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In this paper, we prove the validity of an Edgeworth expansion to the distribution
of the Whittle maximum likelihood estimator for stationary long-memory Gauss-
ian models with unknown parameter u � Q � R

du + The error of the ~s � 2!-order
expansion is shown to be o~n�~s�2!02!—the usual independent and identically dis-
tributed rate—for a wide range of models, including the popular ARFIMA~ p,d,q!
models+ The expansion is valid under mild assumptions on the behavior of
the spectral density and its derivatives in the neighborhood of the origin+ As a
by-product, we generalize a theorem by Fox and Taqqu ~1987, Probability Theory
and Related Fields 74, 213–240! concerning the asymptotic behavior of Toeplitz
matrices+

Lieberman, Rousseau, and Zucker ~2003, Annals of Statistics 31, 586– 612!
establish a valid Edgeworth expansion for the maximum likelihood estimator for
stationary long-memory Gaussian models+ For a significant class of models, their
expansion is shown to have an error of o~n�1!+ The results given here improve
upon those of Lieberman et al+ in that the results provide an Edgeworth expan-
sion for an asymptotically efficient estimator, as Lieberman et al+ do, but the error
of the expansion is shown to be o~n�~s�2!02!, not o~n�1!, for a broad range of
models+

1. INTRODUCTION

We consider a discrete-time stationary long-memory Gaussian process
$Xt : t � Z% with unknown mean m and covariance matrix Tn~ fu! for
u � Q � R

du+ The spectral density of the process satisfies
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fu~l! ; Au~l!6l 6�a~u! as 6l 6r 0, (1)

where the long-memory parameter a~u! is in ~0,1! and Au~l! is slowly varying
at the origin+ The main feature of ~1! is that fu~l! is unbounded at the origin
and the autocovariances based on fu~l! are not summable+ A popular model
that satisfies ~1! is the ARFIMA~ p,d,q! model for which d � a~u!02+

Models that satisfy ~1! have been of interest since the early 1950s in a vari-
ety of fields, including mathematical statistics, probability, economics, finance,
and hydrology+ For some key references the reader is referred to Hurst ~1951!,
Mandelbrot and Van Ness ~1968!, Granger and Joyeux ~1980!, Hosking ~1981!,
Beran ~1994!, and Robinson ~1995!+

A number of estimators of u are available, including the maximum likeli-
hood estimator ~MLE! and the Whittle MLE ~WMLE!+ Dahlhaus ~1989! estab-
lishes consistency, asymptotic efficiency, and asymptotic normality of a plug-in
version of the MLE, which we refer to as the PMLE+ The PMLE is the maxi-
mizer of

Ln~u, Imn ! � �
n

2
log~2p!�

1

2
log det Tn~ fu !

�
1

2
~xn � Imn1n !

'Tn
�1~ fu !~xn � Imn1n !, (2)

where Imn is an n ~1�a~u!!02-consistent estimator of m ~such as the sample mean!,
xn � ~X1, + + + , Xn!

', and 1n is a column n-vector of ones+ The unusual n ~1�a~u!!02

rate for Imn is a consequence of the long-memory property of the process+
Fox and Taqqu ~1986! establish consistency and asymptotic normality of the

WMLE+ The WMLE is the minimizer of

Ln
W~u! �

1

4p
�

�p

p

~ log fu~l!� fu
�1~l!In~l!! dl, (3)

where

In~l! �
1

2pn �(j�1

n

e ijl~Xj � PX !�
2

and PX � n�1 (
j�1

n

Xj +

The WMLE and PMLE have the same asymptotic distribution, and hence the
WMLE also is asymptotically efficient+ The WMLE, however, has some com-
putational advantages+ It does not require the computation of the inverse and
determinant of the n � n covariance matrix Tn~ fu!+

Recently, Lieberman, Rousseau, and Zucker ~2003! proved the validity of
the formal Edgeworth expansion to the distribution of the MLE for the param-
eters of a zero mean, Gaussian long-memory process with spectral density sat-
isfying ~1!+ Andrews, Lieberman, and Marmer ~2005! extend their results to
the PMLE for the case of unknown mean+ For some models, the error of the
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~s � 2!-order expansion is o~n�~s�2!02!+ But, for other models, including many
ARFIMA~ p,d,q! models, the error is shown to be valid only to order o~n�1!+
The reason is that the asymptotic covariance matrix of the log-likelihood deriv-
atives ~LLDs! is singular, but the finite-sample covariance matrix of the LLDs
is not+ The Edgeworth expansion for the MLE relies on an Edgeworth expan-
sion for the LLDs, and the latter typically requires the asymptotic covariance
matrix of the LLDs to be nonsingular+When one discards LLDs to obtain non-
singularity of the asymptotic covariance matrix of the LLDs, it affects the error
of the expansion+

In this paper, we prove the validity of an Edgeworth expansion to the distri-
bution of the WMLE for stationary Gaussian processes that satisfy ~1!+ We are
able to prove validity of the ~s � 2!-order expansion for the WMLE with error
o~n�~s�2!02! for a much wider range of models than Lieberman et al+ ~2003! do
for the MLE+ The models covered include the widely used ARFIMA~ p,d,q!
models+ The generality of the results is possible because the finite-sample covari-
ance matrix of the Whittle log-likelihood derivatives ~WLDs! is singular when-
ever its asymptotic covariance matrix is singular+ In consequence, when the
asymptotic covariance matrix of the WLDs is singular, WLDs that are redun-
dant asymptotically are also redundant in finite samples, and one can discard
them without affecting the error of the Edgeworth expansion for the WMLE+

The results given here are for the WMLE defined using integrals over ~�p,p!,
as in ~3!+ These integrals can be approximated quickly and to an arbitrary degree
of accuracy using standard numerical integration methods because the domain
of integration is univariate and bounded and the integrands are smooth and
bounded+ To ease computation, one can use a relatively crude approximation to
find a neighborhood of the maximum and then use a more accurate approxima-
tion to find the actual maximum+

The assumptions employed in this paper mainly control the behavior of the
spectral density and its derivatives in a neighborhood of the origin+ The assump-
tions are a hybrid of the assumptions of Fox and Taqqu ~1986! for the first-
order theory for the WMLE and the assumptions of Bhattacharya and Ghosh
~1978! for the higher order theory for the MLE in an independent and identi-
cally distributed ~i+i+d+! context+ The assumptions differ from those of Fox and
Taqqu ~1986! primarily in the order of partial derivatives that are assumed to
exist+ The assumptions are similar to those used in Lieberman et al+ ~2003!+

The results of this paper are useful for establishing higher order improve-
ments of the parametric bootstrap based on the WMLE ~see Andrews et al+,
2005!+ The computational advantages of the WMLE over the MLE make the
WMLE bootstrap an attractive procedure+ In addition, the generality of the results
given here allows one to establish more general higher order improvements for
the WMLE-based bootstrap than for the MLE-based bootstrap+

The method of proof used in this paper is outlined briefly as follows+ First,
we establish validity of an Edgeworth expansion for the WLDs using a general
result of Durbin ~1980, Theorem 1!+ A key requirement of Durbin’s theorem
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concerns the behavior of the cumulants of the WLDs+ It is established by gen-
eralizing a result of Fox and Taqqu ~1987, Theorem 1~a!! on the properties of
the trace of a product of Toeplitz matrices+ Other assumptions of Durbin are
verified using the proof of Lieberman et al+ ~2003!+ Second, we use the argu-
ment of Bhattacharya and Ghosh ~1978!, in which the normalized WMLE is
approximated by a function of WLDs, to obtain the desired Edgeworth expan-
sion of the WMLE from that of the WLDs+

Theorem 1~a! of Fox and Taqqu ~1987! deals with the asymptotic behavior
of Pn � tr @~Tn~ f !Tn~g!!

p# , where Tn~ f ! and Tn~g! are n � n Toeplitz matrices
and f and g satisfy ~1! with exponents a � 1 and b � 1, respectively, in place
of a~u!+We denote the exponent structure of Pn by E � $a,b, + + + ,a,b% + In this
paper, we need to control the behavior of a more complicated Toeplitz matrix
product with a nonhomogeneous exponent structure of the form EE � $b1, + + + ,b2p%+
Results for this more general case may be of interest in other applications+ Inter-
est in algebraic structures of this form originated in a monograph by Grenander
and Szegö ~1956! and has generated considerable interest over the years+ For
instance, see Dahlhaus ~1989! and Taniguchi and Kakizawa ~2000!+

The results of this paper follow a long tradition on valid asymptotic expan-
sions+ The literature started with models for i+i+d+ data and has gradually expanded
to cover models with more complicated dependence structures+ In a seminal
paper, Bhattacharya and Ghosh ~1978! prove validity of the formal Edgeworth
expansion to the distribution of the MLE in an i+i+d+ setting+ Taniguchi ~1984,
1986, 1988, 1990! establishes a series of validity results applicable mainly to
weakly dependent Gaussian autoregressive moving average ~ARMA! processes+
Götze and Hipp ~1983, 1994! and Lahiri ~1993! establish validity results for
the sample mean for non-Gaussian weakly dependent processes+ As mentioned
before, Lieberman et al+ ~2003! and Andrews et al+ ~2005! provide validity results
for the MLE for stationary long-memory Gaussian processes+

The Edgeworth expansions presented in this paper are based on finite-sample
cumulants rather than their limiting values+ Hence, the coefficients of the expan-
sions depend on n in general but are O~1!+ This is standard in the literature for
Edgeworth expansions for weakly dependent time series; see Durbin ~1980!,
Taniguchi ~1984, 1990!, Götze and Hipp ~1983, 1994!, and Lahiri ~1993!+ The
expansions can be used to establish the higher order refinements of the boot-
strap, to construct empirical Edgeworth expansions, and to show the magni-
tude of the error of the normal approximation, just as with Edgeworth expansions
whose coefficients do not depend on n+

We do not identify an Edgeworth expansion for an example, such as an auto-
regressive fractionally integrated moving average ~ARFIMA! model, in this paper
because identification is a separate and nontrivial enterprise+ See Lieberman
and Phillips ~2004! for the identification of the second-order Edgeworth expan-
sion for the MLE for the ARFIMA~0, d, 0! model+

The remainder of the paper is organized as follows+ Section 2 states the
assumptions+ Section 3 provides bounds on the cumulants of the WLDs and an
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Edgeworth expansion for the WLDs+ Section 4 gives the Edgeworth expansion
for the WMLE+ Section 5 discusses an ARFIMA example+ Section 6 contains
proofs+

2. ASSUMPTIONS

In this section, we state the assumptions used in the paper and relate them to
the assumptions of Fox and Taqqu ~1986! and Lieberman et al+ ~2003!+

Throughout, s � 3 denotes a positive integer associated with the order of an
expansion+With conditions on derivatives up to order s � 1, we prove the valid-
ity of the ~s � 2!th order formal Edgeworth expansion to the distribution of the
WMLE with an error rate of o~n�~s�2!02!+

Assumptions+

W1+ Q has a nonempty interior+
W2+ g~u!� *�p

p log fu~l! dl and hn~u!� *�p
p fu

�1~l!In~l! dl can be differ-
entiated s � 1 times under the integral sign+

There exists 0 � a~u! � 1 such that for each d � 0:

W3+ fu~l! is continuous at all ~l,u! for which l � 0, fu
�1~l! is continuous

at all ~l,u!, and ∃c1~u,d! � ` such that

6 fu~l!6 � c1~u,d!6l 6�a~u!�d

for all l in a neighborhood Nd of the origin+

W4+ For all ~ j1, + + + , jk! with k � s � 1 and ji � $1, + + + , du% ,
~]k0~]uj1 + + +]ujk !! fu

�1~l! is continuous at all ~l,u! and ∃c2~u,d! � `
such that

� ]
k fu

�1~l!

]uj1 + + +]ujk � � c2~u,d!6l 6a~u!�d, ∀l � Nd +

W5+ ~]0]l! fu~l! is continuous at all ~l,u! for which l� 0 and ∃c3~u,d! �
` such that

� ]fu~l!]l � � c3~u,d!6l 6�a~u!�1�d, ∀l � Nd +

W6+ For all ~ j1, + + + , jk! with k � s � 1 and ji � $1, + + + , du% ,
~]k�10~]l]uj1 + + +]ujk !! fu

�1~l! is continuous at all ~l,u! for which l� 0
and ∃c4~u,d! � ` such that

� ]
k�1 fu

�1~l!

]l]uj1 + + +]ujk � � c4~u,d!6l 6a~u!�1�d, ∀l � Nd +
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W7+ For any compact subset Q* of Q there exists a constant C~Q*,d! � `
such that the constants ci~u,d! for i � 1, + + + ,4 are bounded by C~Q*,d!
for all u � Q*+

Assumption W1 is used because the WMLE is asymptotically normal only at
points in the interior of Q+ Assumption W1 does not require Q to be compact,
as Fox and Taqqu ~1986! do, because we do not prove consistency of the WMLE
here+1 Assumption W2 guarantees the existence of WLDs up to order s � 1+
Assumption W2 extends Assumption A+1 of Fox and Taqqu ~1986! to s � 1
derivatives for both parts of equation ~3!+ This assumption is used in place of
Assumption VI~b! of Lieberman et al+ ~2003!+ Assumption W3 characterizes
the long-memory property of the process+ It corresponds to Assumption A+2
of Fox and Taqqu ~1986! and Assumption IV~a! of Lieberman et al+ ~2003!+
Assumptions W4–W6 restrict the partial derivatives with respect to l and u of
the spectral density and its inverse for l in a neighborhood of the origin+Assump-
tions W4 and W6 extend Assumptions A+3 and A+5 of Fox and Taqqu ~1986! to
cover s � 1 derivatives+ Assumption W5 is the same as Assumption A+4 of Fox
and Taqqu ~1986!; their Assumption A+6 is not used here because we use a
different method of analyzing the impact of estimating the mean m by PX than
they do+

Assumption W7 bounds the constants that appear in the preceding assump-
tions over parameter values u that lie in compact sets+ This assumption is needed
to handle the remainder that appears in the approximation of the WMLE by a
function of WLDs+ It is also needed to deliver Edgeworth expansions that are
valid uniformly over certain compact sets Q* in Q+ Uniform results of this sort
are required to establish the higher order improvements of the parametric boot-
strap based on the WMLE+

Assumptions W1–W7 are satisfied for Gaussian ARFIMA~ p,d,q! models+

3. PROPERTIES OF WLDs

In this section, we define the WLDs, specify the parameter values for which
we can obtain Edgeworth expansions for WLDs and the WMLE, determine
bounds on the magnitudes of the cumulants of the WLDs, and use these bounds
to establish an Edgeworth expansion for the WLDs+ This expansion is used in
Section 4 to obtain an Edgeworth expansion for the WMLE+

3.1. Definition of WLDs

Let n be a set of subscripts ~r1, + + + , rq!, where rj is in $1, + + + ,du% for all j � q+
~We use rj to denote an element of n, rather than nj , because n1, + + + ,nr are used
subsequently to denote different vectors n of subscripts+! Let DnLn

W~u! denote
the qth order WLD with respect to u specified by n, namely,
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DnLn
W~u! �

]q

]ur1
+ + +]urq

Ln
W~u!+ (4)

In view of ~3!,

DnLn
W~u! �

1

4p
Dn�

�p

p

log fu~l! dl�
1

4p
Dn�

�p

p

fu
�1~l!In~l! dl+ (5)

The second summand in ~5! is

1

4p
Dn�

�p

p

fu
�1~l!� 1

2pn (j, k�1

n

e i ~ j�k!l~Xj � PX !~Xk � PX !� dl

�
1

2n (j, k�1

n

~Xj � PX !~Xk � PX !Dn�
�p

p 1

4p2 fu
�1~l!e i ~ j�k!l dl+ (6)

The last integral is the ~ j, k! element of the Whittle approximation to the inverse
of the covariance matrix Tn~ fu!+ More specifically, for an integrable function h
on ~�p,p!, let Tn~h! denote the n � n Toeplitz matrix with ~ j, k! element
*�p
p e i ~ j�k!lh~l! dl+ Then, the Whittle approximation to Tn

�1~ fu ! is

Tn� 1

4p2 fu
�1�+

For simplicity, we write

gu,n~l! �
1

4p2 Dn fu
�1~l!+

Then, the right-hand side ~RHS! of ~6! is

1

2n
xn
'MnTn~gu,n !Mn xn , (7)

where Mn � In � Pn, Pn � n�11n1n
' , and In is the identity matrix of order n+

Because Mn1n � 0,

xn
'MnTn~gu,n !Mn xn � ~xn � 1nm!

'MnTn~gu,n !Mn~xn � 1nm!+

Hence, without loss of generality, we may assume that m � 0+

3.2. Parameter Values

We now specify the parameter values u for which we establish Edgeworth expan-
sions for WLDs and the WMLE that follows+ Clearly, only parameter values
that are in the interior of Q and for which the asymptotic covariance matrix of
the WMLE is nonsingular are candidates+ For example, in an ARFIMA~ p,d,q!
model, parameter values u for which there are common roots of the autoregres-
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sive and moving average characteristic equations are not candidates+ Rather than
excluding such parameter values from the parameter space Q, which would not
yield the parameter space typically used in practice, we allow the parameter
space Q to include such values, but we exclude them from the set of parameter
values for which we establish an Edgeworth expansion+

By Theorem 2+1 of Dahlhaus ~1989! ~also see Fox and Taqqu, 1986, Theo-
rem 2!, the asymptotic covariance matrix of the WMLE ~suitably normalized! is

S~u! � � 1

4p
�

�p

p ]

]u
log fu~l!

]

]u '
log fu~l! dl��1

+ (8)

By Dahlhaus ~1989, Theorem 2+1 and Sect+ 4!, S~u! is the inverse of the asymp-
totic information matrix+

Let OZn~u! denote 2n times the vector of all WLDs, DnLn
W~u!, up to order

s � 1+ For example, for s � 2,

OZn~u! � 2n~Dn1
Ln

W~u!, + + + ,Dndu
Ln

W~u!!', (9)

where nj � $ j % for j � 1, + + + ,du and Dnj
Ln

W~u!� ~]0]uj !Ln
W~u!+ For s � 3, OZn~u!

contains the partial derivatives given previously plus those corresponding to
the following n vectors: ~1,1!, ~1,2!, + + + , ~1,du!, ~2,2!, ~2,3!, + + + , ~2,du!, + + + , ~du,du!,
where D~i, j !Ln

W~u! � ~]20]ui ]uj !Ln
W~u!+

Let PDn~u! denote the covariance matrix of n�102 OZn~u! when the true param-
eter is u+ The ~ j, k! element of PDn~u! is

PDn~u!j, k �
2

n
tr~MnTn~gu,nj

!MnTn~ fu !MnTn~gu,nk
!MnTn~ fu !! (10)

~see ~13!, which follows!+ By Proposition 2 and Theorem 3, which follows, the
asymptotic covariance matrix PD~u! ~� limnr` PDn~u!! of n�102 OZn~u! exists and
its ~ j, k! element is

PD~u!j, k �
1

p
�

�p

p

@Dnj
fu

�1~l!# @Dnk
fu

�1~l!# fu
2~l! dl+ (11)

Given any subvector Zn~u! of OZn~u!, let Dn~u! and D~u! denote the finite-
sample and asymptotic covariance matrices of n�102Zn~u!, respectively, when
the true parameter is u+

We establish Edgeworth expansions for WLDs and the WMLE that hold uni-
formly over compact sets that lie in any set EQ � Q that satisfies the following
“nonsingularity” condition+

Condition NS+

~i! EQ lies in the interior of Q+
~ii! S~u! is nonsingular for all u � EQ+
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~iii! For some subvector Zn~u! of OZn~u!, the asymptotic covariance matrix
D~u! of n�102Zn~u! is nonsingular for all u � EQ and the asymptotic
covariance matrix of any subvector of n�102 OZn~u! that strictly contains
n�102Zn~u! is singular for all u � EQ+

Note that every parameter u1 that is in the interior of Q and for which S~u1!
is nonsingular is in some set EQ that satisfies condition NS+ This follows because,
given u1, there is a subvector of OZn~u!, call it OZu1, n~u!, such that condition
NS~iii! holds for u � $u1% + Hence, the set $u1% is an example of a set EQ that
includes u1 and satisfies condition NS+

The first condition of condition NS~iii! is utilized because the vector of WLDs
n�102Zn~u! needs to have a nonsingular covariance matrix to apply Theorem 1
of Durbin ~1980!, which is used to obtain an Edgeworth expansion for the WLDs+
For example, in an ARFIMA~1,d,1! model, the third derivative with respect to
the autoregressive parameter is zero+ Hence, Zn~u! does not contain this WLD
for any set EQ that satisfies condition NS+

In some models, the subvector Zn~u! of OZn~u! that yields a nonsingular asymp-
totic covariance matrix D~u! in condition NS~iii! depends on the parameter
vector u+ For example, in an ARFIMA~1,d,1! model, the first partial deriva-
tives with respect to the autoregressive and moving average coefficients are
linearly independent for most parameter values+ But, at parameter values that
yield common roots, these two WLDs are equal+ The results given subsequently
cover such cases by allowing one to consider different sets EQ, which may have
different subvectors Zn~u! appearing in condition NS~iii!+

The second condition of condition NS~iii! guarantees that the finite-sample
covariance matrix of any subvector EZn~u! of OZn~u! that strictly contains Zn~u!
is singular ~as shown in the next paragraph!+ This is important because we obtain
a valid Edgeworth expansion to the WMLE by approximating it by a function
of Zn~u! ~suitably normalized!+ If there is a subvector EZn~u! of OZn~u! that strictly
contains Zn~u! and has a nonsingular covariance matrix, then Zn~u! does not
contain all of the nonredundant WLDs of order up to s � 1 for sample size n+
Nonredundant WLDs cannot be omitted from the approximation to the WMLE
without affecting the accuracy of the approximation and the remainder of the
Edgeworth expansion for the WMLE+

To see why the claim in the first sentence of the previous paragraph is
true, let EDn~u! and ED~u! denote the finite-sample and asymptotic covariance
matrices of n�102 EZn~u!, respectively+ Let n1, + + + ,n Dds

denote the derivative indi-
ces corresponding to the elements of EZn~u!+ By condition NS~iii!, ED~u! is sin-
gular+ Hence, by ~11!, there exists a vector a � ~a1, + + + ,a Dds

!' � 0 such that

(
j�1

Dds

aj Dnj
fu

�1~l! � 0 (12)

for all l in a subset of ~�p,p! with Lebesgue measure 2p ~using the fact that
fu~l! � 0 for all l � 0 for all u by Assumption W3!+
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From ~5!, the elements of EZn~u! � Eu EZn~u! are of the form

n

2p
�

�p

p

Dnj
fu

�1~l!~In~l!� Eu In~l!! dl

for j � 1, + + + , Dds+ Hence, ~12! implies that a '~ EZn~u!� Eu EZn~u!!� 0+ In turn, this
implies that EDn~u! is singular+

The situation is different when establishing an Edgeworth expansion for
the MLE, rather than the WMLE, as in Lieberman et al+ ~2003!+ In this case,
one approximates the MLE by a vector of LLDs+ Singularity of the asymp-
totic covariance matrix of a vector of LLDs does not imply singularity of
the corresponding finite-sample covariance matrix+ For example, with the
ARFIMA~1,d,1! model, one can have a singular asymptotic covariance matrix
of LLDs but a nonsingular finite-sample covariance matrix; see Section 5 for a
discussion of this model+ In such cases, when one approximates the MLE by a
vector of LLDs whose asymptotic covariance matrix is nonsingular, some LLDs
that are not redundant in finite samples are omitted+ This affects the accuracy
of the approximation of the MLE and the remainder of the Edgeworth expan-
sion of the MLE+ In consequence, in models with this feature, the Edgeworth
expansion for the MLE of Lieberman et al+ ~2003! has remainder o~n�1!, rather
than o~n�~s�2!02!+

Let

Wn~u! � n�102~Zn~u!� Eu Zn~u!!+

Subsequently we establish an Edgeworth expansion for the vector Wn~u! of
normalized WLDs+ Denote the dimension of Zn~u! and Wn~u! by ds+ The ele-
ments of Wn~u! are of the form

n�102~xn
'MnTn~gu,n !Mn xn � Eu xn

'MnTn~gu,n !Mn xn !+

Note that, although Assumptions W2–W7 concern derivatives up to order
s � 1, for an Edgeworth expansion to the WMLE with an error rate of order
o~n�~s�2!02!, we only need an Edgeworth expansion of the joint distribution of
a vector of normalized WLDs up to order s � 1, namely, Wn~u!+ The reason is
that, in the Taylor series approximation of the WMLE by WLDs, the ~s � 1!th
order WLDs are in the remainder term and the sth order WLDs can be replaced
in the series expansion by their expectations with the differences between them
and their expectations being added to the remainder term+ For example, see
Taniguchi and Kakizawa ~2000, Sect+ 4+2!+

3.3. WLD Cumulant Bounds

A key step in establishing the validity of an Edgeworth expansion for the dis-
tribution of Wn~u! that holds uniformly over compact subsets of some set EQ
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that satisfies condition NS is showing that the cumulants of Zn~u! are O~n!
uniformly in such sets+ This condition is Assumption 4 of Durbin ~1980!+
Durbin’s Theorem 1 is used to obtain the Edgeworth expansion of Wn~u!+

Let kr~u! denote an rth order joint cumulant of Zn~u!+ For simplicity, we
drop the subscript n in the following+ From the theory of quadratic forms in
normal variables ~e+g+, see Searle, 1971, p+ 55!, kr~u! can be written as

k1~u! �
n

2p
Dnj
�

�p

p

log fu~l! dl� tr~MT ~gu,nj
!MT ~ fu !! and

kr ~u! � Cr tr�)
j�1

r

~MT ~gu,nj
!MT ~ fu !!� for r � 2 (13)

for some vectors $nj : j � 1, + + + , r% of subscripts and some constant Cr � `+
Note that kr~u! involves derivatives of fu

�1~l!, not of fu~l!+
To clarify the notation, note that Zn~u! is a vector whose elements are partial

derivatives of Ln
W~u! of order s � 1 or less+ For example, the j th element of

Zn~u! might be Dnj
Ln

W~u! � ~]20]u1]u2 !Ln
W~u!, where nj � ~1,2!'+ Now, given

the vector Zn~u! of partial derivatives, an rth order cumulant of Zn~u!, like an
rth order moment of Zn~u!, is determined by r elements of Zn~u! with repeated
elements allowed+

THEOREM 1+ Suppose Assumptions W1–W7 hold and EQ satisfies condition
NS. Then, for all r � 1, kr~u! � O~n! uniformly over any compact subset Q*

of EQ.

To prove Theorem 1, we substitute M � I � P in ~13! and rewrite kr~u! for
r � 2 as

kr ~u! � Cr( tr�)
j�1

r

~~�P !xjT ~gu,nj
!~�P !jjT ~ fu !!�, (14)

where xj ,jj take on the values zero or one and satisfy 0 �(j�1
r ~xj � jj !� 2r,

the summation is over all 22r possible configurations of ~x1,j1, + + + ,xr,jr !, and
~�P !0 � I+ The following result establishes that the summand in ~14! for which
xj � jj � 0 for all j � 1, + + + , r is O~n!+ The result is due to Lieberman et al+
~2003! ~see their Theorem 1!+ It is a uniform version of Theorem 1+a of Fox
and Taqqu ~1987!+

PROPOSITION 2+ Suppose Assumptions W1–W7 hold and EQ satisfies con-
dition NS. Then, for all r � 1,

lim
nr`

sup
u�Q*

� 1

n
tr�)

j�1

r

~T ~gu,nj
!T ~ fu !!�

� ~2p!2r�1�
�p

p �)
j�1

r

~gu,nj
~l! fu~l!!� dl� � 0 (15)

for any compact subset Q* of EQ.
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In Proposition 2, Assumption W2 guarantees the existence of the WLDs,
Assumptions W3 and W4 specify the exponent structure of the matrix product,
Assumptions W5 and W6 are used in the proof of Theorem 1 of Lieberman
et al+ ~2003!, and Assumption W7 is required for the result to be uniform+ Prop-
osition 2 is used to show that the rth order cumulants are O~n!+ It is not used to
approximate the cumulants by their limiting values up to the order of the Edge-
worth expansion given subsequently because the Edgeworth expansion is given
in terms of the finite-sample cumulants+

Next, we consider the case where at least one matrix P appears in ~14!+
Because P is of the form n�111' ~where 1 denotes an n-vector of ones!, for any
matrices A and B, tr @PAPB# � tr @PA# tr @PB# + In consequence, each summand
in ~14! for which at least one matrix P appears can be written as the product of
terms of the following form for different values of p: for 0 � p � r,

In, p~u! � tr��P)
j�1

p

~T ~gu,nj
!T ~ fu !!�,

In, p
� ~u! � tr��P)

j�1

p

~T ~gu,nj
!T ~ fu !!T ~gu,np�1

!�, and

In, p
� ~u! � tr��P)

j�1

p

~T ~ fu !T ~gu,nj
!!T ~ fu !� + (16)

In addition, the number of terms of the form In, p
� ~u! and In, p

� ~u! that appear in
each summand must be the same, because each product in ~14! must contain
the same number r of matrices T ~ fu! as matrices of the form T ~gu,nj

!+
For example, if r � 2, then a typical term in the sum in ~14! that contains at

least one P matrix is of the following form: for ~x1,j1,x2,j2!� ~1,1,1,1!, with
P � n�111', T1 � T ~gu,n1

!, T2 � T ~gu,n2
!, and T � T ~ fu! for brevity,

tr~�PT1~�P !T ~�P !T2~�P !T ! � n�4 tr~~�1!1'T1~�1!1'T ~�1!1'T2~�1!1'T !

� n�4 tr~1'T11{1'T1{1'T21{1'T1!

� n�4 tr~1'T11!tr~1'T1!tr~1'T21!tr~1'T1!

� tr~�PT1!tr~�PT !tr~�PT2 !tr~�PT !, (17)

which is a product of terms of the form In,0
� ~u!, In,0

� ~u!, In,0
� ~u!, and In,0

� ~u!+ Or,
if ~x1,j1,x2,j2! � ~1,0,1,0!,

tr~�PT1T ~�P !T2T ! � n�2 tr~~�1!1'T1T ~�1!1'T2T !

� n�2 tr~1'T1T1{1'T2T1!

� n�2 tr~1'T1T1!tr~1'T2T1!

� tr~�PT1T !tr~�PT2T !, (18)

which is a product of two terms of the form In,1~u!+
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The following theorem makes extensive use of power counting theory as dis-
cussed in Fox and Taqqu ~1987!+ The theorem is analogous to Theorem 1~a! of
Fox and Taqqu ~1987!+ Its proof is complicated by the fact that the algebraic
structure of the product matrices is not homogeneous+

THEOREM 3+ Suppose Assumptions W1–W7 hold and EQ satisfies condition
NS. For any p � 0, any compact set Q* � EQ, and any constant d � 0, there
exists a constant Kp~Q

*,d! � ` such that

(a) supu�Q* 6In, p~u!6 � Kp~Q
*,d!nd,

(b) supu�Q* 6In, p
� ~u!6 � Kp~Q

*,d!n�a�d, and
(c) supu�Q* 6In, p

� ~u!6 � Kp~Q
*,d!na�d.

Proposition 2 shows that the summand in ~14! in which no P matrix appears
is O~n!+ Every other summand in ~14! is a product of terms in ~16!, which by
Theorem 3 is O~nd! ~using the fact that the In, p

� ~u! and In, p
� ~u! terms come in

pairs!+ Hence, the sum of terms in ~14!, namely, kr~u!, is O~n!, and Theorem 1
holds+

3.4. WLD Edgeworth Expansion

We now state the Edgeworth expansion for the density of Wn~u!+ It is obtained
by applying Theorem 1 of Durbin ~1980!+

THEOREM 4+ Suppose Assumptions W1–W7 hold and EQ satisfies condition
NS. For u � EQ, let Gn~u,u! be the joint density of Wn~u! and let EGn

~t�2!~u,u!
be its ~t� 2!-order formal Edgeworth expansion for any integer t � 3. Then,

Gn~u,u!� EGn
~t�2!~u,u! � o~n�~t�2!02 !

uniformly over u � Rds and u in any compact subset Q* of EQ.

The Edgeworth expansion for the density of Wn~u! can be used to obtain an
Edgeworth expansion for the distribution of Wn~u! using Corollary 3+3 of Skov-
gaard ~1986!+

COROLLARY 5+ Suppose Assumptions W1–W7 hold and EQ satisfies condi-
tion NS. For any integer t � 3,

Pru~Wn~u! � C! ��
C
EGn
~t�2!~u,u! du � o~n�~t�2!02 ! (19)

uniformly over all Borel sets C and u in any compact subset Q* of EQ.

Note that the preceding Edgeworth expansions are valid to any order under
Assumptions W1–W7+ ~In fact, this feature of Theorem 4 is used to obtain the
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error o~n�~t�2!02! in Corollary 5, rather than o~n�~t�2!02�d! for arbitrary d �
0, when applying Skovgaard’s result+! That is, the integer s determines the order
of the WLDs that appear in Wn~u! and, hence, Assumptions W1–W7 depend
on s+ But, given s and Wn~u!, the Edgeworth expansion in Theorem 4 is valid
to any order t � 3+

4. EDGEWORTH EXPANSIONS FOR THE WHITTLE MLE

The WMLE Zun of u solves

�
�p

p ]

]ur
~ log fu~l!� fu

�1~l!In~l!! dl � 0 for r � 1, + + + ,du + (20)

In general, there may be multiple solutions to ~20!+
Let EHn

~s�2!~u,u! be the ~s � 2!th-order formal Edgeworth expansion of the
density of n102~ Zun � u! for u � EQ given by

EHn
~s�2!~u,u! � fS~u!~u! �1 �(

r�3

s

n�~102!r�1qn, r,u~u!	 ,
where fS~u! denotes the multivariate normal density with mean zero and covari-
ance matrix S~u! and $qn, r,u~u! : r � 3, + + + , s% are Edgeworth polynomials whose
coefficients are O~1! and depend on the cumulants of the WLDs+

The main result of the paper is the following theorem+ Its form is analogous
to that of Theorem 3 of Bhattacharya and Ghosh ~1978!+

THEOREM 6+ Suppose Assumptions W1–W7 hold and EQ satisfies condition
NS. Let Q* denote a compact set in EQ. Then,

(a) there exists a sequence of estimators $ Zun : n � 1% and a constant d0 �
d0~Q

*! such that

inf
u�Q*

Pru~7 Zun � u7 � d0 n�102~ log n!102, Zun solves ~20!!

� 1 � o~n�~s�2!02 !, (21)
(b) any sequence of estimators $ Zun : n � 1% that satisfies (21) admits the Edge-

worth expansion

Pru~Mn ~ Zun � u! � C ! ��
C
EHn
~s�2!~u,u! du � o~n�~s�2!02 ! (22)

uniformly over u � Q* and over every class B of Borel sets that satisfies the
condition

sup
u�Q*

sup
C�B

�
~]C!«
fS~u!~u! du � O~«! as « f 0, (23)

where ~]C!« denotes the «-neighborhood of the boundary of C.
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Several remarks are in order+ First, the error rate in both parts of the theorem
is identical to the i+i+d+ rate+ Second, the error rate can be made arbitrarily small
if the assumptions hold for s arbitrarily large+ Third, part ~a! of the theorem
does not guarantee consistency of the estimator that maximizes the Whittle like-
lihood+ Rather, it shows that a consistent solution to the first-order conditions
given in ~20! exists+ This is analogous to the results of Bhattacharya and Ghosh
~1978!+ Fourth, the regularity condition in ~23! is standard+ It is the same as in
Bhattacharya and Ghosh ~1978, equation ~1+6!!+

5. AN EXAMPLE

The ARFIMA~1,d,1! model is very popular in applied work because of its flex-
ibility+ The model is

~1 � fB!~1 � B!dXt � ~1 � cB!«t ,

where B is the lag operator, d � ~0,12_! is the long-memory parameter, and 6f6� 1
and 6c6 � 1 for stationarity and invertibility+ Let u � ~d,f,c,s«2!' , where s«

2

is the variance of the innovation «t +
The spectral density of the ARFIMA~1,d,1! process is

fu~l! �
s«

2

2p

61 � ce il 62

61 � fe il 62
61 � e il 6�2d

~e+g+, see Hosking, 1981!+ The spectral density satisfies

fu~l! ; C~u!6l 6�a~u! as 6l 6r 0,

where a~u! � d, which is a special case of ~1!+
In this model, the third partial derivative of fu

�1~l! with respect to ~w+r+t+! f
is zero+ In consequence, by the argument in Section 3+2, the matrices PD~u! and
PDn~u! are both singular+ Because the same degeneracy occurs in D~u! and Dn~u!,

the problematic WLD can be deleted from OZn~u! without affecting the error in
the approximation of the WMLE by the vector of WLDs+ That is, for any set EQ
that satisfies condition NS, the vector Zn~u! does not include the problematic
WLD and this singularity does not cause a problem+

In contrast, when deriving an Edgeworth expansion for the MLE, one con-
siders LLDs rather than WLDs; the asymptotic covariance matrix of an LLD
vector that includes the third derivative w+r+t+ f is singular, but its finite-sample
covariance matrix is nonsingular whenever the submatrix without the third deriv-
ative w+r+t+ f is nonsingular+ This occurs because ~i! the covariance matrix of
all the LLDs up to order s � 1 is the same as PDn~u! defined in ~10!, but with
Tn~gu,nj

! replaced by Dnj
Tn

�1~ fu !, ~ii! the limit as n r ` of the covariance
matrix of all the LLDs up to order s � 1 is exactly the same as that of PDn~u!,
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namely, PD~u! ~see Lieberman et al+, 2003!, and ~iii! the third partial derivative
of Tn

�1~ fu ! w+r+t+ f does not equal zero+ In consequence, when one drops the
third partial derivative w+r+t+ f from the vector Zn~u! that is used to approxi-
mate the MLE, the approximation of the MLE and the remainder of the Edge-
worth expansion are affected+

6. PROOFS

Proof of Theorem 3+ We prove the results of the theorem for the case where
p � 1 first+ The proof closely follows the work of Fox and Taqqu ~1987! using
power counting theory+We use their notation+ For ease of presentation, we omit
the d from the exponents in the bounds on f and the gnj

’s+ The proof goes
through with d added for some d � 0 sufficiently small+ Then, the results of the
theorem hold for arbitrary d � 0 because the upper bounds in the theorem are
increasing in d+

First, we consider In, p~u!+ We have

In, p~u! � tr �P)
j�1

p

~T ~gnj
!T ~ f !!	

� (
j1�0

n�1

+ + + (
j2p�1�0

n�1

Pj1, j2
T ~gn1

!j2 , j3
T ~ f !j3 , j4 + + +T ~gnp

!j2p , j2p�1
T ~ f !j2p�1, j1

� n�1�
Up

EPn~ y!Q~ y! dy, (24)

where

Up � @�p,p# 2p,

EPn~ y! � (
j1�0

n�1

+ + + (
j2p�1�0

n�1

e i ~ j2�j3 !y1e i ~ j3�j4 !y2+ + +e i ~ j2p�1�j1!y2p,

Q~ y! � gn1
~ y1! f ~ y2 !gn2

~ y3 ! + + + f ~ y2p !+

Note that

EPn~ y! � � (
j1�0

n�1

e�ij1 y2p�� (
j2�0

n�1

e ij2 y1�
� � (

j3�0

n�1

e ij3~ y2�y1!� + + +� (
j2p�1�0

n�1

e ij2p�1~ y2p�y2p�1!�
� hn

*~�y2p !hn
*~ y1!hn

*~ y2 � y1! + + +hn
*~ y2p � y2p�1!,
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where

hn
*~z! � (

j�0

n�1

e ijz+

In the case of Fox and Taqqu ~1987!, where the matrix P does not appear in
the product, the function Pn~ y! is given by

Pn~ y! � hn
*~ y1 � y2p !hn

*~ y2 � y1! + + +hn
*~ y2p � y2p�1!+

Hence, EPn~ y! differs from Pn~ y! in that the term hn
*~�y2p !hn

*~ y1! appears
in place of hn

*~ y1 � y2p!+ In addition, the RHS of ~24! contains the n�1

multiplicand, which is not present in the case of Fox and Taqqu ~1987!+ For
each hn

*~z!, we use the following bound: for all 0 � h � 1,

6hn
*~z!6 � 4hn,h~z! for �2p� z � 2p,

where

hn,h~z! � nh 6z � j6h�1,

j � 

0 for �p� z � p

�2p for p� z � 2p

2p for �2p� z � �p

(25)

~see Fox and Taqqu, 1987, p+ 227!+ It follows that

6In, p~u!6 � Kn�1�
Up

Dfn,h~ y! dy (26)

for some constant K � `, for all u � Q*, where

Dfn,h~ y! � hn,h~ y1!hn,h~�y2p !hn,h~ y2 � y1! + + +hn,h~ y2p � y2p�1!

� 6y16a 6y2 6�a 6y3 6a+ + + 6y2p 6�a

and a � a~u!+
We make the following change of variables:

x1 � y1 and

xk � yk � yk�1 for k � 2, + + + ,2p+

Then, the RHS of ~26! is at most

Kn�1�
Up
'
hn,h~x1!hn,h~�x1 � {{{� x2p !hn,h~x2 !hn,h~x3 ! + + +hn,h~x2p !

� 6x16a 6x1 � x2 6�a+ + + 6x1 � {{{� x2p�16a 6x1 � {{{� x2p 6�a dx, (27)
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where

Up
' � �x � R2p : �(

j�1

k

xj� � p for k � 1, + + + ,2p	 +
Notice that ~�p � y1 � p! n ~�p � x1 � p! and ~�p � y2p � p! n

~�p � x1 � {{{ � x2p � p!+ Hence, for all 0 � g1 � 1 and 0 � g2 � 1, we
have

hn,g1
~x1! � ng1 6x16g1�1 for �p� x1 � p

and

hn,g2
~�x1 � {{{� x2p ! � ng2 6x1 � {{{� x2p 6g2�1

for �p� x1 � {{{� x2p � p+

For all other hn,h’s appearing in ~27!, we have �2p� xk � 2p for k � 2, + + + ,2p,
and so we need to consider the possibility that some of the j’s, defined in ~25!,
are not zero+ Thus, the term in ~27! is dominated by

Kn�1�~2p�1!h�g1�g2�
Up
'
EPh,g~x! dx, (28)

where

EPh,g~x! � EPh,1~x! EPg,2~x!, (29)

EPh,1~x! � 6x2 � j2 6h�1 6x3 � j3 6h�1 + + + 6x2p � j2p 6h�1, and

EPg,2~x! � 6x16g1�1�a 6x1 � x2 6�a + + + 6x1 � {{{� x2p�16a 6x1 � {{{� x2p 6g2�1�a+

The idea is to provide conditions on g1 and g2 such that the integral in ~28! is
finite+

It is useful to rewrite EPh,g~x! as

EPh,g~x! � 6L2 6b2+ + + 6L4p 6b4p, (30)

where

L2 � x2 � j2 , L3 � x3 � j3 , + + + , L2p � x2p � j2p , (31)

L2p�1 � x1, L2p�2 � x1 � x2 , + + + , L4p � x1 � {{{� x2p ,

and

$b2, + + + ,b4p % � $b2 , + + + ,b2p ,a1, + + + ,a2p %

� $h�1, + + + ,h�1
asssssdsssssg

2p�1

,g1 �1 �a,�a,a,�a, + + + ,a,g2 �1 �a%
asssssssssssssssdsssssssssssssssg

2p

+ (32)
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To proceed, we distinguish between two cases+

Case I+ j2 � j3 � {{{ � j2p � 0+ Let

Ph~x! � Ph,1~x!P2~x!,

where

Ph,1~x! � 6x2 � {{{� x2p 6h�1 6x2 6h�1 6x3 6h�1+ + + 6x2p 6h�1 and

P2~x! � 6x16�a 6x1 � x2 6�b 6x1 � x2 � x3 6�a+ + + 6x1 � {{{� x2p 6�b+

Section 5 of Fox and Taqqu ~1987! shows that Ph~x! is integrable provided

0 � h � 1, b � 1, a � 1, and 2h � a� b+ (33)

The integrand EPh,g~x! appearing in ~28! and defined in ~29! differs from Ph~x!
in two respects+

Difference ~D1!+ Ph,1~x! � EPh,1~x!6x2 � {{{ � x2p6h�1+

Difference ~D2!+ The exponent structure of P2~x! is E2 � $�a,�b, + + + ,�a,�b%,
whereas that of EPg,2~x! is

EE2 � $g1 � 1 � a,�a,a,�a, + + + ,a
asssssdsssssg

2p�2

,g2 � 1 � a%+ (34)

Although the exponent structure of P2~x! is homogeneous, the exponent struc-
ture of EPg,2~x! is not homogeneous+ This is important, because the conditions
in ~33! are not sufficient for integrability in the nonhomogeneous case+ More-
over, it is clear from the proof of Proposition 5+5 of Fox and Taqqu ~1987! that
the extension of condition ~33! to nonhomogeneous exponent structures is not
trivial+

Our goal is to show that the function EPh,g~x! is integrable by accommodat-
ing for the differences ~D1! and ~D2!+ The first difference leads to a simplifi-
cation, whereas the latter leads to a complication+We deal first with ~D1!+ It is
clear from the discussion on page 222 of Fox and Taqqu ~1987! that it is enough
to consider sets W � T that do not contain x2 � {{{ � x2p, where the set of
functions T in Fox and Taqqu ~1987! is given by

T � $x2 � {{{� x2p , x2 , x3 , + + + , x2p , x1, x1 � x2 ,

x1 � x2 � x3 , + + + , x1 � {{{� x2p %+

Note that T is the set of multiplicands of Ph~x! without the exponents or abso-
lute values+ The analogous set in our case is

ET � $x2 , x3 , + + + , x2p , x1, x1 � x2 , x1 � x2 � x3 , + + + , x1 � {{{� x2p %

� T �$x2 � {{{� x2p %+
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For any W � T, let s~W ! � T � span~W !+ Although it is enough to consider
the integrability of Ph~x! with the restriction x2 � {{{ � x2p � W, Fox and
Taqqu ~1987! still need to consider the case x2 � {{{� x2p � s~W !+ For any W
� ET, let Is~W !� ET � span~W !+ Because x2 � {{{� x2p � ET, it is also true that
x2 � {{{ � x2p � Is~W !+ Hence, unlike the situation in Fox and Taqqu ~1987!,
we do not need to consider the case x2 � {{{ � x2p � Is~W !+

As in Section 3 of Fox and Taqqu ~1987!, we define the dimension of Ph,g
w+r+t+ a set W � ET to be

d~ EPh,g ,W ! � 6W 6� (
$ j:Lj� Is~W !%

bj ,

where 6W 6 denotes the cardinality of W and the bj’s and Lj’s are defined in ~31!
and ~32!+ One can think of the elements of ET arranged in columns as follows:

�x1
�� x2

x1 � x2
�� x3

x1 � x2 � x3
�{{{� x2p

x1 � {{{� x2p
�+

The top element in each column arises from the bound on Pn~x!, and the bot-
tom element in each column, apart from the first and last columns, arises from
the bound on Q~x!+ As in Fox and Taqqu ~1987, p+ 223!, we consider a set W
that contains at most one element from each column+ We partition W into con-
tiguous “blocks” such that W � �i�1

n Bi, where a set B � W is a “block” if
there exist �B � rB such that ~i! W contains neither column �B � 1 nor column
rB � 1 and ~ii! B contains column �B through rB and no other columns+ As in
Fox and Taqqu ~1987!, the integral in ~28! is finite if d~ EPh,g,Bi ! � 0 for all Bi +

Let B denote one of the blocks Bi + It contains a block of columns l through r,
so 6B 6 � r � l � 1+ Let m denote the smallest k satisfying x1 � {{{ � xk � B+
We can write Is~B! � W1 �W2, where

W1 � $xl , xl�1, + + + , xm�1, xm�1, + + + , xr % and

W2 � $x1 � {{{� xm , x1 � {{{� xm�1, + + + , x1 � {{{� xr %+

We count the powers associated with W1 and obtain ~r � l !~h � 1!+ Simi-
larly, the powers associated with W2 contribute (j�m

r aj , where the aj’s are
defined in ~32!+ Thus,

d~ EPh,g ,B! � ~r � l � 1!� ~r � l !~h� 1!� (
j�m

r

aj

� ~r � l !h��1 � (
j�m

r

aj�+
Sufficient conditions for d~ EPh,g,B! to be positive are

h � 0 and inf
m�r
(
j�m

r

aj � �1+ (35)
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Recall that

$a1, + + + ,a2p % � $g1 � 1 � a,�a,a,�a, + + + ,a
asssssdsssssg

2p�2

,g2 � 1 � a%+

Hence, the second condition in ~35! is satisfied if

g2 � a, g1 � 0, and g1 � g2 � 1, (36)

because infu�Q* a� infu�Q* a~u! � 0+ Returning to ~28!, we see that the entire
expression is at most Kp~Q

*,d!nd for some constant Kp~Q
*,d! � ` for all u �

Q*, ∀d � 0, because supu�Q* a � supu�Q* a~u! � 1+
As noted previously, we do not need to consider the case x2 � {{{ � x2p �
Is~W !, so the proof is complete for the j2 � {{{ � j2p � 0 case+

Case II+ At least one jj � 0 for j � 2, + + + ,2p+ This case is dealt with in Sec-
tion 6 of Fox and Taqqu ~1987!+ It is clear from ~30! and ~31! that the only L’s
affected in this case are L2, + + + , L2p+ In the case of Fox and Taqqu ~1987!, the
L’s affected are L1, + + + , L2p, each of which has exponent h � 1+ In their case,
Fox and Taqqu ~1987! fix a permutation $s1, + + + ,s4p% of $1, + + + ,4p% and define

Es
t � $x � Ut

' : 6Ls1
6� 6Ls2

6� {{{� 6Ls4p
6%+

A basis is constructed for T satisfying

6Lt1 6 � 6Lt2 6� {{{� 6Ltr 6, where r � rank~T !+

By the proofs of Propositions 6+1 and 6+2 of Fox and Taqqu ~1987!, it follows
that

�
Es
p
EPh,g~x! dx � `,

provided the conditions in ~36! hold+ Because Up � �s Es
p , we are done in

this case also+
Next, we consider In, p

� ~u!+ We have

In, p
� ~u! � tr�P)

j�1

p

$T ~gnj
!T ~ f !%T ~gnp�1

!�
� (

j1�0

n�1

+ + + (
j2p�2�0

n�1

Pj1, j2
T ~gn1

!j2 , j3
T ~ f !j3 , j4 + + +T ~gnp

!j2p , j2p�1

� T ~ f !j2p�1, j2p�2
T ~gnp�1

!j2p�2 , j1

� n�1�
Up

EPn~ y!Q~ y! dy,
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where in this case Up � @�p,p# 2p�1,

EPn~ y! � (
j1�0

n�1

+ + + (
j2p�2�0

n�1

e i ~ j2�j3 !y1e i ~ j3�j4 !y2{{{e i ~ j2p�2�j1!y2p�1, and

Q~ y! � gn1
~ y1! f ~ y2 !gn2

~ y3 ! + + + f ~ y2p !gnp�1
~ y2p�1!+

The exponent structure in this case is

EE2 � $g� 1 � a,�a,a,�a, + + + ,�a
assssssdssssssg

2p�1

,g� 1 � a%+

Note that here we choose g1 � g2 � g in the first and last terms in EE2+ The
second condition in ~35! is satisfied if we take 2g � 1 � a+ Together with the
condition that 0 � g � 1, it follows that supu�Q* 6In, p

� ~u!6 � Kp~Q
*,d!n�a�d

for some constant Kp~Q
*,d! � `, ∀d � 0+

Finally, the proof for the bound on In, p
� ~u! uses the same ideas as previously+

In this case, the exponent structure is

EE2 � $g� 1 � a, a,�a,a, + + + ,a
asssssdsssssg

2p�1

,g� 1 � a%+

Sufficient conditions for integrability are 0 � g � 1 and 2g � 1 � a, from
which it follows that supu�Q* 6In, p

� ~u!6 � Kp~Q
*,d!na�d, ∀d � 0+ The proof of

Theorem 3 is now complete for the case where p � 1+
To finish the proof, we consider the case where p � 0+ We have In,0~u! �

tr @P # � 1, so part ~a! of the theorem holds trivially+ Next, we have

In,0
� ~u! � tr @PT ~gu,n1

!#� n�11'T ~gu,n1
!1 � n�1�

�p

p

(
j, k�0

n�1

e i ~ j�k!lgu,n1
~l! dl

and

6In,0
� ~u!6 � n�1�

�p

p

� (
j, k�0

n�1

e i ~ j�k!l�{6gu,n1
~l!6dl,

where 1 denotes an n-vector of ones+ We use the inequality

�(
j�0

n�1

e ijl� � 4nh 6l 6h�1, ∀l � @�p,p# , ∀h � ~0,1!

~see Fox and Taqqu, 1987, pp+ 227, 237!+ Because 6gu,n1
~l!6 � c2~u,d!6l 6a,

∀l � Nd, ∀d � 0, where a � a~u! � d, by Assumption W4, and
*�p
p 6gu,n1

~l!6dl � ` by Assumption W2, there exists a constant K � `
such that

6In,0
� ~u!6 � Kn2h�1�

�p

p

6l 62~h�1!�a dl+
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The integral is finite provided 2~h � 1! � a � �1 or 2h � 1 � �a+ Take h
such that 2h � 1 is arbitrarily close to �a to obtain the desired result+

Similarly, In,0
� ~u! � tr @PT ~ fu!# � n�11'T ~ fu!1+ By Assumption W3,

6 fu~l!6 � c2~u,d!6l 6a, ∀l � Nd, ∀d � 0, where a� �a~u!� d+ The preced-
ing argument for In,0

� ~u! holds for both positive and negative a, as long as
6a6 � 1+ Hence, the desired result holds for In,0

� ~u!+ �

Proof of Theorem 4+ Theorem 4 is proved by verifying Assumptions 1– 4 of
Theorem 1 of Durbin ~1980!+ Durbin’s Assumption 1 corresponds to our Con-
dition NS+ Durbin’s Assumption 4 requires that the joint cumulants of the WLDs
are O~n! uniformly on Q*+ This is satisfied by our Theorem 1+ Durbin’s Assump-
tions 2 and 3 concern the characteristic function of Zn~u!, which we denote by
wn~v, u! � Eu @exp~iv 'Zn~u!!# + From standard theory on quadratic forms in
Gaussian variables ~see, e+g+, Searle, 1971, p+ 55!, we have

wn~v0Mn ,u! � Eu exp � i

Mn (j�1

ds

vj ~Aj ~u!� xn
' Bj ~u!xn !	

� exp� i

Mn (j�1

ds

vj Aj ~u!�det�In �
2i

Mn (j�1

ds

vj DBj ~u!��102

, (37)

where Aj~u! is a partial derivative of g~u! ~defined in Assumption W2! of order
less than or equal to s � 1, Bj~u! � MT ~gu,nj

!M, gu,nj
is a partial derivative of

~4p2 !�1 fu
�1~l! of order less than or equal to s � 1, and DBj~u! � Bj~u!T ~ fu!+

Because Proposition 2 and Theorem 3 ensure that tr~) j�1
p DBj ~u!! � O~n! uni-

formly on Q* for any finite p and because D~u! � 0 by Condition NS, the
verification by Lieberman et al+ ~2003! of Assumptions 2 and 3 of Durbin ~1980!
goes through without change+ �

Proof of Theorem 6+ The proof of the theorem relies on a passage from the
result of Corollary 5 to the result of the theorem+ The proof of Theorem 4 of
Lieberman et al+ ~2003! shows that the argument of Bhattacharya and Ghosh
~1978, Theorems 2 and 3! extends to the long-memory case+ The main step in
the proof concerns tail probability behavior of the centered WLDs, as in the
equations in ~2+32! of Bhattacharya and Ghosh ~1978!+ As shown in Taniguchi
and Kakizawa ~2000, proof of Theorem 4+2+7!, slightly weaker conditions than
those of ~2+32! are sufficient for the Bhattacharya and Ghosh ~1978! proof of
Theorem 3 to go through+ These weaker conditions can be verified straightfor-
wardly using Markov’s inequality in Taniguchi and Kakizawa’s case and in our
case, rather than using von Bahr’s inequality for i+i+d+ random variables as Bhat-
tacharya and Ghosh ~1978! do+ This completes the proof+ �
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NOTE

1+ As in Bhattacharya and Ghosh ~1978!, we establish that there exists a solution to the Whittle
log-likelihood first-order conditions in a shrinking neighborhood of the true value with probability
that goes to one quickly and that any such solution possesses a valid Edgeworth expansion to a
specified order+ This result does not imply consistency of the WMLE in the case where the Whittle
log-likelihood first-order conditions have multiple solutions+
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