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This paper considers tests in an instrumental variable ~IVs! regression model with
IVs that may be weak+ Tests that have near-optimal asymptotic power properties
with Gaussian errors for weak and strong IVs have been determined in Andrews,
Moreira, and Stock ~2006, Econometrica 74, 715–752!+ In this paper, we seek
tests that have near-optimal asymptotic power with Gaussian errors and improved
power with non-Gaussian errors relative to existing tests+ Tests with such proper-
ties are obtained by introducing rank tests that are analogous to the conditional
likelihood ratio test of Moreira ~2003, Econometrica 71, 1027–1048!+ We also
introduce a rank test that is analogous to the Lagrange multiplier test of Kleiber-
gen ~2002, Econometrica 70, 1781–1803! and Moreira ~2001, manuscript, Uni-
versity of California, Berkeley!+

1. INTRODUCTION

This paper is concerned with inference in the standard linear instrumental vari-
able ~IV! regression model with possibly weak IVs+ We start by giving a brief
account of recent developments in the literature on weak IVs to explain the
contribution of this paper to the literature+ It has been documented in the weak
IV literature that standard methods, such as two-stage least squares–based tests
and confidence intervals ~CIs!, perform poorly when IVs are weak, especially
when endogeneity is moderate to strong+ Specifically, such tests have size well
in excess of their nominal level, and corresponding CIs have size well below
their nominal level+ See the review papers of Stock, Wright, and Yogo ~2002!,
Dufour ~2003!, and Andrews and Stock ~in press!+

The well-known Anderson and Rubin ~1949! ~AR! test does not exhibit size
distortions due to weak IVs+ Hence, Staiger and Stock ~1997! and Dufour ~1997!
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propose basing inference on the AR test+ AR-based CIs can be constructed by
inverting AR tests+ The AR test has good power properties when the model is
just identified; see Moreira ~2001! and Andrews, Moreira, and Stock ~2006a!
for some optimality properties for the case of Gaussian errors+ However, the
AR test sacrifices power when the model is overidentified+ This leads to exces-
sively long AR-based CIs+

In consequence, considerable effort has been expended recently to develop
new tests that circumvent this problem+ Such tests are of interest in their own
right and because they can be used to construct CIs by inversion+ Kleibergen
~2002! and Moreira ~2001! introduce a Lagrange multiplier ~LM! test whose
size is robust to weak IVs and whose power exceeds that of the AR test in
many cases when the model is overidentified+ However, this test has somewhat
quirky power properties+ For example, its power function can be nonmono-
tonic; see Andrews et al+ ~2006a, 2006b!+

Subsequently, Moreira ~2003! showed that any test can be made robust to
weak IVs asymptotically by using a conditional critical value function that con-
ditions on a statistic that is complete and sufficient under the null hypothesis+
Using this method, he introduced the conditional likelihood ratio ~CLR! test+
Andrews et al+ ~2006a! investigate the power properties of the CLR test in the
case of a single right-hand-side endogenous variable and show that its power is
essentially on the asymptotic power envelope for two-sided invariant similar
tests under the assumption of Gaussian errors+ This is true under both the “weak
IV asymptotics” introduced in Staiger and Stock ~1997!, in which the coeffi-
cient on the IVs in the first-stage regression shrinks to zero as the sample size
goes to infinity, and under the standard “strong IV asymptotics+” Andrews and
Stock ~in press! show that these optimality properties extend to the “many weak
IV asymptotic scenario,” in which the number of IVs increases with the sample
size+ Hence, the CLR test has the desirable features of having size that is robust
to weak IVs and near-optimal power properties with Gaussian errors+1

In this paper, we aim to further improve the power properties of weak IV
tests by constructing a test that has the same asymptotic behavior as the CLR
test with Gaussian errors but improved power with non-Gaussian errors+ To do
this, we construct a rank analogue of the CLR test, denoted RCLR+ We also
construct a rank analogue of the LM test of Kleibergen ~2002! and Moreira
~2001!, denoted RLM+ As is well known from location and regression models,
rank estimators and tests have more robust efficiency properties than least
squares–based procedures; see Hettmansperger ~1984!+ For example, Chernoff
and Savage ~1958! have shown that the asymptotic relative efficiency ~ARE!
of the normal scores rank test to the analogous least-squares t-test is greater
than or equal to one for all symmetric error distributions with equality at the
Gaussian+ This holds in both location and regression models, and it also holds
for estimators+ This suggests that for the linear IV model rank-based tests whose
size is robust to weak IVs may exhibit similarly desirable power properties
under nonnormality+
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Andrews and Marmer ~in press! develop a rank analogue of the AR test,
denoted RAR+ This test has exact finite-sample size under Gaussian and non-
Gaussian errors under certain circumstances+ Its asymptotic power properties
improve on those of the AR test and are excellent for just-identified models+
However, as with the nonrank AR test, the RAR test sacrifices power in over-
identified models+ The RCLR and RLM tests developed here substantially
improve the power properties of the RAR test in overidentified models+

We now summarize the results of the paper+ The model considered is a linear
IV regression model with a single structural equation with m right-hand-side
endogenous variables and p exogenous variables coupled with m reduced-form
equations for the right-hand-side endogenous variables+ The null hypothesis is
H0 : b� b0, where b is the m-dimensional coefficient on the m right-hand-side
endogenous variables+ The alternative hypothesis is H1 : b � b0+

First, we introduce rank analogues of the CLR and LM tests+ This is more
difficult than for the AR test because the LR and LM statistics are more com-
plicated functions of the data than is the AR statistic+ A hybrid rank0linear test
statistic is required to obtain power properties of RCLR and RLM tests that are
analogous to those of the CLR and LM tests under Gaussianity and superior for
other distributions+

Second, we obtain the weak IV asymptotic distributions of the rank statistics
under the null and fixed alternatives+ These results are used to show that under
Gaussian errors the normal scores ~NS! RCLR and RLM tests have the same
null and alternative asymptotic behavior as the nonrank versions of these tests+
The same is true for the Wilcoxon scores ~WS! rank and nonrank CLR and
LM tests under uniform errors+ Furthermore, these asymptotic distributions allow
one to compare the weak IV asymptotic power of the rank to nonrank tests
under different error distributions+ It is shown that the same AREs for the rank
versus nonrank LM and AR tests arise in the weak IV context as in the location
and regression models+ Hence, the Chernoff–Savage result also applies to these
tests+ That is, the NS-RLM test ~weakly! dominates the LM test in terms of
power for all symmetric error distributions, and the same is true for the NS-RAR
test versus the AR test+

For the rank versus nonrank CLR tests, the weak IV asymptotic power com-
parison is more complicated+ However, numerical calculation of the asymptotic
powers of these tests shows the same pattern that is typical for rank versus
nonrank procedures in other contexts+ In particular, the NS-RCLR test has notice-
ably higher asymptotic power for thin-tailed ~uniform! and thick-tailed ~t3 and
difference of independent log normals ~DLN!! errors than the nonrank CLR
test and equal asymptotic power for Gaussian errors+ The WS-RCLR test has
asymptotic power that is close to that of the CLR test for Gaussian and uniform
errors and substantially higher power for t3 and DLN errors+

Third, we establish the strong IV asymptotic distributions of the rank statis-
tics under the null and local alternatives+ These results show that the RCLR
and RLM tests are asymptotically equivalent under strong IV asymptotics+ This
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is also true of the nonrank versions of these tests+ The results also show that the
ARE of the rank to the nonrank versions of these tests under strong IV asymp-
totics is the same as the standard ARE that arises in location and regression
models for tests and estimators+ Hence, the Chernoff–Savage result applies under
strong IV asymptotics to both the NS-RCLR test and the NS-RLM test+ In con-
sequence, the NS-RCLR test ~weakly! dominates the CLR test in terms of power
for symmetric errors under strong IV asymptotics+

The proofs of the weak and strong IV asymptotic results make use of results
and arguments given in Hájek and Sidák ~1967! and Koul ~1969, 1970!+

Fourth, we carry out finite-sample size and power comparisons of the
WS-RCLR, NS-RCLR, CLR, LM, and AR tests+ For brevity, we do not report
results for the RLM and RAR tests, because they are found to be inferior ~both
asymptotically and in finite-sample experiments! to those of the RCLR tests+
We compare the tests for a variety of scenarios that differ according to the degree
of endogeneity, strength of the IVs, number of IVs, and size of the sample+ For
each scenario we consider Gaussian, uniform, t1, t2, t3, and DLN errors+ The
two RCLR tests perform noticeably better in terms of size than the nonrank
CLR, LM, and AR tests+ The finite-sample power comparisons reflect the asymp-
totic power comparisons discussed previously fairly closely+ Specifically, the
NS-RCLR test has similar power to the CLR test for Gaussian errors and higher
power for non-Gaussian errors+ The WS-RCLR test does not perform as well
as the NS-RCLR test with uniform errors, but it performs better with thick-
tailed errors+

Based on the asymptotic and finite-sample results, we recommend the
NS-RCLR test over the WS-RCLR, CLR, LM, and AR tests+ The WS-RCLR
test also has good overall properties, but we prefer the NS-RCLR test because
of its excellent power performance for both thin-tailed and thick-tailed errors+

The main drawback of the RCLR tests is that they are not robust to hetero-
skedasticity of the errors+ That is, their size may be distorted by heteroskedas-
ticity+ This is also true of the CLR test+ However, it is possible to robustify the
CLR test to heteroskedasticity; see Andrews, Moreira, and Stock ~2004! and
Kleibergen ~2005!+ It is not possible to robustify the RCLR tests to heteroske-
dasticity+ Hence, there is a trade-off between power for non-Gaussian errors
and robustness to heteroskedasticity for these tests+ If heteroskedasticity is a
possible problem, then the robustified CLR test is preferred to the NS-RCLR
and WS-RCLR tests+ If not, then the rank tests are preferred+

There is a vast literature on rank procedures in statistics; e+g+, see Hájek and
Sidák ~1967!, Hettmansperger ~1984!, Puri and Sen ~1985!, and Hájek, Sidák,
and Sen ~1999!+ Rank procedures have been used in both cross-section and time
series econometrics+ For a review, see Koenker ~1996!+ Some more recent econo-
metric references include Hasan and Koenker ~1997!, Cavanagh and Sherman
~1998!, Abrevaya ~1999!, Chen ~2000, 2002!, and Thompson ~2004!+

The remainder of this paper is organized as follows+ Section 2 defines the
model+ Section 3 introduces the rank analogues of the CLR, LM, and AR tests+
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Sections 4 and 5 provide asymptotic results for these tests under weak IV and
strong IV asymptotics, respectively+ These sections also give asymptotic power
comparisons of rank and nonrank tests+ Section 6 provides finite-sample size
and power comparisons of rank and nonrank tests+An Appendix contains proofs
of the results+

All limits are taken as n r `, and vec~{! is the column by column vec
operator+

2. MODEL

We consider the following model, which consists of a single structural equa-
tion and m reduced-form equations:

y1i � b 'y2i � g1
' Xi � ui ,

y2i � P' EZi � j1
' Xi � v2i , (2.1)

where y1i � R, y2i � Rm, Xi � R p, and EZi � Rk are observed variables; ui � R
and v2i � Rm are unobserved errors; and b � Rm, P � Rk�m, g1 � R p, and
j1 � R p�m are unknown parameters+

Our interest is in testing the hypotheses

H0 : b � b0 and H1 : b� b0 + (2.2)

Let EZ and X denote the n � k IV and n � p regressor matrices whose ith
rows are EZi

' and Xi
' , respectively+ We transform the IV matrix EZ so that the

transformed IV matrix, Z, and the regressor matrix, X, are orthogonal:

Z � MX EZ, MX � In � PX , PX � X~X 'X !�1X ', and

y2i � P'Zi � j 'Xi � v2i , (2.3)

where Zi is the ith row of Z written as a column and j � j1 � ~X 'X !�1X ' EZP+
By construction, Z 'X � 0+

Substituting the reduced-form equations for y2i into the structural equation
for y1i yields m � 1 reduced-form equations:

y1i � b 'P'Zi � g 'Xi � v1i and

y2i � P'Zi � j 'Xi � v2i , where

v1i � ui � b 'v2i , (2.4)
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and g � g1 � jb+ The m � 1 reduced-form equations also can be written as

yi � AP'Zi � h 'Xi � vi , where

yi � ~ y1i , y2i
' !' � Rm�1, vi � ~v1i , v2i

' !' � Rm�1,

A � �b '
Im
� � R ~m�1!�m, and h� @g : j# � R p�~m�1!+ (2.5)

Let Y and Y2 denote the n � ~m � 1! and n � m matrices whose ith rows are yi
'

and y2i
' , respectively+

We make the following basic assumptions about the model+ ~Additional
assumptions are given subsequently+!

Assumption 1+

~a! $~ui , v2i ! : i � 1% are independent and identically distributed ~i+i+d+! ran-
dom variables with mean zero+

~b! v2i has nonsingular variance matrix V22 � Rm�m+

Assumption 2+

~a! $~ EZi , Xi ! : i � 1% are fixed ~i+e+, nonrandom!+
~b! The first element of Xi is 1 for all i+
~c! n�1 �i�1

n ~ EZi
' , Xi

'!'~ EZi
' , Xi

'! r D � 0+
~d! maxi�n~7 EZi72 � 7Xi72!0n r 0+

The combination of Assumptions 1 and 2~a! implies that the distribution of
the errors $~ui , v2i ! : i � 1% does not depend on the IVs or regressors+ In place of
Assumption 2~a!, one could treat the IVs and regressors as random+ In this case,
the IVs and regressors would be assumed to be independent of the errors+As is,
Assumption 2~a! is consistent with random IVs and regressors provided one
conditions on these variables+

Assumption 2~b! requires that the structural and reduced-form equations
include an intercept+ Given that Z 'X � 0, this implies that n�1 �i�1

n Zi � 0+
Assumptions 2~c! and 2~d! are standard assumptions concerning the behavior
of IVs and regressors+ They hold with probability one if $~ EZi , Xi ! : i � 1% is a
realization of an i+i+d+ sequence with positive definite ~pd! variance matrix and
2 � d moments finite for some d � 0; see Lemma 12 in the Appendix+

We now define the CLR test of Moreira ~2003!, the LM test of Kleibergen
~2002! and Moreira ~2001!, and the AR test+ The CLR test depends on an LR
test statistic coupled with a “conditional” critical value defined subsequently+
The LR, LM, and AR test statistics are based on the following statistics:2
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Sn � ~Z 'Z!�102 Z 'Yb0{~b0
' ZVn b0 !

�102 � Rk and

Tn � ~Z 'Z!�102 Z 'Y ZVn
�1 A0~A0

' ZVn
�1 A0 !

�102 � Rk�m, where

b0 � � 1

�b0
� � Rm�1, A0 ��b0

'

Im
� � R ~m�1!�m,

ZVn � ~n � k � p!�1Y 'M@Z :X #Y, and M@Z :X #� In � PZ � PX + (2.6)

Note that ZVn is an estimator of the variance matrix V� Evi vi
' , which needs to

be well defined and pd for Sn and Tn to be well behaved asymptotically+ After
proper centering, the statistics Sn and Tn have a joint multivariate normal asymp-
totic distribution with zero covariance under weak IV asymptotics under the
null and the alternative+ Hence, Sn and Tn are asymptotically independent+

The LR, LM, and AR test statistics depend on ~Sn,Tn! in the following way:

LRn � Sn
' Sn � lmin~ @Sn : Tn #

' @Sn : Tn # !,

LMn � Sn
' Tn~Tn

'Tn !
�1Tn

'Sn , and

ARn � Sn
' Sn 0k, (2.7)

where lmin~C! denotes the minimum eigenvalue of the matrix C+When m � 1,
LRn can be written as

LRn �
1

2
~QSn � QTn � M~QSn � QTn !

2 � 4QSTn
2 !, where

QSn � Sn
' Sn , QTn � Tn

'Tn , and QSTn � Sn
' Tn ; (2.8)

see Moreira ~2003! and Andrews and Stock ~in press!+3

The CLR test with asymptotic level a rejects the null hypothesis when

LRn � kLR,a~QTn , k,m!, (2.9)

where kLR,a~{, k,m! is a critical value function defined such that the CLR
test has asymptotic null rejection rate a under weak IV asymptotics ~under
the preceding assumptions and Eui

2 � `!+ See ~3+10! for the definition of
kLR,a~{, k,m!+

The LM statistic has a chi-squared asymptotic null distribution with m degrees
of freedom, denoted xm

2 , under weak and strong IVs ~under the preceding
assumptions and Eui

2 � `!+ Hence, the critical value for the asymptotic level a
LM test is the 1 � a quantile of a xm

2 distribution+
The AR statistic times k has a chi-squared asymptotic null distribution under

weak and strong IVs with k ~� m! degrees of freedom ~under the preceding
assumptions and Eui

2 � `!+ Under the assumption of normal errors $vi : i � 1%,
it has an exact Fk, n�k�p distribution+ Thus, use of the 1 � a quantile of an

RANK TESTS WITH WEAK INSTRUMENTS 1039



Fk, n�k�p distribution as the critical value for the level a AR test is justified
asymptotically for nonnormal errors and yields an exact test for normal errors+

3. RANK CLR, LM, AND AR TESTS

In this section, we introduce rank analogues, Sn
w and Tn

w , of the statistics Sn and
Tn, where w is a score function defined subsequently+ By design, Sn

w and Tn
w are

asymptotically independent+ Given Sn
w and Tn

w , we define rank statistics that
are analogous to the CLR, LM, and AR statistics defined previously+ We show
that for normal scores, i+e+, w � wNS, and multivariate normal errors ~ui , v2i !,
Sn
w and Tn

w are asymptotically equivalent to Sn and Tn under weak IV and strong
IV asymptotics under the null and the alternative+ For nonnormal errors, the
rank tests have power advantages+

The statistic Sn depends on the inner product of Z and a vector of null-
restricted residuals from the structural equation ~2+1!:

Z 'Yb0 � �
i�1

n

Zi ~ y1i � b0
' y2i !� �

i�1

n

Zi ~ y1i � b0
' y2i � [g1n

' Xi !, (3.1)

where [g1n is some estimator of g1 and the second equality holds because Z 'X � 0+
The rank analogue of Sn that we consider depends on the inner product of Z
with the vector of ranks of $ y1i � b0

' y2i � [g1n
' Xi : i � n%+

Let [gn~b0! be some “null-restricted” estimator of g1+ For example, one could
use the least squares ~LS! null-restricted estimator:

[gn
LS~b0 ! � ~X

'X !�1X 'Y~1,�b0
' !'+ (3.2)

Estimators other than the LS estimator could be considered, but the LS estima-
tor is convenient because it is easy to compute+ ~The LS estimator satisfies the
assumptions given subsequently provided the errors have finite variances+!

Let ZRi~b0! be the rank of y1i � b0
' y2i � [gn~b0!

'Xi in $ y1j � b0
' y2j �

[gn~b0!
'Xj : j � 1, + + + , n%+ The ranks $ ZRi~b0! : i � n% are referred to as aligned

ranks+4

Let w : @0,1! r R be a nonstochastic score function+ Different score func-
tions w lead to different rank statistics+ Of primary interest are ~a! the normal
~or van der Waerden! score function and ~b! the Wilcoxon score function:

~a! wNS~x! � F�1~x! and ~b! wWS~x!� x, (3.3)

where F�1~{! is the inverse standard normal distribution function ~df !+ Define

cw ��
0

1

@w~x!� Tw# 2 dx � 0, where Tw��
0

1

w~x! dx+ (3.4)

For normal scores, cw � 1+ For Wilcoxon scores, cw � 1
12
_ +
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Let Rw denote the n-vector whose ith element is w~ ZRi~b0!0~n � 1!!+ The
rank analogue of Sn is

Sn
w � ~Z 'Z!�102 Z 'Rw cw

�102 � Rk+ (3.5)

The rank statistic Sn
w replaces Yb0{~b0

' ZVn b0 !
�102 in Sn by Rw cw

�102 + We want
the rank analogue of Tn to do the same and also to be asymptotically indepen-
dent of Sn

w+ In consequence, to construct a rank analogue of Tn, it is helpful to
rewrite Tn as follows:

Tn � ~Z 'Z!�102 Z ' @Yb0 [sn
�1 : Y2 # ZV*n

�1 H~H ' ZV*n
�1 H !�102, where [sn

2 � b0
' ZVn b0 ,

H � �0m
'

Im
�� R ~m�1!�m, ZV*n � @b0 [sn

�1 :H # ' ZVn @b0 [sn
�1 :H #�� 1 [nn

'

[nn ZV22n
� ,

ZV22n � H ' ZVn H � ~n � k � p!�1Y2
'M@Z :X #Y2 � Rm�m, and

[nn � H ' ZVn b0 [sn
�1 � Rm+ (3.6)

~See ~A+81! in the Appendix for a proof of ~3+6!+! As defined, ZV*n is an esti-
mator of the asymptotic variance matrix, V*, of n�102 �i�1

n @b0 [sgn
�1 :H # 'yi �

n�102 �i�1
n ~b0

' yi [sgn
�1 , y2i

' !' + The definition of ZV*n is chosen to yield asymptotic
independence of Sn and Tn+

The rank analogue of Tn is5

Tn
w � ~Z 'Z!�102 Z ' @Rw cw

�102 : Y2 # ZVwn
�1 H~H ' ZVwn

�1 H !�102 � Rk�m, where

ZVwn � � 1 [nwn
'

[nwn ZV22n
� and [nwn � n�1Y2

'M@Z :X #Rw cw
�102 � Rm+ (3.7)

Note that ZVwn is an estimator of the asymptotic variance matrix of n�102 �i�1
n

~w~ ZRi~b0!0~n � 1!!cw
�102 , y2i

' !'+ The definition of ZVwn ensures that Sn
w and Tn

w

are asymptotically independent+
We define the rank LR, LM, and AR statistics to be

RLRn
w � Sn

w'Sn
w� lmin~ @Sn

w : Tn
w# ' @Sn

w : Tn
w# !,

RLMn
w � Sn

w'Tn
w~Tn

w'Tn
w!�1Tn

w'Sn
w , and

RARn
w � Sn

w'Sn
w0k+ (3.8)

For m � 1, the RLRn
w statistic simplifies as in ~2+8! with ~Sn

w ,Tn
w! in place of

~Sn,Tn!+
Notice that when k � m ~i+e+, the structural equation is just identified!,

k{RARn
w� Sn

w'Sn
w� RLMn

w� RLRn
w +6 That is, the rank CLR, LM, and AR tests

are equivalent when k � m+
The rank CLR, LM, and AR tests use the same critical values as the nonrank

versions of these tests+ Hence, the rank LM and AR tests with asymptotic sig-
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nificance level a have critical values given by the 1 � a quantiles of the xm
2

and Fk, n�k�p distributions, respectively+
The rank CLR test rejects the null hypothesis if

RLRn
w � kLR,a~Tn

w'Tn
w , k,m!, (3.9)

where kLR,a~{, k,m! is defined as follows+ For t � Rk�m, define kLR,a~t
't, k,m!

via

P~LR`~S0 , t ! � kLR,a~t
't, k,m!!� a, where

S0 ; N~0, Ik ! and LR`~s, t !� s 's � lmin~ @s : t # ' @s : t # ! (3.10)

for s � Rk+ Note that kLR,a~{, k,m! depends on k ~the dimension of Zi ! and m
~the dimension of y2i !+ Andrews et al+ ~2006b! provides detailed tables of
kLR,a~t, k,m! for m � 1 and a variety of values of t and k+ Andrews, Moreira,
and Stock ~in press! provide a GAUSS program for computing p-values of the
CLR test for m � 1 and arbitrary k+ This program also can be used for the rank
CLR test by replacing the Andrews et al+ ~2006a! ZLRn and ZQT, n statistics by
RLRn

w and Tn
w'Tn

w , respectively+
For m � 1, the critical value function kLR,a~{, k,m! can be simulated quite

easily by simulating S0~r ! ; iid N ~0, Ik! for r � 1, + + + ,Reps and taking
kLR,a~t 't, k,m! to be the 1 � a sample quantile of $LR`~S0~r !, t ! : r �
1, + + + ,Reps%, where Reps is a large integer, such as 25,000+

4. WEAK IV ASYMPTOTIC RESULTS

4.1. Weak IV Asymptotic Distributions of Rank Statistics

In this section, we establish the weak IV asymptotic distributions of the RLRn
w ,

RLMn
w , and RARn

w test statistics under the null and fixed b alternatives+
We assume that the score function w satisfies the following condition+

Assumption 3+

~a! w : @0,1!r R is absolutely continuous and bounded with two derivatives
that exist almost everywhere and are bounded+

~b! 0 � cw � ` for cw defined in ~3+4!+

Assumption 3 holds for Wilcoxon scores+ Assumption 3~b! holds for normal
scores, but Assumption 3~a! does not+ However, normal scores that are smoothly
truncated above and below near 0 and 1 satisfy Assumptions 3~a! and 3~b!+
Simulation results given subsequently for untruncated normal scores indicate
that truncation is not necessary in practice+
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Under weak IVs, the asymptotic variance matrix, Vwg, of n�102 �i�1
n

~w~ ZRi ~b0 !0~n � 1!!, y2i
' !' is defined by

Vwg � Var�w~Ugi !cw
�102

y2i
��� 1 nwg

'

nwg V22
� � R ~m�1!�~m�1!, where

Ugi � G~ui � ~b� b0 !
'v2i ! � R,

nwg � Cov~ y2i ,w~Ugi !cw
�102! � Rm, (4.1)

G is the df of ui � ~b � b0!
'v2i , and g is the density corresponding to G+7

Let I ~ f ! denote Fisher’s information of an absolutely continuous density f+
That is, I ~ f ! � 	@ f '~x!0f ~x!# 2f ~x!dx+

The weak IV assumption is the first part of the following assumption+

Assumption 4W+

~a! P � Cn�102 for some matrix C � Rk�m+
~b! b does not depend on n+
~c! ui � ~b � b0!

'v2i has an absolutely continuous strictly increasing df G
and an absolutely continuous and bounded density g that satisfies
I ~g! � `+

~d! ~ui � ~b� b0!
'v2i , v2i ! has an absolutely continuous bounded joint den-

sity with partial derivative with respect to its first argument that is
bounded over both arguments+

~e! Vwg is pd+
~f ! n102~ [gn~b0! � g1 � j1~b � b0!! � Op~1!+

Assumption 4W~b! implies that the data-generating process satisfies the null
hypothesis or a fixed b alternative+ Assumptions 4W~c! and ~d! require that
~ui � ~b � b0!

'v2i , v2i ! is absolutely continuous but otherwise are not very
restrictive+ Note that Assumptions 1–3 and 4W place no moment restrictions
on ui +

Assumption 4W~f ! requires the null-restricted estimator [gn~b0! to be well
behaved+ It is satisfied by the LS estimator under the preceding assumptions if
Eui

2 � `+

LEMMA 1+ Under Assumptions 1, 2, 4W(a), and 4W(b) and Eui
2 � `,

[gn
LS~b0 ! satisfies Assumption 4W(f).

We show that Sn
w and Tn

w converge in distribution to independent random
quantities S`

w � Rk and T`
w � Rk�m, respectively, that are defined as follows+

Let DZ � Rk�k be the probability limit of n�1Z 'Z:
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DZ � D11 � D12 D22
�1 D21, D ��D11 D12

D21 D22
� , (4.2)

where D11 � Rk�k, D12 � Rk�p, and D22 � R p�p+
For a score function w and a density f, define

j~w, f ! �
��

0

1

w~x, f !w~x! dx�2

�
0

1

@w~x!� Tw# 2 dx

, where

w~x, f ! � �
f '~F�1~x!!

f ~F�1~x!!
for x � @0,1# (4.3)

and f ' denotes the derivative of f+ For normal and Wilcoxon scores,

j~wNS, f ! � �� f 2~x!

f~F�1~F~x!!!
dx�2

and

j~wWS, f ! � 12�� f 2~x! dx�2

, (4.4)

respectively, where f and F denote the standard normal density and df and
F ' � f+8

Let @Nw :N2# be a k � ~m � 1! multivariate normal matrix with

ENw � DZ C�g,b�b0

w � Rk, where

�g,b�b0

w � ~b� b0 !j
102~w, g! � Rm,

EN2 � DZ C � Rk�m, and

Var~vec~ @Nw :N2 # !! � Vwg � DZ , (4.5)

where g is the density of ui � ~b� b0!
'v2i ; see Assumption 4W~c!+ Now, define

S`
w � DZ

�102 Nw ; N~DZ
102 C�g,b�b0

w , Ik ! � Rk,

T`
w � DZ

�102 @Nw :N2 #Vwg
�1 H~H 'Vwg

�1 H !�102 � Rk�m, and

vec~T`
w! ; N~vec~DZ

102 C @�g,b�b0

w : Im #Vwg
�1 H~H 'Vwg

�1 H !�102 !, Ikm !+ (4.6)

Under H0, S`
w has mean zero, but T`

w does not+ It is shown subsequently that the
covariance of S`

w and T`
w is zero and hence these normal random variates are

independent ~under H0 and H1!+
The following result holds under the null hypothesis and fixed b ~i+e+, non-

local! alternative hypotheses+

1044 DONALD W.K. ANDREWS AND GUSTAVO SOARES



THEOREM 1+ Under Assumptions 1–3 and 4W,

(i) ~Sn
w ,Tn

w! rd ~S`
w ,T`

w! , where S`
w and T`

w are independent,
(ii) RLRn

w rd LR`
w :� S`

w'S`
w � lmin~ @S`

w : T`
w# ' @S`

w : T`
w# ! ,

(iii) RLMn
w rd S`

w'T`
w~T`

w'T`
w!�1T`

w'S`
w , and

(iv) RARn
w rd S`

w'S`
w 0k.

Remarks+

~a! Theorem 1~iv! shows that k{RARn
w has an asymptotic xk

2 distribution
under the null and a xk

2~dAR,W
w ! distribution under fixed b alternatives,

where

dAR,W
w � ~b� b0 !C

'DZ C~b� b0 !{j~w, g!+ (4.7)

This justifies using the 1 � a quantile of the Fk, n�k�p distribution as the
critical value for the test based on RARn

w because Fk, n�k�p rd xk
20k as

n r `+
~b! Theorems 1~i! and ~iii! imply that RLMn

w has an asymptotic xm
2 distribu-

tion under the null hypothesis ~because S`
w ; N~0k, Ik! under the null

implies that S`
w'T`

w~T`
w'T`

w!�1T`
w'S`
w has a xm

2 distribution conditional on
T`
w and hence an unconditional xm

2 distribution also!+ Under the alterna-
tive, conditional on PT`

w ~� T`
w~T`

w'T`
w!�1T`

w'!, RLMn
w has a noncentral

chi-squared distribution, xm
2 ~dLM,W

w !, with m degrees of freedom and
noncentrality parameter

dLM,W
w � ~b� b0 !C

'DZ
102 T`

w~T`
w'T`

w!�1T`
w'DZ

102 C~b� b0 !

� j~w, g!+ (4.8)

The random projection matrix PT`
w equals PT`

w
M , where M is any random

or nonrandom nonsingular m � m matrix+ In consequence, PT`
w has the

same distribution as PT`
* , where vec~T`

* ! ; N~vec~DZ
102 C!, Ikm !+ Note

that the distribution of T`
* does not depend on w or g+ Hence, the asymp-

totic distribution of RLMn
w only depends on ~w, g! through the distribu-

tion of S`
w +

~c! The statistics RLRn
w and RLMn

w and their asymptotic distributions depend
on ~Sn

w ,Tn
w! and ~S`

w ,T`
w! only through Qn

w � @Sn
w : Tn

w# ' @Sn
w : Tn

w# and
Q`
w � @S`

w : T`
w# ' @S`

w : T`
w# , respectively+ Given the multivariate normal

distribution of @S`
w : T`

w# , Q`
w has a noncentral Wishart distribution+ It

depends on unknown parameters only through

@ES`
w : ET`

w# ' @ES`
w : ET`

w# , where

@ES`
w : ET`

w# � DZ
102 C @�g,b�b0

w : @�g,b�b0

w : Im #Vwg
�1 H~H 'Vwg

�1 H !�102 # +

(4.9)
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The following corollary uses Theorems 1~i! and ~ii! to show that the use of
kLR,a~t, k,m! ~defined in ~3+10!! as the critical value function for the RLRn

w

statistic yields a test with asymptotic null rejection rate a under weak IV
asymptotics+

COROLLARY 1+ Under the null hypothesis, H0 : b � b0, and Assumptions
1–3 and 4W, limnr` P~RLRn

w � kLR,a~Tn
w'Tn

w , k,m!! � a.

4.2. Weak IV Asymptotic Distributions of Nonrank Statistics

To enable comparisons of the power of rank and nonrank tests, we now pro-
vide the null and nonnull weak IV asymptotic distributions of the nonrank sta-
tistics Sn and Tn under the assumption that V � Evi vi

' is well defined and pd+
The results given here extend results in Andrews et al+ ~2006a! from m � 1 to
m � 1+ They are not covered by Moreira ~2003! because Moreira ~2003! only
provides asymptotic results under the null hypothesis+

To make comparisons of rank and nonrank tests more transparent, we
write the asymptotic distributions of the nonrank tests in a form that is analo-
gous to that of S`

w and T`
w , which differs from the form given in Andrews et al+

~2006a!+ Define

Vg � Var�yi
'b0sg

�1

y2i
�� Var�~ui � ~b� b0 !

'v2i !sg
�1

v2i
�

� @b0sg
�1 :H # 'V@b0sg

�1 :H #�� 1 ng
'

ng V22
� ,

sg
2 � Var~ yi

'b0 !� Var~ui � ~b� b0 !
'v2i !� b0

'Vb0 , and

ng � Cov~ y2i , ~ui � ~b� b0 !
'v2i !sg

�1!� H 'Vb0sg
�1 + (4.10)

Let @N1 :N2# be a k � ~m � 1! multivariate normal matrix with N2 as before,

EN1 � DZ C~b� b0 !sg
�1 � Rk, and

Var~vec~ @N1 :N2 # !! � Vg � DZ + (4.11)

Next, define

S` � DZ
�102 N1; N~DZ

102 C�g,b�b0
, Ik !,

T` � DZ
�102 @N1 :N2 #Vg

�1 H~H 'Vg
�1 H !�102 � Rk�m,

vec~T` ! ; N~vec~DZ
102 C @�g,b�b0

: Im #Vg
�1 H~H 'Vg

�1 H !�102 !, Ikm !, and

�g,b�b0
� ~b� b0 !sg

�1 � Rm+ (4.12)
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LEMMA 2+ Under Assumptions 1–3 and 4W and V � 0,

(i) ~Sn,Tn! rd ~S`,T`! , where S` and T` are independent,
(ii) LRn rd S`

' S` � lmin~ @S` : T`# ' @S` : T`# ! ,
(iii) LMn rd S`

' T`~T`
' T` !

�1T`
' S` , and

(iv) ARn rd S`
' S`0k.

Remarks+

~a! Lemma 2~iv! shows that k{ARn has an asymptotic xk
2 distribution under

the null and a xk
2~dAR,W ! distribution under fixed b alternatives, where

dAR,W � ~b� b0 !C
'DZ C~b� b0 !{sg

�2 + (4.13)

~b! Lemma 2~i! and ~iii! imply that LMn has an asymptotic xm
2 distribution

under the null hypothesis+ Under the alternative, conditional on PT`,
LMn has an asymptotic noncentral chi-squared distribution, xm

2 ~dLM,W !,
with m degrees of freedom and noncentrality parameter

dLM,W � ~b� b0 !C
'DZ

102 T`~T`
' T` !

�1T`
' DZ

102 C~b� b0 !{sg
�2 + (4.14)

4.3. Weak IV Power Comparisons: Rank versus Nonrank Tests

In this section, we compare the weak IV asymptotic power of the rank AR,
LM, and CLR tests to that of the nonrank versions of these tests+ We consider
the AR and LM tests first because the comparison is simpler for these tests+

4.3.1. Anderson–Rubin and Lagrange Multiplier Tests. The RARn
w and ARn

statistics have noncentral chi-squared distributions under weak IV asymptotics
by Remark ~a! to Theorem 1 and Remark ~a! to Lemma 2~iv!+ Their noncen-
trality parameters, given in ~4+7! and ~4+13!, respectively, differ only by the
multiplicative constants j~w, g! and sg

�2 + In consequence, for weak IVs, the
ARE9 of the rank AR test to the ~nonrank! AR test is

AREg~RARn
w ,ARn ! � j~w, g!sg

2 (4.15)

~ARE~T1,T2! � 1 means that the T1 test has higher power than the T2 test!+
Note that the ARE in ~4+15! is independent of the location and scale of g+When
k � m, the ARE in ~4+15! also applies to the rank versus nonrank CLR and LM
tests because they are the same as the AR tests+

The RLMn
w and LMn statistics have noncentral chi-squared distributions

under weak IV asymptotics conditional on PT`
w and PT`, respectively, by

Remark ~b! to Theorem 1 and Remark ~b! to Lemma 2~iv!+ Note that the dis-
tributions of PT` and PT`

w are equal by the argument given in Remark ~b! to
Theorem 1+ In consequence, the ARE of the RLMn

w test to the LMn test is the
same as that of the rank to nonrank AR test given in ~4+15!+
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The literature on rank tests contains extensive calculations of the ARE in
~4+15! because exactly the same ARE arises when comparing a rank test with
the usual t-test and F-test in a simple location model with error density g+ In
addition, it is the same as the ARE of a rank estimator with the sample mean in
the location model+ Note that the normal and Wilcoxon scores rank estimators
are asymptotically efficient in the location model with normal and logistic errors,
respectively+

For a density g and normal scores, wNS~x! � F�1~x!, the ARE is

AREg
NS � j~wNS, g!sg

2 � s 2~g!�� g2~x!

f~F�1~G~x!!!
dx�2

, where

AREg
NS � AREg~RARn

NS ,ARn !� AREg~RLMn
NS , LMn ! (4.16)

and G~{! of the df of g+ A result due to Chernoff and Savage ~1958! implies
that AREg

NS � 1 for all symmetric distributions g ~about some point not neces-
sarily zero!+ Hence, the asymptotic power under weak IVs of the normal scores
rank AR ~LM! test is greater than or equal to that of the nonrank AR ~LM! test
for any symmetric distribution+

For a density g and Wilcoxon scores, wWS~x! � x, the ARE of the rank AR
test to the nonrank AR test is

AREg
WS � j~wWS, g!sg

2 � 12sg
2��g2~x! dx�2

, where

AREg
WS � AREg~RARn

WS ,ARn !� AREg~RLMn
WS , LMn !+ (4.17)

For the normal distribution, i+e+, g � f, AREf
WS � 0+955+ For the double expo-

nential distribution gde, AREgde

WS � 1+50+ For a contaminated normal distribution
f«~x! � ~1 � «!f~x! � «f~x03!03, AREf«

WS � 1+196, 1+373, and 1+497 for « �
0+05, 0+10, and 0+15, respectively; see Hettmansperger ~1984, pp+ 71–72!+ A
result due to Hodges and Lehmann states that AREg

WS � 0+864 for all symmet-
ric distributions g ~about some point not necessarily zero!; see Hettmansperger
~1984, Thm+ 2+6+3, p+ 72!+ Hence, the noncentrality parameter of the Wilcoxon
scores rank IV test is almost as large as that of the AR test for the normal
distribution, is significantly larger than that of the AR test for heavier tailed
distributions, and is not much smaller for any symmetric distribution+

For any densities g1 and g2 symmetric about zero ~with dfs G1 and G2!,
AREg1

~RARn
WS ,RARn

NS! � AREg2
~RARn

WS ,RARn
NS! whenever the tails of g1 are

lighter than the tails of g2 in the sense that G2
�1~G1~x!! is convex for x � 0; see

Theorem 2+9+5 of Hettmansperger ~1984, p+ 116!+ ~The same is true with AR
replaced by LM+! Thus, the comparative power of Wilcoxon scores to normal
scores tests increases as the tail thickness of the distribution increases+ For any
symmetric density g, AREg~RARn

WS ,RARn
NS! � ~0,1+91!; see Hettmansperger

~1984, Thm+ 2+9+3, p+ 115!+
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4.3.2. Conditional Likelihood Ratio Test. Next, we compare the weak IV
asymptotic power of the rank CLR and ~nonrank! CLR tests+ Analytical com-
parisons are difficult because of the complicated form of the asymptotic dis-
tributions+ However, the power of these tests comes primarily from the
magnitude of the means of S`

w and S`, respectively; see ~4+6! and ~4+12!+
Hence, when ui � ~b � b0!

'v2i has relatively heavy tails, the rank CLR test
should have higher power+ Furthermore, as discussed in Andrews and Stock
~in press!, the CLR test is a data-dependent combination of the AR and LM
tests, and hence the advantage of the rank versions of the latter tests when
ui � ~b� b0!

'v2i has relatively heavy or thin tails should carry over to that of
the CLR rank test+

These conjectures are shown to hold ~in the scenarios considered! by numer-
ical comparisons of the asymptotic power of the RCLRn and CLRn tests using
the asymptotic results of Theorem 1~ii!, Corollary 1, and Lemma 2~ii!+ Table 1
reports the weak IV asymptotic powers of the WS-RCLR, NS-RCLR, and CLR
tests+ For comparative purposes, asymptotic powers of the LM and AR tests
also are given in Table 1+

The cases considered in Table 1 include a base case and several variations of
it+ The base case has m � 1 ~i+e+, b is a scalar!, l � C 'DZ C � 10 ~which cor-
responds to moderately weak IVs!, k � 5 ~i+e+, five IVs!, ruv2 � Corr~ui , v2i !�
0+75 ~which corresponds to moderately strong endogeneity!, and b0 � 0 ~with-
out loss of generality!+ Two values of b are considered, namely, b� 1 and b�
�0+43+ These values are selected so that the CLR test has asymptotic power
0+40 with normal errors ~ui , v2i !+ A “high endogeneity” case is the same as the
base case except that ruv2 � Corr~ui , v2i !� 0+95 and b� 1+1 or b� �0+37+ A
“weaker IV” case is the same as the base case except that l� 4+0 and b� 5+0
or b � �0+7+ A “ten IV” case is the same as the base case except that k � 10+
In each variation of the base case, the values of b considered are chosen so that
the CLR test has asymptotic power approximately equal to 0+40 with normal
errors+

In all cases considered, the structural error ui and a latent variable «i are
taken to be independent with distribution F+ We consider four distributions F,
namely, standard normal, uniform @�2M3,2M3# , t3, and difference of indepen-
dent log normals ~DLN!+ The uniform distribution exhibits thin tails, whereas
the t3 and DLN distributions exhibit thick tails+ The reduced-form error v2i is
defined to be the following function of ui and «i :

v2i � ~1 � ruv2
2 !102«i � ruv2 ui + (4.18)

By construction, Corr~ui , v2i ! � ruv2 + The distribution G, upon which the
asymptotic properties of the tests depend, is the distribution of ui � ~b� b0!

'v2i

when ui and «i are independent with distribution F+ When F has thin or thick
tails, so does G+ Details concerning the computation of the asymptotic power
reported in Table 1 are given in the Appendix+
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Table 1 indicates that for the normal distribution F the WS-RCLR, NS-RCLR,
and CLR tests have roughly equal asymptotic power in all cases+ ~This is anal-
ogous to the result in Section 4+3+1 that AREf

NS � 1 and AREf
WS � 0+955+! For

the ~thin-tailed! uniform distribution, the NS-RCLR test has higher power than
the CLR test, whereas the WS-RCLR test has lower or equal power in all cases+

Table 1. Asymptotic power

Case Distribution WS-RCLR NS-RCLR CLR LM AR

Base case Normal 0+37 0+38 0+39 0+39 0+21
~b � 1+0! Uniform 0+38 0+52 0+40 0+41 0+25

t3 0+58 0+54 0+40 0+40 0+21
DLN 0+69 0+66 0+39 0+39 0+20

Base case Normal 0+39 0+41 0+41 0+41 0+27
~b � �0+43! Uniform 0+37 0+50 0+41 0+41 0+26

t3 0+60 0+55 0+40 0+40 0+25
DLN 0+78 0+68 0+41 0+40 0+25

High endogeneity Normal 0+37 0+38 0+39 0+39 0+21
~ruv2 � 0+95, b � 1+1! Uniform 0+39 0+59 0+39 0+40 0+22

t3 0+59 0+55 0+38 0+38 0+20
DLN 0+75 0+73 0+38 0+38 0+21

High endogeneity Normal 0+41 0+43 0+42 0+43 0+23
~ruv2 � 0+95, b � �0+37! Uniform 0+40 0+61 0+42 0+42 0+24

t3 0+67 0+60 0+42 0+42 0+24
DLN 0+87 0+78 0+42 0+42 0+23

Weaker IVs Normal 0+39 0+40 0+41 0+41 0+22
~l � 4, b � 5+0! Uniform 0+37 0+47 0+41 0+41 0+22

t3 0+35 0+41 0+40 0+40 0+22
DLN 0+48 0+50 0+40 0+40 0+22

Weaker IVs Normal 0+38 0+39 0+39 0+35 0+32
~l � 4, b � �0+7! Uniform 0+34 0+42 0+38 0+34 0+32

t3 0+57 0+52 0+39 0+35 0+32
DLN 0+73 0+63 0+40 0+35 0+33

Ten IVs Normal 0+38 0+40 0+40 0+40 0+15
~k � 10, b � 1+0! Uniform 0+33 0+47 0+38 0+38 0+16

t3 0+59 0+56 0+41 0+41 0+16
DLN 0+65 0+65 0+39 0+39 0+16

Ten IVs Normal 0+35 0+37 0+37 0+37 0+19
~k � 10, b � �0+43! Uniform 0+33 0+44 0+36 0+36 0+19

t3 0+55 0+51 0+37 0+37 0+18
DLN 0+70 0+61 0+36 0+36 0+18

Note: All cases have l � 10, ruv2 � 0+75, and k � 5, unless otherwise stated+
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~The former is analogous to the result in Section 4+3+1 that AREg
NS � 1 for all

symmetric distributions g+ The latter is analogous to the result in Section 4+3+1
that AREg ~RARn

WS ,RARn
NS! � AREf~RARn

WS ,RARn
NS! for any distribution g

that has thinner tails than f+! For the ~thick-tailed! t3 and DLN distributions,
the WS-RCLR and NS-RCLR tests have noticeably higher power than the CLR
test except in one case ~viz+, the “weaker IV” case with positive b and t3 dis-
tribution!+ In the base case, for the t3 distribution, the rank CLR tests’ powers
are 33% higher or more than the nonrank CLR test+ In the base case, for the
DLN distribution, the rank tests’ powers are more than 50% higher+ ~This is
analogous to the results in Section 4+3+1 that AREg

NS � 1 for all symmetric
distributions g and AREg ~RARn

WS ,RARn
NS! � AREf~RARn

WS ,RARn
NS! for any

distribution g that has thicker tails than f+!
Table 1 shows that the NS-RCLR and WS-RCLR tests cannot be rank ordered

in an overall sense because the NS-RCLR test has noticeably higher power for
the uniform distribution, but lower power for the t3 and DLN distributions in
most cases+ Table 1 also shows that the AR test has lower asymptotic power
than the other tests considered ~because k � 5 � m � 1 or k � 10 � m � 1!+
Also, the LM test has comparable asymptotic power to the CLR test in the
scenarios considered except the “weaker IV” case with negative b, in which
case it has lower power+

We conclude from Table 1 that the WS-RCLR and NS-RCLR tests have weak
IV asymptotic power advantages over the CLR test+ For the NS-RCLR test,
this is true both for thin- and thick-tailed distributions+ Furthermore, there is
little or no cost asymptotically for using the WS-RCLR or NS-RCLR test in
place of the CLR test for the normal distribution+ Because it is shown in Andrews
et al+ ~2006a! that the CLR test is nearly asymptotically universally most pow-
erful in the class of invariant similar tests under normality, the results suggest
that the NS-RCLR test also inherits this property+

4.3.3. Asymptotic Equivalence. We now provide a result that establishes
when the rank and nonrank versions of the CLR, LM, and AR tests are asymp-
totically equivalent+ We show that for a given score function w~x! there is a
distribution G of ui � ~b � b0!

'v2i ~and vice versa! such that the rank and
nonrank versions of these tests are asymptotically equivalent under weak IV
asymptotics+

LEMMA 3+ Let L~{! be some df with finite variance. Suppose ~ui � ~b �
b0!

'v2i !k ; L~{! for some k � 0 and w~x! � L�1~x!; then

(i) w~Ugi !cw
�102 � ~ui � ~b � b0 !

'v2i !sg
�1 ,

(ii) Vwg � Vg,
(iii) 	0

1 w~x, g!w~x! dx{cw
�102 � sg

�1 , and
(iv) Nw ; N1, S`

w ; S`, and T`
w ; T`, where ; denotes “has the same dis-

tribution as.”
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Remark+ Lemmas 2 and 3 and Theorem 1 imply that if ui � ~b� b0!
'v2i has

a normal distribution, then the normal score function leads to asymptotic equiv-
alence between the rank and nonrank versions of the CLR, LM, and AR tests+
Likewise, if ui � ~b� b0!

'v2i has a uniform @�a,a# distribution for some a � 0,
then the Wilcoxon score function leads to asymptotic equivalence between the
rank and nonrank versions of these statistics+

5. STRONG IV ASYMPTOTIC RESULTS

5.1. Strong IV Asymptotic Distributions of Rank Statistics

In this section, we provide the asymptotic distributions of the RLRn
w , RLMn

w ,
and RARn

w test statistics under standard strong IV asymptotics under the null
hypothesis and local alternatives+

In place of Assumption 4W, we use the following assumption+ The first part
of this assumption is the local alternative assumption+

Assumption 4S+

~a! b � b0 � Bn�102 for some vector B � Rm+
~b! P does not depend on n and is full column rank m+
~c! v2i � «i � rui for i � 1, where «i is a random m-vector and r � Rm is a

vector of constants+
~d! $«i : i � 1% are i+i+d+ and independent of $ui : i � 1% , and E7«i72�d � `

for some d � 0+
~e! ui has an absolutely continuous strictly increasing df F and an absolutely

continuous and bounded density f that satisfies I ~ f ! � `+
~f ! ~ui , v2i ! has an absolutely continuous bounded joint density with partial

derivative with respect to its first argument that is bounded over both
arguments+

~g! Vwf is pd+
~h! �i�1

` 7 EZi720i 2 � ` and �i�1
` 7Xi720i 2 � `+

~i! n102~ [gn~b0! � g1! � Op~1!+

Assumption 4S~c! allows for dependence between the structural error ui and
the reduced-form error v2i , but it must be of a special form+ The special form
is needed to make the asymptotic results for the rank statistic Sn

w tractable+
Assumption 4S~h! is not very restrictive+10 Assumption 4S~i! holds for the null-
restricted LS estimator under Assumptions 1, 2, and 4S~a!–~c!+11 The combina-
tion of Assumptions 1 and 4S~c! implies that Eui

2 � `+
Under strong IV asymptotics, Sn

w has a nondegenerate asymptotic distribu-
tion given by that of Sf`

w , and n�102Tn
w converges in probability to a constant

aT
w � 0, where
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Sf`
w ; N~aS

w , Ik !, aS
w� DZ

102P�f,B
w � Rk,

aT
w � DZ

102P~H 'Vwf
�1 H !102 � Rk�m,

Vwf � Var�w~F~ui !!cw
�102

y2i
��� 1 nwf

'

nwf V22
� � R ~m�1!�~m�1!, and

nwf � Cov~ y2i ,w~F~ui !!cw
�102! � Rm+ (5.1)

Note that Sf`
w differs from S`

w only in that �f,B
w replaces �g,b�b0

w ~both of which
are defined by the expression for �g,b�b0

w in ~4+5!! in its mean+
The main result of this section is the following theorem+

THEOREM 2+ Under Assumptions 1–3 and 4S,

(i) ~Sn
w , n�102Tn

w! rd ~Sf`
w ,aT

w! ,
(ii) RLRn

w rd Sf`
w' aT

w~aT
w'aT

w!�1aT
w'Sf`
w ; xm

2 ~dLM,S
w ! , where dLM,S

w �
aS
w'aT

w~aT
w'aT

w!�1aT
w'aS

w ,
(iii) RLMn

w rd Sf`
w' aT

w~aT
w'aT

w!�1aT`
w' Sf`

w ; xm
2 ~dLM,S

w ! , and
(iv) RARn

w rd Sf`
w' Sf`

w 0k ; xk
2~dAR,S

w !0k, where dAR,S
w � aS

w'aS
w.

Remarks+

~a! Theorem 2~ii! and ~iii! show that under strong IV asymptotics the RLR
and RLM test statistics are asymptotically equivalent under the null and
local alternatives for any values of k and m+ ~As noted previously, when
k � m, the RLR and RLM test statistics are the same, and so the tests are
trivially asymptotically equivalent+!

~b! Theorem 2~ii!–~iv! shows that the RAR test statistic has a different asymp-
totic distribution from that of the RLR and RLM statistics when k � m+
When k � m, k{RARn

w� RLMn
w� RLRn

w , and so the three rank statistics
are asymptotically equivalent+

5.2. Strong IV Asymptotic Distributions of Nonrank Statistics

For comparative purposes, we now provide the strong IV asymptotic distribu-
tions under the null hypothesis and local alternatives of the nonrank LRn, LMn,
and ARn test statistics+ The results for LRn with m � 1 are new+ ~Andrews et al+,
2006a, provides the same results for m � 1+! Let

Sf` ; N~aS , Ik !, aS � DZ
102PBsf

�1 � Rk,

aT � DZ
102P~H 'Vf

�1 H !102 � Rk�m, and

Vf � Var~~uisf
�1 , v2i !

' !�� 1 nf
'

nf V22
� , nf � Cov~ y2i ,uisf

�1!+ (5.2)
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LEMMA 4+ Under Assumptions 1–3 and 4S and V � 0,

(i) ~Sn, n�102Tn! rd ~Sf`,aT ! ,
(ii) LRn rd Sf`

' aT ~aT
' aT !

�1aT
' Sf` ; xm

2 ~dLM,S ! , where dLM,S �
aS
' aT ~aT

' aT !
�1aT

' aS ,
(iii) LMn rd Sf`

' aT ~aT
' aT !

�1aT
' Sf` ; xm

2 ~dLM,S ! , and
(iv) ARn rd Sf`

' Sf`0k ; xk
2~dAR,S !0k, where dAR,S � aS

' aS .

5.3. Strong IV Power Comparisons: Rank versus Nonrank Tests

Theorem 2 and Lemma 4 allow calculation of the ARE of the rank and nonrank
tests with strong IVs+ The calculation is analogous to that given in Section 4+3+1
for weak IVs but with three differences+ The first difference is that aT

w and aT

are fixed in the strong IV case, whereas T`
w and T` are random in the weak IV

case+ This does not affect the ARE calculations+ The second difference is that
the asymptotic distributions depend on the density f of ui rather than the den-
sity g of ui � ~b� b0!

'v2i + This occurs because b converges to b0 under strong
IV local alternatives and hence ~b � b0!

'v2i r 0 as n r `+ The third differ-
ence is that under strong IVs the asymptotic distributions of RLRn

w and RLMn
w

are the same and, analogously, those of LRn and LMn are the same+
Combining the results of Section 4+3+1 with these differences, we find that

under strong IVs the ARE of the rank to nonrank AR tests is the same as for
the rank to nonrank LM and CLR tests and is equal to the usual ARE for rank
to nonrank procedures based on the density f+ That is,

AREf ~RARn
w ,ARn ! � AREf ~RLMn

w , LMn !� AREf ~RLRn
w , LRn !

� j~wNS, f !sf
2 , (5.3)

where j~wNS, f !sf
2 is given in ~4+16! and ~4+17! for normal and Wilcoxon

scores, respectively, with f in place of g+12

In sum, all of the statements in Section 4+3+1 concerning ~4+15! apply to the
ARE of the rank to nonrank versions of the AR, LM, and CLR tests under
strong IVs but with f in place of g+

5.4. Asymptotic Equivalence

The next result establishes when the rank and nonrank versions of the CLR,
LM, and AR tests are asymptotically equivalent under strong IV asymptotics+

LEMMA 5+ Let L~{! be some df with finite variance. Suppose uik ; L~{! for
some k � 0 and w~x! � L�1~x!; then

(i) w~F~ui !!cw
�102 � uisf

�1 ,
(ii) Vwf � Vf ,
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(iii) 	0
1 w~x, f !w~x! dx{cw

�102 � sf
�1 ,

(iv) Sf`
w ; Sf`, and aT

w � aT .

Remarks+

~a! Lemmas 4 and 5 and Theorem 2 imply that if ui has a normal distribu-
tion, then the normal score function leads to asymptotic equivalence
between the rank and nonrank versions of the CLR, LM, and AR tests+
Likewise, if ui has a uniform @�a,a# distribution for some a � 0, then
the Wilcoxon score function leads to asymptotic equivalence between
these statistics+

~b! For the case of normal errors, the ~nonrank! CLR and LM tests are asymp-
totically efficient under strong IV asymptotics; see Andrews et al+ ~2006a!+
This combined with Remark 1 implies that the normal scores rank CLR
and LM tests also are asymptotically efficient under normal errors and
strong IV asymptotics+When k � m, the rank AR statistic has a different
asymptotic distribution from that of the rank LR and LM statistics ~see
Remark ~a! to Theorem 2!, and hence it is not asymptotically efficient+

6. FINITE-SAMPLE RESULTS

In this section, we report simulation results concerning the finite-sample size
of some of the rank and nonrank tests discussed previously+ We also provide
power comparisons of size-corrected versions of these tests+

We consider the Wilcoxon scores rank CLR test, denoted RCLRn
WS , and the

~untruncated! normal scores CLR rank test, denoted RCLRn
NS + For comparative

purposes, we also consider the CLR, LM, and AR tests+We do not report results
for the rank LM and rank AR tests both for brevity and for the following rea-
sons+ First, when the model is overidentified, the AR test has distinctly lower
power than the CLR test ~see Andrews et al+, 2006a, 2006b!, and simulations
show that the same is true for the rank versions of these tests+ Second, the LM
test has quirky power properties in parts of the parameter space ~see, e+g+,
Andrews et al+, 2006a, 2006b!, and simulations show that the rank LM test
inherits these properties+

6.1. Experimental Design

We take the model to be as in ~2+1! with y2i and b being scalars ~m � 1! and
v2i defined as in ~4+18!, where ruv2 � @�1,1# + Let EZi � ~ EZi1, + + + , EZik!

' and
Xi � ~1, Xi2, + + + , Xip!

'+ We take EZij , Xis,ui ,«i to be i+i+d+ with distribution F for
all j � 1, + + + , k, s � 2, + + + , p, and i � 1, + + + , n+13

The test statistics considered are invariant with respect to g1, j1, and the
location and scale of F+ Hence, without loss of generality we take g1 and j1 to
be zero, and we take F to have mean zero ~if its mean is well defined!, center
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of symmetry zero ~if it is symmetric!, and variance one ~if its variance is well
defined!+

The parameter vector p � Rk determines the strength of the IVs+ It is taken
to be proportional to a k-vector of ones:

p �
rIV

k 102~1 � rIV
2 !102

~1, + + + ,1!' for some rIV � @�1,1# , (6.1)

where rIV is the correlation between the reduced-form regression function,
Zi
'p, and the endogenous variable y2i ~when F has a finite variance!+ The

parameter rIV can be related to a parameter l that directly measures the strength
of the IVs ~and is closely related to the so-called concentration parameter!:

l �
nrIV

2

1 � rIV
2

� np 'E EZi EZi
'p
p ' EZ ' EZp, (6.2)

where the first equality defines l, the second equality holds provided EZi has a
finite variance, and an 
 bn means an0bn rp 1 as n r `+

The hypotheses of interest are H0 : b � b0 and H1 : b � b0+ Without loss of
generality, we take b0 � 0+14

For both the size and power results, we first consider a base case with mod-
erately weak IVs l� 10 ~equivalently, rIV � 0+302 when n � 100!, moderately
strong endogeneity ruv2 � 0+75, sample size n � 100, number of IVs k � 5, no
exogenous variables beyond a constant p � 1, and distribution F equal to the
normal, uniform, t1, t2, t3, or difference of DLNs+ The uniform distribution exhib-
its thin tails, and the t-distributions exhibit heavy tails ~e+g+, t1 is the Cauchy
distribution! as does the DLN distribution+ For the power results, both positive
and negative true b values are considered+ The b values are selected so that the
level 0+05 CLR test has power around 0+4 for the given choice of l, ruv2 , n, k,
and p when F is normal+

We also consider a number of variations of the base case to illustrate the
effect of changes in the level of endogeneity: ruv2 � 0,0+95; strength of IVs:
l � 4,20; number of IVs: k � 1,10; and sample size: n � 50,200+ In each
variation of the base case, only one of these parameters is different from the
base case+ In the base case, we find that when F is normal the power of the
normal scores rank CLR test is slightly higher than that of the nonrank CLR
test, but the opposite is true for negative b+ ~These differences disappear asymp-
totically under weak and strong IV asymptotics+! In consequence, to maintain
fair comparisons and for brevity, in each variation of the base case we report
average power for two b values—one positive and one negative—each of which
is chosen so that the CLR test has power approximately equal to 0+4 when F is
normal+15

For the power results, the tests are all size-corrected ~where the size-correcting
critical values are based on the same distribution F and the same parameters l,
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ruv2 , n, k, and p as for the corresponding power results but with b � 0!+ The
size-correcting critical values are obtained via simulation with 100,000 simula-
tion repetitions+ The number of simulation repetitions is 20,000 for the size
results and 5,000 for the power results+

Note that the size results for the AR test are invariant to ruv2 and l+

6.2. Size Results

Table 2 presents the size results+ The two rank CLR tests perform noticeably
better in terms of size than the nonrank CLR, LM, and AR tests+ Nine different
cases are considered with six different distributions for each case+ Over the 54
trials, the range of null rejection rates for each test is WS-RCLR: @0+027, 0+052#;
NS-RCLR: @0+033, 0+051#; CLR: @0+047, 0+091#; LM: @0+042, 0+070#; and AR:
@0+049, 0+127# + For the two rank tests, the majority of rejection rates are in the
desired @0+040, 0+050# range, which corresponds to no overrejection and suffi-
ciently small underrejection as to minimize the power loss+ In particular, 44054
for WS-RCLR and 38054 for NS-RCLR are in this range+ In contrast, for the
nonrank tests a small number of rejection rates are in this desired range: 1054
for CLR, 3054 for LM, and 11054 for AR+ Not surprisingly, the largest over-
rejections for the nonrank tests occur for the thickest tailed distributions+ If one
widens the range to @0+04, 0+06# , which includes overrejection by a small amount,
then the RCLR tests still outperform the CLR and AR tests, but the LM test
performs best of all+ The numbers of cases in this range are 44054 for WS-RCLR,
39054 for NS-RCLR, 33054 for CLR, 49054 for LM, and 29054 for AR+

6.3. Power Comparisons

Table 3 presents the power results+ The general pattern of finite-sample power
in Table 3 reflects that of asymptotic power given in Table 1+ In particular, the
NS-RCLR and CLR tests have comparable power for the normal distribution,
the NS-RCLR test has higher power than the CLR test for the uniform distri-
bution in many cases and much higher power for the thick-tailed distributions+
This occurs in the base case and in the variations of the base case+ For exam-
ple, in the base case with two b values the ~average! power of the NS-RCLR
test for the t2 distribution is 0+67 compared to 0+46 for the CLR test+ The
WS-RCLR and NS-RCLR tests have similar power with the NS-RCLR test hav-
ing slightly higher power for the normal distribution, noticeably higher power
for the uniform distribution, and slightly worse power for the thick-tailed dis-
tributions+ The LM test has similar power to the CLR test, but with lower power
in the weaker IVs case with normal distribution and slightly higher power for
the heavy-tailed distributions+ The AR test has significantly lower power than
the other tests except in the case with k � 1+

In sum, the NS-RCLR test has power that essentially dominates that of the
~nonrank! CLR, LM, and AR tests+ Its power is comparable to that of the CLR
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Table 2. Finite-sample null rejection rates of nominal level 0+05 tests

Case Distribution WS-RCLR NS-RCLR CLR LM AR

Base case Normal 0+050 0+043 0+056 0+054 0+049
Uniform 0+049 0+041 0+054 0+052 0+053
t1 0+032 0+045 0+073 0+610 0+108
t2 0+044 0+042 0+065 0+058 0+077
t3 0+046 0+039 0+060 0+056 0+058
DLN 0+044 0+038 0+062 0+055 0+071

No endogeneity Normal 0+048 0+039 0+058 0+055 0+049
~ruv2 � 0! Uniform 0+048 0+040 0+059 0+053 0+053

t1 0+030 0+039 0+077 0+058 0+108
t2 0+042 0+039 0+072 0+058 0+077
t3 0+046 0+037 0+063 0+057 0+058
DLN 0+043 0+038 0+069 0+055 0+071

High endogeneity Normal 0+050 0+045 0+054 0+053 0+049
~ruv2 � 0+95! Uniform 0+050 0+045 0+052 0+051 0+053

t1 0+033 0+047 0+064 0+056 0+108
t2 0+046 0+045 0+059 0+057 0+077
t3 0+047 0+042 0+056 0+055 0+058
DLN 0+043 0+042 0+057 0+055 0+071

Weaker IVs Normal 0+049 0+041 0+058 0+055 0+049
~l � 4! Uniform 0+049 0+043 0+058 0+053 0+053

t1 0+031 0+045 0+078 0+058 0+108
t2 0+043 0+041 0+073 0+058 0+077
t3 0+046 0+041 0+064 0+056 0+058
DLN 0+043 0+039 0+070 0+055 0+071

Stronger IVs Normal 0+049 0+043 0+054 0+054 0+049
~l � 20! Uniform 0+049 0+041 0+054 0+052 0+053

t1 0+032 0+045 0+068 0+056 0+108
t2 0+045 0+041 0+063 0+058 0+077
t3 0+047 0+041 0+057 0+055 0+058
DLN 0+043 0+039 0+070 0+055 0+071

One IV Normal 0+048 0+041 0+053 0+053 0+050
~k � 1! Uniform 0+052 0+045 0+055 0+055 0+053

t1 0+031 0+041 0+047 0+047 0+046
t2 0+041 0+041 0+055 0+054 0+053
t3 0+046 0+041 0+054 0+054 0+052
DLN 0+045 0+047 0+057 0+057 0+054

Ten IVs Normal 0+052 0+048 0+053 0+052 0+050
~k � 10, n � 200! Uniform 0+050 0+046 0+053 0+053 0+051

t1 0+032 0+051 0+058 0+044 0+127
t2 0+049 0+048 0+058 0+050 0+090
t3 0+049 0+045 0+054 0+052 0+062
DLN 0+045 0+041 0+057 0+057 0+054

~continued !
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Table 2. Continued

Case Distribution WS-RCLR NS-RCLR CLR LM AR

Smaller sample size Normal 0+045 0+036 0+061 0+056 0+048
~n � 50! Uniform 0+050 0+039 0+065 0+058 0+050

t1 0+027 0+035 0+091 0+070 0+127
t2 0+039 0+033 0+078 0+064 0+078
t3 0+044 0+034 0+071 0+061 0+063
DLN 0+044 0+037 0+076 0+064 0+074

Larger sample size Normal 0+048 0+046 0+052 0+052 0+049
~n � 200! Uniform 0+049 0+044 0+052 0+052 0+053

t1 0+032 0+049 0+052 0+042 0+090
t2 0+044 0+045 0+058 0+051 0+076
t3 0+048 0+045 0+056 0+053 0+056
DLN 0+050 0+046 0+056 0+054 0+067

Note: All cases have b� b0 � 0, l� 10 ~equivalently, rIV � 0+302 for n � 100!, ruv2 � 0+75, n � 100, k � 5, and
p � 1 ~an intercept!, unless otherwise stated+

Table 3. Finite-sample power of size-corrected level 0+05 tests

Case Distribution WS-RCLR NS-RCLR CLR LM AR

Base case Normal 0+42 0+46 0+40 0+40 0+26
~b � 1+35! Uniform 0+41 0+48 0+40 0+40 0+25

t1 0+92 0+95 0+56 0+61 0+40
t2 0+66 0+66 0+46 0+49 0+26
t3 0+53 0+53 0+42 0+43 0+26
DLN 0+61 0+60 0+43 0+45 0+23

Base case Normal 0+35 0+35 0+39 0+38 0+25
~b � �0+44! Uniform 0+32 0+38 0+39 0+39 0+25

t1 0+94 0+95 0+55 0+61 0+40
t2 0+72 0+68 0+46 0+49 0+27
t3 0+53 0+50 0+41 0+43 0+25
DLN 0+65 0+59 0+42 0+44 0+22

Base case Normal 0+38 0+40 0+39 0+39 0+26
~b � 1+35 and b � �0+44! Uniform 0+37 0+43 0+40 0+40 0+25

t1 0+93 0+95 0+55 0+61 0+40
t2 0+69 0+67 0+46 0+49 0+27
t3 0+53 0+51 0+42 0+43 0+26
DLN 0+63 0+60 0+42 0+44 0+23

~continued !
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Table 3. Continued

Case Distribution WS-RCLR NS-RCLR CLR LM AR

No endogeneity Normal 0+44 0+47 0+41 0+37 0+34
~ruv2 � 0, Uniform 0+43 0+47 0+42 0+37 0+34
b � 0+975 and b � �1+05! t1 0+94 0+97 0+55 0+61 0+42

t2 0+74 0+72 0+46 0+47 0+33
t3 0+57 0+56 0+43 0+40 0+34
DLN 0+67 0+64 0+41 0+42 0+30

High endogeneity Normal 0+38 0+39 0+41 0+41 0+22
~ruv2 � 0+95, Uniform 0+39 0+46 0+41 0+41 0+22
b � 0+95 and b � �1+25! t1 0+93 0+96 0+61 0+64 0+41

t2 0+70 0+66 0+49 0+50 0+25
t3 0+53 0+51 0+42 0+42 0+22
DLN 0+67 0+62 0+44 0+44 0+19

Weaker IVs Normal 0+33 0+33 0+36 0+31 0+30
~l � 4, Uniform 0+31 0+33 0+36 0+32 0+29
b � 25 and b � �0+725! t1 0+91 0+94 0+52 0+59 0+40

t2 0+61 0+58 0+41 0+43 0+28
t3 0+43 0+42 0+37 0+35 0+29
DLN 0+55 0+49 0+36 0+37 0+25

Stronger IVs Normal 0+40 0+42 0+40 0+40 0+23
~l � 20, Uniform 0+38 0+47 0+41 0+41 0+23
b � 0+62 and b � �0+325! t1 0+94 0+96 0+58 0+63 0+40

t2 0+75 0+72 0+48 0+50 0+25
t3 0+57 0+54 0+42 0+43 0+23
DLN 0+59 0+54 0+38 0+40 0+22

One IV Normal 0+37 0+38 0+39 0+39 0+39
~k � 1, Uniform 0+34 0+42 0+39 0+39 0+39
b � 1+05 and b � �0+41! t1 0+88 0+89 0+44 0+44 0+44

t2 0+67 0+64 0+42 0+42 0+42
t3 0+54 0+51 0+42 0+42 0+42
DLN 0+66 0+61 0+40 0+40 0+40

Ten IVs Normal 0+38 0+39 0+41 0+41 0+24
~k � 10, Uniform 0+38 0+43 0+45 0+45 0+27
b � 1+9 and b � �0+49! t1 0+94 0+90 0+60 0+67 0+43

t2 0+72 0+69 0+50 0+54 0+28
t3 0+54 0+52 0+46 0+46 0+28
DLN 0+64 0+60 0+46 0+48 0+24

Note: All cases have b0 � 0, l � 10 ~equivalently, rIV � 0+302 for n � 100!, ruv2 � 0+75, n � 100, k � 5, and
p � 1 ~an intercept!, unless otherwise stated+

1060 DONALD W.K. ANDREWS AND GUSTAVO SOARES



and LM tests for the normal distribution and higher for the other distributions,
especially the thick-tailed ones+ The power of the WS-RCLR test is similar to
that of the NS-RCLR test+

NOTES

1+ We note that the CLR test reduces to the AR test when the model is just-identified, and so
the optimality properties mentioned in the text are consistent with those mentioned previously for
the AR test+

2+ The statistics Sn and Tn are denoted NS and PT, respectively, in Moreira ~2003!+
3+ The statistic LRn is the likelihood ratio statistic for the case of normal errors vi with known

covariance matrix V and with ZVn plugged in for V+ One can also consider the likelihood ratio
statistic for the case of normal errors and unknown covariance matrix; see Moreira ~2003!+

4+ If there are any ties in the ranks, then we determine a unique ranking by randomization+
For example, if y1i � b 'y2i � [gn~b!

'Xi � y1j � b 'y2j � [gn~b!
'Xj for some i � j and these obser-

vations are the �th largest in the sample, then ZRi~b!� � with probability 0+5, ZRi~b!� � � 1 with
probability 0+5, ZRj~b!� � � 1 if ZRi~b!� �, and ZRj~b!� � if ZRi~b!� � � 1+ Ties only occur with
positive probability if the distribution of y1i � b 'y2i � [gn~b!

'Xi is not absolutely continuous+ In
consequence, in practice ties rarely occur+

The matrix programming languages GAUSS and Matlab have very fast built-in procedures for
finding the ranks of a given vector+ The GAUSS procedure is called rankindx.

5+ The definition of Tn
w uses the ranks Rw of $ y1j � b0

' y2j � [gn~b0!
'Xj : j � 1, + + + , n% but is

linear in Y2 ~or equivalently, in Y2 � PX Y2 because Z 'PX � 0!+ One might think that it is more
natural to replace Y2 in the definition of Tn

w by the ranks of Y2 � PX Y2+ We do not do this for the
following reason+ For power purposes one wants the Y2 term in the definition of Tn

w to be ~asymp-
totically! linear in its mean ZP+ If one replaces Y2 by the ranks of Y2 � PX Y2, then ~asymptotic!
linearity does not hold under strong IV asymptotics, defined in Section 5, because ZP is not an
n�102 perturbation from the zero vector; see Lemma 6 in the Appendix+ Hence, one does not obtain
the desired power properties under strong IV asymptotics+ Under weak IV asymptotics, defined in
Section 4, ~asymptotic! linearity holds because ZP � ZCn�102 for some matrix C and the latter is
an n�102 perturbation from the zero vector+ Hence, power problems with this alternative definition
of Tn

w only arise under strong IV asymptotics+
6+ The second equality holds because Tn

w is a square invertible matrix when k � m+ The last
equality holds because @Sn : Tn#

' @Sn : Tn# is positive semidefinite and singular, which implies that
lmin~ @Sn : Tn#

' @Sn : Tn# ! � 0+ Singularity holds because @Sn : Tn#
' is an ~m � 1! � m matrix and

@Sn : Tn#
' @Sn : Tn# is ~m � 1! � ~m � 1! when k � m+

7+ Var~w~Ugi !! � cw because Ugi has a U @0,1# distribution+
8+ The expressions for j~w, f ! for normal and Wilcoxon scores are established by change of

variables and integration by parts+
9+ The ARE of one test to another is usually defined, roughly speaking, to be the limit of the

ratio of the sample sizes of the second test to the first required for the two tests to have the same
power; see Lehmann ~1986, p+ 321!+ In standard scenarios—in which the two tests have noncentral
chi-square asymptotic distributions—the ARE reduces to the ratio of the ~asymptotic! noncentral-
ity parameter of the first test to the second+ In Section 4+3+1, which involves nonstandard weak IV
asymptotics—in which the power of a test does not necessarily increase with the sample size—we
adopt the ratio of the ~asymptotic! noncentrality parameters to be the definition of the ARE+ That
is, by definition, the ARE of one test to another is the ratio of the noncentrality parameter of the
asymptotic distribution of the first test to that of the second test provided this ratio is nuisance
parameter free and the two tests have noncentral chi-square asymptotic distributions or mixed non-
central chi-square asymptotic distributions ~and the ratio of the noncentrality parameters is the
same for all values of the mixing variable!+
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10+ A sufficient condition for Assumption 4S~h! is the same condition with 2 replaced by 1 � d,
and the latter holds with probability one for sequences $~ EZi , Xi ! : i � 1% that are realizations of i+i+d+
random vectors with finite 1 � d moments; see Lemma 12 in the Appendix+

11+ The proof is the same as for Lemma 1 except that in place of ~A+69! we have n102~j� j1!
~b� b0!� O~1! because b� b0 � O~n�102! by Assumption 4S~a! and j� j1 � O~1! by Assump-
tions 2~c! and 4S~b!+

12+ The AREs discussed in Section 5+3 can be defined by the usual method involving the limit
of ratios of sample sizes or in terms of the ratio of noncentrality parameters—see note 9 regarding
these definitions+ Under strong IV asymptotics, the two definitions are equivalent for the tests con-
sidered here+

13+ Thus, we consider a model with random exogenous variables and IVs+ The tests considered
have the correct size asymptotically both conditionally and unconditionally on the exogenous vari-
ables and IVs+

14+ There is no loss of generality in taking b0 � 0 because the structural equation y1i � y2ib�
g1
' Xi � ui and hypothesis H0 : b � b0 can be transformed into Iy1i � y2i Db � g1

' Xi � ui and
H0 : Db � 0, where Iy1i � y1i � y2ib0 and Db � b � b0+

15+ The reported power of the CLR test for the case where l or n is small is less than 0+4
because the CLR test has power less than 0+4 for all values of b+
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APPENDIX: Proofs

The proofs of Lemmas 1–5 and Corollary 1 are given at the end of the Appendix, as is
the description of the numerical calculation of asymptotic power under weak IVs+

The proofs of Theorems 1~i! and 2~i! rely on the following lemmas+ Lemma 6 fol-
lows from results of Koul ~1970! and Hájek and Sidák ~1967!+

LEMMA 6+ Let Cn~t ! � n�1 �i�1
n ~ci � Scn!w~ri~t !0~n � 1!! , where

(i) ri~t ! is the rank of Qi � di
' t among $Qj � dj

' t : 1 � j � n% for a constant vector
t � Rdd ,

(ii) $Qi : i � 1% is a sequence of i.i.d. random variables with absolutely continuous
strictly increasing df H and absolutely continuous and bounded density h that
satisfies I ~h! � `,

(iii) $ci : i � n, n � 1% and $di : i � n, n � 1% are triangular arrays of nonrandom
dc-vectors and dd-vectors, respectively (with dependence of ci and di on n sup-
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pressed for brevity), that satisfy limnr`max1�i�n7ci � Scn720�i�1
n 7ci � Scn72 � 0

and limnr` n�1 �i�1
n 7ci � Scn72 � ` and likewise with ci � Scn replaced by

di � Ndn, where Scn � n�1 �i�1
n ci and Ndn � n�1 �i�1

n di , and
(iv) the score function w satisfies Assumption 3.

Then,

(a) for all « � 0 and b � `,

lim
nr`

P� sup
7t 7�b

n102 6Cn~tn
�102 !�Cn~0!� n�102Ân~0!t 6 � «� � 0,

where

Ân~0! � �n�1 �
i�1

n

~ci � Scn !~di � Ndn !
'�

0

1

w~x, h!w~x! dx,

(b) for any sequence of random dd-vectors $ [tn : n � 1% for which n102 [tn � Op~1! ,

n102Cn~ [tn ! � n102Cn~0!� Ân~0!n
102 [tn � op~1! ,

(c) n102Cn~0! � n�102 �i�1
n ~ci � Scn!w~H~Qi !! � op~1! .

Remarks.

~a! Lemma 6~a! is an extension of Theorem 2+1 and Lemma 2+3 of Koul ~1970! from
scalar constants ci and di to vectors+ As Koul ~1970, p+ 1280! notes, his proof of
these results goes through for this extension with virtually no changes+ Lemma
6~b! follows from part ~a!+ Lemma 6~c! follows from the proofs of the Hájek
and Sidák ~1967! Theorem V+1+5a ~p+ 160!, Theorem VI+1+6a ~p+ 163!, and
Lemma VI+1+6a ~p+ 164!, which show that in the scalar ci case E~n�102

�i�1
n ~ci � Scn!w~H~Qi !! � n�102 �i�1

n ~ci � Scn !an
w~i !!2 � o~1! and E~n�102

�i�1
n ~ci � Scn !an

w~i ! � n102Cn~0!!2 � o~1!, respectively, where an
w~i ! �

E~w~H~Q1!!6r1~0! � i !+
~b! The expression for Ân~0! on p+ 1277 of Koul ~1970! is correct, but the expression

for Ân~0! given on p+ 1278 ~which is of the form given previously! contains a
typo—a minus sign is missing+ Also, the proof of Theorem 2+1 of Koul ~1970!
contains a typo that could be confusing to the reader+ The term w~qn! that appears
at the end of the expression on the first two lines of the first equation on p+ 1276
should be w '~qn! in both places+

~c! We do not require w to satisfy the second condition of ~i! on p+ 1274 of Koul
~1970! because this is a normalization condition that implies that w~ 12

_ !� 0 which
is not needed for his Theorem 2+1 or Lemma 2+3+ It is needed for his n102Sn~0! to
have an asymptotic normal distribution+ We do not require it for n102Cn~0! to
have an asymptotic normal distribution because we consider demeaned constant
vectors ci � Scn, which yields n102Cn~0! invariant to additive constants in w, whereas
Koul ~1970! does not+

The next lemma is used to establish the probability limit of [nwn+
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LEMMA 7+ Suppose

(i) $~Q1i ,Q2i ! : i � 1% is an i.i.d. sequence of random ~m � 1!-vectors with Q1i � R,
(ii) ~Q1i ,Q2i ! has an absolutely continuous and bounded joint df HQ1,Q2

that satis-
fies sup~q1,q2 ! 6]HQ1,Q2

~q1,q2 !0]q16 � `,
(iii) E7Q2i7 � `,
(iv) ri~t ! is the rank of Q1i � di

' t among $Q1j � dj
' t : j � n%, where t � Rdd ,

(v) $di : i � n, n � 1% is a triangular array of nonrandom dd-vectors that satisfies
limnr` n�1 �i�1

n 7di7 � `, and
(vi) the score function w satisfies Assumption 3.

Then,

(a) for all b � `,

sup
t :7t 7�b

�n�1 �
i�1

n

w� ri ~tn
�102 !

n � 1
�Q2i � n�1 �

i�1

n

w� ri ~0!

n � 1
�Q2i� � op~1! ,

(b) for any sequence of random dd-vectors $ [tn : n � 1% for which n102 [tn � Op~1! ,

n�1 �
i�1

n

w� ri ~ [tn !

n � 1
�Q2i � n�1 �

i�1

n

w� ri ~0!

n � 1
�Q2i � op~1! ,

(c) n�1 �i�1
n w~ri ~0!0~n � 1!!Q2i � Ew~HQ1

~Q1i !!Q2i � op~1! , where HQ1
is the df

of Q1i .

Remark. Lemma 7~a! follows from arguments similar to those used to prove
Lemma 2+2 in Koul ~1970!, which was originally proved, under different assumptions,
as Theorem 3+1 in Koul ~1969!+ The result established in Lemma 7~a! is different from
the results established in Koul ~1969, 1970!, but the idea of the argument is essentially
the same+ The results in Koul ~1969, 1970! are for a linear regression model with deter-
ministic regressors+ Hence, using our notation, the results in Koul ~1969, 1970! are
restricted to the case where $Q2i : i � n% are nonrandom real numbers and $~Q1i ,Q2i ! :
i � n% and $di : i � n% satisfy the relation imposed by a linear regression equation+ Hence,
the conditions in Lemma 7~a! generalize those in Lemma 2+2 of Koul ~1970!+ On the
other hand, Lemma 2+2 of Koul ~1970! establishes that the left-hand side in Lemma 7~a!
is op~n�102!, which is a stronger result than that given in Lemma 7~a!+

Let F be the n-vector with ith element given by w~Ugi ! � w~G~ui � ~b � b0!
'v2i !!+

LEMMA 8+ Under Assumptions 1–3 and 4W,

(i) n�102Z 'Rw � n�102Z '~F � ZC�g,b�b0

w cw
102 n�102 ! � op~1! ,

(ii) Sn
w � ~Z 'Z!�102 Z '~Fcw

�102 � ZC�g,b�b0

w n�102 ! � op~1! ,
(iii) n�1Z 'Z r DZ � 0, and
(iv) n�102 Z ' @~Fcw

�102 � ZC�g,b�b0

w n�102 ! : Y2# rd @Nw :N2# .

LEMMA 9+ Under Assumptions 1–3 and 4W,

(i) [nwn rp nwg and
(ii) ZV22n rp V22.
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LEMMA 10+ Under Assumptions 1–3 and 4S,

(i) n�102Z 'Rw � n�102Z '~F � ZP�f,B
w cw

102 n�102 ! � op~1! ,
(ii) Sn

w � ~Z 'Z!�102 Z '~Fcw
�102 � ZP�f,B

w n�102 ! � op~1! , and
(iii) n�1Z ' @F : Y2# rp DZ @0k :P# .

LEMMA 11+ Under Assumptions 1–3 and 4S,

(i) [nwn rp nwf and
(ii) ZV22n rp V22.

The following lemma gives sufficient conditions for an i+i+d+ sequence to satisfy
Assumptions 2~d! and 4S~h! a+s+

LEMMA 12+ Suppose $ci : i � 1% is an i.i.d. sequence of nonnegative random vari-
ables with Eci

1�d � ` for some d � 0. Then,

(i) �i�1
` ci

1�d0i 1�d � ` a.s. and
(ii) maxi�nci 0n r 0 a.s.

The last lemma is a Glivenko–Cantelli theorem for triangular arrays of random vari-
ables, which is used in the proof of Lemma 7+ It is proved by verifying the conditions in
Pollard ~1990, Thm+ 8+3!+

LEMMA 13+ Suppose

(i) $~Q1i ,Q2i ! : i � 1% is an i.i.d. sequence of random ~m � 1!-vectors with Q1i � R
and

(ii) $di : i � 1% is any sequence of nonrandom dd-vectors.

Then, for any b � `,

sup
~q1,q2 !�Rm�1

sup
t�Rdd : 7t 7 � b

�n�1 �
i�1

n

@hni ~q1,q2 , t !� Ehni ~q1,q2 , t !#�r 0 a.s.,

where

hni ~q1,q2 , t ! � 1~Q1i � q1 � di
' tn�102,Q2i � q2 ! .

The proofs of Lemmas 7–13 are given after the proofs of Theorems 1 and 2+

Proof of Theorem 1. Lemma 9 and Assumption 4W~e! imply that

ZVwnrp Vwg and ZVwn
�1 H~H ' ZVwn

�1 H !�102 rp Vwg
�1 H~H 'Vwg

�1 H !�102+ (A.1)

This, Lemma 8, the continuous mapping theorem, and the definitions of ~Sn
w ,Tn

w! and
~S`
w ,T`

w! combine to establish part ~i!+
Independence of S`

w and T`
w is implied by zero covariance between the normal vari-

ates Nw and @Nw :N2 #Vwg
�1 H+ The latter holds by the following argument+ Let Nw, j , N2,�,

and DZ, j� denote the j th element of Nw, the �th row of N2, and the ~ j,�! element of DZ ,
respectively+ Let e1 denote an m � 1-vector of ones+ The covariance between Nw, j and
the �th row of @Nw :N2 #Vwg

�1 H for j,� � 1, + + + , k is
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Cov~Nw, j , @Nw,� :N2,� #Vwg
�1 H !

� Ee1
'�Nw, j � ENw, j

N2, j
' � EN2, j

' � @Nw,� :N2,� #Vwg
�1 H � DZ, j�{e1

'VwgVwg
�1 H � 0+ (A.2)

Parts ~ii!–~iv! of the theorem follow immediately from part ~i! and the continuous
mapping theorem+ �

Proof of Theorem 2. The result Sn
w rd Sf`

w of part ~i! follows from Lemma 10~ii!,
Lemma 8~iii! ~which does not rely on Assumption 4W!, and the Lindeberg CLT applied
to n�102 Z 'Fcw

�102 + The CLT applies by the same argument as given in the proof of
Lemma 8~iv! subsequently+

The result n�102Tn
w rd aT

w ~or n�102Tn
w rp aT

w! is established as follows:

n�102Tn
w � n�102~Z 'Z!�102 Z ' @Rw cw

�102 : Y2 # ZVwn
�1 H~H ' ZVwn

�1 H !�102

� ~n�1 Z 'Z!�102 @n�1 Z 'Rw cw
�102 : n�1 Z 'Y2 #Vwf

�1 H~H 'Vwf
�1 H !�102 � op~1!

� DZ
�102 @n�1 Z '~Fcw

�102 � ZP�f,B
w n�102 ! : n�1 Z 'Y2 #

�Vwf
�1 H~H 'Vwf

�1 H !�102 � op~1!

� DZ
102 @0k :P#Vwf

�1 H~H 'Vwf
�1 H !�102 � op~1!

� DZ
102P~H 'Vwf

�1 H !102 � op~1!, (A.3)

where the second equality holds because Lemma 11 and Assumption 4S~g! imply that
ZVwn
�1 rp Vwf

�1 , the third equality holds by Lemma 8~iii! and Lemma 10~ii!, the fourth
equality holds by Lemma 10~iii!, and the fifth equality holds because @0k :P# �
P@0m : Im# � PH '+ The convergence of ~Sn

w , n�102Tn
w! holds jointly because aT

w is a
constant+

Parts ~iii! and ~iv! follow immediately from part ~i! using the continuous mapping
theorem noting that aT

w'aT
w is pd by Assumptions 2~c!, 4S~b!, and 4S~g!+

We now prove part ~ii!+ Given the definition of RLRn
w in ~3+8! and the result of Theo-

rem 2~iii!, it suffices to show that

lmin~ @Sn
w : Tn

w# ' @Sn
w : Tn

w# ! � S �'S � � op~1!, where

S � � Sn
w� Tn

w~Tn
w'Tn

w!�1Tn
w'Sn
w + (A.4)

For notational simplicity, let @S : T # denote @Sn
w : Tn

w# and let Tj � Rm�1 denote the
j th column of T for j � 1, + + + ,m+ We rotate @S : T # by an orthogonal matrix B �
R ~m�1!�~m�1! whose first column, b1, is designed to be such that @S : T #b1 � d1S �, where
d1 is a positive scalar that equals 1 � op~1!+ Then, we have

lmin~ @S : T # ' @S : T # ! � lmin~B
' @S : T # ' @S : T #B!, (A.5)

and the ~1,1! element of the matrix on the right-hand side equals l1
2 d1

2 S �'S �+
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Let bj denote the j th column of B and let bij denote the ~i, j !th element of B+ Define

b1 � d1� 1

�~T 'T !�1T 'S
� � Rm�1, (A.6)

where d1 is a constant such that b1
' b1 � 1+ Next, we define the orthogonal vectors

$bj : j � 2, + + + ,m � 1% via the Gramm–Schmidt procedure applied to the vectors
b1, e2, + + + , em�1, where ej is the j th elementary vector ~whose j th element is one and
whose other elements are zero!+ We have

b2 � d2~e2 � ~e2
' b1!b1!� d2~e2 � b12 b1!,

b3 � d3~e3 � ~e3
' b2 !b2 � ~e3

' b1!b1!� d3~e3 � b23 b2 � b13 b1!, (A.7)

and so on, where dj is the constant that yields 7bj7 � 1 for j � 1, + + + ,m+
The constants $dj : j � 1, + + + ,m � 1% satisfy

d1 � ~1 � n�1~n�102S 'T !~n�1T 'T !�2~n�102T 'S!!�102 � 1 � op~1!,

d2 � ~1 � b12
2 !�102 � 1 � op~1!,

d3 � ~1 � b23
2 � b13

2 !�102 � 1 � op~1!, (A.8)

and so on, using Theorem 2~i! and the fact that

b1j � n�102 @�d1~n
�1T 'T !�1n�102T 'S# j � Op~n

�102 ! for j � 2, + + + ,m,

b2j � d2~�b12 b1j !� Op~n
�1 ! for j � 3, + + + ,m,

b3j � d3~�b23 b2j � b13 b1j !� Op~n
�1 ! for j � 4, + + + ,m, (A.9)

and so on+
Let l � ~l1, + + + ,lm�1!

' � ~l1, Dl2
' !' � Rm�1 be such that 7l7 � 1+ Then, we have

lmin~B
' @S : T # ' @S : T #B! � inf

l�Rm�1 : 7l7�1
J ~l!, where

J ~l! :� 7@S : T #Bl72 � l1
2 d1

2 S �'S � � 2l1 d1 S �' @S : T # @b2 + + +bm�1# Dl2 � J3~l!,

J3~l! :� Dl2
' @b2 + + +bm�1#

' @S : T # ' @S : T # @b2 + + +bm�1# Dl2 + (A.10)

The cross-product summand of J ~l! in ~A+10! equals

2l1 d1 @S
�'S : 01�m # @b2 + + +bm�1# Dl2 � Op~7 Dl27!, (A.11)

using S �'T � 0, ~S �'S!2 � ~S �'S �!S 'S � ~S 'S!2 � Op~1!, 6bij 6 � 1, and d1 � 1 �
op~1!+ For the third summand J3~l! of J ~l!, we have

@S : T # @b2 + + +bm�1#

� @d2~T1 � b12 S � ! : d3~T2 � b23 d2~T1 � b12 S � !� b13 S � ! : + + +# + (A.12)
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Combining this with ~A+8!, ~A+9!, S �'T � 0, S � � Op~1!, and n�102Trp aT
w ~by part ~i!

of the theorem!, we obtain

0 � J3~l!� n Dl2
' ~aT

w'aT
w� op~1!! Dl2 , (A.13)

where aT
w'aT

w is pd by Assumptions 2~c!, 4S~b!, and 4S~g!+
Let l* � ~l1

* , + + + ,lm�1
* !' � ~l1

* , Dl2
*'!' � Rm�1 be an m � 1-vector that minimizes

J ~l! over l � Rm�1 such that 7l7 � 1+ If 7 Dl2
* 7 � op~n�1!, then

J ~l* ! � S �'S � � op~1! (A.14)

by ~A+10!–~A+13! and S �'S � � Op~1! by part ~i! of the theorem+
On the other hand, suppose that 7 Dl2

* 7 � op~1! and 7 Dl2
* 7 � op~n�1!; then 6l1

* 6 �
1 � op~1!,

J ~l* ! � S �'S � � op~1!� J3~l
* !, and

0 � J3~l
* !� n Dl2

*'~aT
w'aT

w� op~1!! Dl2
* � op~1!+ (A.15)

This contradicts the assumption that l* minimizes J ~l! over l such that 7l7� 1 because
a different choice of l, namely, l such that 7 Dl27� op~n�1!, yields a smaller value J ~l!
as indicated in ~A+14!+

Next, suppose that 7 Dl2
* 7 � op~1!+ Then,

J ~l* ! � Op~1!� J3~l
* !,

0 � J3~l
* !� op~n!, and J ~l* !� Op~1! (A.16)

by ~A+10!–~A+13!+ In particular, for some « � 0 and some ~infinite! subsequence $�n% of
$n%, P~J3~l

*! � �n«! � « when the sample size is �n for all n � 1+ Again this is a
contradiction, because a different choice of l, namely, l such that 7 Dl27� op~n�1!, yields
a smaller value J ~l!, namely, one that is Op~1! as indicated in ~A+14!+We conclude that
7 Dl2
* 7 must satisfy 7 Dl2

* 7 � op~n�1!, and hence ~A+14!, ~A+4!, ~A+5!, and ~A+10! combine
to establish the result of part ~ii!+ �

Proof of Lemma 7. Because E7Q2i7 � `, given any « � 0, there exists a constant
c« � ` such that

E7Q2i71~7Q2i7 � c« ! � «+ (A.17)

Hence, using the boundedness of w, say, by C, and Markov’s inequality, we have for
any h � 0 and « � 0,

P� sup
t :7t 7�b

�n�1 �
i�1

n

w� ri ~tn
�102 !

n � 1
�Q2i 1~7Q2i7 � c« !� � h�

�
C

h
E7Q2i71~7Q2i7 � c« ! �

C«

h
+ (A.18)

Therefore, without loss of generality, we can assume that Q2i is bounded+
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Define

L1n~q1, t ! � n�1 �
i�1

n

1~Q1i � di
' t � q1! and

L12n~q1,q2 , t ! � n�1 �
i�1

n

1~Q1t � di
' t � q1,Q2i � q2 !+ (A.19)

Note that

EL1n~q1, t ! � n�1 �
i�1

n

HQ1
~q1 � di

' t ! and

EL12n~q1,q2 , t ! � n�1 �
i�1

n

HQ1,Q2
~q1 � di

' t,q2 !+ (A.20)

Now, we have

n�1 �
i�1

n

w� ri ~t !

n � 1
�Q2i

� n�1 �
i�1

n

w� 1

n � 1 �
j�1

n

1~Q1j � dj
' t � Q1i � di

' t !�Q2i

� n�1 �
i�1

n

w�nL1n~Q1i � di
' t, t !

n � 1
�Q2i

���w�nL1n~q1, t !

n � 1
�q2 dL12n~q1,q2 , t !

����w�nL1n~q1, t !

n � 1
�� w�nEL1n~q1, t !

n � 1
��q2 dL12n~q1,q2 , t !

� ��w�nEL1n~q1, t !

n � 1
�q2 dL12n~q1,q2 , t !+ (A.21)

Therefore, using the triangle inequality,

sup
t :7t 7�b

�n�1 �
i�1

n

w� ri ~tn
�102 !

n � 1
�Q2i � n�1 �

i�1

n

w� ri ~0!

n � 1
�Q2i�

� A1n~b!� A1n~0!� A2n , (A.22)
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where, for b � 0,

A1n~b! � sup
t :7t 7�b

����w�nL1n~q1, tn�102 !

n � 1
�� w�nEL1n~q1, tn�102 !

n � 1
��

� q2 dL12n~q1,q2 , tn�102 !� and

A2n � sup
t :7t 7�b

���w� nEL1n~q1, tn�102 !

n � 1
�q2 dL12n~q1,q2 , tn�102 !

� ��w� nEL1n~q1,0!

n � 1
�q2 dL12n~q1,q2 ,0!�+ (A.23)

Now, by Lemma 13,

sup
q1�R

sup
t :7t 7�b

6L1n~q1, tn�102 !� EL1n~q1, tn�102 !6

� sup
q1�R

sup
t :7t 7�b

�n�1 �
i�1

n

@1~Q1i � q1 � di
' tn�102 !� HQ1

~q1 � di
' tn�102 !#�rp 0+

(A.24)

This implies that A1n~b!rp 0 and A1n~0!rp 0, because w is absolutely continuous, Q2i

is bounded, and 0 � A1n~0! � A1n~b!+
Using the triangle inequality again, we have A2n � B1n � B2n, where

B1n � sup
t :7t 7�b

���w� nEL1n~q1, tn�102 !

n � 1
�q2 dL12n~q1,q2 , tn�102 !

� ��w� nEL1n~q1,0!

n � 1
�q2 dL12n~q1,q2 , tn�102 !� and (A.25)

B2n � sup
t :7t 7�b

���w� nEL1n~q1,0!

n � 1
�q2 d$L12n~q1,q2 , tn�102 !� L12n~q1,q2 ,0!%�+

To bound B1n and B2n, we write

sup
~q1,q2 !�Rm�1

sup
t :7t 7�b

6L12n~q1,q2 , tn�102 !� L12n~q1,q2 ,0!6

� sup
~q1,q2 !�Rm�1

sup
t :7t 7�b

6L12n~q1,q2 , tn�102 !� EL12n~q1,q2 , tn�102 !6

� sup
~q1,q2 !�Rm�1

sup
t :7t 7�b

6EL12n~q1,q2 , tn�102 !� EL12n~q1,q2 ,0!6

� sup
~q1,q2 !�Rm�1

sup
t :7t 7�b

6EL12n~q1,q2 ,0!� L12n~q1,q2 ,0!6+ (A.26)

RANK TESTS WITH WEAK INSTRUMENTS 1071



The first and last terms on the right-hand side converge to zero a+s+ by Lemma 13+ The
second term on the right-hand side converges to zero because it equals

sup
~q1,q2 !

sup
t :7t 7�b

�n�1 �
i�1

n

HQ1,Q2
~q1 � di

' tn�102,q2 !� HQ1,Q2
~q1,q2 !�

� sup
~q1,q2 !

sup
t :7t 7�b

�n�1 �
i�1

n ]HQ1,Q2
~q1 � di

' t *n�102,q2 !

]q1

di
' tn�102�� o~1!, (A.27)

where t * lies between 0 and t, the first equality holds by a mean-value expansion around
t � 0, and the second equality holds because ]HQ1,Q2

0]q1 is bounded ~Assumption
4W~d!! and limnr`�i�1

n 7di7 , `+ Therefore, using the boundedness of w and Q2i , we
have B2n rp 0+

Equation ~A+27! and a mean-value expansion yield B1nrp 0 because w has a bounded
first derivative by Assumption 3~a!+ In consequence, A2n rp 0, which completes the
proof of part ~a!+

Part ~b! of the lemma follows from part ~a! using a standard argument+
To prove part ~c!, as in part ~a!, we can assume that Q2i is bounded without loss of

generality+ We have

n�1 �
i�1

n

w� ri ~0!

n � 1
�Q2i ���w�nL1n~q1,0!

n � 1
�q2 dL12n~q1,q2 ,0!

���w�nEL1n~q1,0!

n � 1
�q2 dL12n~q1,q2 ,0!� op~1!

���w�nHQ1
~q1!

n � 1
�q2 dHQ1,Q2

~q1,q2 !� op~1!

� Ew~HQ1
~Q1i !!Q2i � op~1!, (A.28)

where the first equality holds by ~A+21! with t � 0, the second equality holds because
A1n~0! rp 0, the third equality holds by ~A+20!, and the fourth equality holds because
n0~n � 1! r 1, Q2i is bounded, and w has a bounded derivative+ �

Proof of Lemma 8. We prove part ~i! first+ Using ~2+1! and Assumption 4W~a!,

y1i � b0
' y2i � [gn~b0 !

'Xi

� ~b� b0 !
'y2i � ~ [gn~b0 !� g1!

'Xi � ui

� ~b� b0 !
'C ' EZi n�102 � ~ [gn~b0 !� g1 � j1~b� b0 !!

'Xi � ui � ~b� b0 !
'v2i +

(A.29)
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In consequence, we apply Lemma 6 with

Cn~ [tn ! � n�1 Z 'Rw , Qi � ui � ~b� b0 !
'v2i , ci � Zi , di � ~ EZi

' , Xi
'!',

[tn � � �C~b� b0 !n
�102

[gn~b0 !� g1 � j1~b� b0 !
�, and h � g+ (A.30)

Note that Scn � OZn � 0 because Xi contains an intercept by Assumption 2~b! and Z 'X � 0
by construction+ The required conditions of Lemma 6 on di are satisfied by Assump-
tion 2+ The assumptions on Qi are satisfied by Assumptions 1~a! and 4W~b! and ~c!+ The
condition n102 [tn � Op~1! holds by Assumption 4W~f !+

We now verify the conditions of Lemma 6 on ci � Zi + By construction, Zi �
EZi � EZ 'X~X 'X !�1Xi , where EZ 'X~X 'X !�1 rp D12 D22

�1 by Assumption 2~c!+ In conse-
quence, by standard arguments using Assumptions 2~c! and ~d!, we obtain
limnr` n�1 �i�1

n 7Zi72 � ` and limnr`max1�i�n 7Zi720n � 0+ Hence, all of the con-
ditions of Lemma 6 hold+

Now, using ~A+30! and OZn � 0, Ân~0!n
102 [tn~	0

1 w~x, g!w~x! dx!�1 equals

n�1 �
i�1

n

Zi EZi
'C~b� b0 !� n�1 �

i�1

n

Zi Xi
'n102~ [gn~b0 !� g1 � j1~b� b0 !!+ (A.31)

The second summand is zero because Z 'X � 0+ The first summand equals n�1Z 'ZC~b�
b0! because Z ' EZ � Z 'MX EZ � Z 'Z+ Hence, by Lemma 6~b!, we have

n�102 Z 'Rw � n102Cn~0!� n�1 Z 'ZC~b� b0 !�
0

1

w~x, g!w~x! dx � op~1!+ (A.32)

~By definition, n102Cn~0! � n�102 Z 'Rw
0 , where Rw

0 is the n-vector whose ith element is
w~Ri 0~n � 1!! and Ri is the rank of ui � ~b � b0!

'v2i in $uj � ~b � b0!
'v2j : j � n%+!

Finally, Lemma 6~c! implies that

n102Cn~0! � n�102 Z 'F� op~1!+ (A.33)

Combining ~A+32!, ~A+33!, and the definition of �g,b�b0

w in ~4+5! establishes Lemma 8~i!+
Lemma 8~ii! follows from part ~i! and Assumption 2~c!+
Lemma 8~iii! follows from Assumption 2~c! and Z 'Z � EZ ' EZ � EZ 'X~X 'X !�1X ' EZ+ Pos-

itive definiteness of DZ follows from that of D+
Lemma 8~iv! follows from the Lindeberg CLT for triangular arrays applied to

n�102 Z ' @Fcw
�102 : Y2 � EY2# plus the facts that

n�102 Z '~ZC�g,b�b0

w n�102 ! � DZ C�g,b�b0

w � o~1!,

n�102 Z 'EY2 � Z 'ZCn�1 � DZ C � o~1!, and

Var~n�102m1
' Z ' @Fcw

�102 : Y2 � EY2 #m2 !r m2
' Vwgm2{m1

' DZm1, (A.34)

for arbitrary fixed nonzero vectors m1 � Rk and m2 � Rm�1+ Note that EZ 'F� 0 because
OZn � 0 and Ew~Ugi ! does not depend on i+
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The Lindeberg condition is verified for n�102m1
' Z ' @Fcw

�102 : Y2 � EY2#m2 ~for m1 and
m2 as before!, as follows+ Let zi � ~w2~Ugi !cw

�102 , v2i
' !m2 � R+ For any « � 0,

n�1 �
i�1

n

~m1
' Zi !

2Ezi
21~~m1

' Zi !
2zi

2 � n«!

� n�1 �
j�1

n

~m1
' Zj !

2{Ezi
21�max

j�n
~m1
' Zj !

2zi
2 � n«�r 0, (A.35)

where the inequality uses ~m'Zi !
2 � maxj�n~m

'Zj !
2 in the indicator function and the

convergence to zero holds by Assumption 2, E7v2i72 � ` ~by Assumption 1~b!!,
Ew2~Ugi ! � ` ~by Assumption 3!, and the dominated convergence theorem+ �

Proof of Lemma 9. We prove part ~i! first+ Let V2 be the n � m matrix whose ith
row is v2i

' + Using Z 'X � 0, we have

[nwn � n�1V2
'Rw cw

�102 � n�1V2
'Z~n�1 Z 'Z!�1n�1 Z 'Rw cw

�102

� n�1V2
'X~n�1X 'X !�1n�1X 'Rw cw

�102 + (A.36)

We have n�1V2
'Zrp 0 and n�1V2

'Xrp 0 because they have mean zero and variance
O~n�1! by Assumptions 1 and 2~a! and ~c!+ Assumption 2~c! implies that ~n�1Z 'Z!�1

and ~n�1X 'X !�1 are Op~1!+ Lemma 8~i! and ~iv! implies that n�102Z 'Rw� Op~1!+ These
results combine to show that the second term on the right-hand side of ~A+36! is op~1!+
Next, we have

n�1 7X 'Rw7 � n�1���
i�1

n

Xiw� ZRi ~b0 !

n � 1
��� � Cn�1 �

i�1

n

7Xi7� O~1! (A.37)

for some constant C � `, using the triangle inequality, the boundedness of w, and
Assumption 2~c!+ This result and the others given previously imply that the third term
on the right-hand side of ~A+36! is op~1!+ Hence, [nwn � n�1V2

'Rw cw
�102 � op~1!+

We apply Lemma 7 with Q1i � ui � ~b � b0!
'v2i , Q2i � v2i , and di and [tn as in

~A+30! to get

n�1V2
'Rw cw

�102 � E @w~G~ui � ~b� b0 !
'v2i !!v2i #cw

�102 � op~1!

� Cov@w~G~ui � ~b� b0 !
'v2i !!, y2i #cw

�102 � op~1!� nwg � op~1!+

(A.38)

The conditions of Lemma 7 on [tn, di , and ~Q1i ,Q2i ! hold by Assumptions 4W~f !, 2~c!,
and 4W~d!, respectively+

Next, we prove part ~ii!+ For simplicity, we replace n � k � p by n in the definition of
ZV22n+ We have

ZV22n � n�1Y2~In � PZ � PX !
'Y2

� n�1~V2
'V2 � V2

'PZ V2 � V2
'PX V2 !rp V22 , (A.39)
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where V2 denotes the n � m matrix whose ith row is v2i
' , n�1V2

'V2 rp V22 by Kol-
mogorov’s law of large numbers for i+i+d+ random variables, and n�1Z 'V2 rp 0 and
n�1X 'V2rp 0 because they have mean zero and variances that are O~n�1! by Assump-
tions 1 and 2~a! and ~c!+ �

Proof of Lemma 10. We prove part ~i! first+ It suffices to show that ~Sn
w , n�102Tn

w!rd

~Sf`
w ,aT

w! conditional on an $«i : i � 1% sequence that satisfies certain properties, and that
$«i : i � 1% sequences satisfy these properties with probability one+ Because conditional
probabilities are bounded by zero and one, this implies that ~Sn

w , n�102Tn
w!rd ~Sf`

w ,aT
w!

unconditionally by the bounded convergence theorem+ The desired properties are

lim
nr`

max
1�i�n

7«i � S«n72��
i�1

n

7«i � S«n72 � 0, (A.40)

lim
nr`

n�1 �
i�1

n

7«i � S«n72 � `, (A.41)

lim
nr`

n�1 �
i�1

n

EZi «i
' � 0, and (A.42)

lim
nr`

n�1 �
i�1

n

Xi «i
' � 0+ (A.43)

Conditions ~A+40! and ~A+41! hold a+s+ by Assumption 4S~d!, Lemma 12~ii!, and Kol-
mogorov’s strong law of large numbers+ Conditions ~A+42! and ~A+43! hold a+s+ by
Assumptions 4S~d! and ~h! and the strong law of large numbers of Theorem 5+2+1
of Chow and Teicher ~1978, p+ 121! applied with an � 2+ Consequently, sequences $«i :
i � 1% that satisfy ~A+40!–~A+43! occur with probability one+

Using ~2+1! and Assumptions 4S~a!–~c!, we have

y1i � b0
' y2i � [gn~b0 !

'Xi (A.44)

� B 'P' EZi n�102 � ~ [gn~b0 !� g1 � j1 Bn�102 !'Xi � B '«i n�102 � ~1 � r 'Bn�102 !ui +

Let zn � ~1 � r 'Bn�102!�1+ Because zn � 0 for n sufficiently large, $ ZRi~b0! : i � n% are
equal to the ranks of the i+i+d+ random variables $ui : i � n% plus the terms

$zn B 'P' EZi n�102 � zn~ [gn~b0 !� g1 � j1 Bn�102 !'Xi � zn B '«i n�102 : i � n%+ (A.45)

Hence, we apply Lemma 6, conditional on an $«i : i � 1% sequence that satisfies ~A+40!–
~A+43!, with

Cn~ [tn ! � n�1 Z 'Rw , Qi � ui , ci � Zi ,

di � �
EZi

Xi

«i

	 , [tn � �
�znPBn�102

zn~ [gn~b0 !� g1 � j1 Bn�102 !

�zn Bn�102
	 , and h � f+ (A.46)
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The assumptions of Lemma 6 on Qi are satisfied by Assumptions 1 and 4S~e!+ The
required conditions for ci are verified by the same argument as in the proof of Theo-
rem 1+ The assumptions on di are satisfied by Assumption 2, ~A+40!, and ~A+41!+ The
assumptions on [tn are satisfied by Assumption 4S~i! because zn r 1+

Using the definitions of ci , di , and [tn, Ân~0!n
102 [tn~	0

1 w~x, f !w~x! dx!�1 equals

zn n�1 �
i�1

n

Zi EZi
'PB � zn n�1 �

i�1

n

Zi Xi
'n102~ [gn~b0 !� g1 � j1 Bn�102 !

� zn n�1 �
i�1

n

Zi «i
'B+ (A.47)

The first term in ~A+47! equals Z 'ZPB � o~1! because znr 1+ The second term is zero
because Z 'X � 0+ The third term equals

zn n�1 �
i�1

n

EZi «i
'B � zn~n

�1 EZ 'X !~n�1X 'X !�1n�1 �
i�1

n

Xi «i
'B � o~1!, (A.48)

using ~A+42!, ~A+43!, and Assumption 2~c!+ Hence, by Lemma 6~b! and ~c!, we have

n�102 Z 'Rw � n�102 Z 'F� Z 'ZPB�
0

1

w~x, f !w~x! dx � op~1!, (A.49)

which establishes part ~i!+
Lemma 10~ii! follows from part ~i! and Assumption 2~c!+
To establish Lemma 10~iii!, we have

n�1 Z 'Y2 � n�1 Z '~ZP� Xj� V2 !� n�1 Z 'ZP� n�1 Z 'V2rp DZP, (A.50)

where V2 denotes the n � m matrix whose ith row is v2i
' and using n�1Z 'V2 rp 0 be-

cause its mean is zero and its variance is O~n�1! by Assumptions 1 and 2~a! and ~c!+
In addition, we have

n�1 Z 'F � n�1 Z '~F� EF!rp 0, (A.51)

where the equality holds because EF is proportional to 1n and Z '1n � 0 and the
convergence to 0 holds by the strong law of large numbers referenced in the previous
paragraph+ �

Proof of Lemma 11. We prove part ~i! first+ By the same argument as in the proof
of Lemma 9~i!, but with Lemma 8 replaced by Lemma 10, we have [nwn �
n�1V2

'Rw cw
�102 � op~1!+ As in the proof of Lemma 10~i!, it suffices to show the result

conditional on an $«i : i � 1% sequence that satisfies certain properties and that $«i :
i � 1% sequences satisfy these properties with probability one+ In the present case, we
need the property

lim
nr`

n�1 �
i�1

n

7«i7 � `+ (A.52)
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Condition ~A+52! holds a+s+ by Kolmogorov’s strong law of large numbers using Assump-
tion 4S~d!+

Lemma 7 applied conditional on a sequence $«i : i � 1% that satisfies ~A+52!, with
~Q1i ,Q2i ! � ~ui , v2i ! and di and [tn as in ~A+46!, gives

n�1V2
'Rw cw

�102 � E @w~F~ui !!v2i #cw
�102 � op~1!

� Cov@w~F~ui !!, y2i #cw
�102 � op~1!� nwf � op~1!+ (A.53)

The conditions of Lemma 7 on [tn, di , and ~Q1i ,Q2i ! hold by Assumption 4S~i!, condi-
tion ~A+52! and Assumptions 2~c! and ~d!, and Assumption 4S~f !, respectively+

The proof of part ~ii! is the same as for Lemma 9~ii!+ �

Proof of Lemma 12. Part ~i! holds because E �i�1
` ci

1�d0i 1�d � Ec1
1�d

�i�1
` i�~1�d! � ` implies that �i�1

` ci
1�d0i 1�d � ` a+s+ Part ~ii! holds because the

result of part ~i! and Kronecker’s lemma ~see, e+g+, Chow and Teicher, 1978, p+ 111!
imply that n�1�d �i�1

n ci
1�d r 0 a+s+ Hence, n�1�d maxi�n ci

1�d � n�1�d �i�1
n ci

1�d r

0 a+s+ In turn, this gives n�1 maxi�nci r 0 a+s+ �

Proof of Lemma 13. We prove the lemma by verifying the conditions of Theo-
rem 8+3 in Pollard ~1990!+ To match the notation in Pollard ~1990!, view the sequence
$~Q1i ,Q2i ! : i � 1% as depending on v � V, where the probability space is $V,F, P %, and
let ~Q1i ,Q2i !~v! denote the ith element of this sequence+ Also, view the sequence of
independent processes

$hni ~q1,q2 , t ! : ~q1,q2 , t ! � T � Rm�1�dd % (A.54)

for i � 1 as a sequence of independent processes indexed by t � T :

$hni ~v;t! : t � T %, where t � ~q1,q2 , t ! and

hni ~v;t! � 1~~Q1i ,Q2i !~v!� ~q1 � di
' tn�102,q2 !!+ (A.55)

Each of the processes hni~v;t! has envelope Hni~v!� 1 ∀v � V, and these envelope
functions satisfy

�
i�1

` EHni

i 2
� �

i�1

` 1

i 2
� `, (A.56)

which is the first condition of Theorem 8+3 of Pollard ~1990!+
Now, we verify that the processes $hni~v;t! : t � T % and the envelope functions

$Hni~v!� 1 ∀v � V% for i � 1 satisfy the second condition of Theorem 8+3 of Pollard
~1990!+ For each v, define the sets

Hvn � $~hn1~v;t!, + + + , hnn~v;t!! � Rn : t � T % and

a � Hvn � $~a1 hn1~v;t!, + + + ,an hnn~v;t!! � Rn : t � T % (A.57)

for some a � Rn +
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Denote the largest number k for which there exist points in a subset of a metric space
T with d~ti , tj ! � «, for i � j, by D~«,T !+ The number D~«,T ! is called the packing
number+ Denote the �1 distance in Rn by 6a61 � �i�1

n 6ai 6+
By Definition 7+9 of Pollard ~1990!, $hni~v;t! : t � T % for i � 1 is manageable with

respect to the envelopes $Hni~v! � 1 ∀v � V% for i � 1 if there exists a function l~«!
such that

1+ 	0
1Ml~«!d« � `,

2+ D~« 6a61,a � Hvn! � l~«! for 0 � « � 1, all v � V, all vectors of nonnegative
weights a, and all n+ ~Because Hni~v! � 1 ∀v we have that 6a � H61 � 6a61,
where H � ~Hni~v!, + + + , Hnn~v!!+!

The second condition of Theorem 8+3 of Pollard ~1990! is that $hni~v;t! : t � T % for
i � 1 is manageable with respect to the envelopes $Hni~v! � 1 ∀v � V% for i � 1+

For any v, the class Hvn belongs to a larger class of functions H defined by

H � $h 6h~q1,q2 !� 1~~q1,q2 ! � C! for C of the type ~�`, c1#� ~�`, c3 #
m %+ (A.58)

The collection of all cells ~�`, c1# � ~�`, c2#
m has VC-index equal to ~m � 1! � 1,

which implies that the class of indicator functions H has VC-index equal to ~m � 1!� 1
also ~see van der Vaart and Wellner, 1996!+ From Theorem 2+6+7 in van der Vaart and
Wellner ~1996!, it follows that there exist constants A1 and W such that

N~«02,H! � A1~«02!�W for 0 � «� 2, (A.59)

where N~«02,H! is the smallest number of closed balls with radius «02 that covers H+
The number N ~«02,H! is called the covering number of H+ Because D ~«,H! �
N~«02,H! and Hvn � H for every n and v, it follows that there exist constants A2

and W,

D~«,Hvn ! � A2«
�W for 0 � «� 1+ (A.60)

Now, using an argument similar to the one used in the proof of Theorem 4+8 of Pol-
lard ~1990!, we can show that for all n and v, there exist constants A3 and W such that

D~« 6a61,a � Hvn ! � A3«
�W for 0 � «� 1+ (A.61)

Take Hvn
* to be the set of rescaled coordinates

hni
* �

ai hni

2 �
i�1

n

ai

for hn � Hvn + (A.62)

Let h1
* and h2

* in Hvn
* be rescaled coordinates of h1 and h2 in Hvn+ Then,

6h1
*� h2

* 61 � �
i�1

n

�
ai

2 �
i�1

n

ai �6h1i � h2i 6� 6h1 � h2 61+ (A.63)
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Hence,

D~«,Hvn
* ! � A2«

�W for 0 � «� 1+ (A.64)

Now, we have

6h1
*� h2

* 61 � «02m �
i�1

n

�
ai

2 �
i�1

n

ai

~h1i � h2i !� � «02

m 6a � h1 � a � h2 61 � «��
i�1

n

ai� � « 6a61+ (A.65)

Therefore, ~A+61! holds with A3 � 2WA2+ This establishes that $hni~v;t! : t � T % is
manageable with respect to the envelopes $Hni~v! � 1 ∀v � V% + Theorem 8+3 of Pol-
lard ~1990! then gives

n�1 sup
t�T

��
i�1

n

~hni ~v;t!� Ehni ~v;t!!�r 0 a+s+, (A.66)

which gives the result of the lemma+ �

Proof of Lemma 1. By the definition of [gn
LS~b0 !, we have

[gn
LS~b0 ! � ~n

�1X 'X !�1n�1 �
i�1

n

Xi ~~b� b0 !
'y2i � g1

' Xi � ui !

� g1 � j~b� b0 !� ~n
�1X 'X !�1n�1 �

i�1

n

Xi ~ui � ~b� b0 !
'v2i !, (A.67)

using y2i � P'Zi � j 'Xi � v2i and X 'Z � 0+ Hence, we obtain

n102~ [gn
LS~b0 !� g1 � j1~b� b0 !! � ~n

�1X 'X !�1n�102 �
i�1

n

Xi ~ui � ~b� b0 !
'v2i !

� n102~j� j1!~b� b0 !+ (A.68)

Assumption 2~c! implies that ~n�1X 'X !�1 � D11
�1 � o~1!+ The second multiplicand of

the first term on the right-hand side of ~A+68! is asymptotically normal by the Linde-
berg central limit theorem using Assumptions 1 and 2 and Eui

2 � `+ The Lindeberg
condition is verified by an argument analogous to that in ~A+35!, where E ~ui �
~b � b0!

'v2i !
2 � ` by Assumption 1~b! and Eui

2 � `+ Thus, the first term on the
right-hand side of ~A+68! is O~1!+ Next, we have

j� j1 � ~n�1X 'X !�1n�1X ' EZP� ~n�1X 'X !�1n�1X ' EZCn�102 � O~n�102 !, (A.69)

where the first equality holds by the definition of j stated following ~2+3!, the second
equality holds by Assumption 4W~a!, and the last equality holds by Assumption 2~c!+
Assumption 4W~b! states that b � b0 is a constant+ Hence, n102~j � j1!~b � b0! �
O~1!, which completes the proof of the lemma+ �
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Proof of Corollary 1. We have

P~RLRn
w � kLR,a~Tn

w'Tn
w , k,m!! � P~LR`~Sn

w ,Tn
w! � kLR,a~Tn

w'Tn
w , k,m!!

r P~LR`~S`
w ,T`

w! � kLR,a~T`
w'T`

w , k,m!!

��P~LR`~S`
w , t ! � kLR,a~t

't, k,m!! dFT`
w~t !� a,

(A.70)

where FT`
w~{! is the df of T`

w , the convergence holds by Theorem 1~i! and the continuous
mapping theorem, the second equality holds by the independence of S`

w and T`
w , and the

last equality holds by the definition of kLR,a~t 't, k,m! in ~3+10! and the fact that S`
w ;

N~0, Ik! under the null by ~4+6!+ �

Proof of Lemma 2. The proof is very similar to that of Theorem 1 with Yb0 [sn
�1 in

place of Fcw
�1 + First, by the same proof as for Lemma 9~ii! but with ~Y2,V2! replaced by

~Y,V !, we get ZVn rp V, where V is the n � ~m � 1! matrix with ith row equal to vi
'+

This implies [sn
2 rp b0

'Vb0 � sg
2 and ZV*n rp Vg+ Next, we need the following ana-

logues of Lemma 8~i!, ~ii!, and ~iv!:

n�102 Z 'Yb0 � n�102 Z '~Yb0 � EYb0 � ZC~b� b0 !n
�102 !, (A.71)

Sn � ~Z 'Z!�102 Z '~Yb0sg
�1 � EYb0sg

�1 � ZC~b� b0 !sg
�1 n�102 !� op~1!,

(A.72)

n�102 Z ' @~Vb0sg
�1 � ZC~b� b0 !sg

�1 n�102 ! : Y2 #rd @N1 :N2 # , (A.73)

where ~A+71! holds by ~2+1!, ~2+3!,Assumption 1~a!, and Z 'X � 0, ~A+72! holds by ~A+71!
and [sn

2 rp sg
2 , and ~A+73! holds by the same proof as that of Lemma 8~iv! ~given ear-

lier! except with Fcw
�102 , �g,b�b0

w , and w~Ugi !cw
�102 replaced by Vb0sg

�1 , ~b� b0 !sg
�1 ,

and v2i
' b0sg

�1 , respectively, and with E~v2i
' b0 !

2 � ` by the assumption that V is well
defined+ Given these analogues of Lemma 8~i!, ~ii!, and ~iv!, the rest of the proof of
Lemma 2 is the same as that of Theorem 1+ �

Proof of Lemma 3. We establish part ~i! first+ Let sL
2 denote the variance of the df

L+ Because w~x! � L�1~x!, cw � sL
2 by change of variables+ Also, we have

sL
2 � Var~~ui � ~b� b0 !

'v2i !k!� sg
2k2, k� sL 0sg , and

G~x! � L~kx!� L~sL x0sg !+ (A.74)

Combining these results gives the result of part ~i!:

w~Ugi !cw
�102 � w~G@~ui � ~b� b0 !

'v2i !# !cw
�102

� L�1~L@sL~ui � ~b� b0 !
'v2i !0sg # !sL

�1

� ~ui � ~b� b0 !
'v2i !0sg + (A.75)

Part ~i! implies that nwg � ng, and so Vwg � Vg and part ~ii! holds+
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For part ~iii!, we have

�
0

1

w~x, g!w~x! dx � ��
0

1 g '~G�1~x!!

g~G�1~x!!
L�1~x! dx � ��

�`

`

g '~ y!L�1~G~ y!! dy

� ��
�`

`

g '~ y!L�1~L~ky!! dy � �k�
�`

`

g '~ y!ydy � k� sL 0sg ,

(A.76)

where the second equality holds by change of variables with y � G�1~x!, the third and
last equalities hold by ~A+74!, and the fourth equality holds by integration by parts+
Combining ~A+76! with cw � sL

2 establishes part ~iii!+
Part ~iv! follows from parts ~ii! and ~iii! and the definitions of Nw, N1, S`

w , S`, T`
w ,

and T`+ �
Proof of Lemma 4. The proof is like that of Theorem 2 with Yb0 [sn

�1 in place of
Rw cw

�1 + By essentially the same proof as for Lemma 9~ii! but with ~Y2,V2! replaced by
~Y,V !, we get ZVn � Evi vi

' rp 0+ Under Assumption 4S~a!, we have

v1i � ui � ~b0 � Bn�102 !'v2i ,

Evi vi
'r E�ui � b0

' v2i

v2i
��ui � b0

' v2i

v2i
�' ,

b0
' E�ui � b0

' v2i

v2i
��ui � b0

' v2i

v2i
�'b0 � Eui

2 � sf
2 , and

H 'E�ui � b0
' v2i

v2i
��ui � b0

' v2i

v2i
�'b0 � Ev2i ui + (A.77)

In consequence,

[sn
2 � b0

' ZVn b0rp sf
2 , [nn � H ' ZVn b0 [sn

�1rp Ev2i uisf
�1 � nf , and ZV*nrp Vf +

(A.78)

We need the following analogue of Lemma 10~ii!:

Sn � ~Z 'Z!�102 Z '~Yb0sf
�1 � EYb0sf

�1 � ZBsf
�1 n�102 !� op~1!, (A.79)

which holds by ~2+1!, ~2+3!, Assumption 1~a!, Z 'X � 0, and [sn
2 rp sf

2+ Next, an ana-
logue of ~A+3! holds with ZVwn, Vwf , and n�1Z 'Rw replaced by ZV*n, Vf , and n�1Z 'Yb0 �
n�1Z '~Vb0 � ZPBn�102!, respectively, using the result that ZV*nrp Vf and the fact that
n�1Z 'Vb0 rp 0 because its mean is zero and its variance is O~n�1!+ Given these ana-
logues of Lemma 10~ii! and ~A+3!, the rest of the proof of Lemma 4 is the same as that
of Theorem 2+ �

Proof of Lemma 5. The proofs of parts ~i!–~iii! are analogous to those of parts ~i!–
~iii! of Lemma 3+ Part ~iv! follows from parts ~ii! and ~iii! and the definitions of Sf`

w ,
Sf`, aT

w , and aT + �
Proof of an Alternative Expression for Tn. We now provide a proof of ~3+6!,

which gives an alternative expression for Tn from its definition in ~2+6!+ Let M �
@b0 [sgn

�1 :H # � R ~m�1!�~m�1!+ Straightforward calculations yield
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YM � @Yb0 [sgn
�1 : Y2 # , M 'A0 � H, ZV*n � M ' ZVn M, and

A0
' ZVn

�1 A0 � A0
' M~M�1 ZVn

�1 M '�1 !M 'A0 � H ' ZV*n
�1 H+ (A.80)

Using the definition of Tn in ~2+6!, we have

Tn � ~Z 'Z!�102 Z '~YM !~M�1 ZVn
�1 M '�1 !~M 'A0 !~A0

' ZVn
�1 A0 !

�102

� ~Z 'Z!�102 Z ' @Yb0 [sgn
�1 : Y2 # ZV*n

�1 H~H ' ZV*n
�1 H !�102, (A.81)

where the second equality uses ~A+80!+ The right-hand side of ~A+81! is the expression
in ~3+6!+ �

Asymptotic power calculations. Next, we describe the simulation method used to
calculate the weak IV asymptotic power reported in Table 1+ The first step is to compute
j~wNS, g! and j~wWS, g! when g is the density of ui � bv2i for v2i defined in ~4+18! and
ui and «i are independent with distribution F+ The idea is to use the fact that the Hodges–
Lehmann estimator of location based on w ~which is defined, e+g+, in Hettmansperger,
1984, eqn+ ~2+8+12!, p+ 99! has asymptotic variance equal to 10j~w, g! ~see Hettmansperger,
1984, Thm+ 2+6+5 and eqn+ ~2+9+4!, pp+ 76, 105!+We compute the Hodges–Lehmann esti-
mators based on wNS and wWS for 30,000 independent samples of a location model with
density g and sample size 100,000+ This yields 30,000 Hodges–Lehmann estimates ZuNS

and ZuWS+ The reciprocals of the sample variances of these estimates yield estimated val-
ues of j~wNS, g! and j~wWS, g!, denoted Dj~wNS, g! and Dj~wWS, g!+

The second step is to compute the matrices VwNSg , VwWSg , and Vg and the scalar sg
2

defined in ~4+1! and ~4+10!+ The df G~x! is approximated by the empirical df of 100,000
i+i+d+ observations with distribution G ~independent of the preceding random variables!,
call it EG~x!+ Using the same observations, sg

2 is estimated by the sample variance,
denoted Isg

2 + Next, nw, g is estimated by Inw, g � R�1 �i�1
R ~ Iv2i � SIv2R !w~ EG~ FXi !!cw

�102 ,
where R � 40,000 for all distributions except the uniform, R � 100,000 for the uniform
distribution, SIv2R � R�1 �i�1

R Iv2i , Iv2i � ~1 � ruv2
2 !102 I«i � ruv2 Iui , FXi � Iui � b Iv2i , Iui and

I«i are independent with distribution F, are independent of EG~x!, and are i+i+d+ across i �
1, + + + ,R, and w� wNS,wWS+ The term ng is estimated by the sample covariance between
Iv2i and FXi Isg

�1 , denoted Ing, and v22 is estimated by the sample variance of Iv2i , denoted
Jv22+ The matrices EVwNSg , EVwWSg , and EVg are constructed using InwNSg , InwWSg , Ing, and Jv22+

The third step is to compute 5,000 independent observations of ~i! two independent
k-variate normals ~ DS`

w , ET`
w! with covariance matrices equal to Ik and means given by

l102b Dj~w, g!e1 and l102~b Dj 102~w, g!,1! EVwg
�1 e2~e2

' EVwg
�1 e2 !

�102e1, respectively, for w �
wNS,wWS, where e1 � ~1,0, + + + ,0!' � Rk and e2 � ~0,1!', and ~ii! two independent k-variate
normals ~ DS`, ET`! with covariance matrices equal to Ik and means as in ~i! but with
Isg
�1 in place of Dj102~w, g!+ The same normal random variables were used for

~ DS`
wWS

, ET`
wWS

!, ~ DS`
wNS

, ET`
wNS

!, and ~ DS`, ET`!—just the means are different+
The last step is to compare each of the 5,000 WS-RCLR, NS-RCLR, CLR, LM, and

AR test statistics based on ~ DS`
wWS

, ET`
wWS

!, ~ DS`
wNS

, ET`
wNS

!, and ~ DS`, ET`! with the appropriate
conditional critical value ~determined by simulation! or unconditional critical value to
determine whether the test rejects the null hypothesis+ The fraction that rejects the null
hypothesis is the reported power in Table 1+
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