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Abstract

This paper introduces a rank-based test for the instrumental variables regression model that dominates the

Anderson–Rubin test in terms of finite sample size and asymptotic power in certain circumstances. The test has correct

size for any distribution of the errors with weak or strong instruments. The test has noticeably higher power than the

Anderson–Rubin test when the error distribution has thick tails and comparable power otherwise. Like the

Anderson–Rubin test, the rank tests considered here perform best, relative to other available tests, in exactly identified

models.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Anderson and Rubin (1949) (AR) test has a long history in econometrics. It was introduced over 50
years ago, but it has seen a resurgence of popularity in the last decade due to increased concern with the
quality of inference in the presence of weak instruments (IVs). The AR test has the property that it has exactly
correct size in the IV regression model with normally distributed errors regardless of the properties of the IVs.
Few other statistics have this property. Furthermore, in exactly identified models, the AR test is
asymptotically best unbiased under weak IV asymptotics and asymptotically efficient under strong IV
asymptotics.1

In this paper, we introduce a rank-based statistic that is similar to the AR statistic, but has improved finite
sample size and asymptotic power in certain circumstances. Its size properties are improved because it has
exact size for any distribution of the errors, not just normal errors. This is established using exchangeability.
Its asymptotic power properties are improved because it has equal asymptotic power under normal errors and
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considerably higher power for thick-tailed error distributions. This holds under both weak and strong IV
asymptotics. These advantages occur in IV regression models in which the IVs are independent of the errors
(not just uncorrelated) and (i) are simple, i.e., have no covariates, (ii) have IVs that are independent of the
covariates, or (iii) have categorical covariates. These conditions can be restrictive, but they are satisfied in a
variety of applications of interest.

Type (i) and (iii) models are used regularly in the applied literature, e.g., both are used in Angrist and
Krueger (1991) and Duflo and Saez (2003). The rank tests for these models have exact size for any error
distribution. In type (iii) models, the rank tests allow the error distribution to differ across the covariate
categories.

Type (ii) models arise frequently in applications utilizing natural or randomized experiments, e.g., see
Angrist and Krueger (1991), Levitt (1997), Angrist and Evans (1998), Duflo (2001), and Angrist et al. (2002).
The tests have exact size for any error distribution and allow the errors to be conditionally heteroskedastic
given the covariates. We handle covariates in these models by ‘‘aligning’’ the ranks. This method has been used
widely in the statistics literature, e.g., see Hodges and Lehmann (1962), Koul (1970), and Hettmansperger
(1984). Unlike most results in the statistics literature, however, our aligned rank tests are exactly distribution
free, not just asymptotically distribution free.

In over-identified models, the conditional likelihood ratio (CLR) test of Moreira (2003) has superior power
to the AR test, see Moreira (2003) and Andrews et al. (2006). In such models, the CLR test also has higher
power than the rank tests introduced here unless the errors are thick-tailed. Nevertheless, there are numerous
applications in the natural and randomized experiments literature with exactly identified models—typically
with one IV and one endogenous regressor. For example, all the empirical papers referenced above include
such model specifications. For exactly identified models, the rank tests considered here are the asymptotically
most powerful tests that are available.

Under weak and strong IV asymptotics, we show that the rank statistics are asymptotically non-central
chi-squared with the same non-centrality parameter as the AR statistic up to a scalar constant. This constant is
the same as arises with rank tests for many other testing problems, such as two-sample problems, and with
rank estimators for location and regression models. For the normal scores rank test, the noncentrality
parameter is at least as large as that of the AR statistic for any symmetric error distribution and equals it for
the normal distribution. Our asymptotic results make use of asymptotic results of Koul (1970) and Hájek and
Sidák (1967) for general rank statistics.

We carry out some Monte Carlo power comparisons of the AR, normal scores rank, and Wilcoxon rank
tests. The results indicate that the normal scores rank test essentially dominates the AR test. Its power is
essentially the same as that of the AR test for symmetric non-thick-tailed distributions, slightly higher for
asymmetric non-thick-tailed distributions, and considerably higher for thick-tailed distributions. The
Wilcoxon rank test has power that is quite similar to that of the normal scores rank test, but is somewhat
more powerful for thick-tailed distributions and a bit less powerful for non-thick-tailed distributions. The
comparative power performance of the three tests is remarkably similar over different sample sizes, strengths
of IVs, correlations between the errors, and numbers of IVs. Given that the normal scores test dominates the
AR test in terms of power, we prefer the normal scores test to the Wilcoxon test.

The rank tests introduced above share several useful finite-sample robustness properties that the AR test
enjoys. These include robustness to excluded IVs and to the specification of a model for the endogenous
variables, see Dufour (2003).

The exact rank tests introduced here can be used to construct exact confidence intervals (CIs). The rank tests
introduced here also yield conservative tests for subsets of the parameters on the endogenous regressors and
covariates via the projection method.

For the case of a simple regression model, IV rank tests have been discussed by Bekker (2002). However,
Bekker (2002) does not analyze the power properties of the rank tests and does not allow for covariates in the
model. Dealing with covariates with rank tests is more difficult than with the AR test. Theil (1950) considers a
rank-based method of constructing CIs in the model considered here. His method delivers conservative CIs
and is quite different from the method considered here.

Rosenbaum (1996, 2002), Greevy et al. (2004), and Imbens and Rosenbaum (2005) consider rank tests that
are similar to the rank tests considered, but are based on randomization inference. The probabilistic set-up
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considered in these papers takes the IVs to be randomized and every quantity that does not depend on the
randomized IVs to be fixed. In this context, the tests are exact. In contrast, the present paper considers
inference based on a population model, which is typical in econometrics, and shows that the tests are exact
given certain conditions on the model. When the same test statistic is considered, the two approaches yield the
same asymptotic critical values, but different finite sample critical values. (For example, population model
critical values depend on the IVs, whereas those based on randomization inference do not.) Our population
model approach allows us to compare the power of rank tests with typical tests in the econometric literature
such as the AR test. No power results are given in the randomization inference papers. We view our results to
be complementary to those based on randomization inference.

Andrews and Soares (2007) develop a rank analogue of the CLR test for over-identified models based on the
rank tests introduced here. Such tests are not exact.

There is a huge literature on rank tests in statistics, e.g., see Hájek and Sidák (1967) and Hettmansperger
(1984). For a review of rank tests in econometrics, see Koenker (1997). The closest paper in the econometrics
literature to the present paper is McCabe (1989), which considers of aligned rank tests of misspecification in a
linear regression model and uses exchangeability to show that the test is exact for normal and non-normal
error distributions. An alternative approach to aligning rank tests for dealing with covariates is to use
regression rank scores, see Gutenbrunner and Jurečková (1992). We do not pursue this approach here because
aligned rank tests are simpler and have comparable theoretical properties.

One could construct M-estimator versions of the AR test, but such tests would have the following
drawbacks: (i) their overall asymptotic power properties for non-normal errors would not be as good as for
rank tests—just as in the standard regression model, (ii) their asymptotic power for normal errors would be
less than that of the AR and normal scores rank tests, (iii) their size would not be exact, and (iv) they would
require simultaneous estimation of scale, which would require iterative computational methods.

The paper is organized as follows. Section 2 considers aligned rank tests for models with covariates that
need not be categorical. Section 3 considers within-group rank tests for models with categorical covariates.
Section 4 presents Monte Carlo power results. Appendix A contains proofs.

2. IV Regression with covariates

2.1. IV Regression model

We consider the following linear IV regression model:

y1i ¼ aþ y02ibþ X 0
iyþ ui (2.1)

for i ¼ 1; . . . ; n, where y1i 2 R, y2i 2 R‘, and Xi 2 Rd are observed dependent, endogenous regressor, and

covariate variables, respectively, a 2 R, b 2 R‘, and y 2 Rd are unknown parameters, and ui is an unobserved
scalar error. We also observe a k-vector of IVs Zi (that does not include elements of Xi or a constant).

The hypotheses of interest are

H0 : b ¼ b0 and H1 : bab0 for some b0 2 R‘. (2.2)

(Note that (2.1) and (2.2) also cover tests of H0 : b ¼ b0 and y ¼ y0 by absorbing Xi into y2i:Þ
Assumption 1. fðui;XiÞ : iX1g are iid.

Assumption 2. fZi : iX1g is a fixed sequence of k-vectors.

In place of Assumption 2, one could treat the IVs as random. In this case, the IVs would be assumed to be
independent of the errors and covariates. As is, Assumption 2 is consistent with random IVs provided one
conditions on the IVs. Assumptions 1 and 2 are violated if the distribution of either ui or Xi depends on the IV
vector Zi. This is a strong assumption concerning the exogeneity of the IVs.

Assumptions 1 and 2 allow for correlation between the endogenous regressor y2i and the error ui.
Assumptions 1 and 2 place no restrictions on the dependence between the endogenous regressor y2i and the IV
Zi. The tests and CIs introduced here have correct size and coverage probability even if the distribution of y2i
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does not depend on Zi. Of course, the power of the tests and the lengths of the CIs depend on whether y2i and
Zi are related.

Assumptions 1 and 2 allow for the distribution of ui to depend on that of Xi. Hence, arbitrary forms of
(conditional) heteroskedasticity are allowed. In fact, Assumptions 1 and 2 even allow for correlation between
ui and Xi. This is possible because of the strong exogeneity assumption on the IVs.

2.2. Aligned rank IV tests and CIs

The rank statistics that we consider are based on a sample covariance k-vector:

Sn ¼ n�1
Xn
i¼1

ðZi � ZnÞjðRi=ðnþ 1ÞÞ, (2.3)

where Ri is the rank of y1i � y02ib0 � X 0
i
byn in fy11 � y021b0 � X 0

1
byn; . . . ; y1n � y02nb0 � X 0

n
byng, byn is a null-

restricted estimator of y, Zn ¼ n�1
Pn

i¼1Zi, and j : ½0; 1Þ ! R is a non-stochastic score function.2The ranks

fRi : ipng are referred to as aligned ranks due to the aligning by the term X 0
i
byn. We consider the null-restricted

least squares (LS) estimator of y:

byn ¼ Xn
i¼1

ðXi � XnÞðXi � XnÞ0
 !�1Xn

i¼1

ðXi � XnÞðy1i � y02ib0Þ. (2.4)

Estimators other than the LS estimator could be considered, but the LS estimator is convenient because it is
easy to compute.

Different score functions j : ð0; 1Þ ! R yield different rank statistics. The two of greatest interest are the
normal (or van der Waerden) score function and the Wilcoxon score function:

jNSðxÞ ¼ F�1ðxÞ and jWSðxÞ ¼ x, (2.5)

where F�1ð�Þ is the inverse standard normal distribution function (df).
The rank test statistic, Bn, is a quadratic form in Sn:

Bn ¼ nS0
nWnSn; where

Wn ¼ n�1
Xn
i¼1

ðZi � ZnÞðZi � ZnÞ0 �
Z 1

0

½jðxÞ � j�2 dx
 !�1

(2.6)

and j ¼ R 10 jðxÞdx. For normal scores, the statistic BNS
n is

BNS
n ¼

Xn
i¼1

ðZi � ZnÞF�1 Ri

nþ 1

� � !0 Xn
i¼1

ðZi � ZnÞðZi � ZnÞ0
 !�1

�
Xn
i¼1

ðZi � ZnÞF�1 Ri

nþ 1

� � !
. ð2:7Þ

For Wilcoxon scores, the definition of BWS
n is the same but with the multiplicative constant 12 added and with

F�1ð�Þ deleted.3 In contrast to alternative statistics, such as the AR, LM, and LR statistics, the rank statistic Bn

does not require any error variance estimation.
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y1j � y02jb0 � X 0
j
byn for some iaj and these observations are the ‘th largest in the sample, then Ri ¼ ‘ with probability 0:5, Ri ¼ ‘ þ 1 with

probability 0:5, Rj ¼ ‘ þ 1 if Ri ¼ ‘, and Rj ¼ ‘ if Ri ¼ ‘ þ 1. Ties only occur with positive probability if F is not absolutely continuous. In

consequence, in practice one is not likely to have to deal with ties very often.
3The scalar constant

R 1
0 ½jðxÞ � j�2 dx in the definition of the weight matrix Wn of the statistic Bn is a convenient normalization because

with this constant included Bn has a w2k distribution under the null hypothesis, see Section 2.3 below. If desired, this constant can be

omitted when exact finite sample critical values or p-values are employed.
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The rank test rejects H0 if Bn exceeds a critical value ct; defined below. The intuition behind the test is as
follows. If the null hypothesis is true, fZi � Zn : ipng are not related to the ranks fRi : ipng because the ranks
depend on y1i � y02ib0 � X 0

i
byn ¼ ui � X 0

iðbyn � yÞ and the distribution of ðui;XiÞ does not depend on the IVs.
Hence, Sn should be close to the zero vector under H0. On the other hand, under the alternative, if fZi � Zn :
ipng are related to fy2i : ipng, then fZi � Zn : ipng are related to fui þ y02iðb� b0Þ � X 0

iðbyn � yÞ : ipng and to
their scored ranks fjðRi=ðnþ 1ÞÞ : ipng. (Here b denotes the true value of the parameter.) In this case, the test
will have power greater than its size under H1.

Under H0, we have

Zi ¼ y1i � y02ib0 � X 0
i
byn

¼ aþ ui � X 0
i

Xn
j¼1

ðXj � XnÞðXj � XnÞ0
 !�1Xn

j¼1

ðXj � XnÞuj ð2:8Þ

and fZi : ipng are exchangeable. The ranks of exchangeable random variables have the same distribution as
the ranks of iid random variables because the probability of the ranks taking on any given vector is the same
for all vectors and, hence, equals 1=n!. This leads to the following result.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then, under the null hypothesis, the distribution of Bn does not

depend on a, y, b0, the distribution of ðui;XiÞ, or the distribution of the endogenous variables fy2i : ipng. The null
distribution of Bn is the same when covariates X i appear in the model and the ranks are aligned as in the same

model but with no covariates X i and no aligning of the ranks.

Comments 1. Theorem 1 indicates that the test statistic Bn is exactly pivotal under H0 (and, hence, yields a
similar test) for any underlying distribution of ðui;XiÞ. Hence, the null behavior of the statistic is completely
robust to thick-tailed, thin-tailed, and skewed errors. In contrast, the AR statistic is exactly pivotal under H0

only with homoskedastic normally distributed errors. The CLR test is only asymptotically pivotal under H0

and for this it requires finite variance errors.
2. The statistic Bn is exactly pivotal under H0 without any requirement on how the endogenous

variables fy2i : ipng are related to the IVs fZi : iX1g. They could be unrelated or related in a linear or
nonlinear way.

3. The conditional distribution of Bn given Xi and the fixed IVs is not pivotal. Whether one considers this a
drawback is a philosophical issue. In any event, the conditional distribution is asymptotically pivotal.

4. Under the assumptions, aligning of the ranks is not necessary for the statistic Bn to be exactly pivotal
under H0. But, if the ranks are not aligned the power of the test typically suffers, see below.

5. It is apparent from the proof of Theorem 1 that Assumption 1 can be replaced by the weaker assumption
of exchangeability of fðui;XiÞ : i ¼ 1; . . . ; ng and the result of Theorem 1 still holds. Assumption 1 is required
for the asymptotic power results given below.

The significance level t rank test based on Bn rejects H0 if

Bn4ct, (2.9)

where ct is chosen so that the test has significance level t 2 ð0; 1Þ.4 When the observed test statistic takes the
value bob, the exact p-value, p, of the test is defined by PðBn4bobÞ ¼ p.

The exact critical value, ct, and p-value, p, depend on the IVs, fZi : ipng, and, hence, need to be generated
on a case by case basis. This can be done easily and quickly by simulation. One simulates n iid uniform ð0; 1Þ
random variables, say furi : i ¼ 1; . . . ; ng, and calculates

Bnr ¼ nS0
nrWnSnr; where Snr ¼ n�1

Xn
i¼1

ðZi � ZnÞjðRri=ðnþ 1ÞÞ (2.10)
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values of t. In practice, this is not a serious problem because the discrete distribution of Bn is very nearly continuous for values of n that

typically arise in practice. The probability of any given value of Bn is 1=n!. One could randomize to obtain an exact test, but this would

have little effect unless n is very small.
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and Rri is the rank of uri among fur1; . . . ; urng.5 One repeats this for r ¼ 1; . . . ;RS. The simulated critical
value csim;t is the 1� t sample quantile of fBnr : r ¼ 1; . . . ;RSg. The simulated p-value is p ¼ R�1

S

PRS

r¼11
ðBnr4bobÞ.

The matrix programming languages GAUSS and Matlab have very fast built-in procedures for finding the
ranks of a given vector. For example, the GAUSS procedure rankindx can compute a critical value using
40,000 simulation repetitions in a matter of seconds for sample sizes n up to 500 and numbers of IVs k up to 10
using a typical PC. The computation time increases with n roughly proportionally and much less than
proportionally in k. Hence, even for data sets with sample sizes in the thousands, computation of critical
values is fast and accurate.

We construct exactly distribution-free CIs (or confidence regions if ‘41) for b by inverting the test statistic
Bn. For clarity, we write the rank statistic Bn for testing H0 : b ¼ b0 as Bnðb0Þ. The CI is given by

CIn;1�t ¼ fb0 : Bnðb0Þpctg. (2.11)

Because the critical value ct does not depend on b0, one does not have to compute a new critical value for each
value of b0. To compute CIn;1�t, one just needs to compute Bnðb0Þ for a grid of values b0 and compute ct once.

Rank tests for testing H0 : b ¼ b0 also apply to the nonlinear model:

gðy1i; y2i; bÞ þ aþ X 0
iy ¼ ui, (2.12)

where gð�; �; �Þ is a known function. In this case, fRi : ipng are the ranks of fgðy1i; y2i;b0Þ þ X 0
i
byn : ipng and byn

is defined as in (2.4) but with y1i � y02ib0 replaced by gðy1i; y2i;b0Þ. Otherwise, Bn and its critical value or
p-value are the same as above. Theorem 1 holds with y1i � y02ib0 � X 0

i
byn replaced by gðy1i; y2i;b0Þ þ X 0

i
byn.

2.3. Asymptotic power of aligned rank IV tests

In this section, we determine the asymptotic power of the Bn rank test and compare it to that of the AR test.
We consider two asymptotic frameworks. One consists of 1=n1=2 local alternative parameter values coupled
with strong IVs, which is the standard asymptotic set-up. The other consists of fixed alternatives coupled with
weak IVs, which is the weak IV set-up of Staiger and Stock (1997).

The score function j is required to satisfy the following mild assumption.

Assumption 3. (a) j : ð0; 1Þ ! R is absolutely continuous and bounded with two derivatives that exist almost
everywhere and are bounded.

(b)
R 1
0 ½jðxÞ � j�2 dx40.

Assumption 3 holds for normal scores with
R 1
0 ½jðxÞ � j�2 dx ¼ 1. It holds for Wilcoxon scores withR 1

0 ½jðxÞ � j�2 dx ¼ 1
12
. Assumption 3(b) holds provided jðxÞ is not constant almost everywhere on ½0; 1Þ.

Next, we state the assumptions concerning the IVs fZi : iX1g.
Assumption 4. (a) n�1

Pn
i¼1ðZi � ZnÞðZi � ZnÞ0 ! SZ pd as n ! 1.

(b) max1pipnkZi � Znk2=n ! 0 as n ! 1.
(c)
P1

i¼1kZi � Znk1þd=i1þdo1 for some d40.

Assumption 4 holds with probability 1 if fZi : iX1g is a realization of an iid sequence with pd variance
matrix and 2þ dmoments finite for some d40, see Lemma 5 of Appendix A. Hence, Assumption 4 is not very
restrictive.

We assume that the covariates fXi : iX1g satisfy:
Assumption 5. (a) EkXik2þdo1 for some d40.

(b) SX ¼ EðXi � EXiÞðXi � EXiÞ0 is pd.
Next we state the assumptions concerning the alternative data generating process.
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Assumption 6. (a) y1i ¼ aþ y02ibn þ X 0
iyþ ui for iX1, where bn 2 R‘ is a constant for nX1.

(b) y2i ¼ mþ pnZi þ LXi þ vi for iX1, where pn is an ‘ � k matrix of constants for nX1, m is an ‘-vector of
constants, L is an ‘ � d matrix of constants, and vi is an ‘-vector of random variables.

(c) fui : iX1g are independent of fXi : iX1g, and Eu2io1.

The parameter pn indexes the strength of the IVs relation to the endogenous regressors. The difference
bn � b0 indexes the distance of the alternative from the null. These parameters differ in the weak and strong IV
cases, as specified below.

Let Iðf Þ denote Fisher’s information of an absolutely continuous density f. That is, Iðf Þ ¼ R ½f 0ðxÞ=
f ðxÞ�2f ðxÞdx, where f 0 denotes the derivative of f .

For weak IVs, we consider fixed alternatives and pn that is local to 0.

Assumption 7W. (a) bn ¼ b0 þ g for some g 2 R‘.
(b) pn ¼ C=n1=2 for some ‘ � k matrix of constants C.
(c) fðvi; uiÞ : iX1g are iid and independent of fXi : iX1g, and Ekvik2o1.
(d) v0igþ ui has an absolutely continuous strictly increasing df G and an absolutely continuous and bounded

density g that satisfies IðgÞo1.

For strong IVs, we consider local alternatives and a fixed value of pn.

Assumption 7S. (a) bn ¼ b0 þ g=n1=2 for some g 2 R‘.
(b) pn ¼ p for all n for some ‘ � k matrix of constants p.
(c) vi ¼ ei þ rui for iX1, where ei is a random ‘-vector and r 2 R‘ is a vector of constants.
(d) fei : iX1g are iid and independent of fui : iX1g, and 0oEkeik2þdo1 for some d40.
(e) ui has an absolutely continuous strictly increasing df F and an absolutely continuous and bounded

density f that satisfies Iðf Þo1.

Assumption 7W allows for arbitrary dependence between vi and ui. Assumption 7S allows for arbitrary
dependence between Xi and ei. Assumption 7S(c) and 7S(d) make explicit the form of the dependence between
the main equation error ui and the reduced form error vi. This facilitates the determination of the asymptotic
non-null properties of Bn. (These assumptions are not needed for the rank tests to have power.)

For a score function j and a density f, define

xðj; f Þ ¼
R 1
0
jðxÞjðx; f Þdx

� �2
R 1
0 ½jðxÞ � j�2 dx

; where jðx; f Þ ¼ � f 0ðF�1ðxÞÞ
f ðF�1ðxÞÞ (2.13)

for x 2 ð0; 1Þ. For normal and Wilcoxon scores,

xðjNS; f Þ ¼
Z

f 2ðxÞ
fðF�1ðF ðxÞÞÞ dx

� �2

and

xðjWS; f Þ ¼ 12

Z
f 2ðxÞdx

� �2

, (2.14)

where f and F denote the standard normal density and df, respectively, and F 0 ¼ f .
Let w2kðdÞ denote a noncentral chi-squared distribution with k degrees of freedom and noncentrality

parameter d.
The following theorem establishes the asymptotic distribution of Bn in the weak IV/fixed alternative and

strong IV/local alternative scenarios.

Theorem 2. (a) Under Assumptions 1–6 and 7W,

Bn!dw2kðdWÞ where dW ¼ g0CSZC
0gxðj; gÞ.

(b) Under Assumptions 1–6 and 7S,

Bn!dw2kðdSÞ where dS ¼ g0pSZp0gxðj; f Þ.
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Comments. 1. The results of Theorem 2 show that the statistic Bn, which is based on aligned ranks using the
estimator byn, has the same asymptotic distribution as when the true value y is used in place of byn.

2. The results of the Theorem continue to hold when the restricted LS estimator byn is replaced by any
estimator y�n that satisfies n1=2ðy�n � y� L0ðbn � b0ÞÞ ¼ Opð1Þ.6

3. If the statistic Bn is constructed without aligning the ranks, then its asymptotic distribution is given by
Theorem 2, but with g and f being the densities of X 0

iy0 þ v0igþ ui and X 0
iy0 þ ui, respectively. Typically this

increases the constants xðj; gÞ and xðj; f Þ because the addition of X 0
iy0 increases the dispersion of the random

variables. Note that xðj;s�1f ð�s�1ÞÞ ¼ s�2xðj; f Þ for all f , see Hájek and Sidák (1967, Lemma I.2.4e, p. 21).
For example, if Xi, vi, and ui are jointly normal and the addition of X 0

iy0 doubles the variance, then the

noncentrality parameter is reduced by a factor of 2, just as with the AR test. In sum, aligning the ranks
typically increases the power of rank tests.

For the AR statistic, ARn � k!dw2kðdARW Þ and ARn � k!dw2kðdARS Þ under weak and strong IV asymptotics,
respectively, where

dARW ¼ C0SZCg2=s2g and dARS ¼ p0SZpg2=s2f , (2.15)

and s2g and s2f denote the variances corresponding to the densities g and f , respectively, under the assumptions
above plus Eu2io1.

Hence, the noncentrality parameters of the rank IV tests can be compared to those of the AR test by
comparing xðj; gÞ to 1=s2g for weak IVs and xðj; f Þ to 1=s2f for strong IVs. Specifically, the asymptotic relative

efficiency (ARE) of the rank IV test to the AR test is given by

AREf ðBn;ARÞ ¼ xðj; gÞs2g for weak IVs and

AREf ðBn;ARÞ ¼ xðj; f Þs2f for strong IVs. ð2:16Þ
Comparisons of this type have been considered extensively in the literature because they are exactly the same
comparisons that arise when computing the ARE of a rank test compared to the usual t-test in a simple
location model with error density g or f. They are also the same as the comparisons that arise when comparing
the ARE of a rank estimator with the sample mean in the location model. Note that the ARE’s considered here
are all independent of the location and scale of g or f .

For normal scores, jNSðxÞ ¼ F�1ðxÞ, the ARE is

AREf ðNS;ARÞ ¼ s2ðf Þ
Z

f 2ðxÞ
fðF�1ðF ðxÞÞÞ dx

� �2

. (2.17)

A result due to Chernoff and Savage states that AREf ðNS;ARÞX1 for all symmetric distributions f (about
some point not necessarily 0), see Hettmansperger (1984, Theorem 2.9.2, p. 110). Hence, the asymptotic power
of the normal scores rank IV test is greater than or equal to that of the AR test for any symmetric distribution
for weak or strong IVs.

For Wilcoxon scores, jWSðxÞ ¼ x and a density f , the ARE of the rank IV test to the AR test is

AREf ðWS;ARÞ ¼ 12s2f

Z
f 2ðxÞdx

� �2

. (2.18)

For the normal distribution f, AREfðWS;ARÞ ¼ :955. For the double exponential distribution f de,

AREf de ðWS;ARÞ ¼ 1:50. For a contaminated normal distribution f eðxÞ ¼ ð1� eÞfðxÞ þ efðx=3Þ=3, AREf e

ðWS;ARÞ ¼ 1:196, 1.373, and 1.497 for e ¼ :05, .10, and .15, respectively, see Hettmansperger (1984,
pp. 71–72). A result due to Hodges and Lehmann states that AREf ðWS;ARÞX0:864 for all symmetric

distributions f (about some point not necessarily 0), see Hettmansperger (1984, Theorem 2.6.3, p. 72). Hence,
the noncentrality parameter of the Wilcoxon scores rank IV test is almost as large as that of the AR test for the
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6The term L0ðbn � b0Þ arises here because y1i � y02ib0 ¼ aþ y02iðbn � b0Þ þ X 0
iyþ ui ¼ aþ Z0

2ip
0
nðbn � b0Þ þX 0

iðyþL0ðbn � b0ÞÞ þ
v0iðbn � b0Þ þ ui by Assumption 6.
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normal distribution, is significantly larger than that of the AR test for heavier tailed distributions, and is not
much smaller for any symmetric distribution.

For any densities f 1 and f 2 symmetric about 0, AREf 1ðWS;NSÞpAREf 2ðWS;NSÞ whenever the tails of f 1
are lighter than the tails of f 2 in the sense that F�1

2 ðF 1ðxÞÞ is convex for xX0, see Hettmansperger (1984,
Theorem 2.9.5, p. 116). Hence, the comparative power of Wilcoxon scores to normal scores tests increases as
the tail thickness of the distribution increases. For any symmetric density f, AREf ðWS;NSÞ 2 ð0; 1:91Þ, see
Hettmansperger (1984, Theorem 2.9.3, p. 115).

3. IV Regression with categorical covariates

In this section, we consider a regression model with categorical covariates. In contrast to the model in
Section 2, the covariates and IVs may be related. The model is

y1i ¼ D0
iaþ y02ibþ ui (3.1)

for i ¼ 1; . . . ; n, where y1i is an observed scalar dependent variable, y2i is an observed ‘-vector of endogenous
variables, Di ¼ ðDi1; . . . ;DiJÞ0 is an observed J-vector of dummy variables, and a ¼ ða1; . . . ; aJÞ0 and b 2 R‘ are
unknown parameters. We also observe a k-vector of IVs Zi (that does not include elements of Di or a
constant). The dummy variable Dij equals 1 if observation i is in group j; otherwise, it equals 0. We assume
that

PJ
j¼1Dij ¼ 1 for all i ¼ 1; . . . ; n.

The basic assumptions of the model are:

Assumption C1. fui : iX1g are independent random variables with ui�Fj when Dij ¼ 1 for some df’s
fFj : j ¼ 1; . . . ; Jg.

Assumption C2. fDi : iX1g is a fixed sequence of J-vectors.

Assumption C1 allows for different error distributions across the J groups.
In addition, we assume that Assumption 2 holds, i.e., the IVs fZi : iX1g are fixed k-vectors. As above,

random IVs can be treated by conditioning on the IVs. In this case, the distribution of the IVs can differ across
covariate categories and, hence, the IVs and covariates can be related.

We want to test H0 : b ¼ b0 versus H1 : bab0 while leaving a unspecified. Or, more generally, we might be
interested in the alternative hypothesis where bmay differ across groups and is different from b0 in at least one
group. The distribution of a test statistic based on the ranks of y1i � y02ib0 in the entire sample depends on the
nuisance parameters ða1; . . . ; aJÞ, which is problematic. However, one can divide the sample into the J

homogeneous sub-samples and use the ranks within the sub-samples to achieve invariance with respect to the
nuisance parameters. This approach was used in the two sample location problem (without IVs) by van
Elteren (1960).

It is convenient to rewrite the model in (3.1) as follows. Let nj be the size of group j (i.e., nj ¼
Pn

i¼1DijÞ. As
defined,

PJ
j¼1nj ¼ n. Next, define y1;ij , y2;ij, and Zij to be the dependent, endogenous regressor, and

instrumental variables, respectively, that belong to group j for i ¼ 1; . . . ; nj, for j ¼ 1; . . . ; J. Then, the model in
(3.1) can be rewritten as

y1;ij ¼ aj þ y02;ijbþ uij. (3.2)

Let Rij denote the rank of y1;ij � y02;ijb0 in fy1;1j � y02;1jb0; . . . ; y1;nj j � y02;nj jb0g for j ¼ 1; . . . ; J.
We introduce the following test statistic:

BCn ¼ nS0
CnWCnSCn,

where

SCn ¼
XJ
j¼1

SCnj ; SCnj ¼ n�1
Xnj
i¼1

ðZij � ZnjÞjðRij=ðnj þ 1ÞÞ,
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Znj ¼ n�1
j

Xnj
i¼1

Zij ,

WCn ¼ n�1
XJ
j¼1

Xnj
i¼1

ðZij � ZnjÞðZij � ZnjÞ0
Z 1

0

½jðxÞ � j�2 dx
 !�1

. ð3:3Þ

The ranks fRij : i ¼ 1; . . . ; njg are the ranks of faj þ y02;ijðb� b0Þ þ uij : i ¼ 1; . . . ; njg (where b denotes the true
value). Since ranks are invariant under location shifts and we rank the errors within the homogenous location
groups, the ranks are not affected by the unknown nuisance parameters ða1; . . . ; aJ Þ. This holds under H0 and H1.

In consequence, if the null hypothesis is true, fRij : i ¼ 1; . . . ; njg equal the ranks of fuij : i ¼ 1; . . . ; njg for
each j. Hence, the null distributions of SCn1; . . . ;SCnJ , and SCn do not depend on ða1; . . . ; aJÞ, b0, or the
distribution of fy2;ij : ipnj ; j ¼ 1; . . . ; Jg. Furthermore, Assumptions C1 and C2 and randomization in the case
of ties in ranks, combined with the exchangeability argument given in Section 2, imply that the distributions of
SCn1; . . . ;SCnJ , and SCn do not depend on fF1; . . . ;FJg under H0. The null distributions of these statistics do
depend on the IVs and the group structure, but both of these are observed.

The following analogue of Theorem 1 holds.

Theorem 3. Suppose Assumptions C1, C2, and 2 hold. Then, under H0, the distribution of BCn, defined in (3.3),
does not depend on faj : j ¼ 1; . . . ; Jg, b0, fFj : j ¼ 1; . . . ; Jg, or the distribution of the endogenous variables

fy2;i : ipnj ; j ¼ 1; . . . ; Jg.
One rejects the null if BCn is sufficiently large. The desired exact critical value can be calculated by

simulation. First, one simulates n iid uniform (0,1) random variables, say fur;ij : i ¼ 1; . . . ; nj ; j ¼ 1; . . . ; Jg and
calculates

SCn;r ¼
XJ
j¼1

n�1
Xnj
i¼1

ðZij � ZnjÞjðRr;ij=ðnj þ 1ÞÞ, (3.4)

where Rr;ij is the rank of ur;ij among fur;1j ; . . . ; ur;nj jg for j ¼ 1; . . . ; J. Next, one computes BCn;r and repeats the
process for r ¼ 1; . . . ;RS. The simulated critical value for significance level t is the 1� t sample quantile of
fBCn;r : r ¼ 1; . . . ;RSg. Given an observed value, bob, of the test statistic, the p-value is p ¼ R�1

S

PRS

r¼11
ðBCn;r4bobÞ.

In Andrews and Marmer (2005), we show that the BCn statistic has a non-central chi-square asymptotic
distribution using weak IV asymptotics/fixed alternatives and strong IV asymptotics/local alternatives under
assumptions that are similar to those in Section 2.3. Under strong IV asymptotics, the ARE of a categorical
rank test to an analogous categorical AR test is the same as in Section 2.3 provided Fj does not depend on j.
Under weak IV asymptotics, the ARE is the same provided the densities fgj : jpJg, which are analogous to g

in Assumption 7W, do not depend on j. In Andrews and Marmer (2005), we consider non-random weights
assigned to the J statistics fSCnj : jpJg in the definition of SCn. We determine optimal weighting schemes in
terms of asymptotic power. Under certain conditions, the constant weights employed here are optimal.

As in (2.11), CIs can be constructed by inverting the test based on BCn.
The BCn test for H0 : b ¼ b0 generalizes to nonlinear models of the form gjðy1;ij ; y2;ij ;bÞ þ aj ¼ uij. For this

model, fRij : ipng are defined to be the ranks of fgjðy1i; y2i;b0Þ : ipng. Otherwise, the test statistic BCn and its
critical value are the same as above.

4. Monte Carlo results

4.1. Experimental design

In this section, we report simulated power comparisons of the BWS
n , BNS

n , and AR tests. We take the model
to be essentially as in Assumption 6 and 7S(c) with b being a scalar (‘ ¼ 1):

y1i ¼ aþ y2ibþ X 0
iyþ ui,
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y2i ¼ Z0
ipþ X 0

iLþ ð1� r2Þ1=2ei þ rui, ð4:1Þ
for i ¼ 1; . . . ; n, where Zi ¼ ðZi1; . . . ;ZikÞ0, Xi ¼ ðXi1; . . . ;Xid Þ0, and Zij ;Xis; ui; ei are iid with distribution F for
all j ¼ 1; . . . ; k, s ¼ 1; . . . ; d, and i ¼ 1; . . . ; n.

The test statistics considered are invariant with respect to a, y, L, and the location and scale of F . Hence,
without loss of generality we take a, y, and L to be 0 and we take F to have mean 0 (if its mean is well defined),
center of symmetry 0 (if it is symmetric), and variance 1 (if its variance is well defined).

The parameter vector p, which determines the strength of the IVs, is taken to be proportional to a k-vector
of ones:

p ¼ rIV
k1=2ð1� r2IVÞ1=2

ð1; . . . ; 1Þ0 for some rIV 2 ½�1; 1�, (4.2)

where, by construction, rIV is the correlation between the reduced form regression function, Z0
ip, and the

endogenous variable y2i (provided F has a finite variance). The parameter rIV can be related to a parameter l
which directly measures the strength of the IVs (and is closely related to the so-called concentration
parameter):

l ¼ nr2IV
1� r2IV

¼ npEZiZ
0
ip � p0Z0Zp, (4.3)

where the first equality defines l, the second equality holds provided Zi has a finite variance, and � means ‘‘is
approximately equal for large n.’’

As above, the hypotheses of interest are H0 : b ¼ b0 and H1 : bab0. The true parameter b is taken so that
the AR test with significance level .05 has power around .4 for the given choice of l, r, n, k, d, and F ¼ F.

We provide results for selected subsets of the cases for which n ¼ 50, 100, 200; k ¼ 1, 5, 10; d ¼ 0, 5; and F

is normal, tr with r degrees of freedom for r ¼ 1–10, difference of independent log-normals (DLN), uniform,
absolute value of a normal, logistic, double exponential (DE), and log-normal (LN). The t distributions
exhibit heavy tails for small degrees of freedom as do the DLN and LN distributions and to a lesser extent the
DE distribution. The uniform distribution exhibits thin tails. The absolute value of a normal and LN
distributions exhibit skewness.

4.2. Power comparisons

We compare the power of the .05 significance level rank tests BWS
n and BNS

n to the AR test for a variety of
cases. We report size-corrected power for the AR test when the errors are non-normal, where the size-
correcting critical values are obtained using 10,000 simulation repetitions. The power results are based on 5000
Monte Carlo simulations.

We first consider a Base Case in which l ¼ 9, r ¼ :75, b� b040, n ¼ 100, k ¼ 1, d ¼ 5, and F equals the
normal, t1, t2, t3, t10, or DLN distribution. This case exhibits moderately weak IVs, moderately strong
endogeneity, and exact identification. Then, we consider a number of variations of the Base Case to illustrate
the effect of changes in the distribution F , strength of IVs l, level of endogeneity r, sign of b� b0, sample size
n, and number of IVs k.

Table 1 reports the results for five cases. Andrews and Marmer (2005) report results for six additional cases.
The results of the Base Case show that for the normal distribution the power of the normal scores (NS) test is
within simulation error of equaling that of the AR test, whereas the power of the Wilcoxon scores (WS) test is
slightly lower. For thick-tailed non-normal distributions, on the other hand, the NS and WS tests are much
more powerful than the AR test. For thick-tailed distributions, the NS and WS tests have quite similar power,
although that of the WS test is somewhat higher, especially for the DLN distribution. For the t10 distribution,
which has moderate tails, the NS, WS, and AR tests have similar power.

Case 2 differs from the Base Case only in terms of the distribution F . Case 2 shows that for a t4 distribution
the rank tests have higher power than the AR test, but for a t6 distribution the three tests have roughly equal
power. For the uniform distribution, which has thin tails, the NS and AR tests have essentially equal power,
whereas that of the WS test is somewhat lower. For the absolute value of a normal distribution, which is
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highly skewed, the NS test is somewhat more powerful than the WS and AR tests. The results for the DE
distribution are quite similar to those for the t4 distribution. The rank tests have higher power than the AR
test. For the log-normal distribution, which is both skewed and thick-tailed, the rank tests outperform the AR
test and the WS test outperforms the NS test.

These results, combined with those of the Base Case, suggest that NS and WS tests have considerably higher
power than the AR test for thick-tailed distributions, but the tails have to be quite thick for this advantage to
appear. For non-thick-tailed distributions, the NS test has power that is at least as high as that of the AR test
and the WS test has power that is equal to or close to the power of the AR test.

Cases 3–11 provide power comparisons for variations of the Base Case. The general pattern exhibited in the
Base Case, as discussed above, is observed in all of these additional cases to a remarkable degree. (For brevity,
only the results of Cases 3–5 are reported in Table 1.) Hence, the general pattern is found to be robust to
negative deviations b� b0 (Case 3), strong IVs (Case 4), weak IVs (Case 5), high endogeneity (Case 6), no
endogeneity (Case 7), five IVs (Case 8), 10 IVs (Case 9), smaller sample size, n ¼ 50 (Case 10), and larger
sample size, n ¼ 200 (Case 11).

To conclude, the power simulations reported above show that the NS rank test, BNS
n , essentially dominates

the AR test in terms of finite sample power. It has much higher power for thick-tailed distributions and
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Table 1

Finite sample power of Wilcoxon scores BWS
n , normal scores BNS

n , and (size-corrected) Anderson–Rubin tests of significance level a ¼ 0:05

Casea l r b� b0 n k d F BWS
n BNS

n
AR

1. Base case 9 0.75 0.95 100 1 5 Norm 0.36 0.37 0.38

t1 0.81 0.79 0.45

t2 0.62 0.59 0.41

t3 0.50 0.48 0.39

t10 0.38 0.38 0.37

DLN 0.60 0.56 0.39

2. Other distributions 9 0.75 0.95 100 1 5 t4 0.45 0.44 0.39

t6 0.42 0.41 0.39

Unif 0.34 0.40 0.38

Abs Norm 0.40 0.43 0.39

Logistic 0.40 0.40 0.39

DE 0.45 0.43 0.39

Log Norm 0.70 0.64 0.39

3. Negative b� b0 9 0.75 �0.40 100 1 5 Norm 0.39 0.41 0.42

t1 0.82 0.79 0.45

t2 0.63 0.60 0.42

t3 0.50 0.48 0.39

t10 0.40 0.40 0.38

DLN 0.62 0.57 0.41

4. Strong IVs 20 0.75 0.37 100 1 5 Norm 0.37 0.38 0.39

t1 0.83 0.81 0.47

t2 0.66 0.62 0.43

t3 0.53 0.50 0.40

t10 0.40 0.39 0.37

DLN 0.64 0.60 0.41

5. Weaker IVs 4 0.75 4.3 100 1 5 Norm 0.37 0.39 0.40

t1 0.79 0.77 0.43

t2 0.61 0.58 0.41

t3 0.49 0.47 0.39

t10 0.38 0.38 0.37

DLN 0.57 0.53 0.39

al ¼ Strength of IVs, r ¼ correlation of errors, b� b0 ¼ deviation from null, n ¼ sample size, k ¼ number of IVs, d ¼ number of

covariates, and F ¼ error=IV=covariate distribution.
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essentially equal power (or in some cases slightly higher power) for non-thick-tailed distributions. The WS
rank test, BWS

n , has finite sample power quite similar to that of the NS test, but it is slightly more powerful for
thick-tailed distributions and often slightly less powerful for non-thick-tailed distributions. Hence, the WS test
does not dominate the AR test, but is close to doing so.
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Appendix A. Proofs

The asymptotic results of the paper are proved using the following Lemma. Part (a) of the Lemma is an
extension of Theorem 2.1 and Lemma 2.3 of Koul (1970) from scalar constants ci and di to vectors. As Koul
(1970, p. 1280) notes, his proof of these results goes through for this extension with virtually no changes. Part
(b) of the Lemma follows from part (a). Part (c) of the Lemma is a standard result giving the asymptotic
normality of a suitably normalized weighted average of rank scores based on iid random variables, e.g., see
Hájek and Sidák (1967, Theorem V.1.6a, p. 163) (extended from scalar constants ci to vectors using the
Cramér–Wold device). Condition (V.1.6.2) of Hájek and Sidák (1967, p. 163) holds under Assumption 3.

Lemma 4. Let CnðtÞ ¼ n�1
Pn

i¼1ðci � cnÞ jðriðtÞ=ðnþ 1ÞÞ, where (i) riðtÞ is the rank of Qi � d 0
it among fQj � d 0

j t :

1pjpng for a constant vector t 2 Rdd , (ii) fQi : iX1g is a sequence of iid random variables with absolutely

continuous strictly increasing df H and absolutely continuous and bounded density h that satisfies IðhÞo1, (iii)
fci : iX1g and fdi : iX1g are fixed sequences of dc-vectors and dd-vectors, respectively, that satisfy the conditions

limn!1max1pipnkci � cnk2=
Pn

i¼1kci � cnk2 ¼ 0 and limn!1n�1
Pn

i¼1kci � cnk2o1 and likewise with ci � cn

replaced by di � dn, where cn ¼ n�1
Pn

i¼1ci and dn ¼ n�1
Pn

i¼1di, and (iv) the score function j satisfies

Assumption 3. Then, (a) for all e40 and b40,

lim
n!1

P sup
ktkpb

n1=2jCnðtn�1=2Þ �Cnð0Þ � n�1=2 _Anð0Þtj4e

 !
¼ 0,

where

_Anð0Þ ¼ �n�1
Xn
i¼1

ðci � cnÞðdi � d̄nÞ0
Z 1

0

jðx; hÞjðxÞdx,

(b) for any sequence of random dd -vectors fbtn : nX1g for which n1=2btn ¼ Opð1Þ,
n1=2CnðbtnÞ ¼ n1=2Cnð0Þ þ _Anð0Þn1=2btn þ opð1Þ,

(c) provided Sc ¼ limn!1n�1
Pn

i¼1ðci � cnÞðci � cnÞ0 is pd,

n1=2Cnð0Þ!dNð0;Sc

Z 1

0

½jðxÞ � j�2 dxÞ.

Comments 1. The expression for _Anð0Þ on p. 1277 of Koul (1970) is correct, but the expression for _Anð0Þ given
on p. 1278 (which is of the form given above) contains a typo—a minus sign is missing. Also, the Proof of
Theorem 2.1 of Koul (1970) contains a typo that could be confusing to the reader. The term jðqnÞ that appears
at the end of the expression on the first two lines of the first equation on p. 1276 should be j0ðqnÞ in both
places.

2. We do not require j to satisfy the second condition of (i) on p. 1274 of Koul (1970) because this is a
normalization condition that implies that jð1=2Þ ¼ 0 which is not needed for his Theorem 2.1 or Lemma 2.3.
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It is needed for his n1=2Snð0Þ to have an asymptotic normal distribution. We do not require it for n1=2Cnð0Þ to
have an asymptotic normal distribution because we consider demeaned constant vectors ci � cn, which yield
n1=2Cnð0Þ invariant to additive constants in j, whereas Koul (1970) does not.

The following Lemma gives sufficient conditions for an iid sequence to satisfy Assumption 4(b) a.s.

Lemma 5. Suppose fxi : iX1g is an iid sequence of non-negative random variables with Ex1þd
i o1 for some d40.

Then, (a)
P1

i¼1x
1þd
i =i1þdo1 a.s. and (b) maxipnxi=n ! 0 a.s.

Proof of Lemma 5. Part (a) holds because

E
X1
i¼1

x1þd
i =i1þd ¼ Ex1þd

1

X1
i¼1

i�ð1þdÞo1

implies that
P1

i¼1 x
1þd
i =i1þdo1 a.s. Part (b) holds because the result of part (a) and Kronecker’s Lemma (e.g.,

see Chow and Teicher (1978, p. 111)) imply that n�1�dPn
i¼1x

1þd
i ! 0 a.s. Hence, n�1�dmaxipn x

1þd
i pn�1�dPn

i¼1x
1þd
i ! 0 a.s. In turn, this gives n�1maxipnxi ! 0 a.s. &

Proof of Theorem 2. We prove part (a) first. It suffices to show that

lim
n!1

P n1=2Sn þ SZC
0g
Z 1

0

jðx; gÞjðxÞdxpz

� �
¼ PðG�pzÞ, (5.1)

for all z 2 R, where G� �Nð0;SZ

R 1
0 ½jðxÞ � j�2 dxÞ. We show that (5.1) holds conditional on an fXi : iX1g

sequence that satisfies certain properties, and that fXi : iX1g sequences satisfy these properties with
probability 1. Because conditional probabilities are bounded by 0 and 1, this implies that (5.1) also holds
unconditionally by the bounded convergence theorem.

We condition on a sequence fXi : iX1g for which

lim
n!1

max
1pipn

kXi � Xnk2
Xn
i¼1

kXi � Xnk2 ¼ 0

,
, (5.2)

lim
n!1

n�1
Xn
i¼1

ðXi � XnÞðXi � XnÞ0 ¼ SX ; and (5.3)

lim
n!1

n�1
Xn
i¼1

ðZi � ZnÞðXi � XnÞ0 ¼ 0. (5.4)

Such sequences occur with probability 1 (a.s.). Conditions (5.2) and (5.3) hold a.s. under Assumptions 1 and 5
by Lemma 5(b) and the Kolmogorov strong LLN. Condition (5.4) holds a.s. under Assumptions 1, 4(c), and
5(a) by a strong LLN due to Loève, see Chow and Teicher (1978, Theorem 5.2.1, p. 121).

By Assumptions 6(a) and (b) and 7W(a) and (b), we have

y1i � y02ib0 � X 0
i
byn

¼ aþ y02ig� X 0
iðbyn � yÞ þ ui

¼ aþ m0gþ Z0
iC

0g=n1=2 � X 0
iðbyn � y� L0gÞ þ v0igþ ui, ð5:5Þ

using y2i ¼ mþ CZi=n1=2 þ LXi þ vi. The constant aþ m0g does not affect the ranks of the right-hand side
(rhs) expression in (5.5) and can be ignored.

We apply Lemma 4 withCnðbtnÞ ¼ Sn, Qi ¼ v0igþ ui, ci ¼ Zi, di ¼ ðZ0
i;X

0
iÞ0,btn ¼ ð�g0C=n1=2; ðbyn � y� L0gÞ0Þ0,

and h ¼ g. The assumptions of Lemma 4 on ci are satisfied by Assumption 4. The required conditions for di are
satisfied by Assumptions 2 and 4, (5.2), and (5.3). The assumptions of Lemma 4 for Qi are satisfied by
Assumptions 1, 6(c), and 7W(c) and (d).
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Next, we show that n1=2btn ¼ Opð1Þ. By the definition of byn, we have

byn ¼ n�1
Xn
i¼1

ðXi � XnÞðXi � XnÞ0
 !�1

� n�1
Xn
i¼1

ðXi � XnÞðaþ y02igþ X 0
iyþ uiÞ

¼ yþ L0gþ n�1
Xn
i¼1

ðXi � XnÞðXi � XnÞ0
 !�1

� n�1
Xn
i¼1

ðXi � XnÞðZ0
iC

0g=n1=2 þ v0igþ uiÞ, ð5:6Þ

using y2i ¼ CZi=n1=2 þ LXi þ vi. Hence, we obtain

n�1
Xn
i¼1

ðXi � XnÞðXi � XnÞ0
 !

n1=2ðbyn � y� L0gÞ

¼ n�1
Xn
i¼1

ðXi � XnÞZ0
iC

0gþ n�1=2
Xn
i¼1

ðXi � XnÞðv0igþ uiÞ. ð5:7Þ

The first multiplicand on the left-hand side of (5.7) equals SX þ oð1Þ, where SX40 by (5.3). The first term on
the rhs of (5.7) is oð1Þ by (5.3) and (5.4). Each element of the second term on the rhs of (5.7) is asymptotically
normal by the Lindeberg central limit theorem using Assumptions 1, 5(b), 6(c), and 7W(c), (5.2), and (5.3). In
particular, the Lindeberg condition is satisfied element by element, because (i) without loss of generality we

can suppose Xi is a scalar, (ii) by (5.3), it suffices to show that for all e40 ln ¼ n�1
Pn

i¼1ðXi�
XnÞ2Ex2i 1ððXi � XnÞ2x2i4neÞ ! 0, where xi ¼ v0igþ ui, and (iii) using ðXi � XnÞ2pmaxjpnðXj � XnÞ2 in the

indicator function gives lnpðn�1
Pn

j¼1ðXj � XnÞ2ÞEx2i 1ðmaxjpnðXj � XnÞ2x2i 4neÞ ! 0 by (5.2), (5.3),

Ex2i o1, and the dominated convergence theorem. We conclude that n1=2ðbyn � y� L0gÞ ¼ Opð1Þ, n1=2btn ¼
Opð1Þ, and the conditions of Lemma 4 hold.

Hence, by Lemma 4(b), n1=2Sn ¼ n1=2Cnð0Þ þ _Anð0Þn1=2btn þ opð1Þ and by Lemma 4(c), n1=2Cnð0Þ!dG
�.

Next, using the definitions of ci, di, and btn, we have _Anð0Þn1=2btn= R 10 jðx; gÞjðxÞdx equals

n�1
Xn
i¼1

ðZi � ZnÞðZi � ZnÞ0C0g

� n�1
Xn
i¼1

ðZi � ZnÞðXi � XnÞ0n1=2ðbyn � y� L0gÞ

¼ SZC
0gþ opð1Þ, ð5:8Þ

where the equality uses Assumption 4, (5.4), and n1=2ðbyn � y� L0gÞ ¼ Opð1Þ. These results combine to

give (5.1) conditional on an fXi : iX1g sequence that satisfies (5.2)–(5.4) and the proof of part (a) is complete.
We now prove part (b). We use the same conditioning argument as in the proof of part (a). We condition on

sequences fðXi; eiÞ : iX1g for which (5.2)–(5.4) hold and the following conditions also hold:

lim
n!1

max
1pipn

kei � enk2
�Xn

i¼1

kei � enk2 ¼ 0, (5.9)

lim
n!1

n�1
Xn
i¼1

kei � enk2o1; and (5.10)
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lim
n!1

n�1
Xn
i¼1

ðZi � ZnÞðei � enÞ0 ¼ 0. (5.11)

Conditions (5.9) and (5.10) hold a.s. by Assumption 7S(d), Lemma 5(b), and Kolmogorov’s strong LLN.
Condition (5.11) is satisfied a.s. by Assumptions 4(c) and 7S(d) and the strong LLN in Chow and Teicher
(1978, Theorem 5.2.1, p. 121).

By Assumptions 6(a) and (b) and 7S(a)–(c), we have

y1i � y02ib0 � X 0
i
byn

¼ aþ m0gþ Z0
ip

0g=n1=2 � X 0
iðbyn � y� L0g=n1=2Þ þ e0ig=n

1=2

þ ð1þ r0g=n1=2Þui ð5:12Þ

using y2i ¼ mþ pZi þ LXi þ ei þ rui.
Let zn ¼ ð1þ r0g=n1=2Þ�1. Since zn40 for n sufficiently large, fRi : ipng are equal to the ranks of the iid

random variables fui : ipng plus the terms

fznZ0
ip

0g=n1=2 � znX
0
iðbyn � y� L0g=n1=2Þ þ zne

0
ig=n

1=2 : ipng. (5.13)

We apply Lemma 4 with CnðbtnÞ ¼ Sn, Qi ¼ ui, ci ¼ Zi, di ¼ ðZ0
i;X

0
i; e

0
iÞ0, btn ¼ ð�zng0p=n1=2; znðbyn � y�

L0g=n1=2Þ0;�zng0=n1=2Þ0, and h ¼ f . The assumptions of Lemma 4 on ci are satisfied by Assumptions 2 and 4.
The required conditions for di are satisfied by Assumptions 2 and 4, (5.2), (5.3), (5.9), and (5.10). The
assumptions of Lemma 4 for Qi are satisfied by Assumptions 1 and 7S(e).

Next, we show that n1=2btn ¼ Opð1Þ. It suffices to show that n1=2ðbyn � yÞ ¼ Opð1Þ because zn ! 1. We have

n�1
Xn
i¼1

ðXi � XnÞðXi � XnÞ0
 !

n1=2ðbyn � yÞ

¼ n�1
Xn
i¼1

ðXi � XnÞZ0
ip

0gþ n�1
Xn
i¼1

ðXi � XnÞX 0
iL

0g

þ n�1
Xn
i¼1

ðXi � XnÞe0igþ z�1
n n�1=2

Xn
i¼1

ðXi � XnÞ ui. ð5:14Þ

The first multiplicand on the left-hand side of (5.14) equals SX þ oð1Þ, where SX40. The first term on the rhs
is oð1Þ by (5.4). The second term on the rhs equals ðSX þ oð1ÞÞL0g ¼ Oð1Þ. The third term on the rhs has
Euclidean norm bounded by

kgk n�1
Xn
i¼1

kXi � Xnk2
 !1=2

n�1
Xn
i¼1

kei � enk2
 !1=2

¼ Oð1Þ (5.15)

by the Cauchy–Schwarz inequality, (5.3), and (5.10). Finally, the fourth term on the rhs is asymptotically normal
and, hence, Opð1Þ, by the Lindeberg CLT using Assumptions 1, 5(b), and 6(c) and (5.2) and (5.3). (The Lindeberg

condition is verified by the same argument as above.) Hence, n1=2ðbyn � yÞ ¼ Opð1Þ and Lemma 4(b) and (c) apply.

Next, using the definitions of ci, di, and btn, _Anð0Þn1=2btn= R 10 jðx; f ÞjðxÞdx equals

znn
�1
Xn
i¼1

ðZi � ZnÞðZi � ZnÞ0p0g

� znn
�1
Xn
i¼1

ðZi � ZnÞðXi � XnÞ0n1=2ðbyn � y� L0g=n1=2Þ
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þ znn
�1
Xn
i¼1

ðZi � ZnÞ e0ig

¼ SZp0gþ opð1Þ, ð5:16Þ
where the equality holds by Assumption 4, (5.4), n1=2ðbyn � yÞ ¼ Opð1Þ, (5.11), and zn ! 1.

Hence, by Lemma 4(b) and (c) and (5.16), we have

n1=2Sn ¼ SZp0g
Z 1

0

jðx; f ÞjðxÞdxþ n1=2Cnð0Þ þ opð1Þ

!dSZp0g
Z 1

0

jðx; f ÞjðxÞdxþ G� ð5:17Þ

conditional on a sequence fðXi; eiÞ : iX1g that satisfies (5.2)–(5.4) and (5.9)–(5.11), which completes the proof
of part (b). &
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