i+ j�
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The block minimum ρ estimator, which we also denote by θ̂N , solves

min
θ∈Θ

(Nτ)−1
N∑
i=1

ρπ(Xi� θ)�(2.6)

where ρπ(Xi� θ) is defined analogously to gπ(Xi� θ) in (2.3) with g(Xi� θ) re-
placed by ρ(Xi� θ). For this estimator, we let gπ(Xi� θ) denote (∂/∂θ)ρπ(Xi� θ).
Except for consistency properties, the block minimum ρ estimator can be ana-
lyzed simultaneously with the block GMM estimators. The reason is that with
probability that goes to one (at an appropriate rate) the solution θ̂N to the min-
imization problem (2.6) is an interior solution and, hence, is also a solution to
the problem of minimizing a quadratic form in the first-order conditions from
this problem with weight matrix given by the identity matrix, which is just the
one-step block GMM criterion function.

The asymptotic covariance matrix, σ , of the block extremum estimator θ̂N is

σ =


(D′ΩD)−1D′ΩΩ−1

0

×ΩD(D′ΩD)−1 if θ̂N solves (2.4),

(D′Ω0D)−1 if θ̂N solves (2.5),
D−1Ω−1

0 D−1 if θ̂N solves (2.6), where

(2.7)

Ω0 = lim
N→∞

(EW N�π(θ0))
−1 and D=E

∂

∂θ′g(Xi� θ0)�

By stationarity, Ω0 does not depend on π�
A consistent estimator of σ is

σN�π =


(D′

N�πΩDN�π)
−1D′

N�πΩΩ−1
N�π(θ̂N)

×ΩDN�π(D
′
N�πΩDN�π)

−1 if θ̂N solves (2.4),

(D′
N�πΩN�π(θ̂N)DN�π)

−1 if θ̂N solves (2.5),

D−1
N�πΩ

−1
N�π(θ̂N)D

−1
N�π if θ̂N solves (2.6), where

(2.8)

DN�π = (Nτ)−1
N∑
i=1

∂

∂θ′ gπ(Xi� θ̂N)�

Let θr� θ0�r , and θ̂N�r denote the rth elements of θ, θ0, and θ̂N , respectively.
Let (σN�π)rr denote the (r� r)th element of σN�π . The block t statistic for testing
the null hypothesis H0 :θr = θ0�r is

TN = (Nτ)1/2(θ̂N�r − θ0�r)/(σN�π)
1/2
rr �(2.9)
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Let η(θ) be an RLη -valued function (for some integer Lη ≥ 1) that is contin-
uously differentiable at θ0. The block Wald statistic for testing H0 :η(θ0) = 0
versus H1 :η(θ0) 
= 0 is

WN = (Nτ)η(θ̂N)
′
(

∂

∂θ′η(θ̂N)σN�π

(
∂

∂θ′η(θ̂N)

)′)−1

η(θ̂N)�(2.10)

The block J statistic for testing over-identifying restrictions is

JN =KN�π(θ̂N)
′KN�π(θ̂N)� where(2.11)

KN(θ)=Ω
1/2
N�π(θ)(Nτ)−1/2

N∑
i=1

gπ(Xi� θ)

and θ̂N is the block two-step GMM estimator. Under H0, TN has an asymp-
totic N(0�1) distribution. If Lg > Lθ and the over-identifying restrictions hold,
then JN has an asymptotic chi-squared distribution with Lg − Lθ degrees of
freedom. (This is not true if the one-step block GMM estimator is used to
define the block J statistic.)

3. THE BLOCK–BLOCK BOOTSTRAP

The observations to be bootstrapped are {X̃i : 1 ≤ i ≤ N}� As above, the
block length � satisfies � ∝ Nγ for some 0 < γ < 1. (Note that one can take
γ = 0 if the data are m-dependent.) We consider both nonoverlapping and
overlapping block bootstraps. For the nonoverlapping block bootstrap, the first
block is X̃1� � � � � X̃�, the second block is X̃�+1� � � � � X̃2�, etc. There are b differ-
ent blocks, where b� = N . For the overlapping block bootstrap, the first block
is X̃1� � � � � X̃�, the second block is X̃2� � � � � X̃�+1, etc. There are N − � + 1 dif-
ferent blocks.

The bootstrap is implemented by sampling b blocks randomly with replace-
ment from either the b nonoverlapping or the N−�+1 overlapping blocks. Let
X̃∗

1 � � � � � X̃
∗
N denote the bootstrap sample obtained from this sampling scheme.

The bootstrap one-step block GMM estimator, θ∗
N , solves

min
θ∈Θ

J∗
N�π(θ) =

(
(Nτ)−1

N∑
i=1

g∗
π(X

∗
i � θ)

)′

Ω(3.1)

×
(
(Nτ)−1

N∑
i=1

g∗
π(X

∗
i � θ)

)
� where

g∗
π(X

∗
i � θ)= gπ(X

∗
i � θ)−E∗gπ(X

∗
i � θ̂N)�
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X∗
i denotes the first element of X̃∗

i � E
∗ denotes expectation with respect to

the distribution of the bootstrap sample conditional on the original sample,
and gπ(X

∗
i � θ) is defined as gπ(Xi� θ) is defined in (2.3) but with X∗

i in place
of Xi. For the nonoverlapping and overlapping block bootstraps, respectively,
we have:

(Nτ)−1
N∑
i=1

E∗gπ(X
∗
i � θ)= (Nτ)−1

N∑
i=1

gπ(Xi� θ) and(3.2)

(Nτ)−1
N∑
i=1

E∗gπ(X
∗
i � θ)

= (N − �+ 1)−1τ−1
N∑
i=1

w(i� ��N)gπ(Xi� θ)� where

w(i� ��N)=

i/� if i ∈ [1� �− 1],
1 if i ∈ [��N − �+ 1],
(N − i + 1)/� if i ∈ [N − �+ 2�N].

The bootstrap sample moments (Nτ)−1
∑N

i=1 g
∗
π(X

∗
i � θ) in (3.1) are recen-

tered (by subtracting off E∗gπ(X
∗
i � θ̂N)) to ensure that their expectation

E∗(Nτ)−1
∑N

i=1 g
∗
π(X

∗
i � θ) equals zero when θ = θ̂N , which mimics the popula-

tion moments Egπ(Xi� θ), which equal zero when θ = θ0. Note that recentering
also appears in Shorack (1982), who considers bootstrapping robust regression
estimators, as well as in Hall and Horowitz (1996) and A2002.

The bootstrap two-step block GMM estimator, also denoted by θ∗
N , solves

min
θ∈Θ

J∗
N�π(θ� θ̃

∗
N)=

(
(Nτ)−1

N∑
i=1

g∗
π(X

∗
i � θ)

)′

Ω∗
N�π(θ̃

∗
N)(3.3)

×
(
(Nτ)−1

N∑
i=1

g∗
π(X

∗
i � θ)

)
� where

Ω∗
N�π(θ)=W

∗
N�π(θ)

−1�

W
∗
N�π(θ) = (Nτ)−1

N∑
i=1

(
g∗
π(X

∗
i � θ)g

∗
π(X

∗
i � θ)

′

+
κ∑

j=1

H∗
π(X

∗
i �X

∗
i�i+j� θ)

)
�

H∗
π(X

∗
i �X

∗
i�i+j� θ)= g∗

π(X
∗
i � θ)g

∗(X∗
i�i+j� θ)

′ + g∗(X∗
i�i+j� θ)g

∗
π(X

∗
i � θ)

′�
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θ̃∗
N denotes the bootstrap one-step block GMM estimator that solves (3.1),

and X∗
i�i+j denotes the (j + 1)st element of X̃∗

i for j = 1� � � � � κ.
The bootstrap block minimum ρ estimator, also denoted by θ∗

N , solves

min
θ∈Θ

(Nτ)−1
N∑
i=1

(
ρπ(X

∗
i � θ)−E∗gπ(X

∗
i � θ̂N)

′θ
)
�(3.4)

where gπ(·� θ) = (∂/∂θ)ρπ(·� θ). For the nonoverlapping block bootstrap,
the term (Nτ)−1

∑N

i=1 E
∗gπ(X

∗
i � θ̂N)

′θ is zero, because (Nτ)−1
∑N

i=1 E
∗gπ(X

∗
i ,

θ̂N) = (Nτ)−1
∑N

i=1 gπ(Xi� θ̂N) = 0, where the second equality holds by the
first-order conditions for θ̂N using the fact that the dimensions of gπ(·� ·) and θ

are equal. For the overlapping block bootstrap, (Nτ)−1
∑N

i=1 E
∗gπ(X

∗
i � θ̂N) 
=

(Nτ)−1
∑N

i=1 gπ(Xi� θ̂N)= 0 and the extra term in (3.4) is nonzero. In this case,
the term (Nτ)−1

∑N

i=1 E
∗gπ(X

∗
i � θ̂N)

′θ properly recenters the block minimum
ρ bootstrap criterion function. It yields bootstrap population first-order condi-
tions that equal zero at θ̂N , as desired. That is,

E∗(∂/∂θ)

(
(Nτ)−1

N∑
i=1

(
ρπ(X

∗
i � θ)−E∗gπ(X

∗
i � θ̂N)

′θ
))

=E∗(Nτ)−1
N∑
i=1

g∗
π(X

∗
i � θ)= 0�

when θ = θ̂N . With this recentering, the first-order conditions for θ∗
N are

(Nτ)−1
∑N

i=1 g
∗
π(X

∗
i � θ

∗
N) = 0� rather than (Nτ)−1

∑N

i=1 gπ(X
∗
i � θ

∗
N) = 0, which

means that θ∗
N minimizes the one-step block GMM bootstrap criterion func-

tion J∗
N�π(θ) with gπ(·� θ) = (∂/∂θ)ρπ(·� θ) and arbitrary positive definite

weight matrix Ω.
The bootstrap block covariance matrix estimator is

σ∗
N�π = σ∗

N�π(θ
∗
N)� where(3.5)

σ∗
N�π(θ)=



(
D∗

N�π(θ)
′ΩD∗

N�π(θ)
)−1

D∗
N�π(θ)

×ΩΩ∗
N�π(θ)

−1ΩD∗
N�π(θ)

× (
D∗

N�π(θ)
′ΩD∗

N�π(θ)
)−1

if θ̂N solves (2.4),(
D∗

N�π(θ)
′Ω∗

N�π(θ)D
∗
N�π(θ)

)−1
if θ̂N solves (2.5),

D∗
N�π(θ)

−1Ω∗
N�π(θ)

−1

×D∗
N�π(θ)

−1 if θ̂N solves (2.6) and

D∗
N�π(θ)= (Nτ)−1

N∑
i=1

∂

∂θ′ gπ(X
∗
i � θ)�
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The bootstrap block t, Wald, and J statistics are

T ∗
N = (Nτ)1/2(θ∗

N�r − θ̂N�r)/σ
∗
N�π(θ

∗
N)

1/2
rr �(3.6)

W∗
N =H∗

N�π(θ
∗
N)

′H∗
N�π(θ

∗
N)� and

J∗
N =K∗

N�π(θ
∗
N)

′K∗
N�π(θ

∗
N)� where

H∗
N�π(θ)=

((
∂

∂θ′η(θ)
)
σ∗

N�π(θ)

(
∂

∂θ′η(θ)
)′ )−1/2

× (Nτ)1/2
(
η(θ)−η(θ̂N)

)
�

K∗
N�π(θ)=Ω∗

N(θ)
1/2(Nτ)−1/2

N∑
i=1

g∗
π(X

∗
i � θ)�

where θ∗
N�r denotes the rth element of θ∗

N and σ∗
N�π(θ

∗
N)rr denotes the (r� r)th

element of σ∗
N�π(θ

∗
N). Note that the bootstrap block t, Wald, and J statistics

are not defined using correction factors, in contrast to the test statistics consid-
ered in Hall and Horowitz (1996) and A2002. Because of the block nature of
the statistics, we do not have to correct for the fact that the bootstrap blocks
are independent.

Let z∗
|T |�α, z∗

T�α, z∗
W�α, and z∗

J�α denote the 1 − α quantiles of |T ∗
N |, T ∗

N , W∗
N ,

and J∗
N , respectively. To be precise, since the distributions of |T ∗

N | etc. are dis-
crete, we define z∗

|T |�α to be a value that minimizes |P∗(|T ∗
N | ≤ z) − (1 − α)|

over z ∈R. The precise definitions of z∗
T�α, z∗

W�α, and z∗
J�α are analogous.

Each of the following tests is of asymptotic significance level α. The symmet-
ric two-sided block–block bootstrap t test of H0 :θr = θ0�r versus H1 :θr 
= θ0�r

rejects H0 if |TN | > z∗
|T |�α. The equal-tailed two-sided block–block bootstrap

t test for the same hypotheses rejects H0 if TN < z∗
T�1−α/2 or TN > z∗

T�α/2. The
one-sided block–block bootstrap t test of H0 :θr ≤ θ0�r versus H1 :θr > θ0�r re-
jects H0 if TN > z∗

T�α. The block–block bootstrap Wald test of H0 :η(θ0) = 0
versus H1 :η(θ0) 
= 0 rejects the null hypothesis if WN > z∗

W�α. The block–block
bootstrap J test of over-identifying restrictions rejects the null if JN > z∗

J�α�
Each of the following CI’s is of asymptotic confidence level 100(1 − α)%.

The symmetric two-sided block–block bootstrap CI for θ0�r is[
θ̂N�r − z∗

|T |�α(σN)
1/2
rr /N

1/2� θ̂N�r + z∗
|T |�α(σN)

1/2
rr /N

1/2
]
�

The equal-tailed two-sided block–block bootstrap CI for θ0�r is[
θ̂N�r − z∗

T�α/2(σN)
1/2
rr /N

1/2� θ̂N�r + z∗
T�1−α/2(σN)

1/2
rr /N

1/2
]
�
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The upper one-sided block–block bootstrap CI for θ0�r is [θ̂N�r − z∗
T�α(σN)

1/2
rr /

N1/2�∞). The block–block Wald-based bootstrap confidence region for η(θ0) is{
η ∈RLη :N(η(θ̂N)−η)′((∂η(θ̂N)/∂θ

′)σN�π(∂η(θ̂N)/∂θ
′)′)−1

× (η(θ̂N)−η)≤ z∗
W�α

}
�

4. ASSUMPTIONS

We now introduce the assumptions. They are essentially the same as those
of A2002 and are similar to those of Hall and Horowitz (1996).

Let f (X̃i� θ) denote the vector containing the unique components of
g(Xi� θ) and g(Xi� θ)g(Xi+j� θ)

′ for j = 0� � � � � κ, and their derivatives through
order d1 ≥ 3 with respect to θ. Let (∂j/∂θj)g(Xi� θ) and (∂j/∂θj)f (X̃i� θ)
denote the vectors of partial derivatives with respect to θ of order j of g(Xi� θ)
and f (X̃i� θ), respectively.

The following assumptions apply to the one-step block GMM, two-step
block GMM, or block minimum ρ estimator.

ASSUMPTION 1: There is a sequence of iid vectors {εi : i = −∞� � � � �∞} of di-
mension Lε ≥ Lx and an Lx × 1 function h such that Xi = h(εi� εi−1� εi−2� � � �).
There are constants K < ∞ and ξ > 0 such that for all m≥ 1

E‖h(εi� εi−1� � � �)− h(εi� εi−1� � � � � εi−m�0�0� � � �)‖ ≤ K exp(−ξm)�

ASSUMPTION 2: (a) Θ is compact and θ0 is an interior point of Θ. (b) Ei-
ther (i) θ̂N minimizes JN�π(θ) or JN�π(θ� θ̃N) over θ ∈Θ; θ0 is the unique solution
in Θ to Eg(X1� θ)= 0; for some function Cg(x), ‖g(x�θ1)−g(x�θ2)‖ ≤ Cg(x)×
‖θ1 − θ2‖ for all x in the support of X1 and all θ1� θ2 ∈ Θ; and ECq1

g (X1) <∞
and E‖g(X1� θ)‖q1 < ∞ for all θ ∈ Θ for all 0 < q1 < ∞; or (ii) θ̂N min-
imizes N−1

∑N

i=1 ρπ(Xi� θ) over θ ∈ Θ for some function ρ(x�θ) such that
(∂/∂θ)ρ(x�θ) = g(x�θ) for all x in the support of X1; θ0 is the unique
minimum of Eρ(X1� θ) over θ ∈ Θ; and E supθ∈Θ ‖g(X1� θ)‖q1 < ∞ and
E|ρ(X1� θ)|q1 <∞ for all θ ∈Θ for all 0 < q1 <∞.

ASSUMPTION 3: (a) Eg(X1� θ0)g(X1+j� θ0)
′ = 0 for all j > κ for some

0 ≤ κ <∞. (b) Ω and Ω0 are positive definite and D is full rank Lθ. (c) g(x�θ)
is d = d1 + d2 times differentiable with respect to θ on N0, some neighbor-
hood of θ0, for all x in the support of X1, where d1 ≥ 3 and d2 ≥ 0. (d) There
is a function C∂f (X̃1) such that ‖(∂j/∂θj)f (X̃1� θ) − (∂j/∂θj)f (X̃1� θ0)‖ ≤
C∂f (X̃1)‖θ − θ0‖ for all θ ∈ N0 for all j = 0� � � � � d2. (e) EC

q2
∂f (X̃1) < ∞ and

E‖(∂j/∂θj)f (X̃1� θ0)‖q2 ≤ Cf < ∞ for all j = 0� � � � � d2 for some constant Cf

(that may depend on q2) and all 0 < q2 < ∞. (f) f (X̃1� θ0) is once differentiable
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with respect to X̃1 with uniformly continuous first derivative. (g) If the Wald sta-
tistic is considered, the RLη -valued function η(·) is d1 times continuously differ-
entiable at θ0 and (∂/∂θ′)η(θ0) is full rank Lη ≤ Lθ.

ASSUMPTION 4: There exist constants K1 <∞ and δ > 0 such that for arbitrar-
ily large ζ > 1 and all integers m ∈ (δ−1�N) and t ∈Rdim(f) with δ < ‖t‖ <Nζ ,

E

∣∣∣∣∣E
(

exp

(
it ′

2m+1∑
s=1

f (X̃s� θ0)

)∣∣∣∣{εj : |j −m|>K1}
)∣∣∣∣∣ ≤ exp(−δ)�

where i = √−1 here.

The lower bounds on d1 and d2 in Assumption 3 are minimal bounds. The
results stated below specify more stringent lower bounds that vary depending
upon the result. Assumption 4 is the same as condition (4) of Götze and Hipp
(1994). It reduces to the standard Cramér condition if {Xi : i ≥ 1} are iid. The
moment conditions in Assumptions 2 and 3 are stronger than necessary, but
lead to relatively simple results. See Andrews (2001) for a much more com-
plicated set of assumptions, but with weaker moment conditions than those
above, that are sufficient for the results given below.

5. ASYMPTOTIC REFINEMENTS OF THE BLOCK–BLOCK BOOTSTRAP

In this section, we show that the block–block bootstrap leads to greater as-
ymptotic refinements in ERP’s of tests and in CI coverage probabilities when
compared to the block bootstrap, as well as in comparison to procedures based
on first-order asymptotics.

The following theorem shows that the symmetric two-sided block–block
bootstrap t, Wald, and J tests have ERP’s of magnitude o(N−(1+ξ)) for all
ξ < 1/2 − γ when the block length � is chosen proportional to Nγ . It shows
that the block–block bootstrap equal-tailed two-sided t and one-sided t tests
have ERP’s of magnitude o(N−(1/2+ξ)) for all ξ < 1/2 − γ when � is chosen
proportional to Nγ . The only restriction on γ is that 0 < γ < 1/2. Hence, for
γ close to zero, ξ is close to 1/2. For m-dependent data, γ = 0 is permitted.

In contrast, with the block bootstrap, analogous results hold but with the
additional restriction that ξ < γ� The latter restriction plus ξ < 1/2 − γ imply
that ξ < 1/4.

The following results hold for statistics based on one-step block GMM, two-
step block GMM, and block minimum ρ estimators.

THEOREM 1: (a) Suppose Assumptions 1–4 hold with d1 ≥ 5 and d2 ≥ 4;
0 ≤ ξ < 1/2 − γ; 0 < γ < 1/2; π ∈ (0�1); and π → 0 and π� −C log(N) → ∞
as N → ∞ for all constants 0 <C <∞. Then, under H0 :θr = θ0�r ,

P(|TN |> z∗
|T |�α)= α+ o(N−(1+ξ))�
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Under H0 :η(θ0)= 0�

P(WN > z∗
W�α)= α+ o(N−(1+ξ))�

In addition, if Lg > Lθ, then

P(JN > z∗
J�α) = α+ o(N−(1+ξ))�

(b) Suppose Assumptions 1–4 hold with d1 ≥ 4 and d2 ≥ 3; 0 ≤ ξ < 1/2 − γ;
0 < γ < 1/2; π ∈ (0�1); and π → 0 and π�−C log(N)→ ∞ as N → ∞ for all
0 <C <∞� Then, under H0 :θr = θ0�r ,

P(TN < z∗
T�α/2 or TN > z∗

T�1−α/2)= α+ o(N−(1/2+ξ)) and

P(TN > z∗
T�α)= α+ o(N−(1/2+ξ))�

(c) If the observations {Xi : i ≥ 1} are m-dependent for some integer m<∞,
then the results of parts (a) and (b) hold under the stated conditions, but
with γ = 0 and with the restrictions on π replaced by lim supN→∞ π < 1 and
lim infN→∞�π�� ≥ m+ κ.

COMMENTS: 1. The errors in part (a) of the theorem when the critical values
are based on standard first-order asymptotics (using the normal distribution or
the chi-square distribution) are O(N−1) for each of the three statistics. The
errors in part (b) of the theorem are O(N−1) for the equal-tailed t test and
O(N−1/2) for the one-sided t test. Thus, part (a) of the theorem and the one-
sided t test result of part (b) show that the bootstrap critical values reduce
the ERP (and the error in CI coverage probability) relative to first-order as-
ymptotics by a factor of at least N−ξ. The choice of γ close to zero maximizes ξ
subject to the requirement of the theorem that ξ < 1/2 − γ. For such a choice
of γ, the results of parts (a) and (b) hold for ξ close to 1/2�

2. The equal-tailed t test result of part (b) of the theorem shows that stan-
dard first-order asymptotics yields smaller ERP than the block–block bootstrap
ERP by N1/2−ξ, where ξ < 1/2 − γ. This occurs because the standard equal-
tailed t test is symmetric by the symmetry of the normal distribution and, in
consequence, the n−1/2 term in its Edgeworth expansion drops out. This does
not occur with equal-tailed bootstrap tests or CI’s.

On the other hand, if interest is in an equal-tailed test or CI, it is reason-
able to be more concerned about the individual probabilities of a CI missing to
the left (right) or of falsely rejecting the null in favor of larger (smaller) alter-
natives, rather than the overall error probabilities. For these one-sided error
probabilities, the bootstrap obtains the same asymptotic refinements as for the
one-sided t test (or one-sided CI) mentioned above.

3. When the data are m-dependent, part (c) of the theorem shows that one
does not need the block length, �, to diverge to infinity as N → ∞ or the num-
ber of observations deleted per block, �π��, to diverge to infinity as N → ∞.
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What is needed is that the number of observations deleted per block, �π��, be
greater than or equal to m + κ for N large. This suffices, because the block
statistics are based on sample averages, which are sums of independent blocks
provided �π�� ≥ m+ κ, which is exactly mimicked by the independence of the
bootstrap blocks.

In contrast, when the block bootstrap is applied to nonblock statistics and
the observations are m-dependent, the length of the blocks needs to diverge to
infinity as N → ∞.

4. The reason that symmetric two-sided block–block bootstrap t tests,
Wald tests, and J tests are correct to a higher order than equal-tailed two-
sided t tests and one-sided t tests is that the O(N−1/2) terms of the Edgeworth
expansions of |TN |, WN , and JN are zero by a symmetry property. See Hall
(1992), Hall and Horowitz (1996), or A2002 for details.

5. The possibility of improving the result of Theorem 1(a) for |TN | when
the data are dependent via the symmetry argument of Hall (1988), which ap-
plies with iid data, is unclear; see the discussion in A2002.

6. DATA-DEPENDENT CHOICE OF � AND π

In this section, we briefly discuss a data-dependent method for choosing
� and π� The method is a type of nested bootstrap. We do not present any
theoretical results concerning its asymptotic behavior, but we investigate its
finite sample properties in the next section.

The method is as follows. First, one specifies an approximate model for
the observations and a grid of (��π) values. Next, one simulates the approxi-
mate model a large number of times. For each simulation, one computes the
block–block bootstrap CI or test of interest for each (��π) combination in the
grid (which requires a second level of simulation). One then selects the (��π)
combination that optimizes a chosen criterion function computed using the
simulated block–block bootstrap CI’s or tests. For example, one could select
the (��π) combination that minimizes the empirical coverage probability error
based on simulated CI’s or the empirical ERP based on simulated tests. Given
the selected (��π) combination, one computes the block–block bootstrap CI
or test based on the original sample.

The object in choosing the approximate model is to capture the amount of
dependence in the time series because this is what determines a good choice
of (��π). The approximate model need not be correct asymptotically. For ex-
ample, with the dynamic regression model considered in the simulations below,
we take the approximate model to be the dynamic regression model with pa-
rameters equal to the estimated values (based on the original sample), with
errors taken to be iid with distribution equal to the empirical distribution of
the residuals from the original sample, and with the exogenous variables set
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equal to their original sample values.5 In addition, in the simulations below,
we consider the approximate model given by the block bootstrap with a rela-
tively large block length. Other possibilities for approximate models (that we
do not consider below) include the use of univariate autoregressive processes
or a vector autoregressive process, possibly with orders determined by an in-
formation criterion.

The grid of (��π) values can be selected from a sequence of grids such
that all sequences of (��π) values taken from the grids satisfy the proper-
ties specified above that π → 0 and π� − C log(N) → ∞ as N → ∞ for all
constants 0 < C < ∞. With the grid selected in this way, any chosen (��π)
combination is compatible with the requirements for the asymptotic refine-
ments established above. Hence, if the asymptotic refinements hold uniformly
over the sequences from the grids, then the data-dependent method of select-
ing (��π) will yield the asymptotic refinements established above. However,
we do not establish that the appropriate form of uniformity actually holds.

The criterion we consider in the simulation results below for selecting the
best (��π) value is the absolute deviation of the empirical coverage probabil-
ity (based on the simulations from the approximate model) from the desired
coverage probability of a block–block bootstrap CI. The empirical coverage
probability is calculated with the true value being the estimated value from
the original sample. Thus, the empirical coverage probability for a given (��π)
combination is the fraction of times out of all the simulations from the approx-
imate model that the block–block bootstrap CI with this (��π) combination
includes the estimated value from the original sample.

The data-dependent method for selecting (��π) can be time consuming
because it is a nested bootstrap procedure. If need be, the amount of time
can be reduced by using a smaller number of block–block bootstrap repeti-
tions when selecting (��π) than when computing the final block–block boot-
strap CI based on the selected (��π) combination. For example, in the Monte
Carlo experiment below, we use 300 simulations of the approximate model,
399 block–block bootstrap simulations for each approximate model simulation
and each (��π) combination, and 999 block–block bootstrap simulations for
the final block–block bootstrap CI given the selected (��π) combination. In
practice, it would be desirable to use more than 300 and 399 simulations in the
selection of the (��π) value. But, for the Monte Carlo simulation results, the
nested procedure must be repeated a large number of times—we computed
3,000 Monte Carlo repetitions—so it was not feasible to do so in the Monte
Carlo results.

5This is a residual-based bootstrap. It is not appropriate to use this bootstrap to construct the
final bootstrap CI unless one knows that the exogenous variables are strictly exogenous, rather
than just weakly exogenous. But, it is appropriate to use the residual-based bootstrap as an ap-
proximate model for determining (��π).
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7. MONTE CARLO SIMULATIONS

In this section, we describe some Monte Carlo simulation results that are
designed to assess the coverage probability accuracy of block–block boot-
strap CI’s.

7.1. Experimental Design

We consider a dynamic linear regression model estimated by LS:

Yi = θ0�1 +Yi−1θ0�2 +
5∑

j=3

Zi�jθ0�j +Ui(7.1)

=Z′
iθ0 +Ui for i = 1� � � � �N� where

Zi = (1�Yi−1�Zi�3�Zi�4�Zi�5)
′�

θ0 = (θ0�1� � � � � θ0�5)
′�

Zi�j =Zi−1�jρZ + Vi�j for j = 3�4�5�

Xi = (Yi�Z
′
i)

′� and

g(Xi� θ)= (Yi −Z′
iθ)Zi�

Five regressors are in the model. One is a constant; one is a lagged dependent
variable; and the other three are first-order autoregressive (AR(1)) regres-
sors with the same AR(1) parameter ρZ� The innovations, Vi�j , for the AR(1)
regressors are iid across i and j with mean zero and variance one and are inde-
pendent of the errors Ui. The regressor innovations and the errors are taken
to have the same distribution. We consider four different distributions: stan-
dard normal, t-5 (rescaled to have variance one), half-normal (recentered and
rescaled to have mean zero and variance one), and uniform on [−√

12�
√

12 ]
(which has mean zero and variance one). The latter three distributions were
chosen because the t-5 has thick tails, the half-normal is asymmetric but has the
same kurtosis as the normal, and the uniform has thin tails. The initial obser-
vations used to start up the AR(1) regressors are taken to have the same distri-
bution as the innovations, but are scaled to yield variance stationary processes.
The moment vectors g(Xi� θ0) are uncorrelated. In terms of the notation in-
troduced above, κ = 0, n=N , and X̃i =Xi.

The parameters θ0�1� θ0�3� θ0�4� θ0�5 are taken to be zero. Three combinations
of (θ0�2�ρZ) are considered: (�9� �8), (�95� �95), and (�8� �7)� Two sample sizes N
are considered: 50 and 100.

We consider CI’s for the parameter θ0�2 on the lagged dependent variable.
The CI’s are based on a t statistic that employs the LS estimator of θ0�2 coupled



692 DONALD W. K. ANDREWS

with a heteroskedasticity consistent standard error estimator:

TN = N1/2(θ̂N�2 − θ0�2)

(σ̂N)
1/2
22

�(7.2)

θ̂N =
(

N∑
i=1

ZiZ
′
i

)−1 N∑
i=1

ZiYi�

σ̂N =
(
N−1

N∑
i=1

ZiZ
′
i

)−1

N−1
N∑
i=1

Û2
i ZiZ

′
i

(
N−1

N∑
i=1

ZiZ
′
i

)−1

� and

Ûi =Yi −Z′
iθ̂N �

We compare standard two-sided delta method CI’s to symmetric two-sided
block–block bootstrap CI’s. Nonoverlapping block–block bootstrap CI’s are
considered. (See Andrews (2002b) for some Monte Carlo results for equal-
tailed two-sided and overlapping symmetric block–block bootstrap confidence
intervals.) The delta method CI is given by [θ̂N�2 − zα/2(σ̂N)

1/2
22 /N

1/2, θ̂N�2 +
zα/2(σ̂N)

1/2
22 /N

1/2], where zα/2 denotes the 1 −α/2 quantile of the standard nor-
mal distribution. The bootstrap CI’s are defined in Section 3 above.

The bootstrap CI’s are based on blocks of length � = 4, 6, 8, or 10 with
the number of observations “skipped” in each block (Skip) in the compu-
tation of the block statistics equal to 0�1� 2, or 3 with the restriction that
π = Skip/� ≤ �35. When Skip = 0� the block–block bootstrap reduces to the
standard block bootstrap. For brevity, we do not report results for all (��Skip)
combinations.

We also compute results for the data-dependent selection of (��Skip) for
the block–block bootstrap using the method described in the preceding sec-
tion. We consider both the dynamic regression approximate model and the
nonoverlapping block bootstrap approximate model with block length equal to
ten. We select (��Skip) from the subset of values listed above with Skip equal
to one or two and also from the subset with Skip equal to one, two, or three.

The number of simulation repetitions used is 3,000 for each case consid-
ered. This yields simulation standard errors of (approximately) �0040 for the
simulated coverage probabilities of nominal 95% CI’s. For a single data-
dependent choice of (��Skip), each simulation repetition took 2.68 minutes
using a 2,000 MHz Pentium III computer.

7.2. Simulation Results

Table I reports the simulation results. All results are for nominal 95%
CI’s. Case (a) is the base case, which has (θ0�2�ρZ) = (�9� �8)� standard nor-
mal N(0�1) distributions for the errors and regressor innovations, and sam-
ple N = 50� Variations on the base case are reported in cases (b)–(g). Cases
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TABLE I

COVERAGE PROBABILITIES AND AVERAGE LENGTHS OF NOMINAL 95% TWO-SIDED DELTA
METHOD AND SYMMETRIC TWO-SIDED BLOCK AND BLOCK–BLOCK BOOTSTRAP

CONFIDENCE INTERVALSa

CI
Cov
Prob

CI
Avg

Length

Fraction Fraction

Confidence Interval
Method

No. Skipped Block Lengths

1 2 4 6 8 10

Case (a): N(0, 1) Dist., (θ0�2� ρZ)= (�9� �8)�N = 50
Delta Method: �759 �61 — — — — — —
Fixed (��Skip): (8�0) �920 �99 �00 �00 �00 �00 1�00 �00

(8�1) �934 1�10 1�00 �00 �00 �00 1�00 �00
(8�2) �949 1�25 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �934 1�16 �53 �47 �19 �41 �27 �13
Blck Boot �925 1�14 �56 �44 �14 �30 �28 �29

Case (b): N(0, 1) Dist., (θ0�2� ρZ) = (�95� �95)�N = 50
Delta Method: �701 �64 — — — — — —
Fixed (��Skip): (8�0) �895 1�11 �00 �00 �00 �00 1�00 �00

(8�1) �909 1�23 1�00 �00 �00 �00 1�00 �00
(8�2) �927 1�41 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �913 1�35 �47 �53 �18 �44 �27 �11
Blck Boot �917 1�29 �52 �48 �14 �29 �27 �30

Case (c): N(0, 1) Dist., (θ0�2� ρZ) = (�8� �7)�N = 50
Delta Method: �830 �72 — — — — — —
Fixed (��Skip): (8�0) �932 1�12 �00 �00 �00 �00 1�00 �00

(8�1) �944 1�24 1�00 �00 �00 �00 1�00 �00
(8�2) �948 1�42 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �945 1�33 �58 �42 �18 �37 �30 �16
Blck Boot �936 1�29 �56 �44 �14 �26 �26 �34

Case (d): t-5 Dist., (θ0�2� ρZ) = (�9� �8)�N = 50
Delta Method: �782 �62 — — — — — —
Fixed (��Skip): (8�0) �923 1�00 �00 �00 �00 �00 1�00 �00

(8�1) �936 1�12 1�00 �00 �00 �00 1�00 �00
(8�2) �946 1�28 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �943 1�18 �55 �45 �18 �37 �28 �17
Blck Boot �931 1�16 �56 �44 �13 �27 �27 �33

Case (e): Half-Normal Dist., (θ0�2� ρZ) = (�9� �8)�N = 50
Delta Method: �764 �60 — — — — — —
Fixed (��Skip): (8�0) �915 1�00 �00 �00 �00 �00 1�00 �00

(8�1) �926 1�11 1�00 �00 �00 �00 1�00 �00
(8�2) �939 1�26 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �934 1�18 �52 �48 �20 �40 �27 �14
Blck Boot �911 1�12 �56 �44 �12 �27 �26 �34
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TABLE I—Continued

CI
Cov
Prob

CI
Avg

Length

Fraction Fraction

Confidence Interval
Method

No. Skipped Block Lengths

1 2 4 6 8 10

Case (f): Uniform Dist., (θ0�2� ρZ) = (�9� �8)�N = 50
Delta Method: �759 �58 — — — — — —
Fixed (��Skip): (8�0) �901 �98 �00 �00 �00 �00 1�00 �00

(8�1) �918 1�09 1�00 �00 �00 �00 1�00 �00
(8�2) �932 1�23 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �927 1�18 �52 �48 �16 �39 �28 �17
Blck Boot �918 1�14 �56 �44 �14 �31 �25 �30

Case (g): N(0, 1) Dist., (θ0�2� ρZ) = (�9� �8)�N = 100
Delta Method: �854 �36 — — — — — —
Fixed (��Skip): (8�0) �939 �49 �00 �00 �00 �00 1�00 �00

(8�1) �943 �53 1�00 �00 �00 �00 1�00 �00
(8�2) �953 �58 �00 1�00 �00 �00 1�00 �00

Data-depend (��Skip): Dyn Reg �940 �55 �52 �48 �12 �32 �30 �26
Blck Boot �941 �54 �57 �43 �14 �23 �26 �38

aResults for Fixed (��Skip) with Skip = 0 are for the standard block bootstrap. Results for Fixed (��Skip) with
Skip = 1 or 2 and for Data-depend (��Skip) with the Dyn Reg or Blck Boot approximate model are for the block–
block bootstrap.

(b) and (c) have (θ0�2�ρZ)= (�95� �95) and (�8� �7), respectively, and otherwise
are the same as in the base case. Cases (d), (e), and (f) differ from the base
case in that the distributions of the errors and regressor innovations are t-5,
half-normal, and uniform on [−√

12�
√

12 ], respectively. Case (g) differs from
the base case in that N = 100.

In Table I we report results for fixed (��Skip) combinations of (8�0), (8�1),
and (8�2). For brevity, results for other combinations are not reported, but are
commented on in the text. Table I also reports results for the data-dependent
selection of (��Skip) using the dynamic regression approximate model, in the
rows denoted “Dyn Reg,” and using the block bootstrap approximate model,
in the rows denoted “Blck Boot.” For brevity, we only report results for the
case where Skip is allowed to equal one or two, but we comment on the results
for the case where it may be one, two, or three in the text.

For each CI considered, Table I reports the CI coverage probabilities and
CI average lengths based on the 3,000 Monte Carlo simulations. For the boot-
strap CI’s, Table I also reports the fraction of Skip values equal to one and two,
denoted Fraction No. Skipped, and the fraction of block lengths equal 4, 6, 8,
and 10, denoted Fraction Block Lengths, over the 3,000 Monte Carlo simula-
tions. For the fixed (��Skip) results, these fractions are either zero or one. For
the data-dependent (��Skip) results, these fractions are between zero and one.

The results of Table I show the following:
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1. The coverage probabilities of the delta method CI’s are poor. The cov-
erage probabilities of the nominal 95% delta method CI are between .701
and .830 when N = 50 and are equal to .865 when N = 100.

2. The bootstrap CI’s perform fairly well and, hence, outperform the delta
method CI’s by a wide margin. This is true regardless of the choice of the block
length �, the number of observations skipped, or the data-dependent method
of choosing (��Skip). The nominal 95% bootstrap CI’s reported in Table I have
coverage probabilities between .895 and .949 when N = 50 and between .939
and .953 when N = 100.

3. The results for CI’s based on fixed (��Skip) values with � = 8 show
that the coverage probabilities increase and the coverage probability errors
decrease as Skip increases. For example, in the base case, the probabilities in-
crease from .920 for Skip = 0, which is the standard block bootstrap, to .934
and .949 for Skip = 1 and 2� respectively. As expected, the average lengths of
the CI’s also increase as Skip increases. For the base case, the average lengths
are .99, 1.10, and 1.25 for Skip = 0� 1� and 2, respectively. Hence, there is a
trade-off between the CI coverage probability and the CI average length.

4. The results for fixed (��Skip) combinations with � = 6 (not reported
in the table) are quite similar to those for � = 8� When Skip = 0, which
corresponds to the standard block bootstrap, the length of the CI’s with
fixed (��Skip) combinations tends to increase with �. When Skip ≥ 1, the per-
formance of the CI’s in terms of coverage probabilities and average lengths is
more closely related to the fraction of observations skipped, i.e., π = Skip/�,
than to � or Skip individually.

5. The results for the CI’s with data-dependent choice of (��Skip) are
quite good. They yield coverage probabilities between .911 and .945 across the
seven cases considered. Not surprisingly, the worst performance is in case (b)
in which (θ0�2�ρZ) = (�95� �95) and the best performance is in case (g) in
which N = 100� The data-dependent choices of (��Skip) perform similarly to
the fixed (��Skip) = (8�1) combination in terms of coverage probabilities and
average lengths.

6. In most cases, the use of the dynamic regression approximate model
yields better coverage probabilities and slightly longer CI’s than the block boot-
strap approximate model, but the differences are not large in most cases.

7. Using the data-dependent choices of (��Skip), one observation is
skipped about half the time and two are skipped about half the time. The
dynamic regression approximate model skips two observations slightly more
often than the block bootstrap approximate model.

8. The dynamic regression approximate model selects � = 6 most fre-
quently followed by � = 8� The variation across cases with N = 50 is not large.
When N = 100, there is a shift toward longer blocks. The block bootstrap
approximate model selects � = 6, 8, and 10 with roughly the same frequency
when N = 50� When N = 100, it selects � = 10 more often.
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9. Results for data-dependent choice of (��Skip) when Skip is allowed to
take on the values 1� 2, and 3 (not reported in the table) are similar in terms
of coverage probabilities but somewhat worse in terms of CI average length
across the cases considered, compared to the results reported in the table in
which Skip = 1 or 2. Skip = 3 is chosen in a relatively small fraction of the
cases. Hence, enlarging the choice of Skip values beyond 2 does not improve
performance in the cases considered.

10. The effect of increasing and decreasing the amount of correlation, as
shown in cases (b) and (c), respectively, is as expected for all CI’s. Increas-
ing the amount of correlation reduces the coverage probabilities and increases
the coverage probability errors of all CI’s. Decreasing the amount of correla-
tion increases the coverage probabilities and decreases the coverage probabil-
ity errors.

11. Shifting from normal to t-5 or half-normal distributions has little effect
on CI coverage probabilities or average lengths except that the delta method
coverage probability is somewhat higher with t-5 distributions (although still
very low). This indicates robustness of the CI’s to thick tails and asymmetry.
Shifting from normal to uniform distributions reduces the coverage probabil-
ities of the bootstrap CI’s but does not change their average lengths. Hence,
the bootstrap CI’s exhibit some sensitivity to thin-tailed distributions.

12. The effect of increasing the sample size, as shown in case (g), is to in-
crease the coverage probabilities and reduce the coverage probability errors
for all CI’s.

In sum, the Monte Carlo results show that all of the bootstrap CI’s consid-
ered outperform the delta method CI’s by a substantial margin. The results
also show that the block–block bootstrap yields improved coverage probabil-
ities in the cases considered compared to the standard block bootstrap. On
the other hand, the block–block bootstrap yields longer CI’s than the standard
block bootstrap. Some of the increase in length is due to the fact that the block–
block bootstrap coverage probabilities are higher and some is due to the loss in
information attributable to the skipping of observations by the block estimators
employed by the block–block bootstrap CI’s. The data-dependent methods of
selecting the (��Skip) combination are found to work fairly effectively in the
cases considered. To conclude, there is some evidence that the theoretical ad-
vantages established in this paper for the block–block bootstrap are reflected
in finite samples.
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APPENDIX: PROOFS

The proof of Theorem 1 holds by making some adjustments to the proof of Theorem 2
of A2002. The proof of Theorem 2 of A2002 relies on sixteen lemmas. These lemmas need to
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be adjusted as follows. Lemma 1 needs to hold for triangular arrays of functions {hN�i(·) : i ≤ N�
N ≥ 1}, rather than a single function h(·)� in order to apply the lemma with hN�i(Xi) =
gπ(Xi� θ0), rather than h(Xi) = g(Xi� θ0). This extension is easily achieved. It is stated as
Lemma 1 below.

Given the new Lemma 1 (and the fact that (Nτ)/N → 1 as N → ∞ under the assumption
that π = 1 − τ → 0), the proofs of Lemmas 2–13 and 16 of A2002 hold with g(Xi� θ0) replaced
by gπ(Xi� θ0) throughout without any significant changes in their proofs. Lemma 15 of A2002 is
not needed when block statistics are considered because it involves the behavior of correction
factors, which are not used with block statistics. Lemma 14 of A2002 needs to be changed. In par-
ticular, we need to show that it holds with the condition ξ < γ deleted. Lemma 2 below gives the
required result.

Given that Lemmas 2–14 and 16 of A2002 hold with g(Xi� θ0) replaced by gπ(Xi� θ0), Theo-
rem 1(a) and (b) hold by the proof of Theorem 2 of A2002. For the case of m-dependent obser-
vations {Xi : i ≥ 1} (covered in Theorem 1(c)), the only adjustment to the proof that is required is
that the result of Lemma 14 of A2002 needs to hold with γ = 0. Lemma 2 below covers this case.

A.1. Lemmas

LEMMA 1: Suppose Assumption 1 holds.
(a) Let {hN�i(·) : i ≤ N�N ≥ 1} be a triangular array of matrix-valued functions that satisfy

EhN�i(X̃i) = 0 for all i�N and supi≤N�N≥1 E‖hN�i(X̃i)‖p < ∞ for p ≥ 2 and p > 2a/(1 − 2c) for
some c ∈ [0�1/2) and a ≥ 0. Then, for all ε > 0,

lim
N→∞

NaP

(∥∥∥∥∥N−1
N∑
i=1

hN�i(X̃i)

∥∥∥∥∥ >N−cε

)
= 0�

(b) Let {hN�i(·) : i ≤ N�N ≥ 1} be a triangular array of matrix-valued functions that satisfy
supi≤N�N≥1 E‖h(X̃i)‖p < ∞ for p ≥ 2 and p > 2a for some a ≥ 0. Then, there exists a con-
stant K < ∞ such that

lim
N→∞

NaP

(∥∥∥∥∥N−1
N∑
i=1

hN�i(X̃i)

∥∥∥∥∥ >K

)
= 0�

Asymptotic refinements of the block bootstrap depend on the differences between the
Edgeworth expansions of the df’s of TN and T ∗

N being small (and analogously for (WN�W∗
N)

and (JN� J
∗
N)). Let νN�π�a denote a vector of population moments including those of gπ(Xi� θ0)

and some of its partial derivatives with respect to θ;νN�π�a is defined precisely below. Let ν∗
N�π�a

denote an analogous vector of bootstrap moments including those of g∗
π(X

∗
i � θ0) and some of its

partial derivatives. Edgeworth expansions of the df’s of TN , WN , and JN at a point y , with remain-
der of order o(N−a), where 2a is an integer, depend on polynomials in y whose coefficients are
polynomials in the elements of νN�π�a. Analogously, Edgeworth expansions of the df’s of T ∗

N , W∗
N ,

and J∗
N are the same as those of TN , WN , and JN , but with ν∗

N�π�a in place of νN�π�a. In consequence,
asymptotic refinements of the block bootstrap depend on the magnitude of the differences be-
tween ν∗

N�π�a and νN�π�a. Lemma 2 shows that these differences are small asymptotically.
We now define νN�π�a and ν∗

N�π�a precisely. Let f (X̃i� θ) be the vector-valued function de-
fined at the beginning of Section 4. Let fπ(X̃i� θ) be the function derived from f (X̃i� θ) in
the same way as gπ(X̃i� θ) is derived from g(X̃i� θ) in (2.3). Let f ∗

π(X̃
∗
i � θ) denote the vector

containing the unique components of g∗
π(X

∗
i � θ) and g∗

π(X
∗
i � θ)g

∗
π(X

∗
i+j� θ)

′ for all j = 0� � � � � κ
and their derivatives with respect to θ through order d1. Let SN�π = (Nτ)−1 ∑N

i=1 fπ(X̃i� θ0),
Sπ = ESN�π , S∗

N�π = (Nτ)−1 ∑N
i=1 f

∗
π(X̃

∗
i � θ̂N), and S∗

π = E∗S∗
N�π . Let ΨN�π = (Nτ)1/2(SN�π − Sπ)

and Ψ ∗
N�π = (Nτ)1/2(S∗

N�π − S∗
π). Let ΨN�π�j and Ψ ∗

N�π�j denote the jth elements of ΨN�π and Ψ ∗
N�π ,
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respectively. Let νN�π�a and ν∗
N�π�a denote vectors of moments of the form (Nτ)α(m)E

∏m
µ=1 ΨN�π�jµ

and (Nτ)α(m)E∗ ∏m
µ=1 Ψ

∗
N�π�jµ

, respectively, where 2 ≤ m ≤ 2a + 2, α(m) = 0 if m is even, and
α(m) = 1/2 if m is odd.

LEMMA 2: Suppose Assumptions 1 and 3 hold with d2 ≥ 2a+ 1 for some a ≥ 0, 0 ≤ ξ < 1/2 −γ,
and either (i) 0 < γ < 1/2 or (ii) the observations {Xi : i ≥ 1} are m-dependent for some integer
m< ∞, γ = 0, π ∈ (0�1), and lim infN→∞�π�� ≥m+ κ. Then,

lim
N→∞

NaP(‖ν∗
N�π�a − νN�π�a‖ > (Nτ)−ξ) = 0�

COMMENT : The condition ξ < γ, which is needed in Lemma 14 of A2002, is not needed in
Lemma 2 because the moments considered are moments of block statistics. This is the key feature
of block statistics that allows the block–block bootstrap to attain larger asymptotic refinements
than the block bootstrap applied to standard statistics.

A.2. Proofs of Lemmas

PROOF OF LEMMA 1: A strong mixing moment inequality of Yokoyama (1980) and Doukhan
(1995, Theorem 2 and Remark 2, pp. 25–30) gives E‖∑N

i=1 hN�i(X̃i)‖p < CNp/2 provided p ≥ 2,
where C does not depend on N . Application of Markov’s inequality and the Yokoyama–Doukhan
inequality yields the left-hand side in part (a) of the lemma to be less than or equal to

lim
N→∞

ε−pNa−p+pcE

∥∥∥∥∥
N∑
i=1

hN�i(X̃i)

∥∥∥∥∥
p

≤ lim
N→∞

ε−pCNa−p+pc+p/2 = 0�(A.1)

Part (b) follows from part (a) applied to hN�i(X̃i) − EhN�i(X̃i) with c = 0 and the trian-
gle inequality. Q.E.D.

PROOF OF LEMMA 2: The proof of Lemma 14 of A2002 goes through with g(Xi� θ0) replaced
by gπ(Xi� θ0) except for the proof that B2 = 0.

More specifically, as in A2002, the least favorable value of m for the bootstrap moment
(Nτ)α(m)E∗ ∏m

µ=1 Ψ
∗
N�π�jµ

(in terms of its distance from the corresponding population moment) is
three. Hence, we just consider this case. For notational simplicity, suppose jµ = 1 for µ= 1�2�3�
Thus, we need to show that

lim
N→∞

NaP
(∣∣((Nτ)1/2E∗(Ψ ∗

N�π�1)
3 − (Nτ)1/2EΨ 3

N�π�1

)∣∣ > (Nτ)−ξ
) = 0�(A.2)

Let fπ�i = fπ�1(X̃i� θ0) − Efπ�1(X̃i� θ0), where fπ�1(X̃i� θ0) denotes the first element of
fπ(X̃i� θ0). Let b1 = {1� � � � � �}, b2 = {� + 1� � � � �2�}� � � � � bb = {(b − 1)� + 1� � � � � b�}, where
N = b�. Let Yπ�j = ∑

i∈bj fπ�i. Then,

ΨN�π�1 = (Nτ)−1/2
N∑
i=1

fπ�i = (Nτ)−1/2
b∑

j=1

Yπ�j�(A.3)

By the arguments in the proof of Lemma 14 of A2002, provided ξ < 1/2 − γ,

lim
N→∞

NaP
(∣∣((Nτ)1/2E∗(Ψ ∗

N�π�1)
3 − (Nτ)−1bEY 3

π�1

)∣∣ > (Nτ)−ξ
) = 0�(A.4)

Hence, it suffices to show that

lim sup
N→∞

(Nτ)ξ|(Nτ)1/2EΨ 3
N�π�1 − (Nτ)−1bEY 3

π�1| = 0�(A.5)
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(Equation (A.5) shows that B2 of A2002 equals zero.)
Using (A.3), we have

(Nτ)1/2EΨ 3
N�π�1 = (Nτ)ξ−1

b∑
j1=1

b∑
j2=1

b∑
j3=1

EYj1Yj2Yj3 �(A.6)

Hence,

(Nτ)ξ|(Nτ)1/2EΨ 3
N�π�1 − (Nτ)−1bEY 3

π�1| = (Nτ)ξ−1
b∑

j1=1

b∑
j2=1

b∑
j3=1

j1 
=j2 
=j3

EYj1Yj2Yj3 �(A.7)

If the observations {Xi : i ≥ 1} are m-dependent, then the observations {X̃i : i ≥ 1} are (m+ κ)-de-
pendent and Yj1 and Yj2 are independent for all j1 
= j2 for N large because the number of deleted
observations at the end of each block satisfies �π�� ≥m+κ for N large. Since EYj1 = 0 for all j1,
the right-hand side of (A.7) equals zero in the m-dependent case.

Next, we consider the case where the observations are not necessarily m-dependent, but
0 < γ < 1/2� By a strong mixing covariance inequality of Davydov (e.g., see Doukhan (1995,
Theorem 3(1), p. 9)),

|EYj1Yj2Yj3 | ≤ 8‖Yj1 ‖p · ‖Yj2Yj3 ‖qα
r(�π�� − κ)�(A.8)

where p�q� r ≥ 1� 1/p+1/q+1/r = 1, ‖·‖p denotes the Lp norm, and {α(s) : s ≥ 1} are the strong
mixing numbers of {Xi : i ≥ 1}� which decline to zero exponentially fast by Assumption 1. This
inequality holds because the summands in Yj1 are separated from those in any blocks Yj2 and Yj3

by at least �π�� − κ by the block feature of fπ�i. This is the key part of the proof.
Next, by Minkowski’s inequality, ‖Yj1 ‖p = ‖Y1‖p ≤ �‖fπ�1‖p ≤ �τC1 for some constant C1 < ∞.

By an application of the Cauchy–Schwarz inequality and the fact that ‖Y2‖2q = ‖Y3‖2q, we have
‖Yj2Yj3 ‖q = ‖Y2Y3‖q ≤ ‖Y2‖2

2q ≤ (�τC1)
2. Hence, (A.5) holds by (A.7) and (A.8) provided

(Nτ)ξ−1b3(�τ)3αr(�π�� − κ) = (Nτ)2+ξαr(�π�� − κ) → 0 as N → ∞�(A.9)

Since the α-mixing numbers, {α(s) : s ≥ 1}, decline to zero exponentially fast in s, (A.9) holds
provided π�−C log(N)→ ∞ for all C < ∞, as is assumed. Q.E.D.
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