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Abstract

This paper establishes the asymptotic distributions of the likelihood ratio (LR), Anderson—Rubin
(AR), and Lagrange multiplier (LM) test statistics under ‘“many weak IV asymptotics.” These
asymptotics are relevant when the number of I'Vs is large and the coefficients on the I'Vs are relatively
small. The asymptotic results hold under the null and under suitable alternatives. Hence, power
comparisons can be made.

Provided &° /n— 0 as n — oo, where n is the sample size and k is the number of instruments,
these tests have correct asymptotic size. This holds no matter how weak the instruments are. Hence,
the tests are robust to the strength of the instruments. The asymptotic power results show that
the conditional LR test is more powerful asymptotically than the AR and LM tests under many
weak IV asymptotics.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper contributes to the literature on weak instrumental variables (IVs) in linear IV
models. The weak IV literature documents that standard procedures, such as two-stage
least squares-based ¢ tests and confidence intervals, perform poorly when the I'Vs are weak
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(i.e., when the IVs are only weakly correlated with the right-hand side endogenous
variables). In consequence, alternative testing procedures have been developed whose size
is robust to the strength of the IVs. Such tests include the Anderson and Rubin (1949)
(AR) test, the Lagrange multiplier (LM) test introduced in Kleibergen (2002) and Moreira
(2001), and the conditional likelihood ratio (CLR) test introduced in Moreira (2003).
Andrews et al. (2006a) have shown that the CLR test has near optimal power properties in
models with Gaussian errors within a class of invariant similar tests. Furthermore, the
robustness of the asymptotic size and power properties of the AR, LM, and CLR tests to
non-normality has been established under the “weak IV asymptotics’ of Staiger and Stock
(1997), see the references above.

This paper contributes to the literature by analyzing the behavior of the AR, LM, and
CLR tests when the IVs may be weak, the number of Vs, k, may be relatively large, and
the equation errors may be non-normal. Specifically, the paper presents new results for
these tests in the linear IV regression model under ““many weak IV asymptotics” in which
k — oo as the sample size, n, goes to infinity and the strength of the I'Vs may be weak.
Asymptotics of this type have been considered recently by Chao and Swanson (2005),
Stock and Yogo (2005), Han and Phillips (2006), Anderson et al. (2005), Hansen et al.
(2005), Newey and Windmeijer (2005), and Andrews and Stock (2006). Most of these
papers focus on the properties of estimators. In contrast, we are interested in the properties
of tests—both for testing purposes and for obtaining confidence intervals via inversion.
In particular, we are interested in the properties of tests when the equation errors are
non-normal.

We find that in the many weak IV asymptotic setup the CLR, AR, and LM tests are
completely robust asymptotically to weak I'Vs with normal and non-normal errors. That is,
the asymptotic levels of the tests are correct no matter how weak are the I'Vs. On the other
hand, the asymptotic levels of the CLR, AR, and LM tests are not completely robust to the
magnitude of k relative to n. One does not want to take k too large relative to n. Results of
Andrews and Stock (2006) for the case of normal errors indicate that the condition
K32 /n— 0 as n — oo is necessary for correct asymptotic size.! With non-normal errors,
the results of this paper show that a sufficient condition for correct asymptotic size is
k3/n — 0 as n — oo. Although this condition covers many cases of interest, it can be
restrictive. For example, it is not suitable for the Angrist and Krueger (1991) example when
one interacts the quarter of birth IV with state dummies to yield k = 180 and n = 329, 509.
Whether the condition &* /n— 0 is necessary is an open question (see the discussion
below).

Andrews and Stock (2006) show that the CLR test is essentially on the asymptotic power
envelope for normal errors under many weak IV asymptotics—regardless of the relative
strength of the IVs to k in the asymptotics. In addition, the AR and LM tests are found not
to be on the power envelope. In the present paper, we show that the asymptotic power
properties of the CLR, AR, and LM tests are the same under non-normal errors as under
normal errors given the k*/n — 0 condition. The aforementioned results combine to
establish that the CLR test has power advantages over the AR and LM tests for non-
normal as well as normal errors.

"This condition is necessary for the estimator of the reduced-form variance matrix to be k'/-consistent, and
k' 2_consistency of this estimator is necessary for the effect of estimation of the variance matrix to be
asymptotically negligible.



26 D.W.K. Andrews, J.H. Stock | Journal of Econometrics 138 (2007) 24-46

We conclude that the “many weak IV”’ asymptotic results for non-normal errors given in
the present paper buttress the arguments in Andrews et al. (2006a) and Andrews and Stock
(2006) for employing the CLR test over the AR, LM, and other tests in model scenarios
with potentially weak IVs.

The proofs of the results given here make use of the degenerate U-statistic central limit
theorem of Hall’s (1984), as in Newey and Windmeijer (2005).

Other papers in the literature that consider many weak IVs, include Chamberlain and
Imbens (2004) and Chao and Swanson (2006). Bekker and Kleibergen (2003) consider
“many irrelevant IVs asymptotics,” in which k — oo as n — oo and the reduced-form
coefficient matrix on the I'Vs is zero. Weak IV asymptotics (with & fixed) were introduced
in Staiger and Stock (1997). Many IV asymptotics (with strong I'Vs) have been employed in
Anderson (1976), Kunitomo (1980), Morimune (1983), Bekker (1994), Donald and Newey
(2001), Hahn (2002), Hahn et al. (2004), and Hansen et al. (2005) among others.

This paper is organized as follows. Section 2 introduces the model and assumptions
employed. Section 3 defines the CLR, AR, and LM tests. Section 4 gives the results.
An Appendix provides the proofs.

2. Model and assumptions

The model we consider is an IV regression model with one endogenous right-hand side
(rhs) variable, p exogenous variables, and k I'Vs. The sample size is n. The number of Vs,
k, depends on n, i.e., k = k,. We note that the case of a single rhs endogenous variable is by
far the most important in empirical applications.

The model consists of a structural equation and a reduced-form equation:

Vi=np+ Xy +u,
vy =Zn+ X& + v, (1)

where y,,y, € R", X € R, and Z € Rk are observed variables; u,v, € R" are
unobserved errors; and f € R, n € R¥, y, € R?, and ¢y € R” are unknown parameters.
The exogenous variable matrix X and the IV matrix Z are random. The n x 2 matrix of
errors [u : vp] is iid across rows. The variable y, is endogenous in the equation for y, (i.e., ¥,
and u may be correlated). Endogeneity may be due to simultaneity, left-out variables, or
mismeasurement of an exogenous variable.

The two reduced-form equations are

" = Znp+ Xy + v,
Yo =Zn+ X&) + 1y,
where
vi=u+vf and y=y;+§p. ()

The reduced-form errors [v; : v;] are iid across rows with each row having mean zero and
2 x 2 non-singular covariance matrix Q.

Let Y =[y, :y,] € R”?* and V =[v; : 1n] € R™?* denote the matrices of endogenous
variables and reduced-form errors, respectively. We write the ith rows of Y, V, X, and Z as
the column vectors Y, V; € R>, X; € R’, and Z; € R¥, respectively. The two equation
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reduced-form model can be written as
Yl'ZClTE/Zi-Fi’[/Xi-F V,' for l<l’l,
where

a=(B,1) and n=[y:&]e R 3)
Define
7 =7,— EZX(EX: X)X,
and
o = n' EZ:Z¥ . )

/o indicates the strength of the IVs (and is proportional to the concentration parameter).
We use the following assumptions.

Assumption 1. {(V;, X,-,Z) 1 i<n} are iid across i for each n and {(V;, X;) : i<n;n>1} are
identically distributed across i and n.

Assumption 2. EV; =0, EV,-Z- =0, EV;X; =0, EX;X;is pd, lim inf,_ imin(EZ;‘Z}‘/)>0,
~4 ~4 ~ ~ ~
and sup; <y, 1 (EIIVill*Z; + EIVill* + EZ; + E|IX,||*) < oo, where Z; = (Z,..., Zx) .

Assumption 3. EV,V,=Q, E(V,V'® Z:Z{) = Q® EZ:Z! for all n>1, and Q is pd.
Assumption 4. k£ — oo and k3/n — 0 as n — o0, and p does not depend on .
Assumption 5. )~Z,k /k* — r; as n — oo for some constants r; € [0,00) and t € (0, c0).

Assumption 6. f is fixed for all n when t<; p =B, + Bk"/*™" when t e (},1]; and g =
Bo + Bk™"* when t>1.

Assumption 1 states that the errors, exogenous variables, and IVs are random and iid
across i<n. Note that (V;, X}, Z) cannot be iid across n because the dimension, k, of Z
depends on n.

Assumption 2 requires that the IVs and exogenous variables are uncorrelated with the
reduced-form errors and satisfy standard moment conditions.

Assumption 3 implies that the reduced-form errors are homoskedastic.

Assumption 4 states that the number of IVs goes to infinity as n — oo, but not too
quickly, and the number of exogenous variables is fixed. As noted in Section 1, the
condition k* /n — 0 can be restrictive, and may not be necessary (at least in the presence of
suitable additional assumptions). This condition is not used in the proof to obtain a central
limit theorem. Rather, it is used to show that one obtains the same limit distribution of a
weighted quadratic form in a k-vector sample average when (i) a population weight matrix
is replaced by its sample version (see Lemmas 5 and 7 in the Appendix), and (ii) the
k-vector sample average based on a population projection onto an intercept and other
exogenous variables is replaced by the corresponding k-vector sample average based on the
sample projection (see Lemmas 6 and 7 in the Appendix). The argument in Hansen et al.
(2005, Lemma A9) probably can be used to show that the &° /n — 0 condition is stronger
than necessary for the purpose (i) above. However, weakening the k* /n — 0 condition and
still showing (ii) is problematic.
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An alternative approach to that considered in this paper is to treat the IVs and
exogenous variables as fixed rather than random. With this approach, one does not need to
establish (i) and (ii) above because a CLT can be applied directly to the quantities that
involve the sample weight matrix and the sample projections. The drawback of this
approach is that sufficient conditions for a CLT involve conditions that depend on the
relative magnitudes of k and »n in an opaque way and are difficult to verify. For example,
conditions arise on the magnitudes of the elements of the projection matrix onto the n x k
space spanned by the IVs Z. Rather than rely on conditions of this sort, in this paper we
use an approach that yields a condition on k that is clean and transparent, but may be
stronger than necessary.

Assumption 5 controls the relative magnitude of the IV strength, as measured by 1}, to
the number of IVs k. For example, Assumption 5 holds if 7 = C(k’/n)l/2 for some C € RF
with |C] = 1 and CEZ;"Z;"’C — r.. The smaller is 7, the weaker are the I'Vs relative to k.
Andrews and Stock (2006) find that the key value of t for inference concerning f is
1 =1/2. For T = 1/2, some tests (such as the CLR, AR, and LM tests) have non-trivial
power asymptotically against fixed alternatives. For 7>1/2, these tests have asymptotic
power equal to one against any fixed alternative. Many of the papers in the many weak IV
literature only consider the case of T = 1. Note that Assumptions 2 and 5 imply that
n'n = O(k" /n), see (15) below.

Assumption 6 specifies the true value of f that is considered in the results below.
Assumption 6 takes f such that the asymptotic distributions of the test statistics considered
are non-degenerate. It is shown that this requires that f is a fixed value when 1< 1/2 and f§
is a sequence of local alternatives to the null value , when t>1/2. Of course, = f3, is
allowed when t<1/2 or t>1/2.

3. Tests

In applications, interest often is focused on the parameter  on the rhs endogenous
variable y,. Hence, our interest is in the null and alternative hypotheses

Ho:B=pB, and H;:B#p,. ®)

The parameter n, which determines the strength of the IVs, is a nuisance parameter that
appears under the null and alternative hypotheses. The parameters y;, £;, and Q also are
nuisance parameters, but are of lesser importance because tests concerning f3 typically are
invariant to y; and &; and the behavior of standard tests, such as ¢ tests, are much less
sensitive to Q than to =.

We now define the AR, LM, and CLR tests. We estimate Q (€ R**?) via

Op=(m—k—p) ' V'V, where V=Y — PsY (6)
and P, = A(A’A)~' A’ for a non-singular matrix 4. We define

S, =(Z' 2y 2Z' Yby - (byQubo)"?, where Z=Z—PxZ and by =(1,—f,).

~ ~—1 ~—1

T,=Z2)7"*72'YQ, ay-(a,Q, ap)™"*, where ay = (S, 1),

~ o~ ~N o~ ~ ~
_~ ~ oS —~ SnSn SnTn QS,n QST,n
Q).,k,n = [Sn : Tn] [Sn : Tn] = | v~ ) o~ = 5

Tn Sn Tn Tﬂ QS T.n Q T.n
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and
éi,k,n = (04, — kD) /K. (7
The AR, LM, and LR test statistics can be written as
AR, = Os,/k,
m,, = QéT,n/QT,na

and

U AR ~ ~ = 5
LR, = E (QS,n - QT,n + \/(QS,n - QT,n)2 + 4Q§T,n) (8)

(see Moreira, 2003 and Andrews et al. 2006a)

Under Hy, AR —ay3/k and LM n—>dy; as n— oo under strong and weak IV
asymptotics assuming iid homoskedastic errors and k fixed for all n (e.g., see Andrews
et al., 2006a). Under the additional assumption of normal errors, AR,~F ,_x—,. Hence,
an F critical value is typically employed with the AR test, and a y7 critical value is used for
the LM test.

The CLR test rejects the null hypothesis when

LR,>k1r:(Or.,); )

where the conditional critical value function g a(QT ) is defined to satisfy Py (LR >
KLRO((C]T)|QT,, = gr) = . Andrews et al. (2006b) gives detailed tables of xrr,(q7) values.

4. Asymptotic results

This section contains the results of the paper. We establish the asymptotic distributions

of the statistic @/:,k,n and the test statistics ZI\QH, Ejl\ln, and l/j{n, which depend on Qi,k’n,
under many weak IV asymptotics. In contrast to the assumptions in Andrews and Stock
(2006), we do not assume that the errors are normally distributed. We use the asymptotic
distributions to show that the AR, LM, and CLR tests have correct asymptotic size under
many weak IV asymptotics. The asymptotic distributions also show that the many weak IV
asymptotic power of the AR, LM, and CLR tests under non-normality is the same as it is
under normality. Hence, the power comparisons given in Andrews and Stock (2006) under
normality also hold asymptotically under non-normality.

The asymptotic distribution of 0, , depends on the following quantities:
ep = (B~ Bo) - (b@bo)™"* € R,
dg=dQ 'ay - (aé)Q_lao)*l/2 €R,
Diag{2,1,2} if 0<t<1/2,
Diag{2, 1,0} if 1/2<1<1,
V35 =\ Diagi2, 1 + &, 0) if T=1,

Diag{2,d;, r,0) if t>1, and
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v = (b,Qbo)""?ds, BeR, (10)

for the scalar constant B given in Assumption 6. Let x3(5) denote a noncentral chi-square
distribution with one degree of freedom and non-centrality parameter 9.

Theorem 1. Suppose Assumptions 1-6 hold. Then, the following results hold.
(@) If 0<t<1/2 and f is fixed,
(S, S, = k) /K Osc 0
S\;Tn/kl/z —>d @ST,oo ~ N 0 ) V3,1: s

o

(T, T, — k)K" Ore

— — = —2
(AR, — Dk'*— 4 Qg0 ~ N(0,2), LM~y Qgy.o, ~ 71(0), and

—~ 1/— _ i — —
LRn/klﬂ_)dE(QS,oo - QT,oo + \/(QT,oo - QS,oo)2 + 4Q§T,oo>'

(b) If 1 =1/2 and p is fixed,
(8,8, — ko k"2 Os hrij2
§;7A"n/kl/2 —a| Osroo |~N| | csdpria |, Viip |
(T T — k) /K2 Orc djrija
(AR, — Dk'*—, Os.00 ~ N(¢jr1)2,2),
LM, @ér,oo ~ 7i(cgdyri ), and

— 1/— — — — —2
LRn/kl/2 —d 2<QS,OO - QT,oo + \/(QT,DO - QS,oo)2 + 4QST,OO> .

() If 1/2<1<1 and B = Py + Bk"*™ for a scalar constant B,
(8,8, — )/ Os 0
S:ﬁ:/kl/z -4 | Osroo [~N VBt |, V3. |,

(T T, — k)/K° Or e dg,r-
(AR, — DK'”—4 Qs ~ N(0,2),
LM~y @érm ~ 3(ypr?) when 1/2<1<1,
LM,y @%ST’OO/(I +di0r1) ~ iOEr /A + diorl)) when © =1,
LR, = (1/(d} r)k' "LM,(1 + 0p(1)) when 1/2<t<1, and
LR, = (1 +dj r)/(d} r)LM,, + op(1)  when = 1.
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() If t € (1,2], r.>0, and p = B, + Bk,
(5,8, — k) /M2 Os. 0
STk =il Osroo | ~ N[ | 787 |, Vs: |,
(T.T, — k) /K Oree dj T
(AR, — Dk'— 4 Qg0 ~ N(0,2),
LM, @énoo/(dzorr) ~ 2i(pr=/d},)) provided dg, #0, and
LR, = LM, + op(1).

Comments. (1) Theorem 1 shows that one obtains the same limit distribution when the
errors are non-normal and Q is estimated as when the errors are normal and Q is known.
As shown in Theorem 2 below, a consequence of this is that the critical value function for
the CLR test given in (9) and y} and Fy,_x_, critical values for the AR and LM tests,
respectively, yield the correct asymptotic size under many weak IV asymptotics when the
errors are not necessarily normally distributed. This holds in spite of the fact that the LR
statistic has a non-degenerate asymptotic null distribution only after rescaling by a
quantity k'? or k'~° that is unknown to the practitioner.

(2) Given that the asymptotic distributions of the AR, LM, and LR statistics are the same
under non-normal errors as under normal errors, the power comparisons of the three tests
given in Andrews and Stock (2006) for the case of normal errors also applies to the case of
non-normal errors. In particular, when < 1/2, all three tests have trivial asymptotic power.
(It is shown in Andrews and Stock (2006) for the case of normal errors that no test has non-
trivial asymptotic power when < 1/2.) In the most interesting case in which = = 1/2 and
the whole range of possible fixed alternatives is considered, the CLR test is essentially
uniformly more powerful asymptotically than the AR and LM tests, and the CLR test is
essentially on the asymptotic power envelope for two-sided tests for the case of normal
errors, see Andrews and Stock (2006).> When 7> 1 /2, the CLR and LM tests have equal
asymptotic power against local alternatives and are on the asymptotic power envelope for
two-sided tests for the case of normal errors (i.e., are asymptotically efficient under
normality). In contrast, the AR test has trivial power against these alternatives.

(3) Note that the cases considered in Chao and Swanson (2005) and Han and Phillips (2006)
correspond to 7>1/2. Those considered in Stock and Yogo (2005), Anderson et al. (2005),
Hansen et al. (2005), and Newey and Windmeijer (2005) correspond to the case Where =1

(4) An interesting feature of Theorem 1 is that the statistics S Sn, S Tn, and T T are
asymptotically independent.

The following Theorem shows that the CLR, LM, and AR tests have correct asymptotic
size under many weak IV asymptotics and Assumptions 1-6.

Theorem 2. Suppose Assumptions 1-6 hold. For_any t € (0,2], under Ho B =By (a)
lim,,, o0 P(LR > KLRD((QT W) =, (b) lim,_ P(LM > 73(w) = o, where y3(a) is the 1 — o

2By “essentially,” we mean that exhaustive simulations show that the asymptotic power of the CLR test is on,
or very close to, the asymptotic power envelope.
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quantile of the X% distribution, and (c) lim,,_, » P(ﬁn > Fin—i—p(0)) = a, where Fpy_i—p(a0) is
the 1 — o quantile of the Fi ,_k_, distribution.

To conclude, the many weak IV asymptotic results given in this section show that the
significance level of the AR, LM, and CLR tests are asymptotically correct no matter how
weak are the I'Vs with normal or non-normal errors. On the other hand, these tests are not
completely robust to many I'Vs. One cannot employ too many IVs relative to the sample size.
For non-normal errors, the tests have correct asymptotic significance levels provided k> /n—
0 as n — oo no matter how weak are the IVs. For normal errors, the results of Andrews and
Stock (2006) show that the less restrictive condition K2 /n— 0 as n — oo suffices.

The many weak IV asymptotic results for parameter values in the alternative hypothesis show
that the CLR test is more powerful asymptotically than the AR and LM tests for both normal
and non-normal errors. The LM test, in turn, is more powerful asymptotically than the AR test.

The level and power results established under many IV asymptotics, combined with the
properties of the CLR test under weak IV asymptotics, see Andrews et al. (2006a), lead us
to recommend the CLR test (or heteroskedasticity and/or autocorrelation robust versions
of it) for general use in scenarios where the IVs may be weak.

5. Appendix of proofs

In this Appendix, we prove the results of Section 4. For brevity, we only prove the
results for the case t € (0, 1). The results for t € (0,2] are proved in Andrews and Stock
(2006) using similar methods. We start by stating several Lemmas, the purposes of which
are discussed following Lemma 3 below. Lemma 3 is a CLT for multivariate degenerate
U-statistics. The CLT is proved by using the Cramer—Wold device and verifying the
conditions of Hall’s (1984, Theorem 1) univariate CLT for degenerate U-statistics. Newey
and Windmeijer (2005, Lemma A2) makes a similar use of Hall’s result when establishing
the asymptotic distribution of empirical likelihood estimators with many weak IVs.

Lemma 3. Let {({,;,n,,;) : iS<n;n=1} be a triangular array of random vectors that satisfies
(1) &usny € RE, for all i<n, where k = ky; (i) for each n>1, (&nis ) are iid across i<n;
(111) Eénl - Enm - 0 (IV) Var(énl) - 11»’ Va”(”lm) - Ik’ and COU(fm, 17111) - 0 (V) Sup€</c n=1
(Eém[ + Enmg)<oo where i = (Epity ooy Epin) and 1, = ity -+ o> M) s (VD) k — oo as
n — oo; and (vii) k*/n — 0 as n — oo. Then,

(a) 1 26;11'6"]-
73 00 | St + Syftai | = N(O, V), where Vs = Diag(2,1,2},
nk 1<i<j<n 217;11';7/11‘
(b) | o Erilni — K
12 é:lir]ni —p 0, and
nk'’< won —k
ni'tni

n

1 1
(C) k UeCh( 12 Z[&m nm —/ Z én/‘ : r]n/] - k12> —>d N(O, V3)
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Comment. In Lemma 3 (and Lemma 4 below), Assumption (vii) can be relaxed if
Assumption (v) is strengthened. We do not state such a result because a stronger condition
than Assumption (vii) is needed anyway in Lemma 6 below.

We now summarize the purpose of Lemma 3 and the Lemmas that follow. The result of
Theorem 1 concerns [§,, : f,,]. The k x 2 matrix [§n : fn] is roughly of the form
n V23 [E, My, which appears in Lemma 3(c), with &, = ZF - Y;bo(bé)Qbo)*l/2 and
Ny = ZF - Y;ao(a{,Q*Iao)_l/ 2. Since the means of these random vectors are not zero,
Assumption (iii) of Lemma 3 does not hold. Hence, Lemma 3 is extended in Lemma 4
below to allow for non-zero means that are of a magnitude that corresponds to t<1 in
Theorem 1. Since the variance matrices of &,; and ,, as defined above are not /; and are
unknown, Assumption (iv) of Lemma 3 does not hold. Hence, Lemma 4 is extended in
Lemma 5 below to allow for general variance matrices that are estimated. Next, [§n T 2l
are based on Z; = Z; — [n*IZ/X(n*IX/X)*l]X,', not Zf = 7 — [EZiX;(EXiX;)*l]Xi, SO
Lemma 5 is extended in Lemma 6 to allow &,; and #,; to be linear combinations of iid
random vectors, such as Z and X;, with coefficient matrices for the linear combinations
that converge in probability to constant matrices. Thus, Lemma 6 is needed when the model
includes exogenous variables. All of the Lemmas mentioned above apply when the means of
¢, and n,,; are of a magnitude that corresponds to < 1. Finally, Lemma 7 provides results

on the asymptotic behavior of the sample matrices 7ZZ XX, X'Z,and Z'Z
The proof of Theorem 2 is given at the end of this Appendix. It uses the results of
Theorem 1, but does not (directly) use any of the lemmas.

Lemma 4. Let {(&,;,n,;) 1 i<n;n=1} be a triangular array of random vectors that satisfies the
assumptions of Lemma 3, but with Assumption (iii) replaced by (iii) E¢,; = P> By = Wy
and (Anz + my)/k — 0, where L,e = nu;wné, Doy = n,u;n,um], and Apey = n,u;é,um]. Then,

(a) 28,8 D KM
s S| Gt S | = | e/ | aN V)
n I1<i<j<n 217;11,;7”] )Lnn/kl/2
(b) 1 n 6’”%’” —k
172 gynii/lni —>p 0, and
nk’ ‘3 W —k
nr'ini
©) Dt K2
1 1
erch (—/ Z (i 2 Ml P /2 Z Myl — k12> — | Sy /K

Dy 11
—4 N(0, V3), where V3 = Diag{2,1,2}.

Let || - || denote the Euclidean norm of a vector or matrix.
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Lemma 5. Let {(&,;,n,;) : i<n;n=1} be a triangular array of random vectors that satisfies the
assumptions of Lemma 3, but with Assumption (iv) replaced by (iv) Var(¢,;) = Zpe € RE<k,
Var(n,;) = 2, € Rk Cou(é,;, n,:) =0, and :Yné and Emv are random k x k matrices that
satisfy ||§,15 —2Zpll = op(k_l/z) and ||fm1 — 2yl = op(k_l/z), with Assumption (iii) replaced
by (i)' E&y = e BNy = iy, and  (Zyz + 20) [k — 0, where  Jon: = mit) 2 e
)L,m n,um]Zm7 Hoy» and Anfn = n,unanCl/ 22”,71/ zuml, with Assumption (vii) replaced by (vii)
kg/n — 0, and with the addition of Assumption (viil) inf,>; Amin(Z,e)>0 and
inf,>1 Amin(Zny) >0. Then,

—1/2 A—1/2 ~1/2
k1/2 vech( 1/2 Z[ch Cni 1 2 ni Ml 1/22 né "‘: n ”nj]_k12>

i:i/k]/z
— )ZW/kl/z —4N(0, V3), where V3 = Diag{2,1,2}.
K

Lemma 6. Suppose (a) (i1, Ené, Snn) satisfy the conditions of Lemma 5 (b) &, =
Enti + Duglpi and n,; = 4,1 + Dy, i, where Dye, Dy € Rk are non-random matrices, (c)
(G yp)  i<n) are iid across i<n with |Eéq|* = O(k2/n) and ||En,,;||> = O(kz/n), (d)
Bng,ﬁnn e RF are random matrices that satisfy ||5n5 — Dyl = op(kfl) and ||13m1—
Dyl = op(kfl), and (e) Em- =&+ BnngZi and M,; = n,; + 5,,,717,,2,-. Then, the result of
Lemma 5 holds with (Z,,,—,'ﬁni) in place of (&,is1,;)-

Lemma 7. Suppose Assumptzons 1, 2, and 4 hold, then (a) ||n_lZZ EZZ l=o0 (k_]/z)
(b) Y= X"X)" = (EXiX)) | = Op(n'), () ||EXZ I =0, (@ Inlx'Z-
EX.Z| = op(k™"), and (¢) |n"'Z'Z — EZ:Z¥ || = op(k~'7?).

Proof of Theorem 1. As stated above, we only prove the results of the Theorem for the
case where t € (0,1). The proof for t € (1,2] is given in Andrews and Stock (2006).
First, we show that the results of the Theorem hold with S and T defined with the true Q
in place of Q,,. The statistics (Sn, T,,) are invariant to the coefficient # on X;. Hence, wlog
we take n = 0. Let b, = bo(b()Qbo)_l/2 and a, = Q‘lao(a{)Q_lao)_l/z. We apply Lemma 6
with

Ei =27 Yibe, Eni=Zi Yiby, Epi= (X} Yib,,0;_) € R,

S =2y =n""ZZ, Dy:=D,=[EZX(EXX)": Opxi_p] € R,
Dy =Dy ="' Z X' X'X)™" : Opp_py] € RO,
My = Z7 - Yias, Ny = Z; Yia,, and n, = (X} Y, ;cfp)/ € R". (11)
Assumptions (b) and (e) of Lemma 6 follow immediately from (11).
Assumption (a) of Lemma 6 requires that Assumptions (i), (i), (iii)”, (iv)’, and

(v)—(viii) of Lemmas 3-5 hold. Assumptions (i), (i), and (v)—(viii) hold immediately by
Assumptions 1-4.



D.W.K. Andrews, J.H. Stock | Journal of Econometrics 138 (2007) 24-46 35

Assumption (iv)’ holds because ||2Y,,5 — 2l = ||§,,,7 — 2yl = op(kfl/z) by Lemma 7(e),
where
S = Var(&,) = EZ:ZY - E(V bo)* (byQby) ' = BZ:Z7,
L = Var(n,) = BZ; Z} - B(ViQ ' ap) (@@ 'a0)™' = EZ; Z,
Cov(E,i ) = EZIZE - E(by Vi ViQ  ag)(byQbo) ™" (a)Q ' ag)™"* = 0, (12)

each equation uses Assumptions 1-3, and the last equality uses byay = 0.
Assumption (iii)” holds using Assumption 5 because

tpe = Eéy = EZI V)b, = EZN(Znd + Xn)b, = BZZ¥ nd'b, = EZ:Z ney,
=En, =EZYa, = EZ*Z’»"na/Q_la* = EZ;"Z;‘/nd,;,
nés Fniys o) = 1T '‘BEZ:Z . (cﬂ,c5dﬁ,d ),
Are+ an) k= (o JKOKT (¢ + df) = O™™") = o(1), (13)

(/1

where )vZ,k is defined in (4) and the last equality holds because 1< 1.
To show Assumption (c) of Lemma 6, we write

IEEuil”> = IEX; - Yibol* = IEX,Zz|*(db.) < |EX.Z,|1* - l|ml| XDy, (14)

where the second equality uses the assumption above that the coefficient, 7, on X; is 0
wlog. Now, ||EX,»Z4||2 = O(k) by Lemma 7(c). Also, Assumption 5 gives

o) = 24, /k" = n'EZ:Z n )k = ni' mimin(EZZF) /K" (15)

This, Assumption 2, and t< 1 yield n'n = O(k" /n) < O(k /n). Combining these results gives
|EE,0:1> = O(k*/n), as desired. The same argument gives |E#,,;[|° = O(k*/n). Thus,
Assumption (c) holds.

Assumption (d) of Lemma 6 holds because

Dz = Dyell = |0 Z X' X' X)™' — EZ:X)(n"' X' X) ™!
+EZ X' X' X)) — EZX(EX, X))
<In'ZX —EZX)| - (' X' X)"!
+IEZX| - 1 X' X) ™ — (BXX) ™!
= 0p(k")OL(1) + O(k'H0,(n~ 1) = 0, (k™ h), (16)

where the second equality holds by Lemma 7(b)—(d) and the fact that (n ' X' X)~! = Op(1)
by the WLLNSs, Slutsky’s Theorem, and EX,X;>0 and the third equality uses
Assumption 4.

The means of the asymptotic normal distributions given in Theorem 1(a)—(c) arise in the
present case because, by (13) and Assumptions 5 and 6, we have

e /62, e [V, 00 [ 2Y = G IM2) - (¢ epp, Y

b n ;/]
Vl/z(Cf;,C/;d/;,d%;)' when 7 =1/2

(17)
(0,0,0) when t<1/2.
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When t € (1/2,1), (13) and Assumptions 5 and 6 lead to
cp = BE'* by, by = (by@bo)?,  dy=dg,(1+o(l)),
and
(/lzf/kl/Z,)Zw/klﬂ’/l,m/kf %,/u:kk 1/2 C/gd[g/l* k71/2 d2 azkkfr)/
(sz kl 2T/L* k—l/z Bbod kl/z ‘L’}* k—l/z dﬁ/bnkk_r)
— (0, Bbodﬂorr,dﬁorf) = (0, yBrT,dﬁorT) . (18)

Hence, when 7€ (1/2,1), Lemma 6 shows that ((§1§n —k)/kl/z,ifn/kl/z)ad(@&oo,
Os1.00) and (f/ T, — —k)/k* — d32 djgln /K" = 0p(1) because 1> 1/2. The latter, combined with
dpl WK — d2 I, gives the des1red result that (T T,— k)/k'—, dﬁ r; when 7 € (1/2,1).

Here and below, the stated results for AR,I, LMM, and LRn hold given those for SnS,,,
§:1 T,, and f;’ T, by the same argument as in (11.10)~(11.14) of the Proof of Theorem 1 of
Andrews and Stock (2006). R

To complete the proof for t<1, we extend the results to the case where (S,, T;) are
defined with Q,, not Q. This extension holds by the result of Lemma 1 of Andrews and
Stock (2006) that k' 2(.(,A2,, — @) = op(1) (which holds under Assumptions 1-3) and the
proof of Theorem 4 of Andrews and Stock (2006). [

Proof of Lemma 3. To prove part (a), by the Cramer—Wold device, it suffices to show that
for any a = (o1, 00, a3) € R® with 050,

j—1

AU, = ZZ Suij = Z M,; —q4 N, V30), where M,; = Z Shij

1<i<j<n i=1

and

1 7 / / ’
S”ij = W(zalém‘énj + 0‘2(5”[77”]' + énj”ni) + 20‘3’7;1i’7nj)- (19)

We establish this result using Hall’s (1984, Theorem 1) univariate CLT for degenerate
U-statistics. Hall’s CLT is established by writing the U-statistic as a martingale (with
martingale differences {M,; : j>1}) and applying Brown’s (1971) martingale CLT.

We apply Hall’s Theorem 1 with his X,,; = (¢ )Y and his H,(x,y) equal to

ni’ 17/’1[

3

Hy(x,x,) =Y osHyu(x,x,), where x=(&.n) € R*, x,=(&.n,) € R*,
s=1

Huin(x,x,) =207k 2E¢, Hop(x,x,) = n k™2, + Ey),  and

Hin(x,x,) =20k~ 2y'y (20)

Note that E(H (X1, X)) X2) =0 as. because X,; and X,; are independent with
mean zero. In consequence, the U-statistic o’ U, in (19) is degenerate. Hall’s Theorem 1
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states that
o U, /(PEH(X 1, X12)/2)"*= 4 N(0, 1) provided
() n'"EH}(X 01, X.0)/(EH*(X 1, X ,2))* — 0 and
(1) EG*(X 1, X,2)/(EH>(X 01, X 12))* — 0, where
Gu(x,x,) = EH, (X1, X)H,(X 1, x,) for x,x, € R*. 1)

Conditions (I) and (II) suffice for the Lindeberg condition and the conditional variance
condition, respectively, required in Brown’s martingale CLT. We verify (I) and (II) for
H,(x, x,) defined in (20). First, we have

| 2818 281n /
ZEHz(ana n2)/2 = E“/E é:’llnl‘lz + é;Znnl 5;1177&12 + 5112’7;11 o, (22)
2’1;11 M2 2’71,11 M2
where X,; = (&, 1,,;). Next, we have

E(zénléiﬂ) =4 tr(Eérﬂé;zénl é;,l) =4 tr(EénZaﬂ . Eénl 6;11) = 4k:

E(&n + Eou)” = E(E1,0)" + 2BE 0o + E(Eam,n)
= t(E&u &, - Enanyn) + 2tr(Enyn &y - Bnpyp &)
+ 1(E&ny - Enyyiyy) = 2k,
E(zf;lfnz)(f;,mnz + 5112’7;11) = zEf;ﬂfnzf:“’?nz + 2E€;1€nz€;znn1
=2 tr(Eénlé;’ﬂ : EénZ’/I;Z) +2 t”(Einzé;z : E’7n1£:11) =0
and
E(261116n2)(2’1;1’7;12) = 4”’(Efnl’7;,1'7nzf;,z) = 4”’(Eén1’7;11 : EnnZé:Q) =0, (23)
using Assumptions (ii) and (iv) of the Lemma. Likewise, we have E(Zn;ﬂnnz)2 = 4k and
ECn, 10)(E i + Ean) = 0. Combining these results with (22) and (23) implies that
WEH>(X 1, X,0)/2 =o' Via>0 for all n, (24)

which yields the asymptotic variance given in (19).
Now, to verify condition (I) of (21), we have

4
6
EHY, (X1, X) = ryE E(&,én) = 4—sz (Z «f;zlffnzz’)

16 k k k k
= WZ Z Z Z Efnll’l fnZt’l 61116’2énZ[zénl&én%’;énl&én%’“

l=1 ti=1 b3=1 f4=1

16k*
ST sup E&u1e, Ente,Cniesniey - ESnae, Sty Enoes Enae,
n C1,00,03,04<kn>1
kZ
_ o(_4), -
n

where &,; = (&1, .. Epi) and the last equality holds by Assumption (v) of the Lemma
and the Cauchy-Schwartz inequality. Similar calculations and the use of Minkowski’s
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inequality yields EH (X nl> X.2) = O(k* /u*) for s = 2,3. These results and Minkowski’s
inequality then give EH* MO.TR ,12) = O(k? /n*). Combining this with (24) establishes
condition (I) of (21) prov1ded n~'k* — 0, which holds by Assumption (vii) of the Lemma.
To verify condition (II) of (21), by the Cauchy—Schwartz inequality, it suffices to verify
condition (IT) with EG? (X i an) replaced by EG (X iy X ) for s = 1,2, 3, where G, (-, -) is
defined as G,(-,") is deﬁned in (21), but with Hw( -) in place of H ( ). We have

4 el gz 4 !
Gln(x Xy) = EH],,(X,,],X)H]n(X”],X*) = Einlignlg* = m &é,,

G2n(x: X*) = EHZn(ana x)HZn(an > x*)

! 1 / ’
E(énln + f '/’nl)(fnln* + 5*’7;11) = ﬁ(é 5* + n ’7*), (26)
where x = (¢,5) and x, = (¢,,1,). Hence,
16 6 16
EG%H(XHI E) an) - E(é”l n2) tr(Egnl én] EénZ‘fnz) k

2
=—. 2
n*k 27
Similarly, EG%H(X 1> X2) = 16/(n*k). Combining (24), (26), and (27) yields condition (IT)
of (21) provided k — oo, which holds by Assumption (vi) of the Lemma.
Part (b) of the Lemma holds because the left-hand side in part (b) has mean zero and
variance that is o(1). The latter holds because

1 ! /
EG3,(Xu, X i) = B + M)’

ko k
E(&, &) = Z Z E&h,, G, <K [<SIPP>1 E&, = O(K),

61=1 =1

Var(n™'k'/? Z(fn,ém — k) = n~" kT Var((&,&, — k) = n7'O(k) = o(1) (28)

using Assumptions (v) and (vii) of the Lemma. Similarly, E(é;”-nm)2 = O(k?) and E(n;“n,,l)z =
O(K?) yield Var(n™' k™21, &) = o(1) and Var(n™'k™" 37, (s — k) = o(1).

Part (c) follows from parts (a) and (b) because the lhs of part (c) equals the sum of the lhs
of parts (a) and (b). O

Proof of Lemma 4. To prove part (a), we write

Z Z (:mén/ - Aln + AZn + A3n, where

l<l<j<n

ln k1/2 Z Z(ém :unf) (én[ :unf)

I<i<j<n

kl/2

Ay = k1/2 Z Z :unf(fm :unf) + :unc(inj :uni)] and

I<i<j<n

A3n = k1/2 Z Z ,unc:unc (29)

I<i<j<n
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Now, some calculations yield
nn—1) 1 1

A3n == k1/2 lung:unf kl/2 Ané kl/z inc = kl/z )ng =+ O(l)
1 i
Ay =222 D Z (i = Hne)s  EAy =0,
and
4n—1)y* 4(n — 1)2
Var(Az,) = T e Var(Cpi) e = 2k Inz = o(1), (30)
using 4,:/k — 0 and k*/n — 0. Combining (29) and (30) gives
WZZ &y — l/zw = Ay, + op(1). (31)
I<i<j<n
Similar calculations yield
kl/z Z Z (émnnj + énjnm) 12 ”C’?
1 <l</<l’l

kl —75 2 2 1 = ) Oy = ) + g = ) (g = )] + 0p(1)

I<i<j<n
and
1/222 Mty — 1/2 Aoy = 1/222% ) s = ) + 0p(1). - (32)
nk 1<i<j<n k nk I<i<j<n

Stacking the results of (31) and (32) and applying Lemma 3(a) to the rhs of these stacked
equations yields convergence in distribution to N(0, V'3), which is the result of part (a).
To show part (b), we write

1 1 ,
WZ (&,i€ni — k) = Fin + Foy + F3,, where
p

1 L , 2 .,
Fi, = Y ;[(fm' = M) (Cpi — M) — K], Fop = Py ; Hne(Eni = M),

1 n
F3n = 7 Zl Hp H (33)
We have F, —, 0 by Lemma 3(b). In addition,
1 K2 Do
Fy, = ¢ 0, EFy =0, and

R
4
k/lng — 0 (34)

using Assumptions (vii) and (iii)’. These results combine to show that Fi, + F,, + F3, is
op(1). Similar calculations show that n~'k="2S (11 — k) = 0p(1) and n~'k™'/?
Y&t = op(1), which completes the proof of part (b).

4
Var(F,,) = Tk Mg Var(éni):uncf =
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Part (c) follows from parts (a) and (b) because the lhs of part (c) equals the sum of the lhs
of parts (a) and (b). O

Proof of Lemma 5. Lemma 4(c) with (&,,n,;) of that Lemma set equal to (Z”_gl/ 25,1,,
2. 1/ 2n,;) of the present Lemma gives the desired result but with (Zne, Zuy) in place of
(Z,,C,Z,m). Hence, it suffices to show

n
Oy = A(Z,) = 5,04, = 0p(k'),  where 4, =023 ¢,, (35)
i=1
and likewise with (,;, 2,¢) replaced by (1,1 Zmy)-
Lemma 4(c) applied to (Zn¢ ém,Z 1/ 2;1”,) also gives

A 314, = Oy(k) (36)

n“né

(due to the centering at kI;). In addition, we have

Fanin(Zne) = Op(1) (37)
because Mmin(f,,é) — Amin(Z5e)| < IIE,@ — 2yl = op(1) by Assumption (iv)’ and /lr;iln(Z,,g) =
O(1) by Assumption (viii).

The following are standard or hold by algebra: if His a symmetric psd k x k matrix, Gis a
k x k matrix, and ¢ is a k-vector, then (a) ||HGH||<)maX(H)||G||, (b) |Hc|l < Amax(H)
lel S WHD - el (©) ¢ Ge < IGIl - el and (d) T — H = H — I, — (H — 1Y H-(H — Iy).
Let C, = 21/2 and D, = E,lléz Then, we have
0, = A, (C.? — D)4,
= A,C,'\(Ix — C,D,*C,)C; ' 4,
=4 .C\(C;'DXC —1)C ' A,
—A.cNC'D2C - 1) C,D, 2 Cl(C ' DAC — 1) CL M A,
<4,C,'[C, (D} - C)C,'1C, ' 4
+ GG, DIC = 1) C, Al -
<IC D5 = COC- G Aall?
+ (D = CDC, C Al - (D)
<UD = Call - e (G - 1C A2
1D, = CIPIC, € Al - 24 (D)
<ID; = Gl - 7€) - 1C, Al
1D = Call? - 1C, Al - 2500 (C ) - (D)
= 0p(k™)O(1)0p (k) + 05(k O (K)O(1)Op(1)
= op(k'/?), (38)

where the third equality uses (d) with H = C,, IDI% C; , the first inequality holds by the
triangle inequality and (b), the second inequality holds by (c), the third inequality holds by
(a) and (b), the fourth inequality holds by (b), and the second last equality holds by

Assumptions (iv)’ and (viii), (36), and (37). This establishes (35).

(D,

max
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The same argument holds with (&,;, Sng) replaced by (1, :‘?,,,1). Hence, (35) holds and the
Lemma is proved. [

Proof of Lemma 6. It suffices to show 4, = op(kl/ 2) and an analogous result with
(&n1is &) replaced by (1,17, 11,0;), Where 4,, is defined by

Gn = n—l/2z énlia Hn = n—1/2 Z én2i7
i=1 i=1

~ ~—1 ~ o1
An - |(Gn + Dncan)/chj (Gn + DnEHn) - (Gn + D11§Hn) chf (Gn + anHn)|
-1

~ P PN ~ ~—1
= |H;,(Dncf - Dng’)/zng (Dng“ - Dné)Hn + 2H:1(Dn§“ - Dni)/zng (Gn + Dng“Hn)|

<Py, +2P/?PY>,
172, = al
Pll’l = ”an“ (Dl’li - Dni)Hn”Za P2n = (Gn + Dncan) Zné (Gn + DizéHn)’ (39)

and the inequality holds by the Cauchy-Schwarz inequality. We have P,, = O,(k) by
Lemma 5. Hence, the Lemma holds if Py, = op(1).
We have

~—1/2 —~ o~ —~
Pin <220 ) 1Dt = Du) Hol? <G - 1D — D IP 1 Hol, (40)

max

where the two inequalities hold by inequality (b) stated following (37) above.

Next, we have: (I) ||H,|* = Oy(k’) because |H,|<|H,—EH,||+ |EH,|, E|H,—
EH,|I” = B(& — E&ui) (&oi — &) = O(k), which implies that || H, — EH,,|> = Oy(k),
and |[EH,|> = |n'/2E¢,|> = O(k*) by Assumption (c) of the Lemma, (II) imax(:?;;/z)
= 12(Z,5) = 0,(1) by (37) above, and (I11) [| D,z — D, || = 0p(k~") by Assumption (d) of
the Lemma. Hence, P, = op(1) and 4, = op(kl/z).

An analogous result holds with (y,;,7n,5;) 1n place of (,;, &), which completes
the proof. [

Proof of Lemma 7. Part (a) holds because for all é>0

Plk|n'ZZ —EZ.Z,|*>¢)

<kEtr<<n_1 S 77 - Ezz) ( S 77 - Ezz>>/
i=1 =1

=k - tr(n""E(ZoZy — BZ\Z\)(Z2Zy — EZ\Z,)) ¢

= kn"(B(ZyZo)* — 2E(ZyZ\) + tM(EZ\ Z)JEZ\ Z))) /e

<O(K* /n) = o(1), (41
where the first inequality holds by Markov’s inequality, the first equality holds because the
expectation of terms with i#j is zero by independence, the second equality holds by

algebra, the second inequality holds because sup; 4.,> 1 EZ; < oo by Assumption 2, and the
third equality holds by Assumption 4.
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Part (b) holds by the CLT and the delta method because E|.X;||* < oo, EX, X/ is pd, and
the dimension p of X is fixed for all n. B

Part (c) holds because |EX;Z,| <k'?p'sup; o1 (EIXiZy1%)'/? = Oy(k'/?) using the
fact that p is fixed for all n. ‘

Part (d) is established as follows. By Markov’s inequality, for all ¢>0,

P ' X'Z — EX, Z,|* > ¢)

n ! n
<k2Ezr<<n1 S xiZ - EXizj) <n1 S xZ - EX,Z})) / ¢
i=1 J=1

= (K /n) tr(E(X,Z; — EX;Z)) (X, Z, — EX:Z))) e
<(/mp sup E|X:ZylI* = o(1), 42)

Jj<kn=1
where the first equality holds by the iid assumption, the second inequality uses the fact that
the dimensions of X; and Z; are p and k, and the second equality uses Assumption 4.
To prove part (e), we write
n\ZZ=n'ZZ-n'ZXX'X)"'X'Z and
EZ:Z! =EZ.Z, - EZ,X)(EX:X)) 'EX.Z,. (43)

By the triangle inequality, we have

In'Z X(X'X)"'X'Z — EZX/(EX:X})""EX;Z,|| <Ly + Ly + L3, where
Ly =n"'ZX( ' X' X)"\n"'X'Z — EX,Z)|.
L = 0" Z X[ X' X)"" — (EX:X))"JEX;Z)|, and
Ly = |l(n"'Z X —EZX)(EX;X)"'EX,Z)]. (44)
Using parts (¢) and (d), we have
In'ZX||< |0 Z X — EZX)|| + |EZ:X)| = op(k™") + O(k'/?) = O, (k). (45)
In addition, [|(n~'X"X)"|| = O,(1) by the LLN, Slutsky’s Theorem, and the fact EX, X is
pd. These results, the result of part (d), and || AB|| < || 4] - || B give
La<In ' ZX| - 167" X' X)) - In7' X'Z — EX,Z)
= 0, (k'?)0p(1op (k") = 0, (k~1/3). (46)
By similar calculations, L,; = op(k_l/z).
Using the results of (45) and parts (b) and (c), we have
Lo<|n ' ZX| - 17" X' X)™" = (EX.X)7"I| - IEX,Z,|
= 0,(k'"?)0, (™10 ?) = O,((13 /) Pk~ 112) = o0, (k~1/2). (47)

Hence, the left-hand side in (44) is op(k_l/ 2). This, (43), and part (a) combine to establish
part (e). O
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Proof of Theorem 2. We prove part (a) for the case of T = 1/2. The proofs for other values
of t are analogous but use different scale factors. Define

QS,n,k = (QS,n - k)/kl/z’ QT,n,k = (@T,n - k)/k]/za
KLra(Gri k) = KLRAGrk' > + k) /K2, and G = (qp — k) /K2 (48)

Straightforward calculations give

P(LR,>K18,(47)| O = q7) = P(LR, /K"* >R 0 (@73K) | O1 = G7)- (49)

Using (8), we can write

— 1/~ ~ ~ ~ ~2
LRn/kl/z = E(Qs,n,k - QT7n,k + \/(QS,mk - QT,n,k)2 + 4QST,n/k> . (50)

Now, consider the case where ﬁ?n is defined with the true Q rather than (AZH, the reduced-
form errors are normal, and the null hypothesis holds. Call this “case N.”” In case N, QSn o
QSTn/(QSnQT )2, and QTnk are independent, see Andrews et al. (2006a, Lemma 3).
Also, in case N, the probability in (49) equals o for all k=1 by the definition of x7g,(-).

Until stated otherwise below, we assume case N holds. Conditional on Oz, = 47,4
we have

QS T.n 1 < QS T.n

K2R

(QSnQTn)

By independence of the ratio in the parentheses from QSn(kl/ 2(Q + k)2, the
conditional distribution of QSTn/kl/2 given Qr, =dqr,i €quals the unconditional
distribution of

: 2> O (k2O i+ K 2) V2. (51)

1 Osr ) 120100~ 1/2\11/2
— | == QS,n (k (qT,n,k + k ))
K'? ((QS,,,QT,,,)”Z

Q n,A — ~ — Q n
= R QR @™ 4 ' = S (14 0p(1). (52)

where the second equality holds because QT,, /k =1+ o0p(1) (unconditionally) by
Theorem 1. Eq. (52) 1mphes that the conditional asymptotic distribution of QST,, Jk'?
as n— oo given Qr, i = {7, €quals the unconditional asymptotic distribution of
QS” /k'?, which is the distribution of Ogr .00 by Theorem 1.

In consequence, using (50), for any sequence {g7,, : n>1} such that g7 ,, — ¢ for
some ¢y >0, the conditional distribution of LR, Jk 172 given Qr, . = {7, satisfies

_ 1/~ N — — =
LR,/k"* = E(QS,n,k —qdrart \/(QS,n,k - qT,n,k)z + 4QST,n/k)

e reempe
i 3@se — Tr +\ s = U1 + 40s7.00) = LR, (53)

where the last equality defines LR.o(q7).
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Define K1r(q7; 00) by
P(LR(q7) > KR 2(q73 00)) = 1. (54)

Given (53), some calculations show that for a sequence of constants {x,:n>1}
we have

lim P(LRn/kl/ >xn|QTnk = 1) = P(LRo(q7) > KLra(qr; 00)) = o (55)

n—o0

only if x, — Krra(qr;00) as n — oo because LRoo(qy) is absolutely continuous with
strictly increasing distribution function. By (49) with g replaced by g7, , and the fact that
the probability in (49) equals « for all k=1 and all g,, we have

lim P(LR,/k"* >R iR @i N Or s = i) = - (56)

n—o0
This and (55) imply that
%LR,a(Aq'T,n,k; k) — %LR’Q(gr; OO) asn— o0 (57)

for any sequence qr,; — qr as n — oo.
We no longer assume case N, but we assume the null hypothesis holds. Eq. (57) and
Theorem 1 gives

RLRa(Or s k) = Rrra(Or.aei 00)  as n— 0. (58)

Note that the equality in (53) and Theorem 1 imply that LR,/k'*—, LR(074.) as
n — oo (unconditionally and jointly with the convergence in (58)). Hence,

P(LR,/k"* > %LR,a(éT,n,k; k)) = P(LRo(Q7.00) > KLR (07 005 00)) = 01, (59)

where the equality holds by (54) using iterated expectations. By the definition of xrr,
(QTH k> k), the left-hand side in (59) equals P(LRn >KLR A(QT »)), similarly to (49). Hence,
part (a) is proved.

Part (b) is an immediate consequence of Theorem 1 because LM has a %}(0) dis-
tribution for all = € (0, 2].

Next, we prove part (c). Under case N, we have

o = P(AR, > Fipip) = P(AR, = DK' N2> (Fip iy — DK /N/2). (60)
By Theorem 1, (AR, — 1)k'///2 =4 N(0,1) in case N. Hence, (Fj,_r_, — Dk'/?//2) —

Z1_q as n — oo. Thus, when case N does not necessarily hold, but the null hypothesis holds,
we have

P(AR,> Fip i) = P(AR, — DK /N2> (Fipip — DE'?/V/2)
— P(Z>z_,) =u, (61)

where Z ~ N(0, 1) and the convergence uses Theorem 1. [J
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