
EVALUATION OF A THREE-STEP METHOD 
FOR CHOOSING THE NUMBER OF BOOTSTRAP REPETITIONS 

 
 
 
 
 
 

BY 
 

DONALD W. K. ANDREWS AND MOSHE BUCHINSKY 
 
 
 
 
 

COWLES FOUNDATION PAPER NO. 1125 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
2006 

 
http://cowles.econ.yale.edu/ 



Journal of Econometrics 103 (2001) 345–386
www.elsevier.com/locate/econbase

Evaluation of a three-step method for choosing
the number of bootstrap repetitions

Donald W.K. Andrewsa, Moshe Buchinskyb;c;d ; ∗
aCowles Foundation for Research in Economics, Yale University, New Haven,

CT 06520-8281, USA
bDepartment of Economics, Brown University, Box B, Providence, RI 02912, USA
cNational Bureau of Economic Research, 1050 Massachusetts Avenue, Cambridge,

MA 02138, USA
dINSEE-CREST, 15 Boulevard Gabriel P�eri, 92245 Malako� Cedex, France

Accepted 24 October 2000

Abstract

This paper provides a variety of Monte Carlo simulations that evaluate the �nite-
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1. Introduction

Andrews and Buchinsky (2000) consider the problem of choosing the num-
ber of bootstrap repetitions B for a wide variety of bootstrap procedures. They
introduce a three-step method for doing so. This method is designed to ad-
dress the problem that one can obtain a ‘di�erent answer’ from the same data
merely by using di�erent simulation draws if B is too small, but computa-
tional costs can be great if B is chosen to be extremely large. The three-step
method of Andrews and Buchinsky (2000) determines B to attain a spec-
i�ed level of accuracy. In consequence, one can obtain accurate bootstrap
quantities with the minimum computational e�ort. The method is justi�ed by
asymptotics as B→∞.

The primary purpose of this paper is to investigate the �nite sample prop-
erties of the three-step method. We address the question of whether the
three-step method delivers the desired level of accuracy in �nite samples.
A secondary purpose of this paper, independent of the three-step method, is
to determine the magnitudes of B necessary to obtain di�erent levels of ac-
curacy in a variety of bootstrap situations. The results let one judge whether
typical choices for B used in the literature are appropriate.

We investigate the �nite sample properties of the three-step method in a
variety of di�erent contexts. We consider bootstrap standard error estimates,
symmetric two-sided con�dence intervals, tests with a given signi�cance level
�, and p-values. We consider these bootstrap applications in a linear regres-
sion model, a binary probit model, and a quantile regression model. In each
model, the observations are independent and identically distributed (iid) and
the sample size is taken to be small, only 25 observations. In all cases, we
consider the standard nonparametric bootstrap based on the empirical distri-
bution function.
The measure of ‘accuracy’ used by the three-step method is the percentage

deviation of the bootstrap quantity of interest based on B bootstrap repetitions,
from the ideal bootstrap quantity for which B = ∞. For the four bootstrap
applications considered here, the bootstrap ‘quantities of interest’ are the stan-
dard error estimate, the length of the con�dence interval, the critical value of
the test, and the p-value. For example, for standard error estimates, accuracy
is measured in terms of the percentage deviation of the bootstrap standard er-
ror estimate for a given (�nite) value of B, from the ideal bootstrap standard
error estimate.
The percentage deviation of any bootstrap quantity for a given value of B

is stochastic, because the bootstrap simulations are random. To determine a
suitable value of B, we specify a bound on the relevant percentage deviation,
denoted pdb, and we require that the actual percentage deviation be less than
this bound with a speci�ed probability, 1 − �, close to one. The three-step
method takes pdb and � as given and provides a data-dependent method to
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determine a value of B, denoted B∗, to obtain the desired level of accuracy.
Three steps are required because the relevant features of the problem need
to be determined in the initial two steps before it is possible to determine a
suitable choice of B in the third step.
In the simulations, we assess the precision of the three-step method as

follows. For each simulation, we calculate whether the actual percentage de-
viation of the bootstrap quantity based on the value of B selected via the
three-step method is less than the percentage deviation bound pdb. Then, we
compare the fraction of cases over all of the Monte Carlo simulations where
this is true, denoted the empirical level, with the nominal level 1 − �. The
three-step method performs well if the empirical level is close to 1− �.

The results indicate that in most cases the empirical levels are quite close
to the nominal levels. For example, for (pdb; �) = (10; 0:05), we obtain em-
pirical levels of 0.947, 0.949, and 0.942 for bootstrap standard error estimates
in the linear regression model with errors with t distribution with �ve degrees
of freedom (t5), the binary probit model, and the quantile regression model
with t5 errors, respectively, in comparison to the nominal level of 0.950. For
symmetric 90% con�dence intervals, the corresponding empirical levels are
0.958, 0.958, and 0.958. For tests with signi�cance level 0.05, the correspond-
ing empirical levels are 0.940, 0.947, and 0.942, respectively. For p-values
with p=0:10, the corresponding empirical levels are 0.951, 0.944, and 0.947.
In general, the empirical levels for the linear and quantile regression mod-
els with normal, rather than t5, errors are even closer to the 0.950 nominal
level.
The simulation results show that the precision of the three-step method

does not vary greatly across the di�erent models considered. The results also
show that the precision varies somewhat across the di�erent type of bootstrap
application considered, with standard errors being the best and p-values being
the worst, but that the variation is not too great.
The simulation results clearly indicate that the precision of the three-step

method depends primarily on how tight the (pdb; �) bound is. The smaller
the values of pdb and �, the greater is the required number of bootstrap
repetitions B∗, and the greater is the precision of the three-step method. The
reason is that the three-step method is based on asymptotics as B → ∞.
Overall, we conclude that the three-step method works very well over

the range of bootstrap applications and models that are considered in the
simulations.
We note that the three-step method is applicable in numerous cases that

are not considered in this paper. It applies to bootstrap equal-tailed percentile
t con�dence intervals, one-sided percentile t con�dence intervals, con�dence
regions, and bias-correction. It applies to parametric and semiparametric boot-
straps for iid and temporally dependent samples, to residual-based regres-
sion bootstraps, as well as to nonparametric block bootstraps for temporally
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dependent samples. See Andrews and Buchinsky (2000) for details. For want
of time and space, we do not consider these cases here.
Next, we discuss the magnitude of the B values that are needed to obtain

accurate bootstrap quantities. In the econometrics literature, it is common for
100 or so bootstrap repetitions to be used. A number of this magnitude is
noticeably smaller than the numbers obtained in the simulations. For example,
for (pdb; �) = (10; 0:05), we obtain the following median values (over the
simulations) of the B∗ values selected by the three-step method for the same
models as discussed above: 287, 207, and 291 for bootstrap standard error
estimates, 511, 409, and 543 for symmetric 90% con�dence intervals, 767,
828, and 834 for tests with signi�cance level 0.05, and 3580, 3690, and 3622
for p-values with p=0:10. Note that these median B∗ values are very good
indicators of the median values of B that are necessary to obtain a (pdb; �)
accuracy of exactly (10; 0:95), because the empirical levels of the three-step
method are quite close to the nominal level of 0.95.
These median B∗ values vary considerably across the di�erent bootstrap

applications considered and with the speci�ed degree of accuracy (pdb; �)
within each application. They also vary somewhat across the di�erent models
considered. In the case of p-values, the level of accuracy given by (pdb; �)=
(10; 0:05) may be more than one requires. In this case the large values of B
given above would be replaced by smaller values, when larger (pdb; �) values
are speci�ed. Nevertheless, the results indicate that if the speci�ed level of
accuracy is desired, then the number of bootstrap repetitions required can be
quite large.
We conclude that to obtain results that do not depend on the particular

bootstrap simulation draws employed, one needs to use more bootstrap repe-
titions than is commonly used in the econometrics literature. How many more
depends on the type of bootstrap application, the model under consideration,
and the desired level of accuracy.
Papers in the literature that are related to the three-step method considered

here include Efron and Tibshirani (1986), Hall (1986), Davison and Hink-
ley (1997, Sections 2:5:2 and 4:2:5), Davidson and MacKinnon (2000), and
Andrews and Buchinsky (2000, 2001).
Efron and Tibshirani (1986, Section 9) provide a simple formula that relates

the coe�cient of variation of the bootstrap standard error estimator, as an
estimate of the true standard error, to the coe�cient of variation of the ideal
bootstrap standard error estimator, as an estimate of the true standard error.
Their formula depends on some unknown parameters that are not estimable.
Hence, Efron and Tibshirani use their formula to suggest a range of plausible
values of B, rather than a speci�c value of B.
Hall (1986) considers unconditional coverage probabilities of con�dence

intervals, i.e., coverage probabilities with respect to the randomness in the
data and the bootstrap simulations. The three-step method considered here
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focuses on conditional coverage probabilities, i.e., coverage probabilities with
respect to the randomness in the data conditional on the bootstrap simulations.
The reason is that one does not want to be able to obtain ‘di�erent answers’
from the same data due to the use of di�erent simulation draws.
Davison and Hinkley (1997, Section 2:5:2) provide formulae that decom-

pose the variance of bootstrap bias correction estimates, variance estimates,
and quantile estimates into the part that is due to simulation and the part that
is due to sample variation. They use these formulae to suggest values of B.
Davison and Hinkley (1997, Section 4:5:2) provide some formulae for the
e�ect of B on the power of a test.

Davidson and MacKinnon (2000) propose a pretesting method of choosing
B for a test with a given signi�cance level � that aims to ensure that the
probability is small that there is a di�erence between the conclusions of the
ideal bootstrap test and the bootstrap test based on B bootstrap repetitions.
In contrast, the three-step method aims to achieve a bootstrap test that has
good conditional signi�cance level and power conditional on the simulation
randomness by determining an accurate critical value.
Andrews and Buchinsky (2001) provides a three-step method for choosing

B for the BCa con�dence intervals of Efron (1987). The method is analogous
to the three-step method considered here for percentile t con�dence intervals.
The remainder of this paper is organized as follows. Section 2 provides the

notation and describes the bootstrap applications of interest, viz., standard er-
ror estimates, symmetric two-sided percentile t con�dence intervals, tests for
a given signi�cance level �, and p-values. Section 3 outlines the three-step
method. It also provides a number of tables that illustrate the magnitudes
of various quantities that enter the calculations in the three-step method.
Section 4 explains the design of the Monte Carlo experiments. Section 5
provides the results of the Monte Carlo experiment. Section 6 provides a
brief summary and concluding remarks.

2. Notation and description of the bootstrap applications

In this section, we present the notation used throughout the paper and
introduce the bootstrap applications considered in the paper, viz., standard
error estimates, con�dence intervals, tests for a given signi�cance level, and
p-values.

2.1. Notation

First, we outline the general framework. Suppose that we are interested
in some unknown quantity �. For example, � could be an exact standard
error, con�dence interval length, critical value, or p-value. We would like to
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estimate � using an ‘ideal’ bootstrap estimate, denoted �̂∞. Analytic calcula-
tion of �̂∞ is intractable in most cases, so we use an estimate �̂B of �̂∞ that is
based on a �nite number, B, of bootstrap simulations. The three-step method
of Andrews and Buchinsky (2000) speci�es a data-dependent method of se-
lecting B such that �̂B is close to �̂∞ within a prespeci�ed level of accuracy.
We describe this method below.
The observed data are a sample of size n: X = (X1; : : : ; Xn)′. Let X∗ =

(X ∗
1 ; : : : ; X

∗
n )

′ be a bootstrap sample of size n based on the original sample
X. In this paper, we consider the case where X is a sample of iid random
vectors and the bootstrap sample X∗ is an iid sample drawn from the empirical
distribution F̂ (i.e., a random sample of size n drawn from the original sample
with replacement). This is the most commonly used bootstrap. Let {X∗

b : b=
1; : : : ; B} denote B iid bootstrap samples, each with the same distribution as
X∗. All probability statements and the probability and expectation operators
P∗ and E∗, respectively, refer to the randomness in the iid bootstrap samples
{X∗

b : b= 1; : : : ; B} conditional on the observed data X.
The accuracy of �̂B is measured by the percentage deviation of �̂B from

�̂∞:

100
|�̂B − �̂∞|

�̂∞
: (1)

This percentage deviation is random conditional on the sample X, because
it depends on the random bootstrap simulations that are used to calculate
�̂B. Let 1 − � denote a probability close to one, such as 0.95. Let pdb be a
bound on the percentage deviation of �̂B from �̂∞. The three-step method of
Andrews and Buchinsky (2000) is designed to determine B such that

P∗
(
100

|�̂B − �̂∞|
�̂∞

6pdb

)
≈ 1− �; (2)

where ≈ denotes ‘is approximately equal to’.
The three-step method is based on the following asymptotic result:

B1=2(�̂B − �̂∞)=�̂∞ →d N (0; !) as B → ∞; (3)

where the asymptotic variance ! depends on the particular application con-
sidered. 1 The three-step method depends on an estimator !̂B of !. This
estimator is based on the bootstrap samples {X∗

b : b= 1; : : : ; B}.

1 This result holds with probability one with respect to the distribution of the original sample.
In the examples in which �̂B is a sample quantile, viz., the con�dence interval and test for a
given signi�cance level examples, this result holds as both B → ∞ and n → ∞ and it holds
with probability one with respect to the distribution of the in�nite sequence of random variables
that yields the original samples for di�erent values of n.
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In the following subsections, we specify the quantities �; �̂∞; �̂B; !, and
!̂B in each of the applications of interest.

2.2. Standard errors

Let �̂= �̂(X) be an estimator of a scalar parameter �0 based on the sample
X. For standard error estimates, the quantity � is the standard error, se, of �̂:

se= (E(�̂(X)− E�̂(X))2)1=2; (4)

where E denotes expectation with respect to the randomness in X.
Let �̂

∗
b = �̂(X∗

b) for b = 1; : : : ; B denote B bootstrap estimates of �0. The
‘ideal’ bootstrap standard error estimator of se is given by

ŝe∞ = (E∗(�̂
∗
b − E∗�̂

∗
b)

2)1=2: (5)

The bootstrap standard error estimator based on B bootstrap repetitions is

ŝeB =

⎛⎝ 1
B− 1

B∑
b=1

(
�̂
∗
b −

1
B

B∑
c=1

�̂
∗
c

)2
⎞⎠1=2

: (6)

In this case, �̂∞= ŝe∞ and �̂B= ŝeB. Provided E∗((�̂
∗
b)

2)¡∞; limB→∞ ŝeB=
ŝe∞ almost surely by the law of large numbers.
In this application, the variance ! of (3) depends on the coe�cient of

excess kurtosis, denoted �2, of the bootstrap estimator �̂
∗
b .

2 In particular,

!= (2 + �2)=4; where �2 = E∗(�̂
∗
b − �)4=ŝe4∞ − 3 and �= E∗�̂

∗
b : (7)

A consistent estimator of ! is

!̂B = (2 + �̂2B)=4; where �̂2B =
1

B− 1

B∑
b=1

(�̂
∗
b − �̂B)

4=ŝe4B − 3

and �̂B =
1
B

B∑
b=1

�̂
∗
b : (8)

By the law of large numbers and Slutsky’s Theorem, it follows that limB→∞ �̂B
= �; limB→∞ �̂2B = �2, and limB→∞ !̂B =! almost surely, provided ŝe∞ �= 0
and E∗((�̂

∗
b)

4)¡∞.
The estimator !̂B tends to be biased toward zero in small samples, so we

also consider the bootstrap bias-corrected version of !̂B as an estimator of
!. The iid sample of B bootstrap estimates of �0 is �∗

B = (�̂
∗
1 ; : : : ; �̂

∗
B). For

2 If �̂
∗
b has a normal distribution then �2 = 0, if �̂

∗
b has kurtosis greater than that of a normal

distribution then �2 ¿ 0, and �2 ¡ 0 otherwise.
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present purposes, we think of (�̂
∗
1 ; : : : ; �̂

∗
B) as being the original sample and

�̂2B as being an estimator based on this sample that we want to bootstrap
bias correct. Let Ĝ denote the empirical distribution of (�̂

∗
1 ; : : : ; �̂

∗
B). Consider

R independent bootstrap samples {�∗∗
Br : r = 1; : : : ; R}, where each bootstrap

sample �∗∗
Br =(�̂

∗∗
1r ; : : : ; �̂

∗∗
Br ) is a random sample of size B drawn from Ĝ. The

bootstrap bias-corrected estimator �̂2BR of �2 for R bootstrap repetitions is

�̂2BR = 2�̂2B −
1
R

R∑
r=1

�̂2(�
∗∗
Br ); where

�̂2(�
∗∗
Br ) =

[1=(B− 1)]
∑B

b=1(�̂
∗∗
br − (1=B)

∑B
c=1 �̂

∗∗
cr )

4

([1=(B− 1)]
∑B

b=1(�̂
∗∗
br − (1=B)

∑B
c=1 �̂

∗∗
cr )2)2

− 3: (9)

2.3. Symmetric two-sided percentile t con�dence intervals

Next, we consider symmetric two-sided percentile t con�dence intervals for
the scalar parameter �0. These intervals are symmetric about the estimator �̂.
In the models that we consider below, the normalized estimator n1=2(�̂ − �0)
has an asymptotic normal distribution as n → ∞. Let �̂ = �̂(X) denote a
consistent estimator of the asymptotic standard error of n1=2(�̂− �0). Let

T = |n1=2(�̂− �0)=�̂|: (10)

Let q01−� denote the 1−� quantile of T . The ‘theoretical’ symmetric two-sided
percentile t con�dence interval with exact con�dence level 100(1− �)% is

JSY = [�̂− n−1=2�̂q01−�; �̂+ n−1=2�̂q01−�]: (11)

The quantity � of interest in this case is q01−�, which is proportional to the
length of the con�dence interval.
De�ne �̂∗

b = �̂(X∗
b) and T ∗

b = |n1=2(�̂∗b − �̂)=�̂∗
b | for b = 1; : : : ; B. The 1 −

� quantile of T ∗
b , denoted q̂1−�;∞, is the ideal bootstrap estimate of q01−�.

Thus, �̂∞ equals q̂1−�;∞ in this application. The ideal bootstrap symmetric
percentile t con�dence interval of approximate con�dence level 100(1− �)%
is Ĵ SY;∞ = [�̂− n−1=2�̂q̂1−�;∞; �̂+ n−1=2�̂q̂1−�;∞]. 3

Let q̂1−�;B denote the 1− � sample quantile of the B bootstrap t statistics
{T ∗

b : b = 1; : : : ; B} (de�ned more precisely below). In this application, �̂B
equals q̂1−�;B. The bootstrap symmetric percentile t con�dence interval of

3 The con�dence level of this bootstrap con�dence interval exhibits higher order improvements
over the corresponding con�dence level based on the delta method; e.g., Beran (1988) and Hall
(1992).
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approximate con�dence level 100(1 − �)% based on B bootstrap repetitions
is

Ĵ SY;B = [�̂− n−1=2�̂q̂1−�;B; �̂+ n−1=2�̂q̂1−�;B]: (12)

Following Hall (1992, p. 307), for this application, we choose B so that
	=(B+ 1) = 1− � for some positive integer 	. We consider values of � that
are rational and can be written as

�= �1=�2 (13)

for some positive integers �1 and �2 (with no common integer divisors). Then,
B=�2h−1 and 	=(�2−�1)h for some positive integer h. Let {T ∗

B;b: b=1; : : : ; B}
denote the ordered sample of bootstrap T statistics. Then, for B and � as
above, the 1− � sample quantile q̂1−�;B of {T ∗

b : b= 1; : : : ; B} is

q̂1−�;B = T ∗
B;	: (14)

That is, q̂1−�;B is the 	th order statistic of {T ∗
b : b= 1; : : : ; B}.

In this application, ! is given by

!= �(1− �)=(4z21−�=2

2(z1−a=2)); (15)

where z1−�=2 and 
(·) denote the 1 − �=2 quantile and the density function,
respectively, of the standard normal distribution. The estimate !̂B is

!̂B = �(1− �)(1=ĝB)
2=q̂21−�;B; where

1=ĝB =
B

2m̂B
(T ∗

B;	+m̂B
− T ∗

B;	−m̂B
); 	= (B+ 1)(1− �);

m̂B = int(c�B2=3) and c� =

(
6z21−�=2


2(z1−�=2)

2z21−�=2 + 1

)1=3

: (16)

Note that 1=ĝB is Siddiqui’s (1960) estimator of the reciprocal of the density
of T ∗

b with a plug-in estimator of the bandwidth parameter, viz., m̂B. 4

Symmetric con�dence intervals are appropriate only if the distribution of
the t statistic upon which the con�dence interval is based has a distribution
that is approximately symmetric. The asymptotic distribution of the t statistic
is normal in most cases. So, in large samples, its distribution is approximately
symmetric. In small samples, however, its distribution may not be approxi-
mately symmetric. If the t statistic has a noticeably asymmetric distribution,
then a symmetric con�dence interval may be misleading. In such a case,
an equal-tailed two-sided con�dence interval is more appropriate. Andrews
and Buchinsky (2000) describe a three-step for choosing B for equal-tailed
percentile t con�dence intervals. Andrews and Buchinsky (2001) describe

4 This estimator has been analyzed by Bloch and Gastwirth (1968) and Hall and Sheather
(1988).
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a three-step for choosing B for the equal-tailed BCa con�dence intervals of
Efron (1987).

2.4. Tests for a given signi�cance level

Here, we consider one-sided tests for a given signi�cance level �. The null
and alternative hypotheses are

H0: �0 = 0 and H1: �0¿ 0: (17)

The test statistic considered in this case is

T = n1=2(�̂− �0)=�̂; (18)

where �̂ and �̂ are de�ned as above. The ‘theoretical’ test of exact signi�cance
level � rejects the null hypothesis if T ¿q01−�, where q01−� is the 1−� quantile
of T under the null hypothesis. The quantity � of interest in this case is q01−�.

The bootstrap version of the test statistic depends on the type of resam-
pling used to construct the bootstrap samples. If the bootstrap samples are
generated by a method that does not impose the null hypothesis, such as
the nonparametric bootstrap, then T ∗

b = n1=2(�̂
∗
b − �̂)=�̂∗

b . On the other hand, if
the bootstrap samples are generated by a method that imposes the null hypoth-
esis, such as the parametric bootstrap based on �0=0, then T ∗

b =n1=2(�̂
∗
b−0)=�̂∗

b .
Let q̂1−�;∞ denote the 1 − � quantile of T ∗

b . The ideal bootstrap test of ap-
proximate signi�cance level � rejects the null hypothesis if T ¿ q̂1−�;∞. The
estimate �̂∞ in this case is q̂1−�;∞.
Let q̂1−�;B denote the 1−� quantile of {T ∗

b : b=1; : : : ; B}. We take B and �
as in the previous subsection. Thus, q̂1−�;B equals T ∗

B;	, the 	th order statistic
of {T ∗

b : b= 1; : : : ; B}. The bootstrap test of approximate signi�cance level �
based on B bootstrap repetitions rejects the null hypothesis if

T ¿ q̂1−�;B: (19)

In this case, �̂B is q̂1−�;B.
The quantity ! in this example is

!= �(1− �)=(z21−�

2(z1−�)): (20)

The estimator !̂B is the same as in (16), but with c� de�ned by

c� =

(
1:5z21−�=2


2(z1−�)

2z21−� + 1

)1=3

: (21)

2.5. p-values

We now consider a testing problem in which one wants to report a p-value.
In this case, the quantity � of interest is the exact p-value. The null and
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alternative hypotheses are as in (17). Let T and T ∗
b be de�ned as in the

previous subsection. The ideal bootstrap p-value and the bootstrap p-value
based on B bootstrap repetitions are

p̂∞ = P∗(T ∗
b ¿T ) and p̂B =

1
B

B∑
b=1

1(T ∗
b ¿T ): (22)

In this case, �̂∞= p̂∞ and �̂B= p̂B. We assume that p̂∞ does not equal zero
or one.
The variance ! and its estimate !̂B are given by

!= (1− p̂∞)=p̂∞ and !̂B = (1− p̂B)=p̂B: (23)

3. A three-step method of determining B

We now specify the three-step method of Andrews and Buchinsky (2000a)
for determining B to achieve a desired accuracy of �̂B for estimating �̂∞.
Recall that the desired accuracy is speci�ed by a (pdb; �) combination.

3.1. The method

The three-step method depends on a preliminary estimate !1 of the asymp-
totic variance ! of B1=2(�̂B − �̂∞)=�̂∞. For the applications of Section 2, we
use the following:

Standard errors:
!1 = 1=2;
Symmetric two-sided con�dence intervals:

!1 = �(1− �)=(4z21−�=2

2(z1−�=2));

Tests for a given signi�cance level:

!1 = �(1− �)=(z21−�

2(z1−�));

p-values:
!1 =�(T )=(1−�(T ));

(24)

where z1−�; 
(·), and �(·) denote the 1 − � quantile, density function, and
distribution function, respectively, of the standard normal distribution. 5 These
speci�cations of !1 are based on asymptotics, but the three-step method is

5 The last three formulae for !1 in (24) and the corresponding formulae for ! given above
are suitable only when T has an absolute standard normal, standard normal, and standard normal
asymptotic distribution, respectively, which is the case considered here. Andrews and Buchinsky
(2000) give the appropriate formulae for the general case, which includes the common testing
case in which T has an asymptotic chi-squared distribution.
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not too sensitive to their choice, because it uses a �nite sample estimate of
! in the last step.
Let int(a) denote the smallest integer greater than or equal to a.
The three-step method is as follows:
Step 1. Given !1, compute

B1 = int(10;000z21−�=2!1=pdb2) (25)

or, if �̂B is a 1 − � sample quantile, compute B1 = �2h1 − 1 and 	1 = (B1 +
1)(1− �), where �= �1=�2 and h1 = int(10;000z21−�=2!1=(pdb2�2)).

Step 2. Simulate B1 bootstrap samples {X∗
b : b = 1; : : : ; B1} and compute

an improved estimate !̂B1 of ! using the appropriate formulae given in (8),
(16), (21), or (23), with B replaced by B1.

Step 3. Compute

B2 = int(10;000z21−�=2!̂B1=pdb
2) (26)

or, if �̂B is a 1 − � sample quantile, compute B2 = �2h2 − 1, where h2 =
int(10;000z21−�=2!̂B1=(pdb

2�2)). Take the desired number of bootstrap repeti-
tions to be B∗ =max{B2; B1}.

3.2. Justi�cation of the three-step method

The justi�cation of the three-step method is that as pdb → 0 (and n → ∞
when �̂B is a sample quantile), we have

P∗
(
100

|�̂B2 − �̂∞|
�̂∞

6pdb

)
→ 1− �: (27)

Note that B2 depends on pdb in (27) via (26) and B2 → ∞ as pdb → 0.
Eq. (27) implies that the three-step method attains precisely the speci-

�ed accuracy asymptotically using ‘small pdb’ asymptotics when !¿!1. If
!¡!1, then B∗=B1¿B2 with probability that goes to one as pdb→ 0 (and
n→∞ when �̂B is a sample quantile) and the accuracy of �̂B∗ for approxi-
mating �̂∞ exceeds that of (pdb; �). This is a consequence of the fact that it
would be silly to throw away the extra B1−B2 bootstrap estimates that have
already been calculated in Step 2.
Because one normally speci�es a small value of pdb, the asymptotic re-

sult (27) should be indicative of the relevant non-zero pdb behavior of the
three-step method. The simulation results of Section 5 are designed to exam-
ine this. We note that the asymptotics used here are completely analogous to
large sample size asymptotics with pdb driving B2 to in�nity as pdb → 0
and B2 playing the role of the sample size.
For more details on the asymptotic justi�cation, see Andrews and Buchin-

sky (2000).
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Table 1
Values of pdb and B2 when �= 0:05 for standard errors

(A) Values of pdb as a function of �̂2B and B
�̂2B B

10 25 50 100 200 350 500 750 1000 2000

0 44 28 20 14 10 7.4 6.2 5.1 4.4 3.1
1 54 34 24 17 12 9.1 7.6 6.2 5.4 3.8
2 62 39 28 20 14 10.5 8.8 7.2 6.2 4.4
3 69 44 31 22 15 11.7 10.0 8.0 6.9 4.9

(B) Values of B2 as a function of �̂2B1 and pdb
�̂2B1 pdb

20 10 5

0 48 192 768
1 72 288 1152
2 96 384 1536
3 120 480 1920

3.3. Evaluation of the three-step method

3.3.1. Standard errors
Table 1(A) provides the values of pdb that correspond to an array of values

of �̂2B and B when �= 0:05. For example, if �̂2B = 0 (which corresponds to
the kurtosis of the normal distribution) and B= 50, then pdb ≈ 20. That is,
with probability approximately 0.95, ŝeB is within ±20% of ŝe∞. Or, with
probability approximately 0.95, ŝe∞ is within ±20% of ŝeB.
Table 1(A) shows that to obtain very accurate estimates of ŝe∞, say pdb=

5, one needs quite large values of B, e.g., B=750 when �̂2B=0 and B=2000
when �̂2B = 3. Much smaller values of B are required to obtain moderate
accuracy, say pdb=20, e.g., B=50 when �̂2B=0 and B=100 when �̂2B=2.
For illustrative purposes, Table 1(B) provides values of B2 that correspond

to several values of �̂2B1
and pdb, with �=0:05. The values of pdb considered

are 20 (moderately accurate), 10 (accurate), and 5 (very accurate). Table 1(B)
indicates that the necessary B2 values increase very quickly as the desired
level of accuracy increases.

3.3.2. Symmetric two-sided con�dence intervals
In Table 2(A), we provide the values of B1 that correspond to common

values of �; �, and pdb. Table 2(A) indicates that B1 increases signi�-
cantly as � decreases and even more so as pdb decreases. For example,
the combination (�; pdb; �) = (0:05; 15; 0:10) requires B1 = 119. In contrast,
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Table 2
Values of B1 as a function of �; �, and pdba

(A) Symmetric con�dence intervals
� 0.01 0.05 0.10
� 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
pdb
5 4799 2799 1999 2399 1399 979 2079 1209 849
10 1199 699 499 599 359 259 519 309 219
15 599 399 299 279 159 119 239 139 99

(B) Equal-tailed and one-sided con�dence intervals
� 0.01 0.025 0.05 0.10

� 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

pdb
5 6899 3999 2899 4959 2879 2039 4379 2539 1799 4729 2739 1939
10 1799 999 799 1239 719 519 1099 639 459 1189 689 489
15 799 499 399 559 319 239 499 299 199 529 309 219

aNote: All quantities are de�ned in the three-step procedure of Section 3.

(�; pdb; �) = (0:05; 5; 0:01) requires B1 = 2399. In addition, B1 increases as �
decreases.

3.3.3. One-sided and equal-tailed two-sided con�dence intervals
The three-step method of Andrews and Buchinsky (2000) applies to equal-

tailed and one-sided con�dence intervals, as well as to symmetric two-sided
con�dence intervals. For comparative purposes, Table 2(B) provides the val-
ues of B1 for equal-tailed and one-sided con�dence intervals that correspond
to di�erent (�; pdb; �) combinations. The variation in the values of B1 in
Table 2(B), as (�; pdb; �) varies, is very similar to that in Table 2(A) for
symmetric con�dence intervals, as is expected from the formulae of Andrews
and Buchinsky (2000).
Tables 2(A) and (B) indicate that the B1 values for equal-tailed and one-

sided con�dence intervals are noticeably larger than those for symmetric
two-sided con�dence intervals with the same con�dence level. The ratio of the
B1 value for equal-tailed or one-sided con�dence intervals to that for symmet-
ric con�dence intervals only depends on the con�dence level and not on pdb
or � (except for rounding e�ects from the int(·) function). For equal-tailed
con�dence intervals, this ratio is 2.0 and 2.1 for con�dence levels 0.95 and
0.90, respectively. For one-sided con�dence intervals, this ratio is 1.8 and 2.3
for con�dence levels 0.95 and 0.90, respectively. The reason fewer repetitions
are needed for symmetric con�dence intervals is that the asymptotic density
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Table 3
Values of B1 for tests with signi�cance level �, as a function of � and �, for pdb= 10, under
alternative asymptotic null distributionsa

� 0:01 0:05 0:10
� 0:01 0:05 0:10 0:01 0:05 0:10 0:01 0:05 0:10

A. Absolute N(0; 1): 1199 699 499 599 359 259 519 309 219
B. N(0; 1): 1799 999 799 1099 639 459 1189 689 489
C. �25: 1799 999 699 699 419 299 519 299 219
D. �215: 799 499 399 279 179 119 199 119 89

aNote: All quantities are de�ned in the three-step method of Section 3.

of |n1=2(�̂∗b − �̂)=�̂∗
b | is twice as large as that of n1=2(�̂

∗
b − �̂)=�̂∗

b at any positive
value.

3.3.4. Tests with given signi�cance level �
To assess the computational burden of the three-step procedure for tests

with speci�ed signi�cance levels, Table 3 provides values for B1 for a variety
of (�; �) combinations when pdb=10 and the asymptotic null distribution of
the test statistic is absolute N(0; 1); N(0; 1); �25, and �215, where �2d denotes
a chi-squared distribution with d degrees of freedom. Formulae for each of
these cases are provided in Andrews and Buchinsky (2000). The formulae
given in Sections 2.4 and 3.1 correspond to the N(0; 1) case.
Table 3 shows that for tests with absolute N(0; 1) asymptotic null distri-

bution the same number of initial bootstrap repetitions B1 are needed as for
symmetric con�dence intervals. For tests with N(0; 1) asymptotic null distri-
bution, noticeably larger B1 values are required—the ratio of B1 values for
N(0; 1) to absolute N(0; 1) tests is between 1.8 and 2.3, for �=0:05 or 0:10.
For tests with �25 asymptotic null distribution, similar B1 values are required
as for absolute N(0; 1) tests—the ratio of B1 values for �25 to absolute N(0; 1)
tests is in the range 1.0–1.2 for �=0:05 or 0:10. For tests with �215 asymptotic
null distribution, noticeably smaller B1 values are required than for absolute
N(0; 1) tests—the ratio of B1 values for �215 to absolute N(0; 1) tests is in
the range 0.38–0.50 for � = 0:05 or 0:10. Thus, there is considerable varia-
tion in suitable values of B1 for test statistics with di�erent asymptotic null
distributions.
In all cases, B1 increases quickly as � or � decreases. It is also true that

B1 increases very quickly as pdb decreases, but Table 3 only reports results
for pdb=10. For most combinations reported, the number of bootstrap repe-
titions required is greater than that commonly used in empirical econometric
applications.
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Table 4
Values of B1 as a function of �; pdb, and 1− �(T ) for p-valuesa

pdb

1− �(T ) 5 10 15 20 30 40 50 100 150 200 300

�= 0:025:
0.001 5019 2231 1255 558
0.005 6248 3999 1000 444 250 111
0.010 5526 3109 1989 497 221 124
0.025 8708 4898 2177 1225 784 196 87 49
0.050 38,182 9545 4242 2386 1061 597 382 95 42
0.10 18,086 4521 2010 1130 502 283 181 45 20
0.15 11,387 2847 1265 712 316 178 114 28
0.20 8038 2010 893 502 223 126 80 20
0.30 1172 521 293 130 73 47
0.50 223 126 56 31 20
0.70 96 54 24 13

�= 0:05:
0.001 3838 1706 959 426
0.005 4778 3058 764 340 191 85
0.010 9508 4226 2377 1521 380 169 95
0.025 6659 3745 1665 936 599 150 67 37
0.050 29,195 7299 3244 1825 811 456 292 73 32
0.10 13,829 3457 1537 864 384 216 138 35 15
0.15 8707 2177 967 544 242 136 87 22
0.20 6146 1537 683 384 171 96 61 15
0.30 896 398 224 100 56 36
0.50 171 96 43 24 15
0.70 73 41 18 10

�= 0:10:
0.001 2703 1201 676 300
0.005 5982 3365 2154 538 239 135 60
0.010 6696 2976 1674 1071 268 119 67
0.025 4690 2638 1172 659 422 106 47 26
0.050 20,562 5141 2285 1285 571 321 206 51 23
0.10 9740 2435 1082 609 271 152 97 24 11
0.15 6133 1533 681 383 170 96 61 15
0.20 4329 1082 481 271 120 68 43 11
0.30 631 281 158 70 39 25
0.50 120 68 30 17 11
0.70 52 29 13 7

aNote: All quantities are de�ned in the three-step method of Section 3.

3.3.5. p-Values
Table 4 provides representative values of B1 for the three-step method

for p-values. Three di�erent values of � are considered, viz., 0.025, 0.05,
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and 0.10. A range of values of the initial p-value estimate 1 − �(T ) and
the accuracy bound pdb are considered. For clarity, Table 4 only provides
(1−�(T ); pdb) combinations that are of some interest. For example, it is not
of interest to consider the combination (0.001,5), because this combination
yields excessive accuracy and, hence, requires an excessively large value of
B1.
Table 4 indicates that the required magnitude of B1 depends on the initial

p-value estimate 1 − �(T ). If it is quite small or large, then one does not
need a small value of pdb and the required magnitude of B1 is not large.
On the other hand, if 1 − �(T ) is in an intermediate range, such as (0.01,
0.15), then one may want to employ a relatively small value of pdb and the
required magnitude of B1 may be quite large.

4. Monte Carlo simulation design

In this section, we introduce the design of our simulation experiments.
As indicated above, the main purpose of the experiments is to see whether
the asymptotic justi�cation of the three-step method in (27) is indicative of
�nite sample behavior for a range of values of (pdb; �) in several standard
econometric models. More speci�cally, given several (pdb; �) combinations,
we want to see how close P∗(100|�̂B2 − �̂∞|=�̂∞6pdb) is to 1− �. We focus
on B2 rather than B∗ because the limit in (27) is exactly 1− �, whereas the
limit in (27) when �̂B2 is replaced by �̂B∗ is greater than or equal to 1 − �.
Of course, our interest ultimately is in the performance of B∗.

We consider three di�erent models: (i) linear regression; (ii) binary probit;
and (iii) quantile regression. For each of these three models, we evaluate
the performance of the three-step method for choosing B for: (i) standard
error estimates; (ii) symmetric con�dence intervals; (iii) tests for a given
signi�cance level �; and (iv) p-values. For the con�dence intervals and tests,
we consider two values of �, viz., 0.05 and 0.10.

4.1. Models

4.1.1. Linear regression model
The linear regression model is

yi = x′i+ ui (28)

for i = 1; : : : ; n, where n = 25; Xi = (yi; x′i)
′ are iid over i = 1; : : : ; n;

xi = (1; x1i ; : : : ; x5i)′ ∈ R6; (x1i ; : : : ; x5i) are mutually independent normal ran-
dom variables, xi is independent of ui, and Eui = 0. The simulation results
for this model are invariant with respect to the means and variances of the
regressor vector xi, the variance of the error term ui, and the value of the
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regression parameter , so we need not be speci�c as to their values. We
consider three error distributions: N(0; 1); t5, and �25 shifted to have mean
zero.
We estimate  by least squares (LS). We focus attention on the boot-

strap quantities for the LS estimator of the �rst slope coe�cient. Thus,
the parameter � of the previous sections is 2, the second element of .
Our estimate �̂(X) of the asymptotic standard error of �̂ (=̂2), used to
construct the t statistics, is given by the square root of the (2; 2) element
of �̂2

u(
∑n

i=1 xix
′
i =n)

−1, where �̂2
u = e′e=(n − 6) and e is the n-vector of LS

residuals.
The LS estimator of � is a linear combination of the errors {ui: i 6 n}.

Thus, for normal errors, the coe�cient of excess kurtosis of the LS estimator
of � is zero. However, the crucial parameter for standard error estimates is
the coe�cient of excess kurtosis, �2, of the discrete bootstrap distribution of
the LS estimator of �. In general, the parameter �2 depends on the sample and
need not equal zero. Nevertheless, the value of �2 will tend to be close to zero
for normal errors for most samples, because the bootstrap distribution mimics
the true distribution of the LS estimator. Correspondingly, for fat-tailed error
distributions, the value of �2 will tend to be large for most samples.

To obtain samples for which �2 is close to zero, we consider normal er-
rors. To obtain samples with larger values of �2, we consider the fat-tailed
error distributions t5 and �25. The t5 and �25 distributions have similar tail
behavior and generate samples with similar values of �2. The t5 and normal
distributions are symmetric, whereas the �25 distribution is highly skewed. The
results for the �25 error distribution are used to determine whether skewness
of the error distribution has an impact in �nite samples on the performance of
the three-step method for determining B.

4.1.2. Binary probit model
The binary probit model is

yi =

{
1 if y∗

i ¿ 0

0 otherwise;
and y∗

i = x′i+ ui (29)

for i = 1; : : : ; n, where n = 25; Xi = (yi; x′i)
′ are iid over i = 1; : : : ; n; xi =

(1; x1i ; : : : ; x5i)′ ∈ R6; (x1i ; : : : ; x5i) are mutually independent standard normal
random variables, xi is independent of ui; ui ∼ N(0; 1), and =(1; 1:5; 1; 0:75;
0:5)′.

We estimate  by maximum likelihood (ML) using the Nelder–Meade al-
gorithm. We focus attention on the �rst slope coe�cient, i.e., �=2. Our esti-
mate �̂= �̂(X) of the asymptotic standard error of �̂ (=̂2), used to construct
the t statistics, is the (2; 2) element of the inverse of the sample information
matrix calculated from the second derivative of the likelihood function.
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4.1.3. Quantile regression model
The quantile regression model is

yi = x′i+ (x′i �)ui

= x′i �q + (x′i �)uqi (30)

for i = 1; : : : ; n, where

�q = + ��q;

uqi=ui−�q; �q denotes the q quantile (0¡q¡ 1) of ui; n=25; Xi=(yi; x′i)′

are iid over i = 1; : : : ; n; xi = (1; x1i ; : : : ; x5i)′ ∈ R6; (x1i ; : : : ; x5i) are mutu-
ally independent standard normal random variables, xi is independent of ui,
Median(ui) = 0, and � = (1; 0:75; 0:5; 0:375; 0:25; 0:125)′. 6 The conditional q
quantile of yi given xi is x′i �q. The parameter vector of interest is �q. The
simulation results are invariant with respect to . As in the linear regres-
sion model, we consider three error distributions: standard normal (denoted
N(0; 1)), t with �ve degrees of freedom (denoted t5), and chi-squared with
�ve degrees of freedom shifted to have median zero (again denoted �25).
We estimate �q using the Koenker and Bassett (1978) quantile regression

(QR) estimator implemented using the Barrodale and Roberts (1973) linear
programming algorithm. We focus attention on the �rst slope coe�cient, i.e.,
�= �q2. We consider two alternative quantiles: q=0:50 and 0:75. The results
do not di�er substantially between these two quantiles, so we only report
results for q=0:75. Our estimator �̂= �̂(X) of the asymptotic standard error
of �̂ (=�̂q2), used to construct the t statistics, is the square root of the (2; 2)
element of the kernel estimator of the asymptotic variance of the quantile
regression estimator de�ned in Buchinsky (1995). The asymptotic variance

estimator is de�ned by �̂
−1
fxx�̂xx�̂

−1
fxx, where

�̂xx =
n∑

i=1

xix′i =n; �̂fxx = d−1
n

n∑
i=1

exp{−û2qi=(2c2n)}1(û qi ¿ 0)xix′i =n; (31)

û qi (i = 1; : : : ; n) are the residuals from the qth quantile regression, dn =
ncn

√
2�=2, and cn is the kernel bandwidth. The kernel bandwidth was chosen

using the least-squares cross-validation method.

4.2. Design of the experiments

For each of the above models, we simulate 100 di�erent samples from
each error distribution. The reason for considering 100 di�erent samples is
that the empirical distribution F̂ , the distributions of �̂

∗
b and T ∗

b , and all the

6 This model was introduced by Koenker and Bassett (1982). For details see, for example,
Buchinsky (1995).
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quantities �2; ŝe∞; q̂1−�;∞, and p̂∞, vary with the sample. For each of the
100 samples drawn (for a given distribution of ui), we compute the estimates
(�̂; �̂) and simulate the ideal bootstrap estimate �̂∞ for each of the �rst three
applications (viz., standard error, con�dence interval, and test for given �).
We simulate �̂∞ using 250,000 bootstrap repetitions (each of sample size
25). Let �̂250;000 denote the simulated value. For the con�dence interval and
test applications, we compute �̂250;000 for two di�erent values of �, viz., 0.05
and 0.10.
For each experiment, we provide an estimate of the coe�cient of variation

(CV) of �̂250;000, i.e., the ratio of an estimate of the standard error of �̂250;000
to the value �̂250;000 itself:

CV = ŝe(�̂250;000)=�̂250;000: (32)

By (3), the asymptotic variance of �̂B as B→∞ is !�̂
2
∞. Hence, an estimate of

the standard error of �̂250;000 divided by �̂250;000 is CV =(!̂250;000=250; 000)1=2,
where !̂B is de�ned in (8), (16), (21), and (23) for each of the applications.
The CV values for each case considered are reported in the notes to the tables
given below. They range from 0:0017 to 0:0092. This indicates that 250; 000
is close enough to in�nity to accurately estimate �̂∞.
We run 2500 Monte Carlo repetitions for each of the 100 samples, for a

total of 250,000 repetitions. In each Monte Carlo repetition, we compute �̂B2

and �̂B∗ for each of the four applications (and for each of the two values
of � for the con�dence interval and test for given � applications) following
the three-step procedure outlined in Section 3. The calculations are made
for several combinations of pdb (viz., 20%, 10%, and 5%) and 1− � (viz.,
0.90, 0.95, and 0.975). For each repetition and each (pdb; �) combination,
we determine whether or not the estimate �̂B2 satis�es

100
|�̂B2 − �̂250;000|

�̂250;000
¡pdb: (33)

We call the fraction of times that this condition is satis�ed, out of the 2500
repetitions, the empirical level based on B2 bootstrap repetitions. The empir-
ical level based on B1 and B∗ bootstrap repetitions are de�ned analogously.
To assess the e�ect of estimation of the asymptotic variance ! on the results,
we also consider the empirical level based on B! bootstrap repetitions. Here,
B! is the number of bootstrap repetitions that is appropriate given the true
value of !. That is, B! is de�ned as B1 is de�ned in (25), but with the
preliminary estimate !1 of ! replaced by the true value of !. (Of course, in
practice ! is unknown, so that B! is not a feasible choice for B.) For each
(pdb; �) combination, each sample, each application, each model, and each
error distribution, we compute the empirical levels based on B1; B2; B∗, and
B! bootstrap repetitions.
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The three-step method of Section 3 performs well if the empirical level
based on B2 bootstrap repetitions is close to 1 − �, or if the empirical level
based on B∗ bootstrap repetitions is close to, or greater than, 1− �.
For p-values, we are interested in the behavior of the three-step method

for a number of di�erent samples that all yield the same ideal bootstrap p
and p̂∞ = 0:10. The acceptance–rejection method of choosing samples that
yield the same ideal bootstrap p-value is too computationally intensive to be
feasible. Instead, we use a method that considers a di�erent null hypothesis
for each sample, which is not ideal, but is computationally tractable. We
follow the same procedure as described above, except that we consider a test
of H0 : �= �̃ versus H1 : �¿ �̃, where �̃ is choosen such that our estimate of
p̂∞ equals the desired value, say 0:05. Speci�cally, we compute the bootstrap
t statistics T ∗

b = (�̂
∗
b − �̂)=�̂∗

b for b = 1; : : : ; 250; 000 and take �̃ such that
T = (�̂− �̃)=�̂ is the 0:95 sample quantile of the 250; 000 values of T ∗

b . The
empirical levels for the p-value results could be calculated by the method
described in (33). It is much quicker, however, to calculate the empirical
levels by using the fact that

∑B
b=1(T

∗
b ¿T ) has a binomial distribution with

parameters p̂∞ and B. 7 This is what we do. We repeat all the calculations
for the case p̂∞ = 0:10.
For the con�dence interval application, we also compute the fraction of

times over all Monte Carlo simulations and all samples that � falls within
the constructed con�dence interval based on B∗. We call this fraction the
empirical unconditional coverage probability. The empirical unconditional
coverage probability based on B2 bootstrap repetitions is de�ned analogously.
To improve the precision of the empirical unconditional coverage probability,
we actually use 250 samples, rather than 100, for the con�dence interval
application with the linear regression model. (For the QR and probit models,
only 100 samples are used because of computational costs.)

5. Monte Carlo simulation results

5.1. Standard errors

5.1.1. Linear regression model
The results for standard error estimates in the linear regression model are

reported in Table 5 for the N(0; 1) and t5 error distributions. The numbers
reported in Table 5 and all the remaining tables are averages over the 100
samples. (For example, Med is the average median over the 100 samples.)
Results for the �25 error distribution are almost the same as those for the t5. In

7 This was suggested by an anonymous referee.



366 D.W.K. Andrews, M. Buchinsky / Journal of Econometrics 103 (2001) 345–386

consequence, we do not report the �25 results. They indicate that asymmetry
of the errors is not an important factor for the performance of the three-step
method.

Table 5(A) shows that the empirical levels for B2 and B∗ are very close
to the desired levels (given by 1 − �) for the experiment with the N(0; 1)
error distribution. This is true even though the bootstrap distribution of the
LS estimate with only 25 observations in the sample can be far away from its
asymptotic normal distribution. Note that the empirical levels for the more
stringent bounds (i.e., smaller pdb’s) and higher probabilities (i.e., higher
1 − �’s) are closer to the desired levels. The reason is that the asymptotic
approximation improves as B2 and B∗ increase. Smaller pdb values and=or
larger 1− � values lead to larger B2 and B∗ values and, hence, better perfor-
mance.
In contrast, the empirical levels based on B1 bootstrap repetitions are no-

ticeably less than the desired levels. This indicates that the use of three steps,
in which ! is estimated in the �rst two steps, results in much better perfor-
mance than that obtained by simply using the �rst-step value B1. This holds
true for all of the cases reported in this paper, because the empirical levels
based on B1 bootstrap repetitions are always noticeably less than the desired
levels. For brevity, given this clear pattern, we do not discuss the empirical
levels for B1 for any of the other cases considered in the paper, although
they are reported in the tables.
The empirical levels based on B! repetitions are much closer to the desired

levels than those based on B1 repetitions, but they are not as close as those
based on B2 or B∗. This pattern holds true for all of the cases reported in
this paper (although for the con�dence interval results the empirical levels
for B2; B∗, and B! are all slightly greater than the desired values, rather than
less). The superior performance of B2 and B∗ over B! is due to a better ap-
proximation of B1=2(�̂B−�̂∞)=�̂∞ by a normal distribution with an estimate of
its �nite sample variance than by a normal with the true asymptotic variance.
These results also indicate the advantage of the three-step method in which
unknown quantities are replaced by estimated values. Again, for brevity and
given the clear pattern of the results, we do not discuss the empirical levels
for B! for any of the other cases considered in the paper, although they are
reported in the tables.
The average of the �2 values over the 100 samples used in Table 5(A)

(computed using 250,000 bootstrap repetitions for each sample) is 0:37. The
mean (over 2500 simulation repetitions) of the estimator �̂2B1

averaged over
the 100 samples, as reported in Table 5(A), is markedly lower than 0:37
when B1 is small (or equivalently, when pdb is large). This downward bias
of �̂2B1

leads to B2 and B∗ values that are smaller than desired. In turn, this
leads to empirical levels based on B2 and B∗ bootstrap repetitions that are
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less than 1− � when B1 is small. For larger values of B1 (which occur with
smaller pdb values), this bias vanishes and the empirical levels are closer to
1− �. The problem of underestimating �2 stems from the fact that neither the
numerator nor one over the denominator of the estimator �̂2B1

in (8) is an
unbiased estimator of its population counterpart, although both are consistent
estimators.
Note that there is signi�cant variation in the values of B2 over the various

(pdb; �) combinations in Table 5(A). The mean values of B2 are between 38
and 1211. The corresponding values for B∗ are very similar, because �2¿ 0
for all 100 samples, �̂2B1

is positive or close to zero for the vast majority of
repetitions, and B∗ = B2 whenever �̂2B1

¿ 0. If one is satis�ed with a modest
percentage deviation (e.g., pdb=10%), then the required number of bootstrap
repetitions is not very large. On the other hand, if one sets a very stringent
percentage deviation bound (e.g., pdb=5%) and a very high probability (e.g.,
1 − � = 0:975), then the number of bootstrap repetitions needed to achieve
this level of accuracy is quite large.
Table 5(B) presents the results based on t5 errors. The average value of �2

over the 100 samples with t5 errors is 1.26, which is noticeably larger than
the value of 0:37 for normal errors. In Table 5(B), the empirical levels based
on B2 and B∗ bootstrap repetitions are lower than 1− � and lower than their
values in Table 5(A). Nevertheless, the same basic pattern is observed as in
Table 5(A). That is, the di�erence between the empirical levels and 1−� are
largest when B1 is small, which corresponds to pdb being large. When B1 is
small, �̂2B1

is markedly downward biased and its bias is greater in magnitude
than in Table 5(A). This causes B2 and B∗ to be smaller than desired by a
greater magnitude than in Table 5(A).
Overall, the empirical level results of Table 5(B) are not as good as those

of Table 5(A). Nevertheless, the three-step method still performs quite well
with t5 errors. The largest deviation of an empirical level based on B2 rep-
etitions from its asymptotic counterpart is 0:051 and for all other (pdb; �)
combinations the deviations are less than half as large. Furthermore, the de-
viations based on B∗ are smaller than those based on B2.
Table 6 reports simulation results for the bias-corrected three-step method

for the linear regression model with t5 errors. That is, the results of Table 6
are analogous to those of Table 5(B) except that the bootstrap bias-corrected
estimator �̂2B1R of �2, de�ned in (9), is used in the de�nition of !̂B1 . We
only report results for the t5 errors because they yield the worst results of
the three error distributions considered. The number of repetitions, R, used
in the bootstrap bias correction is taken to be 407. This number is chosen,
somewhat arbitrarily, to be a value that yields a reasonable trade-o� between
computational time for our simulation experiment and accuracy of the boot-
strap bias-corrected estimator.
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The results of Table 6 show a signi�cant improvement in the performance
of the three-step method when it is augmented by the bias-correction of �̂2B1

.
Most of the empirical levels for B2 and B∗ are very close to the desired
levels. The largest deviation is 0:024 and most deviations are less than 0:010.
The results in the ‘Mean’ column for �̂2B1R indicate that the bias of the
bias-corrected estimator �̂2B1R is much smaller than that of �̂2B1

in Table 5(B).
The ‘Mean’ numbers of bootstrap repetitions B2 are larger than in Table
5(B) due to the bias-correction, but the increase is not substantial. Analogous
results hold for B∗.

5.1.2. Binary probit model
The results for standard error estimates in the binary probit model are

reported in Table 7(A) for the N(0; 1) error distribution. Table 7(A) shows
that the empirical levels are very close to the desired levels. Again, this is
true even though the bootstrap distribution of the probit estimate with only
25 observations in the sample can be far away from its asymptotic normal
distribution. Note that even though the average of the �2 values over the
100 samples used in Table 7(A) is only 0:071, the empirical levels for the
more stringent bounds (i.e., smaller pdb’s) and higher probabilities (i.e.,
higher 1−�’s) are closer to the desired levels. As above, smaller pdb values
and=or larger 1− � values lead to larger B2 and B∗ values and, hence, better
performance.
The mean (over 2500 simulation repetitions) of the estimator �̂2B1

averaged
over the 100 samples, as reported in Table 7(A), is markedly lower than 0:071
when B1 is small (or equivalently, when pdb is large). This downward bias
of �̂2B1

leads to B2 and B∗ values that are smaller than desired. In turn, this
leads to empirical levels based on B2 and B∗ bootstrap repetitions that are
farther away from 1− � when B1 is small. As in the linear regression model,
when B1 is larger, this bias vanishes and the empirical levels are closer to
1 − �. Also, note that there is signi�cant variation in the values of B2 over
the various (pdb; �) combinations.
Overall, the empirical level results of Table 7(A) are quite close to the

desired levels. The largest deviation of an empirical level based on B2 repe-
titions from the desired level is 0:015 and for all other (pdb; �) combinations
the deviations are much smaller.
Table 7(B) reports simulation results for the bias-corrected three-step

method for the binary probit model. As in the linear regression model, the
number of repetitions, R, used in the bootstrap bias correction is taken to be
407.
The results of Table 7(B) show a signi�cant improvement in the perfor-

mance of the three-step method when it is augmented by the bias-correction
of �̂2B1

. Most of the empirical levels are very close to the desired levels.
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The largest deviation for B2 or B∗ is 0.007 and most are less than half as
large. The results in the ‘Mean’ column for �̂2B1R indicate that the bias of the
bias-corrected estimator �̂2B1R is much smaller than that of �̂2B1

in Table 7(A).
As a consequence, the ‘Mean’ numbers of bootstrap repetitions B2 (and B∗)
are somewhat larger in Table 7(B) than in Table 7(A).

5.1.3. Quantile regression model
The results for standard error estimates in the quantile regression model

are reported in Tables 8 and 9. 8 The empirical levels are a bit lower and
farther from the desired levels in Tables 8 and 9 than in Tables 5 and 6
for the linear regression model, but the basic pattern of the tables is quite
similar. In particular, the empirical levels are closer to the desired levels with
N(0,1) errors than with t5 errors. The estimator �̂2B1

is downward biased,
especially with t5 errors. There is signi�cant variation in the values of B2

over the various (pdb; �) combinations. When bias correction is introduced
the performance of the three-step method improves signi�cantly. As seen in
Table 9, the empirical levels of the bias-corrected three-step method are quite
close to the desired levels, with the largest deviation being 0.030 for B2 and
0.021 for B∗.

Based on the results presented above for the three econometric models,
we conclude that the bias-corrected three-step method yields a noticeable
improvement over the three-step method in cases where �2 is large. The
computational cost of the bias-correction is minimal in absolute terms. Also,
it is minimal relative to the total computational cost for calculating the
bootstrap standard error estimate ŝeB∗ whenever �̂ is di�cult to compute.
Thus, we recommend the use of the bias-corrected three-step method in
most cases.

5.2. Symmetric con�dence intervals

5.2.1. Linear regression model
The results for symmetric con�dence intervals in the linear regression

model are reported in Table 10 for the N(0,1) and t5 error distributions.
The numbers reported in this table are averages over 250 samples. The re-
sults for the �25 error distribution are very similar to those given in Table
10(B) for the t5 error distribution in terms of both the empirical levels ob-
tained and the number of bootstrap repetitions B∗ needed. These results show
that the high skewness of the �25 error distribution does not have any e�ect

8 As stated above, all results reported for the quantile regression model are for the case
q= 0:75.
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Table 10
Symmetric con�dence intervals—linear regression modela

Empirical level B2

1− � pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) Error distribution N(0,1)
0.900 15 0.900 0.842 0.942 0.949 0.951 99 255 257 218 27 1830
0.900 10 0.900 0.847 0.924 0.931 0.932 219 401 393 367 70 1491
0.900 5 0.900 0.851 0.907 0.912 0.917 849 1348 1313 1280 477 3014

0.900 15 0.950 0.911 0.967 0.971 0.977 139 319 311 271 46 1513
0.900 10 0.950 0.919 0.958 0.966 0.965 309 535 524 492 121 1649
0.900 5 0.950 0.921 0.952 0.955 0.960 1209 1839 1819 1776 751 3835

0.950 15 0.900 0.833 0.948 0.953 0.961 119 573 563 467 31 16,404
0.950 10 0.900 0.839 0.944 0.949 0.958 259 763 751 649 100 4309
0.950 5 0.900 0.845 0.913 0.917 0.922 979 1949 1922 1837 588 5132

0.950 15 0.950 0.910 0.987 0.989 0.994 159 1242 1209 806 70 35,314
0.950 10 0.950 0.922 0.968 0.970 0.979 359 1419 1371 1345 149 3837
0.950 5 0.950 0.930 0.950 0.955 0.962 1399 2653 2601 2522 935 6101

(B) Error distribution t5
0.900 15 0.900 0.839 0.939 0.943 0.959 99 298 271 234 28 1972
0.900 10 0.900 0.844 0.924 0.927 0.940 219 439 414 381 77 1509
0.900 5 0.900 0.847 0.906 0.911 0.922 849 1422 1377 1334 501 3187

0.900 15 0.950 0.907 0.966 0.969 0.983 139 349 333 282 47 1690
0.900 10 0.950 0.913 0.954 0.958 0.975 309 568 551 511 122 1789
0.900 5 0.950 0.920 0.952 0.954 0.961 1209 1992 1909 1840 788 4048

0.950 15 0.900 0.834 0.946 0.951 0.968 119 605 582 521 32 18,401
0.950 10 0.900 0.838 0.944 0.949 0.964 259 822 804 712 102 4445
0.950 5 0.900 0.842 0.920 0.926 0.928 979 2111 2045 1933 629 5344

0.950 15 0.950 0.911 0.989 0.989 0.993 159 1313 1271 1042 74 39,203
0.950 10 0.950 0.927 0.969 0.969 0.982 359 1498 1427 1298 161 3962
0.950 5 0.950 0.933 0.955 0.957 0.969 1399 2888 2812 2721 1017 6548

aNote: The reported numbers are the averages over the simulations performed for 250 sam-
ples, each of which consists of 25 observations. For each sample we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0043 in panel (A) and 0.0067 in panel
(B).

on the performance of the three-step method. For brevity, we do not report
these results.
Table 10(A) shows that the empirical levels are higher than the correspond-

ing 1− � values for the experiments with the N(0,1) error distribution. With
relatively low pdb (e.g., pdb=5), the empirical levels are quite close to the
desired levels. Table 10(A) indicates that the performance of the three-step
method is determined by the number of bootstrap repetitions, B2 or B∗, em-
ployed. The (�; pdb; �) combinations that yield the best results are those that
induce a relatively large number of bootstrap repetitions. For example, for
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the (0:10; 5; 0:10) combination, the median B2 value is 1280, while for the
combination (0.10,15,0.10), it is only 218. As a result, the empirical level for
the former case is 0.907, which is quite close to 0.900, while for the latter
it is 0.942.
The empirical levels are closer to the desired levels for the con�dence inter-

vals with lower con�dence level 1−�. This occurs because it is more di�cult
to estimate the 0.95 quantile of T ∗ needed for a 95% con�dence interval than
to estimate the 0.90 quantile of T ∗ needed for a 90% con�dence interval.
Table 10(B) reports the results from the Monte Carlo simulations with the

t5 error distribution. The general picture revealed by Table 10(B) is very
similar to that of Table 10(A). The empirical levels are comparable to those
reported in Table 10(A). They are somewhat higher than the desired lev-
els. The most pronounced di�erence between the two sets of experiments
is that for all (�; pdb; �) combinations, the number of bootstrap repetitions
B∗ is somewhat larger for the experiment with the t5 error distribution, but
not by much. This indicates that even with a relatively small sample size
(25 observations) the bootstrap distribution of T ∗ with a fat-tailed t5 error
distribution is not much di�erent than with a N(0,1) error distribution. Cer-
tainly, the bootstrap distribution of T ∗ based on t5 errors is far from being a
N(0,1) distribution itself.
Lastly, we consider the empirical unconditional coverage probabilities. In

all cases, they are the same whether based on B2 or B∗ bootstrap repetitions.
For normal errors, they are in the range 0.907–0.909 for all cases where
�=0:900 and in the range 0.954–0.956 for all cases where �=0:950. For t5
errors, they are in the range 0.900–0.902 for all cases where �= 0:900 and
in the range 0.951–0.953 for all cases where �= 0:950. Thus, the empirical
unconditional coverage probabilities are extremely close to the desired lev-
els. This is consistent with Hall’s (1986) result that one need not employ a
large number of bootstrap repetitions in order to obtain good unconditional
coverage probabilities. Nevertheless, our results show that in order to con-
struct con�dence intervals whose conditional coverage probability given the
bootstrap simulation randomness is close to the desired coverage probability
and whose length is close to that of the ideal bootstrap con�dence interval,
one does need to employ a relatively large number of bootstrap repetitions.

5.2.2. Binary probit model
The results for symmetric con�dence intervals in the binary probit model

are reported in Table 11 for the N(0,1) error distribution. Table 11 shows
that, as in the linear regression model, the empirical levels are somewhat
higher than the corresponding 1− � values. Nevertheless, with relatively low
pdb (e.g., pdb=5), the empirical levels are quite close to the desired levels.
Overall, the empirical levels are somewhat closer to the desired levels in the
binary probit model than in the linear regression model.
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Table 11
Symmetric con�dence intervals—binary probit modela

Empirical level B2

1− � pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) Error distribution N(0,1)
0.900 15 0.900 0.853 0.937 0.942 0.944 99 155 146 137 28 1908
0.900 10 0.900 0.844 0.920 0.923 0.932 219 297 291 259 70 2087
0.900 5 0.900 0.833 0.904 0.906 0.910 849 937 924 866 460 3076

0.900 15 0.950 0.902 0.959 0.961 0.965 139 204 193 178 49 1506
0.900 10 0.950 0.893 0.955 0.958 0.962 309 456 445 409 128 1722
0.900 5 0.950 0.884 0.951 0.952 0.955 1209 1333 1298 1232 578 3308

0.950 15 0.900 0.841 0.935 0.942 0.943 119 168 157 144 37 1625
0.950 10 0.900 0.832 0.930 0.934 0.939 259 320 300 277 75 1876
0.950 5 0.900 0.819 0.906 0.908 0.911 979 1141 1102 1032 508 3143

0.950 15 0.950 0.909 0.975 0.978 0.985 159 231 212 197 101 1549
0.950 10 0.950 0.902 0.956 0.959 0.976 359 432 413 384 162 2011
0.950 5 0.950 0.899 0.952 0.954 0.963 1399 1533 1457 1401 599 3018

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0061.

Table 11 indicates that, just as in Table 10, the (�; pdb; �) combinations
that yield the best results are those that induce a relatively large number of
bootstrap repetitions. As in the linear regression model, the empirical lev-
els are closer to the desired levels for the con�dence intervals with lower
con�dence level 1− �, for the same reason as discussed above.
The empirical unconditional coverage probabilities for the binary probit

model are the same whether based on B2 or B∗ bootstrap repetitions. They
are in the range 0.904–0.905 for all cases where �= 0:900 and in the range
0.952–0.954 for all cases where �= 0:950.

5.2.3. Quantile regression model
The results for symmetric con�dence intervals for the quantile regression

model are reported in Table 12 for the N(0,1) and t5 error distributions. The
results are essentially the same as those obtained for the linear regression
model. In particular, the empirical levels for both the experiment with N(0,1)
error, reported in Table 12(A), and the experiment with t5 error, reported
in Table 12(B), are somewhat above the desired levels. For tighter bounds
(e.g., (pdb; �) = (5; 0:05) or (10, 0.05)), however, the empirical levels are
quite close to 1− �.
The most important di�erence between the experiments reported in Table

12 and those reported in Table 10 is in the eventual number of bootstrap
repetitions. The ‘Mean’ and ‘Median’ numbers of bootstrap repetitions are
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Table 12
Symmetric con�dence intervals—quantile regression modela

Empirical level B2

1− � pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) Error distribution N(0,1)
0.900 15 0.900 0.838 0.943 0.948 0.949 99 273 266 235 32 1966
0.900 10 0.900 0.818 0.927 0.930 0.934 219 422 409 389 84 2064
0.900 5 0.900 0.798 0.903 0.906 0.914 849 1334 1302 1264 477 3245

0.900 15 0.950 0.914 0.966 0.972 0.975 139 354 344 292 51 2016
0.900 10 0.950 0.905 0.956 0.962 0.966 309 574 555 521 124 2264
0.900 5 0.950 0.888 0.950 0.952 0.959 1209 2039 1981 1905 759 3898

0.950 15 0.900 0.837 0.953 0.958 0.963 119 634 590 411 50 12,875
0.950 10 0.900 0.821 0.947 0.951 0.950 259 854 804 722 109 4701
0.950 5 0.900 0.807 0.915 0.918 0.919 979 2091 2023 1913 628 5413

0.950 15 0.950 0.922 0.970 0.974 0.977 159 1422 1399 921 72 28,354
0.950 10 0.950 0.912 0.959 0.963 0.963 359 1978 1876 955 176 4832
0.950 5 0.950 0.899 0.950 0.953 0.957 1399 2939 2804 2521 985 6689

(B) Error distribution t5
0.900 15 0.900 0.830 0.940 0.945 0.954 99 333 302 258 30 1954
0.900 10 0.900 0.808 0.925 0.933 0.939 219 476 445 409 84 2021
0.900 5 0.900 0.787 0.904 0.907 0.918 849 1555 1500 1433 556 3222

0.900 15 0.950 0.909 0.961 0.967 0.981 139 384 352 320 55 1843
0.900 10 0.950 0.905 0.953 0.958 0.972 309 619 591 543 142 2181
0.900 5 0.950 0.879 0.948 0.952 0.964 1209 2082 2033 1911 830 4166

0.950 15 0.900 0.828 0.958 0.966 0.969 119 654 622 541 38 7035
0.950 10 0.900 0.803 0.952 0.957 0.959 259 873 822 721 108 4831
0.950 5 0.900 0.799 0.908 0.914 0.921 979 2189 2128 2021 676 6032

0.950 15 0.950 0.901 0.969 0.975 0.981 159 1528 1478 1199 83 9309
0.950 10 0.950 0.891 0.961 0.964 0.968 359 2097 1973 1634 174 4102
0.950 5 0.950 0.881 0.951 0.954 0.961 1399 3112 2946 2619 1162 7218

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0052 in panel (A) and 0.0071 in panel
(B).

somewhat higher for the latter case. It is worth noting that for the 0.50 quan-
tile estimator (not reported here for brevity) the numbers of bootstrap repe-
titions are comparable to those for the LS estimator in the linear regression
model.
The empirical unconditional coverage probabilities for the quantile regres-

sion model are the same whether based on B2 or B∗ bootstrap repetitions.
For the normal error case, they are in the range 0.907–0.909 for all cases
where �=0:900 and in the range 0.953–0.955 for all cases where �=0:950.
For the t5 error case, they are in the range 0.905–0.906 for all cases where
�= 0:900 and in the range 0.949–0.951 for all cases where �= 0:950.
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Table 13
Tests with given signi�cance level �—linear and quantile regression modelsa

Empirical level B2

1− � pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) Linear regression model with error distribution t5
0.950 15 0.900 0.810 0.855 0.859 0.847 197 276 264 243 84 411
0.950 10 0.900 0.825 0.868 0.871 0.856 446 572 552 533 181 1102
0.950 5 0.900 0.832 0.891 0.897 0.879 1785 2397 2336 2279 1099 3169

0.950 15 0.950 0.891 0.926 0.933 0.922 281 405 381 360 101 487
0.950 10 0.950 0.901 0.936 0.940 0.930 633 827 802 767 338 1437
0.950 5 0.950 0.915 0.948 0.949 0.939 2535 3227 3108 3067 1389 4354

0.900 15 0.900 0.822 0.848 0.855 0.834 213 276 254 232 95 381
0.900 10 0.900 0.833 0.866 0.872 0.853 480 577 540 519 201 1012
0.900 5 0.900 0.841 0.883 0.889 0.870 1924 2309 2223 2156 1289 2933

0.900 15 0.950 0.899 0.920 0.926 0.910 303 371 358 345 109 454
0.900 10 0.950 0.908 0.932 0.937 0.922 682 792 775 734 364 1305
0.900 5 0.950 0.914 0.937 0.943 0.930 2733 3224 3032 2914 1501 4124

(B) Quantile regression model with error distribution t5
0.950 15 0.900 0.803 0.849 0.854 0.842 197 299 273 261 94 515
0.950 10 0.900 0.811 0.873 0.877 0.870 446 613 590 563 189 1141
0.950 5 0.900 0.823 0.897 0.899 0.878 1785 2613 2516 2409 1102 3447

0.950 15 0.950 0.871 0.928 0.931 0.921 281 440 422 382 112 591
0.950 10 0.950 0.891 0.938 0.942 0.928 633 908 869 834 329 1519
0.950 5 0.950 0.903 0.950 0.950 0.932 2535 3502 3288 3200 1388 4433

0.900 15 0.900 0.842 0.841 0.847 0.829 213 286 280 255 102 407
0.900 10 0.900 0.851 0.856 0.862 0.842 480 599 573 539 204 1110
0.900 5 0.900 0.876 0.879 0.882 0.866 1924 2424 2312 2224 1256 3042

0.900 15 0.950 0.879 0.917 0.923 0.909 303 404 384 358 118 484
0.900 10 0.950 0.894 0.921 0.924 0.919 682 827 791 760 339 1362
0.900 5 0.950 0.903 0.938 0.944 0.928 2733 3312 3166 3089 1476 4290

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0081 in panel (A) and 0.0092 in panel
(B).

5.3. Tests with given signi�cance level

In this section, we evaluate the performance of the three-step method in
testing situations with a prespeci�ed level of signi�cance �. For brevity, we
present results only for the t5 error distribution. The results for the normal
error distribution are quite similar.

5.3.1. Linear regression model
The results for the linear regression model are reported in Table 13(A).

Table 13(A) indicates that the empirical levels are somewhat lower than the
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desired levels. With moderate bounds on (pdb; �), quite reasonable results are
obtained. For example, for (�; pdb; �) = (0:05; 10; 0:05), the empirical level
based on B2 is just 0.014 below the desired 0.950 level. The ‘Mean’ number
of bootstrap repetitions required to achieve this is rather moderate, only 802
bootstrap repetitions.
Tighter bounds on (pdb; �) increase the number of bootstrap repetitions

B2 and B∗ and, hence, signi�cantly increase the precision of the three-step
method. For example, with (�; pdb; �) = (0:05; 5; 0:05), the empirical level is
almost identical to the desired level. But, in this case, the number of bootstrap
repetitions B2 is 3108 on average.
The number of bootstrap repetitions varies dramatically over the (�; pdb; �)

combinations. For example, the maximum number of bootstrap repetitions
(over the 100 samples and the 2500 simulations for each sample) for the
(0.10,15,0.10) combination is lower than the minimum number of bootstrap
repetitions for the (0.05,5,0.05) combination.
Overall, the three-step method seems to perform quite well and does not

impose excessive computational costs. A high degree of accuracy can be
achieved, though at the cost of employing a large number of bootstrap rep-
etitions.

5.3.2. Quantile regression model
The results for tests with given � in the quantile regression model are

reported in Table 13(B). Table 13(B) shows that, in general, the results for
the linear regression model also hold for the quantile regression model. The
empirical levels are somewhat lower than the desired levels and are somewhat
lower than those for the linear regression model.
For moderate bounds on (pdb; �), quite reasonable precision is obtained.

For example, for (�; pdb; �) =(0:05; 10; 0:05), the empirical level for B2 rep-
etitions is 0.938, whereas the desired value is 0.950. The ‘Mean’ number of
bootstrap repetitions required to achieve this, 869, is slightly larger than in
the linear regression model.
Overall, the three-step method seems to perform quite well for tests with

given � in the quantile regression model.

5.3.3. Binary probit model
The results for tests with given � in the binary probit model are reported in

Table 14. This table shows that, by and large, the results of the previous two
models hold for the binary probit as well. The empirical levels are somewhat
lower than the desired levels and are somewhat lower than those for the linear
regression model. Nevertheless, they are as good as, and in most cases better
than, those for the quantile regression model.
For moderate bounds on (pdb; �), quite reasonable precision is obtained.

For example, for (�; pdb; �) = (0:05; 10; 0:05), the empirical level for B2
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Table 14
Tests with given signi�cance level �—binary probit modela

Empirical level B2

1− � pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

0.950 15 0.900 0.806 0.854 0.865 0.844 197 289 265 251 92 517
0.950 10 0.900 0.814 0.879 0.884 0.873 446 600 568 536 180 1169
0.950 5 0.900 0.827 0.891 0.898 0.879 1785 2504 2445 2389 1120 3431

0.950 15 0.950 0.875 0.932 0.937 0.922 281 429 411 376 113 592
0.950 10 0.950 0.894 0.940 0.947 0.930 633 868 851 828 330 1540
0.950 5 0.950 0.913 0.946 0.949 0.934 2535 3388 3229 3166 1378 4455

0.900 15 0.900 0.847 0.846 0.853 0.832 213 280 266 250 111 428
0.900 10 0.900 0.854 0.859 0.866 0.846 480 584 561 532 220 1123
0.900 5 0.900 0.879 0.881 0.891 0.868 1924 2374 2270 2188 1219 3060

0.900 15 0.950 0.883 0.916 0.924 0.910 303 391 372 348 120 505
0.900 10 0.950 0.901 0.924 0.933 0.920 682 803 780 751 327 1399
0.900 5 0.950 0.913 0.941 0.950 0.930 2733 3269 3127 3079 1488 4333

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0087.

repetitions is 0.940, whereas the desired value is 0.950. The ‘Mean’ num-
ber of bootstrap repetitions B2 required to achieve this, 851, is slightly larger
than in the linear regression model, but smaller than in the quantile regression
model.
Overall, the three-step method performs quite well for tests with given �

in the binary probit model.

5.4. p-Values

In this section, we evaluate the performance of the three-step method in
testing situations where one is interested in computing a p-value. Again, for
brevity, we only report results for the t5 error distribution. The results for the
normal error distribution are similar.

5.4.1. Linear regression model
The results for p-values in the linear regression model are reported in

Table 15. Table 15(A) provides results for samples in which the asymptotic
p-value is approximately 0.05. Table 15(B) reports results when the asymp-
totic p-value is approximately 0.10.
Table 15(A) indicates that the three-step bootstrap method leads to em-

pirical levels that are somewhat lower than the desired levels. For tighter
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Table 15
p-Values—linear regression model with error distribution t5a

Empirical level B2

pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) p-Value = 0:05
20 0.900 0.813 0.838 0.842 0.820 1285 1429 1404 1347 981 7017
15 0.900 0.821 0.860 0.865 0.832 2285 2453 2399 2342 1476 9112
10 0.900 0.854 0.884 0.893 0.853 5141 5360 5249 5162 2769 12,223

20 0.950 0.872 0.894 0.902 0.861 1825 2090 1969 1896 1201 7911
15 0.950 0.887 0.921 0.926 0.873 3244 3706 3570 3485 1702 11,087
10 0.950 0.905 0.941 0.948 0.901 7299 8009 7784 7646 2888 16,290

20 0.975 0.901 0.953 0.958 0.905 2386 2602 2478 2402 1701 9037
15 0.975 0.918 0.964 0.969 0.927 4242 4735 4474 4366 2099 11,603
10 0.975 0.928 0.974 0.975 0.946 9545 10222 9986 9802 4798 19,033

(B) p-Value = 0:10
20 0.900 0.820 0.852 0.859 0.832 609 729 712 664 304 1104
15 0.900 0.832 0.867 0.871 0.841 1082 1209 1188 1101 466 1499
10 0.900 0.861 0.898 0.904 0.864 2435 2700 2625 2562 1612 3483

20 0.950 0.884 0.910 0.918 0.894 864 992 935 870 404 1262
15 0.950 0.898 0.923 0.926 0.903 1537 1822 1722 1673 622 1789
10 0.950 0.911 0.948 0.951 0.929 3457 3917 3767 3580 2002 4555

20 0.975 0.909 0.961 0.966 0.930 1130 1309 1240 1176 704 1580
15 0.975 0.926 0.967 0.970 0.941 2010 2316 2201 2153 832 2900
10 0.975 0.938 0.974 0.975 0.954 4521 4801 4598 4509 3566 5884

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample, we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0079 in panel (A) and 0.0057 in panel
(B).

bounds, i.e., small pdb and �, the performance is quite good. This comes at
the cost, however, of a large number of bootstrap repetitions. For example,
for (pdb; �)= (10; 0:05), the ‘Mean’ number of repetitions is 7784, while the
‘Median’ number is only slightly less.
The general picture revealed by the results reported in Table 15(B) is sim-

ilar to that of Table 15(A). There are, however, two signi�cant di�erences.
First, the number of bootstrap repetitions is considerably lower in Table 15(B)
than in Table 15(A). Second, the empirical levels in the Table 15(B) are
closer to the desired levels. This is a consequence of the fact that it is much
harder to estimate smaller p-values. Fortunately, there are many situations in
which one should not care whether or not the p-value is estimated precisely.
For example, if the p-value is 0.001, one can estimate it with relatively low
accuracy.
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Table 16
p-Values—binary probit modela

Empirical level B2

pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) p-Value = 0:05
20 0.900 0.807 0.828 0.840 0.820 1285 1432 1402 1370 892 7216
15 0.900 0.817 0.844 0.859 0.831 2285 2416 2384 2317 1431 9215
10 0.900 0.848 0.880 0.882 0.852 5141 5221 5191 5101 2407 11,995

20 0.950 0.861 0.892 0.899 0.864 1825 1922 1877 1826 1111 7958
15 0.950 0.880 0.920 0.919 0.888 3244 3604 3563 3488 1472 11,692
10 0.950 0.900 0.940 0.939 0.904 7299 7904 7807 7661 2791 16,731

20 0.975 0.892 0.947 0.954 0.929 2386 2514 2476 2406 1616 9190
15 0.975 0.914 0.961 0.961 0.942 4242 4448 4407 4238 1905 12,005
10 0.975 0.921 0.974 0.975 0.966 9545 10,029 9996 9882 4701 18,388

(B) p-Value = 0:10
20 0.900 0.818 0.848 0.850 0.839 609 711 701 671 369 1232
15 0.900 0.828 0.864 0.869 0.849 1082 1199 1188 1128 451 1616
10 0.900 0.861 0.892 0.899 0.862 2435 2617 2597 2502 1509 3718

20 0.950 0.880 0.901 0.909 0.891 864 949 930 887 391 1351
15 0.950 0.895 0.917 0.922 0.902 1537 1738 1701 1645 617 1992
10 0.950 0.908 0.940 0.944 0.919 3457 3821 3768 3690 1985 4711

20 0.975 0.902 0.951 0.956 0.928 1130 1243 1207 1158 693 1601
15 0.975 0.920 0.959 0.960 0.939 2010 2221 2178 2090 804 3040
10 0.975 0.931 0.968 0.971 0.957 4521 4597 4503 4399 3519 5987

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample, we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0087 in panel (A) and 0.0066 in panel
(B).

Overall, the three-step method seems to perform reasonably well. The draw-
back is that it requires rather large number of bootstrap repetitions to achieve
precise results.

5.4.2. Binary probit model
The results for p-values in the binary probit model are reported in

Table 16. The results in this table are quite similar to those obtained for
the linear regression model. In general, the empirical values are lower than
the desired levels. This is especially true for the the lower p-value, 0.05.
While the results for the higher p-value, 0.10, are better than those for the
lower p-value, the empirical levels are still signi�cantly below the desired
levels.
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Table 17
p-Values—quantile regression model with error distribution t5a

Empirical level B2

pdb 1− � B1 B2 B∗ B! B1 B! Mean Med Min Max

(A) p-Value = 0:05
20 0.900 0.804 0.825 0.832 0.816 1285 1452 1424 1366 981 7145
15 0.900 0.811 0.847 0.853 0.825 2285 2501 2402 2362 1478 9099
10 0.900 0.847 0.877 0.879 0.860 5141 5406 5287 5200 2688 12,243

20 0.950 0.863 0.891 0.897 0.871 1825 2053 1987 1922 1205 7917
15 0.950 0.871 0.918 0.922 0.902 3244 3791 3635 3567 1589 11,425
10 0.950 0.898 0.937 0.941 0.921 7299 8111 7819 7730 2777 16,559

20 0.975 0.890 0.947 0.951 0.930 2386 2660 2521 2471 1654 9087
15 0.975 0.907 0.959 0.964 0.939 4242 4693 4495 4399 2026 11,764
10 0.975 0.916 0.974 0.975 0.949 9545 10,391 10,113 9863 4702 19,401

(B) p-Value = 0:10
20 0.900 0.810 0.844 0.853 0.828 609 745 708 666 319 1123
15 0.900 0.821 0.860 0.869 0.839 1082 1262 1208 1122 470 1466
10 0.900 0.854 0.890 0.898 0.860 2435 2706 2630 2587 1623 3456

20 0.950 0.867 0.904 0.910 0.872 864 1004 954 892 406 1245
15 0.950 0.890 0.916 0.922 0.896 1537 1814 1743 1698 641 1893
10 0.950 0.900 0.943 0.947 0.912 3457 3955 3816 3622 1992 4516

20 0.975 0.900 0.957 0.962 0.918 1130 1302 1255 1197 717 1578
15 0.975 0.917 0.964 0.967 0.929 2010 2398 2222 2156 844 2935
10 0.975 0.925 0.972 0.974 0.940 4521 4781 4600 4538 3589 5888

aNote: The reported numbers are the averages over the simulations performed for 100 sam-
ples, each of which consists of 25 observations. For each sample, we carry out 2500 Monte
Carlo repetitions. The average of the CV values is 0.0092 in panel (A) and 0.0073 in panel
(B).

5.4.3. Quantile regression model
The results for p-values in the quantile regression model are reported in

Table 17. As Table 17 shows, the results for the quantile regression model
are almost identical to those reported in Table 15 for the linear regression
model. In general, the empirical values are lower than the desired levels.
For the lower p-value, of 0.05, the empirical values are somewhat lower
than those for the linear regression model. For the higher p-value, of 0.10,
however, the results for the quantile regression model are quite similar to
those of the linear regression model.

6. Summary and conclusions

This paper focuses on practical aspects of choosing the number of bootstrap
repetitions in a variety of situations commonly encountered in the empirical
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econometric literature. A three-step method for determining the number of
bootstrap repetitions in these situations is introduced in Andrews and Buchin-
sky (2000). The current paper investigates the small sample properties of this
method in a number of econometric models, viz., linear regression, binary
probit, and quantile regression. The paper investigates the method’s perfor-
mance for a variety of statistical procedures, viz., computation of standard
errors, con�dence intervals, tests, and p-values. In all cases considered, the
three-step method provides reasonable results. That is, the three-step method
comes quite close to achieving the desired precision in estimating the ideal
bootstrap quantity of interest.
The three-step method speci�es the starting values for the number of boot-

strap repetitions, B1, based on the asymptotic distribution of the relevant
bootstrap statistic. We �nd that the �nal number of bootstrap repetitions, B∗,
is usually noticeably larger than the initial value. We also �nd that B∗ varies
considerably across di�erent statistical procedures, such as standard errors,
con�dence intervals, etc., and across di�erent samples for any given statis-
tical procedure. These �ndings indicate that it is important to choose the
number of bootstrap repetitions in a manner that takes into account the de-
tails of the situation at hand, as the three-step method does, rather than to
apply some rough rule of thumb.
We �nd that in almost all cases the number of bootstrap repetitions chosen

by the three-step method is quite large relative to what is found in empirical
applications in the literature. A common number of bootstrap repetitions re-
ported in the literature is around 100. The experiments performed here show
that in many cases this number is not su�cient to estimate statistical quan-
tities with a high degree of accuracy. This is rather disconcerting, because it
indicates that statistical inferences in the literature may depend on the par-
ticular bootstrap samples that were drawn. The three-step method that we
investigate here resolves this problem and is shown to work quite well for
the situations examined.
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