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OPTIMAL TWO-SIDED INVARIANT SIMILAR TESTS FOR
INSTRUMENTAL VARIABLES REGRESSION

BY DONALD W. K. ANDREWS, MARCELO J. MOREIRA, AND
JAMES H. STOCK1

This paper considers tests of the parameter on an endogenous variable in an instru-
mental variables regression model. The focus is on determining tests that have some
optimal power properties. We start by considering a model with normally distributed
errors and known error covariance matrix. We consider tests that are similar and satisfy
a natural rotational invariance condition. We determine a two-sided power envelope
for invariant similar tests. This allows us to assess and compare the power properties of
tests such as the conditional likelihood ratio (CLR), the Lagrange multiplier, and the
Anderson–Rubin tests. We find that the CLR test is quite close to being uniformly most
powerful invariant among a class of two-sided tests.

The finite-sample results of the paper are extended to the case of unknown error co-
variance matrix and possibly nonnormal errors via weak instrument asymptotics. Strong
instrument asymptotic results also are provided because we seek tests that perform well
under both weak and strong instruments.

KEYWORDS: Average power, instrumental variables regression, invariant tests, opti-
mal tests, power envelope, similar tests, two-sided tests, weak instruments.

1. INTRODUCTION

IN INSTRUMENTAL VARIABLES (IVs) regression with a single included endoge-
nous regressor, instruments are said to be weak when the partial correlation
between the IVs and the included endogenous regressor is small, given the in-
cluded exogenous regressors. The effect of weak IVs is to make the standard
asymptotic approximations to the distributions of estimators and test statis-
tics poor. Consequently, hypothesis tests with conventional asymptotic justifi-
cations, such as the Wald test based on the two-stage least squares estimator,
can exhibit large size distortions.

A number of papers have proposed methods for testing hypotheses about
the coefficient, β, on the included endogenous regressors that are valid even
when IVs are weak. Except for the important early contribution by Anderson
and Rubin (1949) (AR), most of this literature is recent. It includes the papers
by Staiger and Stock (1997), Zivot, Startz, and Nelson (1998), Wang and Zivot
(1998), Dufour and Jasiak (2001), Moreira (2001, 2003), Kleibergen (2002,

1Andrews, Moreira, and Stock gratefully acknowledge the research support of the National
Science Foundation via Grant numbers SES-00-01706 and SES-04-17911, SES-04-18268, and
SBR-02-14131, respectively. The authors thank three referees, a co-editor, Tom Rothenberg,
Jean-Marie Dufour, Grant Hillier, Anna Mikusheva, and seminar and conference participants at
Harvard/MIT, Michigan, Michigan State, Queen’s, UCLA/USC, UCSD, the Yale Statistics De-
partment, the 2003 NBER/NSF Conference on Weak Instruments at MIT, the 2004 Far-Eastern
Econometric Society Meetings in Seoul, and the 2004 Canadian Econometrics Study Group
Meetings in Toronto for helpful comments.
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2004), Dufour and Taamouti (2005), Guggenberger and Smith (2005, 2006),
and Otsu (2006). None of these contributions develops a satisfactory theory of
optimal inference in the presence of potentially weak IVs.

The purpose of this paper is to develop a theory of optimal hypothesis testing
when IVs might be weak, and to use this theory to develop practical valid hy-
pothesis tests that are nearly optimal whether the IVs are weak or strong. We
adopt the natural invariance condition that inferences are unchanged if IVs
are transformed by an orthogonal matrix, e.g., changing the order in which the
IVs appear. The resulting class of invariant tests includes all tests proposed
for this problem of which we are aware, except those that entail potentially
dropping an IV. We focus on the practically important case of a single endoge-
nous variable. Some results for multiple endogenous variables are provided by
Andrews, Moreira, and Stock (2004) (hereafter denoted AMS04).

We show that there does not exist a uniformly most powerful invariant
(UMPI) two-sided similar test of H0 :β = β0 when the model is overidenti-
fied, although there is one when the model is just identified. Our numerical
results for the overidentified case, however, demonstrate that there are tests
that are very nearly optimal, in the sense that their power functions are nu-
merically very close to the power envelope uniformly in the parameter space.
In particular, the conditional likelihood ratio (CLR) test proposed by Moreira
(2003) is numerically nearly two-sided UMPI among similar tests when the
model is overidentified and is exactly so when the model is just identified. We
recommend the use of the CLR test in empirical practice.

On the other hand, the power of the Lagrange multiplier (LM) test of
Kleibergen (2002) and Moreira (2001) is never above that of the CLR test,
and in some cases is far below (when the model is overidentified). Hence, the
CLR test dominates the LM test in terms of power and we do not recommend
the LM test for practical use.

An important use of tests concerning β is the construction of confidence
intervals (or sets) obtained by inverting the tests. (Specifically, the set of β0

values for which H0 :β= β0 cannot be rejected at level α yields a 100(1 −α)%
confidence interval for the true β value.) The near optimality of the CLR test
yields a corresponding near optimality of the CLR-based confidence set. The
latter (nearly) minimizes, among 100(1 − α)% confidence sets, the probability
of incorrectly including a given β value, call it β0� in the confidence interval
when the true value is an arbitrary value to the left of β0, say β∗� averaged
with the probability of incorrectly including β0 when the true value is some
particular value to the right of β0, say β∗

2 (which depends on β∗).
The optimality results are developed for strictly exogenous IVs, linear struc-

tural and reduced-form equations, and homoskedastic Gaussian errors with
a known covariance matrix. For this model, we obtain sufficient statistics,
a maximal invariant (under orthogonal transformations of the IVs), and the
distribution of the maximal invariant. We determine necessary and sufficient
conditions for invariant tests to be similar.
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We construct a two-sided power envelope for invariant similar tests. There
are different ways to do so depending on how one imposes two-sidedness.
Here, we impose two-sidedness by comparing tests based on their average
power for two parameter values—one greater than the null value β0 and the
other less than β0. The power envelope is mapped out by a class of two-point
optimal invariant similar (POIS2) tests. The choice of which parameter values
to pair with each other is determined such that the resultant POIS2 tests are
asymptotically efficient (AE) under strong IV asymptotics. In consequence, we
refer to this power envelope as the AE two-sided power envelope for invariant
similar tests.

The foregoing results are developed by treating the reduced-form error co-
variance matrix as known. In practice, this matrix is unknown and must be
estimated. Using Staiger and Stock (1997) weak-IV asymptotics, we show that
the exact distributional results extend, in large samples, to feasible versions of
these statistics using an estimated covariance matrix and possibly nonnormal
errors. We show that the finite-sample power envelope derived with known
covariance matrix is also the asymptotic Gaussian power envelope with un-
known covariance matrix, under weak-IV asymptotics. In a Monte Carlo study
reported in AMS04, we find that, for normal errors and unknown covariance
matrix Ω, sample sizes of 100–200 observations are sufficient for (i) the sizes of
the CLR, LM, and AR tests with estimated covariance matrices to be well con-
trolled using weak-IV asymptotic critical values and (ii) the weak-IV asymp-
totic power functions to be good approximations to the finite-sample power
functions.

Finally, we obtain asymptotic properties of the tests considered in this pa-
per when the IVs are strong. These results are essential for determining the
class of POIS2 tests that are asymptotically efficient under strong IVs, which
lies behind the construction of the two-sided power envelope. The CLR and
LM tests are shown to be asymptotically efficient with strong IVs against local
alternatives, although (as is known) the AR test is not. In AMS04, the CLR,
LM, AR, and POIS2 tests are shown to be consistent against fixed alternatives
under strong IVs.

In addition to similar tests, AMS04 considers optimal nonsimilar tests using
the least-favorable distribution approach described, e.g., by Lehmann (1986).
Although the nonsimilar and similar tests differ in theory, AMS04 finds that
the power envelopes of invariant similar and nonsimilar tests are numerically
very close.

Numerous additional numerical results that supplement those given in
Section 5 are provided in Andrews, Moreira, and Stock (2006b) (denoted
AMS06b), which also provides detailed tables of conditional critical values for
the CLR test. Extensions and results related to this paper, including optimal
one-sided tests and versions of the CLR, LM, and AR test statistics that are
robust to heteroskedasticity and/or autocorrelation, are provided in AMS04.

Other papers that consider optimal testing in the exact Gaussian IV regres-
sion model are papers by Moreira (2001) and Chamberlain (2003). Moreira
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(2001) develops a theory of optimal one-sided testing without an invariance
condition and uses this to develop one-sided power envelopes. However, with-
out the invariance condition the family of tests is too large to obtain nearly
optimal tests when the model is overidentified. Chamberlain (2003) considers
minimax decision procedures and his results for tests show that the imposi-
tion of the invariance condition considered here does not affect the minimax
decision problem.

The remainder of this paper is organized as follows. Section 2 introduces the
model and determines sufficient statistics for the model. Section 3 introduces
a natural invariance condition concerning orthogonal rotations of the IV ma-
trix. It also provides necessary and sufficient conditions for invariant tests to
be similar. Section 4 introduces POIS2 tests and determines a two-sided power
envelope for normal errors and known error covariance matrix Ω. Section 5
presents numerical results that show that the CLR test has power essentially
on the power envelope, whereas the LM and AR tests have power that is some-
times on, and sometimes well below, the power envelope. Section 6 analyzes
the asymptotic properties of the POIS2 tests under weak IVs, possibly nonnor-
mal errors, and unknown Ω. These results are used to determine a weak-IV
asymptotic two-sided power envelope for the case of independent and iden-
tically distributed (i.i.d.) normal errors and unknown Ω. Section 7 establishes
the asymptotic properties of CLR and POIS2 tests under strong IVs when Ω is
unknown and the errors may be nonnormal. An Appendix contains proofs of
the results.

2. MODEL AND SUFFICIENT STATISTICS

In this section, we consider a model with one endogenous variable, multiple
exogenous variables, multiple IVs, and normal errors with known covariance
matrix. In later sections, we allow for nonnormal errors with unknown covari-
ance matrix.

The model consists of a structural equation and a reduced-form equation,

y1 = y2β+Xγ1 + u�(2.1)

y2 = Z̃π +Xξ1 + v2�

where y1� y2 ∈ R
n, X ∈ R

n×p, and Z̃ ∈ R
n×k are observed variables; u�v2 ∈ R

n

are unobserved errors; and β ∈ R, π ∈ R
k, and γ1� ξ1 ∈ R

p are unknown para-
meters. The exogenous variable matrix X and the IV matrix Z̃ are fixed (i.e.,
nonstochastic), and [X : Z̃] has full column rank p + k. The n × 2 matrix of
errors [u :v2] is i.i.d. across rows, with each row having a mean zero bivariate
normal distribution.

Our interest is in the null and alternative hypotheses

H0 :β= β0 and H1 :β �= β0	(2.2)
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We transform Z̃ so that the transformed IV matrix, Z� is orthogonal to X:

y2 =Zπ +Xξ + v2� where(2.3)

Z =MXZ̃� MX = In − PX� PX =X(X ′X)−1X ′�

ξ = ξ1 + (X ′X)−1X ′Z̃π� and Z′X = 0	

The two reduced-form equations are

y1 =Zπβ+Xγ + v1(2.4)

y2 =Zπ +Xξ + v2� where

γ = γ1 + ξβ and v1 = u+ v2β	

The reduced-form errors [v1 :v2] are i.i.d. across rows, with each row having a
mean zero bivariate normal distribution with 2 × 2 nonsingular covariance ma-
trix Ω. For the purposes of obtaining an exact power envelope, we suppose Ω is
known. Below we show that the asymptotic power envelope for unknown Ω and
weak IVs is the same as the exact envelope with known Ω.

The two equation reduced-form model can be written in matrix notation as

Y = Zπa′ +Xη+ V � where(2.5)

Y = [y1 : y2]� V = [v1 :v2]�
a= (β�1)′� and η= [γ :ξ]	

The distribution of Y ∈ R
n×2 is multivariate normal with mean matrix Zπa′ +

Xη� independence across rows, and covariance matrix Ω for each row. The
parameter space for θ = (β�π ′�γ′� ξ′)′ is taken to be R × R

k × R
p × R

p.
Because the multivariate normal is a member of the exponential family of

distributions, low-dimensional sufficient statistics are available.

LEMMA 1: For the model in (2.5):
(a) Z′Y and X ′Y are sufficient statistics for θ;
(b) Z′Y and X ′Y are independent;
(c) X ′Y has a multivariate normal distribution that does not depend on (β�

π ′)′;
(d) Z′Y has a multivariate normal distribution that does not depend on η =

[γ :ξ];
(e) Z′Y is a sufficient statistic for (β�π ′)′.

For tests concerning β� there is no loss (in terms of attainable power func-
tions) in considering tests that are based on the sufficient statistic Z′Y for
(β�π ′)′. This eliminates the nuisance parameters η = [γ :ξ] from the prob-
lem. The nuisance parameter π remains. As in Moreira (2003), we consider a
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one-to-one transformation of Z′Y :

S = (Z′Z)−1/2Z′Yb0 · (b′
0Ωb0)

−1/2�(2.6)

T = (Z′Z)−1/2Z′YΩ−1a0 · (a′
0Ω

−1a0)
−1/2� where

b0 = (1�−β0)
′� a0 = (β0�1)′�

and A−1/2 denotes the symmetric square root of a positive semi-definite ma-
trix A.2

The means of S and T depend on the quantities

μπ = (Z′Z)1/2π ∈ R
k�(2.7)

cβ = (β−β0) · (b′
0Ωb0)

−1/2 ∈ R�

dβ = a′Ω−1a0 · (a′
0Ω

−1a0)
−1/2 ∈ R� where a= (β�1)′	

The distributions of S and T are given in the following lemma.

LEMMA 2: For the model in (2.5):
(a) S ∼ N(cβμπ , Ik);
(b) T ∼ N(dβμπ , Ik);
(c) S and T are independent.

COMMENTS: (i) Lemma 2 holds under H0 and H1. Under H0, S has mean
zero.

(ii) The constant dβ that appears in the mean of T can be rewritten as

dβ = b′Ωb0 · (b′
0Ωb0)

−1/2(det(Ω))−1/2� where b = (1�−β)′	(2.8)

(iii) The proofs of Lemmas 1 and 2 are standard; see AMS06b for details.

3. INVARIANT SIMILAR TESTS

The sufficient statistics S and T are independent multivariate normal
k-vectors with spherical covariance matrices. The coordinate system used to
specify the vectors should not affect inference based on them. In consequence,
it is reasonable to restrict attention to coordinate-free functions of S and T .
That is, we consider statistics that are invariant to rotations of the coordinate
system. Rotations of the coordinate system are equivalent to rotations of the
k IVs. Hence, we consider statistics that are invariant to orthonormal trans-
formations of the IVs. We note that Hillier (1984) and Chamberlain (2003)
considered similar invariance conditions.

2The statistics S and T are denoted

S and

T , respectively, by Moreira (2003).
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We consider the following groups of transformations on the data ma-
trix [S :T ] and, correspondingly, on the parameters (β�π):

G= {
gF :gF(x) = Fx for x ∈ R

k×2(3.1)

for some k× k orthogonal matrix F
}
�

G= {
gF :gF(β�π) = (

β�(Z′Z)−1/2F(Z′Z)1/2π
)

for some k× k orthogonal matrix F
}
	

The transformations are one-to-one and are such that if [S :T ] has a distribu-
tion with parameters (β�π), then gF([S :T ]) has a distribution with parameters
gF(β�π), by Lehmann (1986, p. 283). (The second element of gF is determined
by Fμπ = μgF(π)

, which holds when gF(π) = (Z′Z)−1/2F(Z′Z)1/2π.) Further-
more, the problem of testing H0 versus H1 remains invariant under gF ∈ G
because H0 and H1 are preserved under gF (i.e., gF(β�π) is in Hj if and only
if (β�π) is in Hj for j = 0�1). Invariance under the transformation group G
ensures that tests of H0 are unaffected by changing the units of Z or by respec-
ifying binary units as contrasts.

Note that orthonormal transformations of the k IVs lead to the transfor-
mations in (3.1). In particular, the transformation Z → ZF ′ corresponds to
[S :T ] → F[S :T ].3

An invariant test, φ(S�T)� under the group G is one for which φ(FS�FT) =
φ(S�T) for all k×k orthogonal matrices F	 By definition, a maximal invariant
is a function of [S :T ] that is invariant and takes different values on different
orbits of G.4 Every invariant test can be written as a function of a maximal
invariant; see Theorem 6.1 of Lehmann (1986, p. 285). Hence, it suffices to
restrict attention to the class of tests that depend only on a maximal invariant.

Let

Q = [S :T ]′[S :T ] =
[
S′S S′T
T ′S T ′T

]
=

[
QS QST

QST QT

]
�(3.2)

Q1 = (S′S�S′T)′ = (QS�QST )
′	

The subscript 1 on Q1 reflects the fact that Q1 is the first column of Q	 For
convenience, we use Q and (Q1�QT) interchangeably.

THEOREM 1: The 2 × 2 matrix Q is a maximal invariant for the transforma-
tions G.

3This holds because (FZ′ZF ′)−1/2 = (FBΛB′F ′)−1/2 = FBΛ−1/2B′F ′ = F(Z′Z)−1/2F ′, where
Z′Z = BΛB′ for an orthogonal k× k matrix B and a diagonal k× k matrix Λ.

4An orbit of G is an equivalence class of k× 2 matrices, where x1 ∼ x2 (mod G) if there exists
an orthogonal matrix F such that x2 = Fx1.
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COMMENTS: (i) The statistic Q has a noncentral Wishart distribution be-
cause [S :T ] is a multivariate normal matrix that has independent rows and
common covariance matrix across rows. The distribution of Q depends on π
only through the scalar

λ= π ′Z′Zπ ≥ 0	(3.3)

Thus, the utilization of invariance has reduced the k-vector nuisance parame-
ter π to a scalar nuisance parameter λ.

(ii) Examples of invariant tests in the literature include the AR test; the
standard likelihood ratio (LR) and Wald tests, which use conventional, i.e.,
strong IV asymptotic, critical values; the LM test of Kleibergen (2002) and
Moreira (2001); and the CLR and conditional Wald tests of Moreira (2003),
which depend on the standard LR and Wald test statistics coupled with “con-
ditional” critical values that depend on QT . The LR, LM, and AR test statistics
depend on Q or (S�T) in the following ways:

LR = 1
2
(
QS −QT +

√
(QS −QT)2 + 4Q2

ST

)
�(3.4)

LM = Q2
ST

QT

= (S′T)2

T ′T
�

AR = QS

k
= S′S

k
	

(The above expression for LR is simpler than, but equivalent to, the expression
given by Moreira (2003).) The only tests in the IV literature that we are aware
of that are not invariant to G are tests that involve preliminary decisions to
include or exclude a specific instrument; cf. Donald and Newey (2001) and
Wald tests based on the Chamberlain and Imbens (2004) many IV estimator.

A test based on the maximal invariant Q is similar if its null rejection rate
does not depend on the parameter π that determines the strength of the IVs Z.
(See Lehmann (1986) for a general discussion of similarity.) The finite-sample
performance of some invariant tests, such as a t test based on the two-stage
least squares estimator, varies greatly with π. In consequence, such tests of-
ten exhibit substantial size distortion when conventional (strong-IV) asymp-
totic critical values are employed. Invariant similar tests do not suffer from
this problem. Using the argument of Moreira (2001), we characterize the class
of invariant similar tests.

Let the [0�1]-valued statistic φ(Q) denote a (possibly randomized) test that
depends on the maximal invariant Q.

THEOREM 2: An invariant test φ(Q) is similar with significance level α if and
only if Eβ0(φ(Q)|QT = qT ) = α for almost all qT , where Eβ0(·|QT = qT ) de-
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notes conditional expectation given QT = qT when β= β0 (which does not depend
on π).

COMMENTS: (i) The theorem suggests that a method of determining an in-
variant test with optimal power properties is to find an optimal invariant test
conditional on QT = qT for each qT > 0.

(ii) The LR and Wald statistics are invariant statistics whose distributions
under the null depend on QT . Hence, the standard LR and Wald tests that use
conventional (strong-IV asymptotic) critical values are not invariant similar
tests. To obtain similar tests based on the LR and Wald statistics, one must use
critical values that depend on QT , as in Moreira (2003). The CLR test rejects
the null hypothesis when

LR > κLR�α(QT)�(3.5)

where κLR�α(QT) is defined to satisfy Pβ0(LR > κLR�α(QT)|QT = qT ) = α and
the conditional distribution of Q1 given QT is specified in Lemma 3(c) be-
low. See AMS06b for tables of conditional critical values for the CLR test.
A GAUSS program for p-values of the CLR test is described by Andrews,
Moreira, and Stock (2006a) and is available at James Stock’s webpage.

4. TWO-SIDED POWER ENVELOPE

The CLR, LM, and AR tests are invariant similar tests and, hence, have
good size properties even under weak IVs. These tests are somewhat ad hoc,
however, in the sense that they have no known optimal power properties un-
der weak IVs except in the just-identified case, i.e., when k = 1. In this case,
the CLR, LM, and AR tests are equivalent tests, and Moreira (2001) shows
that these tests are uniformly most powerful unbiased for two-sided alterna-
tives.

We address the question of optimal invariant similar tests when the IVs may
be weak. We construct a power envelope for two-sided tests and show numer-
ically that the CLR test essentially lies on the power envelope and, hence, is
essentially an optimal two-sided invariant similar test.

There are several ways to construct a two-sided power envelope, depend-
ing on how one imposes the two-sidedness condition. Three approaches are to
(i) consider average power (AP) for β values less than and greater than the null
value β0, (ii) impose a sign invariance condition, and (iii) impose a necessary
condition for unbiasedness. We develop approach (i) in detail here and briefly
comment on approaches (ii) and (iii) at the end of this section (the details
of which can be found in AMS06b). It turns out that approaches (i) and (ii)
yield exactly the same power envelope, and approach (iii) yields a power enve-
lope that is found numerically to be essentially the same as that of approaches
(i) and (ii); see AMS06b.
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Approach (i) is based on determining the highest possible average power
against a point (β�λ) = (β∗�λ∗) and some other point, say (β∗

2�λ
∗
2), for which

β∗
2 lies on the other side of the null value β0 from β∗. (The power envelope then

is a function of (β�λ) = (β∗�λ∗).) The naive “symmetric alternative” choice
(β∗

2�λ
∗
2) = (2β0 − β∗�λ∗) that yields |β∗ − β0| = |β∗

2 − β0| is found to be a
poor choice because the testing problem is not correspondingly “symmetric.”
In fact, the test that maximizes average power against these two points turns
out to be a one-sided LM test asymptotically under strong-IV asymptotics for
any choice of (β∗�λ∗) (see comment (iii) to Theorem 8). This indicates that
the symmetric alternative choice of (β∗

2�λ
∗
2) is not a good choice for generating

two-sided tests.
How then should (β∗

2�λ
∗
2) be defined? We are interested in tests that have

good all-around two-sided power properties. This includes high power when
the IVs are strong. In consequence, given a point (β∗�λ∗), we consider the
point (β∗

2�λ
∗
2) that has the property that the test that maximizes average power

against these two points is asymptotically efficient under strong-IV asymptot-
ics. As shown in Section 7, this point is unique. Furthermore, the power of
the test that maximizes average power against these two points is the same
for each of the two points. This choice also has the desirable properties that
(a) β∗

2 is on the other side of the null value β0 from β∗, (b) the marginal dis-
tributions of QS , QST , and QT under (β∗

2�λ
∗
2) are the same as under (β∗�λ∗),

and (c) the joint distribution of (QS�QST �QT) under (β∗
2�λ

∗
2) equals that of

(QS�−QST �QT) under (β∗�λ∗), which corresponds to β∗
2 being on the other

side of the null from β∗.
Given (β∗�λ∗), the point (β∗

2�λ
∗
2) that has these properties solves

(λ∗
2)

1/2cβ∗
2
= −(λ∗)1/2cβ∗ ( �= 0) and (λ∗

2)
1/2dβ∗

2
= (λ∗)1/2dβ∗ 	(4.1)

This follows from Lemmas 2 and 3(a) below and λ = μ′
πμπ . Note that cβ is

proportional to β−β0 and dβ is linear in β. We denote by βAR the point β at
which dβ = 0.5 Provided β∗ �= βAR, the solutions to the two equations in (4.1)
are

β∗
2 = β0 − dβ0(β

∗ −β0)

dβ0 + 2r(β∗ −β0)
and(4.2)

λ∗
2 = λ∗ (dβ0 + 2r(β∗ −β0))

2

d2
β0

� where

r = e′
1Ω

−1a0 · (a′
0Ω

−1a0)
−1/2 and e1 = (1�0)′	

5Surprisingly, the one-sided point-optimal invariant similar test against βAR is the (two-sided)
AR test, see AMS04a. Some calculations yield βAR = (ω11 − ω12β0)/(ω12 − ω22β0), provided
ω12 −ω22β0 �= 0, where ωij denotes the (i� j) element of Ω.
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(If β∗ = βAR� there is no solution to (4.1) with β∗
2 on the other side of β0

from β∗.)
We refer to the power envelope based on maximizing average power against

(β∗�λ∗) and (β∗
2�λ

∗
2) with (β∗

2�λ
∗
2) as in (4.1) as the asymptotically efficient (AE)

two-sided power envelope for invariant similar tests.
The average power of a test φ(Q) against the two points (β∗�λ∗) and

(β∗
2�λ

∗
2) is given by

K(φ;β∗�λ∗)= 1
2
[
Eβ∗�λ∗φ(Q)+Eβ∗

2�λ
∗
2
φ(Q)

] =E∗
β∗�λ∗φ(Q)�(4.3)

where Eβ�λ denotes expectation with respect to the density fQ1�QT
(q1� qT ;β�λ),

which is the joint density of (Q1�QT) at (q1� qT ) when (β�λ) are the true para-
meters, and E∗

β∗�λ∗ denotes expectation with respect to the density

f ∗
Q1�QT

(q1� qT ;β∗�λ∗)(4.4)

= 1
2
[
fQ1�QT

(q1� qT ;β∗�λ∗)+ fQ1�QT
(q1� qT ;β∗

2�λ
∗
2)

]
	

Hence, the average power of φ(Q) against (β∗�λ∗) and (β∗
2�λ

∗
2) can be written

as the power against the single density f ∗
Q1�QT

(q1� qT ;β∗�λ∗).
We want to find the test that maximizes average power against the alterna-

tives (β∗�λ∗) and (β∗
2�λ

∗
2) among all level α invariant similar tests. By The-

orem 2, invariant similar tests must be similar conditional on QT = qT for
almost all qT . In addition, by (4.3), average power against (β∗�λ∗) and (β∗

2�λ
∗
2)

equals unconditional power against the single density f ∗
Q1�QT

(q1� qT ;β∗�λ∗).
In turn, the latter equals expected conditional power given QT against
f ∗
Q1�QT

(q1� qT ;β∗�λ∗). Hence, it suffices to determine the test that maximizes
conditional average power given QT = qT among tests that are invariant and
are similar, conditional on QT = qT , for each qT .

Conditional power given QT = qT is

K(φ|QT = qT ;β∗�λ∗)(4.5)

=
∫

R+×R

φ(q1� qT )f
∗
Q1|QT

(q1|qT ;β∗�λ∗)dq1� where

f ∗
Q1|QT

(q1|qT ;β∗�λ∗)= f ∗
Q1�QT

(q1� qT ;β∗�λ∗)

f ∗
QT
(qT ;β∗�λ∗)

�

f ∗
QT
(qT ;β∗�λ∗)= 1

2
[
fQT

(qT ;β∗�λ∗)+ fQT
(qT ;β∗

2�λ
∗
2)

]
�

and fQT
(qT ;β�λ) is the density of QT at qT when the true parameters

are (β�λ).
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Next, we consider the conditional density of Q1 given QT = qT under the null
hypothesis. Because QT is a sufficient statistic for λ under H0, this conditional
density does not depend on λ. Hence, we denote the conditional density of Q1

given QT = qT under the null hypothesis by fQ1|QT
(q1|qT ;β0).

For any invariant test φ(Q1�QT)� conditional on QT = qT , the null hypothe-
sis is simple because fQ1|QT

(q1|qT ;β0) does not depend on λ. Given the average
power criterion function K(φ;β∗�λ∗), the alternative hypothesis of concern is
also simple. In particular, conditional on QT = qT , the alternative density of in-
terest is f ∗

Q1|QT
(q1|qT ;β∗�λ∗). In consequence, by the Neyman–Pearson lemma,

the test of significance level α that maximizes conditional power given QT = qT

is of the likelihood ratio form and rejects H0 when the LR is sufficiently large.
In particular, the point-optimal invariant similar two-sided (POIS2) test statis-
tic is

LR∗(Q1� qT ;β∗�λ∗) = f ∗
Q1|QT

(Q1|qT ;β∗�λ∗)

fQ1|QT
(Q1|qT ;β0)

(4.6)

= f ∗
Q1�QT

(Q1� qT ;β∗�λ∗)

f ∗
QT
(qT ;β∗�λ∗)fQ1|QT

(Q1|qT ;β0)
	

To provide an explicit expression for LR∗(Q1� qT ;β∗�λ∗), we now determine
the densities fQ1�QT

(q1� qT ;β�λ), fQT
(qT ;β�λ), and fQ1|QT

(q1|qT ;β0) that arise
in (4.4)–(4.6). These densities depend on the quantity

ξβ(q) = h′
βqhβ = c2

βqS + 2cβdβqST + d2
βqT � where hβ = (cβ�dβ)

′(4.7)

and q1 = (qS�qST )
′. Note that ξβ(q) ≥ 0 because q is positive semidefinite al-

most surely.

LEMMA 3: (a) The density of (Q1�QT) is

fQ1�QT
(q1� qT ;β�λ)

=K1 exp
(

−λ(c2
β + d2

β)

2

)
det(q)(k−3)/2

× exp
(

−qS + qT

2

)
(λξβ(q))

−(k−2)/4I(k−2)/2

(√
λξβ(q)

)
�

where

q1 = (qS�qST )
′ ∈ R

+ × R� qT ∈ R
+�

q =
[
qS qST

qST qT

]
� K−1

1 = 2(k+2)/2pi1/2�((k− 1)/2)�

Iν(·) denotes the modified Bessel function of the first kind of order ν, pi =
3	1415 	 	 	 � and �(·) is the gamma function.
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(b) The density of QT is a noncentral chi-squared density with k degrees of
freedom and noncentrality parameter d2

βλ:

fQT
(qT ;β�λ) = K2 exp

(
−λd2

β

2

)
q(k−2)/2
T exp

(
−qT

2

)
(λd2

βqT )
−(k−2)/4

× I(k−2)/2

(√
λd2

βqT

)
for qT > 0, where K−1

2 = 2.
(c) Under the null hypothesis, the conditional density of Q1 given QT = qT is

fQ1|QT
(q1|qT ;β0)= K1K

−1
2 exp(−qS/2)det(q)(k−3)/2q−(k−2)/2

T 	

(d) Under the null hypothesis, the density of QS is a central chi-squared density
with k degrees of freedom:

fQS
(qS) =K3q

(k−2)/2
S exp(−qS/2)

for qS > 0� where K−1
3 = 2k/2�(k/2).

(e) Under the null hypothesis, the density of S2 =QST/(‖S‖ · ‖T‖) at s2 is

fS2(s2)=K4(1 − s2
2)

(k−3)/2

for s2 ∈ [−1�1], where K−1
4 = pi1/2�((k− 1)/2)/�(k/2).

(f) Under the null hypothesis, QS , S2, and T are mutually independent and,
hence, QS , S2, and QT also are mutually independent.

COMMENTS: (i) The joint density fQ1�QT
(qS�qT ;β�λ) given in part (a) of the

lemma is a noncentral Wishart density.6 The null density of S2 given in part (e)
of the lemma is the same as that of the sample correlation coefficient from an
i.i.d. sample of k observations from a bivariate normal distribution with means
zero and covariance matrix I2 when the means of the random variables are not
estimated.

(ii) The modified Bessel function of the first kind that appears in the densi-
ties in parts (a) and (b) of the lemma is defined by

Iν(x)=
(
x

2

)ν ∞∑
j=0

(x2/4)j

j!�(ν + j + 1)
(4.8)

6In Johnson and Kotz (1970, 1972), a standard reference for probability densities, the formulae
for the noncentral Wishart and chi-squared distributions in terms of I(k−2)/2(·) contain several
typographical errors. Hence, the densities in Lemma 3(a) and (b) are based on Anderson (1946,
Eq. (6)) and are not consistent with those of Johnson and Kotz (1970, Eq. (5), p. 133; 1972,
Eq. (50), p. 176). Sawa (1969, footnote 6) notes that Anderson’s (1946) Equation (6) contains a
slight error in that the covariance matrix Σ is missing in one place in the formula. This does not
affect our use of Anderson’s formula, however, because we apply it with Σ= Ik.
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for x ≥ 0, e.g., see Lebedev (1965, p. 108). For |x| small, Iν(x) ∼ (x/2)ν/
�(ν + 1); for |x| large, Iν(x) ∼ ex/

√
2pi · x; and for ν ≥ 0 (which holds in

the expression for fQ1�QT
(q1� qT ;β�λ) whenever k ≥ 2), Iν(·) is monotoni-

cally increasing on R
+; see Lebedev (1965, p. 136). Expressions for Iν(x)

in terms of elementary functions are available whenever ν is a half-integer
(which corresponds to k being an odd integer). For example, I−1/2(x) =
x−1/2(2/pi)1/2(exp(x) + exp(−x))/2 (which arises when k = 1) and I1/2(x) =
x−1/2(2/pi)1/2(exp(x)− exp(−x))/2 (which arises when k= 3).

Equations (4.4)–(4.6) and Lemma 3 combine to give the following result for
the POIS2 test statistic.

COROLLARY 1: The optimal average-power test statistic against (β∗�λ∗) and
(β∗

2�λ
∗
2), where (β∗

2�λ
∗
2) satisfies (4.1), is

LR∗(q1� qT ;β∗�λ∗) = f ∗
Q1�QT

(q1� qT ;β∗�λ∗)

f ∗
QT
(qT ;β∗�λ∗)fQ1|QT

(q1|qT ;β0)

= ψ(q1� qT ;β∗�λ∗)+ψ(q1� qT ;β∗
2�λ

∗
2)

ψ2(qT ;β∗�λ∗)+ψ2(qT ;β∗
2�λ

∗
2)

�

where

ψ(q1� qT ;β�λ)

= exp
(

−λ(c2
β + d2

β)

2

)
(λξβ(q))

−(k−2)/4I(k−2)/2

(√
λξβ(q)

)
�

ψ2(qT ;β�λ) = exp
(

−λd2
β

2

)
(λd2

βqT )
−(k−2)/4I(k−2)/2

(√
λd2

βqT

)
�

and cβ, dβ, and ξβ(q) are defined in (2.7) and (4.7).

COMMENTS: (i) Computation of the integrands of ψ(q1� qT ;β�λ) and
ψ2(qT ;β�λ) in Corollary 1 are easy and extremely fast using GAUSS or Matlab
functions to compute the modified Bessel function of the first kind. Hence, cal-
culation of the test statistic LR∗(Q1�QT ;β∗�λ∗) is very fast.

(ii) When k = 1, some calculations using the expression for I−1/2(x) given
in comment (ii) to Lemma 3 show that the numerator of the right-hand
side expression for LR∗(q1� qT ;β∗�λ∗) in Corollary 1 is increasing in S2

(see AMS06b). Hence, when k = 1, the AR test maximizes average power
against (β∗�λ∗) and (β∗

2�λ
∗
2) for all (β∗�λ∗) in the class of invariant similar

tests. That is, the AR test is a uniformly most powerful (UMP) two-sided in-
variant similar test. When k = 1, LR = LM = kAR, so the same optimality
property holds for the CLR and LM tests. In addition, Moreira (2001) shows
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that these tests are UMP unbiased when k = 1. The remainder of this paper
focuses on the case k > 1.

The POIS2 test with significance level α rejects H0 if

LR∗(Q1�QT ;β∗�λ∗) > κα(QT ;β∗�λ∗)�(4.9)

where κα(QT ;β∗�λ∗) is defined by

Pβ0

(
LR∗(Q1� qT ;β∗�λ∗) > κα(qT ;β∗�λ∗)|QT = qT

) = α	(4.10)

Here, Pβ0(·|QT = qT ) denotes conditional probability given QT = qT under
the null, which can be calculated using the density in Lemma 3(c). Note that
κα(·;β∗�λ∗) does not depend on Ω, Z, X , or the sample size n.

By Lemma 3(d)–(f), under H0, (i) QS , S2 = QST/(‖S‖ · ‖T‖) and QT are
independent, (ii) QS ∼ χ2

k, and (iii) S2 has density fS2 . The null distribu-
tion of (QS , S2) can be simulated by simulating S ∼ N(0� Ik) and taking (QS ,
S2) = (S′S�S′e1/‖S‖) for e1 = (1�0� 	 	 	 �0)′ ∈ R

k. Hence, the null distribution
of Q1 = (S′S�S′T) conditional on QT = qT can be simulated easily and quickly
by simulating S ∼N(0� Ik) and taking Q1 = (S′S�S′e1 · qT ).

The critical value κα(QT ;β∗�λ∗) can be approximated by simulating nMC

i.i.d. random vectors Si ∼N(0� Ik) for i = 1� 	 	 	 � nMC, where nMC is large, com-
puting Q1(i) = (S′

iSi� S
′
ie1 · Q1/2

T ) for i = 1� 	 	 	 � nMC, and taking ln(κα(QT ;β∗�
λ∗)) to be the 1 − α sample quantile of {ln(LR∗(Q1(i)�QT ;β∗�λ∗)) : i =
1� 	 	 	 � nMC}.

The following theorem summarizes the results of this section. The power of
the POIS2 tests in the theorem maps out the AE two-sided power envelope for
invariant similar tests as (β∗�λ∗) is varied.

THEOREM 3: The POIS2 test that rejects H0 when LR∗(Q1�QT ;β∗�λ∗) >
κα(QT ;β∗, λ∗) maximizes average power against the alternatives (β∗�λ∗) and
(β∗

2�λ
∗
2), where (β∗

2�λ
∗
2) satisfies (4.1), over all level α invariant similar tests.

Approach (ii) to the construction of a two-sided power envelope uses the
additional invariance condition to that in (3.1) given by

[S :T ] → [−S :T ]	(4.11)

The corresponding transformation in the parameter space is (β∗�λ∗) →
(β∗

2�λ
∗
2), where (β∗

2�λ
∗
2) satisfies (4.1). This parameter transformation pre-

serves the null hypothesis and the two-sided alternative (but not a one-sided
alternative). The sign-invariance condition in (4.11) is a natural condition to
impose to obtain two-sided tests because the parameter vector (β∗

2�λ
∗
2) is the

appropriate “other-sided” parameter vector to (β�λ) for the reasons stated
above. The maximal invariant under this sign invariance condition (plus the in-
variance conditions in (3.1)) is (S′S� |S′T |�T ′T) = (QS� |QST |�QT). The CLR,
LM, and AR test statistics all depend on the data only through this maximal
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invariant and, hence, satisfy the sign-invariance condition. AMS06b shows that
the power envelope for the class of invariant similar tests under the invariance
conditions of (3.1) and (4.11) equals the AE two-sided power envelope.

Approach (iii) to the construction of a two-sided power envelope for invari-
ant similar tests is based on a necessary condition for unbiasedness. AMS06b
shows that an invariant test φ(Q) is unbiased with size α only if

Eβ0(φ(Q)|QT = qT )= α and Eβ0

(
φ(Q)QST |QT = qT

) = 0(4.12)

for almost all qT . A test that satisfies (4.12) is said to be locally unbiased (LU)
(although we recognize that the conditions in (4.12) are only first-order con-
ditions, not sufficient conditions, for a test’s power function to have a local
minimum at the null hypothesis). The first condition in (4.12) implies that all
unbiased invariant tests are similar. The second condition is the requirement
that the power function of an unbiased invariant test has zero derivative un-
der H0. AMS06b also shows that any similar level α test that depends on the
observations through (QS� |QST |�QT) satisfies the LU conditions in (4.12). In
consequence, the CLR, LM, and AR tests are LU and the class of LU invariant
similar tests is larger than the class of sign-invariant similar tests and the class
of unbiased invariant tests.

The test that maximizes power against (β�λ) among LU invariant tests with
significance level α rejects H0 if

LR(Q1�QT ;β�λ) = ψ(q1� qT ;β�λ)
ψ2(qT ;β�λ)(4.13)

> κ1α(QT ;β�λ)+QSTκ2α(QT ;β�λ)�
where κ1α(QT ;β�λ) and κ2α(QT ;β�λ) are chosen such that the two condi-
tions in (4.12) hold (cf. Lehmann (1986, Theorem 3.5)). The power of the tests
in (4.13) for different (β�λ) maps out the power envelope for LU invariant
tests. This power envelope is found numerically to be essentially the same as
the AE two-sided power envelope; see AMS06b.

5. NUMERICAL RESULTS

This section reports numerical results for the AE two-sided power envelope
developed in Section 4 and the CLR, LM, and AR tests for the case of known Ω
and normal errors. The model considered is given in (2.4) or (2.5) with Ω spec-
ified by ω11 = ω22 = 1 and ω12 = ρ.7 Without loss of generality, no X matrix is
included. The parameters that characterize the distribution of the tests are λ
(= π ′Z′Zπ), the number of IVs k, the correlation between the reduced form

7There is no loss of generality in taking ω11 = ω22 = 1 because the distribution of the max-
imal invariant Q under (β̃� π̃� Ω̃) for arbitrary positive definite Ω̃ with elements ω̃jk equals its
distribution under (β�π�Ω), where ω11 =ω22 = 1, β= (ω̃22/ω̃11)

1/2β̃, and π = ω̃
−1/2
22 π̃.
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errors ρ, and the parameter β. Throughout, we focus on tests with significance
level 5% and on the case where the null value is β0 = 0.8 Numerical results
have been computed for λ/k = 0	5�1�2�4�8�16, which span the range from
weak to strong instruments, ρ = 0	95�0	50, and 0.20, and k = 2�5�10�20. To
conserve space, we report only a subset of these results here. The full set of
results is available in AMS06b.

Conditional critical values for the CLR test were computed by numerical
integration based on the distributional results in Lemma 3. All results reported
here are based on 5,000 Monte Carlo simulations. Details of the numerical
methods are given in AMS06b.

The results are presented as plots of power envelopes and power functions
against various alternative values of β and λ. (For the AE two-sided power
envelope, (β�λ) = (β∗�λ∗).) Power is plotted as a function of the rescaled al-
ternative (β−β0)λ

1/2. These can be thought of as local power plots, where the
local neighborhood is 1/λ1/2 instead of the usual 1/n1/2, because λ measures
the effective sample size.

Figure 1 plots the power functions of the CLR, LM, and AR tests, along with
the AE two-sided power envelope. The striking finding is that the power func-
tion of the CLR test effectively achieves the power envelope for AE invariant
similar tests. Figure 1 documents other results as well. The power function of
the AR test is generally below the AE two-sided power envelope, except at its
point of tangency at β= βAR. Also, as is known from previous simulation work
(e.g., Moreira (2001) and Stock, Wright, and Yogo (2002)), the power function
of the LM statistic is not monotonic. This is due to the switch of the sign of dβ

as β moves through the value βAR.
In sum, the results of Figure 1 (and further results documented in AMS06b)

show that the CLR test dominates the LM and AR tests and, in a numerical
sense, attains the two-sided power envelope of Section 4.

Figure 2 shows how the power results change with k. Figure 2 gives the
power envelope of Theorem 3 and the power functions of the CLR, LM,
and AR tests for k = 2 (Figures 2(a) and 2(b)) and for k = 10 (Figures
2(c) and 2(d)).

Two findings of these results (and related results reported in AMS06b) are
noteworthy. First, the power of the CLR test is numerically essentially the same
as the power envelope, confirming the finding above for k = 5 that the CLR
test is nearly UMP among invariant similar tests of the AE family.

Second, note that the scale is the same in Figure 2 as in Figure 1 and, aside
from the location of the blip, the power envelopes are numerically close in each
panel in the two figures. This confirms that the appropriate measure of infor-
mation for optimal invariant testing is λ1/2 and this scaling does not depend

8There is no loss of generality in taking β0 = 0 because the structural equation y1 = y2β +
Xγ1 + u and hypothesis H0 :β = β0 can be transformed into ỹ1 = y2β̃+Xγ1 + u and H0 : β̃ = 0,
where ỹ1 = y1 − y2β0 and β̃= β−β0.
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on k. In particular, this implies that the two-sided power envelope does not
deteriorate significantly with the addition of an irrelevant instrument.

6. WEAK-IV ASYMPTOTICS

In this section, we consider the same model and hypotheses as in Section 2,
but with unknown error covariance matrix Ω, (possibly) nonnormal errors, and
(possibly) random IVs and/or exogenous variables. We introduce analogues of
the CLR, LM, AR, and POIS2 tests that utilize an estimator of Ω. We use
weak-IV asymptotics, by Staiger and Stock (1997), to analyze the properties of
the tests and to derive a weak-IV asymptotic power envelope that is analogous
to the finite-sample AE two-sided power envelope of Section 4.

For clarity of the asymptotics results, throughout this section we write S, T ,
Q1, etc. of Sections 2–5, as Sn�Tn�Q1�n, etc., respectively, where n is the sample
size. All limits are taken as n → ∞. Let Z = [Z̃ :X]. Let Yi, Z̃i, Xi, Zi, Zi,
and Vi denote the ith rows of Y� Z̃�X�Z�Z, and V , respectively, written as
column vectors of dimensions 2�k�p�k+p�k, and 2.

6.1. Assumptions

We use the same high level assumptions as Staiger and Stock (1997). The
parameter π, which determines the strength of the IVs, is local to zero and
the alternative parameter β is fixed, not local to the null value β0. We refer
to this as weak IV fixed alternative (WIV-FA) asymptotics. Let p.d. abbreviate
“positive definite.”

ASSUMPTION WIV-FA: (a) For some nonstochastic k-vector C, π = C/n1/2.
(b) For all n ≥ 1, β is a fixed constant.
(c) The parameter k is a fixed positive integer that does not depend on n.

ASSUMPTION 1: For some p.d. (k+p)× (k+p) matrix D, n−1Z
′
Z →p D.

ASSUMPTION 2: For some p.d. 2 × 2 matrix Ω, n−1V ′V →p Ω.

ASSUMPTION 3: For some p.d. 2(k+p)× 2(k+p) matrix Φ, n−1/2 vec(Z′ ×
V ) →d N(0�Φ), where vec(·) denotes the column by column vectorization oper-
ator.

ASSUMPTION 4: There exists Φ= Ω⊗D, where Φ is defined in Assumption 3.

The quantities C, D, and Ω are assumed to be unknown. Primitive sufficient
conditions for Assumptions 1–3 are given in AMS04 for i.i.d., independent and
non-identically distributed (i.n.i.d.), and stationary sequences with {Vi : i ≥ 1}
being a martingale difference. Given Assumptions 1–3, a sufficient condition
for Assumption 4 is homoskedasticity of the errors Vi: E(ViV

′
i |Zi)= EViV

′
i = Ω

almost surely for all i ≥ 1.



TWO-SIDED INVARIANT SIMILAR TESTS 735

6.2. Tests for Unknown Ω and Possibly Nonnormal Errors

We estimate Ω (∈ R
2×2; defined in Assumption 2) via

Ω̂n = (n− k−p)−1V̂ ′V̂ � where V̂ = Y − PZY − PXY�(6.1)

where k and p are the dimensions of Zi and Xi� respectively. Let V̂i denote
the ith row of V̂ written as a column 2-vector. Under Assumptions 1–3, the
variance estimator is consistent: Ω̂n →p Ω� see Lemma S.1 of AMS06b. The
convergence holds uniformly over all true parameters β�C�γ, and ξ no matter
what the parameter space is.

We now introduce tests that are suitable for (possibly) nonnormal, ho-
moskedastic, uncorrelated errors and unknown covariance matrix. See AMS04
for tests and results for the case when the errors are not homoskedastic or are
correlated.

We define analogues of Sn, Tn, Q1�n, and QT�n with Ω replaced by Ω̂n:

Ŝn = (Z′Z)−1/2Z′Yb0 · (b′
0Ω̂nb0)

−1/2�(6.2)

T̂n = (Z′Z)−1/2Z′YΩ̂−1
n a0 · (a′

0Ω̂
−1
n a0)

−1/2�

Q̂1�n = (Q̂S�n� Q̂ST�n)
′ = (Ŝ′

nŜn� Ŝ
′
nT̂n)

′� and Q̂T�n = T̂ ′
nT̂n	

The LR, LM, AR, and POIS2 test statistics for the case of unknown Ω are
defined as in (3.4) and Corollary 1, but with QS , QST , and QT replaced by Q̂S�n,
Q̂ST�n, and Q̂T�n, respectively. Denote these test statistics by L̂Rn, L̂Mn, ÂRn,
and LR∗(Q̂1�n� Q̂T�n;β∗�λ∗), respectively.

6.3. Weak-IV Asymptotic Distributions of Test Statistics

Next, we show that Ŝn and T̂n converge in distribution to independent
k-vectors S∞ and T∞, respectively, which are defined as follows. Let NZ be
a k× 2 normal matrix. Let

vec(NZ) ∼N
(
vec(DZCa′)�Ω⊗DZ

)
�(6.3)

S∞ =D−1/2
Z NZb0 · (b′

0Ωb0)
−1/2 ∼N(cβD

1/2
Z C� Ik)�

T∞ =D−1/2
Z NZΩ

−1a0 · (a′
0Ω

−1a0)
−1/2 ∼N(dβD

1/2
Z C� Ik)� where

DZ = D11 −D12D
−1
22 D21�

D=
[
D11 D12

D21 D22

]
� D11 ∈ R

k×k� D12 ∈ R
k×p� and D22 ∈ R

p×p	

The matrix DZ is the probability limit of n−1Z′Z. Under H0, S∞ has mean zero,
but T∞ does not. Let

Q∞ = [S∞ :T∞]′[S∞ :T∞]�(6.4)
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Q1�∞ = (S′
∞S∞� S′

∞T∞)′� QT�∞ = T ′
∞T∞� QST�∞ = S′

∞T∞�

QS�∞ = S′
∞S∞� S2�∞ = S′

∞T∞/(‖S∞‖ · ‖T∞‖)� and

λ∞ = C ′DZC	

By (6.3) and the proof of Lemma 3, we find that the density, conditional den-
sity, and independence results of Lemma 3 for (Q1�n�QT�n), QT�n, QS�n, and S2�n

also hold for (Q1�∞�QT�∞), QT�∞, QS�∞, and S2�∞ with λn replaced by λ∞.
The following results hold under H0 and fixed (i.e., nonlocal) alternatives.

LEMMA 4: Under Assumptions WIV-FA and 1–4:
(a) (Sn�Tn)→d (S∞�T∞);
(b) (Ŝn� T̂n)− (Sn�Tn)→p 0;
(c) (Ŝn� T̂n)→d (S∞�T∞).

COMMENTS: (i) Inspection of the proof of the lemma shows that the re-
sults of the lemma hold uniformly over compact sets of true β and C values,
and over arbitrary sets of true γ and ξ values. In particular, the results hold
uniformly over vectors C that include the zero vector. Hence, the asymptotic
results hold uniformly over cases in which the IVs are arbitrarily weak. In con-
sequence, we expect the asymptotic test procedures developed here to perform
well in terms of size even for very weak IVs.

(ii) Lemma 4 and the continuous mapping theorem imply that the as-
ymptotic distributions of the L̂Rn, L̂Mn, and ÂRn test statistics are given by
the distributions of the test statistics in (3.4) with (QS�QST �QT) replaced by
(QS�∞�QST�∞�QT�∞). Under H0, L̂Mn and ÂRn have asymptotic χ2

1 and χ2
k/k

distributions, respectively.

Using Lemma 4, we establish the asymptotic distributions of the {LR∗(Q̂1�n�

Q̂T�n;β∗�λ∗) :n≥ 1} test statistics and {κα(Q̂T�n;β∗�λ∗) :n≥ 1} critical values.

THEOREM 4: Under Assumptions WIV-FA and 1–4:
(a) (LR∗(Q̂1�n� Q̂T�n;β∗�λ∗), κα(Q̂T�n;β∗�λ∗)) →d (LR∗(Q1�∞�QT�∞;β∗�

λ∗), κα(QT�∞;β∗�λ∗));
(b) P(LR∗(Q̂1�n� Q̂T�n;β∗�λ∗) > κα(Q̂T�n;β∗�λ∗)) → P(LR∗(Q1�∞�QT�∞;

β∗�λ∗) > κα(QT�∞;β∗�λ∗));
(c) under H0, P(LR∗(Q1�∞�QT�∞;β∗�λ∗) > κα(QT�∞;β∗�λ∗))= α.

COMMENT: Theorem 4(b) is used below to obtain the weak-IV asymptotic
power envelope for the case of an estimated error covariance matrix.

6.4. Weak-IV Asymptotic Power Envelope

In this subsection, we show that the POIS2 test based on LR(Q̂1�n� Q̂T�n;β∗�
λ∗) exhibits an asymptotic average-power optimality property when the IVs are
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weak and the errors are i.i.d. normal with unknown covariance matrix. These
results yield the AE two-sided asymptotic power envelope. It is the same as the
finite-sample power envelope of Section 4 when Ω is known.

For the asymptotic optimality results, we set up a sequence of models (or
experiments) with the parameters renormalized such that no parameter can be
estimated asymptotically without error, as is standard in the asymptotic effi-
ciency literature, e.g., see van der Vaart (1998, Chap. 9). For the parameters
β and C� no renormalization is required given Assumption WIV-FA, because
neither can be consistently estimated in the weak-IV asymptotic setup. For the
parameters Ω and η, renormalizations are required. We take the true parame-
ters Ω and η to satisfy

Ω=Ω0 +Ω1/n
1/2 and η= η0 +η1/n

1/2�(6.5)

where Ω0 and η0 are taken to be known, and the unknown parameters to be
estimated are the perturbation parameters η1 and Ω1. The matrices Ω0 and Ω1

are assumed to be symmetric and positive definite.
The least squares estimator of η in the model of (2.5) is η̂n = (X ′X)−1X ′Y .
For any symmetric �×� matrix A, let vech(A) denote the �(�+1)/2-column

vector containing the column by column vectorization of the nonredundant
elements of A.

The following basic results hold under H0 and fixed alternatives β �= β0:

LEMMA 5: Suppose Assumption WIV-FA holds, the reduced-form errors
{Vi : i ≥ 1} are i.i.d. normal, independent of {Zi : i ≥ 1}, with mean zero and p.d.
variance matrix Ω, and Ω and η are as in (6.5). Then:

(a) (n−1/2Z′Y� n1/2(η̂n − η0), n1/2(Ω̂n − Ω0)) are sufficient statistics for
(β�C�Ω1�η1);

(b) (n−1/2Z′Y , n1/2(η̂n − η0), n1/2(Ω̂n − Ω0)) →d (NZ , NX� NΩ), where
NZ , NX , and NΩ are independent k × 2, p × 2, and 2 × 2 normal random
matrices, respectively, with vec(NZ) ∼ N(vec(DZCa′)�Ω0 ⊗ DZ), vec(NX) ∼
N(vec(η1)�Ω0 ⊗ D−1

22 ), NΩ is symmetric, and vech(NΩ) ∼ N(Ω1�E(ζ − Eζ) ×
(ζ−Eζ)′), where ζ = vech(v0v

′
0), v0 ∈ R

2, and v0 ∼ N(0�Ω0), provided Assump-
tion 1 also holds.

Given the result of part (a) of Lemma 5, there is no loss in attainable
power by considering only tests that depend on the data through (n−1/2Z′Y ,
n1/2(η̂n −η0), n1/2(Ω̂n −Ω0)). Let φn(n

−1/2Z′Y , n1/2(η̂n −η0), n1/2(Ω̂n −Ω0))
be such a test. The test φn is {0�1}-valued and rejects the null hypothesis when
φn = 1. We say that a sequence of tests {φn :n ≥ 1} is a convergent sequence of
asymptotically similar tests if, for some function φ(·� ·� ·),

φn

(
n−1/2Z′Y�n1/2(η̂n −η0)�n

1/2(Ω̂n −Ω0)
) →d φ(NZ�NX�NΩ)�(6.6)

Pβ�C�Ω0�η0

(
φ(NZ�NX�NΩ)= 1

) = α
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for β = β0 and all (C�Ω0�η0) in the parameter space, where Pβ�C�Ω0�η0(·)
denotes probability when the true parameters are (β�C�Ω0�η0). Examples
of convergent sequences of asymptotically similar tests include sequences of
CLR, LM, AR, and POIS2 tests. Standard Wald and LR tests are not asymp-
totically similar.

The transformation, call it hΩ(·)� from NZ to [S∞ :T∞] in (6.3) is one-to-one.
Hence, for some function φ� we have

φ(NZ�NX�NΩ) =φ
(
h−1
Ω (S∞�T∞)�NX�NΩ

) = φ(S∞�T∞�NX�NΩ)	(6.7)

As in Section 3, we consider the group of transformations given in (3.1) but
with gF(β�π) replaced by gF(β�C) = (β�D−1/2

Z FD1/2
Z C) acting on the parame-

ters (β�C). The maximal invariant is Q∞ (defined in (6.4)).
We say that a sequence of tests {φn :n ≥ 1} is a convergent sequence of as-

ymptotically invariant tests if the first condition of (6.6) holds and the distribu-
tion of φ(S∞�T∞�NX�NΩ) depends on (S∞�T∞) only through Q∞, i.e.,

φ(S∞�T∞�NX�NΩ)∼ φ∗(Q∞�NX�NΩ)(6.8)

for some function φ∗, where ∼ denotes “has the same distribution as.” Ex-
amples of convergent sequences of asymptotically invariant and asymptotically
similar tests include the CLR, LM, AR, and POIS2 tests.

We now establish an upper bound on two-point average asymptotic power.

THEOREM 5: Suppose Assumptions WIV-FA and 1 hold, the reduced-form
errors {Vi : i ≥ 1} are i.i.d. normal, independent of {Zi : i ≥ 1}� with mean zero
and p.d. variance matrix Ω, Ω and η are as in (6.5), and (β∗�λ∗) and (β∗

2�λ
∗
2)

satisfy (4.1). For any convergent sequence of asymptotically invariant and asymp-
totically similar tests {φn :n≥ 1}, we have

lim
n→∞

P∗
β∗�C�Ω�η

(
φn

(
n−1/2Z′Y�n1/2(η̂n −η0)�n

1/2(Ω̂n −Ω0)
) = 1

)
= P∗

β∗�C�Ω0�η0

(
φ∗(Q∞�NX�NΩ)= 1

)
≤ P∗

β∗�C�Ω0�η0

(
LR∗(Q1�∞�QT�∞;β∗�λ∗) > κα(QT�∞;β∗�λ∗)

)
�

where P∗
β∗�C�Ω�η(·) = (1/2)[Pβ∗�C�Ω�η(·) + Pβ∗

2�C2�Ω�η(·)], Pβ�C�Ω�η(·) denotes prob-
ability when the true parameters are (β�C�Ω�η), C satisfies C ′DZC = λ∗, and
C2 satisfies C ′

2DZC2 = λ∗
2.

Combining Theorem 5 with Theorem 4(b) shows that POIS2 tests attain the
asymptotic upper bound on average power and, hence, their power maps out
the asymptotic average-power envelope as (β∗�λ∗) vary.
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COROLLARY 2: Under the conditions of Theorem 5, the POIS2 tests of Sec-
tion 6 are convergent sequences of asymptotically invariant and asymptotically
similar tests that attain the upper bound on asymptotic average power given in
Theorem 5.

COMMENTS: (i) The asymptotic power envelope depends only on (β∗�λ∗).
It is the same as the finite-sample power envelope for known Ω of Section 4.

(ii) In Theorem 5 and Corollary 2, the assumption that the reduced-form
errors {Vi : i ≥ 1} are i.i.d. normal, independent of {Zi : i ≥ 1}� with mean zero
and p.d. variance matrix Ω, can be replaced by Assumptions 2–4. Thus, the
asymptotic power envelope and its near attainability by the CLR test still
hold with nonnormal errors. However, with this replacement, Lemma 5(a)
no longer holds and it is no longer true that there is no loss in attainable
power by considering only tests that depend on the data through (n−1/2Z′Y ,
n1/2(η̂n −η0), n1/2(Ω̂n −Ω0)).

(iii) Theorem 4(b) holds under (6.5) by the same argument as when Ω and η
are constants.

7. STRONG-IV ASYMPTOTICS

In this section, we analyze the strong-IV–local alternative asymptotic prop-
erties of the tests considered above for the case of unknown covariance matrix
and nonnormal errors. The results provided here are essential for the specifi-
cation above of the AE two-sided power envelope. For strong IV–fixed alter-
native results, i.e., consistency results, see AMS04. As in Section 6, we denote
S = Sn� Q =Qn� etc.

We make the following assumption:

ASSUMPTION SIV-LA: (a) For some constant B ∈ R, β= β0 +B/n1/2.
(b) For all n≥ 1, π is a fixed nonzero k-vector.
(c) The parameter k is a fixed positive integer that does not depend on n.
The strong IV-local alternative (SIV-LA) asymptotic behavior of Sn, Ŝn, Tn,

and T̂n depends on

SB∞ ∼N(αS� Ik)�(7.1)

αS = D1/2
Z πB(b′

0Ωb0)
−1/2�

αT =D1/2
Z π(a′

0Ω
−1a0)

1/2	

Using these definitions, we obtain the following results.

LEMMA 6: Under Assumptions SIV-LA and 1–4, (a) (Sn�Tn/n
1/2) →d (SB∞�

αT ), (b) (Ŝn� T̂n/n
1/2) = (Sn�Tn/n

1/2) + op(1), and (c) (Q̂S�n� Q̂ST�n/n
1/2�

Q̂T�n/n) →d (S
′
B∞SB∞�α′

TSB∞�α′
TαT ) as n → ∞.
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Using Lemma 6, we determine the asymptotic distributions of the AR, LM,
and LR test statistics under SIV-LA asymptotics.

THEOREM 6: Under Assumptions SIV-LA and 1–4, (a) ÂRn = ARn +
op(1) →d S

′
B∞SB∞/k ∼ χ2

k(α
′
SαS)/k, (b) L̂Mn = LMn + op(1) →d (α

′
TSB∞)2/

‖αT‖2 ∼ χ2
1((α

′
TαS)

2/‖αT‖2), and (c) L̂Rn = LRn + op(1) = LMn + op(1) →d

α′
TSB∞/‖αT‖.

COMMENTS: (i) Part (c) of Theorem 6 shows that the LR and LM test statis-
tics are asymptotically equivalent under SIV-LA asymptotics for any value of k
(the number of IVs). (When k = 1, the LR, LM, and AR test statistics are the
same, so the tests are trivially asymptotically equivalent.)

(ii) The critical values for the LM and AR tests are nonrandom. However,
the critical value for the CLR test is a function of QT�n or Q̂T�n. Hence, for
the CLR and LM tests to be asymptotically equivalent, the CLR critical value,
call it κLR�α(Q̂T�n), must converge in probability to a constant as n → ∞. Un-
der strong-IV asymptotics, Q̂T�n →p ∞. In consequence, asymptotic equiva-
lence holds if κLR�α(qT ) converges to a finite constant as qT diverges to infinity.
Moreira (2003) shows that limqT →∞ κLR�α(qT ) equals the 1 − α quantile of the
χ2

1 distribution. Hence, the CLR and LM tests are indeed asymptotically equiv-
alent under SIV-LA asymptotics.

(iii) Theorem 6(a) and (b) are not new results, but part (c) is new. Moreira
(2003) does not provide the SIV-LA asymptotic distribution of L̂Rn.

Under SIV-LA asymptotics and i.i.d. normal errors with unknown covari-
ance matrix Ω, the model for (y1� y2) is a “regular” parametric model in the
sense of standard likelihood theory. Hence, the usual Wald, LR, and LM tests
have standard large sample optimality properties. Such optimality properties
include maximizing average asymptotic power over certain ellipses in the pa-
rameter space and uniformly maximizing asymptotic power among asymptoti-
cally unbiased tests; see Wald (1943). We refer to tests with such properties as
asymptotically efficient tests under SIV-LA asymptotics and i.i.d. normal errors.

We have the following AE result for the CLR and LM tests under SIV-LA
asymptotics.

THEOREM 7: Suppose Assumptions SIV-LA and 1 hold, and the reduced-form
errors {Vi : i ≥ 1} are i.i.d. normal, independent of {Zi : i ≥ 1}, with mean zero and
p.d. variance matrix Ω that may be known or unknown. Then the CLR test based
on L̂Rn and the LM test based on L̂Mn are asymptotically efficient under strong-IV
asymptotics.

COMMENT: The AR test based on ÂRn is not AE under SIV-LA asymp-
totics and i.i.d. normal errors unless k = 1	 This holds because its asymptotic
distribution under SIV-LA asymptotics differs from that of L̂Mn when k > 1
by Theorem 6.
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Next, we provide results for POIS2 tests. We allow for the case where the
second point (β∗

2�λ
∗
2) satisfies (4.1) and for the case where it does not. The

form of a POIS2 test is that given in Corollary 1 whether or not the second
point (β∗

2�λ
∗
2) satisfies (4.1). Our results show that, under i.i.d. normal errors,

a POIS2 test is asymptotically efficient under SIV-LA asymptotics if and only
if (β∗

2�λ
∗
2) satisfies (4.1).

THEOREM 8: Under Assumptions SIV-LA and 1–4, (a) LR∗(Q̂1�n� Q̂T�n;β∗�
λ∗) = LR∗(Q1�n�QT�n;β∗�λ∗) + op(1), (b) if (β∗

2�λ
∗
2) satisfies (4.1), then

LR∗(Q̂1�n� Q̂T�n;β∗�λ∗) = exp((−(τ∗)2)/2) cosh(τ∗LM1/2
n ) + op(1), where τ∗ =

(λ∗)1/2cβ∗ , which is a strictly increasing continuous function of LMn, and (c) if
(β∗

2�λ
∗
2) does not satisfy (4.1), then LR∗(Q̂1�n� Q̂T�n;β∗�λ∗) = η2(QST�n/Q

1/2
T�n) +

op(1) for a continuous function η2(·) that is not even.

COMMENTS: (i) The critical values for the POIS2 tests converge in probabil-
ity to constants as n→ ∞ under strong-IV asymptotics. (See the Appendix for
a proof.) Hence, Theorems 7 and 8(b) and (c) imply that a POIS2 test is AE
under SIV-LA asymptotics and i.i.d. normal reduced-form errors if and only if
(β∗

2�λ
∗
2) satisfies (4.1).

(ii) Theorem 8(a) shows that, under SIV-LA asymptotics and the ho-
moskedastic errors assumptions (which do not require normality), a POIS2
test with estimated error variance matrix Ω is asymptotically equivalent to the
corresponding POIS2 test with known Ω. Under the same assumptions, Theo-
rem 8(b) shows that a POIS2 test is asymptotically equivalent to the two-sided
LM test with known Ω when (4.1) holds. Under the same assumptions, Theo-
rem 8(c) shows that a POIS2 test is asymptotically equivalent to a test based
on a continuous function of the two one-sided LM statistics with known Ω, viz.
±QST�n/Q

1/2
T�n, when (4.1) fails to hold.

(iii) The proof of Theorem 8(c) shows that if the second condition of (4.1)
fails to hold, then η2(·) is a monotone function and, hence, the POIS2
test is asymptotically equivalent to one of the one-sided LM tests based
on ±QST�n/Q

1/2
T�n. The proof shows that if the second condition of (4.1) holds

and the first condition fails, then the POIS2 test is asymptotically equivalent to
a function of both one-sided LM statistics ±QST�n/Q

1/2
T�n that is not invariant to

permutations of the two one-sided statistics. Thus, if either condition of (4.1)
fails, the POIS2 test is not asymptotically equivalent to the two-sided LM test
and, hence, is not asymptotically efficient.
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APPENDIX A: PROOFS

A.1. Proofs of Results Stated in Sections 2–4

PROOF OF LEMMA 1: The proof is standard using normality of Y and zero
covariance between Z′Y and X ′Y ; see AMS06b for details. Q.E.D.

PROOF OF LEMMA 2: The proof is straightforward; see AMS06b for de-
tails. Q.E.D.

PROOF OF THEOREM 1: Let M(S�T) = [S :T ]′[S :T ] = Q. The M(S�T) is a
maximal invariant if it is invariant and it takes different values on different or-
bits of G. Obviously, M(S�T) is invariant. The latter condition holds if given
any k-vectors μ1�μ2� μ̃1, and μ̃2 such that M(μ1�μ2) = M(μ̃1� μ̃2), there ex-
ists an orthogonal k × k matrix F such that μ̃1 = Fμ1 and μ̃2 = Fμ2; e.g., see
Lehmann (1986, Eq. (7), p. 285).

First, suppose μ1 and μ2 are linearly independent (which implies that
k ≥ 2). Then there exist linearly independent k-vectors μ3� 	 	 	 �μk such that
{μ1� 	 	 	 �μk} span R

k. Applying the Gram–Schmidt procedure to {μ1� 	 	 	 �μk},
we now construct an orthogonal matrix F such that Fμ1 and Fμ2 de-
pend on (μ1�μ2) only through μ′

1μ1, μ′
1μ2, and μ′

2μ2. For a full column
rank k × � matrix A� let MA = Ik − A(A′A)−1A′. We take f1 = μ1/‖μ1‖,
f2 = Mμ1μ2/‖Mμ1μ2‖� 	 	 	 � fk = M[μ1 : ··· : μk−1]μk/‖M[μ1 : ··· : μk−1]μk‖. Define F =
[f1 : · · · : fk]′. We have

Fμ1 = (f ′
1μ1� 	 	 	 � f

′
kμ1)

′ = (‖μ1‖�0� 	 	 	 �0)′�(A.1)

Fμ2 = (
μ′

1μ2/‖μ1‖�μ′
2Mμ1μ2/‖Mμ1μ2‖�0� 	 	 	 �0

)′
	

Because μ′
2Mμ1μ2 = μ′

2μ2 − (μ′
1μ2/‖μ1‖)2, we find that Fμ1 and Fμ2 depend

on (μ1�μ2) only through μ′
1μ1, μ′

1μ2, and μ′
2μ2.

Define F̃ analogously to F but with {μ̃1� 	 	 	 � μ̃k} in place of {μ1� 	 	 	 �μk}.
Then F̃μ̃1 and F̃μ̃2 depend on (μ̃1� μ̃2) only through μ̃′

1μ̃1, μ̃′
1μ̃2, and μ̃′

2μ̃2.
Now, suppose (μ1�μ2) and (μ̃1� μ̃2) are such that M(μ1�μ2) = M(μ̃1� μ̃2).

That is, μ′
1μ1 = μ̃′

1μ̃1, μ′
1μ2 = μ̃′

1μ̃2, and μ′
2μ2 = μ̃′

2μ̃2. Then the orthogonal ma-
trices F and F̃ are such that Fμ1 = (‖μ1‖�0� 	 	 	 �0)′ = (‖μ̃1‖�0� 	 	 	 �0)′ = F̃μ̃1

and μ̃1 = F̃−1Fμ1 = Fμ1, where F = F̃−1F is an orthogonal matrix. Similarly,
Fμ2 = F̃μ̃2 and μ̃2 = F̃−1Fμ2 = Fμ2. This completes the proof for the case
where μ1 and μ2 are linearly independent.
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Next, suppose μ1 and μ2 are linearly dependent (as necessarily occurs when
k = 1). Then we can ignore μ2 and proceed as above using just μ1 and some
additional linearly independent vectors {μ∗

2� 	 	 	 �μ
∗
k} for which {μ1�μ

∗
2� 	 	 	 �μ

∗
k}

span R
k. The matrix F constructed in this way is such that if M(μ1�μ2) =

M(μ̃1� μ̃2), then μ̃1 = Fμ1. In addition, because μ2 = κμ1 and μ̃2 = κμ̃1 for
some κ, we obtain μ̃2 = Fμ2. This completes the proof. Q.E.D.

PROOF OF THEOREM 2: Sufficiency follows immediately from the law of it-
erated expectations. Necessity uses the fact that S is ancillary under H0 and
the family of distributions of T under H0 is a k-parameter exponential family
indexed by π with parameter space that contains a k-dimensional rectangle. In
consequence, T is a complete sufficient statistic for π under H0 by Theorem 4.1
of Lehmann (1986, p. 142). The statistic QT is complete under H0 because a
function of a complete statistic is complete by the definition of completeness.
(This is an added step to Moreira’s (2001) argument.) In consequence, any
function of QT whose expectation does not depend on π is equal to a con-
stant with QT probability 1. In particular, for an invariant similar test φ(Q),
Eβ0(φ(Q)|QT) is a function of QT whose expectation equals α for all π. Hence,
by completeness of QT , Eβ0(φ(Q)|QT = qT ) must equal α for almost all qT .
Note that Eβ0(φ(Q)|QT) does not depend on π by Lemma 3(c). Q.E.D.

PROOF OF LEMMA 3: First, we prove part (a). The k × 2 matrix [S :T ] is
multivariate normal with mean matrix M = μπh

′
β, where hβ = (cβ�dβ)

′� all
variances equal to 1, and all correlations equal to 0. Hence, Q = [S :T ]′[S :T ]
has a noncentral Wishart distribution with mean matrix of rank 1 and identity
covariance matrix. By (6) of Anderson (1946), the density of Q at q is

K1 exp
(

− tr(M ′M)

2

)
|q|(k−3)/2 exp

(
− tr(q)

2

)
(A.2)

× (tr(M ′Mq))−(k−2)/4I(k−2)/2

(√
tr(M ′Mq)

)
	

We have M ′M = λhβh
′
β, where λ = μ′

πμπ , tr(M ′M) = λ(c2
β +d2

β), tr(M ′Mq) =
λh′

βqhβ, and h′
βqhβ = ξβ(q). Hence, part (a) holds.

Part (b) holds because QT has a noncentral chi-squared distribution with
noncentrality parameter d2

βλ by Lemma 2(b) and (3.3). The stated form of the
density is given by Anderson (1946, Eq. (6)). Part (c) holds by taking the ratio
of the densities given in parts (a) and (b) evaluated at β= β0 and using the fact
that cβ0 = 0 and ξβ0(q) = d2

β0
qT . Part (d) holds because the null distribution

of QS is a central chi-squared distribution by Lemma 2(a) and cβ0 = 0.
For part (e), the null density of S2 is derived as follows: (i) S2 = S′T/(‖S‖ ·

‖T‖) has the same distribution as A = S′α/‖S‖ for any α ∈ R
k with α′α = 1

because S ∼ N(0� Ik) under the null, and S and T are independent using
Lemma 2(a) and (c); (ii) for α = (1�0� 	 	 	 �0)′, (k − 1)1/2A/(1 − A2)1/2 =
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(k− 1)1/2S1/(
∑k

j=2 S
2
j )

1/2 ∼ tk−1 by definition of the tk−1 distribution; (iii) trans-
formation of (k−1)1/2A/(1−A2)1/2 to A gives the density in part (d); e.g., see
Muirhead (1982, proof of Theorem 1.5.7(i), pp. 38–39; Eq. (5), p. 147).

Next, we prove part (f). Under the null, S ∼ N(0� Ik), T ∼ N(dβ0μπ� Ik),
and S and T are independent by Lemma 2. Hence, QS = S′S and T are in-
dependent. The distribution of S′α/‖S‖ for α ∈ R

k with α′α = 1 does not de-
pend on α by spherical symmetry of S. Thus, the conditional distribution of
S2 = S′T/(‖S‖ · ‖T‖) given T = t does not depend on t and S2 is independent
of T . Independence of QS = S′S and S′α/‖S‖ is a well-known result that holds
by spherical symmetry of S. Q.E.D.

A.2. Proofs of Results Stated in Section 6

PROOF OF LEMMA 4: To establish part (a), we have

n−1Z′Z = n−1Z̃′Z̃ − n−1Z̃′PXZ̃ →p D11 −D12D
−1
22 D21 =DZ(A.3)

using Assumption 1. Let N∗ be a (k + p) × 2 random matrix with vec(N∗) ∼
N(0�Ω⊗D). Using Assumptions 1 and 3, we obtain

n−1/2Z′V b0(A.4)

= n−1/2(Z̃ − PXZ̃)′V b0 = n−1/2(Z̃ −XD−1
22 D21)

′V b0 + op(1)

= [Ik :−D12D
−1
22 ]n−1/2Z

′
V b0 + op(1)→d [Ik :−D12D

−1
22 ]N∗b0

= [Ik :−D12D
−1
22 ](b′

0 ⊗ Ik+p) vec(N∗)	

Hence, we have

Sn = (n−1Z′Z)−1/2(n−1/2Z′V b0 + n−1Z′ZCa′b0)(A.5)

× (b′
0Ωb0)

−1/2 →d H� where

H =D−1/2
Z

([Ik :−D12D
−1
22 ](b′

0 ⊗ Ik+p) vec(N∗)+DZCa′b0

)
× (b′

0Ωb0)
−1/2

and the first equality holds by Assumption WIV-FA and Z′X = 0. Using As-
sumption 4, the random vector H has a normal distribution with

EH = D1/2
Z Ca′b0 · (b′

0Ωb0)
−1/2 = cβD

1/2
Z C�(A.6)

var(H)=D−1/2
Z [Ik :−D12D

−1
22 ](b′

0 ⊗ Ik+p)(Ω⊗D)(b0 ⊗ Ik+p)

× [Ik :−D12D
−1
22 ]′D−1/2

Z · (b′
0Ωb0)

−1

=D−1/2
Z [Ik :−D12D

−1
22 ]D[Ik :−D12D

−1
22 ]′D−1/2

Z = Ik�
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which completes the proof for Sn	
Analogously to (A.4), we have

n−1/2Z′V Ω−1a0 →d [Ik :−D12D
−1
22 ]((a′

0Ω
−1)⊗ Ik+p

)
vec(N∗)	(A.7)

Using this, we obtain

Tn = (n−1Z′Z)−1/2(n−1/2Z′V Ω−1a0 + n−1Z′ZCa′Ω−1a0)(A.8)

× (a′
0Ω

−1a0)
−1/2 →d J for

J =D−1/2
Z

([Ik : −D12D
−1
22 ]((a′

0Ω
−1)⊗ Ik+p

)
vec(N∗)+DZCa′Ω−1a0

)
× (a′

0Ω
−1a0)

−1/2	

Analogously to (A.6), J has a normal distribution with EJ = dβD
1/2
Z C and

var(J) = Ik, which completes the proof for Tn.
The asymptotic normal distributions of Sn and Tn are independent because

the covariance of the random components of H and J is zero:

E(b′
0 ⊗ Ik+p) vec(N∗) vec(N∗)′((Ω−1a0)⊗ Ik+p

)
(A.9)

=E(b′
0 ⊗ Ik+p)(Ω⊗D)

(
(Ω−1a0)⊗ Ik+p

) = (b′
0a0)⊗D = 0	

This completes the proof of part (a).
Part (b) holds by the definitions of Ŝn, T̂n, Sn, and Tn because (i) (Z′Z)−1/2 ×

Z′Y =Op(1) by the same sort of argument as in (A.3) and (A.4), (ii) Ω̂n →p Ω
(see AMS06b), and (iii) Ω is p.d. by Assumption 2.

Part (c) follows immediately from parts (a) and (b). Q.E.D.

PROOF OF THEOREM 4: The functions ψ(·� ·;β�λ) and ψ2(·;β�λ) are con-
tinuous and do not depend on n; see their definitions in Corollary 1. The same
is true of the critical value function κα(·;β�λ) because the conditional distrib-
ution of Q1�n given QT�n is absolutely continuous with a density that is a smooth
function of qT and does not depend on n; see Lemma 3(c) and the definition
of κα(·;β�λ) in (4.10). In consequence, the result of part (a) of the theorem
follows from Lemma 4, (6.4), and the continuous mapping theorem.

Part (b) follows immediately from part (a).
Part (c) holds for the following reasons. The conditional distribution of Q1�∞

given QT�∞ = qT is the same as that of Q1�n given QT�n = qT because the for-
mer distribution does not depend on λ∞ and the latter does not depend on λ;
see Lemma 3(c). Hence, by definition of κα(·;β�λ), for all constants qT�∞,
P(LR∗(Q1�∞� qT�∞;β�λ) > κα(qT�∞;β�λ)|Q1�∞ = qT�∞)= α. This result and it-
erated expectations establishes part (c). Q.E.D.

PROOF OF LEMMA 5: Part (a) holds because (i) given that Ω0 and η0 are
known, and Ω1 and η1 are unknown, (Z′Y�X ′Y�Y ′Y) are seen to be sufficient
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statistics for (β�C�Ω1�η1) by inspection of the normal density of Y conditional
on [Z :X] and (ii) (n−1/2Z′Y�n1/2(η̂n −η0)�n

1/2(Ω̂n −Ω0)) is an equivalent set
of sufficient statistics to (Z′Y�X ′Y�Y ′Y).

Part (b) holds because: (i) vec(n−1/2Z′V ) ∼N(0�Ω⊗ (n−1Z′Z)) conditional
on n−1Z′Z and n−1Z′Z →p DZ (by (A.4) using Assumption 1) imply that
vec(n−1/2Z′V ) →d N(0�Ω⊗DZ); (ii) vec(n−1/2Z′Zπa′)= vec(n−1Z′ZCa′)→p

DZCa′ by Assumption 1; (iii) n1/2(η̂n − η0) = (n−1X ′X)−1n−1/2X ′V + η1 ∼
N(η1�Ω ⊗ (n−1X ′X)−1) conditional on n−1X ′X and (n−1X ′X)−1 →p D−1

22

(using Assumption 1) imply that vec(n1/2(η̂n − η0)) →d N(η1�Ω ⊗ D−1
22 );

(iv) n1/2(Ω̂n −Ω0)= n1/2(n−1V ′V −Ω0)−n−1/2V ′PZV −n−1/2V ′PXV ; (v) n1/2 ×
(n−1V ′V −Ω0)= n−1/2(V ′V −EV ′V )+Ω1; (vi) vech(n−1/2(V ′V −EV ′V ))→d

N(0�E(ζ −Eζ)(ζ −Eζ)′) by a triangular array CLT for rowwise i.i.d. random
vectors; (vii) n−1/2V ′PZV = n−1/2 ·n−1/2V ′Z(n−1Z′Z)−1n−1/2Z′V →p 0 using (i);
(viii) n−1/2V ′PXV →p 0 by an analogous argument to (vii); (ix) the three ran-
dom matrices on the left-hand side of part (b) are asymptotically independent
because they are independent in finite samples conditional on n−1Z′Z and
n−1X ′X , and the randomness in n−1Z′Z and n−1X ′X is asymptotically negligi-
ble. Q.E.D.

PROOF OF THEOREM 5: The equality in the theorem holds by the defini-
tion of a convergent sequence of asymptotically invariant tests. The inequality
holds because (i) given the random quantities (Q∞�NX�NΩ), Q∞ is a sufficient
statistic for β and C because it is independent of NX and NΩ, and the latter
have distributions that do not depend on β or C; (ii) result (i) implies that the
average power of the similar test φ∗(Q∞�NX�NΩ) is less than or equal to that
of some similar test φ̃(Q∞) that depends on (Q∞�NX�NΩ) only through Q∞;
(iii) Theorem 3 with Q replaced by Q∞ implies that the average power of the
similar test φ̃(Q∞) is less than or equal to the upper bound given in Theo-
rem 5. Q.E.D.

A.3. Proofs of Results Stated in Section 7

PROOF OF LEMMA 6: To prove part (a), we use (2.6), (6.3), and Assump-
tions SIV-LA, 1, 3, and 4 to obtain

Sn = cβμπ + (Z′Z)−1/2Z′V b0 · (b′
0Ωb0)

−1/2 →d SB∞�(A.10)

Tn/n
1/2 = dβμπ/n

1/2 + (Z′Z/n)−1/2(Z′V /n)Ω−1a0 · (a′
0Ω

−1a0)
−1/2

= dβ(Z
′Z/n)1/2π + op(1)= αT + op(1)	

Part (b) holds because Ω̂n→pΩ; see AMS06b. Part (c) holds by part (a),
part (b), and the continuous mapping theorem. Q.E.D.
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PROOF OF THEOREM 6: Theorem 6(a) and (b) follow immediately from
Lemma 6.

The first equality of part (c) follows from Lemma 6. The second equality of
part (c) of the theorem is established as follows. By Lemma 6, we have

QT

(QT −QS)2
= QT/n

(QT/n−QS/n)2
n−1 = α′

TαT + op(1)
(α′

TαT + op(1))2
n−1 = op(1)	(A.11)

By a mean-value expansion,
√

1 + x = 1 + (1/2)x(1 +o(1)) as x → 0. This and
some algebra give

LR = 1
2
(
QS −QT +

√
(QT −QS)2 + 4Q2

ST

)
(A.12)

= 1
2

(
QS −QT + |QT −QS|

√
1 + 4QT

(QT −QS)2
LM

)

= 1
2

(
QS −QT + |QT −QS|

(
1 + 2QT(1 + op(1))

(QT −QS)2
LM

))
= QT(1 + op(1))

QT −QS

LM�

where the fourth equality uses |QT −QS| = QT −QS with probability that goes
to 1 by the calculation in the denominator of (A.11). As in (A.11), by Lemma 6,
we have QT/(QT −QS) = 1 + op(1). This and (A.12) combine to give the sec-
ond equality of part (c). Q.E.D.

PROOF OF THEOREM 7: We suppose that Ω is known and determine the
standard LM statistic for this case, which is asymptotically efficient by standard
results. In particular, we show that the standard LM statistic is LMn =Q2

ST /QT .
By Theorem 6, the LR statistic is asymptotically equivalent to LMn under the
null hypothesis and local alternatives under strong-IV asymptotics, and the
asymptotic behavior of these statistics does not depend on knowledge of Ω.
Hence, the tests based on these statistics are asymptotically efficient whether
or not Ω is known.

The standard LM statistic is a quadratic form in the derivative with respect
to β of the log-likelihood function of the sufficient statistics (S�T) evaluated
at the null restricted maximum likelihood estimator of π� which we denote
by π̂0. Under the null hypothesis, S ∼ N(0� Ik) is ancillary, π̂0 depends on
T ∼N(dβ0μπ� Ik) alone, and π̂0 is easily seen to be π̂0 = d−1

β0
(Z′Z)−1/2T . The

log-likelihood of (S�T) is proportional to

−1
2
(S − cβμπ)

′(S − cβμπ)− 1
2
(T − dβμπ)

′(T − dβμπ)	(A.13)



748 D. W. K. ANDREWS, M. J. MOREIRA, AND J. H. STOCK

The derivative of this expression with respect to β evaluated at (β�π) =
(β0� π̂0) is(

d

dβ
cβμ

′
πS − 1

2
d

dβ
(c2

β)μ
′
πμπ(A.14)

+ d

dβ
dβμ

′
πT − 1

2
d

dβ
(d2

β)μ
′
πμπ

)∣∣∣∣
(β�π)=(β0�π̂0)

= d

dβ
cβ0μ

′
π̂0
S + d

dβ
dβ0μ

′
π̂0
T − dβ0

d

dβ
dβ0μ

′
π̂0
μπ̂0

= d

dβ
cβ0 · d−1

β0
T ′S�

using the facts that cβ0 = 0, μπ̂0 = d−1
β0
T , and μ′

π̂0
T = dβ0μ

′
π̂0
μπ̂0 . The asymptotic

variance of T ′S/n1/2 under H0 is plimn→∞ T ′T/n = α′
TαT . Hence, the standard

LM statistic is (T ′S)2/T ′T =LMn, which completes the proof. Q.E.D.

PROOF OF THEOREM 8: Part (a) of the theorem holds by Lemma 6(a) and
the continuity of ψ(q1� qT ;β�λ) and ψ2(qT ;β�λ) in (q1� qT ).

To prove Theorem 8(b) and (c), we establish some preliminary results.
Let β1 and λ1 be any fixed constants for which dβ1 �= 0 (i.e., β1 �= βAR).
Define hβ1 = (cβ1� dβ1)

′. Then (i) QT/n →p α′
TαT > 0 by Lemma 6(a) and

Assumption SIV-LA(b); (ii) QST/
√
QT = Op(1) by (i) and Lemma 6(a);

(iii) QS/QT = op(1) and QS/Q
1/2
T = op(1) by (i) and Lemma 6(a); and

(iv) h′
1Qh1/(d

2
β1
QT) →p 1 by (ii) and (iii). Next, we apply the mean-value the-

orem (x + a)1/2 − x1/2 = (1/2)(x∗)−1/2a, where x∗ lies between x and a, with
x= d2

β1
QT and a= 2cβ1dβ1QST + c2

β1
QS . This gives

√
h′

1Qh1 −
√
d2
β1
QT(A.15)

= 1
2
m−1/2

(
2cβ1dβ1QST + c2

β1
QS

)
= cβ1dβ1QST

(d2
β1
QT)1/2

(
d2
β1
QT

m

)1/2

+ 1
2

c2
β1
QS

(d2
β1
QT)1/2

(
d2
β1
QT

m

)1/2

= cβ1 sgn(dβ1)QST

Q1/2
T

+ op(1)�

where m lies between h′
1Qh1 and d2

β1
QT , and the third equality holds us-

ing (ii)–(iv) and the definition of m.
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By Lebedev (1965, Eq. (5.11.10), p. 123), we have Iν(x) = exp(x) ×
(2pi · x)−1/2(1 +O(x−1)) as x→ ∞ for any ν ∈ R. Hence, using (i), we obtain

Iν
(√

d2
β1
QT

)
exp

(−√
d2
β1
QT

)(
2pi

√
d2
β1
QT

)1/2 = 1 +Op(n
−1/2)(A.16)

and likewise with h′
1Qh1 in place of d2

β1
QT 	

Now, suppose (β∗
2�λ

∗
2) does not necessarily satisfy (4.1). It is convenient to

make a change of variables from (β�λ) to (τ�δ), where

τ = λ1/2cβ and δ= λ1/2dβ	(A.17)

Let h̃ = (τ�δ)′. Then λξβ(Q) = h̃′Qh̃ and λd2
βQT = δ2QT . Let F2P(τ�δ) be

the two-point distribution on (τ�δ) that puts equal weight on (τ∗� δ∗) =
((λ∗)1/2cβ∗� (λ∗)1/2dβ∗) and (τ∗

2� δ
∗
2) = ((λ∗

2)
1/2cβ∗

2
� (λ∗

2)
1/2dβ∗

2
). Let δmax denote

the value of δ that maximizes |δ| over δ in the support of F2P(τ�δ); that is,
δmax = max{|δ∗|� |δ∗

2|}. Let ν = (k− 2)/2.
Using this notation and the definition of LR∗ in Corollary 1, we have LR∗

equals

∫
e−(τ2+δ2)/2(h̃′Qh̃)−ν/2Iν(

√
h̃′Qh̃)dF2P(τ�δ)∫

e−δ2/2(δ2QT)−ν/2Iν(
√
δ2QT)dF2P(τ�δ)

(A.18)

=
∫
e−(τ2+δ2)/2(h̃′Qh̃)−(ν+1/2)/2e

√
h̃′Qh̃ dF2P(τ�δ)∫

e−δ2/2(δ2QT)−(ν+1/2)/2e
√

δ2QT dF2P(τ�δ)
(1 + op(1))

=
{∫

e−(τ2+δ2)/2

(
h̃′Qh̃

δ2QT

)−(ν+1/2)/2

(δ2)−(ν+1/2)/2

× e(
√

δ2−
√

δ2
max)

√
QT e

√
h̃′Qh̃−

√
δ2QT dF2P(τ�δ)

}

×
{∫

e−δ2/2(δ2)−(ν+1/2)/2e(
√

δ2−
√

δ2
max)

√
QT dF2P(τ�δ)

}−1

× (1 + op(1))

=
∫
e−(τ2+δ2)/2(δ2)−(ν+1/2)/2e(

√
δ2−

√
δ2

max)
√

QT eτ sgn(δ)QSTQ
−1/2
T dF2P(τ�δ)∫

e−δ2/2(δ2)−(ν+1/2)/2e(
√

δ2−
√

δ2
max)

√
QT dF2P(τ�δ)

× (1 + op(1))�

where the first equality holds by (A.16), the second equality holds by algebra,
and the third equality holds by (iv) and (A.15).
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If (β∗
2�λ

∗
2) satisfies (4.1), then τ∗ = −τ∗

2 , δ∗ = δ∗
2, and δmax = |δ∗| = |δ∗

2|. In
this case, the terms in the numerator and denominator of the right-hand side
of (A.18) that involve (

√
δ2 − √

δ2
max)

√
QT equal zero, and the right-hand side

of (A.18) without (1 + op(1)) equals

1
2e

−((τ∗)2+(δ∗)2)/2((δ∗)2)−(ν+1/2)/2(eτ
∗ sgn(δ∗)QSTQ

−1/2
T + e−τ∗ sgn(δ∗)QSTQ

−1/2
T )

e−(δ∗)2/2((δ∗)2)−(ν+1/2)/2
(A.19)

= e−(τ∗)2/2 cosh(τ∗QSTQ
−1/2
T )�

using (exp(x) + exp(−x))/2 = cosh(x). The function cosh(·) is even. Hence,
cosh(τ∗QSTQ

−1/2
T ) = cosh(τ∗LM1/2

n ). The latter is strictly increasing in LMn be-
cause cosh(·) is continuous and strictly increasing on R

+. This completes the
proof of Theorem 8(b).

We now establish Theorem 8(c). Suppose (β∗
2�λ

∗
2) does not satisfy the second

condition of (4.1). Then either δmax > |δ∗
2| or δmax > |δ∗|. Suppose δmax > |δ∗

2|.
Then exp((

√
(δ∗

2)
2 − √

δ2
max)

√
QT) = op(1) using (i), δmax = |δ∗| > 0� and the

right-hand side of (A.18) without (1 + op(1)) equals

e−((τ∗)2+(δ∗)2)/2((δ∗)2)−(ν+1/2)/2eτ
∗ sgn(δ∗)QSTQ

−1/2
T + op(1)

e−(δ∗)2/2((δ∗)2)−(ν+1/2)/2 + op(1)
(A.20)

= e−(τ∗)2/2eτ
∗ sgn(δ∗)QSTQ

−1/2
T + op(1)�

which is a strictly monotone, continuous function of QSTQ
−1/2
T and, hence, is not

an even function of QSTQ
−1/2
T . The same argument applies when δmax > |δ∗|.

Note that the case where β∗ = βAR or β∗
2 = βAR is subsumed in the case just

considered, because in such cases there is no solution to the second equation
in (4.1) and, hence, we must have δmax > |δ∗| or δmax > |δ∗

2|.
Next, suppose (β∗

2�λ
∗
2) satisfies the second condition of (4.1), but not the

first condition. Then τ∗ �= −τ∗
2 , δ∗ = δ∗

2, δmax = |δ∗| = |δ∗
2| > 0, and the right-

hand side of (A.18) without (1 + op(1)) equals

1
2
(
e−(τ∗)2/2eτ

∗ sgn(δ∗)QSTQ
−1/2
T + e−(τ∗

2)
2/2eτ

∗
2 sgn(δ∗)QSTQ

−1/2
T

)
�(A.21)

which is a continuous function of QSTQ
−1/2
T that is not even because τ∗ �= −τ∗

2 .
This completes the proof of Theorem 8(c). Q.E.D.

PROOF OF COMMENT (i) TO THEOREM 8: We write the LR∗(Q1�QT ;β∗�λ∗)
statistic as a function of QS� S2

2 � and QT� say LR∗(QS�S2
2 �QT ;β∗�λ∗). The

statistics (QS�S2
2 �QT) are independent under the null. Hence, we can condi-

tion on QT without affecting the distribution of (QS�S2
2 ). Consider a sequence
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of constants {qT�m :m ≥ 1} for which qT�m/m → α′
TαT > 0. Then, by the argu-

ment of (A.15)–(A.19) with (QS�S2
2 ) held fixed, when (β∗

2�λ
∗
2) satisfies (4.1) we

have limm→∞ LR∗(QS�S2
2 � qT�m;β∗�λ∗) = exp(− 1

2(τ
∗)2) cosh(|τ∗|(QSS2

2 )
1/2).

Because QSS2
2 ∼ χ2

1, this implies that the conditional critical value function
of LR∗, viz., κα(qT ;β∗�λ∗), converges as qT → ∞ to a strictly increasing
continuous function of the 1 − α quantile of χ2

1. In turn, this implies that
κα(QT ;β∗�λ∗) converges in probability to the same constant as n → ∞ be-
cause QT/n→p α

′
TαT > 0. Q.E.D.
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