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This paper considers tests in an instrumental variable (IVs) regression model with
IVs that may be weak. Tests that have near-optimal asymptotic power properties
with Gaussian errors for weak and strong IVs have been determined in Andrews,
Moreira, and Stock (2006, Econometrica 74, 715-752). In this paper, we seek
tests that have near-optimal asymptotic power with Gaussian errors and improved
power with non-Gaussian errors relative to existing tests. Tests with such proper-
ties are obtained by introducing rank tests that are analogous to the conditional
likelihood ratio test of Moreira (2003, Econometrica 71, 1027-1048). We also
introduce a rank test that is analogous to the Lagrange multiplier test of Kleiber-
gen (2002, Econometrica 70, 1781-1803) and Moreira (2001, manuscript, Uni-
versity of California, Berkeley).

1. INTRODUCTION

This paper is concerned with inference in the standard linear instrumental vari-
able (IV) regression model with possibly weak IVs. We start by giving a brief
account of recent developments in the literature on weak IVs to explain the
contribution of this paper to the literature. It has been documented in the weak
IV literature that standard methods, such as two-stage least squares—based tests
and confidence intervals (CIs), perform poorly when IVs are weak, especially
when endogeneity is moderate to strong. Specifically, such tests have size well
in excess of their nominal level, and corresponding CIs have size well below
their nominal level. See the review papers of Stock, Wright, and Yogo (2002),
Dufour (2003), and Andrews and Stock (in press).

The well-known Anderson and Rubin (1949) (AR) test does not exhibit size
distortions due to weak IVs. Hence, Staiger and Stock (1997) and Dufour (1997)
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propose basing inference on the AR test. AR-based CIs can be constructed by
inverting AR tests. The AR test has good power properties when the model is
just identified; see Moreira (2001) and Andrews, Moreira, and Stock (2006a)
for some optimality properties for the case of Gaussian errors. However, the
AR test sacrifices power when the model is overidentified. This leads to exces-
sively long AR-based CIs.

In consequence, considerable effort has been expended recently to develop
new tests that circumvent this problem. Such tests are of interest in their own
right and because they can be used to construct CIs by inversion. Kleibergen
(2002) and Moreira (2001) introduce a Lagrange multiplier (LM) test whose
size is robust to weak IVs and whose power exceeds that of the AR test in
many cases when the model is overidentified. However, this test has somewhat
quirky power properties. For example, its power function can be nonmono-
tonic; see Andrews et al. (2006a, 2006b).

Subsequently, Moreira (2003) showed that any test can be made robust to
weak Vs asymptotically by using a conditional critical value function that con-
ditions on a statistic that is complete and sufficient under the null hypothesis.
Using this method, he introduced the conditional likelihood ratio (CLR) test.
Andrews et al. (2006a) investigate the power properties of the CLR test in the
case of a single right-hand-side endogenous variable and show that its power is
essentially on the asymptotic power envelope for two-sided invariant similar
tests under the assumption of Gaussian errors. This is true under both the “weak
IV asymptotics” introduced in Staiger and Stock (1997), in which the coeffi-
cient on the IVs in the first-stage regression shrinks to zero as the sample size
goes to infinity, and under the standard “strong IV asymptotics.” Andrews and
Stock (in press) show that these optimality properties extend to the “many weak
IV asymptotic scenario,” in which the number of IVs increases with the sample
size. Hence, the CLR test has the desirable features of having size that is robust
to weak IVs and near-optimal power properties with Gaussian errors.'

In this paper, we aim to further improve the power properties of weak IV
tests by constructing a test that has the same asymptotic behavior as the CLR
test with Gaussian errors but improved power with non-Gaussian errors. To do
this, we construct a rank analogue of the CLR test, denoted RCLR. We also
construct a rank analogue of the LM test of Kleibergen (2002) and Moreira
(2001), denoted RLM. As is well known from location and regression models,
rank estimators and tests have more robust efficiency properties than least
squares—based procedures; see Hettmansperger (1984). For example, Chernoff
and Savage (1958) have shown that the asymptotic relative efficiency (ARE)
of the normal scores rank test to the analogous least-squares #-test is greater
than or equal to one for all symmetric error distributions with equality at the
Gaussian. This holds in both location and regression models, and it also holds
for estimators. This suggests that for the linear IV model rank-based tests whose
size is robust to weak IVs may exhibit similarly desirable power properties
under nonnormality.
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Andrews and Marmer (in press) develop a rank analogue of the AR test,
denoted RAR. This test has exact finite-sample size under Gaussian and non-
Gaussian errors under certain circumstances. Its asymptotic power properties
improve on those of the AR test and are excellent for just-identified models.
However, as with the nonrank AR test, the RAR test sacrifices power in over-
identified models. The RCLR and RLM tests developed here substantially
improve the power properties of the RAR test in overidentified models.

We now summarize the results of the paper. The model considered is a linear
IV regression model with a single structural equation with m right-hand-side
endogenous variables and p exogenous variables coupled with m reduced-form
equations for the right-hand-side endogenous variables. The null hypothesis is
H,: B = By, where B is the m-dimensional coefficient on the m right-hand-side
endogenous variables. The alternative hypothesis is H,: 8 # (.

First, we introduce rank analogues of the CLR and LM tests. This is more
difficult than for the AR test because the LR and LM statistics are more com-
plicated functions of the data than is the AR statistic. A hybrid rank/linear test
statistic is required to obtain power properties of RCLR and RLM tests that are
analogous to those of the CLR and LM tests under Gaussianity and superior for
other distributions.

Second, we obtain the weak IV asymptotic distributions of the rank statistics
under the null and fixed alternatives. These results are used to show that under
Gaussian errors the normal scores (NS) RCLR and RLM tests have the same
null and alternative asymptotic behavior as the nonrank versions of these tests.
The same is true for the Wilcoxon scores (WS) rank and nonrank CLR and
LM tests under uniform errors. Furthermore, these asymptotic distributions allow
one to compare the weak IV asymptotic power of the rank to nonrank tests
under different error distributions. It is shown that the same AREs for the rank
versus nonrank LM and AR tests arise in the weak IV context as in the location
and regression models. Hence, the Chernoff-Savage result also applies to these
tests. That is, the NS-RLM test (weakly) dominates the LM test in terms of
power for all symmetric error distributions, and the same is true for the NS-RAR
test versus the AR test.

For the rank versus nonrank CLR tests, the weak IV asymptotic power com-
parison is more complicated. However, numerical calculation of the asymptotic
powers of these tests shows the same pattern that is typical for rank versus
nonrank procedures in other contexts. In particular, the NS-RCLR test has notice-
ably higher asymptotic power for thin-tailed (uniform) and thick-tailed (z; and
difference of independent log normals (DLN)) errors than the nonrank CLR
test and equal asymptotic power for Gaussian errors. The WS-RCLR test has
asymptotic power that is close to that of the CLR test for Gaussian and uniform
errors and substantially higher power for #; and DLN errors.

Third, we establish the strong IV asymptotic distributions of the rank statis-
tics under the null and local alternatives. These results show that the RCLR
and RLM tests are asymptotically equivalent under strong IV asymptotics. This
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is also true of the nonrank versions of these tests. The results also show that the
ARE of the rank to the nonrank versions of these tests under strong IV asymp-
totics is the same as the standard ARE that arises in location and regression
models for tests and estimators. Hence, the Chernoff—Savage result applies under
strong IV asymptotics to both the NS-RCLR test and the NS-RLM test. In con-
sequence, the NS-RCLR test (weakly) dominates the CLR test in terms of power
for symmetric errors under strong IV asymptotics.

The proofs of the weak and strong IV asymptotic results make use of results
and arguments given in Hdjek and Sidék (1967) and Koul (1969, 1970).

Fourth, we carry out finite-sample size and power comparisons of the
WS-RCLR, NS-RCLR, CLR, LM, and AR tests. For brevity, we do not report
results for the RLM and RAR tests, because they are found to be inferior (both
asymptotically and in finite-sample experiments) to those of the RCLR tests.
We compare the tests for a variety of scenarios that differ according to the degree
of endogeneity, strength of the I'Vs, number of IVs, and size of the sample. For
each scenario we consider Gaussian, uniform, ¢, t,, t3, and DLN errors. The
two RCLR tests perform noticeably better in terms of size than the nonrank
CLR, LM, and AR tests. The finite-sample power comparisons reflect the asymp-
totic power comparisons discussed previously fairly closely. Specifically, the
NS-RCLR test has similar power to the CLR test for Gaussian errors and higher
power for non-Gaussian errors. The WS-RCLR test does not perform as well
as the NS-RCLR test with uniform errors, but it performs better with thick-
tailed errors.

Based on the asymptotic and finite-sample results, we recommend the
NS-RCLR test over the WS-RCLR, CLR, LM, and AR tests. The WS-RCLR
test also has good overall properties, but we prefer the NS-RCLR test because
of its excellent power performance for both thin-tailed and thick-tailed errors.

The main drawback of the RCLR tests is that they are not robust to hetero-
skedasticity of the errors. That is, their size may be distorted by heteroskedas-
ticity. This is also true of the CLR test. However, it is possible to robustify the
CLR test to heteroskedasticity; see Andrews, Moreira, and Stock (2004) and
Kleibergen (2005). It is not possible to robustify the RCLR tests to heteroske-
dasticity. Hence, there is a trade-off between power for non-Gaussian errors
and robustness to heteroskedasticity for these tests. If heteroskedasticity is a
possible problem, then the robustified CLR test is preferred to the NS-RCLR
and WS-RCLR tests. If not, then the rank tests are preferred.

There is a vast literature on rank procedures in statistics; e.g., see Hijek and
Sidak (1967), Hettmansperger (1984), Puri and Sen (1985), and Héjek, Sidak,
and Sen (1999). Rank procedures have been used in both cross-section and time
series econometrics. For a review, see Koenker (1996). Some more recent econo-
metric references include Hasan and Koenker (1997), Cavanagh and Sherman
(1998), Abrevaya (1999), Chen (2000, 2002), and Thompson (2004).

The remainder of this paper is organized as follows. Section 2 defines the
model. Section 3 introduces the rank analogues of the CLR, LM, and AR tests.
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Sections 4 and 5 provide asymptotic results for these tests under weak IV and
strong IV asymptotics, respectively. These sections also give asymptotic power
comparisons of rank and nonrank tests. Section 6 provides finite-sample size
and power comparisons of rank and nonrank tests. An Appendix contains proofs
of the results.

All limits are taken as n — oo, and vec(-) is the column by column vec
operator.

2. MODEL

We consider the following model, which consists of a single structural equa-
tion and m reduced-form equations:

i =B'yy tyviX; +u,

Vo = WZ; + £/ X, + vy, (2.1)

where y;; € R, y»; € R™, X; € R?, and Z; € R are observed variables; u; € R
and v,; € R™ are unobserved errors; and 8 € R™, II € R*™ v, € R”, and
&, € RP*™ are unknown parameters.

Our interest is in testing the hypotheses

Hy:B=pBy and H,:B # . 2.2)

Let Z and X denote the n X k IV and n X p regressor matrices whose ith
rows are Z. and X/, respectively. We transform the IV matrix Z so that the
transformed IV matrix, Z, and the regressor matrix, X, are orthogonal:

Z=MxZ, My =1, — Py, Py =X(X'X)"'X', and
vy =WW'Z, + €'X; + vy, 2.3)
where Z; is the ith row of Z written as a column and & = &, + (X'X)"'X'ZII.
By construction, Z'X = 0.
Substituting the reduced-form equations for y,; into the structural equation

for y,; yields m + 1 reduced-form equations:

v, =B'II'Z, +y'X, +v,, and

v, =1'Z, + &'X, +v,;,, where

Vy; = U; + B,UZi’ (2.4)
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and y = y; + £B. The m + 1 reduced-form equations also can be written as
v, =All'Z, + n'X; +v;, where

yi = nya) € R, v, = (vy;,05)" € R™,

ﬁ/
A= [ ERMHXM and gy =[y:&] € RPXHD, (2.5)

n

Let Y and Y, denote the n X (m + 1) and n X m matrices whose ith rows are y/
and y;,, respectively.

We make the following basic assumptions about the model. (Additional
assumptions are given subsequently.)

Assumption 1.

(a) {(u;,v,;):i = 1} are independent and identically distributed (i.i.d.) ran-
dom variables with mean zero.
(b) v,; has nonsingular variance matrix Q,, € R"™*™,

Assumption 2.

(a) {(Z;,X;):i =1} are fixed (i.e., nonrandom).
(b) The first element of X; is 1 for all i.

(c) n ' X1 (Z,,X))'(Z,,X]) — D > 0.

(d) max;=,(|Z:|> + | X;[*)/n — 0.

The combination of Assumptions 1 and 2(a) implies that the distribution of
the errors {(u;,v,;) : i = 1} does not depend on the IVs or regressors. In place of
Assumption 2(a), one could treat the IVs and regressors as random. In this case,
the I'Vs and regressors would be assumed to be independent of the errors. As is,
Assumption 2(a) is consistent with random IVs and regressors provided one
conditions on these variables.

Assumption 2(b) requires that the structural and reduced-form equations
include an intercept. Given that Z'X = 0, this implies that n=! X", Z, = 0.
Assumptions 2(c) and 2(d) are standard assumptions concerning the behavior
of IVs and regressors. They hold with probability one if {(Z;,X;):i =1} is a
realization of an i.i.d. sequence with positive definite (pd) variance matrix and
2 + 6 moments finite for some 6 > 0; see Lemma 12 in the Appendix.

We now define the CLR test of Moreira (2003), the LM test of Kleibergen
(2002) and Moreira (2001), and the AR test. The CLR test depends on an LR
test statistic coupled with a “conditional” critical value defined subsequently.
The LR, LM, and AR test statistics are based on the following statistics:>
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S, =(Z'Z)"2Z'Yby- (b)), by) /> € R* and
T,=(2'2)7"272'Y(, ' Ay(Ay Q' Ay) "2 € R¥™, where

1 ’
b() — < ) I= Rm+l, AO — |:BO:| e R(m+l)><m’
_BO m

Q,=(n—k—p)'Y'My.xY, and My =1,—P,— Py. (2.6)
Note that f),l is an estimator of the variance matrix ) = Ev,v;, which needs to
be well defined and pd for S, and 7, to be well behaved asymptotically. After
proper centering, the statistics S, and 7, have a joint multivariate normal asymp-
totic distribution with zero covariance under weak IV asymptotics under the
null and the alternative. Hence, S, and 7,, are asymptotically independent.

The LR, LM, and AR test statistics depend on (S, 7,,) in the following way:

LRn = S;,Sn - )\min([Sn : Tn]’[sn : Tn])9
LMn = S;;Tn(Tn, Tn)ilT;l’Sn, and

AR, =SS, /k, (2.7)

where A, (C) denotes the minimum eigenvalue of the matrix C. When m = 1,
LR, can be written as

1
LRn = 5 (QSn - QTn + \/(QSn - QTn)2 + 4Q§Tn)’ Where

QSn = St;Sn’ QTn = T;r, Trn and QSTn = S’ T,; (2'8)

n-n’

see Moreira (2003) and Andrews and Stock (in press).>
The CLR test with asymptotic level « rejects the null hypothesis when

LRn > KLR,a(QTn’ k7 m)7 (2.9)

where kg (-, k,m) is a critical value function defined such that the CLR
test has asymptotic null rejection rate @ under weak IV asymptotics (under
the preceding assumptions and Eu? < oo). See (3.10) for the definition of
KLR,a("kam)'

The LM statistic has a chi-squared asymptotic null distribution with m degrees
of freedom, denoted y?2, under weak and strong IVs (under the preceding
assumptions and Eu? < o). Hence, the critical value for the asymptotic level a
LM test is the 1 — a quantile of a y?2 distribution.

The AR statistic times k has a chi-squared asymptotic null distribution under
weak and strong IVs with k (= m) degrees of freedom (under the preceding
assumptions and Eu? < o0). Under the assumption of normal errors {v;:i = 1},
it has an exact Fj ,_4—, distribution. Thus, use of the 1 — « quantile of an
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Fy »——p distribution as the critical value for the level @ AR test is justified
asymptotically for nonnormal errors and yields an exact test for normal errors.

3. RANK CLR, LM, AND AR TESTS

In this section, we introduce rank analogues, S¥ and 7,?, of the statistics S, and
T,, where ¢ is a score function defined subsequently. By design, S,¥ and 7, are
asymptotically independent. Given S;¥ and 7,7, we define rank statistics that
are analogous to the CLR, LM, and AR statistics defined previously. We show
that for normal scores, i.e., ¢ = ¢™5, and multivariate normal errors (u;,v5;),
S? and 7,7 are asymptotically equivalent to S, and 7, under weak IV and strong
IV asymptotics under the null and the alternative. For nonnormal errors, the
rank tests have power advantages.

The statistic S, depends on the inner product of Z and a vector of null-
restricted residuals from the structural equation (2.1):

Z'Yb, = E Z(yn— ﬁé)’zi) = Z Zi(y — Boyai — f’inxi), 3.1)
i=1 i=1

where 7, is some estimator of y, and the second equality holds because Z'X = 0.
The rank analogue of S, that we consider depends on the inner product of Z
with the vector of ranks of {y;; — Byy.; — ¥1,X; i = n}.

Let ¥,(By) be some “null-restricted” estimator of y,. For example, one could
use the least squares (LS) null-restricted estimator:

P (Bo) = (X'X)'X'Y(1,—By)" (3.2)

Estimators other than the LS estimator could be considered, but the LS estima-
tor is convenient because it is easy to compute. (The LS estimator satisfies the
assumptAions given subsequently provided the errors have finite variances.)

Let R;(Bo) be the rank of y;; — Boys — Va(Bo)'Xi in {y;; — Boys; —
V.(Bo)'X;:j = 1,...,n}. The ranks {R;(fBy):i = n} are referred to as aligned
ranks.*

Let ¢:[0,1) — R be a nonstochastic score function. Different score func-
tions ¢ lead to different rank statistics. Of primary interest are (a) the normal
(or van der Waerden) score function and (b) the Wilcoxon score function:

(a) @¥(x) =@ '(x) and (b) ¢"(x)=x, (3.3)

where @ !(+) is the inverse standard normal distribution function (df). Define

1 1
C‘D:fo [o(x) — &]*>dx >0, where§5=J; @ (x) dx. G4

For normal scores, ¢, = 1. For Wilcoxon scores, ¢, = 5.
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Let R, denote the n-vector whose ith element is go(]?i(ﬁo)/(n + 1)). The
rank analogue of §, is

S}"f — (ZrZ)fl/2ZrR¢ 6;1/2 € R* 3.5)

The rank statistic S¢ replaces Yb,- (b)), b,)""/? in S, by R, c,"/?. We want
the rank analogue of 7, to do the same and also to be asymptotically indepen-
dent of S?. In consequence, to construct a rank analogue of 7, it is helpful to
rewrite 7, as follows:

T,=(Z2'2)7"272'[Yby6, " : Y, 10, HH'O, H) ™% where 62 = b, b,

n . . L
H= eRmrVxm () =[by6, iH'Q, by, ' H]=| . A ,
I Vy QZZU

Oy, = H'Q,H=(n—k—p) 'Y, Mz.x)Y, €™, and
p,=H'Q,b,6,"' €R" (3.6)

(See (A.81) in the Appendix for a proof of (3.6).) As defined, (), is an esti-
mator of the asymptotic variance matrix, Q,, of n= "2 37 [by6,,' :H]'y; =
n~ 23 (byy; 6, v5,) . The definition of (.., is chosen to yield asymptotic
independence of S, and 7,,.
The rank analogue of T, is’
Tf=(2'2)"2Z' [Ryc, " VO, H(H' Q) H) /> € R, where

1
sz[ﬁ L ] and D, =n""Y{M.x R c;""> € R™. (3.7)

on 22n

Note that {),,, is an estimator of the asymptotic variance matrix of n~ /2 3/,
(o(R:(Bo)/(n + D)c, "2, y3;)". The definition of O, ensures that S¢ and 7,
are asymptotically independent.

We define the rank LR, LM, and AR statistics to be

RLRY =SS = A (ST TEV ST,
RLM¢ = S¢'TS(TFTE) ' T¢'S¢, and
RAR? = S¢'S¢/k. 3.8)

For m = 1, the RLRY statistic simplifies as in (2.8) with (S¢,7,¢) in place of
(80, T,).

Notice that when k = m (i.e., the structural equation is just identified),
k-RAR? = S¢'S? = RLM¢ = RLR¢.° That is, the rank CLR, LM, and AR tests
are equivalent when k = m.

The rank CLR, LM, and AR tests use the same critical values as the nonrank
versions of these tests. Hence, the rank LM and AR tests with asymptotic sig-
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nificance level « have critical values given by the 1 — a quantiles of the y?2
and Fy ,_—, distributions, respectively.
The rank CLR test rejects the null hypothesis if

RLR? > kg o(TF' T,7  k,m), 3.9)

where kg (-, k,m) is defined as follows. For t € R, define x; (t't, k, m)
via

P(LR(Sy,1) > Ky o(t't,k,m)) = @, where
So ~N(0,I,) and LR (s,t)=s"s — Apn([s:f] [s:1]) (3.10)

for s € R*. Note that x; o(+,k,m) depends on k (the dimension of Z;) and m
(the dimension of y,;). Andrews et al. (2006b) provides detailed tables of
Krr, o(T,k,m) for m =1 and a variety of values of 7 and k. Andrews, Moreira,
and Stock (in press) provide a GAUSS program for computing p-values of the
CLR test for m = 1 and arbitrary k. This program also can be used for the rank
CLR test by replacing the Andrews et al. (2006a) LR, and QAT,n statistics by
RLR? and T?'T,?, respectively.

For m > 1, the critical value function kg (-, k, m) can be simulated quite
easily by simulating Sy(r) ~ iid N(0,I;) for r = 1,...,Reps and taking
Krgr.o(t't,k,m) to be the 1 — « sample quantile of {LR,(So(r),t):r =
1,...,Reps}, where Reps is a large integer, such as 25,000.

4. WEAK IV ASYMPTOTIC RESULTS

4.1. Weak IV Asymptotic Distributions of Rank Statistics

In this section, we establish the weak IV asymptotic distributions of the RLR?,
RLM?, and RAR? test statistics under the null and fixed S alternatives.

no

We assume that the score function ¢ satisfies the following condition.
Assumption 3.

(a) ¢:[0,1) = R is absolutely continuous and bounded with two derivatives
that exist almost everywhere and are bounded.
(b) 0 < ¢, < oo for ¢, defined in (3.4).

Assumption 3 holds for Wilcoxon scores. Assumption 3(b) holds for normal
scores, but Assumption 3 (a) does not. However, normal scores that are smoothly
truncated above and below near 0 and 1 satisfy Assumptions 3(a) and 3(b).
Simulation results given subsequently for untruncated normal scores indicate
that truncation is not necessary in practice.
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Under weak IVs, the asymptotic variance matrix, (g, of n-2 -
(@(R:(Bo)/(n + 1)),y5,)" is defined by
e, i)C71/2 1 v/
Qg = Var( s = e R DX+ 1) where
Yai Voo O
Uj = G(u; + (B —By)'vy;) ER,
Vog = COV(an@(Ugi)C;l/z) € R, @.1)

G is the df of u; + (8 — By)'va:, and g is the density corresponding to G.’
Let I(f) denote Fisher’s information of an absolutely continuous density f.
That is, 1(f) = [Lf'(x)/f (x)]*f (x)dx.

The weak IV assumption is the first part of the following assumption.
Assumption 4W.

(a) II = Cn~'? for some matrix C € R¥",

(b) B does not depend on n.

(c) u; + (B — Boy)'vs; has an absolutely continuous strictly increasing df G
and an absolutely continuous and bounded density g that satisfies
I(g) < oo.

(d) (u; + (B — Bo)'v2:,v,;) has an absolutely continuous bounded joint den-
sity with partial derivative with respect to its first argument that is
bounded over both arguments.

(e) Qg is pd.

(£) n'2(7.(Bo) = v1 = &1(B = Bo)) = O,(1).

Assumption 4W(b) implies that the data-generating process satisfies the null
hypothesis or a fixed B alternative. Assumptions 4W(c) and (d) require that
(u; + (B — Bo)'vai,v5;) is absolutely continuous but otherwise are not very
restrictive. Note that Assumptions 1-3 and 4W place no moment restrictions
on u;.

Assumption 4W(f) requires the null-restricted estimator 7,(By) to be well
behaved. It is satisfied by the LS estimator under the preceding assumptions if
Eu? < oo.

LEMMA 1. Under Assumptions 1, 2, 4W(a), and 4W(b) and Eul2 < oo,
VES(By) satisfies Assumption 4W(f).

We show that S? and 7,¥ converge in distribution to independent random
quantities SY € R* and T.Y € R*™, respectively, that are defined as follows.
Let D, € Rk be the probability limit of n~!Z’'Z:
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D,=D, —D,D;,'D D [D” Dlz] 4.2)
z = P — Vi Upy Doy, = ) .
D,, D,

where Dll [S Rka, D12 S kap, and D22 S RPXP.
For a score function ¢ and a density f, define

<f e(x, f)e(x) dX>

e, f) = , where
f [o(x) — @]*dx
o(x,f)= —% rx € [0,1] 4.3)

and f' denotes the derivative of f. For normal and Wilcoxon scores,

sy o ([ —L29 LY
&(e ,f)—<J S (F1) a’x> and
(@™ f) = 12<ff2(x) dx) : 4.4

respectfigvely, where ¢ and ® denote the standard normal density and df and
" L_etf‘[Ng,:Nz] be a k X (m + 1) multivariate normal matrix with
EN, = D,C{{ 5 5 € R*, where
Cpp,= (B—Bo)é*(@,8) ER™,
EN, = D,C € R*"™ and
Var (vec([N,:N,])) = Q,, ® Dy, 4.5)
where g is the density of u; + (8 — By)'v,;; see Assumption 4W(c). Now, define
S¢=D;">N,~N(DY*>Ct{ s p,.1I.) €ERY
7Y =D;"?[N,:N,]Q_  H(H'Q,}H)™"/> € R*", and
vec(T.) ~ N(vec(D)>CUS s_p,: 1,10, HH'Q H)"V?),1,,,). (4.6)

Under H,, S£ has mean zero, but 7> does not. It is shown subsequently that the
covariance of S2 and T.! is zero and hence these normal random variates are
independent (under H, and H;).

The following result holds under the null hypothesis and fixed B (i.e., non-
local) alternative hypotheses.
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THEOREM 1. Under Assumptions 1-3 and 4W,

(i) (S2,T%) =4 (S2,T.), where SE and T,Y are independent,
(i) RLRY —4 LRE, = SZ'S% — Xin ([SL:TEV [S2: T2,
(iii) RLM® 4 SE TS(TS )\ T S2, and
(iv) RAR? —, SE'S? /k.

Remarks.

(a)

(b)

(©)

Theorem 1(iv) shows that k-RARY has an asymptotic y; distribution
under the null and a x{(85 ) distribution under fixed B alternatives,
where

5,fR,W= (B _BO)C,DZC(B _,80)‘5(90,8)- 4.7)

This justifies using the 1 — « quantile of the Fy ,_,_, distribution as the
critical value for the test based on RAR;, because F , r—, = xi/k as
n — oo.

Theorems 1(i) and (iii) imply that RLM? has an asymptotic y?2 distribu-
tion under the null hypothesis (because S% ~ N(0Oy,I;) under the null
implies that S T.2(T2 T.2) ' T.Y' SE has a x?, distribution conditional on
T and hence an unconditional yZ distribution also). Under the alterna-
tive, conditional on Pre (= TJ(TJ'T.Y)"'T.{'"), RLM; has a noncentral
chi-squared distribution, X,Z,l(éfM,W), with m degrees of freedom and
noncentrality parameter

8tuw = (B—Bo)C'D*TUTE T.) ' TS D> C(B — By)

X &(p,8). (4.8)

The random projection matrix Py« equals Pr¢,,, where M is any random
or nonrandom nonsingular m X m matrix. In consequence, P;¢ has the
same distribution as P;+, where vec(7.;) ~ N(vec(D}/>C),1,). Note
that the distribution of 7, does not depend on ¢ or g. Hence, the asymp-
totic distribution of RLM¢ only depends on (¢, g) through the distribu-
tion of SZ.
The statistics RLR? and RLM? and their asymptotic distributions depend
on (S¥,7¢) and (S2,7T7) only through Q¢ = [S¢:T¢]'[S?:T¢] and
s = [SE: T2 [SE: T.7], respectively. Given the multivariate normal
distribution of [SY:7.7], OF has a noncentral Wishart distribution. It
depends on unknown parameters only through

[ES?:ETS] [ESS:ETS], where
[ESS:ETS1 =Dy CleS pp,: (45 p-p,: 1,10 HH'Q_ H) /2]

4.9)
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The following corollary uses Theorems 1(i) and (ii) to show that the use of
Krr, o(T,k,m) (defined in (3.10)) as the critical value function for the RLRY
statistic yields a test with asymptotic null rejection rate o under weak IV
asymptotics.

COROLLARY 1. Under the null hypothesis, Hy: B = Bo, and Assumptions
1-3 and 4W, lim,,_, ., P(RLR? > K, o(TF' 1,7 k,m)) = a.

4.2. Weak IV Asymptotic Distributions of Nonrank Statistics

To enable comparisons of the power of rank and nonrank tests, we now pro-
vide the null and nonnull weak IV asymptotic distributions of the nonrank sta-
tistics S, and 7,, under the assumption that Q) = Ev;v; is well defined and pd.
The results given here extend results in Andrews et al. (2006a) from m = 1 to
m = 1. They are not covered by Moreira (2003) because Moreira (2003) only
provides asymptotic results under the null hypothesis.

To make comparisons of rank and nonrank tests more transparent, we
write the asymptotic distributions of the nonrank tests in a form that is analo-

gous to that of SZ and 7.7, which differs from the form given in Andrews et al.
(2006a). Define

(yi’b()a-gl> ((ui+(18_[30)’02i)0-g_1>
Q, = Var = Var

Yai Uy;

1

— [boo, " H]'Qlbyor, : H] = [ b }
v, Oy,
o, = Var(y/by) = Var(u; + (B — By)'vy;) = byQb,, and
v, = Cov(ya, (u; + (B — By)vy)o, ') = H'Qbyo, . (4.10)
Let [N;:N,] be a k X (m + 1) multivariate normal matrix with N, as before,
EN, = D,C(B — ,80)0-5,’1 € R* and

Var (vec([N,: N,])) = Q, ® D,. 4.11)
Next, define

S =D, >N, ~N(D}*Cl, s_p., 1),

T, = D;'"?[N,:N,]JO,'H(H'Q,'H) /> € R*™,
vee(T,,) ~ N(vec(D)>C[€, g_p,: 1,10, " H(H'Q,; ' H)""/?),1,,.), and

Cop-p, = (B—Bo)o, ' €ER™ 4.12)
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LEMMA 2. Under Assumptions 1-3 and 4W and Q > 0,

(i) (S,,T,,) =4 (Seo, Ts), where S, and T, are independent,
(i) LR, =4 8.8 = Anin([Soo: Too 1 '[Soo: Tio 1),
(iii) LM,, —; S, T, (T, Too)ilTO;Soo, and
(iv) AR, =, S.S../k.

Remarks.

(a) Lemma 2(iv) shows that k-AR,, has an asymptotic y; distribution under
the null and a X,f(BAR,W) distribution under fixed B alternatives, where

Sarw = (B—=PBo)C'D,C(B — Bo)‘a'gz- (4.13)

(b) Lemma 2(i) and (iii) imply that LM, has an asymptotic x7 distribution
under the null hypothesis. Under the alternative, conditional on Py _,
LM, has an asymptotic noncentral chi-squared distribution, x.,(8,4. w),
with m degrees of freedom and noncentrality parameter

8w = (B—Bo)C'DY T (T,T,) 'T,D)/>*C(B—By)-0,>. (4.14)

4.3. Weak IV Power Comparisons: Rank versus Nonrank Tests

In this section, we compare the weak IV asymptotic power of the rank AR,
LM, and CLR tests to that of the nonrank versions of these tests. We consider
the AR and LM tests first because the comparison is simpler for these tests.

4.3.1. Anderson—Rubin and Lagrange Multiplier Tests. The RAR? and AR,
statistics have noncentral chi-squared distributions under weak IV asymptotics
by Remark (a) to Theorem 1 and Remark (a) to Lemma 2(iv). Their noncen-
trality parameters, given in (4.7) and (4.13), respectively, differ only by the
multiplicative constants & (¢, g) and 0'{2. In consequence, for weak IVs, the
ARE? of the rank AR test to the (nonrank) AR test is

ARE,(RAR{,AR,) = £(¢,8)0; (4.15)

(ARE(T\,T,) > 1 means that the 7, test has higher power than the T, test).
Note that the ARE in (4.15) is independent of the location and scale of g. When
k = m, the ARE in (4.15) also applies to the rank versus nonrank CLR and LM
tests because they are the same as the AR tests.

The RLM,? and LM, statistics have noncentral chi-squared distributions
under weak IV asymptotics conditional on P;¢ and P , respectively, by
Remark (b) to Theorem 1 and Remark (b) to Lemma 2(iv). Note that the dis-
tributions of P, and P;¢ are equal by the argument given in Remark (b) to
Theorem 1. In consequence, the ARE of the RLM? test to the LM, test is the
same as that of the rank to nonrank AR test given in (4.15).
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The literature on rank tests contains extensive calculations of the ARE in
(4.15) because exactly the same ARE arises when comparing a rank test with
the usual 7-test and F-test in a simple location model with error density g. In
addition, it is the same as the ARE of a rank estimator with the sample mean in
the location model. Note that the normal and Wilcoxon scores rank estimators
are asymptotically efficient in the location model with normal and logistic errors,
respectively.

For a density g and normal scores, ¢™¥(x) = ®~!(x), the ARE is

NS NS 2 2 2(x) .
ARE, =£(e ’g)a'g:ff (&) fm ,  Wwhere

ARE}® = ARE,(RAR)"*,AR,) = ARE,(RLM,*,LM,) 4.16)

and G(-) of the df of g. A result due to Chernoff and Savage (1958) implies
that ARE;,VS = 1 for all symmetric distributions g (about some point not neces-
sarily zero). Hence, the asymptotic power under weak I'Vs of the normal scores
rank AR (LM) test is greater than or equal to that of the nonrank AR (LM) test
for any symmetric distribution.

For a density g and Wilcoxon scores, ¢ "(x) = x, the ARE of the rank AR
test to the nonrank AR test is

2
ARE)” = £(e"5, g)0; = 120; (fgz(x) dx) , where

ARE)S = ARE,(RAR)S,AR,) = ARE,(RLM)S,LM,)). (4.17)

For the normal distribution, i.e., g = ¢, ARE} VS = 0.955. For the double expo-
nential distribution g,., ARE ”:S 1.50. For a contammated normal distribution
¢.(x) = (1 — &)p(x) + e¢p(x/3)/3, ARE,” = 1.196, 1.373, and 1.497 for & =
0.05, 0.10, and 0.15, respectively; see Hettmansperger (1984, pp. 71-72). A
result due to Hodges and Lehmann states that ARE;V ® = (.864 for all symmet-
ric distributions g (about some point not necessarily zero); see Hettmansperger
(1984, Thm. 2.6.3, p. 72). Hence, the noncentrality parameter of the Wilcoxon
scores rank IV test is almost as large as that of the AR test for the normal
distribution, is significantly larger than that of the AR test for heavier tailed
distributions, and is not much smaller for any symmetric distribution.

For any densities g, and g, symmetric about zero (with dfs G, and G,),
ARE, (RAR)”,RAR)®) = ARE, (RAR)"®,RAR)®) whenever the tails of g, are
lighter than the tails of g, in the sense that G, '(G,(x)) is convex for x = 0; see
Theorem 2.9.5 of Hettmansperger (1984, p. 116). (The same is true with AR
replaced by LM.) Thus, the comparative power of Wilcoxon scores to normal
scores tests increases as the tail thickness of the distribution increases. For any
symmetric density g, ARE,(RAR)"®,RAR}®) € (0,1.91); see Hettmansperger
(1984, Thm. 2.9.3, p. 115).
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4.3.2. Conditional Likelihood Ratio Test. Next, we compare the weak IV
asymptotic power of the rank CLR and (nonrank) CLR tests. Analytical com-
parisons are difficult because of the complicated form of the asymptotic dis-
tributions. However, the power of these tests comes primarily from the
magnitude of the means of S¢ and S, respectively; see (4.6) and (4.12).
Hence, when u; + (B — By)'vs; has relatively heavy tails, the rank CLR test
should have higher power. Furthermore, as discussed in Andrews and Stock
(in press), the CLR test is a data-dependent combination of the AR and LM
tests, and hence the advantage of the rank versions of the latter tests when
u; + (B — Boy)'v,; has relatively heavy or thin tails should carry over to that of
the CLR rank test.

These conjectures are shown to hold (in the scenarios considered) by numer-
ical comparisons of the asymptotic power of the RCLR, and CLR,, tests using
the asymptotic results of Theorem 1(ii), Corollary 1, and Lemma 2(ii). Table 1
reports the weak IV asymptotic powers of the WS-RCLR, NS-RCLR, and CLR
tests. For comparative purposes, asymptotic powers of the LM and AR tests
also are given in Table 1.

The cases considered in Table 1 include a base case and several variations of
it. The base case has m = 1 (i.e., B8 is a scalar), A = C'D,C = 10 (which cor-
responds to moderately weak IVs), k =5 (i.e., five IVs), p,,,, = Corr(u;,v,;) =
0.75 (which corresponds to moderately strong endogeneity), and B, = 0 (with-
out loss of generality). Two values of B are considered, namely, 8 =1 and B =
—0.43. These values are selected so that the CLR test has asymptotic power
0.40 with normal errors (u;,v,;). A “high endogeneity” case is the same as the
base case except that p,,,, = Corr(u;,v,;) =0.95and B =1.1 or B = —0.37. A
“weaker IV” case is the same as the base case except that A = 4.0 and 8 = 5.0
or B = —0.7. A “ten IV” case is the same as the base case except that k = 10.
In each variation of the base case, the values of 8 considered are chosen so that
the CLR test has asymptotic power approximately equal to 0.40 with normal
eITorS.

In all cases considered, the structural error u; and a latent variable ¢; are
taken to be independent with distribution F. We consider four distributions F,
namely, standard normal, uniform [—2\/3 s 2\/§ 1, 13, and difference of indepen-
dent log normals (DLN). The uniform distribution exhibits thin tails, whereas
the 73 and DLN distributions exhibit thick tails. The reduced-form error v,; is
defined to be the following function of u; and ¢;:

Uy = (1- Pfyz)l/zsi + Puv, Ui (4.18)

By construction, Corr(u;,v5;) = p,,. The distribution G, upon which the
asymptotic properties of the tests depend, is the distribution of u; + (8 — Bo)'v2;
when u; and ¢; are independent with distribution /. When F has thin or thick
tails, so does G. Details concerning the computation of the asymptotic power
reported in Table 1 are given in the Appendix.
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TABLE 1. Asymptotic power

Case Distribution  WS-RCLR NS-RCLR CLR LM AR
Base case Normal 0.37 0.38 0.39 0.39 0.21
(B=1.0) Uniform 0.38 0.52 0.40 0.41 0.25
13 0.58 0.54 0.40 0.40 0.21
DLN 0.69 0.66 0.39 0.39 0.20
Base case Normal 0.39 0.41 0.41 041 0.27
(B=-043) Uniform 0.37 0.50 0.41 041 0.26
I 0.60 0.55 0.40 0.40 0.25
DLN 0.78 0.68 0.41 040 0.25
High endogeneity Normal 0.37 0.38 0.39 0.39 0.21
(p,w2 =095, 8=1.1) Uniform 0.39 0.59 0.39 040 0.22
13 0.59 0.55 0.38 0.38 0.20
DLN 0.75 0.73 0.38 0.38 0.21
High endogeneity Normal 0.41 0.43 042 043 0.23
(Pu, = 0.95, B = —0.37) Uniform 0.40 0.61 0.42 042 0.24
13 0.67 0.60 0.42 042 0.24
DLN 0.87 0.78 0.42 042 0.23
Weaker IVs Normal 0.39 0.40 0.41 041 0.22
(A=4,B=15.0) Uniform 0.37 0.47 0.41 041 0.22
I 0.35 0.41 0.40 040 0.22
DLN 0.48 0.50 0.40 040 0.22
Weaker Vs Normal 0.38 0.39 0.39 0.35 0.32
(A=4,8=-0.7) Uniform 0.34 0.42 0.38 0.34 0.32
13 0.57 0.52 0.39 0.35 0.32
DLN 0.73 0.63 0.40 0.35 0.33
Ten IVs Normal 0.38 0.40 0.40 0.40 0.15
(k=10,8=1.0) Uniform 0.33 0.47 0.38 0.38 0.16
13 0.59 0.56 0.41 041 0.16
DLN 0.65 0.65 0.39 0.39 0.16
Ten IVs Normal 0.35 0.37 0.37 0.37 0.19
(k=10,8=—-0.43) Uniform 0.33 0.44 0.36 0.36 0.19
13 0.55 0.51 0.37 0.37 0.18
DLN 0.70 0.61 0.36 0.36 0.18

Note: All cases have A = 10, p,,,, = 0.75, and k = 5, unless otherwise stated.

Table 1 indicates that for the normal distribution F the WS-RCLR, NS-RCLR,
and CLR tests have roughly equal asymptotic power in all cases. (This is anal-
ogous to the result in Section 4.3.1 that ARE}® = 1 and ARE,"® = 0.955.) For
the (thin-tailed) uniform distribution, the NS-RCLR test has higher power than
the CLR test, whereas the WS-RCLR test has lower or equal power in all cases.
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(The former is analogous to the result in Section 4.3.1 that ARE;,VS =1 for all
symmetric distributions g. The latter is analogous to the result in Section 4.3.1
that ARE, (RAR)®,RAR)*) = ARE,(RAR,”*,RAR,") for any distribution g
that has thinner tails than ¢.) For the (thick-tailed) 73 and DLN distributions,
the WS-RCLR and NS-RCLR tests have noticeably higher power than the CLR
test except in one case (viz., the “weaker IV” case with positive B8 and 75 dis-
tribution). In the base case, for the 3 distribution, the rank CLR tests’ powers
are 33% higher or more than the nonrank CLR test. In the base case, for the
DLN distribution, the rank tests’ powers are more than 50% higher. (This is
analogous to the results in Section 4.3.1 that AREQ’S = 1 for all symmetric
distributions g and ARE, (RAR)”®,RAR)") = ARE,(RAR,”*,RAR)") for any
distribution g that has thicker tails than ¢.)

Table 1 shows that the NS-RCLR and WS-RCLR tests cannot be rank ordered
in an overall sense because the NS-RCLR test has noticeably higher power for
the uniform distribution, but lower power for the #; and DLN distributions in
most cases. Table 1 also shows that the AR test has lower asymptotic power
than the other tests considered (because k =5 >m=1ork=10>m = 1).
Also, the LM test has comparable asymptotic power to the CLR test in the
scenarios considered except the “weaker IV” case with negative B3, in which
case it has lower power.

We conclude from Table 1 that the WS-RCLR and NS-RCLR tests have weak
IV asymptotic power advantages over the CLR test. For the NS-RCLR test,
this is true both for thin- and thick-tailed distributions. Furthermore, there is
little or no cost asymptotically for using the WS-RCLR or NS-RCLR test in
place of the CLR test for the normal distribution. Because it is shown in Andrews
et al. (2006a) that the CLR test is nearly asymptotically universally most pow-
erful in the class of invariant similar tests under normality, the results suggest
that the NS-RCLR test also inherits this property.

4.3.3. Asymptotic Equivalence. 'We now provide a result that establishes
when the rank and nonrank versions of the CLR, LM, and AR tests are asymp-
totically equivalent. We show that for a given score function ¢(x) there is a
distribution G of u; + (8 — By)'v,; (and vice versa) such that the rank and
nonrank versions of these tests are asymptotically equivalent under weak IV
asymptotics.

LEMMA 3. Let L(-) be some df with finite variance. Suppose (u; + (8 —
Bo)'va;)k ~ L(-) for some k > 0 and ¢(x) = L™ '(x); then

(i) @(Uy)e,'? = (u; + (B = Bo)vai)ay ',
(ii) Qg = 0,
(iii) [, o(x,8) @(x) dx-c(;l/2 =0, ', and
(iv) N, ~ Ny, Sg ~ So, and T), ~ T,,, where ~ denotes “has the same dis-
tribution as.”

1
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Remark. Lemmas 2 and 3 and Theorem 1 imply that if u; + (8 — By)'v,; has
a normal distribution, then the normal score function leads to asymptotic equiv-
alence between the rank and nonrank versions of the CLR, LM, and AR tests.
Likewise, if u; + (B — Bo)'v,; has a uniform [—a, a] distribution for some a > 0,
then the Wilcoxon score function leads to asymptotic equivalence between the
rank and nonrank versions of these statistics.

5. STRONG IV ASYMPTOTIC RESULTS

5.1. Strong IV Asymptotic Distributions of Rank Statistics

In this section, we provide the asymptotic distributions of the RLR?, RLM 7,
and RAR test statistics under standard strong IV asymptotics under the null
hypothesis and local alternatives.

In place of Assumption 4W, we use the following assumption. The first part
of this assumption is the local alternative assumption.

Assumption 4S.

(a) B =By + Bn~"? for some vector B € R™.

(b) TI does not depend on n and is full column rank m.

(¢c) vy; = &; + pu; for i = 1, where &; is a random m-vector and p € R™ is a
vector of constants.

(d) {g;:i = 1} are i.i.d. and independent of {u;:i = 1}, and E|&;|*>™® < o0
for some 6 > 0.

(e) u; has an absolutely continuous strictly increasing df F and an absolutely
continuous and bounded density f that satisfies I( f) < oo.

(f) (u;,v5;) has an absolutely continuous bounded joint density with partial
derivative with respect to its first argument that is bounded over both
arguments.

(g) Qg is pd.

(h) E?LHZHZ/I'Z < coand 372, | X,[%i* < oo.

(i) n'2(Fa(Bo) — v1) = 0,(1).

Assumption 4S(c) allows for dependence between the structural error u; and
the reduced-form error v,;, but it must be of a special form. The special form
is needed to make the asymptotic results for the rank statistic S tractable.
Assumption 4S (h) is not very restrictive.!® Assumption 4S (i) holds for the null-
restricted LS estimator under Assumptions 1, 2, and 4S (a)—(c).!! The combina-
tion of Assumptions 1 and 4S(c) implies that Eu? < co.

Under strong IV asymptotics, S¥ has a nondegenerate asymptotic distribu-
tion given by that of S/, and n~2T# converges in probability to a constant
ay # 0, where
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S¢, ~ N(ag, 1), al = D%/znef‘fs € RX,

;f — DZI/2H(HIQ;f1H)l/2 = Rk><m’

@(F(u;))e,'? 1 v
lef = Var( @ — of c R(m+l)><(m+l) and

Yoi Vor Qo
Ver = Cov( v, @(F(u;))c,'?) € R™ (5.1)

Note that S, differs from S only in that £f; replaces £ ;5 (both of which
are defined by the expression for €7 ;_, in (4.5)) in its mean.
The main result of this section is the following theorem.

THEOREM 2. Under Assumptions 1-3 and 4S8,

(D) (Sf,n2T7) =4 (S, ),
(ii) RLR? —, Sfoo Paf af)™! ;‘3’5;‘; ~ an(ﬁfM’S), where 8y s =
0‘5 aT(aT ar) ! }D,a;p’
(iii) RLM? —, S“; Faf af) raf, St~ xm(8fu.s), and
(iv) RAR{ —4 S5.S50/k ~ xi (85 )/k, where 85 s = af af.

Remarks.

(a) Theorem 2(ii) and (iii) show that under strong IV asymptotics the RLR
and RLM test statistics are asymptotically equivalent under the null and
local alternatives for any values of k and m. (As noted previously, when
k = m, the RLR and RLM test statistics are the same, and so the tests are
trivially asymptotically equivalent.)

(b) Theorem 2(ii)—(iv) shows that the RAR test statistic has a different asymp-
totic distribution from that of the RLR and RLM statistics when k > m.
When k = m, k-RAR? = RLM? = RLR?, and so the three rank statistics
are asymptotically equivalent.

5.2. Strong IV Asymptotic Distributions of Nonrank Statistics

For comparative purposes, we now provide the strong IV asymptotic distribu-
tions under the null hypothesis and local alternatives of the nonrank LR, LM,,
and AR, test statistics. The results for LR, with m > 1 are new. (Andrews et al.,
2006a, provides the same results for m = 1.) Let

S ~ Nlas, 1), ag = D,}*IIBo; ' € RY,

ar =D)?TI(H'Q;'H)"? € R*™, and

1 v
Qf = Var((uia-f_l’UZi),) = |: / :|, Ve = COV()’zn”iUf_l)~ (5.2)
ve Qp
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LEMMA 4. Under Assumptions 1-3 and 4S and Q0 > 0,

(l) (Smnil/zTn) —d (Sfbo’aT);
(ii) LR, —, Sf,ooaT(a}aT)ila}Sfoo -~ Xyzn(‘SLM,s), where Spys =
agar(arar) ' agas,
(iii) LM, — S;ooaT(a;"aT)ila%Sfoo ~ szn(aLM,S)’ and
(iv) AR, =4 S}, Sron 'k ~ X3 (8ar s)/k, where 8up s = aga.

5.3. Strong IV Power Comparisons: Rank versus Nonrank Tests

Theorem 2 and Lemma 4 allow calculation of the ARE of the rank and nonrank
tests with strong IVs. The calculation is analogous to that given in Section 4.3.1
for weak IVs but with three differences. The first difference is that aj and a
are fixed in the strong IV case, whereas T, and T, are random in the weak IV
case. This does not affect the ARE calculations. The second difference is that
the asymptotic distributions depend on the density f of u; rather than the den-
sity g of u; + (B — By)'v,;. This occurs because B converges to B, under strong
IV local alternatives and hence (8 — By)'vs; — 0 as n — oco. The third differ-
ence is that under strong IVs the asymptotic distributions of RLR? and RLM?
are the same and, analogously, those of LR, and LM,, are the same.

Combining the results of Section 4.3.1 with these differences, we find that
under strong IVs the ARE of the rank to nonrank AR tests is the same as for
the rank to nonrank LM and CLR tests and is equal to the usual ARE for rank
to nonrank procedures based on the density f. That is,

no’

= £(e™, f)of, (5.3)

ARE;(RAR¢,AR,) = ARE,(RLM¢,LM,) = ARE;(RLR?, LR,)

where &(o™, f)o/ is given in (4.16) and (4.17) for normal and Wilcoxon
scores, respectively, with fin place of g."2

In sum, all of the statements in Section 4.3.1 concerning (4.15) apply to the
ARE of the rank to nonrank versions of the AR, LM, and CLR tests under
strong IVs but with fin place of g.

5.4. Asymptotic Equivalence

The next result establishes when the rank and nonrank versions of the CLR,
LM, and AR tests are asymptotically equivalent under strong IV asymptotics.

LEMMA 5. Let L(-) be some df with finite variance. Suppose u;k ~ L(-) for
some k > 0 and ¢(x) = L™ '(x); then

(l) GD(F(”i))C;l/z = ”ia'fil,
(ii) Qg = Gy,
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(i) [0 (5 Plo(x) dv-c; 2 = o7,
(iv) Sg, ~ S, and ay = ar.

Remarks.

(a) Lemmas 4 and 5 and Theorem 2 imply that if «; has a normal distribu-
tion, then the normal score function leads to asymptotic equivalence
between the rank and nonrank versions of the CLR, LM, and AR tests.
Likewise, if u; has a uniform [—a, a] distribution for some a > 0, then
the Wilcoxon score function leads to asymptotic equivalence between
these statistics.

(b) For the case of normal errors, the (nonrank) CLR and LM tests are asymp-
totically efficient under strong IV asymptotics; see Andrews et al. (2006a).
This combined with Remark 1 implies that the normal scores rank CLR
and LM tests also are asymptotically efficient under normal errors and
strong IV asymptotics. When k > m, the rank AR statistic has a different
asymptotic distribution from that of the rank LR and LM statistics (see
Remark (a) to Theorem 2), and hence it is not asymptotically efficient.

6. FINITE-SAMPLE RESULTS

In this section, we report simulation results concerning the finite-sample size
of some of the rank and nonrank tests discussed previously. We also provide
power comparisons of size-corrected versions of these tests.

We consider the Wilcoxon scores rank CLR test, denoted RCLR®, and the
(untruncated) normal scores CLR rank test, denoted RCLR,’:’S. For comparative
purposes, we also consider the CLR, LM, and AR tests. We do not report results
for the rank LM and rank AR tests both for brevity and for the following rea-
sons. First, when the model is overidentified, the AR test has distinctly lower
power than the CLR test (see Andrews et al., 2006a, 2006b), and simulations
show that the same is true for the rank versions of these tests. Second, the LM
test has quirky power properties in parts of the parameter space (see, e.g.,
Andrews et al., 2006a, 2006b), and simulations show that the rank LM test
inherits these properties.

6.1. Experimental Design

We take the model to be as in (2.1) with y,; and B8 being scalars (m = 1) and
v,; defined as in (4.18), where p,,, € [—1,1]. Let Z; = (Z,,,...,Zy)" and
X; = (1,Xp,...,X;,). We take Z;, X;5,u;, &; to be i.i.d. with distribution F for
allj=1,...,k,s=2,...,p,and i = 1,...,n"

The test statistics considered are invariant with respect to vy, &;, and the
location and scale of F. Hence, without loss of generality we take vy, and &; to
be zero, and we take F to have mean zero (if its mean is well defined), center
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of symmetry zero (if it is symmetric), and variance one (if its variance is well
defined).

The parameter vector 7 € R* determines the strength of the IVs. It is taken
to be proportional to a k-vector of ones:

Piv ,
= W (1,...,1)  for some p,, € [—1,1], (6.1)
where p;y is the correlation between the reduced-form regression function,
Z!r, and the endogenous variable y,; (when F has a finite variance). The
parameter p;y can be related to a parameter A that directly measures the strength
of the IVs (and is closely related to the so-called concentration parameter):

2
Py 5 5 515

A= S =nm'EZ Zim~7'Z Zm, (6.2)
1= pp

where the first equality defines A, the second equality holds provided Z; has a
finite variance, and a, =~ b, means a, /b, —, 1 as n — oo.

The hypotheses of interest are Hy: 8 = By and H,: 8 # By. Without loss of
generality, we take 8, = 0.4

For both the size and power results, we first consider a base case with mod-
erately weak IVs A = 10 (equivalently, p;y = 0.302 when n = 100), moderately
strong endogeneity p,,, = 0.75, sample size n = 100, number of IVs k = 5, no
exogenous variables beyond a constant p = 1, and distribution F equal to the
normal, uniform, t,, ,, t5, or difference of DLNs. The uniform distribution exhib-
its thin tails, and the t-distributions exhibit heavy tails (e.g., #; is the Cauchy
distribution) as does the DLN distribution. For the power results, both positive
and negative true 3 values are considered. The § values are selected so that the
level 0.05 CLR test has power around 0.4 for the given choice of A, p,,,, 1, &,
and p when F is normal.

We also consider a number of variations of the base case to illustrate the
effect of changes in the level of endogeneity: p,,, = 0,0.95; strength of IVs:
A = 4,20; number of IVs: k = 1,10; and sample size: n = 50,200. In each
variation of the base case, only one of these parameters is different from the
base case. In the base case, we find that when F is normal the power of the
normal scores rank CLR test is slightly higher than that of the nonrank CLR
test, but the opposite is true for negative B. (These differences disappear asymp-
totically under weak and strong IV asymptotics.) In consequence, to maintain
fair comparisons and for brevity, in each variation of the base case we report
average power for two 8 values—one positive and one negative—each of which
is chosen so that the CLR test has power approximately equal to 0.4 when F is
normal. '3

For the power results, the tests are all size-corrected (where the size-correcting
critical values are based on the same distribution F' and the same parameters A,
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Pus,» Ny k, and p as for the corresponding power results but with 8 = 0). The
size-correcting critical values are obtained via simulation with 100,000 simula-
tion repetitions. The number of simulation repetitions is 20,000 for the size
results and 5,000 for the power results.

Note that the size results for the AR test are invariant to p,,, and A.

6.2. Size Results

Table 2 presents the size results. The two rank CLR tests perform noticeably
better in terms of size than the nonrank CLR, LM, and AR tests. Nine different
cases are considered with six different distributions for each case. Over the 54
trials, the range of null rejection rates for each test is WS-RCLR: [0.027, 0.052];
NS-RCLR: [0.033, 0.051]; CLR: [0.047, 0.091]; LM: [0.042, 0.070]; and AR:
[0.049, 0.127]. For the two rank tests, the majority of rejection rates are in the
desired [0.040, 0.050] range, which corresponds to no overrejection and suffi-
ciently small underrejection as to minimize the power loss. In particular, 44 /54
for WS-RCLR and 38/54 for NS-RCLR are in this range. In contrast, for the
nonrank tests a small number of rejection rates are in this desired range: 1/54
for CLR, 3/54 for LM, and 11/54 for AR. Not surprisingly, the largest over-
rejections for the nonrank tests occur for the thickest tailed distributions. If one
widens the range to [0.04, 0.06], which includes overrejection by a small amount,
then the RCLR tests still outperform the CLR and AR tests, but the LM test
performs best of all. The numbers of cases in this range are 44/54 for WS-RCLR,
39/54 for NS-RCLR, 33/54 for CLR, 49/54 for LM, and 29/54 for AR.

6.3. Power Comparisons

Table 3 presents the power results. The general pattern of finite-sample power
in Table 3 reflects that of asymptotic power given in Table 1. In particular, the
NS-RCLR and CLR tests have comparable power for the normal distribution,
the NS-RCLR test has higher power than the CLR test for the uniform distri-
bution in many cases and much higher power for the thick-tailed distributions.
This occurs in the base case and in the variations of the base case. For exam-
ple, in the base case with two B values the (average) power of the NS-RCLR
test for the #, distribution is 0.67 compared to 0.46 for the CLR test. The
WS-RCLR and NS-RCLR tests have similar power with the NS-RCLR test hav-
ing slightly higher power for the normal distribution, noticeably higher power
for the uniform distribution, and slightly worse power for the thick-tailed dis-
tributions. The LM test has similar power to the CLR test, but with lower power
in the weaker IVs case with normal distribution and slightly higher power for
the heavy-tailed distributions. The AR test has significantly lower power than
the other tests except in the case with k = 1.

In sum, the NS-RCLR test has power that essentially dominates that of the
(nonrank) CLR, LM, and AR tests. Its power is comparable to that of the CLR
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TABLE 2. Finite-sample null rejection rates of nominal level 0.05 tests

Case Distribution = WS-RCLR NS-RCLR CLR LM AR
Base case Normal 0.050 0.043 0.056  0.054 0.049
Uniform 0.049 0.041 0.054 0.052 0.053
1 0.032 0.045 0.073  0.610 0.108
1 0.044 0.042 0.065 0.058 0.077
13 0.046 0.039 0.060 0.056 0.058
DLN 0.044 0.038 0.062 0.055 0.071
No endogeneity Normal 0.048 0.039 0.058 0.055 0.049
(Puw, = 0) Uniform 0.048 0.040 0.059 0.053 0.053
t 0.030 0.039 0.077 0.058 0.108
t 0.042 0.039 0.072  0.058 0.077
t3 0.046 0.037 0.063  0.057 0.058
DLN 0.043 0.038 0.069 0.055 0.071
High endogeneity Normal 0.050 0.045 0.054 0.053 0.049
(P, = 0.95) Uniform 0.050 0.045 0.052 0.051 0.053
t 0.033 0.047 0.064 0.056 0.108
t 0.046 0.045 0.059 0.057 0.077
13 0.047 0.042 0.056 0.055 0.058
DLN 0.043 0.042 0.057 0.055 0.071
Weaker IVs Normal 0.049 0.041 0.058 0.055 0.049
(A=4) Uniform 0.049 0.043 0.058 0.053 0.053
1 0.031 0.045 0.078 0.058 0.108
t 0.043 0.041 0.073  0.058 0.077
t3 0.046 0.041 0.064 0.056 0.058
DLN 0.043 0.039 0.070  0.055 0.071
Stronger IVs Normal 0.049 0.043 0.054 0.054 0.049
(A =20) Uniform 0.049 0.041 0.054 0.052 0.053
1 0.032 0.045 0.068 0.056 0.108
t 0.045 0.041 0.063  0.058 0.077
13 0.047 0.041 0.057 0.055 0.058
DLN 0.043 0.039 0.070  0.055 0.071
One IV Normal 0.048 0.041 0.053 0.053 0.050
(k=1) Uniform 0.052 0.045 0.055 0.055 0.053
t 0.031 0.041 0.047 0.047 0.046
th 0.041 0.041 0.055 0.054 0.053
t3 0.046 0.041 0.054 0.054 0.052
DLN 0.045 0.047 0.057 0.057 0.054
Ten IVs Normal 0.052 0.048 0.053  0.052 0.050
(k=10,n = 200) Uniform 0.050 0.046 0.053 0.053 0.051
11 0.032 0.051 0.058 0.044 0.127
th 0.049 0.048 0.058  0.050  0.090
t3 0.049 0.045 0.054 0.052 0.062
DLN 0.045 0.041 0.057 0.057 0.054

(continued)
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TABLE 2. Continued
Case Distribution WS-RCLR NS-RCLR CLR LM AR
Smaller sample size Normal 0.045 0.036 0.061 0.056 0.048
(n = 50) Uniform 0.050 0.039 0.065 0.058 0.050
1 0.027 0.035 0.091 0.070 0.127
1 0.039 0.033 0.078 0.064 0.078
t3 0.044 0.034 0.071 0.061 0.063
DLN 0.044 0.037 0.076  0.064 0.074
Larger sample size Normal 0.048 0.046 0.052 0.052 0.049
(n = 200) Uniform 0.049 0.044 0.052 0.052 0.053
1 0.032 0.049 0.052 0.042  0.090
t 0.044 0.045 0.058 0.051 0.076
t3 0.048 0.045 0.056 0.053 0.056
DLN 0.050 0.046 0.056 0.054 0.067

Note: All cases have B = B, = 0, A = 10 (equivalently, p,, = 0.302 for n = 100), Pus, = 0.75,n =100, k = 5, and
p =1 (an intercept), unless otherwise stated.

TABLE 3. Finite-sample power of size-corrected level 0.05 tests

Case Distribution WS-RCLR NS-RCLR CLR LM AR
Base case Normal 0.42 0.46 0.40 040 0.26
(B =1.35) Uniform 0.41 0.48 0.40 0.40 0.25
t 0.92 0.95 0.56 0.61 0.40
1 0.66 0.66 0.46 0.49 0.26
3 0.53 0.53 0.42 043 0.26
DLN 0.61 0.60 0.43 0.45 0.23
Base case Normal 0.35 0.35 0.39 0.38 0.25
(B=-0.44) Uniform 0.32 0.38 0.39 0.39 0.25
1 0.94 0.95 0.55 0.61 0.40
t 0.72 0.68 0.46 0.49 0.27
13 0.53 0.50 0.41 043 0.25
DLN 0.65 0.59 0.42 044 0.22
Base case Normal 0.38 0.40 0.39 0.39 0.26
(B=135and B = —0.44) Uniform 0.37 0.43 0.40 040 0.25
h 0.93 0.95 0.55 0.61 0.40
t 0.69 0.67 0.46 0.49 0.27
I 0.53 0.51 0.42 0.43 0.26
DLN 0.63 0.60 0.42 0.44 0.23

(continued)
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TABLE 3. Continued

Case Distribution WS-RCLR NS-RCLR CLR LM AR
No endogeneity Normal 0.44 0.47 0.41 0.37 0.34
(P, = 0, Uniform 0.43 0.47 042 0.37 0.34
B=0975and B=—1.05) 1, 0.94 0.97 0.55 0.61 0.42
t 0.74 0.72 0.46 0.47 0.33
13 0.57 0.56 043 0.40 0.34
DLN 0.67 0.64 0.41 0.42 0.30
High endogeneity Normal 0.38 0.39 0.41 0.41 0.22
(P, = 0.95, Uniform 0.39 0.46 041 041 0.22
B =0.95and B = —1.25) 1 0.93 0.96 0.61 0.64 0.41
t 0.70 0.66 0.49 0.50 0.25
t3 0.53 0.51 042 042 0.22
DLN 0.67 0.62 0.44 0.44 0.19
Weaker IVs Normal 0.33 0.33 0.36  0.31 0.30
(A =4, Uniform 0.31 0.33 0.36  0.32 0.29
B =25 and B = —0.725) 1 0.91 0.94 0.52 0.59 0.40
t 0.61 0.58 041 043 0.28
t3 0.43 0.42 0.37 0.35 0.29
DLN 0.55 0.49 0.36 0.37 0.25
Stronger IVs Normal 0.40 0.42 040 0.40 0.23
(A =20, Uniform 0.38 0.47 0.41 041 0.23
B =0.62and B = —0.325) 1 0.94 0.96 0.58 0.63 0.40
t 0.75 0.72 0.48 0.50 0.25
13 0.57 0.54 042 043 0.23
DLN 0.59 0.54 0.38 0.40 0.22
One IV Normal 0.37 0.38 0.39 0.39 0.39
(k=1, Uniform 0.34 0.42 0.39 0.39 0.39
B =1.05and B = —0.41) 1 0.88 0.89 044 0.44 0.44
t 0.67 0.64 042 042 042
t3 0.54 0.51 042 042 042
DLN 0.66 0.61 0.40 0.40 0.40
Ten IVs Normal 0.38 0.39 0.41 041 0.24
(k =10, Uniform 0.38 0.43 045 045 0.27
B =19 and B = —0.49) 1 0.94 0.90 0.60 0.67 0.43
t 0.72 0.69 0.50 0.54 0.28
13 0.54 0.52 046 0.46 0.28
DLN 0.64 0.60 0.46 0.48 0.24

Note: All cases have B, = 0, A = 10 (equivalently, p,y = 0.302 for n = 100), p,,, = 0.75, n = 100, k = 5, and

p =1 (an intercept), unless otherwise stated.
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and LM tests for the normal distribution and higher for the other distributions,
especially the thick-tailed ones. The power of the WS-RCLR test is similar to
that of the NS-RCLR test.

NOTES

1. We note that the CLR test reduces to the AR test when the model is just-identified, and so
the optimality properties mentioned in the text are consistent with those mentioned previously for
the AR test.

2. The statistics S, and 7, are denoted S and T, respectively, in Moreira (2003).

3. The statistic LR, is the likelihood ratio statistic for the case of normal errors v; with known
covariance matrix Q and with O, plugged in for . One can also consider the likelihood ratio
statistic for the case of normal errors and unknown covariance matrix; see Moreira (2003).

4. If there are any ties in the ranks, then we determine a unique ranking by randomization.
For example, if y;; — B'y2i — ¥.(B)'X; = yi;, — B'y2j — ¥.(B)'X; for some i # j and these obser-
vations are the €th largest in the sample, then R:(B) = € with probability 0.5, Ri(B) = € + 1 with
probability 0.5, ﬁj(ﬁ) ={¢+1if R(B) = ¢, and Iéj(ﬁ) = ¢ if R,(B) = € + 1. Ties only occur with
positive probability if the distribution of y;; — B'y2; — ¥,(8)'X; is not absolutely continuous. In
consequence, in practice ties rarely occur.

The matrix programming languages GAUSS and Matlab have very fast built-in procedures for
finding the ranks of a given vector. The GAUSS procedure is called rankindx.

5. The definition of 7,7 uses the ranks R, of {y;; — Biys; — 7a(Bo)'X;:j = 1,...,n} but is
linear in Y, (or equivalently, in Y, — PxY, because Z'Py = 0). One might think that it is more
natural to replace Y, in the definition of 7,7 by the ranks of ¥, — PxY,. We do not do this for the
following reason. For power purposes one wants the Y, term in the definition of 7, to be (asymp-
totically) linear in its mean ZII. If one replaces Y, by the ranks of ¥, — PyY,, then (asymptotic)
linearity does not hold under strong IV asymptotics, defined in Section 5, because ZII is not an
n~'/2 perturbation from the zero vector; see Lemma 6 in the Appendix. Hence, one does not obtain
the desired power properties under strong IV asymptotics. Under weak IV asymptotics, defined in
Section 4, (asymptotic) linearity holds because ZIT = ZCn~"/? for some matrix C and the latter is
an n~ /2 perturbation from the zero vector. Hence, power problems with this alternative definition
of 7,7 only arise under strong IV asymptotics.

6. The second equality holds because 7,7 is a square invertible matrix when k = m. The last
equality holds because [S,:7,]'[S,: T,] is positive semidefinite and singular, which implies that
Amin([Sa: T, 1'[S,: T,,]) = 0. Singularity holds because [S,:7,]" is an (m + 1) X m matrix and
[8,:T,1'[S,:T,,]is (m + 1) X (m + 1) when k = m.

7. Var(¢(Uy)) = ¢, because Uy, has a U[0,1] distribution.

8. The expressions for £(¢, f) for normal and Wilcoxon scores are established by change of
variables and integration by parts.

9. The ARE of one test to another is usually defined, roughly speaking, to be the limit of the
ratio of the sample sizes of the second test to the first required for the two tests to have the same
power; see Lehmann (1986, p. 321). In standard scenarios—in which the two tests have noncentral
chi-square asymptotic distributions—the ARE reduces to the ratio of the (asymptotic) noncentral-
ity parameter of the first test to the second. In Section 4.3.1, which involves nonstandard weak IV
asymptotics—in which the power of a test does not necessarily increase with the sample size—we
adopt the ratio of the (asymptotic) noncentrality parameters to be the definition of the ARE. That
is, by definition, the ARE of one test to another is the ratio of the noncentrality parameter of the
asymptotic distribution of the first test to that of the second test provided this ratio is nuisance
parameter free and the two tests have noncentral chi-square asymptotic distributions or mixed non-
central chi-square asymptotic distributions (and the ratio of the noncentrality parameters is the
same for all values of the mixing variable).
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10. A sufficient condition for Assumption 4S(h) is the same condition with 2 replaced by 1 + 4,
and the latter holds with probability one for sequences {(Z;, X;):i = 1} that are realizations of i.i.d.
random vectors with finite 1 + § moments; see Lemma 12 in the Appendix.

11. The proof is the same as for Lemma 1 except that in place of (A.69) we have n'/?(& — &)
(B — Bo) = O(1) because B — By = O(n~"/?) by Assumption 4S(a) and & — &, = O(1) by Assump-
tions 2(c) and 4S(b).

12. The ARE:s discussed in Section 5.3 can be defined by the usual method involving the limit
of ratios of sample sizes or in terms of the ratio of noncentrality parameters—see note 9 regarding
these definitions. Under strong IV asymptotics, the two definitions are equivalent for the tests con-
sidered here.

13. Thus, we consider a model with random exogenous variables and IVs. The tests considered
have the correct size asymptotically both conditionally and unconditionally on the exogenous vari-
ables and IVs.

14. There is no loss of generality in taking 8y = 0 because the structural equation yy; = y,; 8 +
v X; + u; and hypothesis Hy: 8 = By can be transformed into j;; = y»,8 + y|X; + u; and
Hy: B = 0, where §; = yi; — y2i80 and 8 = B — fo.

15. The reported power of the CLR test for the case where A or n is small is less than 0.4
because the CLR test has power less than 0.4 for all values of .
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APPENDIX: Proofs

The proofs of Lemmas 1-5 and Corollary 1 are given at the end of the Appendix, as is
the description of the numerical calculation of asymptotic power under weak I'Vs.

The proofs of Theorems 1(i) and 2(i) rely on the following lemmas. Lemma 6 fol-
lows from results of Koul (1970) and Hdjek and Sidédk (1967).

LEMMA 6. Let W, (t) = n ' 2/, (c; — ¢,) @(r;(t)/(n + 1)), where

(i) ri(2) is the rank of Q; — djt among {Q; — djt:1 = j = n} for a constant vector
t € R,

(ii) {Q;:i = 1} is a sequence of i.i.d. random variables with absolutely continuous
strictly increasing df H and absolutely continuous and bounded density h that
satisfies 1(h) < oo,

(iii) {c;:i = n,n = 1} and {d;:i = n,n = 1} are triangular arrays of nonrandom
O.-vectors and dy-vectors, respectively (with dependence of ¢; and d; on n sup-
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pressed for brevity), that satisfy lim,,_,.cmax<;=,|c; — ¢,|%/ 27—l c; — ¢,]> =0
and lim,_,,n" ' 27 |c; — ¢,]> < oo and likewise with ¢; — ¢, replaced by
d; — d,, where ¢, =n"' 2 c,and d,=n"' 3}, d;, and

(iv) the score function ¢ satisfies Assumption 3.

Then,

(a) forall e > 0 and b < oo,

lim P( sup n'/2 W, (n~"?) — ¥, (0) — n~?4,(0)t] > a) =0,

ne \le|=b

where

A0 = =1 e =60 =4 | otumet

(b) for any sequence of random 8-vectors {#,:n = 1} for which n'/*%, = 0,(1),

n'2¥, (%) = n'>%,(0) + A, (0)n'/?%, + 0,(1),

(c) n'2,(0) =n" "2 Z (¢; — &) @(H(Q))) + 0,(1).
Remarks.
(a) Lemma 6(a) is an extension of Theorem 2.1 and Lemma 2.3 of Koul (1970) from

(b)

()

scalar constants ¢; and d; to vectors. As Koul (1970, p. 1280) notes, his proof of
these results goes through for this extension with virtually no changes. Lemma
6(b) follows from part (a). Lemma 6(c) follows from the proofs of the Héjek
and Siddk (1967) Theorem V.1.5a (p. 160), Theorem VI.1.6a (p. 163), and
Lemma VIL.I1.6a (p. 164), which show that in the scalar ¢; case E(n"'/?
Sile — E)e(H(Q)) — n 23 (¢; — ¢,)af(i))> = o(1) and E(n~'?
S, — &)af(i) — n'2W,(0)% = o(1), respectively, where a?(i) =
E(o(H(Q1))[ri(0) = i).

The expression for A,(0) on p. 1277 of Koul (1970) is correct, but the expression
for A,(0) given on p. 1278 (which is of the form given previously) contains a
typo—a minus sign is missing. Also, the proof of Theorem 2.1 of Koul (1970)
contains a typo that could be confusing to the reader. The term ¢(g,,) that appears
at the end of the expression on the first two lines of the first equation on p. 1276
should be ¢'(g,) in both places.

We do not require ¢ to satisfy the second condition of (i) on p. 1274 of Koul
(1970) because this is a normalization condition that implies that ¢ (3) = 0 which
is not needed for his Theorem 2.1 or Lemma 2.3. It is needed for his n'/2S,(0) to
have an asymptotic normal distribution. We do not require it for n'/2¥,(0) to
have an asymptotic normal distribution because we consider demeaned constant
vectors ¢; — &,, which yields n'/?W,(0) invariant to additive constants in ¢, whereas
Koul (1970) does not.

The next lemma is used to establish the probability limit of 7,,.
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LEMMA 7. Suppose

(i) {(Q1i, Qi) :i =1} is an i.id. sequence of random (m + 1)-vectors with Qy; € R,

(ii) (Q1i,Q2;) has an absolutely continuous and bounded joint df Hy,, ,, that satis-
fies Sup(q,,qz)‘BHQI,QZ(QI’%)/E’QI| < oo,

(iii) E| Qs < oo,

(iv) 1;(2) is the rank of Q\; — djt among {Q\; — djt:j = n}, where t € R4,

(v) {d;:i = n,n = 1} is a triangular array of nonrandom 84-vectors that satisfies
lim,_,,n~' 2 [d;]| < oo, and

(vi) the score function ¢ satisfies Assumption 3.

Then,
(a) for all b < oo,

n it —-1/2 n iO
n! E‘P<M>Q2i_”l 2‘P<r( )>Q2i

i=1 n+1 n+1

sup
t:|t]|=b

=0,(1),

(b) for any sequence of random 8-vectors {#,:n = 1} for which n'/*%, = 0,(1),

" ri (7, " r; (0
n_12€0< ! )>in:”_12€0< ()>Q2i+0p(1):

n+1 n+1

(¢) n=' Z; @(r;(0)/(n + 1))0s; = E@(Hy,(01;)) Qs + 0,(1), where Hy, is the df
of Qu;-

Remark. Lemma 7(a) follows from arguments similar to those used to prove
Lemma 2.2 in Koul (1970), which was originally proved, under different assumptions,
as Theorem 3.1 in Koul (1969). The result established in Lemma 7(a) is different from
the results established in Koul (1969, 1970), but the idea of the argument is essentially
the same. The results in Koul (1969, 1970) are for a linear regression model with deter-
ministic regressors. Hence, using our notation, the results in Koul (1969, 1970) are
restricted to the case where {Q,;:i = n} are nonrandom real numbers and {(Q,;,Q»;):
i =n} and {d;:i = n} satisfy the relation imposed by a linear regression equation. Hence,
the conditions in Lemma 7(a) generalize those in Lemma 2.2 of Koul (1970). On the
other hand, Lemma 2.2 of Koul (1970) establishes that the left-hand side in Lemma 7 (a)
is op(n’l/z), which is a stronger result than that given in Lemma 7 (a).

Let @ be the n-vector with ith element given by ¢ (U,;) = ¢(G(u; + (B — Bo)'v2:)).
LEMMA 8. Under Assumptions 1-3 and 4W,

(i) n"V2Z'Ry = n"V2ZN(® + ZCLL 5_p,c)/>n V) + 0,(1),

(ii) S¢ =(Z'Z)""2Z' (e, > + ZCS s_p,n™?) + 0,(1),

(iii) n='Z2'Z — D, > 0, and
(iv) n ' 2Z'[(Dc,? + ZCLS g_pnV?) 1 Vo] =4 [Ny: N2 ].

LEMMA 9. Under Assumptions 1-3 and 4W,

(i) Von —p Vg and
(ii) Qapy —p Qos.
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LEMMA 10. Under Assumptions 1-3 and 48,

(i) nV2Z'Ry, = n"12Z (O + ZI > n?) + 0,(1),
(ii) S =(2'2)""*Z (Pc; > + ZIW pn %) + 0,(1), and
(iii) n7'Z'[®:Y,] —, Dz[0;: 11].

LEMMA 11. Under Assumptions 1-3 and 4S8,
(i) Dp =, Vo and
(”) 92211 _>p 922-

The following lemma gives sufficient conditions for an i.i.d. sequence to satisfy
Assumptions 2(d) and 4S(h) a.s.

LEMMA 12. Suppose {i;:i = 1} is an i.i.d. sequence of nonnegative random vari-
ables with Eys'™® < oo for some & > 0. Then,

(i) T2, 12/ < oo as. and

(ii) max,<,¥;/n — 0 a.s.

The last lemma is a Glivenko—Cantelli theorem for triangular arrays of random vari-
ables, which is used in the proof of Lemma 7. It is proved by verifying the conditions in
Pollard (1990, Thm. 8.3).

LEMMA 13. Suppose

(i) {(Q1i, Qi) :i = 1} is an i.i.d. sequence of random (m + 1)-vectors with Q;; € R
and
(ii) {d;:i = 1} is any sequence of nonrandom 84-vectors.

Then, for any b < oo,

sup sup }’l71 E[hm‘(‘il,‘b,f)_Ehni(%,%,t)] —>0(1.S.,
i=1

(q1,92)ER™ ! 1ER% 1] = b
where
hoi(q15q251) = 1(Qy; = gy +d] ™20, = q,).

The proofs of Lemmas 7-13 are given after the proofs of Theorems 1 and 2.

Proof of Theorem 1. Lemma 9 and Assumption 4W(e) imply that
QO =, Q and Q) HH'Q H) V2 - QH(H'Q,) H) 2 (A.1)

This, Lemma 8, the continuous mapping theorem, and the definitions of (S¢,7,¢) and
(8£,T7) combine to establish part (i).

Independence of S and T.¢ is implied by zero covariance between the normal vari-
ates N, and [N,,: Nz]ﬂ;g' H. The latter holds by the following argument. Let Ny, ;, N, ¢,
and Dy ;; denote the jth element of N,,, the £th row of N,, and the ( j,€) element of Dy,
respectively. Let e¢; denote an m + 1-vector of ones. The covariance between N, ; and
the €th row of [N,: N,1Q_, H for j,£ = 1,...,k is
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Cov(N, ;,[N,.¢: N, JJO; H)

N, . —EN,
_ , L2 L2y X 1 _ , —1 _
= Ee! <N2,,j s ) [N, :Ny JO, H =Dy e Qu Q. H=0. (A.2)

Parts (ii)—(iv) of the theorem follow immediately from part (i) and the continuous
mapping theorem. |

Proof of Theorem 2. The result S¢ —, Sf, of part (i) follows from Lemma 10(ii),
Lemma 8(iii) (which does not rely on Assumption 4W), and the Lindeberg CLT applied
to n~/2Z'dc,"/?. The CLT applies by the same argument as given in the proof of
Lemma 8(iv) subsequently.

The result n='2T¢ —, af (or n~'?T,¢ —, af) is established as follows:

nVATE = VA(Z'Z) VP2 [Rye, 2 Y 1O H(H Q) H) 2
=(n'Z2'2)"[n'Z'R, e, P in ' 'Y, 10 HH QL H) V2 + 0,(1)
=D, [n'Z(Pc, " + ZIfgn =) :n ' Z'Y, ]
X O H(H' QO H) ™2 +0,(1)
= D}?[0,:I1Q HH'Q_H)™'/? +0,(1)
= D,?II(H' O, H)"? + 0,(1), (A.3)

where the second equality holds because Lemma 11 and Assumption 4S(g) imply that
fl;,: -, Q;ﬁ, the third equality holds by Lemma 8(iii) and Lemma 10(ii), the fourth
equality holds by Lemma 10(iii), and the fifth equality holds because [0;:I1] =
11[0,,:1,,] = TIH'. The convergence of (S¢,n~'/2T#) holds jointly because aj is a
constant.

Parts (iii) and (iv) follow immediately from part (i) using the continuous mapping
theorem noting that ay a is pd by Assumptions 2(c), 4S(b), and 4S(g).

We now prove part (ii). Given the definition of RLR? in (3.8) and the result of Theo-
rem 2(iii), it suffices to show that

Xain ([SETE[S2TF]) =SS+ + 0,(1), where
St =8¢ =THTITY) T S,]. (A4
For notational simplicity, let [S: 7] denote [S¢:7,¥] and let T, € R™*! denote the
jth column of T for j = 1,...,m. We rotate [S:7T] by an orthogonal matrix B €
R DX+ whose first column, by, is designed to be such that [S: T]b, = d; S+, where
dy is a positive scalar that equals 1 + 0,(1). Then, we have

)‘min([S: T]/ [S T]) = /\min(B/ [S T]/ [S T]B)’ (A'S)

and the (1,1) element of the matrix on the right-hand side equals A% dZS*'S .
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Let b; denote the jth column of B and let b; denote the (i, /)th element of B. Define

1
b, =d € R, A6
! 1<—(T’T)‘T'S> (4.6)

where d; is a constant such that b;b, = 1. Next, we define the orthogonal vectors
{bj:j = 2,...,m + 1} via the Gramm-Schmidt procedure applied to the vectors
by, es,...,e,11, where ¢; is the jth elementary vector (whose jth element is one and
whose other elements are zero). We have

by, = dy(e; — (eyb,)by) = dy(e; — byy b)),
by = ds(e; — (eébz)bz - (eébl)bl) =ds(e3 — by3by — by3b), (A7)

and so on, where d; is the constant that yields |b;] = 1 forj =1,...,m.
The constants {d;:j = 1,...,m + 1} satisfy

dy=0+n""(n"2S'T)(n 'T'T) 2(n"'2T'S)" > =1+ 0,(1),

dy = (1=b%)""2 =1+ 0,(1),

dy = (1=b3—bi3) V2 =1+0,(1), (A.8)
and so on, using Theorem 2(i) and the fact that
byy=n""?[=d(n 'T'T) 'n 2T'S];= 0,(n""?) forj=2,...,m,

by; = dy(=b1aby) =0,(n"") forj=3,...,m,

by; = d3(_b23b2_; - bl3b1j) = Op(nil) forj=4,...,m, (A.9)

and so on.
Let A = (Ay,...,Ams1) = (A;,A5)" € R”F! be such that |A| = 1. Then, we have

Apin(B'[S:TV[S:T1B) = inf J(A), where

AER™ T A|=1
JN) = |[S:T1BA|2 = X2d?SH'S* +20,d,SY[S:T][by...byii A5 + J5(N),
Ji(A) = Ny[bye by V' [S:TT[S:T1[by. .0, 1A, (A.10)
The cross-product summand of J(A) in (A.10) equals
20, d,[SYS:0,5,1[bs. .. Byt 1A, = OP(H;\ZH), (A.11)

using ST = 0, (S+'5)? = (§1'S+)S'S = (5'5)2 = Op(l), |b,j\ =l,and d; =1+
0,(1). For the third summand J5(A) of J(A), we have

[S:T1[by.. by 1]

=[dy(T) = b1, ") :d5(T5, = bysdy (Ty — b1, S*) — b3S *) .. ], (A.12)
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Combining this with (A.8), (A.9), S*'T=0,S* = 0,(1), and n~ /2T —, 7 (by part (i)
of the theorem), we obtain

0 = J5(A) = nXy(af af + 0,(1)A,, (A.13)

where af' @ is pd by Assumptions 2(c), 4S(b), and 4S(g).
Let A = (A, ..., A%, ) = (X5, A%) € R""! be an m + 1-vector that minimizes
J(A) over A € R™"! such that |A| = 1. If || = 0,(n™"), then

J(A*) =88+ +0,(1) (A.14)

by (A.10)-(A.13) and S+'S+ = 0,(1) by part (i) of the theorem.
On the other hand, suppose that |A5] = 0,(1) and |A5] # o0,(n""); then |X}| =
1+ 0,(1),

J(A*) =SSt +0,(1) + J5(A*), and
0 = J5(A*) = nXy (af af +0,(1)A5 # 0,(1). (A.15)

This contradicts the assumption that A* minimizes J(A) over A such that | A]| = 1 because
a different choice of A, namely, A such that | A, = 0,(n™"), yields a smaller value J(A)
as indicated in (A.14).

Next, suppose that |A5] # o,(1). Then,

J(A*) = 0,(1) + J5(1"),
0=J5(A") #0,(n), and J(X*)# 0,(1) (A.16)

by (A.10)—(A.13). In particular, for some & > 0 and some (infinite) subsequence {€,,} of
{n}, P(J3(X*) > €,&) > & when the sample size is €, for all n = 1. Again this is a
contradiction, because a different choice of A, namely, A such that [, = 0,(n "), yields
a smaller value J (), namely, one that is O, (1) as indicated in (A.14). We conclude that
| A% | must satisfy |A5] = o0,(n"!), and hence (A.14), (A.4), (A.5), and (A.10) combine
to establish the result of part (ii). |

Proof of Lemma 7. Because E|Q,;| < oo, given any & > 0, there exists a constant
¢. < oo such that

E[0511(10y]l > ¢.) <. (A.17)

Hence, using the boundedness of ¢, say, by C, and Markov’s inequality, we have for
any n > 0 and € > 0,

1 z ri(mil/z)
P| sup |n | ———— )10l >c.)| >n
t:]e]=b =1 +1
C Ce
= ; E[Qy[1(1Qa] > ¢.) < e (A.18)

Therefore, without loss of generality, we can assume that Q»; is bounded.
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Define

L (q,,1)=n" E 1(Q); —d/t=q,) and
i=1

L (q1,q.1) =0 210y, —djt = q,,00; = q»). (A.19)
i=1
Note that
EL,,(q,,t) =n"" EHQ,(% +d/t) and
i=1

EL,,(q,,q,,1) =n"" E HQl,QZ(ql +d1,q,). (A.20)
i=1

Now, we have

! ri(t)
! l‘P( )in

i=

=n' e
i=1

Ly, (q,1)
ff¢<n ;-i—q; )‘Izdlen(‘]h‘h,f)
Ly, (q,1) EL,,(q,,1)
ff [90(” ’11+q11 ) ¢><n nl:lll >]qzdL.zn(q.,qz,t)

EL,,(q,,1)
” (" v )qzdL12n<ql,q2,z>. (A21)

nLy,(Qy; — djt 1)
n+1 *

Therefore, using the triangle inequality,

n —1/2 n 0
n121¢<L>Q2, ; ( ()>Q2i

n+1

sup
t:)t]|=b

i=

=A,0)+A4,0) +A4,, (A.22)
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where, for b = 0,

nLl,,(ql,m 172) nEL,,(q,,tn""?)
An(b) = )
IS HrH<b n+1 n+1
X gy dL,5,(q,,q,,m""?)| and
nELln(qhtn 1/2) _
As, ff |: ¢, dL15,(q,,q2, tn~ %)
I Hr|\<h n+1

ELH( ,0)
ff [" o ]qzdlen(ql,qz,O)‘. (A.23)

Now, by Lemma 13,

sup sup |L1n(q1’tn71/2) _ELln(q17tn71/2)|

G1ER t:|t]|=b

= sup sup
¢1ER 1:|t|=b

n ' 2 [1Qy =g, +d]m™'?) —Hp (q, + dirmil/z)]‘ -, 0.

i=1

(A.24)

This implies that Ay, (b) —,, 0 and Ay, (0) —, 0, because ¢ is absolutely continuous, Q,;
is bounded, and 0 =< A,,(0) = A,,,(b).
Using the triangle inequality again, we have A,,, = Bj, + B,,, where

nELln(ql?tn 1/2) _
fj [ quLIZn(ql1q27tn I/Z)

Bln =
12 Hr\|<b n+1
nEL,,(¢,,0)
f f [ — - ]qz dL5, (41,42, | and (A.25)
nELln(th) 172
B2n - . Hl\|<b %d{len(‘hs%,m ) - L12n(q13q2’0)} .

To bound B;, and B,,, we write

sup sup |Ly2,(qy,g2 " ""*) = L15,(q1,¢5,0)|

(q1,42)ER™ ! 1:]t]=b

= sup SuPb|L12n(q“‘]zJ”71/2)_Elen(Q1»‘Iz,f"71/2)|

(q1,92)ER™ ! 1:]t]=

+ sup Supb|EL12,,(q1,q2,m7'/2)—Elen(ql,q2,0)|

(q1,g2)ER™ ! 1:]7]=

+ sup Supb|EL12,,(q1,q2,O) = L12,(q1,4,0)|. (A.26)

(q1,42)ER™ ! 1:]t]=
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The first and last terms on the right-hand side converge to zero a.s. by Lemma 13. The
second term on the right-hand side converges to zero because it equals

n”! 2 HQI,Qz(ql +d/in"%q,) - HQI,QZ(QI’qZ)
i=1

sup sup
(q1,92) t:t]=b
" dHgy o (g, + di’t*”il/z,‘h)
= sup sup |n ' = dim~"*| =o(1), (A.27)
(q1,92) t:] 7=k i=1 dq,

where ¢* lies between 0 and 7, the first equality holds by a mean-value expansion around
t = 0, and the second equality holds because dH,, ,,/dq, is bounded (Assumption
4W(d)) and lim,,_,,, /- | d;|| < co. Therefore, using the boundedness of ¢ and Q,;, we
have B,, —, 0.

Equation (A.27) and a mean-value expansion yield By, —, 0 because ¢ has a bounded
first derivative by Assumption 3(a). In consequence, A,, —, 0, which completes the
proof of part (a).

Part (b) of the lemma follows from part (a) using a standard argument.

To prove part (c), as in part (a), we can assume that Q,; is bounded without loss of
generality. We have

: 0 Lln I’O
B 2¢< & )>Q2, Jf <” 4 )>q2dL12n(ql7q27O)

EL,,(q,,0
ff <” 4 ))quLIZn(ql’q270)+0p(1)

n+1
”HQ,(%
Jf 4:dHy, 0,(41,9,) + 0,(1)
= E@(Hy,(01))) Qs + 0,(1), (A28)

where the first equality holds by (A.21) with 7 = 0, the second equality holds because
A1,(0) —, 0, the third equality holds by (A.20), and the fourth equality holds because
n/(n + 1) = 1, Q,; is bounded, and ¢ has a bounded derivative. u

Proof of Lemma 8. We prove part (i) first. Using (2.1) and Assumption 4W(a),
Yii = Boyai = ¥u(Bo)'X;
= (B = Bo)yai = (Fu(Bo) = 7))’ X +
=(B=Bo)C'Zin "> = (3,(Bo) = v1 = £1(B = Bo))'X; + u; + (B = Bo) v

(A.29)
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In consequence, we apply Lemma 6 with
v, (7,) = ”7|Z’R¢, O =u; + (B —By)va, ¢ =17, d; = (Z£’X;)”

) ( ~C(B—BIn” V2

s dh=g. A.30
&,,(ﬁ())—yl—a(ﬁ—/so)) menTe (A-30)

Note that ¢, = Z, = 0 because X, contains an intercept by Assumption 2(b) and Z'X = 0
by construction. The required conditions of Lemma 6 on d; are satisfied by Assump-
tion 2. The assumptions on Q; are satisfied by Assumptions 1(a) and 4W(b) and (c). The
condition n'/?%, = 0,(1) holds by Assumption 4W(f).

We now verify the conditions of Lemma 6 on ¢; = Z;. By construction, Z; =
Z; — Z'X(X'X)"'X;, where Z'X(X'X)"" —, D;,D5,' by Assumption 2(c). In conse-
quence, by standard arguments using Assumptions 2(c) and (d), we obtain
lim, ., n ' 2 1Z]I*> < oo and lim,,_,,, max,=;=, |Z;]|*/n = 0. Hence, all of the con-
ditions of Lemma 6 hold.

Now, using (A.30) and Z, = 0, A,,(0)n'/?%,(f, ¢(x,g) ¢(x) dx)"" equals

n! E Z Z,’C(B = Bo) — n! E ZiXi’nl/z(’iln(BO) =y — &(B = Bo)). (A.31)
i=1 i=1

The second summand is zero because Z'X = 0. The first summand equals n~'Z'ZC(B —
Bo) because Z'Z = Z'MxZ = Z'Z. Hence, by Lemma 6(b), we have

!
n\2Z'R,=n"2¥,(0)+n"'Z'ZC(B — ,Bo)f o(x,8)e(x)dx + 0,(1). (A.32)
0

(By definition, n'/?W,(0) = n~">Z'R}, where R{ is the n-vector whose ith element is
@(R;/(n + 1)) and R; is the rank of u; + (B — Bo)'va; in {u; + (B — Bo)'va;ij = n}.)
Finally, Lemma 6(c) implies that

n'2W,(0) = n""2Z'® + 0,(1). (A.33)

Combining (A.32), (A.33), and the definition of € ;_, in (4.5) establishes Lemma 8(i).

Lemma 8(ii) follows from part (i) and Assumption 2(c).

Lemma 8(iii) follows from Assumption 2(c) and Z'Z=Z'Z — Z'X(X'X)"'X'Z. Pos-
itive definiteness of D, follows from that of D.

Lemma 8(iv) follows from the Lindeberg CLT for triangular arrays applied to
n~'27'[®c, 1Y, — EY,] plus the facts that

n"\2ZN(ZCLL p_pgnV?) = Dy CLL g+ 0(1),
n~V2Z'EY,=27'ZCn"'=D,C+ 0(1), and
Var(n™"2u\ Z' [®c, 7?1 Y, — EY) ) = mh Qg o ) Dy ey, (A.34)

for arbitrary fixed nonzero vectors | € R* and u, € R™*1. Note that EZ'® = 0 because
Z, =0 and E@(U,;) does not depend on i.
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The Lindeberg condition is verified for n~"?u} Z'[®c,"?: Y, — EY> ] s (for py and
W, as before), as follows. Let {; = (gpz(Ugi)c '/2 UZ,),uz € R. For any &€ > 0,

S (U ZPECL (W, 20 > ne)

i=1
n 'y (,u/lzj)Z.ngl <rr_1ax(,u,'IZj)2{i2 > ns) -0, (A.35)
j=1 j=n

where the inequality uses (u'Z;)? = maX_/gn(M'Zj)z in the indicator function and the
convergence to zero holds by Assumption 2, E|v,;|?> < co (by Assumption 1(b)),
E@*(U,;) < oo (by Assumption 3), and the dominated convergence theorem.

Proof of Lemma 9. We prove part (i) first. Let V, be the n X m matrix whose ith
row is v};. Using Z'X = 0, we have

Do =n""VIR,c;\? ="V Z(n'2'Z) " 'n ' Z'R eV

en
—n 'V X(n ' X'X) 'n ' X'R e, (A.36)

We have n™ 'V, Z —, 0 and n~'V, X —, 0 because they have mean zero and variance
O(n~") by Assumptions 1 and 2(a) and (c). Assumption 2(c) implies that (n~'Z'Z)!
and (n1X'X)"! are O,(1). Lemma 8(i) and (iv) implies that n~/2Z'R, = O,(1). These
results combine to show that the second term on the right-hand side of (A.36) is 0,(1).
Next, we have

R n
n‘lX’R¢||=n'HZ ,<p< (o) )”<Cn'EIX,-||=0(1) (A.37)
i=1

for some constant C < oo, using the triangle inequality, the boundedness of ¢, and
Assumption 2(c). This result and the others given previously imply that the third term
on the right-hand side of (A.36) is 0,(1). Hence, ,, =n" 'V, R, c;l/z + 0,(1).

We apply Lemma 7 with Q; = u; + (B — Bo)'vai, Q2i = vy, and d; and 7, as in
(A.30) to get

n71V2'R¢c;'/2 =E[e(Gu; + (B — Bo)’vzi))vzi]cgl/z + 0,,(1)
= Cov[@(G(u; + (B = By)'v21)), yailey 2+ 0,(1) = v, + 0,(1).
(A.38)

The conditions of Lemma 7 on 7,, d;, and (Qy;,0,;) hold by Assumptions 4W(f), 2(c),
and 4W(d), respectively.

Next, we prove part (ii). For simplicity, we replace n — k — p by n in the definition of
flzz,,. We have

QZZn = nilyz(ln —P,—Py)'Y,

=n"" ViV, = VPV, = Vi P V) =, Qs (A.39)
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where V, denotes the n X m matrix whose ith row is v};, n~'V;V, =, Qs by Kol-
mogorov’s law of large numbers for i.i.d. random variables, and n~'Z'V, —, 0 and
n~'X'V, —, 0 because they have mean zero and variances that are O(n~') by Assump-
tions 1 and 2(a) and (c).

Proof of Lemma 10. We prove part (i) first. It suffices to show that (S¢,n~/2T#) —,
(8£,,af) conditional on an {&;: i = 1} sequence that satisfies certain properties, and that
{g;:i = 1} sequences satisfy these properties with probability one. Because conditional
probabilities are bounded by zero and one, this implies that (S, n~"2T,¥) =, (S5, af)
unconditionally by the bounded convergence theorem. The desired properties are

n

lim max [ — &[>/ X e, — &,1* = 0, (A.40)

n—oo 1=i=n i=1

n

lim =" Y e — &,]* < oo, (A.41)
n—oo i=1
limn~' > Z,e/ =0, and (A.42)
n—oo i=1
limn~' > X;& = 0. (A.43)
n—oo i=1

Conditions (A.40) and (A.41) hold a.s. by Assumption 4S(d), Lemma 12(ii), and Kol-
mogorov’s strong law of large numbers. Conditions (A.42) and (A.43) hold a.s. by
Assumptions 4S(d) and (h) and the strong law of large numbers of Theorem 5.2.1
of Chow and Teicher (1978, p. 121) applied with , = 2. Consequently, sequences {&;:
i = 1} that satisfy (A.40)—(A.43) occur with probability one.

Using (2.1) and Assumptions 4S(a)—(c), we have

Yii = Boyai = ¥u(Bo)'X; (A.44)
=B Zn " = (3,(By) =y~ & Bn V2)X, + B'g;n /2 + (1+ p'Bn"?)u,.

Let £, = (1 + p’Bn~Y2)~1. Because ¢, > 0 for n sufficiently large, {R;(Bo):i = n} are
equal to the ranks of the i.i.d. random variables {u;:i = n} plus the terms

{gnBIH,Zinil/z —4,(3.(Bo) —v1 — len71/2)1X1 + 5n3185n71/2 ti=n} (A.45)

Hence, we apply Lemma 6, conditional on an {&;:i = 1} sequence that satisfies (A.40)—
(A.43), with

\I,n(%n) = nilZ,an Qi =Uu;, ¢ = Zia
Zi _5;1H3n71/2
d=|X |, %= 840.B)—yvi—&Bn?) |, and h=f (A.46)

Si 7(&13”71/2
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The assumptions of Lemma 6 on Q; are satisfied by Assumptions 1 and 4S(e). The
required conditions for ¢; are verified by the same argument as in the proof of Theo-
rem 1. The assumptions on d; are satisfied by Assumption 2, (A.40), and (A.41). The
assumptions on 7, are satisfied by Assumption 4S(i) because ¢, — 1.

Using the definitions of ¢;, d;, and 7,, A,(0)n'?%,(f, @(x,f)@(x)dx)~" equals

gnn_l EZtZ;HB - nn_l EZiXi,nl/z(’?n(BO) S é—an—l/Z)

i=1 i=1
+¢,n ' D Z,elB. (A.47)
i=1

The first term in (A.47) equals Z'ZI1B + o(1) because {,, — 1. The second term is zero
because Z'X = 0. The third term equals

Lin ' Z.e!B—{,(n ' Z’X)(n 'X'X) " 'n! > X;e/B=o(l), (A.48)
i-1

i=1

using (A.42), (A.43), and Assumption 2(c). Hence, by Lemma 6(b) and (c), we have
1
n\?Z'R,=n""2Z'd + Z’ZHBI o(x, fe(x)dx +o0,(1), (A.49)
0

which establishes part (i).
Lemma 10(ii) follows from part (i) and Assumption 2(c).
To establish Lemma 10(iii), we have

n'ZY, =0T \ZN(ZI 4+ XE+ Vo) =0 Z'ZI+ 0T Z'V, =, D, 1, (A.50)

where V, denotes the n X m matrix whose ith row is v}, and using n='Z'V, —, 0 be-
cause its mean is zero and its variance is O(n~") by Assumptions 1 and 2(a) and (c).
In addition, we have

n7'Z'®d =n"'Z'(® — Ed) -, 0, (A.51)

where the equality holds because E® is proportional to 1, and Z'1, = 0 and the
convergence to 0 holds by the strong law of large numbers referenced in the previous
paragraph. u

Proof of Lemma 11. We prove part (i) first. By the same argument as in the proof
of Lemma 9(i), but with Lemma 8 replaced by Lemma 10, we have #,, =
n'V;R, c;'/z + 0,(1). As in the proof of Lemma 10(i), it suffices to show the result
conditional on an {&;:i = 1} sequence that satisfies certain properties and that {&;:
i = 1} sequences satisfy these properties with probability one. In the present case, we
need the property

lim n' > |e;| < co. (A.52)

n—co i=1
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Condition (A.52) holds a.s. by Kolmogorov’s strong law of large numbers using Assump-
tion 4S(d).

Lemma 7 applied conditional on a sequence {g;:i = 1} that satisfies (A.52), with
(Q1i,Q2:) = (u;,v5;) and d; and 7, as in (A.46), gives

rflVZ'I?(pC;I/2 = E[go(F(u,—))Uzl-]C;]/z + 01)(1)
= Covle(F(;)), y2:]e, ">+ 0,(1) = v,y + 0,(1). (A.53)

The conditions of Lemma 7 on 7,, d;, and (Q,;,Q»;) hold by Assumption 4S(i), condi-
tion (A.52) and Assumptions 2(c) and (d), and Assumption 4S(f), respectively.
The proof of part (ii) is the same as for Lemma 9(ii). n

Proof of Lemma 12. Part (i) holds because E X7, 4'7°/i'*° = Ey!*®
>2,i7 0T < oo implies that >, ' "°/i'"® < oo a.s. Part (ii) holds because the
result of part (i) and Kronecker’s lemma (see, e.g., Chow and Teicher, 1978, p. 111)
imply that n= 72 37, !"® — 0 a.s. Hence, n~ ' P max,_, ' " =n ' 2 3 1P —
0 a.s. In turn, this gives n~ ' max,~, ¢, — 0 a.s.

Proof of Lemma 13. We prove the lemma by verifying the conditions of Theo-
rem 8.3 in Pollard (1990). To match the notation in Pollard (1990), view the sequence
{(Q1;,Q2:):i =1} as depending on w € Q, where the probability space is {Q, F, P}, and
let (Q;,05;)(w) denote the ith element of this sequence. Also, view the sequence of
independent processes

{hni(qqubt):(qquz’t) ETCRm+1+6d} (A-54)
for i = 1 as a sequence of independent processes indexed by 7 € 7
{h,(w;7):7 €T}, wheret = (q,,4,,¢t) and

hy(w;7) = 1004, 00:) (@) = (g, + d;tn71/2,42))- (A.55)

Each of the processes h,,;(w; ) has envelope H,;(w) =1 Vo € Q, and these envelope
functions satisfy

EH,

ni

| =

< oo, (A.56)

s
M

22

1 i i

i

which is the first condition of Theorem 8.3 of Pollard (1990).

Now, we verify that the processes {h,;(w;7):7 € 7} and the envelope functions
{H,;(w) =1 Vw € Q} for i = 1 satisfy the second condition of Theorem 8.3 of Pollard
(1990). For each w, define the sets

Hon =, (0;7),..., 0, (0;7) ER":7 €T} and
aOH,, ={(a h,(0;7),...,a,h,,(0;7) ER":7E T} (A.57)

for some a € R".
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Denote the largest number « for which there exist points in a subset of a metric space
T with d(1;,1;) > €, for i # j, by D(e,T). The number D(g,T) is called the packing
number. Denote the ¢, distance in R” by |a|; = 272, |e;].

By Definition 7.9 of Pollard (1990), {h,;(w;7):7 € T} for i = 1 is manageable with
respect to the envelopes {H,;(w) =1 Vo € Q} for i = 1 if there exists a function A(e)
such that

1. fol VA(g)de < oo,
2. D(elal,a © Hey,) = Ae) for 0 < g =1, all w € Q, all vectors of nonnegative
weights a, and all n. (Because H,;(w) = 1 Yo we have that |a © H|, = ||,

where H = (H,;(w), ..., H,,(w)).)

The second condition of Theorem 8.3 of Pollard (1990) is that {4,,;(w;7):7 € T} for
i = 1 is manageable with respect to the envelopes {H,;(w) =1 Vo € Q} fori = 1.
For any w, the class H,, belongs to a larger class of functions H defined by

H = {hlh(q1,9,) = 1((¢1,9,) € C) for C of the type (—o0,¢;] X (—00,c5]™}.  (A.58)

The collection of all cells (—oo,¢;]| X (—00,c,]™ has VC-index equal to (m + 1) + 1,
which implies that the class of indicator functions H has VC-index equal to (m + 1) + 1
also (see van der Vaart and Wellner, 1996). From Theorem 2.6.7 in van der Vaart and
Wellner (1996), it follows that there exist constants A; and W such that

N(e/2,H) = A,(e/2) Y for0<e=2, (A.59)

where N(g/2,H) is the smallest number of closed balls with radius /2 that covers H.
The number N(e/2,H) is called the covering number of H. Because D(g,H) =
N(g/2,H) and H,, C H for every n and w, it follows that there exist constants A,
and W,

D(e,H,,) =A,e" for0<e=l. (A.60)

Now, using an argument similar to the one used in the proof of Theorem 4.8 of Pol-
lard (1990), we can show that for all n and w, there exist constants A; and W such that

D(elal,a O H,,) =A™ for0<e=I. (A.61)
Take H;,, to be the set of rescaled coordinates

a;h,

22“:’
i=1

hy = forh, € 'H,,. (A.62)

Let ) and k3 in H], be rescaled coordinates of 4; and h, in ‘H,,. Then,
* . o @i
|ny—h3li =2 " [y = hyy| = |hy = Dy (A.63)

o 2>«

i=1
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Hence,
D(e,H:,) =Ae™™ for0<e=1. (A.64)

Now, we have

n a[
|hffh§|1<8/2@2 . (hy; = hy) | <e/2
i=1 ZEai
=1
SlaOh —aOh|, <e|Xa| <elal,. (A.65)

i=1

Therefore, (A.61) holds with A; = 2WA,. This establishes that {h,;(w;7):7 € T} is
manageable with respect to the envelopes {H,;(w) = 1 Yo € Q}. Theorem 8.3 of Pol-
lard (1990) then gives

nVsup | D (hy(w;7) — Ehy(w;7)) ‘ -0 as., (A.66)
T7€T | i=1
which gives the result of the lemma. u

Proof of Lemma 1. By the definition of $-5(3,), we have

2 (Bo) = (7 X'X) "0t T X(B = Bo) v + Vi Xi +u)

=y +EB=Bo) + (0TI X'X) T X Xy + (B = Bo)'van), (A.67)
i=1
using yp; = II'Z; + ¢€'X; + v,; and X'Z = 0. Hence, we obtain
nl/z(f’fs(ﬂo) —yi—&(B—By) = (n’lX’X)’ln’l/z 2 X;(u; + (B — By)'va;)
i=1

+n'2 (€= €)(B— Bo)- (A.68)

Assumption 2(c) implies that (n~'X'X)~" = D;;' + o(1). The second multiplicand of
the first term on the right-hand side of (A.68) is asymptotically normal by the Linde-
berg central limit theorem using Assumptions 1 and 2 and Eu? < oco. The Lindeberg
condition is verified by an argument analogous to that in (A.35), where E(u; +
(B — Bo)'vai)? < oo by Assumption 1(b) and Eu? < oo. Thus, the first term on the
right-hand side of (A.68) is O(1). Next, we have

E—E ='X'X) " 'n'X'ZIL= (0 'X'X) 0T X' ZCn V2 = 0(n1/?), (A.69)

where the first equality holds by the definition of ¢ stated following (2.3), the second
equality holds by Assumption 4W(a), and the last equality holds by Assumption 2(c).
Assumption 4W(b) states that 8 — B, is a constant. Hence, n'/2(¢ — £,)(8 — Bo) =
O(1), which completes the proof of the lemma. n
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Proof of Corollary 1. We have
P(RLR::) > KLR,a(TnW Tn‘prk7m)) = P(LRoo(S‘p T(p) > KLR,a(’I;lw Tn(p7k7m))

n’ n

- P(LRoo(Soi’Tof) > KLR,a(TofI T;f,k, m))
= fP(LROO(S:;, 1) > Ky olt't k,m)) dFpe(t) = a,

(A.70)

where Fy¢(-) is the df of T.7, the convergence holds by Theorem 1(i) and the continuous
mapping theorem, the second equality holds by the independence of S and 7,7, and the
last equality holds by the definition of k;g o(¢'t,k,m) in (3.10) and the fact that S ~
N(0, ;) under the null by (4.6). u

Proof of Lemma 2. The proof is very similar to that of Theorem 1 with Yb,4, ' in
place of ®c, L lfirst, by the same proof as for Lemma 9(ii) but with (Y,,V,) replaced by
(Y,V), we get Q,, =, Q, where V is the n X (m + 1) matrix with ith row equal to v;.
This implies 6,2 —, byQb, = o2 and €, —, Q,. Next, we need the following ana-
logues of Lemma 8(i), (ii), and (iv):

n"12Z Yy = n~ V27! (Yby — EYb, + ZC(B — By)n~ /), (AT1)
S, = (Z’Z)_I/ZZ’(YbOO'gf1 — EYbOo'gf1 +ZC(B— ,80)0';1}1_1/2) +0,(1),

(A.72)

n~2Z' [(Vbyo, ' + ZC(B — By)o, 'n~?): Y, ] =, [N, : N, ], (A.73)

where (A.71) holds by (2.1), (2.3), Assumption 1(a), and Z'X = 0, (A.72) holds by (A.71)
and 6,7 -, 0'5,2, and (A.73) holds by the same proof as that of Lemma 8(iv) (given ear-

lier) except with dc_ /2, € 5, , and ¢(U,;)c, '/ replaced by Vbyo, ', (B = Byo, ',

and véiboog’l, respectively, and with E(v5;b,)> < oo by the assumption that Q is well
defined. Given these analogues of Lemma 8(i), (ii), and (iv), the rest of the proof of
Lemma 2 is the same as that of Theorem 1. n

Proof of Lemma 3. We establish part (i) first. Let o denote the variance of the df
L. Because ¢(x) = L™ '(x), ¢, = o by change of variables. Also, we have

o2 = Var((u, + (B — Bo)'vy,)K) = 02k% k=0, /7, and
G(x) = L(kx) = L(g, x/07,). (A.74)
Combining these results gives the result of part (i):
W), ' = o(Gl(u; + (B = Bo)'vai)De, 2
=L (LLoy(u; + (B = Bo)'vai) o D)ot
= (u; + (B = Bo)'v2;)/ 0. (A.75)

Part (i) implies that v,, = v,, and so Q,, = €, and part (ii) holds.
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For part (iii), we have

1 1 "(G 1 =<
JO @(x, 8 e(x)dx = —fo %L"(X)dx: —I g (MLHG(y) dy

[}

= —[ g (ML (L(ky)) dy = —Kf g' (Yydy=«k=0,/0,

(A.76)

where the second equality holds by change of variables with y = G~!(x), the third and
last equalities hold by (A.74), and the fourth equality holds by integration by parts.
Combining (A.76) with ¢, = o7 establishes part (iii).

Part (iv) follows from parts (ii) and (iii) and the definitions of N, Ny, 2, S, T.,
and T,.. u

Proof of Lemma 4. The proof is like that of Theorem 2 with Yb,&, ' in place of
R,c, -1 . By essentlally the same proof as for Lemma 9(ii) but with (Y,,V5) replaced by
(Y V) we get O, — Ev;v{ —, 0. Under Assumption 4S(a), we have

vy = u; + (B + anl/z) Usis

w; T Bova;\ [u; + Bova \
Ev;v; > E )
Vs Vs

u; + Bova; \ [u; + Bova; '
byE by = Eu} =0/, and

Ui U2
u; + Bova; \ [ u; + Bova \
H'E by = Ev,; u;. (A.77)
Ui Ui
In consequence,
672 = byQ, by, 07, b, =H'Q,b,6, " >, Evyu;0, ' =v,, and Q,, —, Q.
(A.78)

We need the following analogue of Lemma 10(ii):
S, =(2'2)""*Z'(Ybyo; ' — EYbyo; ' + ZBoy 'n™ %) + 0,(1), (A.79)

which holds by (2.1), (2. 3) Assumption 1(a), Z'X = 0, and 6, —, a'f Next, an ana-
logue of (A.3) holds with Q‘Pn, Qgr, and n~'Z'R,, replaced by Qs Qf, and n~'Z'Yb, =

n~'Z'(Vby + ZIIBn~'/?), respectively, using the result that Q., —,, € and the fact that
n’IZ’VbO —p 0 because its mean is zero and its variance is O(n’l). Given these ana-
logues of Lemma 10(ii) and (A.3), the rest of the proof of Lemma 4 is the same as that
of Theorem 2. u

Proof of Lemma 5. The proofs of parts (i)—(iii) are analogous to those of parts (i)—
(iii) of Lemma 3. Part (iv) follows from parts (i) and (iii) and the definitions of SZ_,
Sfes, af, and ay. |

Proof of an Alternative Expression for 7,. We now provide a proof of (3.6),
which gives an alternative expression for 7,, from its definition in (2.6). Let M =
[byG,,' :H] € RUFV*m+ D) Straightforward calculations yield
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YM = [Yb6,,':Y,], M'A,=H, Q,=MQ,M, and
ALQ A= ApM(M ™', M T YM Ay = H'Q) H. (A.80)

Using the definition of 7}, in (2.6), we have

T,=(Z'Z)"V2Z' (YM)(M 'O "M~ ) (M'Ay) (A Q' Ay) /2

n

=(2'2)\2Z'[Yby6,, : Y, 10, H(H' QL H) 2, (A.81)
where the second equality uses (A.80). The right-hand side of (A.81) is the expression
in (3.6). n

Asymptotic power calculations. Next, we describe the simulation method used to
calculate the weak IV asymptotic power reported in Table 1. The first step is to compute
E(o™S, g) and ("5, g) when g is the density of u; + Buvs; for v,; defined in (4.18) and
u; and g; are independent with distribution F. The idea is to use the fact that the Hodges—
Lehmann estimator of location based on ¢ (which is defined, e.g., in Hettmansperger,
1984, eqn. (2.8.12), p. 99) has asymptotic variance equal to 1/£(¢, g) (see Hettmansperger,
1984, Thm. 2.6.5 and eqn. (2.9.4), pp. 76, 105). We compute the Hodges—Lehmann esti-
mators based on ™ and ¢ "5 for 30,000 independent samples of a location model with
density g and sample size 100,000. This yields 30,000 Hodges—Lehmann estimates oNs
and 65, The reciprocals of the sample variances of these estimates yield estimated val-
ues of £(¢™, g) and £(¢"5, g), denoted £(¢™5, g) and £(¢™, g).

The second step is to compute the matrices Q ns,, Q,ws,, and ), and the scalar 0';
defined in (4.1) and (4.10). The df G(x) is approximated by the empirical df of 100,000
i.i.d. observations with distribution G (independent of the preceding random variables),
call it G(x). Using the same observations, 0'; is estimated by the sample variance,
denoted &2. Next, v, , is estimated by 7, , = R™' 3%, (0, — 0,0)(G(X,))c, 2,
where R = 40,000 for all distributions except the uniform, R = 100,000 for the uniform
distribution, o = R™' 2%, 0y, 00 = (1 = p2,)) 28 + p,g,il;, Xi = il; + Boay, ii; and
&; are independent with distribution F, are independent of G(x), and are i.i.d. across i =
I,...,R, and ¢ = ©™5,0"S. The term v, is estimated by the sample covariance between
y; and X, g, r derloted 17§, and w,, is~estimated by the sample variance of 9,;, denoted
@75. The matrices Qg ns,, Q,ws,, and (), are constructed using 7, vs,, P, ws,, Vg, and @n,.

The third step is to compute 5,000 independent observations of (i) two independent
k-variate normals (§¢,7.¥) with covariance matrices equal to I, and means given by
N2BE(p,g)er and AV2(BEV2(g,8), 1)) e, (€50, ) e;) " ?e,, respectively, for ¢ =
o™, 0", where e, = (1,0, ...,0) € RFand e, = (0,1)’, and (ii) two independent k-variate
normals (S, 7,,) with covariance matrices equal to J, and means as in (i) but with
G, 'W in plsace ofN SE 1/ 2N(S<p, g). The same normal random variables were used for
(S£,72 ), (8¢, T2 ), and (S, T..)—just the means are different.

The last step is to compare each of the 5,000 WS-RCLR, NS-RCLR, CLR, LM, and
AR test statistics based on (S‘o‘iws, Tofws), (S;@NS, TOZNS), and (S, T.,) with the appropriate
conditional critical value (determined by simulation) or unconditional critical value to
determine whether the test rejects the null hypothesis. The fraction that rejects the null
hypothesis is the reported power in Table 1.



