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Generalized Method of Moments Estimation
When a Parameter Is on a Boundary

Donald W. K. Andrews
Cowles Foundation for Research in Economics, Yale University, New Haven, CT 06520-8281
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This article establishes the asymptotic distributions of generalized method of moments (GMM) estima-
tors when the true parameter lies on the boundary of the parameter space. The conditions allow the
estimator objective function to be nonsmooth and to depend on preliminary estimators. The boundary of
the parameter space may be curved and/or kinked. The article discusses three examples: (1) instrumental
variables (IV) estimation of a regression model with nonlinear equality and/or inequality restrictions on
the parameters; (2) method of simulated moments estimation of a multinomial discrete response model
with some random coef� cient variances equal to 0, some random effect variances equal to 0, or some
measurement error variances equal to 0; and (3) semiparametric least squares estimation of a partially
linear regression model with nonlinear equality and/or inequality restrictions on the parameters.

KEY WORDS: Asymptotic distribution; Boundary; Equality restriction; Inequality restriction;
Partially linear model; Semiparametric estimator.

1. INTRODUCTION

Hansen’s (1982) seminal article on generalized method of
moments (GMM) estimation provides suf� cient conditions for
the asymptotic normality of GMM estimators. A key assump-
tion is that the parameter lies in the interior of the param-
eter space. Pakes and Pollard (1989) extended the results of
Hansen to allow for cases in which the sample moment condi-
tions are not smooth functions of ˆ. In addition, they allowed
the weight matrix to depend on ˆ and hence cover estima-
tors now referred to as continuously updated GMM estima-
tors (CUE). Like Hansen (1982), Pakes and Pollard (1989)
assumed that the true parameter lies in the interior of the
parameter space.

This article extends the results of Hansen (1982) and Pakes
and Pollard (1989) to cover cases in which the true parameter
is not in the interior of the parameter space. In such cases,
the asymptotic distribution of the GMM estimator is no longer
normal. The results given here allow for nonsmooth sample
moments, the CUE, and sample moments that depend on pre-
liminary � nite- or in� nite-dimensional preliminary nuisance
parameters.

The results of this article are obtained by applying more
general results for extremum estimators given by Andrews
(1999). The latter rely on high-level assumptions. This article
provides a number of (more) primitive suf� cient conditions
for the case of GMM estimators. These suf� cient conditions
are used to determine the asymptotic distributions of GMM
estimators under primitive conditions in three examples.

The approach used by Andrews (1999) is to approximate
the estimator objective function by a quadratic function rather
than rely on � rst-order conditions. This approach was used
by Chernoff (1954) to establish the asymptotic distribution of
the likelihood ratio test in iid models with smooth likelihoods
when the true parameter may be on a boundary. It has also
been used by various authors to obtain the asymptotic prop-
erties of estimators when the true parameter is in the interior
of the parameter space (see, e.g., Le Cam 1960; Jeganathan
1982; Pollard 1985; Pakes and Pollard 1989).

A number of papers in the literature also consider the
asymptotic properties of estimators and tests when the true
parameter lies on the boundary of the parameter space (Cher-
noff 1954; Aitchison and Silvey 1958; Moran 1971; Chant
1974; Self and Liang 1987; Gourieroux and Monfort 1989,
chap. 21; Geyer 1994; Wang 1996; Andrews 1999, 2001).
Andrews (1999, 2001) has given brief discussions of these
papers. The results here are most similar to those of Geyer
(1994), who considered estimators that minimize a sample
average depending on a parameter ˆ when the true parameter
ˆ0 lies on a boundary of the parameter space.

The method of establishing the asymptotic distribution of
the GMM estimator when the true parameter is on a boundary
is now outlined. Let Ô be the GMM estimator that minimizes
the GMM criterion function LT 4ˆ5 over the parameter space
ä Rs . First, one shows that the GMM criterion function
equals a quadratic function,

qT 4T 1=24ˆ ƒ ˆ055

D 4T 1=24ˆ ƒ ˆ05 ƒ ZT 50ª 4T 1=24ˆ ƒ ˆ05 ƒ ZT 51 (1)

plus a term that does not depend on ˆ and another term that
depends on ˆ but is suf� ciently small so that it does not affect
the asymptotics. In (1), ª is a nonsingular matrix and ZT is an
asymptotically normal random vector. In particular, suppose
that GT 4ˆ5 is the vector of sample moments that de� nes the
GMM estimator, M is the limit of the GMM weight matrix,
and â D p limT !ˆ4¡=¡ˆ05GT 4ˆ05. Then

ª D â 0Mâ and ZT
D ª ƒ1â 0MT 1=2GT 4ˆ050 (2)

© 2002 American Statistical Association
Journal of Business & Economic Statistics

October 2002, Vol. 20, No. 4
DOI 10.1198/073500102288618667

530



Andrews: GMM When a Parameter Is on a Boundary 531

Under suitable conditions, a central limit theorem (CLT)
implies that

T 1=2GT 4ˆ05 !
d N 401 ¶ 5 and

ZT
!

d Z N 401ª ƒ1â 0M¶Mâª ƒ15 as T ! ˆ0 (3)

Combining (1) and (3) gives

qT 4‹5 !
d q4‹5 for each ‹2Rs1

where q4‹5 D 4‹ ƒ Z50ª 4‹ ƒ Z50 (4)

If the GMM estimator Ô is T 1=2 consistent, then the only
part of the parameter space ä that effects the asymptotic
distribution of Ô is the part of ä near the true parameter
ˆ0. Equivalently, the only part of the shifted parameter space
ä ƒ ˆ0 that is relevant is the part near the origin. The case
is considered where the shifted parameter space ä ƒ ˆ0 can
be approximated near the origin by a convex cone å. The
approximation concept used is due to Chernoff (1954).

Now, by de� nition, Ô minimizes LT 4ˆ5 over ä. Hence the
normalized estimator O‹T

D T 1=24 Ô ƒ ˆ05 minimizes LT 4ˆ0 C
‹=T 1=25 over T 1=24ä ƒ ˆ05. Asymptotically, LT 4ˆ0

C ‹=T 1=25

behaves like qT 4‹5 by (1), qT 4‹5 behaves like q4‹5 by (4),
and T 1=24ä ƒˆ05 behaves like å for ˆ near ˆ0. Consequently,
O‹T

D T 1=24 Ôƒ ˆ05 can be shown to behave asymptotically like
the minimizer O‹ of q4‹5 over ‹ 2 å. That is,

T 1=24 Ô ƒ ˆ05 !
d

O‹1 where

O‹ minimizes q4‹5 D 4‹ ƒ Z50ª 4‹ ƒ Z5 over å0 (5)

Typically, the convex cone å is de� ned by linear equal-
ity and/or inequality constraints, and O‹ is the solution to a
quadratic programming problem. Consequently, the asymp-
totic distribution of T 1=24 Ô ƒ ˆ05 can be simulated using stan-
dard GAUSS or Matlab programs quite quickly and easily.

If only one element of ˆ0 is on a boundary and it is con-
strained from above or below, then the corresponding element
of Ô has a half-normal asymptotic distribution. In this case the
asymptotic distributions of the other parameters are affected
and are nonnormal unless a block diagonality condition is
satis� ed.

Note that if ˆ0 lies in the interior of ä, then

å D Rs1 O‹ D Z1 and

T 1=24 Ô ƒ ˆ05 !
d Z N 401ª ƒ1â 0M¶Mâª ƒ151 (6)

which is the result of Hansen (1982) and Pakes and Pollard
(1989).

Note that the assumptions used here are such that one often
can use existing results in the literature (that are designed for
the case where the true parameter is an interior point) to help
verify the assumptions. This is particularly useful for semi-
parametric estimators. One does not need to reprove results
regarding the effect of preliminary nonparametric estimators
on the properties of the estimator objective function. This is
illustrated in an example.

The results given here cover both minimum distance (MD)
and GMM estimators. Details are given later.

The results of this article cover models with determinis-
tic time trends via the method of Andrews and McDermott
(1995). But the results do not cover models with stochas-
tic trends. (See Andrews 1999 for results that do cover such
cases.)

Three examples are considered in this article. The � rst
example is a linear regression model estimated by instrumen-
tal variables (IV) with nonlinear equality and/or inequality
restrictions on the regression parameters. The errors, regres-
sors, and IVs are assumed to be iid. This example exhibits
curved and kinked boundaries to the parameter space. Nonlin-
ear inequality restrictions arise in utility, cost, and pro� t func-
tion estimation when convexity, quasi-convexity, concavity, or
quasi-concavity is imposed at some point(s) in the sample (see
Gallant and Golub 1984).

The second example is a multinomial discrete response
model estimated via a method of simulated moments (MSM)
estimator as done by McFadden (1989) and Pakes and Pollard
(1989). Considered here is the case where the model includes
random coef� cients (as in Hausman and Wise 1978), random
effects (as in McFadden 1989), or measurement error (as in
McFadden 1989), and the variances of some of these random
terms are 0. This example illustrates the case of an estima-
tor objective function that is discontinuous. A related class
of GMM estimators of discrete response models with random
coef� cients used in the industrial organization literature is that
of Berry (1994) and Berry, Levinsohn, and Pakes (1995). The
results given in this article could also be applied to determine
the asymptotic distribution of these estimators when some of
the random coef� cient variances are 0.

The third example is a partially linear model estimated by
the semiparametric least squares (LS) estimator of Robinson
(1988), but subject to nonlinear equality and/or inequality con-
straints. This example illustrates the application of the general
results to a semiparametric estimator and to an estimator that
depends on a preliminary estimator. The example shows that
one can derive the limit distribution for the estimator when the
parameter is on the boundary with very little additional work
beyond that which is needed to establish its distribution when
the true parameter is in the interior of the parameter space. In
particular, the hard parts of the veri� cation of the assumptions
follow directly from the results of Robinson (1988) with no
additional work.

Note that the results of the article apply to parametric two-
step estimators, although none of the examples herein are of
this form. For example, consider the Heckman two-step esti-
mator of a sample selection model. If the correlation between
the errors in the two equations of the model is generated by
a common random effect, then the coef� cient on the selec-
tion bias correction term in the main equation is necessarily
nonnegative. In this case the regression parameter of the main
equation is on the boundary of the parameter space when true
random effect variance is 0, which corresponds to the case
where there is no selectivity bias. The results herein apply to
this case.

The rest of the article is organized as follows. Section 2
introduces the three examples. Section 3 presents the gen-
eral results. Section 4 applies the general results to the IV
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regression example. Section 5 applies the general results to
the multinomial response example. Section 6 does likewise for
the partially linear regression example. An Appendix provides
proofs of the results.

All limits are taken “as T ! ˆ” unless stated otherwise.
Let “for all ƒT

! 0” abbreviate “for all sequences of positive
scalar constants 8ƒT 2 T ¶ 19 for which ƒT

! 0.” Let !
p and

!
d denote convergence in probability and distribution. Let

‹min4A5 and ‹max4A5 denote the smallest and largest eigenval-
ues of a matrix A. Let cl(å) denote the closure of a set å.
Let S4ˆ1˜5 denote an open sphere centered at ˆ with radius
˜. Let C4ˆ1 ˜5 denote an open cube centered at ˆ with sides
of length 2˜.

2. EXAMPLES

This section introduces three examples. These examples
cover parameter spaces with linear and nonlinear boundaries.
One example has a GMM criterion function that is not smooth;
another has a GMM criterion function that depends on a pre-
liminary in� nite-dimensional nuisance parameter.

2.1 Instrumental Variables Regression
With Restricted Parameters

The � rst example is an iid linear regression model estimated
by IVs with equality and/or inequality restrictions on the
regression parameters. Both linear and nonlinear restrictions
are considered. The asymptotic distribution of the IV estima-
tor (subject to the restrictions) when some of the inequality
restrictions are satis� ed as equalities is determined. In this
case the true regression parameter is on a linear or nonlinear
boundary of the parameter space.

The model is

Yt
D X 0

tˆ C ˜t1 (7)

where 84Yt1Xt1 Zt5 2 t µ T9 are observed iid dependent, regres-
sor, and instrumental variables; 8˜t 2 t µ T 9 are iid unobserved
errors; Xt , ˆ 2 Rs ; Yt , ˜t

2 R; and Zt
2 Rk. The regressors may

be correlated with the errors.
The parameter ˆ is assumed to satisfy the restrictions

ma4ˆ5 D 01 mb4ˆ5 µ 01 and h4ˆ5 µ 01 (8)

where mj4¢5 2 Rcj for j D a1 b and h4¢5 is vector-valued.
Suppose that the true parameter ˆ0 satis� es the restrictions

of (8) with

ma4ˆ05 D 01 mb4ˆ05 D 01 and h4ˆ05 < 00 (9)

Thus ˆ0 is on the part of the boundary of the parameter space,
ä, that is determined by ma4¢5 and mb4¢5. The estimator con-
sidered here is an IV estimator that satis� es the restrictions.

2.2 Multinomial Response Model

This example is a multinomial response model estimated
by the method of simulated moments (MSM). The notation
is the same as used by McFadden (1989) and Pakes and Pol-
lard (1989). The tth individual has m alternatives to choose
between. The `th choice is associated with a utility (or pro� t)
of Z0

t`h4‡t1 ˆ5 for ` D 11 : : : 1m, where Zt` is a b-vector of
covariates for the `th choice and the tth individual, ˆ 2 Rs

is an unknown parameter, ‡t
2 Rr is a vector of errors with

known distribution, and h4¢1 ¢5 is a known Rb-valued function.
The tth individual chooses the alternative with the greatest
utility. Thus the response vector dt

2 80119m can be written as

dt
D D4Zth4‡t1 ˆ551 where Zt

D 6Zt1 ¢ ¢ ¢Ztm70 2 Rm� b

(10)

and D4¢5 2 Rm ! 801 19m puts a 1 in the position of the largest
component and a 0 elsewhere. The choice is indicated by the
component with a 1. That there is zero probability of a tie is
assumed. The random variables 84Zt1‡t5 2 t D 11 : : : 1 T 9 are
assumed to be iid.

By specifying different covariate vectors Zt`, error vectors
‡t , parameter vectors ˆ, and functional forms h4¢1 ¢5, a vari-
ety of different models is obtained. For example, if ‡t has a
standard multivariate normal distribution, then the model is in
the family of probit models. Several such models are consid-
ered here. The � rst model is a random coef� cient probit model
considered by Hausman and Wise (1978) and, more recently,
by Horowitz (1993), among others. In this case the element
of h4‡t1 ˆ5 that corresponds to a covariate in Zt` whose coef-
� cient is random is of the form ˆi

C ˆ1=2
j ‡t N 4ˆi1 ˆj5. The

case where p 4¶15 random coef� cient variances are zero
and hence the true parameter ˆ0 is on the boundary of the
parameter space is considered. For notational convenience, the
parameters are ordered such that the � rst p elements of ˆ are
these parameters.

The second model is a binary probit panel data model with
autocorrelated errors and random effects (see McFadden 1989,
sec. 5). Let the � rst element of ˆ be the proportion of the total
error variance due to the random effect. The case where the
true proportion is zero and hence the parameter ˆ0 is on the
boundary of the parameter space is considered.

The third model is a probit model with measurement error
on some covariates (see McFadden 1989, sec. 6). In this case
some of the elements of ˆ correspond to the variance param-
eters of the measurement errors. The case where p 4¶15 of
these variance parameters equal zero and ˆ0 is on a boundary
is analyzed. As before, the elements of ˆ are ordered such that
these are the � rst p elements of ˆ.

All of the foregoing cases can be treated simultaneously by
analyzing the general multinomial response model introduced
earlier with a parameter vector ˆ whose � rst p or more ele-
ments must be nonnegative and whose true value ˆ0 has its
� rst p elements equal to 0.

2.3 Partially Linear Regression Model

This example is a partially linear regression model with non-
linear equality and/or inequality restrictions on the parameter
vector. The partially linear model is a semiparametric model.
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Estimation of the � nite-dimensional parameter of the model is
considered using a semiparametric least squares (LS) method
introduced by Robinson (1988), who considered the partially
linear regression model without any restrictions. The model
is de� ned and the same assumptions are used as in Robinson
(1988). In fact, Robinson’s results can be used to establish the
only dif� cult parts of the proof of the asymptotic distribution
of the semiparametric LS estimator under nonlinear equality
and/or inequality restrictions.

The model is

Yt
D X 0

tˆ C Œ4Zt5 C ˜t1 (11)

where 84Yt1Xt1 Zt5 2 t D 11 21 : : : 1 T 9 are the observed random
variables, ˆ is the unknown parameter to be estimated, Œ4¢5 is
an unknown function, and ˜t is an unobserved error. Following
Robinson (1988), 4Yt1Xt1Zt5 are assumed to be iid across t,
E˜t

D 0, and ˜t is independent of 4Xt1Zt5.
The parameter ˆ is assumed to satisfy the same nonlinear

restrictions as in (8) of the IV example. In addition, the true
parameter ˆ0 is assumed to satisfy (9). In this case the param-
eter ˆ0 is on the boundary of the parameter space.

3. GENERAL RESULTS

3.1 De’ nition of the Generalized Method
of Moments Estimator

Let YT
D 8Yt 2 t D 11 : : : 1 T 9 denote the sample with sample

size T for T D 11 21 : : : . Considered here is a GMM objective
function LT 4ˆ5 that depends on YT ,

LT 4ˆ5 D ˜AT 4ˆ5GT 4ˆ5˜2=21 (12)

where GT 4ˆ5 2 ä ! Rk is a vector of sample moments,
AT 4ˆ5 2 ä ! Rk� k is a random weight matrix, and ˜¢˜ denotes
the Euclidean norm. (The division by 2 is strictly for conve-
nience. It eliminates some constants in the formulas that fol-
low.) The random variables GT 4ˆ5 and AT 4ˆ5 are normalized
such that each is Op415, but not op415 [except GT 4ˆ05, which
is Op4T ƒ1=25]. Note that the notation for GMM estimators is
the same as that of Pakes and Pollard (1989), but with the
sample size given by T rather than n.

Typically, the vector of moment conditions GT 4ˆ5 is of the
form

GT 4ˆ5 D T ƒ1
TX

tD1

g4Yt1 ˆ51 where Eg4Yt1 ˆ05 D 01 (13)

g4Yt1 ¢5 2 ä ! Rk is a known function, and ˆ0 is the true
value. But GT 4ˆ5 could also depend on some � nite- or in� nite-
dimensional preliminary estimator. For example, GT 4ˆ5 could
be of the form

GT 4ˆ5 D T ƒ1
TX

tD1

g4Yt1 ˆ1 O’5 or

GT 4ˆ5 D T ƒ1
TX

tD1

g4Yt1 ˆ1 O’4Yt551 (14)

where O’ denotes a � nite-dimensional preliminary estima-
tor; O’ !

p ’0 for some ’0
2 Rd’ ; Eg4Yt1 ˆ01 ’05 D 01 O’4Yt5

denotes an in� nite-dimensional estimator evaluated at Yt ,
such as a nonparametric regression or density estimator;
O’4y5 !

p ’04y5 2 Rd’ for all y in the support of Yt ; and
Eg4Yt1 ˆ01 ’04Yt55 D 0. For example, the partially linear
regression example uses preliminary nonparametric regression
estimators.

The framework considered here covers minimum distance
(MD) estimators as well as GMM estimators. The MD objec-
tive function is the same as the GMM objective function,
except that GT 4ˆ5 is not a vector of moment conditions, but
rather the difference between an unrestricted estimator O�T of a
parameter �0 and a vector of restrictions h4ˆ5 on �0. That is,

GT 4ˆ5 D O�T
ƒ h4ˆ51 where �0

D h4ˆ05 (15)

and ˆ0 is the true value. Henceforth, for simplicity, the estima-
tor and criterion function are called the GMM estimator and
criterion function, but it should be understood that they also
could be a MD estimator and criterion function.

By de� nition, the GMM estimator Ô satis� es Ô 2 ä and

LT 4 Ô5 D inf
ˆ2ä

LT 4ˆ5 C op4150 (16)

That is, Ô minimizes the GMM criterion function over ä up
to some term that is op415 (which allows for some tolerance
in the numerical minimization).

3.2 Assumptions

First, consistency of Ô is considered. The same methods
for establishing consistency can be used whether Ô is on a
boundary of the parameter space or is in the interior. Hence Ô
is assumed to be consistent, and a standard suf� cient condition
is provided for this result.

Assumption GMM1. Ô D ˆ0 C op415, where ˆ0 2 cl4ä5.

A well-known suf� cient condition for assumption GMM1
is the following.

Assumption GMM1ü . (a) For some function L4ˆ5 2 ä !
R, supˆ2ä

—LT 4ˆ5 ƒ L4ˆ5— !
p 0.

(b) For all ˜ > 0, infˆ2ä=S4ˆ0 1˜5 L4ˆ5 > L4ˆ05, where
ä=S4ˆ01 ˜5 denotes all vectors ˆ in ä but not in S4ˆ01 ˜5.

Note that here and below that a superscript ü , 2 ü , or 3 ü on
an assumption denotes that the assumption is suf� cient (some-
times only in the presence of other speci� ed assumptions) for
the unsuperscripted assumption.

Alternatively, assumption GMM1 can be established using
theorem 3.1 and lemma 3.4 of Pakes and Pollard (1989),
which is applicable even if ˆ0 is on the boundary of ä.

Next, the basic assumptions used to derive the asymptotic
distribution of the GMM estimator are stated. These assump-
tions are quite similar to the assumptions used by Pakes and
Pollard (1989), except they do not require that the true value
ˆ0 is in the interior of the parameter space. In particular,
the assumptions allow for nonsmooth sample moments, such
as sample moments that depend on indicator functions. The
assumptions also allow for sample moments that depend on
preliminary estimators.
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Assumption GMM2. (a) For some nonrandom function
G4ˆ5, GT 4ˆ5 !

p G4ˆ5 8 ˆ 2 ä \S4ˆ01 ˜5 for some ˜ > 0.
(b) G4ˆ5 D G4ˆ05C â4ˆ ƒˆ05Co4˜ˆ ƒˆ0˜5 as ˜ˆ ƒˆ0˜ !

0 for ˆ 2 ä\S4ˆ01 ˜5 for some ˜ > 0, where â is a nonrandom
k � s matrix with full column rank s 4µk5.

(c) G4ˆ05 D 0.
(d) For all ƒT

! 0, supˆ2ä2˜ˆƒˆ0˜µƒT
T 1=2˜GT 4ˆ5 ƒ G4ˆ5 ƒ

GT 4ˆ05˜=41C T 1=2˜ˆ ƒ ˆ0
˜5 D op415 under ˆ0.

(e) For some nonrandom nonsingular k � k matrix A and
for all ƒT

! 0, supˆ2ä2˜ˆƒˆ0˜µƒT
˜AT 4ˆ5ƒ A˜ D op415.

Assumption GMM3. T 1=2GT 4ˆ05 !
d

eG N 401¶ 5 for
some nonrandom matrix ¶ .

Section 3.3 provides suf� cient conditions for assumption
GMM2. Here assumptions GMM2 and GMM3 are discussed
and how they are veri� ed in the most regular cases is
illustrated.

Assumption GMM2(a) can be veri� ed using a pointwise
weak law of large numbers (WLLN) when GT 4ˆ5 is of the
form in (13). Assumption GMM2(a) is used because it serves
to de� ne the limit function G4ˆ5. It is not actually used in
any of the proofs. Any function G4ˆ5 that satis� es assumption
GMM2(d) could be used to de� ne G4ˆ5. There is little to be
gained by this, however, because it is hard to imagine a case
for which assumption GMM2(d) holds for a function G4¢5 that
does not satisfy assumption GMM2(a).

Assumption GMM2(b) holds if G4ˆ5 is differentiable at ˆ0.
In this case, â D 4¡=¡ˆ 05G4ˆ05. This requires that G4ˆ5 is
de� ned on a neighborhood of ˆ0. Section 3.3 provides suf-
� cient conditions for assumption GMM2(b) when G4ˆ5 is
not de� ned on a neighborhood of ˆ0 using left/right partial
derivatives.

Assumption GMM2(c) holds if the moment conditions are
correctly speci� ed in the GMM context or if the parameter �0

satis� es the restrictions �0 D h4ˆ05 in the MD context.
Assumption GMM2(d) is a stochastic equicontinuity condi-

tion. It can be veri� ed using the empirical process results of
Pakes and Pollard (1989), van der Vaart and Wellner (1996), or
Andrews (1994). In such cases, the condition is actually veri-
� ed with the denominator “1CT 1=2˜ˆ ƒ ˆ0

˜” replaced by “1.”
Alternatively, if GT 4ˆ5 is smooth in ˆ, then assumption

GMM2(d) can be veri� ed easily with the denominator “1 C
T 1=2˜ˆ ƒ ˆ0

˜” replaced by “T 1=2˜ˆ ƒ ˆ0
˜.” To see this, sup-

pose that GT 4ˆ5 is differentiable at ˆ0 with derivative matrix
4¡=¡ˆ 05GT 4ˆ5 that satis� es the following: for all ƒT

! 0,

sup
ˆ2ä2˜ˆƒˆ0˜µƒT

¡

¡ˆ0 GT 4ˆ5 ƒ â D op4150 (17)

[This condition can be veri� ed using a uniform WLLN and
continuity of the probability limit of 4¡=¡ˆ05GT 4ˆ5 at ˆ0.]

Then, applying the mean-value theorem element by element
yields

GT 4ˆ5 D GT 4ˆ05 C ¡

¡ˆ0 GT 4ˆ!54ˆ ƒ ˆ05

D GT 4ˆ05 C â 4ˆ ƒ ˆ05 C op4˜ˆ ƒ ˆ0˜5 (18)

uniformly over 8ˆ 2 ä 2 ˜ˆ ƒˆ0
˜ µ ƒT 9, where ˆ! lies between

ˆ and ˆ0 and may differ across rows. Combining this result

with assumptions GMM2(b) and GMM2(c) gives

˜GT 4ˆ5 ƒ GT 4ˆ05 ƒ G4ˆ5˜ D op4˜ˆ ƒ ˆ0˜5 (19)

uniformly over 8ˆ 2 ä 2 ˜ˆ ƒ ˆ0
˜ µ ƒT 9. This immediately

implies assumption GMM2(d) using the “T 1=2˜ˆ ƒ ˆ0˜” part
of the denominator in assumption GMM2(d).

In summary, if assumptions GMM2(a)–(c) hold and GT 4ˆ5
is differentiable in a neighborhood of ˆ0 with partial derivative
matrix that satis� es (17), then assumption GMM2(d) holds.

The above veri� cation of assumption GMM2(d) using
smoothness relies on GT 4ˆ5 being de� ned on a neighborhood
of ˆ0 (to de� ne the derivative of GT 4ˆ5 at ˆ0). Later it is shown
that assumption GMM2(d) can be veri� ed using smoothness
even when GT 4ˆ5 is not de� ned on a neighborhood of ˆ0

by using left/right partial differentiability of GT 4ˆ5. Further-
more, assumption GMM2(d) can be veri� ed without smooth-
ness of GT 4ˆ5. This is illustrated in the multinomial response
example.

Assumption GMM2(e) requires that the weight matrix
AT 4ˆ5 is well behaved. Typically, it can be veri� ed using
a uniform WLLN and continuity of the probability limit of
AT 4ˆ5 at ˆ0.

Note that an asymptotically optimal choice of the weight
matrix for the GMM estimator when ˆ0 is not on a boundary
is such that A0A D ¶ ƒ1.

Assumption GMM3 is veri� ed when GT 4ˆ5 is as in (13) by
the application of a CLT. It can be veri� ed when GT 4ˆ5 is as
in the � rst case of (14) by (a) taking a mean-value expansion
of T 1=2GT 4ˆ05 about O’ , (b) using the asymptotic normality of
T 1=24 O’ ƒ’05, and (c) applying a CLT to T ƒ1=2

PT
tD1 g4Yt1 ˆ1 ’05.

Assumption GMM3 can be veri� ed when GT 4ˆ5 is as in
the second case of (14) by applying results in the litera-
ture for sample averages that depend on preliminary in� nite-
dimensional nuisance parameters (see, e.g., Andrews 1991,
Newey 1994).

The stochastic equicontinuity condition of assumption
GMM2(d) is quite similar to, but slightly different from, that
used by Pakes and Pollard (1989). The following result, how-
ever, shows that it is equivalent to that of Pakes and Pollard
(1989) given the other assumptions. Assumption GMM2(d)
is stated as is, because it is in the most convenient form for
veri� cation.

Lemma 1. Under assumptions GMM2 and GMM3 except
GMM2(d), Assumption GMM2(d) is equivalent to each of the
following two conditions: For all ƒT

! 0,

(a) supˆ2ä2˜ˆƒˆ0˜µƒT
˜GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05˜=4T ƒ1=2 C

˜G4ˆ5˜5 D op415 and
(b) supˆ2ä2˜ˆƒˆ0˜µƒT

˜GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05˜=4T ƒ1=2 C
˜Gn4ˆ5˜C ˜G4ˆ5˜5 D op415.

Comment. Condition (b) of Lemma 1 is the same as that
of Pakes and Pollard [1989, condition (iii) of thm. 3.3].

3.3 Suf’ cient Conditions for Assumptions
GMM2 and GMM3

This section states several suf� cient conditions for assump-
tions GMM2 and GMM3. First, it provides suf� cient condi-
tions for assumptions GMM2 and GMM3 that are essentially
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the same as Hansen’s (1982) conditions for asymptotic nor-
mality of the GMM estimator, except that ˆ0 need not be an
interior point of ä. These conditions rely on smoothness of
GT 4ˆ5 in a neighborhood of ˆ0 and use the argument of (17)–
(19) to establish assumption GMM2(d).

Assumption GMM2 ü . (a) 8Yt 2 t D : : : 1 0111 : : : 9 is sta-
tionary and ergodic.

(b) GT 4ˆ5 D T ƒ1
PT

tD1 g4Yt1 ˆ5 for some function g4¢1 ¢5.
(c) For some ˜ > 0, g4y1 ˆ5 is continuously differentiable

in ˆ on S4ˆ01 ˜5 for y in the support of Yt1 E˜g4Yt1 ˆ5˜ < ˆ
for ˆ 2 S4ˆ01 ˜5, and E supˆ2S4ˆ01˜5

˜4¡=¡ˆ 05g4Yt1 ˆ5˜ < ˆ.
(d) â D E4¡=¡ˆ05g4Yt1 ˆ05 is full column rank.
(e) Eg4Yt1 ˆ05 D 0.
(f) Assumption GMM2(e) holds.

De� ne

Wt
D g4Yt1 ˆ05 and

vj
D E4W0—Wƒj1Wƒjƒ11 : : : 5

ƒ E4W0—Wƒjƒ11Wƒjƒ21 : : : 5 for j ¶ 00 (20)

Assumption GMM3 ü . (a) E˜g4Yt1 ˆ05˜2 < ˆ.
(b) E4W0

—Wƒj1Wƒjƒ11 : : : 5 converges in mean square to 0
as j ! ˆ.

(c)
Pˆ

jD0 E˜vj
˜ < ˆ.

Next, simple smoothness conditions are provided that are
suf� cient for Assumption GMM2 and that apply even when
G4ˆ5 and GT 4ˆ5 are not de� ned on a neighborhood of ˆ0.
Some terminology must be introduced. Let f be a function
whose domain includes ¸ Rs . Let a 2 ¸ . A Taylor expan-
sion of f 4x5 about f 4a5 to hold for points x 2 ¸ is desired.
It is supposed that ¸ ƒ a equals the intersection of a union of
orthants and an open cube, C401 ˜5, centered at 0 with edges
of length 2˜ for some ˜ > 0. (Thus ¸ ƒa is locally equal to a
union of orthants.) As de� ned, ¸ is a cube centered at a with
some “orthants” of the cube removed.

The function f is said to have left/right (l/r) partial deriva-
tives (of order 1) on ¸ if it has partial derivatives at each inte-
rior point of ¸ ; if it has partial derivatives at each boundary
point of ¸ with respect to coordinates that can be perturbed
to the left and right; and if it has left (right) partial derivatives
at each boundary point of ¸ with respect to coordinates that
can be perturbed only to the left (right). Note that the shape
of ¸ is such that 8 x 2 ¸ and for all coordinates xj of x, it
is possible to perturb xj to the right or left or both and stay
within ¸ . Thus it is possible to de� ne the left, the right, or
the two-sided partial derivative of f with respect to xj at x
8 j µ s and 8 x 2 ¸ .

The function f is said to have l/r partial derivatives of order
k on ¸ for k ¶ 2 if f has l/r partial derivatives of order k ƒ 1
on ¸ and each of the latter has l/r partial derivatives on ¸ .
f has continuous l/r partial derivatives of order k on ¸ if f

has l/r partial derivatives of order k on ¸ , each of which is
continuous at all points in ¸ , where continuity is de� ned in
terms of local perturbations only within ¸ .

Assumption GMM22 ü . (a) AssumptionsGMM2(a),GMM2(c),
and GMM2(e) hold.

The domain of G4ˆ5 includes a set äC that satis� es
äC ƒ ˆ0 equals the intersection of a union of orthants and an
open cube C401 ˜5 for some ˜ > 0 and ä \S4ˆ01 ˜15 äC for
some ˜1 > 0, where ä is the parameter space. Each element of
the k-vector–valued function G4ˆ5 has continuous l/r partial
derivatives of order 1 on äC.

(b) (c) Each element of the k-vector–valued function
GT 4ˆ5 has continuous l/r partial derivatives of order 1 on
äC 8 T ¶ 1 with probability 1.

(d) For all ƒT
! 0,

sup
ˆ2ä2˜ˆƒˆ0˜µƒT

¡

¡ˆ0 GT 4ˆ5 ƒ ¡

¡ˆ0 GT 4ˆ05 D op4151

where 4¡=¡ˆ05GT 4ˆ5 denotes the k � s matrix of l/r partial
derivatives of GT 4ˆ5.

(e) 4¡=¡ˆ05GT 4ˆ05 !
p â D 4¡=¡ˆ05G4ˆ05, where 4¡=¡ˆ05�

G4ˆ05 denotes the k � s matrix of l/r partial derivatives of
G4ˆ5 at ˆ0.

Lemma 2. (a) Assumption GMM2 ü implies assumption
GMM2 with G4ˆ5 D Eg4Yt1 ˆ5.

(b) Assumptions GMM2 ü and GMM3 ü imply that assump-
tion GMM3 holds with ¶ D Pˆ

jDƒˆ Eg4Y01 ˆ05g4Yƒj1 ˆ05
0.

(c) Assumption GMM22 ü implies assumption GMM2.

Comment. Assumptions GMM2 ü and GMM3ü also imply
that the autocovariances 8Eg4Y01 ˆ05g4Yƒj1 ˆ05

0 2 j D : : : 101

11 : : : 9 are absolutely summable.
Next, MD estimators are considered. It is easy to see that

assumption GMM2 holds in the MD case with G4ˆ5 D �0 ƒ
h4ˆ5 under the following conditions.

Assumption MD2. (a) O�T
!

p �0.
(b) h4ˆ5 D h4ˆ05Câ4ˆƒˆ05Co4˜ˆ ƒˆ0

˜5 as ˜ˆ ƒˆ0
˜ ! 0

for ˆ 2 ä \S4ˆ01 ˜5 for some ˜ > 0, where â is a nonrandom
k � s matrix with full column rank.

(c) �0 D h4ˆ05.
(d) The weight matrix AT 4ˆ5 satis� es assumption

GMM2(e).

With the MD estimator, assumption GMM2(d) holds auto-
matically because GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05 D 0. Assumption
GMM3 is established for the MD estimator by showing that
T 1=24 O�T

ƒ�05 !
d

eG N 401¶ 5 for some nonrandom matrix ¶ .

3.4 Quadratic Approximation of the Generalized
Method of Moments Criterion Function

The criterion function LT 4ˆ5 has a quadratic approximation
given by

LT 4ˆ5 D ˜AT 4ˆ05GT 4ˆ05˜2=2 C GT 4ˆ05
0Mâ4ˆ ƒ ˆ05

C 1
2

4ˆ ƒ ˆ05
04â 0Mâ54ˆ ƒ ˆ05 C RT 4ˆ51 where

M D A0A (21)

and RT 4ˆ5 is a remainder term. Under assumptions GMM2
and GMM3, it can be shown that the remainder RT 4ˆ5 is
small.
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Lemma 3. Assumptions GMM2 and GMM3 imply that for
all ƒT

! 0,

sup
ˆ2ä2˜ˆƒˆ0˜µƒT

T —RT 4ˆ5—=41C ˜T 1=24ˆ ƒ ˆ05˜52 D op4150 (22)

Comment. The property of the remainder in (22) is shown
to be suf� ciently strong that the difference between the
normalized GMM estimator, T 1=24 Ô ƒ ˆ05, and the normal-
ized estimator that minimizes the quadratic approximation to
LT 4ˆ5, say T 1=24 Q̂ ƒ ˆ05, is op415, and hence the two esti-
mators have the same asymptotic distribution. Of course, it
is much simpler to determine the asymptotic distribution of
T 1=24 Q̂ƒˆ05 than that of T 1=24 Ôƒˆ05, because a quadratic cri-
terion function is very well behaved.

Next, the quadratic approximation to the GMM criterion
function LT 4ˆ5 is simpli� ed. De� ne

ª D â 0Mâ1

ZT
D ª ƒ1â 0MT 1=2GT 4ˆ051

and

qT 4‹5 D 4‹ ƒ ZT 50ª 4‹ ƒ ZT 5 for ‹ 2 Rs 0 (23)

Then (21) can be written as

LT 4ˆ5 D LT 4ˆ05 C 4â 0MGT 4ˆ055
04ˆ ƒ ˆ05

C 1
2

4ˆ ƒ ˆ05
0ª 4ˆ ƒ ˆ05 C RT 4ˆ5

D LT 4ˆ05 ƒ 1

2T
Z 0

T ª ZT

C 1
2T

qT T 1=24ˆ ƒ ˆ05
¢

C RT 4ˆ50 (24)

Note that the estimator that minimizes the quadratic approx-
imation to LT 4ˆ5 (i.e., the right side of (24) excluding
RT 4ˆ55, call this estimator Ô

q , equals ˆ0
C T ƒ1=2ZT 0 Hence,

T 1=24 Ô
q

ƒ ˆ05 D ZT and ZT determines the asymptotic distri-
bution of the unrestricted estimator.

3.5 The Parameter Space

This section provides conditions on the parameter space
under which the asymptotic distribution of the GMM estima-
tor Ô is derived. The condition used is from Chernoff (1954),
who considered likelihood ratio tests when a parameter is on
a boundary.

The asymptotic distribution of Ô depends on a local approx-
imation to the shifted parameter space ä ƒ ˆ00 The local
approximation is given by a cone. By de� nition, a set å Rs

is a cone if ‹ 2 å implies a‹ 2 å 8 a 2 R with a > 0. Exam-
ples of cones include Rs , linear subspaces, orthants, unions of
orthants, and sets de� ned by linear equalities and/or inequal-
ities of the form âa‹ D 0 and âb‹ µ 0, where âj is a kj

� s

matrix for j D a1 b.
De� ne the distance between a point y 2 Rs and a set å

Rs by

dist4y1å5 D inf
‹2å

˜y ƒ ‹˜0 (25)

A set ê Rs is locally approximated (at the origin) by a
cone å Rs if

dist4”1å5 D o4˜”˜5 as ˜”˜ ! 0 for ” 2 ê

and
dist4‹1 ê5 D o4˜‹˜5 as ˜‹˜ ! 0 for ‹ 2 å0 (26)

Assumption GMM4. ä ƒ ˆ0 is locally approximated by a
cone å.

Assumption GMM4 allows for linear, kinked, and curved
boundaries.

Now two easily veri� able suf� cient conditions for Assump-
tion GMM4 are given. The conditions are speci� ed in terms
of the parameter space ä shifted to be centered at the origin
rather than at ˆ0, that is, in terms of ä ƒ ˆ0. A set â Rs

is said to be locally equal to a set å Rs if â \ S401 ˜5 D
å \S401 ˜5 for some ˜ > 0.

Assumption GMM4ü . ä ƒ ˆ0 is locally equal to a cone
å Rs.

Assumption GMM4 ü allows for parameter spaces ä ƒ ˆ0,
which are de� ned by multivariate linear equality and/or
inequality constraints. For example, one could have

ä D 8ˆ 2 Rs 2 âaˆ D r11 âbˆ µ r21 ˜ˆ˜ µ c < ˆ91 (27)

âaˆ0
D r1, and âbˆ0 µ r2 with equality for zero or more ele-

ments of r2, where âj is an `j
� s matrix, rj is an `j-vector,

and 0 µ `j µ s for j D a1 b. In this example,

å D 8‹ 2 Rs 2 âa‹ D 01 âb1‹ µ 091 (28)

where âb1 denotes the submatrix of âb that consists of the rows
of âb for which âbˆ0 µ r2 holds as an equality.

Assumption GMM4ü does not allow for any curvature in
the boundary of ä near ˆ0. Such curvature arises in some
examples, such as cases where ä is a sphere, ellipse, cylinder,
or a set de� ned by smooth nonlinear equality and/or inequality
constraints and ˆ0 is on its boundary. Assumption GMM4 can
be veri� ed in these cases using the following conditions.

The following suf� cient condition for assumption GMM4
considers the case where ˆ0 is on the boundary of ä and
some smooth nonlinear equality and/or inequality constraints
are binding at ˆ0.

Assumption GMM42 ü . For some ˜ > 0, ä \ S4ˆ01 ˜5 D
8ˆ 2 Rs 2 ma4ˆ5 D 0, mb4ˆ5 µ 0, ˜ˆ ƒ ˆ0

˜ µ ˜9, where mj4ˆ5 2
Rcj for 0 µ cj < ˆ for j D a1 b; mj4ˆ05 D 0 for j D a1 b; and
m4¢5 D 4ma4¢501 mb4¢5050 is continuously differentiable on some
neighborhood of ˆ0 with 4¡=¡ˆ05m4ˆ05 of full row rank.

Note that Assumption GMM42 ü speci� es the parameter
space only locally to ˆ0 and, by de� nition, ma4ˆ5 D 0 and
mb4ˆ5 µ 0 are constraints that are binding at ˆ0. If the true
parameter vector ˆ0 changes, then the inequality constraints
that are binding at ˆ0, mb4¢5, typically change as well.

Lemma 4. Each of assumptions GMM4 ü and GMM42ü

is suf� cient for assumption GMM4. Under assumption
GMM42ü , assumption GMM4 holds with å D 8‹ 2 Rs 2
4¡=¡ˆ05ma4ˆ05‹ D 01 4¡=¡ˆ05mb4ˆ05‹ µ 09.
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The approximating cone å depends on the inequality con-
straints that are binding at ˆ0, that is, ma4ˆ5 D 0 and mb4ˆ5 µ 0
in the case of assumption GMM42 ü . For a different true param-
eter vector, å typically is different.

Obtaining the asymptotic distribution of Ô requires the fol-
lowing assumption.

Assumption GMM5. å is convex.

Assumption GMM5 holds for all of the examples of Section 2.

3.6 Asymptotic Distribution of the Generalized
Method of Moments Estimator

This section speci� es the asymptotic distribution of Ô. First,
note that by assumptions GMM2(e) and GMM3,

ZT
!

d Z D ª ƒ1G1 where G D â 0M eG and

qT 4‹5 !
d q4‹5 D 4‹ ƒ Z50ª 4‹ ƒ Z5 (29)

for each ‹ 2 Rs.
De� ne O‹ by O‹ 2 cl4å5 and

q4 O‹5 D inf
‹2å

q4‹50 (30)

Under assumption GMM5, O‹ is uniquely de� ned.
The asymptotic distribution of T 1=24 Ôƒˆ05 is that of O‹. This

is the main result of this article.

Theorem 1. Suppose that assumptions GMM1–GMM5
hold. Then T 1=24 Ô ƒ ˆ05 !

d
O‹.

Comment. The proof of Theorem 1 is made by verifying
the conditions of theorem 3 of Andrews (1999), which applies
to general extremum estimators.

3.7 Asymptotic Distributions of Subvectors of the
Generalized Method of Moments Estimator

In this section the asymptotic distribution of T 1=24 Ô ƒ ˆ05
is simpli� ed by partitioning ˆ into two subvectors and pro-
viding separate expressions for each of the two corresponding
subvectors of O‹.

ˆ is partitioned as follows:

ˆ D
³

‚
„

´
and ˆ0

D
³

‚0

„0

´
1 (31)

where ‚1‚0
2 Rp , „1„0

2 Rq , 0 µ p1q µ s, and p C q D s.
Later it is assumed that „0 is a parameter not on a boundary.
This feature characterizes the subvectors ‚ and „.

The vectors and matrices Ô, G, Z, ª , O‹T , and O‹ are parti-
tioned conformably with ˆ. Let

Ô D
³

O‚
O„

´
1 G D

³
G‚

G„

´
1 Z D

³
Z‚

Z„

´
1

ª D
µ

ª‚ ª‚„

ª„‚ ª„

¶
1 O‹T

D
³

O‹‚T

O‹„T

´
1 and O‹ D

³
O‹‚

O‹„

´
0 (32)

The de� ning feature of the parameter „ is given in part (b)
of the following assumption.

Assumption GMM6. (a) The cone å of assumption
GMM4 is a product set å‚

� å„, where å‚ Rp and å„ Rq .
(b) å„

D Rq .

Assumption GMM6 requires that „0 is not on a boundary.
Any element of ˆ that does not satisfy this condition is lumped
in with ‚.

Some calculations show that

Z‚
D HZ D ª ƒ1

‚ G‚
C ª ƒ1

‚ ª‚„4ª„
ƒ ª„‚ª ƒ1

‚ ª‚„5
ƒ1

� 4ª„‚ª ƒ1
‚ G‚

ƒ G„5, where

H D 6Ip

000 07 2 Rp� 4pCq50 (33)

De� ne

q‚4‹‚5 D 4‹‚
ƒ Z‚50 Hª ƒ1H 0¢ƒ1

4‹‚
ƒ Z‚50 (34)

Theorem 2. Suppose that assumptions GMM1–GMM6
hold. Then,

T 1=24 O‚ ƒ ‚05 !
d

O‹‚, where

O‹‚
2 cl4å‚5 solves q‚4 O‹‚5 D inf

‹‚2å‚

q‚4‹‚51

T 1=24 O„ ƒ „05 !
d ª ƒ1

„ G„
ƒ ª ƒ1

„ ª„‚
O‹‚1

and the convergence of the two terms holds jointly.

Comments. 1. Theorem 2 shows that the asymptotic dis-
tribution of O„ depends on whether ‚0 is on a boundary if and
only if ª„‚

6D 0.
2. Theorem 2 is a special case of corollary 1(b) of Andrews

(1999).

3.8 A Closed-Form Expression for O‹‚

Now an assumption on å‚ is considered under which there
is a closed-form expression for O‹‚ and hence for O‹„ as well.

Assumption GMM7. å‚
D 8‹‚

2 Rp 2 âa‹‚
D 0, âb‹‚ µ 09,

where â D 6â 0
a

000 â 0
b70 is a full-row rank matrix.

Note that assumption GMM7 allows for the case where âa

or âb does not appear. Assumption GMM7 holds in all of the
examples considered in this article. For å‚ as in assumption
GMM7, O‹‚ is the solution to a quadratic programming (QP)
problem with mixed linear equality and inequality constraints.
Andrews’s (1999) theorem 5 gives a closed-form solution to
this problem. As an example, suppose that å‚

D RC � Rpƒ1.
Then

O‹‚
D

8
><
>:

KZ‚K if Z‚K1 ¶0

K401Z‚K2
ƒ�12Z‚K11: : : 1Z‚Kp

ƒ�p1Z‚K15
0

otherwise,

where
K D diag1=24Hª ƒ1H 051 Z‚K

D 4Z0
‚K11: : : 1Z0

‚Kp50 DKƒ1Z‚1

and
�ij

D 6Kƒ1Hª ƒ1H 0Kƒ17ij for i1j D11: : : 1p0 (35)

When å‚
D Rƒ � Rpƒ1, the inequality in (35) is reversed.



538 Journal of Business & Economic Statistics, October 2002

As a second example, suppose that å‚
D 4RC52 � Rpƒ2.

Then

O‹‚
D KPLK 4bj5Z‚K1

where

PLK 4 Oj5Z‚K
D 14Z‚K1 >01Z‚K2 >05Z‚K

C14Z‚K1 ƒ�21Z‚K2 >01Z‚K2 µ05

� 4Z‚K1
ƒ�21Z‚K2101Z‚K3

ƒ�23Z‚K21

: : : 1Z‚Kp
ƒ�2pZ‚K25

0

C14Z‚K1 µ01Z‚K2
ƒ�12Z‚K1 >05

� 401Z‚K2
ƒ�12Z‚K11: : : 1Z‚Kp

ƒ�1pZ‚K15
01 (36)

where K and �ij are as in (35). For the case where å‚
D Rƒ �

RC � Rpƒ2, (36) holds but with the � rst of the two inequalities
reversed in each of the indicator functions in the de� nition
of PLK 4 Oj5Z‚K . Adjustments of (36) for the cases where å‚

D
RC � Rƒ � Rpƒ2 and å‚

D 4Rƒ52 � Rpƒ2 are analogous.
For the case where å‚ is of the form å‚

D 8‹‚
2

Rp 2 ‹‚1 ¶ 01 âa‹‚
D 091 O‹‚ is as de� ned in (35), but with

Z‚K replaced by PâaK Z‚K , where PâaK
D Ip

ƒ Kƒ1Hª ƒ1

H 0â 0
a4âaHª ƒ1H 0â 0

a5ƒ1âaK. For the case where å‚ is of the
form å‚

D 8‹‚
2 Rp 2 ‹‚1 ¶ 0, ‹‚2 ¶ 0, âa‹‚

D 09, O‹‚ is as
de� ned in (36), but with Z‚K replaced by PâaK Z‚K .

One can simulate the distribution of O‹‚ when å‚ is as
in assumption GMM7 by simulating Z‚ or Z‚K and com-
puting O‹‚ using a standard quadratic programming algorithm
(see, e.g., Gill, Murray, and Wright 1981). The programs
GAUSS and Matlab have built-in procedures for doing so,
called QPROG and QP. The GAUSS procedure QPROG is
very quick. Alternatively, one can use the formulas of theorem
5 of Andrews (1999) or the foregoing equations.

4. INSTRUMENTAL VARIABLES
REGRESSION EXAMPLE

4.1 Instrumental Variables Objective Function

The � rst example considers an IV estimator. The IV esti-
mator minimizes the following quadratic form subject to the
restrictions

LT 4ˆ5 D T ƒ1
TX

tD1

4Yt
ƒ X 0

tˆ5Z 0
t

³
T ƒ1

TX

tD1

ZtZ
0
t

ƒ́1

� T ƒ1
TX

tD1

4Yt
ƒ X 0

tˆ5Zt=20 (37)

The parameter space ä is a compact set given by

ä D 8ˆ 2 Rs 2 ma4ˆ5 D 01mb4ˆ5 µ 01h4ˆ5 µ 090 (38)

The errors, regressors, and IVs 84˜t1 Xt1Zt5 2 t µ T 9 are iid
with

E˜tZt
D 01 E˜˜tZt

˜2 < ˆ1 E˜XtZ
0
t
˜2 < ˆ1

EZtZ
0
t > 01 and EZtX

0
t has full row rank. (39)

In this example,

GT 4ˆ5 D T ƒ1
TX

tD1

4Yt
ƒ X 0

tˆ5Zt1 AT 4ˆ5 D
³

T ƒ1
TX

tD1

ZtZ
0
t

ƒ́1=2

1

G4ˆ5 D E4Yt
ƒ X 0

tˆ5Zt1 â D ƒEZtX
0
t1 M D 4EZtZ

0
t5

ƒ11

and
ª D EXtZ

0
t4EZtZ

0
t5

ƒ1EZtX
0
t > 00 (40)

Assumption GMM1 ü (a) holds because

sup
ˆ2ä

˜GT 4ˆ5 ƒ G4ˆ5˜

D sup
ˆ2ä

T ƒ1
TX

tD1

˜tZt
ƒ T ƒ1

TX

tD1

4ZtX
0
t
ƒ EZtX

0
t54ˆ ƒ ˆ05

µ T ƒ1
TX

tD1

˜tZt
C sup

ˆ2ä

˜ˆ ƒ ˆ0
˜

¢ T ƒ1
TX

tD1

ZtX
0
t
ƒ EZtX

0
t 1 (41)

the right side is op415 by the WLLN and the assumption that
ä is compact, and AT 4ˆ50AT 4ˆ5 !

p 4EZtZ
0
t5

ƒ1 > 0 by the
WLLN and Slutsky’s theorem.

Assumption GMM1 ü (b) holds because

L4ˆ5 D ˜AG4ˆ5˜2=2

D 4ˆ ƒ ˆ05
0EXtZ

0
t4EZtZ

0
t5

ƒ1EZtX
0
t4ˆ ƒ ˆ05=2 (42)

and hence for ˜ > 0,

inf
ˆ2ä=S4ˆ01˜5

L4ˆ5 ¶ ‹min4ª 5˜ > 0 D L4ˆ050 (43)

Assumption GMM2(a) holds by the WLLN. Assumption
GMM2(b) holds because GT 4ˆ5 is differentiable in ˆ with
partial derivative matrix â D ƒEZtX

0
t . Assumption GMM2(c)

holds because G4ˆ05 D E˜tZt
D 0. Assumption GMM2(d)

holds because

GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05 D ƒT ƒ1
TX

tD1

4ZtX
0
t
ƒ EZtX

0
t54ˆ ƒ ˆ05

and

sup
˜ˆƒˆ0˜µƒT

T 1=2 T ƒ1
TX

tD1

4ZtX
0
t
ƒ EZtX

0
t54ˆ ƒ ˆ05

.
1 C T 1=2˜ˆ ƒ ˆ0˜

¢

µ T ƒ1
TX

tD1

4ZtX
0
t
ƒ EZtX

0
t5 D op415 (44)

using the WLLN.
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Assumption GMM2(e) holds by the WLLN and Slutsky’s
theorem given that EZtZ

0
t is positive de� nite. Assumption

GMM3 holds with

eG N 401¶ 51 where ¶ D E˜2
t ZtZ

0
t 0 (45)

This follows from the CLT for iid mean 0 � nite variance ran-
dom variables.

4.2 Parameter Space

Assumption GMM42 ü holds in this example provided that
ma4ˆ5 and mb4ˆ5 are continuously differentiable on some
neighborhood of ˆ0 and 4¡=¡ˆ05m4ˆ05 is full row rank, where
m4ˆ5 D 4ma4ˆ501 mb4ˆ5050. In consequence, by Lemma 4,
assumption GMM4 holds with

å D ‹ 2 Rs 2
¡

¡ˆ 0 ma4ˆ05‹ D 01
¡

¡ˆ0 mb4ˆ05‹ µ 0 0 (46)

For å as such, assumption GMM5 holds.
For example, suppose that

mj4ˆ5 D v0
jˆ ƒ dj (47)

for some given vj
2 Rs and dj

2 R for j D a1 b. Then

å D 8‹ 2 Rs 2 v0
a‹ D 01 v0

b‹ µ 090 (48)

Alternatively, suppose

mj 4ˆ5 D ˆ 0Vjˆ ƒ dj (49)

for Vj
2 Rs� s and dj as before for j D a1 b. Then the boundary

of ä at ˆ0 is elliptical and

å D 8‹ 2 Rs 2 ˆ0
0Va‹ D 01 ˆ0

0Vb‹ µ 090 (50)

4.3 Asymptotic Distribution of the Instrumental
Variables Estimator

In this example the quadratic approximation of (24) holds
with

ZT
D ª ƒ1â 0MT ƒ1=2

TX

tD1

˜tZt and

ª D EXtZ
0
t4EZtZ

0
t5

ƒ1EZtX
0
t 0 (51)

By Theorem 1, T 1=24 Ô ƒ ˆ05 !
d

O‹. By de� nition, O‹ 2 cl4å5
and

q4 O‹5 D inf
‹2å

q4‹51

where
q4‹5 D 4‹ ƒ Z50ª 4‹ ƒ Z53

G D â 0M eG N 401© 53

© D â 0M¶Mâ3

Z D ª ƒ1G N 401ª ƒ1©ª ƒ153 (52)

â , M , and ª are de� ned in (40); and å is de� ned in (46). If the
errors 8˜t 2 t ¶ 19 are homoscedastic given Zt [i.e., E4˜t

—Zt5 D
‘ 2 a.s.], then © D‘ 2ª and Z N 401‘ 2ª ƒ15.

4.4 Asymptotic Distribution of Subvectors of the
Instrumental Variables Estimator

Typically, the restrictions ma4ˆ5 D 0 and mb4ˆ5 µ 0 of
the IV example involve only some of the elements of
ˆ. In this case, the vector 4¡=¡ˆ05m4ˆ05, where m4ˆ5 D
4ma4ˆ501 mb4ˆ5050, that determines å contains some nonzero
columns, say p of them, and some columns of zeros, say s ƒp

of them. Without loss of generality, assume that the � rst p

columns of 4¡=¡ˆ05m4ˆ05 are nonzero vectors and that the last
q D s ƒ p columns are zero vectors for 1 µ p µ s.

The vectors Ô, ˆ0, and ˆ are partitioned such that

Ô D 4 O‚01 O„0501 ˆ0 D 4‚0
01 „0

05
0, and ˆ D 4‚01 „0501 (53)

where O‚1‚01 ‚ 2 Rp , and O„1„01 „ 2 Rq .
Now, with the foregoing partitioning, Assumption GMM6

holds. The set å is a product set å‚
� å„ with

å‚
D ‹‚

2 Rp 2
¡

¡‚0 ma4ˆ05‹‚
D 01

¡

¡‚0 mb4ˆ05‹‚ µ 0 and

å„
D Rq1 where

¡

¡‚0 mj4ˆ05 2 Rcj � p for j D a1 b0 (54)

For example, if mj4ˆ5 D v0
jˆ ƒ dj with vj

D 4v0
j‚10050 and

vj‚
2 Rp for j D a1 b, then

å‚
D 8‹‚

2 Rp 2 v0
a‚‹‚

D 01 v0
b‚‹‚ µ 090 (55)

Alternatively, if mj4ˆ5 D ˆ0Vj ˆ ƒ dj with Vj
D diag8Vj‚109

and Vj‚
2 Rp� p for j D a1 b, then

å‚
D 8‹‚

2 Rp 2 ‚0
0Va‚‹‚

D 01‚0
0Vb‚‹‚ µ 090 (56)

By Theorem 2,

T 1=24 O‚ ƒ ‚05 !
d

O‹‚1 (57)

where O‹‚ solves q‚4 O‹‚5 D inf‹‚2å‚
q‚4‹‚5 with å‚ as in (54)

and q‚4‹‚5 de� ned in (34). In the simplest case where p D 1,
which occurs when m4ˆ5 places an upper or lower bound on
a single parameter at ˆ D ˆ0, the closed-form expression for
O‹‚ given in (35) is applicable. If p > 1, then a closed-form
expression for O‹‚ is given in (36) or theorem 5 of Andrews
(1999).

By Theorem 2,

T 1=24 O„ ƒ „05 !
d

O‹„
D ª ƒ1

„ G„
ƒ ª ƒ1

„ ª„‚
O‹‚1

where

G D
³

G‚

G„

´
1 G„ N 401©„51

ª D
µ

ª‚ ª‚„

ª„‚ ª„

¶
1© D

µ
©‚ ©‚„

©„‚ ©„

¶
1 (58)

G„
2 Rq , and ª„

2 Rq� q .
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5. MULTINOMIAL RESPONSE MODEL EXAMPLE

5.1 Method of Simulated Moments Estimator

This example considers a method of simulated moments
(MSM) estimator. This is a GMM estimator. The moment con-
ditions are de� ned as follows. Let � 4Zt1 ˆ5 denote the con-
ditional expectation of D4Zth4‡t1 ˆ55 given Zt . Let W 4Zt1 ˆ5

denote an s � m matrix of instruments (see McFadden 1989
regarding the choice of instruments). Then the moment con-
ditions are

T ƒ1
TX

tD1

W4Zt1 ˆ54dt
ƒ � 4Zt1 ˆ550 (59)

These moment conditions have expectation zero when ˆ D ˆ0,
as desired. Following McFadden (1989) and Pakes and Pollard
(1989), the number of moment conditions is taken to equal
the dimension s of ˆ. In this case the choice of weight matrix
is immaterial, so AT 4ˆ5 D Is.

The conditional probability vector � 4Zt1 ˆ5 is computa-
tionally intractable in many cases because it is a vector of
high-dimensional integrals. Consequently, it is replaced in the
moment conditions by a simulated probability

O� S4Zt1 ˆ5 D Sƒ1
SX

jD1

D4Zth4‡tj1 ˆ551 (60)

where ‡t11 : : : 1‡tS are simulated random variables each with
the same distribution as ‡t and �t

D 4Zt1 ‡t1 ‡t11 : : : 1‡tS5 is
iid across t D 11 : : : 1 T . (With crude frequency simulators,
‡t11 : : : 1 ‡tS are iid. With variance-reduced simulators, they
are not necessarily independent.) The same simulated random
variables are used for all ˆ.

The simulated moment conditions on which the GMM esti-
mator is based are

GT 4ˆ5 D T ƒ1
TX

tD1

W 4Zt1 ˆ54dt
ƒ O� S4Zt1 ˆ550 (61)

The true parameter vector is

ˆ0
D ˆ0

101 ˆ 0
201 ˆ0

30

¢0 D 001 ˆ0
201 ˆ0

30

¢0
1 (62)

where ˆ10
2 Rp , ˆ20 > 0 (element by element), 4ˆ11 ˆ25 are

the parameters that must be nonnegative, and ˆ3 contains the
remaining parameters. The parameter space ä is

ä D8ˆ 2Rs 2ˆ D 4ˆ0
11ˆ

0
21ˆ

0
35

01ˆ1 ¶01ˆ2 ¶01ˆ3 D 4ˆ311: : : 1ˆ3J 501

c`j µˆ3j µcuj
8j D11: : : 1J 9 (63)

for some constants ƒˆ µ c`j < cuj µ ˆ for j D 11 : : : 1 J . The
true subvector ˆ30 of ˆ0 is assumed to not lie on a boundary.
The parameter space could incorporate additional restrictions
without affecting the results given later, provided that none are
binding at ˆ0. Note that ä is not necessarily a bounded subset
of Rs .

5.2 Veri’ cation of Assumptions GMM1–GMM3

The function G4ˆ5 and the matrix â that appear in assump-
tion GMM2 are

G4ˆ5 D EGT 4ˆ5 D EW 4Zt1 ˆ54� 4Zt1 ˆ05 ƒ � 4Zt1 ˆ55

and
â D ¡

¡ˆ0 G4ˆ05 D ƒEW 4Zt1 ˆ05
¡

¡ˆ0 � 4Zt1 ˆ051 (64)

where 4¡=¡ˆ 05G4ˆ05 and 4¡=¡ˆ05� 4Zt1 ˆ05 denote the matrices
of right partial derivatives of G4ˆ5 and � 4Zt1 ˆ05 at ˆ0 (see
Sec. 3.3).

The quadratic approximation of the GMM criterion function
depends on

ZT
D â ƒ1T 1=2GT 4ˆ05 and ª D â 0â0 (65)

Assumptions GMM1–GMM3 are veri� ed for this example
taking the approach of Pakes and Pollard (1989, Sec. 4.2),
using the previously stated assumptions plus the following:

(a) infˆ2ä=S4ˆ01˜5
˜G4ˆ5˜ > 0 8˜ > 0.

(b) G4ˆ5 has continuous right partial derivatives with
respect to ˆ1 and continuous partial derivatives with
respect to ˆ2 and ˆ3 at ˆ0.

(c) â is nonsingular.
(d) E supˆ2ä

˜W 4Zt1 ˆ5˜ < ˆ. (66)
(e) E supˆ2ä\S4ˆ0 1˜5

˜W 4Zt1 ˆ5˜2 < ˆ for some ˜ > 0.
(f) 8B4ˆ5 2 ˆ 2 ä9 is a VC class of sets, where B4ˆ5 D

84z1 ‡5 2 Rb � Rr 2 z0h4‡1ˆ5 ¶ 09.
(g) ¦W

D 8W 4¢1 ˆ5 2 ˆ 2 ä9 is a Euclidean class of functions
with envelope F that satis� es EF 24Zt5 < ˆ.

VC and Euclidean classes were de� ned by Pakes and Pollard
(1989, Sec. 2).

A suf� cient condition for (a) is that ä is compact, G4ˆ5

is continuous on ä, and G4ˆ5 has a unique zero at ˆ0. A
suf� cient condition for (f) is that h4‡1ˆ5 is of the form

h4‡1ˆ5 D ‚14ˆ5 C ‚24ˆ5‡ C ‡0‚34ˆ5‡ (67)

for some functions ‚j4ˆ5, j D 1121 3. This holds for the probit
models considered by McFadden (1989) and those discussed
earlier. Suf� cient conditions for (g) are that ä is bounded, con-
dition (e) holds, and W 4¢1 ˆ5 satis� es the Lipschitz condition

˜W 4Z1 ˆ ü 5 ƒ W 4Z1 ˆ5˜

µ ”4Z5˜ˆ ü ƒ ˆ˜ 8 Z 2 Rk� m1 8ˆ ü 1 ˆ 2 ä

and

E”24Zt5 < ˆ0 (68)

Suf� ciency of these conditions was shown by Pakes and Pol-
lard (1989, Sec. 4.2).

Now assumptions GMM1–GMM3 are veri� ed. Assumption
GMM1 is veri� ed by verifying assumption GMM1 ü . Assump-
tion GMM1 ü (a) holds by an empirical process uniform WLLN
by the argument of Pakes and Pollard (1989, Sec. 4.2) using
(d), (f), and (g). Assumption GMM1 ü (b) holds by (a).
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Assumption GMM2(a) holds by a pointwise WLLN for iid
random variables with � nite mean using (d). GMM2(b) holds
by the one-term Taylor expansion of theorem 6 of Andrews
(1999) and (c). GMM2(c) holds because Edt

D E� 4Zt1 ˆ05 D
E O� S4Zt1 ˆ05 using the assumption of identical distributions of
‡t1 ‡t11 : : : 1 ‡tS . GMM2(d) holds via empirical process results
by the argument of Pakes and Pollard (1989, Sec. 4.2) using
(e)–(g). GMM2(e) holds because AT 4ˆ5 D Is .

Assumption GMM3 holds by the CLT for iid square-
integrable random variables using (v) with

eG N 401¶ 5 and

¶ D EW4Zt1 ˆ054dt
ƒ O� S4Zt1 ˆ055

� 4dt
ƒ O� S4Zt1 ˆ055

0W 4Zt1 ˆ05
00 (69)

If ‡t1‡t11 : : : 1‡tS are independent conditional on Zt a.s., then
¶ simpli� es to

¶ D
³

1C 1
S

´
EW 4Zt1 ˆ054diag4� 4Zt1 ˆ055

ƒ � 4Zt1 ˆ05� 4Zt1 ˆ05
05W 4Zt 1 ˆ05

00 (70)

Hence in this example,

G D â 0 eG N 401 â 0¶â5 and

Z D ª ƒ1G D â ƒ1 eG N 401 â ƒ1¶ 4â ƒ15050 (71)

5.3 Parameter Space

Assumptions GMM4 ü and GMM5 hold in this example with
å D 4RC5p � Rsƒp .

5.4 Asymptotic Distribution of the Method
of Simulated Moments Estimator

By Theorem 1, T 1=24 Ô ƒ ˆ05 !
d

O‹, where O‹ satis� es (30)
with 4Z1 ª 5 de� ned in (65) and (71) and å D 4RC5p � Rsƒp .

5.5 Asymptotic Distribution of Subvectors of the
Method of Simulated Moments Estimator

In this case, write

ˆ D 4‚01 „0501 ‚ D ˆ11 and „ D 4ˆ 0
21 ˆ0

35
00 (72)

The set å is a product set å‚
� å„ with

å‚
D 4RC5p and å„

D Rsƒp0 (73)

Thus assumption GMM6 holds.
Recall that the parameter ˆ14D‚5 corresponds to the random

coef� cient variances that are zero in the random coef� cient
probit model, the proportion of the error variance due to the
random effect in the binary probit panel data model, or the
measurement error variances that are zero in the measurement
error probit model. By Theorem 2, the MSM estimator of this
parameter has asymptotic distribution given by

T 1=24 Ô
1 ƒ ˆ105 !

d
O‹‚1 (74)

where O‹‚
D Z‚14Z‚ ¶ 05 and O‹‚ has a half-normal distribution

when p D 1, O‹‚ is as in (36) when p D 2, and O‹‚ is as in
theorem 5 of Andrews (1999) for p > 2.

Also, by Theorem 2, the asymptotic distribution of the
remaining parameters is given by

T 1=2 Ô0
21

Ô0
3

¢0 ƒ 4ˆ0
201 ˆ0

305
0¢ !

d
O‹„1

where
O‹„

D ª ƒ1
„ G„

ƒ ª ƒ1
„ ª„‚

O‹‚1 G D G‚

G„

¢
N 401 â 0¶â51 (75)

and ª is partitioned as before.

6. PARTIALLY LINEAR REGRESSION EXAMPLE

In this example, the estimator objective function is semi-
parametric,

LT 4ˆ5 D T ƒ1
TX

tD1

6Yt
ƒ bE4Yt

— Zt5

ƒ 4Xt
ƒ bE4Xt

— Zt55
0ˆ76Xt

ƒ bE4Xt
— Zt57

2

21 (76)

where bE4Yt
— Zt5 and bE4Xt

— Zt5 are nonparametric bias-
reducing kernel estimators of ‡14Zt5 D E4Yt

— Zt5 and
‡24Zt5 D E4Xt

— Zt5, as de� ned by Robinson (1988). The
parameter space is the same as in (38) for the IV example.

In addition to the assumptions stated in Section 2.3, assume
that

ê D E4Xt
ƒ E4Xt

— Zt554Xt
ƒ E4Xt

— Zt55
0 > 01

E˜2
t

D‘ 2 < ˆ1 E—Xt
—4 < ˆ3 (77)

Zt has a density f 4¢5 with respect to Lebesgue measure; the
functions Œ4¢5, ‡14¢5, and ‡24¢5 satisfy the smoothness and
boundedness conditions of Robinson (1988, thm. 1); and the
bandwidth and trimming parameters and the kernel used in
the kernel estimators bE4Yt

— Xt1Zt5 and bE4Xt
— Zt5 satisfy the

conditions of Robinson (1988, thm. 1). In this example, GT 4ˆ5

equals the average inside the absolute value signs in (76) and
AT 4ˆ5 D Is .

Assumption GMM1 ü holds by the same argument as in the
IV example using the propositions in the appendix of Robin-
son (1988) to establish that

T ƒ1
PT

tD16
bE4Yt

— Zt5 ƒ E4Yt
— Zt57 !

p 0

and
T ƒ1

PT
tD16

bE4Xt
— Zt5 ƒ E4Xt

— Zt57 !
p 00 (78)

The function G4ˆ5 in this example is

G4ˆ5 D ƒE6Yt
ƒ E4Yt

— Zt5 ƒ 4Xt
ƒ E4Xt

— Zt55
0ˆ7

� 6Xt
ƒ E4Xt

— Zt57

D ƒê4ˆ ƒ ˆ051 (79)

where the second equality uses E4Yt
— Zt5 D E4Xt

— Zt5
0ˆ0

C
Œ4Zt5, E˜t

D 0, and ˜t is independent of Xt and Zt .
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Assumption GMM2(a) holds by (78) and the WLLN.
Assumption GMM2(b) holds with â D ƒê because G4ˆ5 is
differentiable. Assumption GMM2(c) holds by (79). Assump-
tion GMM2(d) holds by the same argument as in (44) for the
IV example with Xt and Zt each replaced by Xt

ƒ bE4Xt
— Zt5.

Assumption GMM3 holds in this example with

eG N 401¶ 5 and ¶ D‘ 2ê1 (80)

by the propositions in the appendix of Robinson (1988).
Hence,

â D ƒê1 M D Is1 ª D â 2 D ê2 > 01

G D ƒê eG N 401‘ 2ê351

and
Z D ª ƒ1âM eG D â ƒ2G N 401‘ 2êƒ150 (81)

Assumptions GMM42ü and GMM5 hold in this example
under the same conditions on m14ˆ5 and m24ˆ5 and with the
same å matrix as in the IV example. Given the foregoing
results, by Theorem 1, T 1=24 Ô ƒ ˆ05 !

d
O‹, where O‹ satis� es

(30) with 4Z1 ª 5 de� ned in (81) and å de� ned in (46).
The parameter ˆ can be partitioned in this example in the

same way as in the IV example. Then the asymptotic distribu-
tions of T 1=24 O‚ ƒ ‚05 and T 1=24 O„ ƒ „05 are the same as in the
IV example but with 4Z1 ª 5 de� ned as in (81).

APPENDIX: PROOFS

Proof of Lemma 1

Condition (a) and Assumption GMM2(d) are easily shown
to be equivalent given the assumption that G4ˆ5 D â4ˆ ƒˆ05C
o4˜ˆ ƒ ˆ0˜5. Condition (a) obviously implies Condition (b).
To obtain the converse, assume that Condition (b) holds and
write, uniformly over 8ˆ 2 ä 2 ˜ˆ ƒ ˆ0˜ µ ƒT 9,

˜GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05˜

D op4T ƒ1=2 C ˜GT 4ˆ5˜C ˜G4ˆ5˜5

µ op4T ƒ1=2 C ˜GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05˜

C ˜GT 4ˆ05˜C 2˜G4ˆ5˜51 (A.1)

where the � rst equality uses condition (b) and the second uses
Minkowski’s inequality. Rearranging this equation and using
the assumption that ˜GT 4ˆ05˜ D Op4T ƒ1=25 yields

˜GT 4ˆ5ƒ G4ˆ5ƒ GT 4ˆ05˜ D op4T ƒ1=2 C ˜G4ˆ5˜5 (A.2)

uniformly over 8ˆ 2 ä 2 ˜ˆ ƒ ˆ0˜ µ ƒT 9. Hence Condition (a)
of the lemma holds.

Proof of Lemma 2

Part (a) of the lemma is proved as follows. Assump-
tion GMM2(a) holds by GMM2 ü (a)–(c) and the ergodic the-
orem. Assumption GMM2(b) holds with G4ˆ5 D Eg4Yt1 ˆ5

and â D E4¡=¡ˆ05g4Yt 1 ˆ05 by GMM2 ü (c) and (d) using the
mean value and dominated convergence theorems. Assump-
tion GMM2(c) holds by GMM2 ü (e). Assumption GMM2(d)

holds by the argument of (17)–(19). Equation (17) holds by
GMM2 ü (a)–(c) using a uniform WLLN such as theorem 5 of
Andrews (1992) applied with assumption TSE-1D plus conti-
nuity of E4¡=¡ˆ05g4Yt1 ˆ5 at ˆ0 which holds by the dominated
convergence theorem.

Part (b) of the lemma follows by a CLT of Gordin, as in
Hansen (1982).

Part (c) is established as follows. Assumption GMM22 ü (b)
implies Assumption GMM2(b) by theorem 6 of Andrews
(1999). To establish Assumption GMM2(d), write

GT 4ˆ5 ƒ GT 4ˆ05 ƒ G4ˆ5 D ¡

¡ˆ0 GT 4ˆ!54ˆ ƒ ˆ05 ƒ G4ˆ5

D
³

¡

¡ˆ0 GT 4ˆ05 C op415

´
4ˆ ƒ ˆ05

ƒâ4ˆ ƒ ˆ05 C o4˜ˆ ƒ ˆ0˜5

D op4˜ˆ ƒ ˆ0˜5 (A.3)

uniformly over ˆ 2 ä 2 ˜ˆ ƒˆ0
˜ µ ƒT , where the � rst equality

holds for some ˆ! between ˆ and ˆ0 by theorem 6 of Andrews
(1999) [where ˆ! may differ across rows of 4¡=¡ˆ05GT 4ˆ!5],
the second equality holds by Assumptions GMM22 ü (d)
and GMM2(b), and the last equality holds by Assumption
GMM22ü (e). Multiplying (A.3) by T 1=2=˜T 1=24ˆ ƒ ˆ05˜ and
taking the supremum over 8ˆ 2 ä 2 ˜ˆ ƒ ˆ0

˜ µ ƒT 9 establishes
Assumption GMM2(d).

Proof of Lemma 3

First, the case where AT 4ˆ5 D Ik is considered. De� ne the
remainder term RT 4ˆ5 and a close approximation to it, R ü

T 4ˆ5,
which is obtained by replacing â4ˆ ƒ ˆ05 by G4ˆ5:

RT 4ˆ5 D GT 4ˆ50GT 4ˆ5=2 ƒ GT 4ˆ05
0GT 4ˆ05=2

ƒ GT 4ˆ05
0â4ˆ ƒ ˆ05 ƒ 4ˆ ƒ ˆ05

0â 0â 4ˆ ƒ ˆ05=2

and
R ü

T 4ˆ5 D GT 4ˆ50GT 4ˆ5=2 ƒ GT 4ˆ05
0GT 4ˆ05=2

ƒ GT 4ˆ05
0G4ˆ5 ƒ G4ˆ50G4ˆ5=20 (A.4)

Let a, b, and c be k-vectors for which a D b C c. By the
Cauchy–Schwarz inequality,

—a0a ƒ b0b— D —c0c C 2b0c— µ c0c C 2˜b˜ ¢˜c˜0 (A.5)

Now,

sup
ˆ2ä2˜ˆƒˆ0˜µƒT

T —R ü
T 4ˆ5ƒRT 4ˆ5—=41CT 1=2˜ˆƒˆ0˜52

D 1

2
sup

ˆ2ä2˜ˆƒˆ0˜µƒT

T —2GT 4ˆ05
04G4ˆ5ƒâ 4ˆƒˆ055

CG4ˆ50G4ˆ5ƒ4ˆƒˆ05
0â 0â4ˆƒˆ05—

=41CT 1=2˜ˆƒˆ0
˜52 Dop4151

where the � rst part of the second equality holds because
G4ˆ5ƒâ4ˆ ƒˆ05 D o4˜ˆ ƒˆ0

˜5 and T 1=2GT 4ˆ05 D Op415, and
the second part of the second equality holds by applying (A.5)
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with a D G4ˆ5, b D â4ˆ ƒ ˆ05, and c D o4˜ˆ ƒ ˆ0˜5. Thus it
suf� ces to show that (22) holds with RT 4ˆ5 replaced by R ü

T 4ˆ5.
Some algebra shows that

R ü
T 4ˆ5 D 4GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ055

0

� 4GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ055=2

C4G4ˆ5 C GT 4ˆ0554GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ0550

D ˜GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05˜2=2

C 4O4˜ˆ ƒ ˆ0
˜5 C GT 4ˆ055

0

� 4GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ0551 (A.6)

where the second equality uses assumptions GMM2(b)
and (c).

De� ne

‡T
D sup

ˆ2ä2˜ˆƒˆ0˜µƒT

T 1=2˜GT 4ˆ5 ƒ G4ˆ5 ƒ GT 4ˆ05˜
1C T 1=2˜ˆ ƒ ˆ0˜

0 (A.7)

By assumption GMM2(d), ‡T
D op415.

By (A.6) and (A.7),

sup
ˆ2ä2˜ˆƒˆ0˜µƒT

2T —R ü
T 4ˆ5—

41CT 1=2˜ˆƒˆ0
˜52

µ‡2
T

C2 sup
ˆ2ä2˜ˆƒˆ0˜µƒT

T 1=2Op4˜ˆƒˆ0˜5C˜T 1=2GT 4ˆ05˜
41CT 1=2˜ˆƒˆ0

˜5
‡T

D‡2
T

COp415‡T

Dop4151 (A.8)

which establishes the lemma for the case where AT 4ˆ5 D Ik.
Next, part (a) is established for the case where AT 4ˆ5 is as

in assumption GMM2(e). The idea is to use the same proof as
before, but with GT 4ˆ5, G4ˆ5, and â replaced by AT 4ˆ5GT 4ˆ5,
AG4ˆ5, and Aâ . This method works provided that assump-
tions GMM2(b), GMM2(c), and GMM2(d), which are used
in the foregoing proof, hold with the same changes. Assump-
tions GMM2(b) and GMM2(c) obviously do. By lemma 3.5
of Pakes and Pollard (1989), assumption GMM2(e) and con-
dition (b) of Lemma 1 imply that condition (b) of Lemma 1
holds with GT 4ˆ5 and G4ˆ5 replaced by AT 4ˆ5GT 4ˆ5 and
AG4ˆ5. In addition, Lemma 1 holds with these changes made
to its conditions (a) and (b) and to assumption GMM2(d) by
the proof given for the lemma. The last two results imply that
assumption GMM2(d) holds with the aforementioned changes,
as desired.

Proof of Lemma 4

The proof that assumption GMM4ü implies assumption
GMM4 is immediate given the de� nition of local approxima-
tion by a cone.

We now show that assumption GMM42 ü implies assump-
tion GMM4. By assumption, mj4ˆ05 D 0 for j D a1 b. Let
âj

D 4¡=¡ˆ05mj4ˆ05 2 Rcj � s for j D a1 b. Let

â D

2
4

âa

âb

âc

3
5 and mC4ˆ5 D

0
@

ma4ˆ5
mb4ˆ5

âc4ˆ ƒ ˆ05

1
A 1 (A.9)

where âc
2 R4sƒcaƒcb 5� s is chosen such that â is nonsingular.

Then mC4ˆ05 D 0 and 4¡=¡ˆ05mC4ˆ05 D â .
Let ê D ä ƒ ˆ0. Given ” 2 ê with ” close to 0, de� ne

‹ü D â ƒ1mC4ˆ0 C ”50 (A.10)

Then â‹ ü D mC4ˆ0
C”5, âa‹ü D ma4ˆ0

C”5 D ma4ˆ5 D 0, and
âb‹ü D mb4ˆ0

C ”5 D mb4ˆ5 µ 0 for ˆ D ˆ0
C ” 2 ä. Hence

‹ ü 2 å. Element-by-element mean-value expansions give

‹ ü D â ƒ1mC4ˆ0
C ”5

D â ƒ1mC4ˆ05 C â ƒ1 ¡

¡ˆ0 m
C4ˆ05” C o4˜”˜5

D 0 C â ƒ1â” C o4˜”˜5 D ” C o4˜”˜50 (A.11)

It is concluded that dist4”1 å5 µ ˜” ƒ ‹ü ˜ D o4˜”˜5, as
required by assumption GMM4.

Next, the function Qm4¢5 D mC4ˆ0 C ¢5 2 Rs ! Rs is con-
tinuously differentiable on a neighborhood of 0 with non-
singular Jacobian matrix at 0 and Qm405 D 0. Hence, by the
inverse function theorem, there exists a function Qmƒ14¢5 2 Rs !
Rs that satis� es Qmƒ14”5 is continuously differentiable and
Qm4 Qmƒ14”55 D ” for all ” in a neighborhood of 0, Qmƒ1405 D 0,

and 4¡=¡”05 Qmƒ1405 D 64¡=¡”05 Qm4057ƒ1 4D â ƒ15.
Given ‹ 2 å with ‹ close to 0, de� ne

” ü D Qmƒ14â‹50 (A.12)

Then mC4ˆ0 C ” ü 5 D Qm4” ü 5 D Qm4 Qmƒ14â‹55 D â‹, ma4ˆ0 C
” ü 5 D âa‹ D 0, and mb4ˆ0 C ” ü 5 D âb‹ µ 0. Hence ” ü 2 ê.
Element-by-element mean-value expansions give

” ü D Qmƒ14â‹5 D Qmƒ1405 C ¡

¡”0
Qmƒ1405â‹ C o4˜‹˜5

D 0C
µ

¡

¡”0
Qm405

¶ƒ1

â‹ C o4˜‹˜5 D ‹ C o4˜‹˜50 (A.13)

Hence dist4‹1ä ƒ ˆ05 µ ˜‹ ƒ ” ü ˜ D o4˜‹˜5, and Assumption
GMM4 holds.

Proof of Theorem 1

The theorem holds by theorem 3 of Andrews (1999) with
`T 4ˆ5, BT , and RT 4ˆ5 of Andrews (1999) equal to ƒTLT 4ˆ5,
T 1=2Is1 and ƒTRT 4ˆ5 of this article provided that assump-
tions 2–6 of Andrews (1999) hold. The latter are implied by
Andrews’s (1999) assumptions 1, 2 ü 1 3, 5, and 6. These are
veri� ed as follows. Andrews’s assumption 1 holds by assump-
tion GMM1. Assumption 2 ü holds by lemma 3 given assump-
tions GMM2 and GMM3. Assumption 3 holds immediately
from assumption GMM3 and same as in the nonsingularity of
ª , which holds by assumption GMM2. Assumptions 5 and 6
are implied by assumptions GMM4 and GMM5.

Proof of Theorem 2

Theorem 2 is a special case of corollary 1(b) of Andrews
(1999).
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