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CROSS-SECTION REGRESSION WITH COMMON SHOCKS

BY DONALD W. K. ANDREWS1

This paper considers regression models for cross-section data that exhibit cross-
section dependence due to common shocks, such as macroeconomic shocks. The pa-
per analyzes the properties of least squares (LS) estimators in this context. The results
of the paper allow for any form of cross-section dependence and heterogeneity across
population units. The probability limits of the LS estimators are determined, and nec-
essary and sufficient conditions are given for consistency. The asymptotic distributions
of the estimators are found to be mixed normal after recentering and scaling. The t�
Wald, and F statistics are found to have asymptotic standard normal, χ2, and scaled χ2

distributions, respectively, under the null hypothesis when the conditions required for
consistency of the parameter under test hold. However, the absolute values of t, Wald,
and F statistics are found to diverge to infinity under the null hypothesis when these
conditions fail. Confidence intervals exhibit similarly dichotomous behavior. Hence,
common shocks are found to be innocuous in some circumstances, but quite problem-
atic in others.

Models with factor structures for errors and regressors are considered. Using the
general results, conditions are determined under which consistency of the LS estima-
tors holds and fails in models with factor structures. The results are extended to cover
heterogeneous and functional factor structures in which common factors have different
impacts on different population units.

KEYWORDS: Asymptotics, common shocks, dependence, exchangeability, factor
model, inconsistency, regression.

1. INTRODUCTION

THE REGRESSION MODEL ESTIMATED BY LEAST SQUARES (LS) is the work-
horse of econometrics. The properties of LS estimators and related testing
methods have been studied extensively. In particular, there has been extensive
research on the effects on these estimators of key features of economic data
such as simultaneity, measurement errors, left-out variables, heteroskedastic-
ity, and autocorrelation.

Surprisingly, however, there has been little research on the effects of com-
mon shocks on the properties of LS estimators in cross-section regressions.
There has been some research on models with group effects, e.g., Moulton
(1990) and other references listed below, and on models with spatial autocor-
relation, e.g., see Case (1991) and Conley (1999) and other references listed

1This paper was prepared for the Ted Hannan Lecture at the Australasian Meetings of the
Econometric Society held in Sydney, Australia, in July 2003. The author thanks the organizers of
these meetings for their work. The author thanks Peter Phillips for remarks and comments made
over the years on the general topic considered in this paper. He also thanks the co-editor and two
anonymous referees for helpful comments, and Joe Altonji and Guido Imbens for references.
The author gratefully acknowledges the research support of the National Science Foundation via
Grant SES-0001706.
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below, but this research focuses on shocks that are predominantly local in na-
ture. Common shocks need not be of this form.

By common shocks, we mean macroeconomic, technological, legal/institu-
tional, political, environmental, health, and sociological shocks. It seems
apparent that common shocks are a likely feature of cross-section economic
data (see Andrews (2003) for further discussion). This is true whether the pop-
ulation units in the cross-section regression are individuals, households, firms,
industries, plants, cities, states, countries, or products.

The impact of common shocks typically is not the same across different
population units. For example, a stock market shock affects wealthy individ-
uals much more than poor individuals. An oil price shock affects airlines and
auto companies much more than computer companies. In the extreme, some
common shocks may have no affect on some population units. In the analy-
sis below, common shocks are allowed to have different impacts on different
population units depending on the characteristics (possibly observed, possibly
unobserved) of the population units.

In this paper, we analyze the effects of common shocks on the properties
of LS estimators and related test statistics. We start by assuming that there is
a common shock σ-field, C� such that the observations are i.i.d. conditional
on C� This is referred to as Assumption 1. For example, if there is a vector C
of common shocks, then C is the σ-field generated by C� Typical factor models
are of this type. As discussed below, Assumption 1 is shown to be surprisingly
general. At the same time, it yields asymptotic results that are remarkably sim-
ple.

Using Assumption 1, we address the question of when do common shocks
cause problems for standard methods and when do they not. First, we deter-
mine the probability limit of LS estimators in the general setting. We obtain
necessary and sufficient conditions for consistency of the estimators. Next, we
specify standard factor structures for the errors and regressors. We show that
consistency holds or fails to hold depending upon the properties of the com-
mon factors and the idiosyncratic components in the models. We extend these
results to what we call heterogeneous factor structures and functional factor
structures. In these factor structures, common shocks are infinite dimensional
and the impact of a common shock on a population unit depends on the charac-
teristics of that unit. Special cases of the factor structures considered include
models with variance components and models with group structures, but the
factor models covered by the results are much more general than these mod-
els.

Returning to the general setting, we establish that the estimators (suit-
ably normalized) have mixed normal asymptotic distributions. The asymptotic
properties of t� Wald, and F statistics are determined. They are found to have
asymptotic standard normal, χ2� and scaled χ2 distributions, respectively, un-
der the null hypothesis when the necessary conditions for consistency hold.
Similarly, the usual confidence intervals for regression parameters are shown
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to have asymptotically correct coverage probabilities when the necessary con-
ditions for consistency hold.

On the other hand, when the conditions for consistency of the parameter
under test do not hold, absolute values of t� Wald, and F statistics diverge to
infinity in probability under the null. Correspondingly, the usual confidence
intervals have coverage probabilities that converge to zero as the sample size
goes to infinity. Such behavior, obviously, is problematic. We conclude that
there is a sharp dichotomy in the behavior of test statistics when common
shocks are present depending upon the assumptions. These results are applied
easily to the models discussed above with standard, heterogeneous, and func-
tional factor structures.

To justify the basic assumption, viz. Assumption 1, we utilize a different prob-
abilistic framework than is usual in statistics and econometrics. We start by
defining random vectors for all units in the population, not just the observed
units, on a given probability space. We allow for general patterns of cross-
section dependence and heterogeneity across the population units. Then we
consider i.i.d. sampling from the population with the randomness in the sam-
pling defined on the same probability space.2 This sampling scheme leads to
exchangeable observations, which have the property of being i.i.d. conditional
on some σ-field C by de Finetti’s theorem. That is, it leads to Assumption 1
holding. The framework is similar to that used by Conley (1999), but does not
impose a strong mixing assumption.

The asymptotic results are obtained by exploiting the exchangeability of the
observations, which results from i.i.d. sampling from the population. A law of
large numbers (LLN) for exchangeable random variables leads to the proba-
bility limit results for the estimators. A martingale difference sequence (MDS)
central limit theorem (CLT) provides the mixed normal asymptotic distribu-
tional results. The necessary and sufficient condition for consistency of the
LS slope coefficient estimator is that the errors are conditionally uncorrelated
with the regressors given the σ-field C that is generated by common shocks.
The form of C is simple in the case of models with standard, heterogeneous, or
functional factor structures. As noted above, the necessary and sufficient con-
dition holds or fails in the factor structure models depending on the properties
of the factors and idiosyncratic components in the models.

The paper discusses extensions of the results to panel regression models with
a fixed number of time periods T and clustered sampling. Extensions to in-
strumental variables estimators and generalized method of moments (GMM)
estimators of moment condition models are discussed in Andrews (2003).

The existing literature on cross-section dependence in cross-section regres-
sion models includes a number of papers on models with group effects (and
the closely related models with variance components and clustered sampling):

2This approach allows for multinomial sampling, which is a type of stratified sampling. Exten-
sions to clustered sampling are also possible.
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see Kloek (1981), Scott and Holt (1982), Greenwald (1983), Pfeffermann and
Smith (1985), Moulton (1986, 1987, 1990), Moulton and Randolf (1989), and
Pepper (2002). Donald and Lang (2001) consider panel regression models with
group effects. In these models, the errors for observations within any given
group are correlated (typically equicorrelated), but the errors (and observa-
tions) across different groups are independent. Thus, these models allow for
simple forms of common shocks, but not common shocks that affect all units
in the population, such as many macroeconomic and political shocks among
others.

Conley (1999) considers GMM estimation for cross-section observations
that are assumed to form a stationary strong mixing random field. Conley’s
approach is a more sophisticated and flexible way of handling cross-section
dependence than via models with group effects. The basic idea, however, is
similar in that common shocks are presumed to have predominantly local ef-
fects (due to the strong mixing assumption). Numerous other papers in the
spatial econometrics literature consider parametric models for cross-section
dependence that is predominantly local in nature, e.g., see Anselin (1988),
Case (1991), Kelejian and Prucha (1999), Chen and Conley (2001), and ref-
erences cited therein. This literature is complementary to the present paper,
which focuses on common shocks that may or may not be local in nature.

There is a growing literature on factor models for panel data in which the
number of time series observations is large and the number of cross-section
units may or may not be large, e.g., see Geweke (1977), Sargent and Sims
(1977), Chamberlain and Rothschild (1983), Forni, Hallin, Lippi, and Reichlin
(2000), Forni and Lippi (2001), Bai and Ng (2002, 2004), Pesaran (2002), Stock
and Watson (2002), Phillips and Sul (2003, 2004), Bai (2003), and Moon and
Perron (2004). These papers allow for common shocks in the errors (though
not necessarily in the regressors). These papers differ from the present pa-
per in that we consider common shocks in cross-section models, rather than in
panel models with large T� and we allow for more general forms of common
shocks. In future work, we plan to use the probabilistic framework adopted
here to explore the properties of estimators and tests in panel data models
with large T and large n�

The remainder of this paper is organized as follows. Section 2 specifies the
regression model employed in the paper. Section 3 establishes the probability
limit of the LS estimator and provides conditions under which the LS estima-
tor is consistent and inconsistent in standard, heterogeneous, and functional
factor structure models. Section 4 establishes the asymptotic mixed normality
of the LS estimator. Section 5 introduces covariance matrix estimators and de-
termines their probability limits. Section 6 analyzes the asymptotic properties
of t� Wald, and F tests under the null hypothesis. Section 7 shows that the ba-
sic assumption that the observations are iid conditional on a common σ-field
allows for very general dependence and heterogeneity across population units.
Section 8 discusses extensions to panel models with a fixed time dimension T



CROSS-SECTION REGRESSION WITH COMMON SHOCKS 1555

and clustered sampling. Section 9 provides a brief conclusion. An Appendix
provides proofs of results stated in the paper.

All limits are taken as n → ∞� where n is the sample size.

2. REGRESSION MODEL

The observations for sample size n are {(Yi�Xi) : i = 1� � � � � n}� The model is

Yi = α0 +X ′
iβ0 +Ui for i = 1� � � � � n�(2.1)

where Yi is an observed scalar dependent variable, Xi is an observed regressor
k vector, and Ui is an unobserved scalar error. In some cases, an additional
variable, Si� or some component of Si may be observed for i = 1� � � � � n� We
suppose the random variables {Wi : i = 1�2� � � �}� where Wi = (Yi�Xi� Si)� are
defined on a probability space (Ω�B�P).

We suppose that common shocks across observations are captured by a
σ-field C ⊂ B� For example, if common shocks arise in the form of a vector
of random variables C� Then, C is the σ-field generated by C� More generally,
C could be the σ-field generated by an infinite-dimensional vector C or the
σ-field generated by a random function C(·). Examples are provided below.

The main assumption we employ is the following.

ASSUMPTION 1: There exists a σ-field C ⊂ B such that, conditional on C�
{Wi : i = 1�2� � � �} are i.i.d.

As shown in Section 7, Assumption 1 is surprisingly general. When ob-
servational units are drawn randomly from the population, Assumption 1 is
compatible with arbitrary dependence between underlying units in the popu-
lation. Assumption 1 is compatible with common shocks that have different
effects on different population units. It is compatible with arbitrary forms of
heterogeneity (i.e., nonidentical distributions) across population units.

A simple example of a regression model with a common error shock is the
model in (2.1) with Ui = C + εi� where (Xi� εi) are i.i.d. across i and C is a
random variable that is common for all observations i�

A second example is a model with a factor structure in the errors and regres-
sors. In this case, the following assumption holds.

ASSUMPTION SF1: The errors and regressors satisfy

Ui = C ′
1U

∗
i and Xi = C2X

∗
i �(2.2)

where (a) C1 and U∗
i are random d1 vectors, X∗

i is a random d2 vector, and C2 is a
random k×d2 matrix for d2 ≥ k; (b) {(U∗

i �X
∗
i ) : i ≤ n} and (C1�C2) are mutually

independent; and (c) (U∗
i �X

∗
i ) are independent across i ≤ n.
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In this standard factor scenario, (C1�C2) are random common factors,
(U∗

i �X
∗
i ) are random factor loadings, and C = σ(C1�C2)�

The σ-field C consists of the common shocks to the random elements
{Wi : i = 1�2� � � �}� The effect of a common shock could be the same for all pop-
ulation units or it could depend on the characteristics of a given unit through
the supplementary variable Si� For example, a common shock could affect ob-
servations that are in a certain group or region, but not other observations.
Suppose Sg�i is a dummy variable that equals 1 if the ith observation is in
group g and equals 0 otherwise for g = 1� � � � � gmax� Let C1� � � � �Cgmax denote
common shocks, i.e., random variables that are C-measurable. Then the regres-
sion dependent and independent variables (Yi�Xi) could depend on the com-
mon shocks (C1� � � � �Cgmax) through the vector Si = (C1S1i�C2S2i� � � � �CgmaxSgi)

′�
Thus, only observations in group g are affected by the gth common shock. In
this case, the model is an example of a model with group effects; see the Intro-
duction for references.

In the group effect literature, the shocks (C1� � � � �Cgmax) are assumed to be
independent, but in the present paper, there is no need to make this assump-
tion. In fact, (C1� � � � �Cgmax) could just denote the differential impacts of a
single common shock on g different groups and, in this case, correlation be-
tween the elements of (C1� � � � �Cgmax) would be expected.

Furthermore, the effect of common shocks may differ across observations in
a continuous manner. For example, suppose the effect of some macroeconomic
shock, such as an interest rate change, depends on the characteristics of the
population unit, such as its wealth holdings, as measured by some absolutely
continuous component, S1i� of Si. The macro shock could take the form of a
random function C(·) that is C-measurable with the effect of the macro shock
on the ith observation being through C(S1i)� Thus, the impact of the common
shock varies continuously across i depending on the value of S1i�

In this case, the model could be akin to models in the spatial economet-
rics literature in which shocks are predominantly local in nature, e.g., due to
the spatial autoregressive assumption in Case (1991) and the strong mixing
assumption in Conley (1999). On the other hand, the model could be one in
which some common shocks affect a sufficient number of population units that
the effect is not local in nature. For example, the model could be such that
all population units are effected in a manner that varies continuously, but the
effect for all units is significant.

A standard assumption for a linear regression model to be well defined is
for the error to have mean zero and to be uncorrelated with the regressors.
For cross-section applications, another standard assumption is that the obser-
vations are independent across i� Thus, the following assumptions are standard
(STD) for cross-section applications.

ASSUMPTION STD1: E(1�X ′
i)Ui = 0 for all i ≤ n,



CROSS-SECTION REGRESSION WITH COMMON SHOCKS 1557

ASSUMPTION STD2: {Wi : i ≤ n} are independent across i ≤ n.

We do not impose Assumptions STD1 and STD2. We state these assump-
tions for reference only.

3. PROBABILITY LIMIT OF THE LS ESTIMATOR

3.1. Main Results

The LS estimator, β̂n� of β0 can be written as

β̂n = β0 +
(
n−1

n∑
i=1

XiX
′
i − 	Xn

	X ′
n

)−1

(3.1)

×
(
n−1

n∑
i=1

XiUi − 	Xn
	Un

)
� where

	Xn = n−1
n∑

i=1

Xi and 	Un = n−1
n∑

i=1

Ui�

The LS estimator, α̂n� of α0 can be written as

α̂n = 	Yn − 	X ′
nβ̂n(3.2)

= α0 + 	Un − 	X ′
n(β̂n −β0)� where 	Yn = n−1

n∑
i=1

Yi�

Under Assumption 1, the random variables {Wi : i ≥ 1} are exchangeable.
(That is, (Wπ(1)� � � � �Wπ(n)) has the same distribution as (W1� � � � �Wn) for every
permutation π of (1� � � � � n) for all n ≥ 2�) The probability limits of the terms
in the expressions for β̂n and α̂n are determined using the following LLN for
exchangeable random variables, e.g., see Hall and Heyde (1980, (7.1), p. 202).

LEMMA 1: Suppose Assumption 1 holds. Let h(·) be a vector-valued function
that satisfies E‖h(Wi)‖ <∞� Then

n−1
n∑

i=1

h(Wi)
p→ E

(
h(Wi)|C

)
as n→ ∞�

where C is the σ-field given in Assumption 1.

COMMENT: The convergence in Lemma 1 also holds almost surely (a.s.).
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To establish the probability limits of β̂n and α̂n� we require (i) some moment
conditions and (ii) that the regressor variables contain sufficient idiosyncratic
variability that their conditional covariance matrix given the common shocks C
is nonsingular:

ASSUMPTION 2: (a) E‖Xi‖2 <∞�
(b) E|Ui|<∞�
(c) E‖XiUi‖ <∞�
(d) E(XiX

′
i |C)−E(Xi|C)E(Xi|C)′ > 0 a.s.

The deviation of the probability limit of β̂n from β0 is given by

r(C) = (
E(XiX

′
i |C)−E(Xi|C)E(Xi|C)′)−1

(3.3)

× (
E(XiUi|C)−E(Xi|C)E(Ui|C)

)
�

Note that the term E(XiUi|C) − E(Xi|C)E(Ui|C) in (3.3) is the conditional
covariance given C between Xi and Ui� Also note that r(C) is the solution to
the conditional population least squares minimization problem

min
β∈Rk

E(Ui −X ′
iβ|C)′E(Ui −X ′

iβ|C)�(3.4)

The deviation of the probability limit of α̂n from α0 is given by

s(C)=E(Ui|C)−E(Xi|C)′r(C)�(3.5)

Using (3.1), (3.2), and Lemma 1, the probability limits of β̂n and α̂n are easily
obtained:

THEOREM 1: Suppose Assumptions 1 and 2 hold. Then

β̂n

p→ β0 + r(C) and α̂n

p→ α0 + s(C)�
COMMENTS: 1. The convergence in Theorem 1 holds jointly and almost

surely.
2. Theorem 1 states that the probability limit of β̂n is β0 plus a term, r(C)�

that may be zero, random, or in some cases a nonzero constant. Similarly,
α̂n equals α0 plus a term, s(C), that may be zero, random, or a nonzero con-
stant.

3. The term r(C) is zero if and only if the conditional correlation given C
between Xi and Ui is zero. Note that the standard assumption employed in
the literature, Assumption STD1, implies that the unconditional correlation
between Xi and Ui is zero. This does not, however, imply that their conditional
correlation given C is zero. Hence, under Assumption STD1, r(C) is not nec-
essarily zero.
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For any random vectors A and B and any random vector or σ-field D� let
Cov(A�B|D) denote the conditional covariance between A and B given D�
i.e., E(AB′|D)−E(A|D)E(B|D)′�

It is easy to see that a necessary and sufficient condition for r(C) = 0 is the
following.

ASSUMPTION CU: Cov(Xi�Ui|C) = 0 a.s. (CU abbreviates conditionally un-
correlated).

Necessary and sufficient conditions for r(C) = 0 and s(C) = 0 are Assump-
tion CU plus the following.

ASSUMPTION CMZ: E(Ui|C) = 0 a.s. (CMZ abbreviates conditionally mean
zero).

Given Theorem 1, we have the following necessary and sufficient condition
for consistency of β̂n and α̂n�

COROLLARY 1: Suppose Assumptions 1 and 2 hold. Then β̂n →p β0 if and
only if Assumption CU holds and (β̂n� α̂n)→p (β0�α0) if and only if Assumptions
CU and CMZ hold.

COMMENTS 1: Assumptions CU and CMZ are necessary for consistency of
the LS estimators, but they are not necessary for unbiasedness. Unbiasedness
holds (by trivial calculations) under the following standard condition.

ASSUMPTION STD3: (a) E(Ui|Xi)= 0 a.s.
(b) E‖β̂n‖<∞ and E |̂αn|<∞�

In consequence, if Assumption STD3 holds and {β̂n :n ≥ 1} is uniformly in-
tegrable, then r(C) has mean zero.3 Hence, r(C) is either zero or random. It
cannot be a nonzero constant. In this case, inconsistency of β̂n is due to ran-
domness that does not die out as n → ∞� Inconsistency is not due to improper
centering of β̂n that persists as n→ ∞� Analogous comments apply to α̂n�

2. If Assumption CU fails, it is still possible to construct a consistent estima-
tor of β0 if instrumental variables are available that are uncorrelated with Ui

conditional on C; see Andrews (2003, Sec. 7).

3This holds because, for any integrable random variables {ξn :n ≥ 1} and ξ� we have (i) |Eξn −
Eξ| ≤ E|ξn − ξ| and (ii) E|ξn − ξ| → 0 if and only if ξn − ξ →p 0 and {ξn :n ≥ 1} is uniformly
integrable, e.g., see Dudley (1989, Theorem 10.3.6, p. 279).
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3.2. Standard Factor Structure

Corollary 1 shows that a necessary and sufficient condition for consistency
of the LS estimator of β0 (or (β0�α0)) is Assumption CU (or Assumptions
CU and CMZ). We now provide sufficient conditions for Assumption CU (or
Assumptions CU and CMZ) in terms of the standard factor structure for the re-
gressors and errors (see Assumption SF1).4 (We use the term “standard” here
because (i) the factor structure considered here is akin to factor structures con-
sidered in the literature and (ii) we want to differentiate the factor structure
considered here from the heterogeneous and functional factor structures con-
sidered below.)

Given Assumption SF1, Assumption 2(d) holds provided

EX∗
i X

∗′
i −EX∗

i EX
∗′
i > 0(3.6)

and C2 has full row rank d2 a.s.
For any random vectors A and B� let Cov(A�B) denote the covariance be-

tween A and B�
To obtain consistency of the LS slope coefficient estimator β̂n we require the

following assumption.

ASSUMPTION SF2: Cov(X∗
i �U

∗
i ) = 0�

Note that Assumption SF2 does not require that the error factor loading vec-
tor, U∗

i � has mean zero. This allows one element of both U∗
i and X∗

i to equal 1,
which means that the errors and regressors may contain a purely common com-
ponent. However, to obtain consistency of the LS intercept estimator, α̂n� U

∗
i

must have mean zero:

ASSUMPTION SF3: EU∗
i = 0�

Assumption SF3 rules out a purely common component in Ui.
We now show that Assumptions 1, SF1, and SF2 imply Assumption CU. Us-

ing Assumptions 1 and SF1, we have

E(Ui|C)= E(C ′
1U

∗
i |C) = C ′

1E(U
∗
i |C) = C ′

1EU
∗
i �(3.7)

E(Xi|C) = E(C2X
∗
i |C) = C2E(X

∗
i |C) = C2EX

∗
i �

E(XiUi|C) =E(C2X
∗
i U

∗′
i C1|C)

= C2E(X
∗
i U

∗′
i |C)C1 = C2E(X

∗
i U

∗′
i )C1�

4Note that some authors refer to the following type of structure as an approximate factor struc-
ture because it allows for a purely idiosyncratic component as well as common factors.
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where the second equality in each line holds because C = σ(C1�C2) and the
third equality in each line holds because (U∗

i �X
∗
i ) is independent of C =

σ(C1�C2)�
Combining the results in (3.7) gives

E(XiUi|C)−E(Xi|C)E(Ui|C) = C2E(X
∗
i U

∗′
i )C1 −C2EX

∗
i EU

∗′
i C1(3.8)

= C2(EX
∗
i U

∗′
i −EX∗

i EU
∗′
i )C1

= 0�

where the last equality holds by Assumption SF2.
Assumptions 1, SF1, and SF3 imply Assumption CMZ by the first line

of (3.7).
The following corollary is a special case of a more general result (viz. Theo-

rem 3) given below. The first two parts of the corollary are the results proved
above in (3.7) and (3.8). (The proof is given above because it is instructive.)

COROLLARY 2: (a) Suppose Assumptions 1, SF1, and SF2 hold. Then As-
sumption CU holds and r(C) = 0.

(b) Suppose Assumptions 1 and SF1–SF3 hold. Then Assumptions
CU and CMZ hold, r(C) = 0� and s(C) = 0.

COMMENTS: 1. Theorem 1 and Corollary 2 combine to show that β̂n is con-
sistent under Assumptions 1, 2, SF1, and SF2, and (β̂n� α̂n) is consistent under
Assumptions 1, 2, and SF1–SF3.

2. If Assumptions SF2 and SF3 are strengthened to E(U∗
i |X∗

i ) = 0 a.s., then
Assumption STD3(a) holds. In this case, β̂n and α̂n are unbiased (provided
their expectation exists). This holds because

E(Ui|Xi) = EX∗
i �CE(Ui|Xi�X

∗
i �C)=EX∗

i �CC
′
1E(U

∗
i |Xi�X

∗
i �C)(3.9)

= EX∗
i �CC

′
1E(U

∗
i |X∗

i )= 0 a.s.,

where EX∗
i �C denotes expectation with respect to (X∗

i �C)�

We now show that the regressors and errors may satisfy the standard fac-
tor structure of Assumption SF1 and the standard assumptions of mean zero
errors and lack of covariance between the errors and regressors, viz. As-
sumption STD1, yet fail Assumption CU. In this case, consistency of the LS
estimator of β0 does not hold.

Instead of Assumptions SF2 and SF3, consider the following assumption:

ASSUMPTION SF4: (a) Cov(X∗
i �U

∗
1i) = 0 and EU∗

1i = 0� where U∗
i = (U∗

1i�
U∗

2i)
′ ∈ R2�

(b) C1 = (1�C11)
′ ∈ R2�
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(c) EC11 = 0 and EC2C11 = 0�
(d) EX∗

i U
∗
2i �= 0, EU∗

2i = 0, C11 �= 0 with probability 1, and C2 is full row rank
with probability 1.

Under Assumption SF4,

Ui = U∗
1i +C11U

∗
2i�(3.10)

where U∗
1i has mean zero and is uncorrelated with the idiosyncratic component

of the regressor X∗
2i; the error factor C11 has mean zero and is uncorrelated

with the regressor factors C2; and U∗
2i has mean zero but is correlated with the

idiosyncratic component of the regressor X∗
2i.

THEOREM 2: Suppose Assumptions 1, SF1, and SF4 hold. Then Assump-
tion STD1 holds, but Assumption CU does not hold.

COMMENTS: 1. Under Assumptions 1, 2, SF1, and SF4, we have

r(C) = (C2E
∗[X∗

i −E∗X∗
i ][X∗

i −E∗X∗
i ]′C ′

2)
−1(3.11)

× (C2E
∗[X∗

i −E∗X∗
i ]U∗

2iC11)�

s(C) = E∗U∗
2iC11 + (E∗X∗

i )
′C ′

2r(C)�

where E∗ denotes expectation with respect to (X∗
i �U

∗
i ) alone.

2. Theorems 1 and 2 combine to show that β̂n is not consistent for β0 under
Assumptions 1, 2, SF1, and SF4 in spite of the fact that Assumption STD1
holds.

3. In the proof of Theorem 2, Assumption SF4(c) is used only to show that
Assumption STD1 holds and Assumption SF4(d) is used only to show that
Assumption CU does not hold.

3.3. Heterogeneous Factor Structure

In this subsection, we generalize the standard factor structure to a heteroge-
neous factor structure. The heterogeneous factor structure allows the effects of
the common shocks to differ across population units depending on the charac-
teristics of the unit. In particular, the common shocks for the ith observation
are of the form (C1(S0�i)�C2(S0�i))� where S0�i is a vector of characteristics of
the ith observation. Hence, the common shocks take the form of stochastic
functions (C1(·)�C2(·)). The random element S0�i may or may not be observed.

For a random element ξ, let supp(ξ) denote the support of ξ�
The heterogeneous factor structure is specified in the following assumptions:
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ASSUMPTION HF1: For all i ≥ 1�

Ui = C1(S0�i)
′U∗

i �

Xi = C2(S0�i)X
∗
i �

Si =
(
S0�i�C1(·)�C2(·)

)
�

where (a) U∗
i is a random d1 vector, C1(·) is a random d1 vector-valued function

with domain supp(S0�i)� X
∗
i is a random d2 vector, and C2(·) is a random k× d2

matrix-valued function with domain supp(S0�i) for d2 ≥ k; (b) {(U∗
i �X

∗
i � S0�i) :

i ≥ 1} and (C1(·)�C2(·)) are mutually independent; and (c) (U∗
i �X

∗
i � S0�i) are

independent across i ≥ 1.

With the heterogeneous factor structure, to obtain r(C) = 0 and consistency
of β̂n, we need a strengthened version of Assumption SF2 to hold.

ASSUMPTION HF2: (a) Cov(X∗
i �U

∗
i |S0�i)= 0 a.s.

(b) Either E(U∗
i |S0�i) or E(X∗

i |S0�i) does not depend on S0�i a.s.

Similarly, for s(C) = 0 and consistency of α̂n� we need a strengthened version
of Assumption SF3 to hold:

ASSUMPTION HF3: E(U∗
i |S0�i)= 0 a.s.

A sufficient condition for Assumptions HF2 and HF3 is E(U∗
i |X∗

i � S0�i) = 0
a.s.

The common σ-field C is the σ-field generated by the common shocks:

C = σ
(
C1(·)�C2(·)

)
�(3.12)

The following result, like Corollary 2, is a special case of Theorem 3.

COROLLARY 3: (a) Suppose Assumptions 1, HF1, and HF2 hold. Then As-
sumption CU holds and r(C) = 0.

(b) Suppose Assumptions 1 and HF1–HF3 hold. Then Assumptions
CU and CMZ hold, r(C) = 0, and s(C)= 0.

COMMENT: Corollary 3 and Theorem 1 show that Assumptions 1, HF1,
and HF2 are sufficient for consistency of β̂n and, with the addition of Assump-
tion HF3, for α̂n�

3.4. Functional Factor Structure

We now provide sets of sufficient conditions for Assumption CU and
Assumptions CU and CMZ that are as general as we can find. We call the struc-
tures considered functional factor structures. These structures are sufficiently
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general that they contain both standard and heterogeneous factor structures.
The conditions allow the effect of common shocks on an observation to de-
pend on the characteristics of the observation via a component S0�i of Si� The
common shocks are characterized by a function C(·)� In particular, the effects
of the common shocks on observation i are through C(S0�i)� The errors and
regressors are determined by stochastic processes Ui(·) and Xi(·) that are un-
correlated conditional on S0�i for each i� Specifically, we have the following
assumption:

ASSUMPTION FF1: (a) S0�i is a component of Si�
(b) C(·) is a random function that does not depend on i� has domain

supp(S0�i)� and is a component of Si for all i�
(c) For all i� Ui(·) and Xi(·) are random functions with ranges R and R

k�
respectively, and domain supp(C(S0�i)).

(d) For all i� Ui = Ui(C(S0�i)) and Xi =Xi(C(S0�i))�
(e) {(Ui(·)�Xi(·)� S0�i) : i ≥ 1} and C(·) are mutually independent.
(f) (Ui(·)�Xi(·)� S0�i) are independent across i ≥ 1.

Assumption FF1 allows the whole distributions of Ui and Xi to vary
with C(S0�i)� In contrast, with standard or heterogeneous factor structures,
C(S0�i) only affects the multivariate location and scale of the errors and regres-
sors.

Let supp(C) denote supp(C(S0�i))�

ASSUMPTION FF2: (a) For all c ∈ supp(C), Cov(Xi(c)�Ui(c)|S0�i)= 0 a.s.
(b) Either E(Ui(c)|S0�i) or E(Xi(c)|S0�i) does not depend on S0�i for all

c ∈ supp(C) a.s.

Assumptions FF1 and FF2 are sufficient for consistency of β̂n� To obtain
consistency of α̂n, we also need the following assumption:

ASSUMPTION FF3: For all c ∈ supp(C), E(Ui(c)|S0�i)= 0 a.s.

Sufficiency of Assumptions FF1 and FF2 for Assumption CU, etc. are estab-
lished in the following theorem:

THEOREM 3: (a) Suppose Assumptions 1, FF1, and FF2 hold. Then Assump-
tion CU holds and r(C) = 0�

(b) Suppose Assumptions 1 and FF1–FF3 hold. Then Assumptions
CU and CMZ hold, r(C) = 0, and s(C)= 0�

COMMENTS: 1. Assumptions SF1 and SF2 imply Assumptions FF1 and FF2
with S0�i = 0� C(·) = (C1�C2)� Ui(c) = c′

1U
∗
i � and Xi(c) = c2X

∗
i � where c =

(c1� c2). Analogously, Assumptions SF1–SF3 imply Assumptions FF1–FF3.
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2. Assumptions HF1 and HF2 imply Assumptions FF1 and FF2 with C(·) =
(C1(·)�C2(·))� Ui(c) = c′

1U
∗
i � and Xi(c) = c2X

∗
i � where c = (c1� c2)� Analo-

gously, Assumptions HF1–HF3 imply Assumptions FF1–FF3.

3.5. Probability Limit of Parameter Subvectors

Theorem 1 provides necessary and sufficient conditions for the consistency
of the LS estimator of the whole parameter β and of subvectors of β. For ex-
ample, the first element of β̂ is consistent if and only if the first element of r(C)
equals zero. Alternatively, one can use the partitioned regression formula for
the LS estimator to obtain equivalent conditions for consistency of subvectors
of β� Suppose

Xi = (X ′
1i�X

′
2i)

′ and β = (β′
1�β

′
2)

′�(3.13)

where X1i�β1 ∈ R
k1 � Let Ai = (1�X ′

2i)
′� Then, using Lemma 1, some calcula-

tions show that under Assumptions 1 and 2, β̂1 is consistent if and only if

E(X1iUi|C)−E(X1iAi|C)(E(AiAi|C))−1E(AiUi|C) = 0 a.s.(3.14)

For example, suppose the model is as in (2.1) with Ui = A′
iC + εi� where

{(Xi�Ai) : i ≥ 1} and {εi : i ≥ 1} are independent and i.i.d. with Eεi = 0 and
C is a common random vector. Then (3.14) holds and β̂1 is consistent even
though the error contains a common shock whose impact depends on the re-
gressors X2i�

4. ASYMPTOTIC MIXED NORMALITY OF THE LS ESTIMATOR

In this section, we establish the asymptotic distribution of β̂n suitably cen-
tered and scaled. These results allow one to determine the effect of cross-
section dependence on the null rejection rates of hypothesis tests and on the
coverage probabilities of confidence intervals constructed using LS estimators.

To establish asymptotic normality of the estimator, we use the following ad-
ditional moment conditions:

ASSUMPTION 3: (a) EU2
i <∞�

(b) E‖XiUi‖2 < ∞�

The following quantity is used to center the LS estimator in order to establish
its asymptotic distribution:

rn(C)=
(
n−1

n∑
i=1

XiX
′
i − 	Xn

	X ′
n

)−1(
E(XiUi|C)−E(Xi|C)E(Ui|C)

)
�(4.1)
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Note that rn(C) converges in probability to r(C) as n → ∞ under Assumptions
1 and 2 by Lemma 1. Also note that rn(C) = 0 if and only if Assumption CU
holds.

The conditional asymptotic variance, VC� of the normalized LS estimator
of β0 given C is defined as

VC = B−1
C ΩCB

−1
C � where(4.2)

BC =E
([Xi −E(Xi|C)][Xi −E(Xi|C)]′|C

)
�

ΩC =E(ξiξ
′
i|C)�

ξi = [Xi −E(Xi|C)]Ui −E
([Xi −E(Xi|C)]Ui|C

)
− [Xi −E(Xi|C)]E(Ui|C)�

Note that BC is positive definite a.s. by Assumption 2(d).
In contrast, under standard assumptions for cross-section data, viz. Assump-

tions STD1, STD2, and 1–3, the asymptotic variance of the normalized LS es-
timator of β0 is given by

V = B−1ΩB−1� where(4.3)

B =E[Xi −EXi][Xi −EXi]′�
Ω =EξS

i ξ
S′
i �

ξS
i = [Xi −EXi]Ui�

Note that the last two of the three terms in the definition of ξi in (4.2) do not
appear in the definition of ξS

i in (4.3). The second term of ξi does not appear
in ξS

i because it is the mean of the first term of ξi conditional on C and the mean
of ξS

i is zero. Also, the third term of ξi does not appear in ξS
i because the third

term of ξi arises due to the lack of asymptotic equivalence between n1/2 times
the 	Xn

	Un term in the definition of β̂n (see (3.1)) and n1/2(plimn→∞ 	Xn)	Un�

which occurs because E	Un is not necessarily zero in (4.2), whereas these quan-
tities are asymptotically equivalent under Assumption STD1 because E	Un is
zero.

If Assumption CU holds, then ξi and ΩC simplify because the second term
in the definition of ξi in (4.2) is zero. If Assumption CMZ holds, the third term
of ξi is zero.

If Assumption CU holds, we have

ξi = [Xi −E(Xi|C)][Ui −E(Ui|C)] and(4.4)

ΩC =Ω0
C� where

Ω0
C =E

([Ui −E(Ui|C)]2[Xi −E(Xi|C)][Xi −E(Xi|C)]′|C
)
�
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In particular, under Assumptions SF1 and SF2, we have

ΩC = C2E
∗[C ′

1(U
∗
i −EU∗

i )]2[X∗
i −E∗X∗

i ][X∗
i −E∗X∗

i ]′C ′
2�(4.5)

BC = C2E
∗[X∗

i −E∗X∗
i ][X∗

i −E∗X∗
i ]′C ′

2�

where E∗ denotes expectation with respect to (U∗
i �X

∗
i ) alone.

Under Assumptions HF1 and HF2, we have

ΩC = E∗[C1(S0�i)
′(U∗

i −EU∗
i )]2(4.6)

×C2(S0�i)[X∗
i −E∗X∗

i ][X∗
i −E∗X∗

i ]′C2(S0�i)
′�

BC = E∗C2(S0�i)[X∗
i −E∗X∗

i ][X∗
i −E∗X∗

i ]′C2(S0�i)
′�

where E∗ denotes expectation with respect to (U∗
i �X

∗
i � S0�i) alone.

Next, define

σ2
C = Var(Ui|C) =E

([Ui −E(Ui|C)]2|C)
�(4.7)

Suppose the errors are homoskedastic conditional on C� i.e.,

E
([Ui −E(Ui|C)]2|C�Xi

) = σ2
C a.s.(4.8)

Then, if Assumption CU holds, ΩC and VC simplify to

ΩC = σ2
CBC and VC = σ2

CB
−1
C �(4.9)

respectively. Note that Assumption CMZ is not needed for these simplifica-
tions to hold.

The asymptotic distribution of β̂n after centering and scaling is given in the
following theorem.

THEOREM 4: Suppose Assumptions 1–3 hold. Let Z ∼N(0� Ik) be a standard
normal k vector that is independent of C� Then:

(a) n1/2(β̂n −β0 − rn(C)) →d V
1/2
C Z;

(b) V −1/2
C n1/2(β̂n −β0 − rn(C)) →d Z provided VC > 0 a.s.;

(c) rn(C)→p r(C)�

COMMENTS: 1. Part (a) of Theorem 4 implies that n1/2(β̂n −β0 − rn(C)) has
a mixed normal asymptotic distribution.

2. Under Assumption CU, part (a) of the theorem gives the asymptotic dis-
tribution of n1/2(β̂n−β0) because rn(C)= 0. Hence, if the errors and regressors
have factor structures that satisfy Assumptions SF1 and SF2, HF1 and HF2, or
FF1 and FF2, then n1/2(β̂n −β0) has the asymptotic mixed normal distribution
given by V 1/2

C Z�
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3. Parts (a) and (b) are established using an MDS CLT, e.g., see Hall and
Heyde (1980, Theorem 3.2, p. 58). Part (c) is established using Lemma 1.

4. The asymptotic distribution of α̂n� after suitable centering and scaling, can
be obtained by the same argument as for β̂n. For brevity, we do not do so here.

5. COVARIANCE MATRIX ESTIMATION

The usual heteroskedasticity-robust estimator of the asymptotic variance
of β̂n is denoted V̂n� It is defined by

V̂n = B̂−1
n Ω̂nB̂

−1
n � where(5.1)

B̂n = n−1
n∑

i=1

[Xi − 	Xn][Xi − 	Xn]′�

Ω̂n = n−1
n∑

i=1

Û2
i [Xi − 	Xn][Xi − 	Xn]′�

Ûi = Yi − α̂n −X ′
i β̂n�

The usual estimator of the asymptotic variance of β̂n that relies on ho-
moskedasticity of the errors is

V̂σ�n = σ̂2
nB̂

−1
n � where σ̂2

n = (n− k− 1)−1
n∑

i=1

Û2
i �(5.2)

To obtain the probability limits of the covariance matrix estimators, we
strengthen the moment conditions used:

ASSUMPTION 4: (a) E‖Xi‖4 <∞�
(b) E‖Xi‖3|Ui| <∞�

The probability limit of Ω̂n depends on Ω0
C , defined in (4.4), and the random

matrix

ηC = E
([r(C)′(Xi −E(Xi|C))]2[Xi −E(Xi|C)][Xi −E(Xi|C)]′|C

)
(5.3)

− 2E
([r(C)′(Xi −E(Xi|C))][Ui −E(Ui|C)]
× [Xi −E(Xi|C)][Xi −E(Xi|C)]′|C

)
�

If Assumption CU holds, then r(C) = 0 and ηC = 0�
The probability limit of σ̂2

n depends on σ2
C and the random variable

τC = E
([r(C)′(Xi −E(Xi|C))]2|C)

(5.4)

− 2E
([r(C)′(Xi −E(Xi|C))][Ui −E(Ui|C)]|C

)
�
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If Assumption CU holds, then r(C) = 0 and τC = 0�
The asymptotic properties of the covariance matrix estimators V̂n and V̂σ�n

are given in the following theorem.

THEOREM 5: Suppose Assumptions 1–4 hold. Then:
(a) B̂n →p BC ;
(b) Ω̂n →p Ω

0
C +ηC ;

(c) V̂n →p B
−1
C [Ω0

C +ηC]B−1
C ;

(d) σ̂2
n →p σ

2
C + τC ;

(e) V̂σ�n →p (σ
2
C + τC)B

−1
C .

COMMENTS: 1. The quantities ηC and τC arise in Theorem 5 because the
residuals, {Ûi : i = 1� � � � � n}� are not consistent estimators of the errors, {Ui :
i = 1� � � � � n}� if Assumptions CU and CMZ do not hold. In fact, only Assump-
tion CU is needed for ηC = 0 and τC = 0� Hence, if Assumption CU holds but
Assumption CMZ does not hold, then the residuals are not consistent estima-
tors of the errors, but Ω̂n and σ̂2

n are still consistent for Ω0
C and σ2

C� respectively.
The reason is that Ûi is consistent for Ui −E(Ui|C)�

2. If Assumption CU holds (as well as Assumptions 1–4), then ηC = 0�
ΩC =Ω0

C� Ω̂n →p Ω
0
C� and V̂n →p B

−1
C Ω0

CB
−1
C = VC� If Assumption CU and (4.8)

hold, then τC = 0� σ̂2
n →p σ

2
C� and V̂σ�n →p σ

2
CB

−1
C = VC�

3. If Assumption CU does not hold, then Ω0
C + ηC does not equal ΩC in

general and Ω̂n →p Ω0
C + ηC �= ΩC� Hence, if Assumption CU does not hold,

V̂n = B̂−1
n Ω̂nB̂

−1
n is not a consistent estimator of VC = B−1

C ΩCB
−1
C in general. Sim-

ilarly, if (4.8) holds, but Assumption CU does not hold, then (σ2
C + τC)BC does

not equal ΩC in general and σ̂2
nB̂n →p (σ

2
C + τC)BC �= ΩC� Hence, in this case,

V̂σ�n = σ̂2
nB̂

−1
n is not a consistent estimator of VC = B−1

C ΩCB
−1
C in general.

The probability limits of V̂n and V̂σ�n are nonsingular a.s. under Assump-
tion 2(d) and the following assumption:

ASSUMPTION 5: (a) Ω0
C +ηC > 0 a.s.

(b) σ2
C + τC > 0 a.s.

Using Assumption 5, Theorems 4 and 5 combine to give the following results
for the LS estimator of β0 normalized by an estimated covariance matrix:

COROLLARY 4: Suppose Assumptions 1–5 hold. Let Z ∼ N(0� Ik) be a stan-
dard normal k vector that is independent of C� Then:

(a) (V̂n)
−1/2n1/2(β̂n −β0 − rn(C)) →d (B

−1
C [Ω0

C +ηC]B−1
C )−1/2 × V 1/2

C ×Z;
(b) V̂ −1/2

n n1/2(β̂n −β0)→d Z provided Assumption CU also holds;
(c) V̂ −1/2

σ�n n1/2(β̂n −β0 − rn(C)) →d (σ
2
C + τC)

−1/2B1/2
C × V 1/2

C ×Z;
(d) V̂ −1/2

σ�n n1/2(β̂n −β0)→d Z provided Assumption CU and (4.8) also hold.
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6. TEST STATISTICS

Asymptotic results for t and Wald (or equivalently, F) tests can be ob-
tained by using the results of Theorems 4 and 5. Consider the hypotheses
H0 : βj = β0�j and H1 :βj �= β0�j for some j ≤ k� where β = (β1� � � � �βk)

′ and
β0 = (β0�1� � � � �β0�k)

′� The t statistic for testing H0 against H1 is

Tn =
√
n(β̂n�j −β0�j)√

[V̂n]j�j
�(6.1)

where β̂n = (β̂n�1� � � � � β̂n�k)
′ and [D]j�j denotes the jth diagonal element of a

square matrix D� The usual two-sided t test with nominal significance level α
rejects the null hypothesis when |Tn| > z1−α/2� where zα denotes the α quantile
of the standard normal distribution. A one-sided t test with nominal signifi-
cance level α rejects H0 in favor of H ′

1 : βj > β0�j when Tn > z1−α�
Next, consider the hypotheses H0 :Rβ0 = a and H1 :Rβ0 �= a� where R is a

(nonstochastic) full row rank q × k matrix and a is a (nonstochastic) q vector.
Define the Wald test statistic Wn as

Wn = ‖(RV̂nR
′)−1/2n1/2(Rβ̂n − a)‖2�(6.2)

The Wald test with nominal significance level α rejects H0 if Wn > χ2
q�1−α� where

χ2
q�α is the α quantile of a χ2 random variable with q degrees of freedom. The

Wald statistic also can be defined using the covariance matrix estimator V̂σ�n�
In this case, the Wald statistic divided by q equals the F statistic. Hence, the
results given below are applicable to the F test (with the /q modification).

Let r(C)j denote the jth element of r(C)�
Properties of the t and Wald tests are given in the following theorem.

THEOREM 6: Suppose Assumptions 1–5 hold. Let R be a full row rank q × k
matrix. Then, under H0:

(a) P(|Tn| > z1−α/2)→ α and P(Tn > z1−α)→ α when Assumption CU holds;
(b) P(|Tn|> z1−α/2)→ 1 when r(C)j �= 0 a.s.;
(c) P(Tn > z1−α) → 1 when r(C)j > 0 a.s.;
(d) P(Wn > χ2

q�1−α)→ α when Assumption CU holds;
(e) P(Wn > χ2

q�1−α)→ 1 when Rr(C) �= 0 a.s.

COMMENTS: 1. The results of Theorem 6 continue to hold if the t and Wald
statistics are defined with V̂σ�n in place of V̂n� provided (4.8) holds in parts
(a) and (d). Hence, the results of the theorem for the Wald test also apply
to the F test.

2. Parts (a) and (d) of Theorem 6 show that t� Wald, and F tests are asymp-
totically valid in the presence of common shocks provided Assumption CU
holds. On the other hand, parts (b), (c), and (e) of the theorem show that t�
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Wald, and F tests typically reject the null hypothesis with probability that goes
to 1 when Assumption CU fails to hold. This occurs because |√nrn(C)j| →p ∞�√
nrn(C)j →p ∞� and ‖√nRrn(C)‖2 →p ∞ in parts (b), (c), and (e), respec-

tively. In this case, the probability of overrejection increases as the sample size
increases.

3. As stated, Theorem 6 does not cover the case where Assumption CU
does not hold, but r(C)j = 0 a.s. when a t test is considered or Rr(C) = 0
a.s. when a Wald test is considered. Results for these cases, however, can be
determined using Theorems 4 and 5. In these cases, |√nrn(C)j| = 0 �p ∞�√
nrn(C)j = 0 �p ∞� and ‖√nRrn(C)‖2 = 0 �p ∞� which means that the

t and Wald test statistics have well-defined asymptotic distributions under the
null hypothesis and, hence, do not reject the null with probability that goes to 1
under the null hypothesis. However, V̂n is not consistent for VC in general when
Assumption CU does not hold. Hence, Tn and Wn do not have standard normal
and χ2 distributions under the null hypothesis and do not reject the null with
asymptotic probability equal to α in general. Thus, t� Wald, and F tests are not
asymptotically valid in the case under consideration, but their behavior is likely
to be much superior to that when r(C)j �= 0 a.s., r(C)j > 0 a.s., or Rr(C) �= 0 a.s.

4. The standard 100(1 − α)% confidence interval for β0�j based on β̂n�j is

CIβ0�j =
[
β̂n�j − z1−α/2√

n

√
[V̂n]j�j� β̂n�j + z1−α/2√

n

√
[V̂n]j�j

]
�(6.3)

By a standard and simple argument, the behavior of CIβ0�j is determined by
the behavior under the null hypothesis of the t statistic Tn. In consequence, the
results of Theorem 6 imply that under Assumptions 1–5 and Assumption CU,
the coverage probability of CIβ0�j converges to 1 − α as n → ∞� as desired.
On the other hand, under Assumptions 1–5, if r(C)j �= 0 a.s., then the coverage
probability of CIβ0�j converges to zero as n→ ∞� which is not desired.

7. SAMPLING SCHEME

In this section, we show that Assumption 1 holds in the presence of arbitrary
forms of dependence and heterogeneity between population units provided
observations in the sample are obtained from the population via a random
sampling scheme.

The probabilistic framework that we adopt is somewhat unconventional
because we want to be explicit about the cross-section dependence that may
exist between all units in the population. We start by defining, for each cross-
sectional unit in the population, the dependent and independent regression
variables, as well as other characteristics of the unit that may or may not be ob-
served. Then we specify the sampling scheme used to draw observations from
the population.

Let γ denote some unit in the population. Let Γ denote the set of all units in
the population, where Γ is an arbitrary topological space. For population unit
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γ ∈ Γ� Y(γ) ∈ R denotes the regression dependent variable, X(γ) ∈ R
k de-

notes the regression independent variable vector, and S(γ) ∈ S denotes some
supplementary variables that include other characteristics of population unit γ
and/or some stochastic terms that are common to some or all of the units in
the population, where S is an arbitrary topological space. Let

W (γ)= (
Y(γ)�X(γ)�S(γ)

)
�(7.1)

For each γ ∈ Γ� W (γ) is a random element defined on a (common) probability
space (Ω�B�P) (using the product Borel σ-field on (R�R

k�S)).
For each γ ∈ Γ� the vector (Y(γ)�X(γ)) satisfies the regression model

Y(γ) = α0 +X(γ)′β0 +U(γ)�(7.2)

where U(γ) is a scalar error, β0 is an unknown k-vector parameter, and α0 is
an unknown scalar parameter. Our interest centers on the properties of the
least squares estimators of β0 and α0�

Our results allow for arbitrary dependence between W (γ1) and W (γ2) for
all γ1�γ2 ∈ Γ� In particular, (W (γ1)�W (γ2)) may be subject to common shocks
and, hence, be dependent. In addition, the effect of a common shock on the
distribution of (Y(γ1)�X(γ1)�U(γ1)) may depend on S(γ1) and, hence, may
be different from its effect on (Y(γ2)�X(γ2)�U(γ2)) when S(γ1) �= S(γ2)� Ar-
bitrary forms of heterogeneity (i.e., nonidentical distributions) of W (γ) across
γ ∈ Γ also are allowed.

Samples of size n for n ≥ 1 are obtained by drawing indices {γi :≥ 1} ran-
domly from Γ according to a probability distribution G on Γ (coupled with
its Borel σ-field). (The random indices {γi : i ≥ 1} are defined on the same
probability space (Ω�B�P) as {W (γ) :γ ∈ Γ }�) That is, we make the following
assumption:

ASSUMPTION S: The indices {γi : i ≥ 1} are i.i.d. indices, independent of
{W (γ) :γ ∈ Γ }� each with some distribution G�

Assumption S allows for probabilistic oversampling of some units or pro-
portional sampling depending on the specification of the distribution G�
Proportional sampling is obtained when G is a uniform distribution on Γ�
For example, if Γ is a bounded subset of Euclidean space, then proportional
sampling is obtained by taking G to have a density proportional to Lebesgue
measure. Oversampling of some units is obtained by taking G to be some
nonuniform distribution on Γ� A special case of this is multinomial sampling,
e.g., see Imbens and Lancaster (1996), which is a type of stratified sampling.

We denote

Wi =W (γi)� Yi = Y(γi)� Xi = X(γi)�(7.3)

Si = S(γi)� and Ui =U(γi)
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for i = 1�2� � � � . (The random vector W (γi) is assumed to be a measurable
function on (Ω�B�P) with respect to the product Borel σ-field on (R × R

k ×
S)�) In the probability literature, {Wi : i ≥ 1} is called a subordinated stochastic
process, subordinated to the process {W (γ) :γ ∈ Γ } via the directing process
{γi : i ≥ 1}; see Feller (1966, Chap. X.7, p. 345). Subordinated processes have
been used in economics by Mandelbrot and Taylor (1967) and Clark (1973),
among others, for quite different purposes than those considered here and in
econometrics by Conley (1999) for a similar purpose to that considered here.

The observations for sample size n are {(Yi�Xi) : i = 1� � � � � n}� In addition,
depending upon the context, Si or some component of Si may be observed for
i = 1� � � � � n� In terms of the sample of the first n observations, the model is as
defined in (2.1).

The sampling scheme given in Assumption S leads to exchangeable observa-
tions {Wi : i = 1�2� � � �}. Hence, de Finetti’s theorem applies (e.g., see Hall and
Heyde (1980, (7.1), p. 202)), which means that Assumption S implies Assump-
tion 1.

LEMMA 2: Suppose Assumption S holds. Then {Wi : i = 1�2� � � �} are exchange-
able random elements and Assumption 1 holds.

COMMENTS: 1. Under Assumption S, the σ-field C in Assumption 1 equals⋂∞
n=1 Cn, where Cn is the σ-field of n-symmetric random variables (that is, the

σ-field generated by random variables that depend on {Wi : i = 1�2� � � �} and are
invariant to permutations of the first n random variables {Wi : i = 1�2� � � � � n});
see Hall and Heyde (1980, p. 202).

2. The σ-field C consists of the common shocks to the random elements
{Wi : i = 1�2� � � �}�

By iterated expectations, the definition that Wi = W (γi)� and the indepen-
dence of {W (γ) :γ ∈ Γ } and {γi : i ≥ 1}� we have, for any vector-valued function
h(·) with E‖h(Wi)‖ <∞�

Eh(Wi)= EγiE
(
h(W (γi))|γi

) =
∫

Eh(W (γ))dG(γ)�(7.4)

where Eγi denotes expectation with respect to the randomness in γi�
The random variable Wi that appears in the limit in Lemma 1 is W (γi)�

which is a draw from the population {W (γ) :γ ∈ Γ } according to the distri-
bution G� In consequence, by iterated expectations and the independence of
{W (γ) :γ ∈ Γ } and {γi : i ≥ 1} conditional on C� the limit random variable in
Lemma 1 can be written as

E
(
h(Wi)|C

) = EγiE
(
h(W (γi))|C�γi

) =
∫

Eh
(
W (γ)|C)

dG(γ)�(7.5)

where Eγi denotes expectation with respect to the randomness in γi�
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In terms of the population random elements {W (γ) :γ ∈ Γ }, Assump-
tion 2(d) is∫

E
(
X(γ)X(γ)′|C)

dG(γ)(7.6)

−
∫

E
(
X(γ)|C)

dG(γ)

∫
E

(
X(γ)′|C)

dG(γ) > 0 a.s.

In terms of the population random elements {W (γ) :γ ∈ Γ }, r(C) is

r(C) =
(∫

E
(
X(γ)X(γ)′|C)

dG(γ)(7.7)

−
∫

E
(
X(γ)|C)

dG(γ)

∫
E

(
X(γ)′|C)

dG(γ)

)−1

×
(∫

E
(
X(γ)U(γ)|C)

dG(γ)

−
∫

E
(
X(γ)|C)

dG(γ)

∫
E

(
U(γ)|C)

dG(γ)

)
�

Sufficient conditions for Assumptions CU and CMZ in terms of the popu-
lation quantities, (X(γ)�U(γ))� rather than the observed quantities, (Xi�Ui)�
are the following:

ASSUMPTION CUγ: (a) For all γ ∈ Γ , Cov(X(γ)�U(γ)|C)= 0 a.s.
(b) Either E(U(γ)|C) or E(X(γ)|C) does not depend on γ a.s. for all γ ∈ Γ�

ASSUMPTION CMZγ: For all γ ∈ Γ , E(U(γ)|C) = 0 a.s.

LEMMA 3: (a) Assumptions S and CUγ imply Assumption CU.
(b) Assumptions S and CMZγ imply Assumption CMZ.

COMMENT: It is interesting to note that zero conditional covariance given C
between the population quantities X(γ) and U(γ) does not imply zero
conditional covariance given C between the observed regressor Xi and the cor-
responding error Ui� The same is true in terms of unconditional covariances
or correlations. Thus, zero covariance between X(γ) and U(γ) does not imply
that Xi and Ui have zero covariance. The former plus the condition that either
EU(γ) or EX(γ) does not depend on γ for all γ ∈ Γ suffices for Xi and Ui

have zero covariance. Of course, if EU(γ)= 0 for all γ ∈ Γ� then the additional
condition holds. In the present context, this additional condition may seem in-
nocuous, but in the factor structure discussed below the additional condition is
not necessarily innocuous.
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Sufficient conditions for Assumptions SF2 and SF3 in terms of population
quantities are the following:

ASSUMPTION SF2γ: (a) For all γ ∈ Γ , Cov(X∗(γ)�U∗(γ))= 0.
(b) Either EU∗(γ) or EX∗(γ) does not depend on γ for all γ ∈ Γ�

ASSUMPTION SF3γ: For all γ ∈ Γ , EU∗(γ)= 0.

Assumption SF2γ(b) requires a certain degree of homogeneity across pop-
ulation units. See the comment following Lemma 3.

LEMMA 4: (a) Assumptions S and SF2γ imply Assumption SF2.
(b) Assumptions S and SF3γ imply Assumption SF3.

Analogous sufficient conditions for Assumptions HF2, HF3, FF2, and FF3
in terms of population quantities are given in Andrews (2003).

8. EXTENSIONS

8.1. Panel Models with Fixed T

The results of this paper can be extended to cover panel regression models
with a fixed number of time periods T� In a panel model, W (γ) is defined
to include random variables for all time periods t = 1� � � � �T for population
unit γ� and all random variables have a t subscript added, e.g., Y(γ) is replaced
by Yt(γ)� The model is given by

Yt(γ)= α0 +Xt(γ)
′β0 +Ut(γ) for t = 1� � � � �T(8.1)

and γ ∈ Γ� Samples of n population units for n≥ 1 are obtained by drawing in-
dices {γi : i ≥ 1} according to Assumption 1. The LS estimators of β0 and α0

are defined as above but with all sums taken over t = 1� � � � �T as well as
i = 1� � � � � n and with normalization by (nT)−1 rather than n−1� In the present
case, for the LS estimator, r(C) and s(C) are defined with E(XiX

′
i |C) re-

placed by T−1
∑T

t=1 E(XitX
′
it |C)� where Xit = Xt(γi), and likewise for E(Xi|C)�

E(XiUi|C)� and E(Ui|C)� Consistency of the LS estimator of β0 depends on
whether r(C) = 0 a.s. just as above.

With a panel regression model, one might want to analyze the properties of
the within and between estimators. This can be done in an analogous fashion
to the analysis of the LS estimators. For the within estimator, the model we
consider is

Yt(γ)= α(γ)+Xt(γ)
′β0 +Ut(γ) for t = 1� � � � �T(8.2)



1576 DONALD W. K. ANDREWS

and γ ∈ Γ� where α(γ) is a population unit γ fixed effect that may be random
or nonrandom. The within estimator, β̂W �n� is

β̂W �n =
(
(nT)−1

n∑
i=1

T∑
t=1

(XitX
′
it − 	XT�i

	X ′
T�i)

)−1

(8.3)

×
(
(nT)−1

n∑
i=1

T∑
t=1

(XitYit − 	XT�i
	YT�i)

)

= β0 +
(
(nT)−1

n∑
i=1

T∑
t=1

(XitX
′
it − 	XT�i

	X ′
T�i)

)−1

×
(
(nT)−1

n∑
i=1

T∑
t=1

(XitUit − 	XT�i
	UT�i)

)
�

where

Xit = Xt(γi)� Yit = Yt(γi)� Uit =Ut(γi)�

	XT�i = T−1
T∑
t=1

Xit� 	YT�i = T−1
T∑
t=1

Yit� 	UT�i = T−1
T∑
t=1

Uit�

The probability limit of β̂W �n is β0 + rW (C), where

rW (C) =
(
T−1

T∑
t=1

E(XitX
′
it − 	XT�i

	X ′
T�i|C)

)−1

(8.4)

×
(
T−1

T∑
t=1

E(XitUit − 	XT�i
	UT�i|C)

)
�

The analogue of Assumption CU for the within estimator is

T−1
T∑
t=1

E(XitUit − 	XT�i
	UT�i|C) = 0 a.s.(8.5)

Consistency of the within estimator depends on whether (8.5) holds.
The asymptotic distributions of the within estimator and test statistics based

on it can be determined in a manner analogous to that used above for the
LS estimator. The asymptotic properties of the between estimator can be de-
termined in a similar fashion.
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8.2. Clustered Sampling

The results of the paper can be extended to cover clustered sampling. In
this case, γ is taken to be a cluster and Γ is the population of clusters. Then
W (γ) is defined to include random variables for all population units in the
γth cluster. Population units in the γth cluster are indexed by b = 1� � � � �B�
where B ≤ ∞ denotes the cluster size. A sample of n clusters is selected via
i.i.d. indices {γi : i = 1� � � � � n} that satisfy Assumption 1. For each cluster γi

selected, a random sample of T population units from the cluster is drawn.
The population units selected from the γith cluster are denoted with t sub-

scripts for t = 1� � � � �T� For example, the regressor variables are Xt(γi) for
t = 1� � � � �T� Then, as in the panel model of (8.1), the LS and covariance matrix
estimators are defined with sums taken over t = 1� � � � �T as well as i = 1� � � � � n
and with normalization by (nT)−1 rather than n−1� The definitions of r(C) and
s(C) are altered as in the panel model of (8.1). The total sample size in this
case is nT�

9. CONCLUSION

This paper calls into question the standard assumption that observations in
cross-section econometric models are independent. The paper takes a further
step away from independence than does the literature on models with group
effects or spatial correlation. The paper allows for common shocks of a very
general nature. They may affect all population units or just some population
units. Their effect may depend on characteristics of the population unit in a
discrete or continuous fashion. Their effect may be local or global in nature.

The paper shows that necessary and sufficient conditions for consistency
of LS slope coefficient estimators in regression models with common shocks
are that the errors are uncorrelated with the regressors conditional on the
σ-field generated by the common shocks. The LS estimators are shown to have
a mixed normal asymptotic distribution after suitable centering and scaling.
The paper shows that when the LS estimators are consistent, the t� Wald, and
F tests and confidence intervals based on them are asymptotically valid.

On the other hand, when the errors are correlated with the regressors con-
ditional on the common shocks a.s., then the null rejection probabilities of t�
Wald, and F tests based on the LS estimators converge to 1 as n → ∞ and
confidence interval coverage probabilities converge to 0 as n → ∞. Hence,
common shocks can have an innocuous or detrimental effect on estimators
and tests, depending on the properties of the errors and regressors conditional
on the common shocks.

Cowles Foundation for Research in Economics, Dept. of Economics, Yale
University, P.O. Box 208281, Yale Station, New Haven, CT 06520-8281, U.S.A.;
donald.andrews@yale.edu.

Manuscript received June, 2003; final revision received August, 2004.
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APPENDIX: PROOFS

PROOF OF THEOREM 1: With convergence in probability replaced by con-
vergence almost surely, the theorem follows straightforwardly from (3.1), (3.2),
and Lemma 1 using Assumptions 1 and 2. The convergence in probability re-
sult then follows from the almost sure convergence result. Q.E.D.

PROOF OF THEOREM 2: Assumption STD1 holds by the calculations:

EXiUi = ECC2E(X
∗
i U

∗
i

′|C)C1(A.1)

= ECC2E(X
∗
i U

∗
i

′)C1

= ECC2E(X
∗
i U

∗
1i)+ECC2E(X

∗
i U

∗
2i

′)C11

= 0

for all i ≥ 1� where EC denotes expectation with respect to the randomness
in C� the first equality holds by Assumption SF1 and iterated expectations,
the second equality holds by Assumption SF1(b), the third equality holds by
Assumption SF4(a) and (b), and the fourth equality holds by Assumptions
SF1(b) and SF4(a) and (c). Analogous calculations give EUi = 0�

Next we show that Assumption CU does not hold. We have

E(Ui|C) =E(U∗
i )

′C1 = EU∗
1i +C11EU

∗
2i = 0�(A.2)

where the first equality holds by (7.5), the second equality holds by Assump-
tion SF1, the third equality holds by Assumption SF4(a) and (b), and the fourth
equality holds by Assumption SF4(a) and (d).

Given (A.2), we have

Cov(Xi�Ui|C) = E(XiUi|C)(A.3)

= C2E(X
∗
i U

∗
i

′)C1

= C2EX
∗
i U

∗
1i +C2E(X

∗
i U

∗
2i)C11

= C2E(X
∗
i U

∗
2i)C11

�= 0 with positive probability,

where the second and third equalities hold by the same arguments as
in (A.2) and the fourth equality and the inequality hold by Assump-
tion SF4(a) and (d). Q.E.D.

PROOF OF THEOREM 3: We have

E(Ui|C) = E
(
Ui(C(S0�i))|C

)
(A.4)

= ES0�iE
(
Ui(C(S0�i))|C� S0�i

)
= ES0�iEXi(·)�S0�i

(
Ui(C(S0�i))|S0�i

)
�



CROSS-SECTION REGRESSION WITH COMMON SHOCKS 1579

where ES0�i denotes expectation with respect to S0�i alone, EXi(·)�S0�i (·|S0�i) de-
notes conditional expectation with respect to (Xi(·)� S0�i) alone given S0�i� the
first equality holds by Assumption FF1(d), the second equality holds by iter-
ated expectations, and the third equality holds by Assumption FF1(e) and the
fact that C = σ(C(·))� which holds by Assumption FF1(b) and (f).

By similar arguments, we obtain

E(XiUi|C) =ES0�iEXi(·)�S0�i

(
Xi(C(S0�i))Ui(C(S0�i))|S0�i

)
�(A.5)

E(Xi|C) = ES0�iEXi(·)�S0�i

(
Xi(C(S0�i))|S0�i

)
�

Combining (A.4) and (A.5) gives

E(XiUi|C)−E(Xi|C)E(Ui|C)(A.6)

=ES0�iEXi(·)�S0�i

(
Xi(C(S0�i))Ui(C(S0�i))|S0�i

)
−ES0�iEXi(·)�S0�i

(
Xi(C(S0�i))|S0�i

) ·ES0�iEXi(·)�S0�i

(
Ui(C(S0�i))|S0�i

)
=ES0�i

[
EXi(·)�S0�i

(
Xi(C(S0�i))Ui(C(S0�i))|S0�i

)
−EXi(·)�S0�i

(
Xi(C(S0�i))|S0�i

) ·EXi(·)�S0�i

(
Ui(C(S0�i))|S0�i

)]
= 0�

where the second equality holds by Assumption FF2(b) because (i) C(·) is
independent of (Xi(·)�Ui(·)� S0�i) and, hence, can be conditioned on and
(ii) C(S0�i) is a constant conditional on C(·) and S0�i; and the third equality
holds by Assumption FF2(a). This result implies Assumption CU.

By (i) and (ii) of the last paragraph applied to the right-hand side of (A.4)
and Assumption FF3, the right-hand side of (A.4) equals zero a.s. Hence, As-
sumption CMZ holds. Q.E.D.

PROOF OF THEOREM 4: To prove part (a), we write

n1/2
(
β̂n −β0 − rn(C)

)
(A.7)

=
(
n−1

n∑
i=1

XiX
′
i − 	Xn

	X ′
n

)−1

× n−1/2
n∑

i=1

([Xi − 	Xn]Ui −E
([Xi −E(Xi|C)]Ui|C

))

=
(
n−1

n∑
i=1

XiX
′
i − 	Xn

	X ′
n

)−1
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×
(
n−1/2

n∑
i=1

{[Xi −E(Xi|C)]Ui −E
([Xi −E(Xi|C)]Ui|C

)
− [Xi −E(Xi|C)]E(Ui|C)

}
− [	Xn −E(Xi|C)]n−1/2

n∑
i=1

[Ui −E(Ui|C)]
)

= (
B−1

C + op(1)
)(

n−1/2
n∑

i=1

ξi

)
+ op(1)�

where ξi is defined in (4.2) and the third equality of (A.7) holds using Lemma 1
to obtain the B−1

C + op(1) result, using Lemma 1 to obtain 	Xn − E(Xi|C) =
op(1)� and using an MDS CLT to obtain

n−1/2
n∑

i=1

[Ui −E(Ui|C)] = Op(1)�(A.8)

In particular, we apply Corollary 3.1 of Hall and Heyde (1980, p. 59) to ob-
tain (A.8). For i ≥ 1� let Fi denote the σ-field generated by C and (W1� � � � �Wi)�

Then {Ui − E(Ui|C)�Fi : i ≥ 1} is an MDS because {Ui : i ≥ 1} are i.i.d. condi-
tional on C and, hence, E(Ui|Fi−1) = E(Ui|C) a.s. A conditional Lindeberg
condition holds because, for all ε > 0�

lim
n→∞

n−1
n∑

i=1

E
([Ui −E(Ui|C)]21

(|Ui −E(Ui|C)| > n1/2ε
)|Fi−1

)
(A.9)

= lim
n→∞

E
([Ui −E(Ui|C)]21

(|Ui −E(Ui|C)| > n1/2ε
)|C) = 0 a.s.,

where the first equality holds because {Ui : i ≥ 1} are i.i.d. conditional on C
and the second equality holds by the dominated convergence theorem using
E([Ui −E(Ui|C)]2|C) ≤E(U2

i |C) <∞ a.s. by Assumption 3(a). In addition, the
normalized sums of conditional variances converge as n → ∞ because they do
not depend on n:

n−1
n∑

i=1

E
([Ui −E(Ui|C)]2|Fi−1

) =E
([Ui −E(Ui|C)]2|C)

�(A.10)
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Equation (A.10) holds because the conditional variances given Fi−1 equal the
conditional variances given C and the latter are identically distributed by ex-
changeability. Hence, the MDS CLT implies that

n−1/2
n∑

i=1

[Ui −E(Ui|C)] d→E
([Ui −E(Ui|C)]2|C) ×Z∗�(A.11)

where Z∗ and E([Ui − E(Ui|C)]2|C) are independent and Z∗ ∼ N(0�1). This,
in turn, gives (A.8).

Next, {ξi�Fi : i ≥ 1} is an MDS by the same argument as above for {Ui −
E(Ui|C)�Fi : i ≥ 1}. By application of the same MDS CLT as above, we obtain

n−1/2
n∑

i=1

ξi
d→ΩC ×Z�(A.12)

where (ΩC�BC) and Z are independent and Z ∼ N(0� Ik). To establish the
CLT, we note that a conditional Lindeberg condition holds using the moment
conditions of Assumptions 2(a) and 3 and the dominated convergence theo-
rem as above, and the conditional variances converge by the same argument as
in (A.10). Combining (A.7) and (A.12) gives the result of part (a).

Part (b) of the theorem holds by the same argument as for part (a), but with
all of the terms premultiplied by V −1/2

C �
Part (c) of the theorem holds using Lemma 1. Q.E.D.

PROOF OF THEOREM 5: Part (a) holds by Lemma 1.
To prove part (b), for notational simplicity, suppose Xi is a scalar (otherwise

one can establish the results element by element). Using Theorem 1, we have

Ûi = [Ui −E(Ui|C)] − [̂αn − α0 −E(Ui|C)] −Xi(β̂n −β0)(A.13)

= [Ui −E(Ui|C)] +E(Xi|C)r(C)+ op(1)−Xi

(
r(C)+ op(1)

)
= [Ui −E(Ui|C)] − [Xi −E(Xi|C)][r(C)+ op(1)] + op(1)

(where op(1) does not depend on i). Using (A.13), we can write Ω̂n as

n−1
n∑

i=1

[Ui −E(Ui|C)]2(Xi − 	Xn)
2(A.14)

+ [r(C)+ op(1)]2

(
n−1

n∑
i=1

[Xi −E(Xi|C)]2(Xi − 	Xn)
2

)

− 2[r(C)+ op(1)]n−1
n∑

i=1

[Xi −E(Xi|C)][Ui −E(Ui|C)](Xi − 	Xn)
2
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+ op(1)2n−1
n∑

i=1

([Ui −E(Ui|C)] − [Xi −E(Xi|C)][r(C)+ op(1)]
)

× (Xi − 	Xn)
2

+ op(1)n−1
n∑

i=1

(Xi − 	Xn)
2�

The probability limit of (A.14) is Ω0
C + ηC using Lemma 1. Hence, part (b)

holds.
Part (c) follows from parts (a) and (b).
To prove part (d), note that σ̂2

n equals the expression in (A.14) for Ω̂n with
Xi − 	Xn replaced by 1� This, combined with Lemma 1, establishes part (d).

Part (e) follows from parts (a) and (d). Q.E.D.

PROOF OF THEOREM 6: We have

Tn = [V̂n]−1/2
j�j

√
n
(
β̂n�j −β0�j − rn(C)j

) + [V̂n]−1/2
j�j

√
nrn(C)j�(A.15)

where rn(C)j denotes the jth element of rn(C)� When Assumption CU holds,
we have rn(C)j = 0 and [V̂n]−1/2

j�j

√
n(β̂n�j −β0�j) →d N(0�1) by the combination

of Theorems 4(a) and 5(c) and comment 2 to Theorem 5. Hence, part (a) of
the Theorem 6 holds.

When r(C)j �= 0 a.s., we have

|Tn| =
∣∣Op(1)+ ([B−1

C (Ω0
C +ηC)B

−1
C ]j�j + op(1)

)−1/2√
nrn(C)j

∣∣ p→∞�(A.16)

where the equality holds using Theorems 4(a) and 5(c) and the divergence
to infinity holds because [B−1

C (Ω0
C + ηC)B

−1
C ]j�j is positive a.s. (by Assumptions

2(d) and 5(a)) and rn(C)j →p r(C)j by Theorem 4(c). In consequence, part (b)
of the Theorem 6 holds. Part (c) holds by a similar argument.

To establish part (d), under H0� we have

Wn = ∥∥(RV̂nR
′)−1/2n1/2R

(
β̂n −β0 − rn(C)

) + (RV̂nR
′)−1/2n1/2Rrn(C)

∥∥2
�(A.17)

When Assumption CU holds, we have Rrn(C) = 0 a.s. and (RV̂nR
′)−1/2n1/2 ×

R(β̂n − β0) →d N(0� Iq) by Theorems 4(a) and 5(c). Hence, part (d) of the
theorem holds.

When the assumption Rr(C) �= 0 a.s., we have

Wn = ∥∥Op(1)+n1/2
(
RB−1

C [Ω0
C +ηC]B−1

C R′ +op(1)
)−1/2

Rrn(C)
∥∥2 p→∞�(A.18)

where the first equality uses (A.17) and Theorems 4(a) and 5(c), and the di-
vergence to infinity uses the fact that B−1

C [Ω0
C + ηC]B−1

C is nonsingular a.s. by
Assumptions 2(d) and 5(a). Hence, part (e) of the theorem holds. Q.E.D.
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PROOF OF LEMMA 3: Using (7.5), which relies on Assumption S, we have

E(Ui|C) =
∫

E
(
U(γ)|C)

dG(γ)�(A.19)

E(Xi|C) =
∫

E
(
X(γ)|C)

dG(γ)�

E(XiUi|C) =
∫

E
(
X(γ)U(γ)|C)

dG(γ)�

Equation (A.19) and Assumption CMZ give

E(Ui|C) =
∫

E
(
U(γ)|C)

dG(γ)= 0�(A.20)

Combining the results of (A.19) gives

E(XiUi|C)−E(Xi|C)E(Ui|C)(A.21)

=
∫

E
(
X(γ)U(γ)|C)

dG(γ)

−
∫

E
(
X(γ)|C)

dG(γ)

∫
E

(
U(γ)|C)

dG(γ)�

=
∫ [

E
(
X(γ)U(γ)|C) −E

(
X(γ)|C)

E
(
U(γ)|C)]

dG(γ)

= 0�

where the second equality holds by Assumption CUγ(b) and the third equality
holds by Assumption CUγ(a). Q.E.D.

PROOF OF LEMMA 4: The proof is analogous to that of Lemma 3 using (7.4)
in place of (7.5). Q.E.D.
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