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Abstract

This paper establishes the asymptotic distributions of the likelihood ratio (LR), Anderson–Rubin

(AR), and Lagrange multiplier (LM) test statistics under ‘‘many weak IV asymptotics.’’ These

asymptotics are relevant when the number of IVs is large and the coefficients on the IVs are relatively

small. The asymptotic results hold under the null and under suitable alternatives. Hence, power

comparisons can be made.

Provided k3=n! 0 as n!1, where n is the sample size and k is the number of instruments,

these tests have correct asymptotic size. This holds no matter how weak the instruments are. Hence,

the tests are robust to the strength of the instruments. The asymptotic power results show that

the conditional LR test is more powerful asymptotically than the AR and LM tests under many

weak IV asymptotics.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper contributes to the literature on weak instrumental variables (IVs) in linear IV
models. The weak IV literature documents that standard procedures, such as two-stage
least squares-based t tests and confidence intervals, perform poorly when the IVs are weak
see front matter r 2006 Elsevier B.V. All rights reserved.
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(i.e., when the IVs are only weakly correlated with the right-hand side endogenous
variables). In consequence, alternative testing procedures have been developed whose size
is robust to the strength of the IVs. Such tests include the Anderson and Rubin (1949)
(AR) test, the Lagrange multiplier (LM) test introduced in Kleibergen (2002) and Moreira
(2001), and the conditional likelihood ratio (CLR) test introduced in Moreira (2003).
Andrews et al. (2006a) have shown that the CLR test has near optimal power properties in
models with Gaussian errors within a class of invariant similar tests. Furthermore, the
robustness of the asymptotic size and power properties of the AR, LM, and CLR tests to
non-normality has been established under the ‘‘weak IV asymptotics’’ of Staiger and Stock
(1997), see the references above.

This paper contributes to the literature by analyzing the behavior of the AR, LM, and
CLR tests when the IVs may be weak, the number of IVs, k, may be relatively large, and
the equation errors may be non-normal. Specifically, the paper presents new results for
these tests in the linear IV regression model under ‘‘many weak IV asymptotics’’ in which
k!1 as the sample size, n, goes to infinity and the strength of the IVs may be weak.
Asymptotics of this type have been considered recently by Chao and Swanson (2005),
Stock and Yogo (2005), Han and Phillips (2006), Anderson et al. (2005), Hansen et al.
(2005), Newey and Windmeijer (2005), and Andrews and Stock (2006). Most of these
papers focus on the properties of estimators. In contrast, we are interested in the properties
of tests—both for testing purposes and for obtaining confidence intervals via inversion.
In particular, we are interested in the properties of tests when the equation errors are
non-normal.

We find that in the many weak IV asymptotic setup the CLR, AR, and LM tests are
completely robust asymptotically to weak IVs with normal and non-normal errors. That is,
the asymptotic levels of the tests are correct no matter how weak are the IVs. On the other
hand, the asymptotic levels of the CLR, AR, and LM tests are not completely robust to the
magnitude of k relative to n. One does not want to take k too large relative to n. Results of
Andrews and Stock (2006) for the case of normal errors indicate that the condition
k3=2=n! 0 as n!1 is necessary for correct asymptotic size.1 With non-normal errors,
the results of this paper show that a sufficient condition for correct asymptotic size is
k3=n! 0 as n!1. Although this condition covers many cases of interest, it can be
restrictive. For example, it is not suitable for the Angrist and Krueger (1991) example when
one interacts the quarter of birth IV with state dummies to yield k ¼ 180 and n ¼ 329; 509.
Whether the condition k3=n! 0 is necessary is an open question (see the discussion
below).

Andrews and Stock (2006) show that the CLR test is essentially on the asymptotic power
envelope for normal errors under many weak IV asymptotics—regardless of the relative
strength of the IVs to k in the asymptotics. In addition, the AR and LM tests are found not
to be on the power envelope. In the present paper, we show that the asymptotic power
properties of the CLR, AR, and LM tests are the same under non-normal errors as under
normal errors given the k3=n! 0 condition. The aforementioned results combine to
establish that the CLR test has power advantages over the AR and LM tests for non-
normal as well as normal errors.
1This condition is necessary for the estimator of the reduced-form variance matrix to be k1=2-consistent, and

k1=2-consistency of this estimator is necessary for the effect of estimation of the variance matrix to be

asymptotically negligible.
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We conclude that the ‘‘many weak IV’’ asymptotic results for non-normal errors given in
the present paper buttress the arguments in Andrews et al. (2006a) and Andrews and Stock
(2006) for employing the CLR test over the AR, LM, and other tests in model scenarios
with potentially weak IVs.
The proofs of the results given here make use of the degenerate U-statistic central limit

theorem of Hall’s (1984), as in Newey and Windmeijer (2005).
Other papers in the literature that consider many weak IVs, include Chamberlain and

Imbens (2004) and Chao and Swanson (2006). Bekker and Kleibergen (2003) consider
‘‘many irrelevant IVs asymptotics,’’ in which k!1 as n!1 and the reduced-form
coefficient matrix on the IVs is zero. Weak IV asymptotics (with k fixed) were introduced
in Staiger and Stock (1997). Many IV asymptotics (with strong IVs) have been employed in
Anderson (1976), Kunitomo (1980), Morimune (1983), Bekker (1994), Donald and Newey
(2001), Hahn (2002), Hahn et al. (2004), and Hansen et al. (2005) among others.
This paper is organized as follows. Section 2 introduces the model and assumptions

employed. Section 3 defines the CLR, AR, and LM tests. Section 4 gives the results.
An Appendix provides the proofs.
2. Model and assumptions

The model we consider is an IV regression model with one endogenous right-hand side
(rhs) variable, p exogenous variables, and k IVs. The sample size is n. The number of IVs,
k, depends on n, i.e., k ¼ kn. We note that the case of a single rhs endogenous variable is by
far the most important in empirical applications.
The model consists of a structural equation and a reduced-form equation:

y1 ¼ y2bþ Xg1 þ u,

y2 ¼
eZpþ Xx1 þ v2, ð1Þ

where y1; y2 2 Rn, X 2 Rn�p, and eZ 2 Rn�k are observed variables; u; v2 2 Rn are
unobserved errors; and b 2 R, p 2 Rk, g1 2 Rp, and x1 2 Rp are unknown parameters.
The exogenous variable matrix X and the IV matrix eZ are random. The n� 2 matrix of
errors ½u : v2� is iid across rows. The variable y2 is endogenous in the equation for y1 (i.e., y2

and u may be correlated). Endogeneity may be due to simultaneity, left-out variables, or
mismeasurement of an exogenous variable.
The two reduced-form equations are

y1 ¼
eZpbþ Xgþ v1,

y2 ¼
eZpþ Xx1 þ v2,

where

v1 ¼ uþ v2b and g ¼ g1 þ x1b. (2)

The reduced-form errors ½v1 : v2� are iid across rows with each row having mean zero and
2� 2 non-singular covariance matrix O.
Let Y ¼ ½y1 : y2� 2 Rn�2 and V ¼ ½v1 : v2� 2 Rn�2 denote the matrices of endogenous

variables and reduced-form errors, respectively. We write the ith rows of Y , V , X , and eZ as
the column vectors Y i;Vi 2 R2, X i 2 Rp, and eZi 2 Rk, respectively. The two equation
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reduced-form model can be written as

Y i ¼ ap0 eZi þ Z0X i þ V i for ipn,

where

a ¼ ðb; 1Þ0 and Z ¼ ½g : x1� 2 Rp�2. (3)

Define

Z�i ¼
eZi � E eZiX

0
iðEX iX

0
iÞ
�1X i

and

l�n;k ¼ np0EZ�i Z�
0

i p. (4)

l�n;k indicates the strength of the IVs (and is proportional to the concentration parameter).
We use the following assumptions.

Assumption 1. fðVi;X i; eZiÞ : ipng are iid across i for each n and fðVi;X iÞ : ipn; nX1g are
identically distributed across i and n.

Assumption 2. EV i ¼ 0, EV i
eZ0i ¼ 0, EV iX

0
i ¼ 0, EX iX

0
i is pd, lim infn!1 lminðEZ�i Z�

0

i Þ40,

and supjpk;nX1 ðEkV ik
4 eZ4

ij þ EkVik
4 þ E eZ4

ij þ EkX ik
4Þo1, where eZi ¼ ð eZi1; . . . ; eZikÞ

0.

Assumption 3. EV iV
0
i ¼ O, EðViV

0
i � Z�i Z�

0

i Þ ¼ O� EZ�i Z�
0

i for all nX1, and O is pd.

Assumption 4. k!1 and k3=n! 0 as n!1, and p does not depend on n.

Assumption 5. l�n;k=kt
! rt as n!1 for some constants rt 2 ½0;1Þ and t 2 ð0;1Þ.

Assumption 6. b is fixed for all n when tp1
2
; b ¼ b0 þ Bk1=2�t when t 2 ð1

2
; 1�; and b ¼

b0 þ Bk�t=2 when tX1.

Assumption 1 states that the errors, exogenous variables, and IVs are random and iid
across ipn. Note that ðVi;X i; eZiÞ cannot be iid across n because the dimension, k, of eZi

depends on n.
Assumption 2 requires that the IVs and exogenous variables are uncorrelated with the

reduced-form errors and satisfy standard moment conditions.
Assumption 3 implies that the reduced-form errors are homoskedastic.
Assumption 4 states that the number of IVs goes to infinity as n!1, but not too

quickly, and the number of exogenous variables is fixed. As noted in Section 1, the
condition k3=n! 0 can be restrictive, and may not be necessary (at least in the presence of
suitable additional assumptions). This condition is not used in the proof to obtain a central
limit theorem. Rather, it is used to show that one obtains the same limit distribution of a
weighted quadratic form in a k-vector sample average when (i) a population weight matrix
is replaced by its sample version (see Lemmas 5 and 7 in the Appendix), and (ii) the
k-vector sample average based on a population projection onto an intercept and other
exogenous variables is replaced by the corresponding k-vector sample average based on the
sample projection (see Lemmas 6 and 7 in the Appendix). The argument in Hansen et al.
(2005, Lemma A9) probably can be used to show that the k3=n! 0 condition is stronger
than necessary for the purpose (i) above. However, weakening the k3=n! 0 condition and
still showing (ii) is problematic.
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An alternative approach to that considered in this paper is to treat the IVs and
exogenous variables as fixed rather than random. With this approach, one does not need to
establish (i) and (ii) above because a CLT can be applied directly to the quantities that
involve the sample weight matrix and the sample projections. The drawback of this
approach is that sufficient conditions for a CLT involve conditions that depend on the
relative magnitudes of k and n in an opaque way and are difficult to verify. For example,
conditions arise on the magnitudes of the elements of the projection matrix onto the n� k

space spanned by the IVs Z. Rather than rely on conditions of this sort, in this paper we
use an approach that yields a condition on k that is clean and transparent, but may be
stronger than necessary.
Assumption 5 controls the relative magnitude of the IV strength, as measured by l�n;k, to

the number of IVs k. For example, Assumption 5 holds if p ¼ Cðkt=nÞ1=2 for some C 2 Rk

with kCk ¼ 1 and CEZ�i Z�
0

i C! rt. The smaller is t, the weaker are the IVs relative to k.
Andrews and Stock (2006) find that the key value of t for inference concerning b is
t ¼ 1=2. For t ¼ 1=2, some tests (such as the CLR, AR, and LM tests) have non-trivial
power asymptotically against fixed alternatives. For t41=2, these tests have asymptotic
power equal to one against any fixed alternative. Many of the papers in the many weak IV
literature only consider the case of t ¼ 1. Note that Assumptions 2 and 5 imply that
p0p ¼ Oðkt=nÞ, see (15) below.
Assumption 6 specifies the true value of b that is considered in the results below.

Assumption 6 takes b such that the asymptotic distributions of the test statistics considered
are non-degenerate. It is shown that this requires that b is a fixed value when tp1=2 and b
is a sequence of local alternatives to the null value b0 when t41=2. Of course, b ¼ b0 is
allowed when tp1=2 or t41=2.

3. Tests

In applications, interest often is focused on the parameter b on the rhs endogenous
variable y2. Hence, our interest is in the null and alternative hypotheses

H0 : b ¼ b0 and H1 : bab0. (5)

The parameter p, which determines the strength of the IVs, is a nuisance parameter that
appears under the null and alternative hypotheses. The parameters g1, x1, and O also are
nuisance parameters, but are of lesser importance because tests concerning b typically are
invariant to g1 and x1 and the behavior of standard tests, such as t tests, are much less
sensitive to O than to p.
We now define the AR, LM, and CLR tests. We estimate O ð2 R2�2Þ viabOn ¼ ðn� k � pÞ�1 bV 0 bV ; where bV ¼ Y � P

½eZ:X �Y (6)

and PA ¼ AðA0AÞ�1A0 for a non-singular matrix A. We define

bSn ¼ ðZ
0ZÞ�1=2Z0Yb0 � ðb

0
0
bOnb0Þ

�1=2; where Z ¼ eZ � PX
eZ and b0 ¼ ð1;�b0Þ

0,bTn ¼ ðZ
0ZÞ�1=2Z0Y bO�1n a0 � ða

0
0
bO�1n a0Þ

�1=2; where a0 ¼ ðb0; 1Þ
0,

bQl;k;n ¼ ½
bSn : bTn�

0½bSn : bTn� ¼

bS0n bSn
bS0n bTnbT 0n bSn
bT 0n bTn

24 35 ¼ bQS;n
bQST ;nbQST ;n
bQT ;n

24 35,
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and bQl;k;n ¼ ð
bQl;k;n � kI2Þ=k1=2. (7)

The AR, LM, and LR test statistics can be written asdARn ¼ bQS;n=k,dLMn ¼ bQ2

ST ;n=
bQT ;n,

and

cLRn ¼
1

2
bQS;n �

bQT ;n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð bQS;n �

bQT ;nÞ
2
þ 4 bQ2

ST ;n

q� �
(8)

(see Moreira, 2003 and Andrews et al., 2006a).
Under H0, dARn!dw2k=k and dLMn!dw21 as n!1 under strong and weak IV

asymptotics assuming iid homoskedastic errors and k fixed for all n (e.g., see Andrews
et al., 2006a). Under the additional assumption of normal errors, dARn�Fk;n�k�p. Hence,
an F critical value is typically employed with the AR test, and a w21 critical value is used for
the LM test.

The CLR test rejects the null hypothesis whencLRn4kLR;að bQT ;nÞ, (9)

where the conditional critical value function kLR;að bQT ;nÞ is defined to satisfy Pb0ð
cLRn4

kLR;aðqT Þj
bQT ;n ¼ qT Þ ¼ a. Andrews et al. (2006b) gives detailed tables of kLR;aðqT Þ values.

4. Asymptotic results

This section contains the results of the paper. We establish the asymptotic distributions

of the statistic bQl;k;n and the test statistics dARn, dLMn, and cLRn, which depend on bQl;k;n,

under many weak IV asymptotics. In contrast to the assumptions in Andrews and Stock
(2006), we do not assume that the errors are normally distributed. We use the asymptotic
distributions to show that the AR, LM, and CLR tests have correct asymptotic size under
many weak IV asymptotics. The asymptotic distributions also show that the many weak IV
asymptotic power of the AR, LM, and CLR tests under non-normality is the same as it is
under normality. Hence, the power comparisons given in Andrews and Stock (2006) under
normality also hold asymptotically under non-normality.

The asymptotic distribution of bQl;k;n depends on the following quantities:

cb ¼ ðb� b0Þ � ðb
0
0Ob0Þ

�1=2
2 R,

db ¼ a0O�1a0 � ða
0
0O
�1a0Þ

�1=2
2 R,

V 3;t ¼

Diagf2; 1; 2g if 0otp1=2;

Diagf2; 1; 0g if 1=2oto1;

Diagf2; 1þ d2
b0

r1; 0g if t ¼ 1;

Diagf2; d2
b0

rt; 0g if t41; and

8>>>>>><>>>>>>:
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gB ¼ ðb
0
0Ob0Þ

�1=2db0 B 2 R, (10)

for the scalar constant B given in Assumption 6. Let w21ðdÞ denote a noncentral chi-square

distribution with one degree of freedom and non-centrality parameter d.

Theorem 1. Suppose Assumptions 1–6 hold. Then, the following results hold:
(a)
 If 0oto1=2 and b is fixed,

ðbS0n bSn � kÞ=k1=2

bS0n bTn=k1=2

ð bT 0n bTn � kÞ=k1=2

0BBBB@
1CCCCA!d

QS;1

QST ;1

QT ;1

0BBB@
1CCCA � N

0

0

0

0BB@
1CCA;V 3;t

0BB@
1CCA,

ðdARn � 1Þk1=2
!d QS;1 � Nð0; 2Þ; dLMn!d Q

2

ST ;1 � w21ð0Þ; and

cLRn=k1=2
!d

1

2
QS;1 �QT ;1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQT ;1 �QS;1Þ

2
þ 4Q

2

ST ;1

q� �
.

(b)
 If t ¼ 1=2 and b is fixed,

ðbS0n bSn � kÞ=k1=2

bS0n bTn=k1=2

ð bT 0n bTn � kÞ=k1=2

0BBBB@
1CCCCA!d

QS;1

QST ;1

QT ;1

0BBB@
1CCCA�N

c2br1=2

cbdbr1=2

d2
br1=2

0BBB@
1CCCA;V 3;1=2

0BBB@
1CCCA,

ðdARn � 1Þk1=2
!d QS;1 � Nðc2br1=2; 2Þ,dLMn!d Q

2

ST ;1 � w21ðc
2
bd2

br21=2Þ; and

cLRn=k1=2
!d

1

2
QS;1 �QT ;1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQT ;1 �QS;1Þ

2
þ 4Q

2

ST ;1

q� �
.

(c)
 If 1=2otp1 and b ¼ b0 þ Bk1=2�t for a scalar constant B,

ðbS0n bSn � kÞ=k1=2

bS0n bTn=k1=2

ð bT 0n bTn � kÞ=kt

0BBBB@
1CCCCA!d

QS;1

QST ;1

QT ;1

0BBB@
1CCCA�N

0

gBrt

d2
b0

rt

0BB@
1CCA;V3;t

0BB@
1CCA,

ðdARn � 1Þk1=2
!d QS;1 � Nð0; 2Þ,dLMn!d Q

2

ST ;1 � w21ðg
2
Br2tÞ when 1=2oto1,dLMn!d Q

2

ST ;1=ð1þ d2
b0

r1Þ � w21ðg
2
Br2t=ð1þ d2

b0
r1ÞÞ when t ¼ 1,cLRn ¼ ð1=ðd

2
b0

rtÞÞk
1�tdLMnð1þ opð1ÞÞ when 1=2oto1; andcLRn ¼ ðð1þ d2

b0
r1Þ=ðd

2
b0

r1ÞÞdLMn þ opð1Þ when t ¼ 1.
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(d)
2B

or v
If t 2 ð1; 2�, rt40, and b ¼ b0 þ Bk�t=2,

ðbS0n bSn � kÞ=k1=2

bS0n bTn=kt=2

ð bT 0n bTn � kÞ=kt

0BBBB@
1CCCCA!d

QS;1

QST ;1

QT ;1

0BBB@
1CCCA � N

0

gBrt

d2
b0

rt

0BB@
1CCA;V3;t

0BB@
1CCA,

ðdARn � 1Þk1=2
!d QS;1 � Nð0; 2Þ,dLMn!d Q

2

ST ;1=ðd
2
b0

rtÞ � w21ðg
2
Brt=d2

b0
ÞÞ provided db0a0; andcLRn ¼dLMn þ opð1Þ.
Comments. (1) Theorem 1 shows that one obtains the same limit distribution when the
errors are non-normal and O is estimated as when the errors are normal and O is known.
As shown in Theorem 2 below, a consequence of this is that the critical value function for
the CLR test given in (9) and w21 and F k;n�k�p critical values for the AR and LM tests,
respectively, yield the correct asymptotic size under many weak IV asymptotics when the
errors are not necessarily normally distributed. This holds in spite of the fact that the LR
statistic has a non-degenerate asymptotic null distribution only after rescaling by a
quantity k1=2 or k1�t that is unknown to the practitioner.

(2) Given that the asymptotic distributions of the AR, LM, and LR statistics are the same
under non-normal errors as under normal errors, the power comparisons of the three tests
given in Andrews and Stock (2006) for the case of normal errors also applies to the case of
non-normal errors. In particular, when to1=2, all three tests have trivial asymptotic power.
(It is shown in Andrews and Stock (2006) for the case of normal errors that no test has non-
trivial asymptotic power when to1=2:Þ In the most interesting case in which t ¼ 1=2 and
the whole range of possible fixed alternatives is considered, the CLR test is essentially
uniformly more powerful asymptotically than the AR and LM tests, and the CLR test is
essentially on the asymptotic power envelope for two-sided tests for the case of normal
errors, see Andrews and Stock (2006).2 When t41=2, the CLR and LM tests have equal
asymptotic power against local alternatives and are on the asymptotic power envelope for
two-sided tests for the case of normal errors (i.e., are asymptotically efficient under
normality). In contrast, the AR test has trivial power against these alternatives.

(3) Note that the cases considered in Chao and Swanson (2005) and Han and Phillips (2006)
correspond to t41=2. Those considered in Stock and Yogo (2005), Anderson et al. (2005),
Hansen et al. (2005), and Newey and Windmeijer (2005) correspond to the case where t ¼ 1.

(4) An interesting feature of Theorem 1 is that the statistics bS0n bSn, bS0n bTn, and bT 0n bTn are
asymptotically independent.

The following Theorem shows that the CLR, LM, and AR tests have correct asymptotic
size under many weak IV asymptotics and Assumptions 1–6.
Theorem 2. Suppose Assumptions 1–6 hold. For any t 2 ð0; 2�, under H0 : b ¼ b0, (a)
limn!1 PðcLRn4kLR;að bQT ;nÞÞ ¼ a, (b) limn!1 PðdLMn4w21ðaÞÞ ¼ a, where w21ðaÞ is the 1� a
y ‘‘essentially,’’ we mean that exhaustive simulations show that the asymptotic power of the CLR test is on,

ery close to, the asymptotic power envelope.
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quantile of the w21 distribution, and (c) limn!1 PðdARn4F k;n�k�pðaÞÞ ¼ a, where Fk;n�k�pðaÞ is
the 1� a quantile of the Fk;n�k�p distribution.

To conclude, the many weak IV asymptotic results given in this section show that the
significance level of the AR, LM, and CLR tests are asymptotically correct no matter how
weak are the IVs with normal or non-normal errors. On the other hand, these tests are not
completely robust to many IVs. One cannot employ too many IVs relative to the sample size.
For non-normal errors, the tests have correct asymptotic significance levels provided k3=n!

0 as n!1 no matter how weak are the IVs. For normal errors, the results of Andrews and
Stock (2006) show that the less restrictive condition k3=2=n! 0 as n!1 suffices.
The many weak IV asymptotic results for parameter values in the alternative hypothesis show

that the CLR test is more powerful asymptotically than the AR and LM tests for both normal
and non-normal errors. The LM test, in turn, is more powerful asymptotically than the AR test.
The level and power results established under many IV asymptotics, combined with the

properties of the CLR test under weak IV asymptotics, see Andrews et al. (2006a), lead us
to recommend the CLR test (or heteroskedasticity and/or autocorrelation robust versions
of it) for general use in scenarios where the IVs may be weak.

5. Appendix of proofs

In this Appendix, we prove the results of Section 4. For brevity, we only prove the
results for the case t 2 ð0; 1Þ. The results for t 2 ð0; 2� are proved in Andrews and Stock
(2006) using similar methods. We start by stating several Lemmas, the purposes of which
are discussed following Lemma 3 below. Lemma 3 is a CLT for multivariate degenerate
U-statistics. The CLT is proved by using the Cramer–Wold device and verifying the
conditions of Hall’s (1984, Theorem 1) univariate CLT for degenerate U-statistics. Newey
and Windmeijer (2005, Lemma A2) makes a similar use of Hall’s result when establishing
the asymptotic distribution of empirical likelihood estimators with many weak IVs.

Lemma 3. Let fðxni; ZniÞ : ipn; nX1g be a triangular array of random vectors that satisfies

(i) xni; Zni 2 Rk, for all ipn, where k ¼ kn; (ii) for each nX1, ðxni; ZniÞ are iid across ipn;
(iii) Exni ¼ EZni ¼ 0; (iv) VarðxniÞ ¼ Ik, VarðZniÞ ¼ Ik, and Covðxni; ZniÞ ¼ 0; (v) sup‘pk;nX1

ðEx4ni‘ þ EZ4ni‘Þo1, where xni ¼ ðxni1; . . . ; xnikÞ
0 and Zni ¼ ðZni1; . . . ; ZnikÞ

0; (vi) k!1 as

n!1; and (vii) k2=n! 0 as n!1. Then,
(a)

1

nk1=2

XX
1piojpn

2x0nixnj

x0niZnj þ x0njZni

2Z0niZnj

0B@
1CA!d Nð0;V3Þ; where V 3 ¼ Diagf2; 1; 2g,

0 1

(b)
1

nk1=2

Xn

i¼1

x0nixni � k

x0niZni

Z0niZni � k

B@ CA!p 0; and

 !

(c)
 1

k1=2
vech

1

n1=2

Xn

i¼1

½xni : Zni�
0 1

n1=2

Xn

j¼1

½xnj : Znj � � kI2 !d Nð0;V3Þ.
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ment. In Lemma 3 (and Lemma 4 below), Assumption (vii) can be rela
Com xed if
Assumption (v) is strengthened. We do not state such a result because a stronger condition
than Assumption (vii) is needed anyway in Lemma 6 below.

We now summarize the purpose of Lemma 3 and the Lemmas that follow. The result of

Theorem 1 concerns ½bSn : bTn�. The k � 2 matrix ½bSn : bTn� is roughly of the form

n�1=2
Pn

i¼1 ½xni : Zni�, which appears in Lemma 3(c), with xni ¼ Z�i � Y
0
ib0ðb

0
0Ob0Þ

�1=2 and

Zni ¼ Z�i � Y
0
ia0ða

0
0O
�1a0Þ

�1=2. Since the means of these random vectors are not zero,

Assumption (iii) of Lemma 3 does not hold. Hence, Lemma 3 is extended in Lemma 4
below to allow for non-zero means that are of a magnitude that corresponds to to1 in
Theorem 1. Since the variance matrices of xni and Zni as defined above are not Ik and are
unknown, Assumption (iv) of Lemma 3 does not hold. Hence, Lemma 4 is extended in

Lemma 5 below to allow for general variance matrices that are estimated. Next, ½bSn : bTn�

are based on Zi ¼ eZi � ½n
�1 eZ0X ðn�1X 0X Þ�1�X i, not Z�i ¼

eZi � ½E eZiX
0
iðEX iX

0
iÞ
�1
�X i, so

Lemma 5 is extended in Lemma 6 to allow xni and Zni to be linear combinations of iid

random vectors, such as eZi and X i, with coefficient matrices for the linear combinations
that converge in probability to constant matrices. Thus, Lemma 6 is needed when the model
includes exogenous variables. All of the Lemmas mentioned above apply when the means of
xni and Zni are of a magnitude that corresponds to to1. Finally, Lemma 7 provides results

on the asymptotic behavior of the sample matrices eZ0 eZ;X 0X ; X 0 eZ, and Z0Z.
The proof of Theorem 2 is given at the end of this Appendix. It uses the results of

Theorem 1, but does not (directly) use any of the lemmas.

Lemma 4. Let fðxni; ZniÞ : ipn; nX1g be a triangular array of random vectors that satisfies the

assumptions of Lemma 3, but with Assumption (iii) replaced by ðiiiÞ0 Exni ¼ mnx;EZni ¼ mnZ,
and ðlnx þ lnZÞ=k! 0, where lnx ¼ nm0nxmnx, lnZ ¼ nm0nZmnZ, and lnxZ ¼ nm0nxmnZ. Then,
(a)

1

nk1=2

XX
1piojpn

2x0nixnj

x0niZnj þ x0njZni

2Z0niZnj

0B@
1CA� lnx=k1=2

lnxZ=k1=2

lnZ=k1=2

0BB@
1CCA!d Nð0;V3Þ,

0 1

(b)
1

nk1=2

Xn

i¼1

x0nixni � k

x0niZni

Z0niZni � k

B@ CA!p 0; and

0 1

(c)
1

k1=2
vech

1

n1=2

Xn

i¼1

½xni : Zni�
0 1

n1=2

Xn

j¼1

½xnj : Znj � � kI2

 !
�

lnx=k1=2

lnxZ=k1=2

lnZ=k1=2

BBB@ CCCA
!d Nð0;V3Þ; where V3 ¼ Diagf2; 1; 2g.
Let k � k denote the Euclidean norm of a vector or matrix.
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Lemma 5. Let fðxni; ZniÞ : ipn; nX1g be a triangular array of random vectors that satisfies the

assumptions of Lemma 3, but with Assumption (iv) replaced by ðivÞ0 VarðxniÞ ¼ Snx 2 Rk�k,

VarðZniÞ ¼ SnZ 2 Rk�k, Covðxni; ZniÞ ¼ 0, and bSnx and bSnZ are random k � k matrices that

satisfy kbSnx � Snxk ¼ opðk
�1=2
Þ and kbSnZ � SnZk ¼ opðk

�1=2
Þ, with Assumption (iii) replaced

by ðiiiÞ00 Exni ¼ mnx;EZni ¼ mnZ, and ðl�nx þ l�nZÞ=k! 0, where l�nx ¼ nm0nxS
�1
nx mnx,

l�nZ ¼ nm0nZS
�1
nZ mnZ, and l�nxZ ¼ nm0nxS

�1=2
nx S�1=2nZ mnZ, with Assumption (vii) replaced by ðviiÞ0

k3=n! 0, and with the addition of Assumption (viii) infnX1 lminðSnxÞ40 and

infnX1 lminðSnZÞ40. Then,

1

k1=2
vech

1

n1=2

Xn

i¼1

½bS�1=2nx xni : bS�1=2nZ Zni�
0 1

n1=2

Xn

j¼1

½bS�1=2nx xnj : bS�1=2nZ Znj� � kI2

 !

�

l�nx=k1=2

l�nxZ=k1=2

l�nZ=k1=2

0BBBB@
1CCCCA!d Nð0;V 3Þ; where V3 ¼ Diagf2; 1; 2g.

Lemma 6. Suppose (a) ðxni; Zni; bSnx; bSnZÞ satisfy the conditions of Lemma 5 (b) xni ¼

xn1i þDnxxn2i and Zni ¼ Zn1i þDnZZn2i, where Dnx;DnZ 2 Rk�k are non-random matrices, (c)

fðxn2i; Zn2iÞ : ipng are iid across ipn with kExn2ik
2 ¼ Oðk2=nÞ and kEZn2ik

2 ¼ Oðk2=nÞ, (d)bDnx; bDnZ 2 Rk�k are random matrices that satisfy k bDnx �Dnxk ¼ opðk
�1
Þ and k bDnZ�

DnZk ¼ opðk
�1
Þ, and (e) bxni ¼ xn1i þ

bDnxxn2i and bZni ¼ Zn1i þ
bDnZZn2i. Then, the result of

Lemma 5 holds with ðbxni;bZniÞ in place of ðxni; ZniÞ.

Lemma 7. Suppose Assumptions 1, 2, and 4 hold, then (a) kn�1 eZ0 eZ � E eZi
eZ0ik ¼ opðk

�1=2
Þ,

(b) kðn�1X 0X Þ�1 � ðEX iX
0
iÞ
�1
k ¼ Opðn

�1=2Þ, (c) kEX i
eZ0ik ¼ Oðk1=2

Þ, (d) kn�1X 0 eZ�
EX i

eZ0ik ¼ opðk
�1
Þ, and (e) kn�1Z0Z � EZ�i Z�

0

i k ¼ opðk
�1=2
Þ.

Proof of Theorem 1. As stated above, we only prove the results of the Theorem for the
case where t 2 ð0; 1Þ. The proof for t 2 ð1; 2� is given in Andrews and Stock (2006).
First, we show that the results of the Theorem hold with bSn and bTn defined with the true O
in place of bOn. The statistics ðbSn; bTnÞ are invariant to the coefficient Z on X i. Hence, wlog
we take Z ¼ 0. Let b� ¼ b0ðb

0
0Ob0Þ

�1=2 and a� ¼ O�1a0ða
0
0O
�1a0Þ

�1=2. We apply Lemma 6
with

xni ¼ Z�i � Y
0
ib�; xn1i ¼

eZi � Y
0
ib�; xn2i ¼ ðX

0
i � Y

0
ib�; 0

0
k�pÞ

0
2 Rk,bSnx ¼ bSnZ ¼ n�1Z0Z; Dnx ¼ DnZ ¼ ½E eZiX

0
iðEX iX

0
iÞ
�1 : 0k�ðk�pÞ� 2 Rk�k,bDnx ¼ bDnZ ¼ ½n

�1 eZ0X ðn�1X 0X Þ�1 : 0k�ðk�pÞ� 2 Rk�k,

Zni ¼ Z�i � Y
0
ia�; Zn1i ¼

eZi � Y
0
ia�; and Zn2i ¼ ðX

0
i � Y

0
ia�; 0

0
k�pÞ

0
2 Rk. ð11Þ

Assumptions (b) and (e) of Lemma 6 follow immediately from (11).
Assumption (a) of Lemma 6 requires that Assumptions (i), (ii), ðiiiÞ00, ðivÞ0, and

(v)–(viii) of Lemmas 3–5 hold. Assumptions (i), (ii), and (v)–(viii) hold immediately by
Assumptions 1–4.
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Assumption ðivÞ0 holds because kbSnx � Snxk ¼ kbSnZ � SnZk ¼ opðk
�1=2
Þ by Lemma 7(e),

where

Snx ¼ VarðxniÞ ¼ EZ�i Z�
0

i � EðV
0

ib0Þ
2
ðb00Ob0Þ

�1
¼ EZ�i Z�

0

i ,

SnZ ¼ VarðZniÞ ¼ EZ�i Z�
0

i � EðV
0
iO
�1a0Þ

2
ða00O

�1a0Þ
�1
¼ EZ�i Z�

0

i ,

Covðxni; ZniÞ ¼ EZ�i Z�
0

i � Eðb
0
0V iV

0
iO
�1a0Þðb

0
0Ob0Þ

�1=2
ða00O

�1a0Þ
�1=2
¼ 0, ð12Þ

each equation uses Assumptions 1–3, and the last equality uses b00a0 ¼ 0.
Assumption ðiiiÞ00 holds using Assumption 5 because

mnx ¼ Exni ¼ EZ�i Y 0ib� ¼ EZ�i ð
eZ0ipa0 þ X 0iZÞb� ¼ EZ�i Z�

0

i pa0b� ¼ EZ�i Z�
0

i pcb,

mnZ ¼ EZni ¼ EZ�i Y 0ia� ¼ EZ�i Z�
0

i pa0O�1a� ¼ EZ�i Z�
0

i pdb,

ðl�nx; l
�
nxZ; l

�
nZÞ ¼ np0EZ�i Z�

0

i p � ðc
2
b; cbdb; d

2
bÞ,

ðl�nx þ l�nZÞ=k ¼ ðl�n;k=kt
Þkt�1
ðc2b þ d2

bÞ ¼ Oðkt�1
Þ ¼ oð1Þ, ð13Þ

where l�n;k is defined in (4) and the last equality holds because to1.
To show Assumption (c) of Lemma 6, we write

kExn2ik
2 ¼ kEX i � Y

0
ib�k

2 ¼ kEX i
eZ0ipk2ða0b�Þ2pkEX i

eZ0ik2 � kpk2ða0b�Þ2, (14)

where the second equality uses the assumption above that the coefficient, Z, on X i is 0
wlog. Now, kEX i

eZ0ik2 ¼ OðkÞ by Lemma 7(c). Also, Assumption 5 gives

Oð1Þ ¼ l�n;k=kt
¼ np0EZ�i Z�

0

i p=kt
X np0plminðEZ�i Z�

0

i Þ=kt. (15)

This, Assumption 2, and to1 yield p0p ¼ Oðkt=nÞpOðk=nÞ. Combining these results gives
kExn2ik

2 ¼ Oðk2=nÞ, as desired. The same argument gives kEZn2ik
2 ¼ Oðk2=nÞ. Thus,

Assumption (c) holds.
Assumption (d) of Lemma 6 holds because

k bDnx �Dnxk ¼ kn
�1 eZ0X ðn�1X 0X Þ�1 � E eZiX

0
iðn
�1X 0X Þ�1

þ E eZiX
0
iðn
�1X 0X Þ�1 � E eZiX

0
iðEX iX

0
iÞ
�1
k

pkn�1 eZ0X � E eZiX
0
ik � kðn

�1X 0X Þ�1k

þ kE eZiX
0
ik � kðn

�1X 0X Þ�1 � ðEX iX
0
iÞ
�1
k

¼ opðk
�1
ÞOpð1Þ þOðk1=2

ÞOpðn
�1=2Þ ¼ opðk

�1
Þ, ð16Þ

where the second equality holds by Lemma 7(b)–(d) and the fact that ðn�1X 0X Þ�1 ¼ Opð1Þ
by the WLLNs, Slutsky’s Theorem, and EX iX

0
i40 and the third equality uses

Assumption 4.
The means of the asymptotic normal distributions given in Theorem 1(a)–(c) arise in the

present case because, by (13) and Assumptions 5 and 6, we have

ðl�nx=k1=2; l�nxZ=k1=2; l�nZ=k1=2
Þ
0
¼ ðl�n;k=k1=2

Þ � ðc2b; cbdb; d
2
bÞ
0

!
r1=2ðc

2
b; cbdb; d

2
bÞ
0 when t ¼ 1=2

ð0; 0; 0Þ0 when to1=2:

8<: ð17Þ
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When t 2 ð1=2; 1Þ, (13) and Assumptions 5 and 6 lead to

cb ¼ Bk1=2�tb0; b0 ¼ ðb
0
0Ob0Þ

�1=2; db ¼ db0ð1þ oð1ÞÞ,

and

ðl�nx=k1=2; l�nxZ=k1=2; l�nZ=kt
Þ
0
¼ ðc2bl

�
n;kk�1=2; cbdbl

�
n;kk�1=2; d2

bl
�
n;kk�tÞ0

¼ ðB2b
2

0k1�2tl�n;kk�1=2;Bb0dbk1=2�tl�n;kk�1=2; d2
bl
�
n;kk�tÞ0

! ð0;Bb0db0rt; d
2
b0

rtÞ
0
¼ ð0; gBrt; d

2
b0

rtÞ
0. ð18Þ

Hence, when t 2 ð1=2; 1Þ, Lemma 6 shows that ððbS0n bSn � kÞ=k1=2; bS0n bTn=k1=2
Þ!dðQS;1;

QST ;1Þ and ð bT 0n bTn � kÞ=kt
� d2

bl
�
n;k=kt

¼ opð1Þ because t41=2. The latter, combined with

d2
bl
�
n;k=kt

! d2
b0

rt, gives the desired result that ð bT 0n bTn � kÞ=kt
!p d2

b0
rt when t 2 ð1=2; 1Þ.

Here and below, the stated results for dARn, dLMn, and cLRn hold given those for bS0n bSn,bS0n bTn, and bT 0n bTn by the same argument as in (11.10)–(11.14) of the Proof of Theorem 1 of

Andrews and Stock (2006).
To complete the proof for to1, we extend the results to the case where ðbSn; bTnÞ are

defined with bOn, not O. This extension holds by the result of Lemma 1 of Andrews and
Stock (2006) that k1=2

ðbOn � OÞ ¼ opð1Þ (which holds under Assumptions 1–3) and the
proof of Theorem 4 of Andrews and Stock (2006). &

Proof of Lemma 3. To prove part (a), by the Cramer–Wold device, it suffices to show that
for any a ¼ ða1; a2; a3Þ

0
2 R3 with aa0,

a0Un ¼
XX
1piojpn

Snij ¼
Xn

j¼2

Mnj !d Nð0; a0V3aÞ; where Mnj ¼
Xj�1
i¼1

Snij

and

Snij ¼
1

nk1=2
ð2a1x

0
nixnj þ a2ðx

0
niZnj þ x0njZniÞ þ 2a3Z0niZnjÞ. (19)

We establish this result using Hall’s (1984, Theorem 1) univariate CLT for degenerate
U-statistics. Hall’s CLT is established by writing the U-statistic as a martingale (with
martingale differences fMnj : jX1g) and applying Brown’s (1971) martingale CLT.
We apply Hall’s Theorem 1 with his X ni ¼ ðx

0
ni; Z
0
niÞ
0 and his Hnðx; yÞ equal to

Hnðx; x�Þ ¼
X3
s¼1

asHsnðx;x�Þ; where x ¼ ðx0; Z0Þ0 2 R2k; x� ¼ ðx
0
�; Z
0
�Þ
0
2 R2k,

H1nðx;x�Þ ¼ 2n�1k�1=2x0x�; H2nðx;x�Þ ¼ n�1k�1=2ðx0Z� þ x0�ZÞ; and

H3nðx;x�Þ ¼ 2n�1k�1=2Z0Z�. (20)

Note that EðHnðX n1;X n2ÞjX n2Þ ¼ 0 a.s. because X n1 and X n2 are independent with
mean zero. In consequence, the U-statistic a0Un in (19) is degenerate. Hall’s Theorem 1
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states that

a0Un=ðn
2EH2

nðX n1;X n2Þ=2Þ
1=2
!d Nð0; 1Þ provided

(I) n�1EH4
nðX n1;X n2Þ=ðEH2

nðX n1;X n2ÞÞ
2
! 0 and

(II) EG2
nðX n1;X n2Þ=ðEH2

nðX n1;X n2ÞÞ
2
! 0; where

Gnðx;x�Þ ¼ EHnðX n1; xÞHnðX n1;x�Þ for x;x� 2 R2k. ð21Þ

Conditions (I) and (II) suffice for the Lindeberg condition and the conditional variance
condition, respectively, required in Brown’s martingale CLT. We verify (I) and (II) for
Hnðx;x�Þ defined in (20). First, we have

n2EH2
nðX n1;X n2Þ=2 ¼

1

2k
a0E

2x0n1xn2

x0n1Zn2 þ x0n2Zn1

2Z0n1Zn2

0B@
1CA 2x0n1xn2

x0n1Zn2 þ x0n2Zn1

2Z0n1Zn2

0B@
1CA
0

a, (22)

where X ni ¼ ðx
0
ni; Z
0
niÞ
0. Next, we have

Eð2x0n1xn2Þ
2
¼ 4 trðExn2x

0
n2xn1x

0
n1Þ ¼ 4 trðExn2x

0
n2 � Exn1x

0
n1Þ ¼ 4k,

Eðx0n1Zn2 þ x0n2Zn1Þ
2
¼ Eðx0n1Zn2Þ

2
þ 2Ex0n1Zn2x

0
n2Zn1 þ Eðx0n2Zn1Þ

2

¼ trðExn1x
0
n1 � EZn2Z

0
n2Þ þ 2 trðEZn2x

0
n2 � EZn1x

0
n1Þ

þ trðExn2x
0
n2 � EZn1Z

0
n1Þ ¼ 2k,

Eð2x0n1xn2Þðx
0
n1Zn2 þ x0n2Zn1Þ ¼ 2Ex0n1xn2x

0
n1Zn2 þ 2Ex0n1xn2x

0
n2Zn1

¼ 2 trðExn1x
0
n1 � Exn2Z

0
n2Þ þ 2 trðExn2x

0
n2 � EZn1x

0
n1Þ ¼ 0,

and

Eð2x0n1xn2Þð2Z
0
n1Zn2Þ ¼ 4 trðExn1Z

0
n1Zn2x

0
n2Þ ¼ 4 trðExn1Z

0
n1 � EZn2x

0
n2Þ ¼ 0, (23)

using Assumptions (ii) and (iv) of the Lemma. Likewise, we have Eð2Z0n1Zn2Þ
2
¼ 4k and

Eð2Z0n1Zn2Þðx
0
n1Zn2 þ x0n2Zn1Þ ¼ 0. Combining these results with (22) and (23) implies that

n2EH2
nðX n1;X n2Þ=2 ¼ a0V 3a40 for all n, (24)

which yields the asymptotic variance given in (19).
Now, to verify condition (I) of (21), we have

EH4
1nðX n1;X n2Þ ¼

16

n4k2
Eðx0n1xn2Þ

4
¼

16

n4k2
E
Xk

‘¼1

xn1‘xn2‘

 !4

¼
16

n4k2

Xk

‘1¼1

Xk

‘2¼1

Xk

‘3¼1

Xk

‘4¼1

Exn1‘1xn2‘1xn1‘2xn2‘2xn1‘3xn2‘3xn1‘4xn2‘4

p
16k2

n4
sup

‘1;‘2;‘3;‘4pk;nX1

Exn1‘1xn1‘2xn1‘3xn1‘4 � Exn2‘1xn2‘2xn2‘3xn2‘4

¼ O
k2

n4

� �
, ð25Þ

where xni ¼ ðxni1; . . . ; xnikÞ
0 and the last equality holds by Assumption (v) of the Lemma

and the Cauchy–Schwartz inequality. Similar calculations and the use of Minkowski’s
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inequality yields EH4
snðX n1;X n2Þ ¼ Oðk2=n4Þ for s ¼ 2; 3. These results and Minkowski’s

inequality then give EH4
nðX n1;X n2Þ ¼ Oðk2=n4Þ. Combining this with (24) establishes

condition (I) of (21) provided n�1k2
! 0, which holds by Assumption (vii) of the Lemma.

To verify condition (II) of (21), by the Cauchy–Schwartz inequality, it suffices to verify
condition (II) with EG2

nðX ni;X njÞ replaced by EG2
snðX ni;X njÞ for s ¼ 1; 2; 3, where Gsnð�; �Þ is

defined as Gnð�; �Þ is defined in (21), but with Hsnð�; �Þ in place of Hnð�; �Þ. We have

G1nðx;x�Þ ¼ EH1nðX n1; xÞH1nðX n1;x�Þ ¼
4

n2k
Ex0n1xx

0
n1x� ¼

4

n2k
x0x�,

G2nðx;x�Þ ¼ EH2nðX n1; xÞH2nðX n1;x�Þ

¼
1

n2k
Eðx0n1Zþ x0Zn1Þðx

0
n1Z� þ x0�Zn1Þ ¼

1

n2k
ðx0x� þ Z0Z�Þ, ð26Þ

where x ¼ ðx; ZÞ0 and x� ¼ ðx�; Z�Þ
0. Hence,

EG2
1nðX n1;X n2Þ ¼

16

n4k2
Eðx0n1xn2Þ

2
¼

16

n4k2
trðExn1x

0
n1 � Exn2x

0
n2Þ ¼

16

n4k
,

EG2
2nðX n1;X n2Þ ¼

1

n4k2
Eðx0n1xn2 þ Z0n1Zn2Þ

2
¼

2

n4k
. ð27Þ

Similarly, EG2
3nðX n1;X n2Þ ¼ 16=ðn4kÞ. Combining (24), (26), and (27) yields condition (II)

of (21) provided k!1, which holds by Assumption (vi) of the Lemma.
Part (b) of the Lemma holds because the left-hand side in part (b) has mean zero and

variance that is oð1Þ. The latter holds because

Eðx0n1xn1Þ
2
¼
Xk

‘1¼1

Xk

‘2¼1

Ex2n1‘1x
2
n1‘2

pk2 sup
‘pk;nX1

Ex4n1‘ ¼ Oðk2
Þ,

Varðn�1k�1=2
Xn

i¼1

ðx0nixni � kÞÞ ¼ n�1k�1Varððx0nixni � kÞÞ ¼ n�1OðkÞ ¼ oð1Þ ð28Þ

using Assumptions (v) and (vii) of the Lemma. Similarly, Eðx0niZniÞ
2
¼ Oðk2

Þ and EðZ0n1Zn1Þ
2
¼

Oðk2
Þ yield Varðn�1k�1=2

Pn
i¼1 x

0
niZniÞ ¼ oð1Þ and Varðn�1k�1=2

Pn
i¼1 ðZ

0
niZni � kÞ ¼ oð1Þ.

Part (c) follows from parts (a) and (b) because the lhs of part (c) equals the sum of the lhs
of parts (a) and (b). &

Proof of Lemma 4. To prove part (a), we write

2

nk1=2

XX
1piojpn

x0nixnj ¼ A1n þ A2n þ A3n; where

A1n ¼
2

nk1=2

XX
1piojpn

ðxni � mnxÞ
0
ðxnj � mnxÞ,

A2n ¼
2

nk1=2

XX
1piojpn

½m0nxðxni � mnxÞ þ m0nxðxnj � mnxÞ�; and

A3n ¼
2

nk1=2

XX
1piojpn

m0nxmnx. ð29Þ
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Now, some calculations yield

A3n ¼
nðn� 1Þ

nk1=2
m0nxmnx ¼

1

k1=2
lnx �

1

nk1=2
lnx ¼

1

k1=2
lnx þ oð1Þ,

A2n ¼
2ðn� 1Þ

nk1=2
m0nx
Xn

i¼1

ðxni � mnxÞ; EA2n ¼ 0,

and

VarðA2nÞ ¼
4ðn� 1Þ2

nk
m0nxVarðxniÞmnx ¼

4ðn� 1Þ2

n2k
lnx ¼ oð1Þ, (30)

using lnx=k! 0 and k2=n! 0. Combining (29) and (30) gives

2

nk1=2

XX
1piojpn

x0nixnj �
1

k1=2
lnx ¼ A1n þ opð1Þ. (31)

Similar calculations yield

1

nk1=2

XX
1piojpn

ðx0niZnj þ x0njZniÞ �
1

k1=2
lnxZ

¼
1

nk1=2

XX
1piojpn

½ðxni � mnxÞ
0
ðZnj � mnZÞ þ ðxnj � mnxÞ

0
ðZni � mnZÞ� þ opð1Þ

and

2

nk1=2

XX
1piojpn

Z0niZnj �
1

k1=2
lnZ ¼

1

nk1=2

XX
1piojpn

ðZni � mnZÞ
0
ðZnj � mnZÞ þ opð1Þ. (32)

Stacking the results of (31) and (32) and applying Lemma 3(a) to the rhs of these stacked
equations yields convergence in distribution to Nð0;V3Þ, which is the result of part (a).

To show part (b), we write

1

nk1=2

Xn

i¼1

ðx0nixni � kÞ ¼ F 1n þ F2n þ F3n; where

F1n ¼
1

nk1=2

Xn

i¼1

½ðxni � mnxÞ
0
ðxni � mnxÞ � k�; F 2n ¼

2

nk1=2

Xn

i¼1

m0nxðxni � mnxÞ,

F3n ¼
1

nk1=2

Xn

i¼1

m0nxmnx. ð33Þ

We have F1n !p 0 by Lemma 3(b). In addition,

F3n ¼
1

nk1=2
lnx ¼

k1=2

n

lnx

k
! 0; EF2n ¼ 0; and

VarðF2nÞ ¼
4

nk
m0nxVarðxniÞmnx ¼

4

n2k
lnx! 0 ð34Þ

using Assumptions (vii) and ðiiiÞ0. These results combine to show that F 1n þ F2n þ F3n is
opð1Þ. Similar calculations show that n�1k�1=2

Pn
i¼1ðZ

0
niZni � kÞ ¼ opð1Þ and n�1k�1=2Pn

i¼1x
0
niZni ¼ opð1Þ, which completes the proof of part (b).
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Part (c) follows from parts (a) and (b) because the lhs of part (c) equals the sum of the lhs
of parts (a) and (b). &

Proof of Lemma 5. Lemma 4(c) with ðxni; ZniÞ of that Lemma set equal to ðS�1=2nx xni;

S�1=2nZ ZniÞ of the present Lemma gives the desired result but with ðSnx;SnZÞ in place of

ðbSnx; bSnZÞ. Hence, it suffices to show

dn ¼ A0nðS
�1
nx �

bS�1nx ÞAn ¼ opðk
1=2
Þ; where An ¼ n�1=2

Xn

i¼1

xni, (35)

and likewise with ðxni;SnxÞ replaced by ðZni;SnZÞ.

Lemma 4(c) applied to ðS�1=2nx xni;S
�1=2
nZ ZniÞ also gives

A0nS
�1
nx An ¼ OpðkÞ (36)

(due to the centering at kI2). In addition, we have

l�1minð
bSnxÞ ¼ Opð1Þ (37)

because jlminðbSnxÞ � lminðSnxÞjpkbSnx � Snxk ¼ opð1Þ by Assumption (iv)0 and l�1minðSnxÞ ¼

Oð1Þ by Assumption (viii).
The following are standard or hold by algebra: if H is a symmetric psd k � k matrix, G is a

k � k matrix, and c is a k-vector, then (a) kHGHkpl2maxðHÞkGk, (b) kHckplmaxðHÞ

kckpkHk � kck, (c) c0GcpkGk � kck2, and (d) Ik �H�1¼H � Ik � ðH � IkÞ
0 H�1ðH � IkÞ.

Let Cn ¼ S1=2
nx and Dn ¼ bS1=2

nx . Then, we have

dn ¼ A0nðC
�2
n �D�2n ÞAn

¼ A0nC�1n ðIk � CnD�2n CnÞC
�1
n An

¼ A0nC�1n ðC
�1
n D2

nC�1n � IkÞC
�1
n An

� A0nC�1n ðC
�1
n D2

nC�1n � IkÞCnD�2n CnðC
�1
n D2

nC�1n � IkÞC
�1
n An

pA0nC�1n ½C
�1
n ðD

2
n � C2

nÞC
�1
n �C

�1
n An

þ kCnðC
�1
n D2

nC�1n � IkÞC
�1
n Ank

2 � l2maxðD
�1
n Þ

pkC�1n ðD
2
n � C2

nÞC
�1
n k � kC

�1
n Ank

2

þ kðD2
n � C2

nÞC
�1
n C�1n Ank

2 � l�2minðDnÞ

pkD2
n � C2

nk � l
2
maxðC

�1
n Þ � kC

�1
n Ank

2

þ kD2
n � C2

nk
2kC�1n C�1n Ank

2 � l�2minðDnÞ

pkD2
n � C2

nk � l
�1
minðC

2
nÞ � kC

�1
n Ank

2

þ kD2
n � C2

nk
2 � kC�1n Ank

2 � l2maxðC
�1
n Þ � l

�2
minðDnÞ

¼ opðk
�1=2
ÞOð1ÞOpðkÞ þ opðk

�1
ÞOpðkÞOð1ÞOpð1Þ

¼ opðk
1=2
Þ, ð38Þ

where the third equality uses (d) with H ¼ C�1n D2
nC�1n , the first inequality holds by the

triangle inequality and (b), the second inequality holds by (c), the third inequality holds by
(a) and (b), the fourth inequality holds by (b), and the second last equality holds by

Assumptions ðivÞ0 and (viii), (36), and (37). This establishes (35).
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The same argument holds with ðxni; bSnxÞ replaced by ðZni; bSnZÞ. Hence, (35) holds and the
Lemma is proved. &

Proof of Lemma 6. It suffices to show Dn ¼ opðk
1=2
Þ and an analogous result with

ðxn1i; xn2iÞ replaced by ðZn1i; Zn2iÞ, where Dn is defined by

Gn ¼ n�1=2
Xn

i¼1

xn1i; Hn ¼ n�1=2
Xn

i¼1

xn2i,

Dn ¼ jðGn þ bDnxHnÞ
0bS�1nx ðGn þ bDnxHnÞ � ðGn þDnxHnÞ

0bS�1nx ðGn þDnxHnÞj

¼ jH 0nð
bDnx �DnxÞ

0bS�1nx ð
bDnx �DnxÞHn þ 2H 0nð

bDnx �DnxÞ
0bS�1nx ðGn þDnxHnÞj

pP1n þ 2P
1=2
1n P

1=2
2n ,

P1n ¼ kbS�1=2nx ð
bDnx �DnxÞHnk

2; P2n ¼ ðGn þDnxHnÞ
0bS�1nx ðGn þDnxHnÞ, (39)

and the inequality holds by the Cauchy–Schwarz inequality. We have P2n ¼ OpðkÞ by
Lemma 5. Hence, the Lemma holds if P1n ¼ opð1Þ.

We have

P1npl2maxð
bS�1=2nx Þ � kð

bDnx �DnxÞHnk
2pl�1minð

bSnxÞ � k bDnx �Dnxk
2kHnk

2, (40)

where the two inequalities hold by inequality (b) stated following (37) above.

Next, we have: (I) kHnk
2 ¼ Opðk

2
Þ because kHnkpkHn � EHnk þ kEHnk, EkHn�

EHnk
2 ¼ Eðxn2i � Exn2iÞ

0
ðxn2i � Exn2iÞ ¼ OðkÞ, which implies that kHn � EHnk

2 ¼ OpðkÞ,

and kEHnk
2 ¼ kn1=2Exn2ik

2 ¼ Oðk2
Þ by Assumption (c) of the Lemma, (II) lmaxðbS�1=2nx Þ

¼ l�1=2min ð
bSnxÞ ¼ Opð1Þ by (37) above, and (III) k bDnx �Dnxk ¼ opðk

�1
Þ by Assumption (d) of

the Lemma. Hence, P1n ¼ opð1Þ and Dn ¼ opðk
1=2
Þ.

An analogous result holds with ðZn1i; Zn2iÞ in place of ðxn1i; xn2iÞ, which completes
the proof. &

Proof of Lemma 7. Part (a) holds because for all e40

Pðkkn�1 eZ0 eZ � E eZi
eZ0ik24eÞ

pkE tr n�1
Xn

i¼1

eZi
eZ0i � E eZ1

eZ01
 !

n�1
Xn

j¼1

eZj
eZ0j � E eZ1

eZ01
 ! !,

e

¼ k � trðn�1Eð eZ2
eZ02 � E eZ1

eZ01Þð eZ2
eZ02 � E eZ1

eZ01ÞÞ=e
¼ kn�1ðEð eZ02 eZ2Þ

2
� 2Eð eZ02 eZ1Þ

2
þ trð½E eZ1

eZ01�E eZ1
eZ01ÞÞ=e

pOðk3=nÞ ¼ oð1Þ, ð41Þ

where the first inequality holds by Markov’s inequality, the first equality holds because the
expectation of terms with iaj is zero by independence, the second equality holds by

algebra, the second inequality holds because supjpk;nX1 E eZ4

ijo1 by Assumption 2, and the

third equality holds by Assumption 4.
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Part (b) holds by the CLT and the delta method because EkX ik
4o1, EX iX

0
i is pd, and

the dimension p of X i is fixed for all n.
Part (c) holds because kEX i

eZ0ikpk1=2p1=2supjpk;nX1 ðEkX i
eZijk

2Þ
1=2
¼ Opðk

1=2
Þ using the

fact that p is fixed for all n.
Part (d) is established as follows. By Markov’s inequality, for all e40,

Pðk2
kn�1X 0 eZ � EX i

eZ0ik24eÞ

pk2E tr n�1
Xn

i¼1

X i
eZ0i � EX i

eZ0i
 !0

n�1
Xn

j¼1

X j
eZ0j � EX j

eZ0j
 ! !,

e

¼ ðk2=nÞ trððEðX i
eZ0i � EX i

eZ0iÞ0ðX i
eZ0i � EX i

eZ0iÞÞ=e
pðk3=nÞp sup

jpk;nX1

EkX i
eZijk

2 ¼ oð1Þ, ð42Þ

where the first equality holds by the iid assumption, the second inequality uses the fact that
the dimensions of X i and eZi are p and k, and the second equality uses Assumption 4.
To prove part (e), we write

n�1Z0Z ¼ n�1 eZ0 eZ � n�1 eZ0X ðX 0X Þ�1X 0 eZ and

EZ�i Z�
0

i ¼ E eZi
eZ0i � E eZiX

0
iðEX iX

0
iÞ
�1EX i

eZ0i. ð43Þ

By the triangle inequality, we have

kn�1 eZ0X ðX 0X Þ�1X 0 eZ � E eZiX
0
iðEX iX

0
iÞ
�1EX i

eZ0ikpLn1 þ Ln2 þ Ln3; where

Ln1 ¼ kn
�1 eZ0X ðn�1X 0X Þ�1ðn�1X 0 eZ � EX i

eZ0iÞk,
Ln2 ¼ kn

�1 eZ0X ½ðn�1X 0X Þ�1 � ðEX iX
0
iÞ
�1
�EX i

eZ0ik; and

Ln3 ¼ kðn
�1 eZ0X � E eZiX

0
iÞðEX iX

0
iÞ
�1EX i

eZ0ik. ð44Þ

Using parts (c) and (d), we have

kn�1 eZ0Xkpkn�1 eZ0X � E eZiX
0
ik þ kE

eZiX
0
ik ¼ opðk

�1
Þ þOðk1=2

Þ ¼ Opðk
1=2
Þ. (45)

In addition, kðn�1X 0X Þ�1k ¼ Opð1Þ by the LLN, Slutsky’s Theorem, and the fact EX iX
0
i is

pd. These results, the result of part (d), and kABkpkAk � kBk give

Ln1pkn�1 eZ0Xk � kðn�1X 0X Þ�1k � kn�1X 0 eZ � EX i
eZ0ik

¼ Opðk
1=2
ÞOpð1Þopðk

�1
Þ ¼ opðk

�1=2
Þ. ð46Þ

By similar calculations, Ln3 ¼ opðk
�1=2
Þ.

Using the results of (45) and parts (b) and (c), we have

Ln2pkn�1 eZ0Xk � kðn�1X 0X Þ�1 � ðEX iX
0
iÞ
�1
k � kEX i

eZ0ik
¼ Opðk

1=2
ÞOpðn

�1=2ÞOðk1=2
Þ ¼ Opððk

3=nÞ1=2k�1=2Þ ¼ opðk
�1=2
Þ. ð47Þ

Hence, the left-hand side in (44) is opðk
�1=2
Þ. This, (43), and part (a) combine to establish

part (e). &
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Proof of Theorem 2. We prove part (a) for the case of t ¼ 1=2. The proofs for other values
of t are analogous but use different scale factors. Define

eQS;n;k ¼ ð
bQS;n � kÞ=k1=2; eQT ;n;k ¼ ð

bQT ;n � kÞ=k1=2,ekLR;aðeqT ; kÞ ¼ kLR;aðeqT k1=2
þ kÞ=k1=2; and eqT ¼ ðqT � kÞ=k1=2. ð48Þ

Straightforward calculations give

PðcLRn4kLR;aðqT Þj
bQT ;n ¼ qT Þ ¼ PðcLRn=k1=24ekLR;aðeqT ; kÞj eQT ;n ¼ eqT Þ. (49)

Using (8), we can write

cLRn=k1=2
¼

1

2
eQS;n;k �

eQT ;n;k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð eQS;n;k �

eQT ;n;kÞ
2
þ 4 bQ2

ST ;n=k

q� �
. (50)

Now, consider the case where cLRn is defined with the true O rather than bOn, the reduced-
form errors are normal, and the null hypothesis holds. Call this ‘‘case N.’’ In case N, eQS;n;k,bQST ;n=ð bQS;n

bQT ;nÞ
1=2, and eQT ;n;k are independent, see Andrews et al. (2006a, Lemma 3).

Also, in case N, the probability in (49) equals a for all kX1 by the definition of kLR;að�Þ.
Until stated otherwise below, we assume case N holds. Conditional on eQT ;n;k ¼ eqT ;n;k,

we havebQST ;n

k1=2
¼

1

k1=2

bQST ;n

ð bQS;n
bQT ;nÞ

1=2

 !bQ1=2

S;n ðk
1=2
ð eQT ;n;k þ k1=2

ÞÞ
1=2. (51)

By independence of the ratio in the parentheses from bQ1=2

S;n ðk
1=2
ð eQT ;n þ k1=2

ÞÞ
1=2, the

conditional distribution of bQST ;n=k1=2 given eQT ;n;k ¼ eqT ;n;k equals the unconditional
distribution of

1

k1=2

bQST ;n

ð bQS;n
bQT ;nÞ

1=2

 !bQ1=2

S;n ðk
1=2
ðeqT ;n;k þ k1=2

ÞÞ
1=2

¼
bQST ;n

k1=2
ð bQT ;n=kÞ�1=2ðeqT ;n;kk�1=2 þ 1Þ1=2 ¼

bQST ;n

k1=2
ð1þ opð1ÞÞ, ð52Þ

where the second equality holds because bQT ;n=k ¼ 1þ opð1Þ (unconditionally) by
Theorem 1. Eq. (52) implies that the conditional asymptotic distribution of bQST ;n=k1=2

as n!1 given eQT ;n;k ¼ eqT ;n;k equals the unconditional asymptotic distribution ofbQST ;n=k1=2, which is the distribution of QST ;1 by Theorem 1.
In consequence, using (50), for any sequence feqT ;n;k : nX1g such that eqT ;n;k ! eqT for

some eqT40, the conditional distribution of cLRn=k1=2 given eQT ;n;k ¼ eqT ;n;k satisfies

cLRn=k1=2
¼

1

2
eQS;n;k � eqT ;n;k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð eQS;n;k � eqT ;n;kÞ

2
þ 4 bQ2

ST ;n=k

q� �
!d

1

2
ðQS;1 � eqT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQS;1 � eqT Þ

2
þ 4Q

2

ST ;1

q
Þ ¼ LR1ðeqT Þ, ð53Þ

where the last equality defines LR1ðeqT Þ.
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Define ekLR;aðeqT ;1Þ by

PðLR1ðeqT Þ4ekLR;aðeqT ;1ÞÞ ¼ a. (54)

Given (53), some calculations show that for a sequence of constants fxn : nX1g
we have

lim
n!1

PðcLRn=k1=24xnj eQT ;n;k ¼ eqT ;n;kÞ ¼ PðLR1ðeqT Þ4ekLR;aðeqT ;1ÞÞ ¼ a (55)

only if xn ! ekLR;aðeqT ;1Þ as n!1 because LR1ðeqT Þ is absolutely continuous with
strictly increasing distribution function. By (49) with eqT replaced by eqT ;n;k and the fact that
the probability in (49) equals a for all kX1 and all eqT , we have

lim
n!1

PðcLRn=k1=24ekLR;aðeqT ;n;k; kÞj eQT ;n;k ¼ eqT ;n;kÞ ¼ a. (56)

This and (55) imply that

ekLR;aðeqT ;n;k; kÞ ! ekLR;aðeqT ;1Þ as n!1 (57)

for any sequence eqT ;n;k ! eqT as n!1.
We no longer assume case N, but we assume the null hypothesis holds. Eq. (57) and

Theorem 1 gives

ekLR;að eQT ;n;k; kÞ ! ekLR;aðQT ;1;1Þ as n!1. (58)

Note that the equality in (53) and Theorem 1 imply that cLRn=k1=2
!d LR1ðQT ;1Þ as

n!1 (unconditionally and jointly with the convergence in (58)). Hence,

PðcLRn=k1=24ekLR;að eQT ;n;k; kÞÞ ! PðLR1ðQT ;1Þ4ekLR;aðQT ;1;1ÞÞ ¼ a, (59)

where the equality holds by (54) using iterated expectations. By the definition of ekLR;a

ð eQT ;n;k; kÞ, the left-hand side in (59) equals PðcLRn4kLR;að bQT ;nÞÞ, similarly to (49). Hence,
part (a) is proved.
Part (b) is an immediate consequence of Theorem 1 because dLMn has a w21ð0Þ dis-

tribution for all t 2 ð0; 2�.
Next, we prove part (c). Under case N, we have

a ¼ PðdARn4F k;n�k�pÞ ¼ PððdARn � 1Þk1=2=
ffiffiffi
2
p

4ðF k;n�k�p � 1Þk1=2=
ffiffiffi
2
p
Þ. (60)

By Theorem 1, ðdARn � 1Þk1=2=
ffiffiffi
2
p
!d Nð0; 1Þ in case N. Hence, ðF k;n�k�p � 1Þk1=2=

ffiffiffi
2
p
Þ !

z1�a as n!1. Thus, when case N does not necessarily hold, but the null hypothesis holds,
we have

PðdARn4F k;n�k�pÞ ¼ PððdARn � 1Þk1=2=
ffiffiffi
2
p

4ðF k;n�k�p � 1Þk1=2=
ffiffiffi
2
p
Þ

! PðZ4z1�aÞ ¼ a, ð61Þ

where Z � Nð0; 1Þ and the convergence uses Theorem 1. &
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