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This paper considers inference for parameters defined by moment inequalities and
equalities. The parameters need not be identified. For a specified class of test statis-
tics, this paper establishes the uniform asymptotic validity of subsampling, m out
of n bootstrap, and “plug-in asymptotic” tests and confidence intervals for such
parameters. Establishing uniform asymptotic validity is crucial in moment inequal-
ity problems because the pointwise asymptotic distributions of the test statistics of
interest have discontinuities as functions of the true distribution that generates the
observations.

The size results are quite general because they hold without specifying the partic-
ular form of the moment conditions—only 2 + δ moments finite are required. The
results allow for independent and identically distributed (i.i.d.) and dependent ob-
servations and for preliminary consistent estimation of identified parameters.

1. INTRODUCTION

In this paper, we consider a confidence set (CS) for a true parameter θ0 (∈ �⊂ Rd)
whose value is restricted by moment inequalities and equalities. The true param-
eter need not be identified. There are now numerous examples in the literature
that fit into this framework. One way that moment inequalities arise in economic
models is from the necessary conditions for Nash equilibria; see, e.g., Ciliberto
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and Tamer (2003), Andrews, Berry, and Jia (2004), Pakes, Porter, Ho, and Ishii
(2004), and Bajari, Benkard, and Levin (2007). Moment inequalities also can
arise from sufficient conditions for Nash equilibria; see, e.g., Ciliberto and Tamer
(2003). Another way they arise is from data censoring, e.g., when a continuous
variable is only observed to lie in an interval; see Manski and Tamer (2002). Moon
and Schorfheide (2004) provide a macroeconomic example in which a moment
inequality appears.

We consider a CS that is obtained by inverting a test that is based on a general-
ized method of moments–type (GMM-type) criterion function. The method is of
Anderson–Rubin type and was first considered in the moment inequality context
by Chernozhukov, Hong, and Tamer (2007). Chernozhukov et al. (2007) obtain
critical values via subsampling. The present paper shows that for a broad class
of test statistics subsampling CSs for the true parameter are uniformly asymptoti-
cally valid. The results hold for any specification of the moment functions (subject
to 2 + δ moments being finite). The paper also shows that subsampling CSs are
not asymptotically conservative. Conditions on the form of the test statistic are
given such that uniform validity holds. For example, the results hold for statis-
tics given by the sum of squared negative parts of the normalized sample moment
conditions, Gaussian quasi–likelihood ratio (QLR) statistics (also referred to as
modified minimum distance statistics), generalized empirical likelihood (GEL)
statistics, and a number of other statistics considered in the literature.1 The results
of this paper are the first results available in the literature that establish uniform
asymptotic validity of a method of inference for a general class of partially iden-
tified models. (A discussion of other results and methods in the literature appears
later in this section.)

The results of this paper apply to CSs for the true parameter, as in Imbens and
Manski (2004), rather than for the identified set (i.e., the set of points that are
consistent with the population moment inequalities), as in Chernozhukov et al.
(2007). The reason for this focus is that policy questions based on a structural
model in which parameters are restricted by moment inequalities depend on the
true parameter, rather than on the identified set. A CS for the identified set typi-
cally leads to conservative inference when interest is in the true parameter.

We say that a CS has asymptotically valid size if the limit as n → ∞ of the
finite-sample size of the CS is the nominal size. The definition of the finite-sample
(or exact) size of a CS is the minimum coverage probability over the parameter
space; see (3.5) later in this paper. Hence, the term size necessarily requires uni-
formity (and the alternative term uniformly asymptotically valid size is redundant).
We stress that a CS has asymptotically valid size only if there is uniformity in the
asymptotics.2 In regular models uniformity is often ignored (rightfully) because
it holds under reasonable conditions and hence verification is just a technical ex-
ercise. This is not the case in the moment inequality model. The reason is that
test statistics in this model have pointwise asymptotic distributions that are dis-
continuous in the true distribution that generates the data—a moment inequality
enters the pointwise asymptotic distribution if and only if it holds as an equality.
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But, this sharp discontinuity is not a feature of the finite-sample distribution.
Discontinuities of this type are responsible for the asymptotic size problems that
arise with weak instruments, near integrated processes, post–model selection in-
ference, and parameters that are near a boundary. In such cases, (standard) boot-
strap methods typically are not asymptotically valid in a pointwise or uniform
sense. Furthermore, Andrews and Guggenberger (2005, 2009a, 2009b, 2010)
Mikusheva (2007), and Guggenberger (2008, suppl.) show that even subsampling
and m out of n bootstrap methods often fail to deliver correct asymptotic size.
The results of this paper show that such problems do not arise in the moment in-
equality example provided subsampling is applied to an appropriate test statistic
(and suitable moments exist). This is not true for all statistics. For example, sub-
sampling the endpoints of the estimated set in the moment inequality model is not
uniformly asymptotically valid.

The standard method in the literature for obtaining critical values for tests for
multivariate one-sided null hypotheses is to use the least favorable asymptotic null
distribution evaluated at a consistent estimator of the asymptotic variance matrix.3

We refer to such tests as plug-in asymptotic (PA) tests. We show that a CS based
on a PA test has asymptotically valid size under similar conditions to those for
subsampling. The PA critical values are at least as large as the subsampling crit-
ical values asymptotically, and in some cases strictly larger, which implies that
subsampling CSs can be smaller than PA CSs. The PA CS is not asymptotically
conservative provided there are no restrictions on the moment inequalities such
that satisfaction of one inequality implies violation of another. But, such restric-
tions do arise in some examples; see, e.g., Rosen (2008). (In such cases, one could
adjust the definition of the PA critical values to take account of the restrictions to
obtain a CS that is not conservative.)

Model specification tests are easily constructed based on subsampling or PA
CSs. One rejects correct model specification if the CS is empty. Asymptotic va-
lidity of the size of such a test follows immediately from the properties of the CS.
But, these tests may be asymptotically conservative. See Guggenberger, Hahn,
and Kim (2008) for a different test of model specification based on moment
inequalities.

Under stated high-level conditions, our results also apply to the case where
preliminary consistent estimators of identified parameters are plugged into the
sample moment functions. This can be quite useful to reduce the dimension of the
parameter under test. For brevity we do not verify the high-level conditions. See
Soares (2005) for more primitive conditions.

The asymptotic results given in this paper for subsampling tests with subsample
size b also apply to m out of n bootstrap tests with m = b and independent and
identically distributed (i.i.d.) observations provided b2/n → 0.4 This is because
subsampling based on subsamples of size b can be viewed as bootstrapping without
replacement, which is not too different from bootstrapping with replacement when
b2/n is small.5 The subsampling results apply to both i.i.d. and time series obser-
vations, whereas the m out of n bootstrap results apply only to i.i.d. observations.
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We now discuss the related literature. The closest papers are those of Romano
and Shaikh (2005, 2008). The present paper and Romano and Shaikh (2008)
provide uniformity results for subsampling CSs for the true parameter, whereas
Romano and Shaikh (2005) does likewise for CSs for the identified set. Hence,
we focus on a comparison of the present paper with Romano and Shaikh (2008).

First, in terms of priority, Romano and Shaikh (2008) established uniformity re-
sults for subsampling in two simple examples, a one-sided mean and a two-sided
mean, before the moment inequality results of the present paper were established.
Next chronologically, the subsampling uniformity results of this paper were ob-
tained. These results apply to any moment condition model, allow for arbitrary
moment functions, and apply to general test statistics. Subsequent to the results
of the present paper, Romano and Shaikh (2008) established uniformity results
for general models and moment functions for a particular nonscale equivariant
test statistic.

Next, the present paper covers the following items that are not covered in
Romano and Shaikh (2008); (i) the results apply to a general class of scale equiv-
ariant test statistics including the QLR statistic, generalized empirical likelihood
statistics, and statistics that may depend on a preliminary estimator of an identi-
fied parameter; (ii) the results apply to models with both moment inequalities and
equalities;6 (iii) the results apply to time series observations; (iv) explicit expres-
sions are given for the probability limit of the subsampling critical value and the
degree of asymptotic nonsimilarity of the subsampling test, and (v) the approach
is conducive to the establishment of asymptotic local power results; as has been
done in Andrews and Soares (2007). With regard to point (i), Romano and Shaikh
(2008) consider a single test statistic that is not scale equivariant, which is highly
undesirable in our view. (It implies that an arbitrary rescaling of one moment con-
dition and not another yields a different test statistic from the original one.) The
results of Romano and Shaikh (2008) do not cover the QLR statistic, which is
the most widely used test statistic in the statistics literature on multidimensional
one-sided tests.

Besides Romano and Shaikh (2005, 2008) the only other results in the liter-
ature that establish uniform validity of a method for inference with moment in-
equalities are those of Imbens and Manski (2004), Moon and Schorfheide (2004),
Woutersen (2006), and Stoye (2007), and those of Soares (2005), Andrews and
Soares (2007), and Fan and Park (2007) using moment selection methods. The
results of Imbens and Manski (2004) and Woutersen (2006) are quite restrictive
because their Assumption 1 requires (i) superefficiency of the implicit estimator
of the length of the identified interval, which holds only in quite special cases
(see Stoye, 2007), and (ii) joint asymptotic normality of lower and upper bound
estimators (θ̂�, θ̂u) of the identified interval. Joint estimation of the identified set
typically does not yield estimators (θ̂�, θ̂u) that satisfy asymptotic normality (even
univariate asymptotic normality); see Andrews and Han (2009, Sects. 5.1 and
6.1) for simple examples. In consequence, their results do not apply to param-
eters defined by moment inequalities in general. The results of Stoye (2007)
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that circumvent the superefficiency condition also are restrictive because they
assume asymptotic normality of (θ̂�, θ̂u). Moon and Schorfheide (2004) consider
a model in which moment equalities and a moment inequality appear and the
parameter of interest is assumed to be point identified by the moment equalities.
The Soares (2005), Andrews and Soares (2007), and Fan and Park (2007) unifor-
mity results are obtained using the approach in this paper. Research on the power
of tests in the moment inequality model is under way; see Andrews and Soares
(2007).

Other papers in the literature that consider inference with moment inequal-
ities include Chernozhukov et al. (2007), Andrews et al. (2004), Pakes et al.
(2004), Rosen (2008), Bontemps, Magnac, and Maurin (2007), Bugni (2007),
Canay (2007), Beresteanu and Molinari (2008), and Galichon and Henry (2008).
To date, none of these methods has been shown to be uniformly asymptotically
valid. Some of these methods have the disadvantage of being asymptotically con-
servative (which leads to a larger CS than desired) either all of the time or some of
the time. This is true of the methods in Andrews et al. (2004), Pakes et al. (2004),
Rosen (2008), and Galichon and Henry (2008). The computational requirements
for the different methods vary. For some methods computational simplicity is a
comparative advantage.

The results in this paper use the general results given in Andrews and
Guggenberger (2010) and generalize these results in two directions that are
useful in the moment inequality model and in other models. First, we relax the
(partial) product space assumption on the parameter space that is employed in
Andrews and Guggenberger (2010) (see Assumption A in that paper). By
doing so, the results applied to the moment inequality model allow for cases in
which different moment conditions are related, e.g., one moment inequality can-
not hold as an equality if some other one does. Restrictions of this type arise
frequently in models with data censoring; see, e.g., Rosen (2008). Second, the
results provide a larger lower bound on the asymptotic size (defined to be the
limit of finite-sample size) of a CS than the results in Andrews and Guggenberger
(2010). In many models, both bounds reduce to the same value and equal the up-
per bound. However, in the moment inequality model, the lower bound given in
Andrews and Guggenberger (2010) is not sharp, whereas the lower bound given
here is. Finally, the results of Andrews and Guggenberger (2010) are for tests,
whereas the results given here are for CSs. This requires uniformity of the results
with respect to the parameter of interest and also with respect to nuisance param-
eters. For tests the former is not required because the parameter of interest is fixed
by the null hypothesis.

The general approach to uniformity given here and the way of setting up the
moment inequality model to establish uniform results are useful for analyzing the
asymptotic size of CSs that employ critical values that are not based on subsam-
pling.

The remainder of the paper is organized as follows. Section 2 discusses the
issue of uniformity. Section 3 describes the moment inequality/equality model.
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Section 4 states the assumptions. Sections 5 and 6 introduce subsampling CSs and
PA CSs, respectively, and show that these CSs are uniformly asymptotically valid
for a specified class of test statistics. Section 7 introduces model specification
tests. Section 8 discusses extensions to GEL ratio test statistics and test statistics
based on preliminary consistent estimators of identified parameters. Section 9
provides general results for the asymptotic size of subsampling CSs. An Appendix
contains proofs of the results.

For notational simplicity, throughout the paper we write partitioned column
vectors as h = (h1,h2), rather than h = (h′

1,h′
2)

′. Let R+ = {x ∈ R : x ≥ 0},
R+,∞ = R+ ∪{+∞}, R[+∞] = R ∪{+∞}, K p = K × ·· ·× K (with p copies)
for any set K , ∞p = (+∞, . . . ,+∞)′ (with p copies). Let 0k denote a k-vector
of zeros. All limits are as n → ∞. Let “pd” abbreviate “positive definite.”

2. UNIFORMITY

We are interested in a CS whose exact (i.e., finite-sample) size is close to its nom-
inal level. By definition, the exact size of the CS is the supremum of its coverage
probability over distributions that may generate the data. We use asymptotics to
provide an approximation to the exact size. An asymptotic approximation is not
necessarily accurate for the exact size if the asymptotic results are not uniform
over the distributions that may generate the data. Thus, pointwise asymptotic re-
sults are insufficient to asymptotically validate the size of a CS unless they hold
uniformly.

When a statistic has a discontinuity in its asymptotic distribution (as a function
of a parameter or, more generally, as a function of the distribution generating the
data), but not in its finite-sample distribution, pointwise asymptotics do not hold
uniformly. The manifestation of this is that asymptotic distributions arise under
drifting sequences of parameters that do not arise under pointwise asymptotics.
Furthermore, data-dependent critical values may have probability limits under
drifting sequences that are different from their probability limits under pointwise
asymptotics. This is exactly what happens for tests and CSs in the moment in-
equality model. Given that pointwise asymptotics do not consider the full range
of asymptotic behavior of the CS (which reflects the full range of its finite-sample
behavior), asymptotic validity of the size of the CS cannot be established by its
behavior under pointwise asymptotics. To determine the limit of the exact size
and establish uniform validity, one needs to consider drifting sequences of pa-
rameters.

How serious are uniformity issues when a test statistic has a pointwise asymp-
totic distribution that is discontinuous in the distribution that generates the data?
The answer is that they can be very serious. For example, in the weak instru-
ment context, Dufour (1997) has shown that the exact size of the usual nominal
5% test based on the two-stage least squares (2SLS) estimator equals 100%. In a
first-order autoregressive (AR(1)) model, the nominal 95% two-sided confidence
interval for the autoregressive coefficient ρ ∈ (−1,1) based on the usual normal
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critical value has asymptotic size equal to 70% when an intercept is included in
the model and 39% if an intercept and a time trend are included; see Andrews and
Guggenberger (2009a).7 In post–model selection inference, Kabaila (1995) shows
that a standard nominal 95% confidence interval based on a post–model selection
estimator utilizing a consistent model selection procedure has asymptotic size
0%; see Leeb and Pötscher (2005) for related results. All of these problems with
standard inference are due to a lack of uniformity.

In problems in which a lack of uniformity arises the (standard) bootstrap
typically is even pointwise inconsistent. For example, for the parameter near a
boundary case, see Andrews (2000). In the literature on the bootstrap, the usual
prescription when the bootstrap is pointwise inconsistent is to use the m out of n
bootstrap or subsampling; see Andrews and Guggenberger (2010) for references.
Politis and Romano (1994) show that subsampling is pointwise consistent under
very weak conditions, also see Politis, Romano, and Wolf (1999). Similarly, the
m out of n bootstrap is pointwise consistent under weak conditions. These results,
however, are pointwise asymptotic results. They are not uniform results.

Andrews and Guggenberger (2005, 2009a, 2009b, 2010) show that subsam-
pling and the m out of n bootstrap are not necessarily asymptotically valid in
a uniform sense. Also see Mikusheva (2007). Furthermore, the problem can be
serious. For example, in the weak instrumental variables (IV) case, a nominal
5% equal-tailed two-sided subsampling test based on the 2SLS estimator has
“adjusted” asymptotic size of 30% and exact size of 29% when n = 120, the
subsample size b is 12, and 5 IVs are used; see Andrews and Guggenberger
(2005).8 Furthermore, the exact size gets worse as n → ∞ and the (unadjusted)
asymptotic size is 82%. Similarly, in the AR(1) model, a nominal 95% equal-
tailed two-sided subsampling confidence interval has adjusted asymptotic size of
86% and exact size of 87% under normality of the errors when n = 130, the sub-
sample size is b = 12, and an intercept is included in the model; see Andrews and
Guggenberger (2009a). Again, the exact size gets worse as n → ∞ and the (unad-
justed) asymptotic size is 60%. Subsampling in the post–consistent model selec-
tion example does not solve the uniformity problem. Andrews and Guggenberger
(2009b) shows that the asymptotic size of a nominal 95% confidence interval in a
simple location model is actually 0%.

In the moment inequality model, uniformity issues arise for some procedures
when the identified set is sufficiently small that there is a nonnegligible prob-
ability of obtaining an estimated set that consists of a singleton. This scenario
is of considerable empirical relevance. For example, this is the situation that
arises in Andrews et al. (2004) and in both examples in Pakes et al. (2004).
Note that the identified set does not have to be a singleton for the problem to
arise, it just has to be sufficiently small relative to the sample size. Problems of
this sort arise with the bootstrap applied to the interval endpoints (see Andrews,
2005), with subsampling applied to the interval endpoints, and with the procedure
in Pakes et al. (2004) based on the pointwise asymptotic distribution of interval
endpoints.9
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3. CONFIDENCE SETS BASED ON MOMENT INEQUALITIES

The moment inequality/equality model is defined as follows. We suppose there
exists a true value θ0 (∈ � ⊂ Rd) that satisfies the moment conditions

EF0 mj (Wi,θ0) ≥ 0 for j = 1, . . . , p and

EF0 mj (Wi,θ0) = 0 for j = p +1, . . . , p + v, (3.1)

where {mj (·,θ) : j = 1, . . . , p + v} are (known) real-valued moment functions
and {Wi : i ≥ 1} are observed i.i.d. or stationary random vectors with joint dis-
tribution F0. The true value θ0 is not necessarily identified. Thus, knowledge of
EF0 mj (Wi,θ) for all θ ∈ � does not necessarily imply knowledge of θ0. Further-
more, even knowledge of F0 itself does not necessarily imply knowledge of the
true value θ0. It may require more information than is available in the observed
sample {Wi : i ≤ n} to identify the true parameter θ0. We are interested in CSs for
the true value θ0.

Let

m(Wi ,θ) = (m1(Wi ,θ), . . . ,mk(Wi ,θ))′, (3.2)

where k = p + v. Let (θ, F) denote generic values of the parameters. For i.i.d.
observations, the parameter space F for (θ, F) is the set of all (θ, F) that satisfy

(i) θ ∈ �,

(ii) EF mj (Wi ,θ) ≥ 0 for j = 1, . . . , p,

(iii) EF mj (Wi ,θ) = 0 for j = p +1, . . . ,k,

(iv) {Wi : i ≥ 1} are i.i.d. under F,

(v) σ 2
F, j (θ) = Var F (mj (Wi ,θ)) ∈ (0,∞) for j = 1, . . . ,k,

(vi) CorrF (m(Wi ,θ)) ∈ �, and

(vii) EF |mj (Wi ,θ)/σF, j (θ)|2+δ ≤ M for j = 1, . . . ,k, (3.3)

where � is a specified set of k × k correlation matrices (see the discussion that
follows) and M < ∞ and δ > 0 are fixed constants.10 For expositional conve-
nience, we specify F for dependent observations in the Appendix; see Section
A1.1.

As is standard, we consider a CS obtained by inverting a test. The test is based
on a test statistic Tn(θ0) for testing H0 : θ = θ0. The nominal level 1−α CS for θ
is

CSn = {θ ∈ � : Tn(θ) ≤ c1−α(θ)}, (3.4)

where c1−α(θ) is a critical value. We consider subsampling and PA critical values
subsequently.

The exact and asymptotic confidence sizes of CSn are

ExCSn = inf
(θ,F)∈F

PF (Tn(θ) ≤ c1−α(θ)) and AsyCS = liminf
n→∞ ExCSn, (3.5)
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respectively. The exact maximum coverage probability and the asymptotic maxi-
mum coverage probability are

ExMaxCPn = sup
(θ,F)∈F

PF (Tn(θ) ≤ c1−α(θ)) and

AsyMaxCP = limsup
n→∞

ExMaxCPn . (3.6)

The difference AsyMaxCP–AsyCS measures the magnitude of asymptotic non-
similarity of the CS. For a CS with AsyCS ≥ 1 −α, a large value of AsyMaxCP
indicates that the CS may be larger than desirable.

The definition of AsyCS in (3.5) takes the “ inf” before the “ liminf .” In con-
sequence, uniformity over (θ, F) is built into the definition of AsyCS. Unifor-
mity is necessary for the asymptotic size to provide a good approximation to
the finite-sample size of CSs. Andrews and Guggenberger (2005, 2009a, 2009b,
2010) show that when a test statistic has a discontinuity in its limit distribution, as
occurs in the moment inequality model, pointwise asymptotics (in which one
takes the “ liminf” before the “ inf”) can be very misleading in some models.

We consider a general class of test statistics Tn(θ) that are defined as follows.
The sample moment functions are

mn(θ) = (mn,1(θ), . . . ,mn,k(θ))′, where

mn, j (θ) = n−1
n

∑
i=1

mj (Wi ,θ) for j = 1, . . . ,k. (3.7)

Let 
̂n(θ) be an estimator of the asymptotic variance matrix, 
(θ), of n1/2mn(θ).
When the observations are i.i.d., we take


̂n(θ) = n−1
n

∑
i=1

(m(Wi ,θ)−mn(θ))(m(Wi ,θ)−mn(θ))′. (3.8)

When the observations are dependent, 
̂n(θ) must take this into account. A het-
eroskedasticity and autocorrelation consistent (HAC) estimator may be required.

The statistic Tn(θ) is defined to be of the form

Tn(θ) = S(n1/2mn(θ), 
̂n(θ)), (3.9)

where S is a real function on R p
[+∞] × Rv ×Vk×k, where Vk×k is the space of k ×k

variance matrices. (The set R p
[+∞] × Rv contains k-vectors whose first p elements

are either real or +∞ and whose last v elements are real.) The function S is
required to satisfy Assumptions 1–4 stated in Section 4. Examples of functions
that do so are now defined.

The first test function S that we consider is

S1(m,
) =
p

∑
j=1

[mj/σj ]
2− +

p+v

∑
j=p+1

(mj/σj )
2, where

[x]− =
{

x if x < 0
0 if x ≥ 0,

m = (m1, . . . ,mk)
′ (3.10)
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and σ 2
j is the j th diagonal element of 
. With this function, the parameter space

� for the correlation matrices in condition (vi) of (3.3) is not restricted. That is,
(3.3) holds with � = �1, where �1 contains all k ×k correlation matrices.11 The
function S1 leads to the test statistic

Tn(θ) = n
p

∑
j=1

[mn, j (θ)/σ̂n, j (θ)]2− +n
p+v

∑
j=p+1

(mn, j (θ)/σ̂n, j (θ))2, (3.11)

where σ̂ 2
n, j (θ) = [
̂n(θ)]j j . This is an Anderson–Rubin-type GMM statistic that

gives positive weight to moment inequalities only when they are violated. This
type of statistic has been considered in Chernozhukov et al. (2007).

The second test function is a Gaussian QLR (or minimum distance) function
defined by

S2(m,
) = inf
t=(t1,0v ):t1∈R p

+,∞
(m − t)′
−1(m − t). (3.12)

With this function, we restrict the parameter space � in (3.3). In particular, we
take � = �2, where �2 contains all k × k correlation matrices whose determi-
nant is greater than or equal to ε for some ε > 0.12 This type of statistic has been
considered in numerous papers on tests of inequality constraints (see, e.g., Kudo,
1963; Silvapulle and Sen, 2005, Sect. 3.8) and also in papers in the moment in-
equality literature (see Manski and Tamer, 2002; and Rosen, 2008).

The following function yields a test with particularly good power against
alternatives with p1 (≤ p) moment inequalities violated:

S3(m,
) =
p1

∑
j=1

[m( j)/σ( j)]
2− +

p+v

∑
j=p+1

(mj/σj )
2, (3.13)

where [m( j)/σ( j)]2− denotes the j th largest value among {[m�/σ�]2− : � = 1, . . . , p}
and p1 is some specified integer. The function S3 satisfies (3.3) with � = �1. The
function S3 is considered in Andrews and Jia (2008). Note that the function S1 is
a special case of S3.

Other test functions S can be considered that satisfy Assumptions 1–4. For
example, one could alter S1 or S3 by replacing the step function [x]− by a smooth
function, by replacing the square by the absolute value to a different positive
power (such as one), or by adding weights.

Generally it is not possible to compare the performance of one test function/
statistic with that of another without specifying the critical values to be used. The
reason is that most critical values, such as the subsampling and PA critical values
considered here, are data-dependent and have limits as n → ∞ that depend on the
distribution of the observations. Hence, a given test statistic generates different
tests depending on the critical values employed, and the differences do not vanish
asymptotically.
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The test statistics based on the functions S1 and S3 are easier to compute than
those based on S2 because the former are simple functions of the data, whereas the
latter involve minimization over t1 ∈ R p

+,∞. Computation of S2 requires solving
quadratic programming problems. This can be done quickly. But, many computa-
tions of the test statistic are required to construct a CS, especially if one is using
resampling methods, because (i) one needs to compute tests for an arbitrarily large
number of null parameter values θ0 to construct a CS; (ii) in most cases a different
critical value is needed for each null value; and (iii) each critical value requires
numerous computations of the test statistic if resampling methods are employed.
On the other hand, the function S2 employs information about the correlation
matrix � = D−1/2
D−1/2 where D = Diag(
), which has power advantages in
some cases, whereas S1 and S3 do not.13

One also could consider a test statistic that is the same as S1 but without the di-
vision by σj in each summand. Pakes et al. (2004) and Romano and Shaikh (2008)
consider a test statistic of this form. In this case, the uniform asymptotic validity
results given subsequently for subsampling and for PA methods can be shown to
hold provided σ 2

F, j (θ) is bounded away from zero in condition (v) of (3.3). This
test statistic is not recommended, however, because it is not equivariant to rescal-
ing of the moment conditions and, hence, is not likely to have good properties in
terms of the volume of CSs in general. (In fact, in their empirical applications,
Pakes et al., 2004, find that it is desirable to consider an alternative test statistic to
the one they first propose that roughly standardizes the variances of the moment
conditions.)

4. ASSUMPTIONS

In this section we state Assumptions 1–4 concerning the function S and show that
the functions S1–S3 satisfy them. We also state some assumptions that are not
needed for the main results given subsequently but are used for some peripheral
results.

Let B ⊂ Rw. We say that a real function G on R p
[+∞] × B is continuous at

x ∈ R p
[+∞] × B if y → x for y ∈ R p × B implies that G(y) → G(x). In the as-

sumptions that follow, the set � is as in condition (vi) of (3.3).14 For p-vectors
m1,m∗

1, m1 < m∗
1 means that m1 ≤ m∗

1 and at least one inequality in the p-vector
of inequalities holds strictly.

Assumption 1.

(a) S((m1,m2),
) is nonincreasing in m1, for all m1 ∈ R p, m2 ∈ Rv , and
variance matrices 
 ∈ Rk×k .

(b) S(m,
) = S(Dm, D
D) for all m ∈ Rk, 
 ∈ Rk×k, and pd diagonal
D ∈ Rk×k .

(c) S(m,�) ≥ 0 for all m ∈ Rk and � ∈ �.

(d) S(m,�) is continuous at all m ∈ R p
[+∞] × Rv and � ∈ �.
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Assumption 2. For all h1 ∈ R p
+,∞, all � ∈ �, and Z ∼ N (0k,�), the distribu-

tion function (df) of S(Z + (h1,0v ),�) at x ∈ R is

(a) continuous for x > 0,

(b) strictly increasing for x > 0 unless v = 0 and h1 = ∞p, and

(c) less than or equal to 1
2 at x = 0 whenever v ≥ 1 or h1 = 0p.

Assumption 3. For some finite ζ ≤ 0, S(m,�) > 0 if and only if mj < ζ for
some j = 1, . . . , p or mj = 0 for some j = p +1, . . . ,k, where m = (m1, . . . ,mk)

′
and � ∈ �.

Assumption 4.

(a) The df of S(Z ,�) is continuous at its 1 −α quantile, c(�,1 −α), for all
� ∈ �, where Z ∼ N (0k,�) and α ∈ (0,1/2).

(b) c(�,1−α) is continuous in � uniformly for � ∈ �.

In Assumption 2, if an element of h1 equals +∞, then by definition the cor-
responding element of Z + (h1,0v ) equals +∞.15 Assumptions 1–3 are used for
subsampling CSs. Assumptions 1 and 4 are used for PA CSs.

Assumptions 1–4 are shown in Lemma 1, which follows, not to be restrictive.
Assumption 1(a) is the key assumption that is needed to ensure that subsampling
CSs have correct asymptotic size. Assumption 1(b) is a natural assumption that
specifies that the test statistic is invariant to the scale of each sample moment.
Assumptions 1(b) and 1(d) are conditions that enable one to determine the asymp-
totic properties of Tn(θ). Assumption 1(c) normalizes the test statistic to be non-
negative. Assumptions 2 and 3 are used to show that certain asymptotic dfs satisfy
suitable continuity/strictly increasing properties. These properties ensure that the
subsampling critical value converges in probability to a constant and the CS has
asymptotic size that is not affected by a jump in a df. Assumption 3 implies that
S(∞p,
) = 0 when v = 0. Assumption 4 is a mild continuity assumption.

LEMMA 1. The functions S1(m,
)–S3(m,
) satisfy Assumptions 1–4 with
� = �1 for S1(m,
) and S3(m,
) and with � = �2 for S2(m,
).

Remark. In Lemma 1, the function S2 requires the correlation matrices to be
bounded away from singularity, whereas none of the other functions requires this.

Next we introduce three conditions that are not needed to show that subsam-
pling and PA CSs have correct asymptotic size (i.e., AsyCS ≥ 1 − α). Rather,
the first and third conditions are used to show that subsampling and PA CSs, re-
spectively, are not asymptotically conservative (i.e., AsyCS≯ 1−α). The second
condition is used when showing that subsampling CSs have AsyMaxCP = 1 when
v = 0.
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For (θ, F) ∈ F, define h1, j (θ, F) = ∞ if EF mj (Wi,θ) > 0 and h1, j (θ, F) = 0
if EF mj (Wi,θ) = 0 for j = 1, . . . , p. Let h1(θ, F) = (h1,1(θ, F), . . . ,h1,p(θ, F))′
and �(θ, F) = limn→∞ CorrF (n1/2mn(θ)).

Assumption C1. For some (θ, F) ∈F, the df of S(Z +(h1(θ, F),0v ),�(θ, F))
is continuous at its 1−α quantile, where Z ∼ N (0k,�(θ, F)).

Assumption C2. v = 0 and for some (θ, F) ∈ F, EF mj (Wi ,θ) > 0 for all
j = 1, . . . , p.

Assumption C3. For some (θ, F) ∈ F with h1(θ, F) = 0p, the df of S(Z ,
�(θ, F)) is continuous at its 1−α quantile, where Z ∼ N (0k,�(θ, F)).

Assumption C1 is a very weak continuity condition. (Hence, subsampling CSs
typically are not asymptotically conservative.) Assumption C2 typically holds
if the identified set is not a singleton. Assumption C3 holds quite generally if
there are no restrictions relating the expectation of one moment function to that of
another. But, if such restrictions exist, then Assumption C3 fails and the PA CS
is asymptotically conservative. (Assumption C3 fails when there are restrictions
because there is no (θ, F) ∈F with h1(θ, F) = 0p.) For example, Assumption C3
fails in a regression model in which one only observes the integer part of a latent
dependent variable.

5. SUBSAMPLING CONFIDENCE SETS

We now define subsampling critical values and CSs. Let b denote the subsample
size when the full-sample size is n. We assume b → ∞ and b/n → 0 as n → ∞
(throughout the paper). The choice of b is discussed in the subsampling literature;
e.g., see Politis et al. (1999). We do not discuss it further here. (It is beyond the
scope of this paper.) The number of different subsamples of size b is qn . With i.i.d.
observations, there are qn = n!/((n −b)!b!) different subsamples of size b. With
time series observations, there are qn = n − b + 1 subsamples each consisting of
b consecutive observations.

The subsample statistics used to construct the subsampling critical value are
{Tn,b, j (θ) : j = 1, . . . ,qn}, where Tn,b, j (θ) is a subsample statistic defined exactly
as Tn(θ) is defined but based on the j th subsample of size b rather than the full
sample. The empirical df and 1−α sample quantile of {Tn,b, j (θ) : j = 1, . . . ,qn}
are

Un,b(θ, x) = q−1
n

qn

∑
j=1

1(Tn,b, j (θ) ≤ x) for x ∈ R and

cn,b(θ,1−α) = inf{x ∈ R : Un,b(θ, x) ≥ 1−α}. (5.1)

The subsampling test rejects H0 : θ = θ0 if Tn(θ0) > cn,b(θ0,1−α). The nominal
level 1−α subsampling CS is given by (3.4) with c1−α(θ) = cn,b(θ,1−α).
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The following theorem applies to i.i.d. observations, in which case F is defined
in (3.3), and to dependent observations, in which case for brevity F is defined in
(A.2)–(A.3) in the Appendix.

THEOREM 1. Suppose Assumptions 1–3 hold and 0 < α < 1/2. Then, the
nominal level 1−α subsampling CS based on Tn(θ) satisfies

(i) AsyCS ≥ 1−α,

(ii) AsyCS = 1−α if Assumption C1 also holds, and

(iii) AsyMaxCP = 1 if v = 0 (i.e., no moment equalities appear) and Assump-
tion C2 also holds.

Remarks.

1. An important feature of Theorem 1 is that no assumptions are placed on the
moment functions m(Wi ,θ) beyond the existence of mild moment condi-
tions (e.g., 2 + δ moments finite in the i.i.d. case) that appear in the defini-
tion ofF and Assumption C2 that is used in Theorem 1(iii). Thus, the results
apply to moment conditions based on instruments that are weak. (The reason
is that the test statistics considered are of the Anderson–Rubin type.)

2. The asymptotic distribution of Tn(θ) differs depending on the sequence of
true values {(θn, Fn) ∈ F : n ≥ 1} considered. The Appendix provides ex-
plicit expressions for AsyCS and AsyMaxCP in terms of these asymptotic
distributions; see (A.13) and below (A.13) and the definitions in (A.10) and
(9.3). Hence, AsyMaxCP can be evaluated in cases in which v ≥ 1.

3. The results of Theorem 1 hold even when there are restrictions on the mo-
ment inequalities such that when one moment inequality holds as an equal-
ity then another moment inequality cannot. Restrictions of this sort arise in
a variety of models. For example, they arise in a location model with in-
terval outcomes. In this model, yi is observed, y∗

i and ui are not observed,
y∗

i = θ0 +ui for i = 1, . . . ,n, yi = [y∗
i ] (i.e., yi equals the integer part of y∗

i ),
and ui has mean zero. The interval outcome [yi , yi +1] necessarily includes
the unobserved outcome variable y∗

i . Two moment inequalities that place
bounds on θ0 are (i) −Eθ0 yi + θ0 ≥ 0 and (ii) Eθ0 yi +1− θ0 ≥ 0. Obviously,
both inequalities cannot simultaneously hold as equalities. Subsampling au-
tomatically takes this into account and generates a (data-dependent) critical
value that is smaller than what one would obtain if no functional relationship
existed between the two moment functions. This yields a CS that is smaller
than otherwise, as is desirable.

The subsample statistic can be defined using a recentering, and the uniform
asymptotic validity results go through with some additional effort. In fact, based
on finite-sample simulations of size and power (not reported here), this is the
version of subsampling that we recommend for moment inequality models. The
recentered subsample statistic T̂n,b, j (θ) is defined to be
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T̂n,b, j (θ) = S(b1/2(mn,b, j (θ)−mn(θ)), 
̂n,b, j (θ)), (5.2)

where mn,b, j (θ) is the sample average based on the observations in the j th sub-
sample and 
̂n,b, j (θ) is the variance matrix estimator based on the observations
in the j th subsample.

Chernozhukov and Fernandez-Val (2005) consider a recentered subsampling
method in the context of inference for quantile processes. Simulation results in
Linton, Maasoumi, and Whang (2005) for a different testing problem (viz., tests
of stochastic dominance) find that the recentered subsampling test performs sub-
stantially worse in terms of both size and power than the subsampling test without
recentering. Based on the simulations we have done, however, this is not the case
in moment inequality models.

6. PLUG-IN ASYMPTOTIC CONFIDENCE SETS

Next, we discuss CSs based on an asymptotic critical value. The least favorable
asymptotic null distributions of the statistic Tn(θ) are shown to be those for which
the moment inequalities hold as equalities. These distributions depend on the
(asymptotic) correlation matrix, �, of the moment functions. We consider PA crit-
ical values that are obtained from the least favorable asymptotic null distribution
evaluated at a consistent estimator of �. Critical values of this type have long been
considered in the literature on multivariate one-sided tests; see Silvapulle and Sen
(2005) for references. They have been considered in the moment inequality liter-
ature by Rosen (2008). We exploit results in Andrews and Guggenberger (2009a)
for “plug-in size-corrected fixed critical values” to obtain the asymptotic results
given in this section.

As before, let c(�,1−α) denote the 1−α quantile of S(Z ,�), where Z ∼ N
(0k,�). This is the 1 − α quantile of the asymptotic null distribution of Tn(θ)
when the moment inequalities hold as equalities. Define

�̂n(θ) = D̂−1/2
n (θ)
̂n(θ)D̂−1/2

n (θ), (6.1)

where D̂n(θ) = Diag(
̂n(θ)) and 
̂n(θ) is defined in (3.8) for i.i.d. observations
and is a consistent estimator of limn→∞ Var(n1/2mn(θ)) for dependent observa-
tions.

The nominal 1−α PA CS is given by (3.4) with critical value c1−α(θ) equal to

c(�̂n(θ),1−α). (6.2)

THEOREM 2. Suppose Assumptions 1 and 4 hold and 0 < α < 1/2. Then, the
nominal level 1−α PA CS based on Tn(θ) satisfies

(i) AsyCS ≥ 1−α and

(ii) AsyCS = 1−α provided Assumption C3 also holds.
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Remark. Theorem 2(i) holds even when there are restrictions on the moment
inequalities such that when one moment inequality holds as an equality then an-
other moment inequality cannot. However, Theorem 2(ii) does not hold in this
case because Assumption C3 fails. The PA critical value does not automatically
take functional relationships between the moment functions into account as the
subsampling critical value does. The PA critical value is larger than necessary and
the PA CS is asymptotically conservative in this scenario. Thus, subsampling CSs
have advantages over PA CSs in this scenario.

7. MODEL SPECIFICATION TESTS

Tests of model specification can be constructed using the subsampling and PA CSs
introduced in Sections 5 and 6. The null hypothesis of interest is that there exists
a parameter θ0 ∈ � such that (3.1) holds (with additional conditions specified
by the parameter space for (θ, F), such as those in (3.3) or those given in the
Appendix for temporally dependent observations). The idea of such specification
tests is the same as for the J test of overidentifying restrictions in GMM; see
Hansen (1982). With the J test, one rejects the null hypothesis of correct model
specification if the GMM criterion function evaluated at the GMM estimator is
sufficiently large. In the moment inequality/equality model, the analogue of the
GMM criterion function is the test statistic Tn(θ). By definition, the subsampling
test rejects the model specification if Tn(θ) exceeds the subsampling critical value
cn,b(θ,1−α) for all θ ∈ �. Equivalently, it rejects if the subsampling CS is empty.
The PA model specification test is analogous with the PA critical value in place
of the subsampling critical value.

If the model specified in (3.1) is correctly specified, then the subsampling CS
and the PA CS contain the true value with asymptotic probability 1−α (or greater)
uniformly over the parameter space. Hence, under the null hypothesis of correct
model specification, the limit as n → ∞ of the finite-sample size of the subsam-
pling and PA model specification tests are ≤ α under the assumptions of Theorems
1(i) and 2(i), respectively. Note that the model specification tests may be asymp-
totically conservative (i.e., have asymptotic size < α) even when the assump-
tions of part (ii) of those theorems hold. As discussed earlier, it is crucial that the
asymptotic sizes of these tests are shown to be valid uniformly over the parameter
space because the present testing scenario is one in which the test statistic Tn(θ)
has a limit distribution that is discontinuous in the parameters.

8. EXTENSIONS

8.1. Generalized Empirical Likelihood Statistics

Here we consider CSs for parameters in the moment inequality/equality model
based on a GEL test statistic, T GEL

n (θ), rather than a test statistic of the form
Tn(θ) in (3.9). In the context of moment equalities, Smith (1997) considers GEL
statistics. In the context of moment inequalities, Soares (2006) considers GEL
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statistics, and Moon and Schorfheide (2004), Otsu (2006), and Canay (2007)
consider empirical likelihood (EL) statistics. In the Appendix, we show that the
asymptotic distribution of T GEL

n (θ) is the same as that of the statistic Tn(θ) in
(3.9) based on S2(m,
) in (3.12) when the observations come from a row-wise
i.i.d. triangular array.16 In consequence, by the same argument as for the latter
statistic, GEL-based subsampling and PA CSs based on T GEL

n (θ) have correct
asymptotic size.

For t ∈ R p
+, define

mi (t,θ) = m(Wi ,θ)− (t,0v ). (8.1)

The vector t can be viewed as an additional nuisance parameter that captures the
slackness in the first p moment inequalities. The minimum distance (MD) formu-
lation of the EL statistic for inference under moment equalities and inequalities is
given by

LEL(θ, t) = sup
π

{
∏n

i=1 πi : πi ≥ 0,∑n
i=1 πi = 1,∑n

i=1 πi mi (t,θ) = 0
}

, (8.2)

where π = (π1, . . . ,πn)′. Under weak additional assumptions, the MD formula-
tion of the EL estimator θ̂EL = argmaxθ∈� supt∈R p

+ LEL(θ, t) can be reexpressed

(equivalently) as the solution to a saddlepoint problem θ̂EL = argminθ∈� inft∈R p
+

supλ∈�̂n(t,θ) 2∑n
i=1 ln(1 − λ′mi (t,θ)), where �̂n(t,θ) is defined in (8.3). We

consider the GEL generalization of this saddlepoint problem and work with the
statistic

T GEL
n (θ) = inf

t∈R p
+

sup
λ∈�̂n(t,θ)

n P̂ρ(t,θ,λ), where

P̂ρ(t,θ,λ) = 2n−1 ∑n
i=1(ρ(λ′mi (t,θ))−ρ(0)),

�̂n(t,θ) = {λ ∈ Rk : λ′mi (t,θ) ∈ Q for i = 1, . . . ,n}, (8.3)

Q is an open interval of the real line that contains 0, and ρ : Q → R is a concave
function that is twice continuously differentiable on a neighborhood of 0 with first
and second derivatives at 0 normalized to equal −1. For ρ(x) = ln(1− x) we ob-
tain the EL estimator; for ρ(x) = −(1+ x)2/2, we obtain the continuous updating
estimator; and for ρ(x) = −exp x, we obtain the exponential tilting estimator. In
the Appendix we show that under the i.i.d. setup of (3.3) and Assumption GEL
the equivalents of Theorems 1 and 2 hold for CSs based on T GEL

n (θ) rather than
Tn(θ) in (3.9).

8.2. Preliminary Estimation of Identified Parameters

Suppose the population moment functions are of the form EF mj (Wi,θ0,τ0) ≥ 0
for j = 1, . . . , p and EF mj (Wi,θ0,τ0) = 0 for j = p + 1, . . . ,k, where τ0 is a
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parameter for which a preliminary asymptotically normal estimator τ̂n(θ0) exists.
Of course, this typically requires that τ0 is identified. Soares (2005) considers this
scenario in some detail. The sample moment functions in this case are of the form
mn, j (θ) = mn, j (θ, τ̂n(θ)) = n−1 ∑n

i=1 mj (Wi,θ, τ̂n(θ)). The asymptotic variance
of n1/2mn, j (θ) is different when τ0 is replaced by τ̂n(θ), and hence 
̂n(θ) needs
to take this into account, but otherwise the theoretical treatment of this model is
the same. In fact, Theorems 1 and 2 hold in this case using the conditions given in
(A.3) of the Appendix. These are high-level conditions that essentially just require
that mn, j (θ, τ̂n(θ)) is asymptotically normal (after suitable normalization) under
certain drifting sequences of parameters.

9. GENERAL RESULTS FOR SUBSAMPLING CONFIDENCE SETS

This section provides general results for CSs. These results are used in the Ap-
pendix to prove Theorem 1 for subsample CSs in the moment inequality model.
Let R∞ = R ∪{±∞}.

9.1. Definition of Confidence Sets

We consider CSs for a parameter θ ∈ Rd when nuisance parameters η ∈ Rs and
γ3 ∈ T3 may appear, where T3 is an arbitrary, possibly infinite-dimensional, space.
We obtain CSs for θ by inverting tests based on a test statistic Tn(θ0) for testing the
null hypothesis H0 : θ = θ0. Fixed and subsampling critical values are considered.
Let � (⊂ Rd) denote the parameter space for θ. The CS for θ is defined as in
(3.4). The focus of this section is on the behavior of CSs when the asymptotic
distribution of Tn(θ) depends on the parameters (θ,η) and is discontinuous at
some value(s) of (θ,η).

We partition θ and η into (θ1,θ2) and (η1,η2), where θj ∈ Rdj and ηj ∈ Rsj for
j = 1,2. By definition (made precise subsequently), γ1 = (θ1,η1) are parameters
that determine how close the asymptotic distribution of Tn(θ) is to a point of
discontinuity and γ2 = (θ2,η2) are parameters that do not do so but still may
affect the asymptotic distribution of Tn(θ). The parameter γ3 does not affect the
asymptotic distribution of Tn(θ). Define γ = (γ1,γ2,γ3), where γ1 ∈ R p, γ2∈Rq ,
p = d1 + s1, and q = p2 + s2. Let � denote the parameter space for γ. In most
models, either no parameter θ1 or θ2 appears (i.e., d1 = 0 or d2 = 0). For example,
in the moment inequality model, d1 = 0.

The terms ExCSn, AsyCS, ExMaxCPn, and AsyMaxCP are defined as in (3.5)
and (3.6) with γ ∈ � in place of (θ, F) ∈ F .

9.2. Critical Values

A test rejects the null hypothesis when Tn(θ0) exceeds some critical value. We
consider two types of critical values for use with the test statistic Tn(θ0). The first
is a fixed critical value (FCV) and is denoted cFix (θ0,1 − α), where α ∈ (0,1)
is the nominal size of the FCV test. The FCV test rejects H0 when Tn(θ0) >
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cFix (θ0,1 − α). A common choice is cFix (θ0,1 − α) = c∞(1 − α), where
c∞(1−α) denotes the 1−α quantile of J∞ and J∞ is the asymptotic null distri-
bution of Tn(θ0) when γ is fixed and is not a point of discontinuity. (Of course,
this choice only applies when Tn(θ0) has the same asymptotic distribution for
all fixed γ that are not points of discontinuity.) Another choice is cFix(θ0,1 −α)
equals the 1 −α quantile of a least favorable asymptotic null distribution, which
may occur at a point of discontinuity.

The second type of critical value that we consider is a subsampling critical
value. Let b and qn be as in Section 5. The subsample statistics that are used to
construct the subsampling critical value are denoted by {T̂n,b, j (θ0) : j = 1, . . . ,qn}
when testing H0 : θ = θ0.

Let {Tn,b, j (θ) : j = 1, . . . ,qn} be subsample statistics that are defined exactly as
Tn(θ) is defined but are based on subsamples of size b rather than the full sample.

In most cases, the subsample statistics {T̂n,b, j (θ0) : j = 1, . . . ,qn} are defined
to satisfy one or the other of the following assumptions.

Assumption Sub1. T̂n,b, j (θ0) = Tn,b, j (θ̂n) for all j ≤ qn, where θ̂n is an
estimator of θ.

Assumption Sub2. T̂n,b, j (θ0) = Tn,b, j (θ0) for all j ≤ qn .

The estimator θ̂n in Assumption Sub1 usually is chosen to be an estimator that
is consistent under both the null and alternative hypotheses. In the moment in-
equality example, the subsample statistics are defined such that Assumption Sub2
holds—because we do not assume that θ is identified and hence no consistent
estimator θ̂n is available.

Let Ln,b(θ, x) and cn,b(θ,1 − α) denote the empirical df and 1 − α sample
quantile, respectively, of the subsample statistics {T̂n,b, j (θ) : j = 1, . . . ,qn}. By
definition,

Ln,b(θ, x) = q−1
n

qn

∑
j=1

1(T̂n,b, j (θ) ≤ x) for x ∈ R and

cn,b(θ,1−α) = inf{x ∈ R : Ln,b(θ, x) ≥ 1−α}. (9.1)

The subsampling test rejects H0 : θ = θ0 if Tn(θ0) > cn,b(θ0,1−α).

9.3. Parameter Space

The parameter space for γ is �.

Assumption A0. � ⊂ {(γ1,γ2,γ3) : γ1 ∈ Rp,γ2 ∈ Rq ,γ3 ∈ T3}.
In contrast to Assumption A of Andrews and Guggenberger (2010), Assump-

tion A0 does not require γ1 to lie in a product space in Rp and does not re-
quire (γ1,γ2) to lie in a product space of the form �1 × �2 for some �1 ⊂ Rp

and �2 ⊂ Rq . The latter product space condition is typically violated in the mo-
ment inequality model. The former product space condition is sometimes violated
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in the moment inequality model. The relaxation of Assumption A of Andrews
and Guggenberger (2010) to Assumption A0 is a substantial contribution of this
paper. It is useful in a variety of models beyond the moment inequality model.

9.4. Convergence Assumption

For an arbitrary distribution G, let G(·) denote the df of G, let G(x−) denote the
limit from the left of G(·) at x, and let C(G) denote the set of continuity points
of G(·). Define the 1 −α quantile, q(1 −α), of a distribution G by q(1 −α) =
inf{x ∈ R : G(x) ≥ 1 − α}. The distribution Jh considered subsequently is the
distribution of a proper random variable that is finite with probability one.

Let r > 0 denote a rate of convergence index such that when the true parameter
γ1 satisfies nrγ1 → h1, then the test statistic Tn(θ0) has an asymptotic distribu-
tion that depends on the localization parameter h1 (see Assumption B0, which
follows). In most examples, including the moment inequality example, r = 1/2.
For a given model, we assume there is a single fixed r > 0.

Let {wn : n ≥ 1} denote some subsequence of {n}. Given {wn}, we consider
sequences of parameters with the following properties.

DEFINITION OF {γwn ,h : n ≥ 1}. Given r > 0 and h = (h1,h2) ∈ R p∞ × Rq∞,
let {γwn ,h = (γwn ,h,1,γwn ,h,2,γwn ,h,3) : n ≥ 1} denote a sequence of parameters in
� for which wr

nγwn ,h,1 → h1, γwn ,h,2 → h2, γwn ,h = ((θwn ,h,1,ηwn ,h,1), (θwn ,h,2,
ηwn ,h,2),γwn ,h,3), and θwn ,h = (θwn ,h,1,θwn ,h,2) if such a sequence exists.

Define

H = {h ∈ R p∞ × Rq∞ : ∃ a subsequence {wn} and a sequence {γwn ,h : n ≥ 1}}.
(9.2)

The sequence {γwn ,h : n ≥ 1} is defined such that under {γwn ,h : n ≥ 1}, the asymp-
totic distribution of Twn (θwn ,h) depends on h and only h.

Assumption B0. For some r > 0, all h ∈ H, all subsequences {wn} of {n}, all
sequences {γwn ,h : n ≥ 1}, and some distributions Jh, Twn (θwn ,h) →d Jh under
{γwn ,h : n ≥ 1}, where γwn ,h = ((θwnh,1,ηwn ,h,1), (θwn ,h,2,ηwn ,h,2),γwn ,h,3) and
θwn ,h = (θwn ,h,1,θwn ,h,2).

Assumption B0 is a strengthening of Assumption B of Andrews and
Guggenberger (2010) to cover subsequences {wn} rather than just sequences {n}.
Also it differs slightly from Assumption B of Andrews and Guggenberger (2010)
because it applies to CSs rather than tests. Although more complicated, Assump-
tion B0 is usually not more difficult to verify than Assumption B. When Assump-
tion A of Andrews and Guggenberger (2010) holds, Assumptions B and B0 are
equivalent; see the proof of (8.6) of Andrews and Guggenberger (2010). Assump-
tion B0 holds in a wide variety of examples of interest; see the Appendix for the
moment inequality model and Andrews and Guggenberger (2005, 2009a, 2009b,
2010) for other models.
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9.5. Subsampling Assumptions

Theorem 3 in section 9.6 shows that the asymptotic size of a subsampling CS is
determined by the asymptotic distributions of the full-sample statistic Twn (θwn ,h)
and the subsample statistic Twn ,bwn , j (θwn ,h) under certain parameter sequences
{γwn ,g,h : n ≥ 1}. By Assumption B0, the asymptotic distribution of Twn (θwn ,h)
is Jh . The asymptotic distribution of Twn ,bwn , j (θwn ,h) under {γwn ,g,h : n ≥ 1} is
shown to be Jg for g ∈ H.

DEFINITION OF {γwn ,g,h : n ≥ 1}. Given r > 0, g = (g1,g2) ∈ R p∞ × Rq∞,
and h = (h1,h2) ∈ R p∞ × Rq∞ with g2 = h2, let {γwn ,g,h = (γwn ,g,h,1,γwn ,g,h,2,
γwn ,g,h,3) : n ≥ 1} denote a sequence of parameters in � for which wr

nγwn ,g,h,1 →
h1, br

wn
γwn ,g,h,1 → g1, γwn ,g,h,2 → h2, γwn ,g,h = ((θwn ,g,h,1,ηwn ,g,h,1),

(θwn ,g,h,2,ηwn ,g,h,2),γwn ,g,h,3), and θwn ,g,h = (θwn ,g,h,1,θwn ,g,h,2) if such a
sequence exists.

By definition, a sequence {γwn ,g,h : n ≥ 1} also is of the form {γwn ,h : n ≥ 1}.
The index set of the asymptotic distributions of Twn (θwn ,h) and Twn ,bwn , j (θwn ,h)

under sequences {γwn ,g,h : n ≥ 1} is denoted by GH. By definition,

GH = {(g,h) ∈ (R p∞ × Rq∞
)2 :

∃ a subsequence {wn} and a sequence {γwn ,g,h : n ≥ 1}}. (9.3)

By definition of {γwn ,g,h : n ≥ 1} and Assumption C, which follows (i.e., b/n→0),
for all (g,h) = ((g1,g2), (h1,h2)) ∈ GH, we have g2 = h2 and |g1, j | ≤ |h1, j | for
j = 1, . . . , p, where g1 = (g1,1, . . . ,g1,p)

′ and h1 = (h1,1, . . . ,h1,p)
′.

For subsampling CSs, we require the following additional assumptions.

Assumption C. (a) b → ∞ and (b) b/n → 0.

Assumption D.

(a) {Tn,b, j (θ) : j = 1, . . . ,qn} are identically distributed under any γ ∈ � for
all n ≥ 1 and

(b) Tn,b, j (θ) and Tb(θ) have the same distribution under any γ ∈ � for all
n ≥ 1, where θ = (θ1,θ2) and γ = ((θ1,η1), (θ2,η2),γ3).

Assumption E0. For all subsequences {wn} of {n} and all sequences {γwn ,g,h ∈
� : n ≥ 1}, Uwn ,bwn

(θwn ,g,h, x) − Eγwn ,g,h Uwn ,bwn
(θwn ,g,h, x) →p 0 under

{γwn ,g,h : n ≥ 1} for all x ∈ R, where θwn ,g,h = ((θwn ,g,h,1,θwn ,g,h,2) and γwn ,g,h =
((θwn ,g,h,1,ηwn ,g,h,1), (θwn ,g,h,2,ηwn ,g,h,2),γwn ,g,h,3).

Assumption F. For all ε > 0 and h ∈ H, Jh(ch(1 − α) + ε) > 1 − α, where
ch(1−α) is the 1−α quantile of Jh .
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Assumption G0. For all h = (h1,h2) ∈ H, all subsequences {wn} of {n}, and
all sequences {γwn ,g,h : n ≥ 1}, if Uwn ,bwn

(θwn ,g,h, x) →p Jg(x) under {γwn ,g,h :
n ≥ 1} for all x ∈ C(Jg), then Lwn ,bwn

(θwn ,g,h, x) − Uwn ,bwn
(θwn ,g,h, x) →p 0

under {γwn ,g,h : n ≥ 1} for all x ∈ C(Jg), where θwn ,g,h = (θwn ,g,h,1,θwn ,g,h,2)
and γwn ,g,h = ((θwn ,g,h,1,ηwn ,g,h,1), (θwn ,g,h,2,ηwn ,g,h,2),γwn ,g,h,3).

Assumptions C, D, and F are the same as in Andrews and Guggenberger
(2010). Assumptions E0 and G0 are extensions of Assumptions E and G of
Andrews and Guggenberger (2010) to cover subsequences {wn} rather than just
full sequences {n}. Assumptions C and D are standard assumptions in the sub-
sampling literature and are not restrictive. Assumption D necessarily holds when
the observations are i.i.d. or stationary and the subsamples are constructed in the
usual way. Assumption E0 holds automatically when the observations are i.i.d.
for each fixed γ ∈ � or are stationary strong mixing for each fixed γ ∈ � and
supγ∈� αγ ( j) → 0 as j → ∞, where {αγ ( j) : j ≥ 1} are the strong mixing num-
bers of the observations when the true parameter is γ ; see Andrews and Guggen-
berger (2010). Assumption F is not restrictive. It holds in all of the examples
considered in Andrews and Guggenberger (2005, 2009a, 2009b, 2010). Assump-
tion G0 holds automatically when Assumption Sub2 holds (because Ln,b(·, ·) =
Un,b(·, ·) for all n,b), as occurs with the moment inequality subsample statistics
considered in this paper. In Andrews and Guggenberger (2010), sufficient condi-
tions for Assumption G are given when Assumption Sub1 holds. These can be
extended to provide sufficient conditions for Assumption G0.

9.6. Asymptotic Results

Theorem 3 in this section is a CS analogue of the testing results of Theorem 1 of
Andrews and Guggenberger (2010) but with two improvements that are needed in
the moment inequality example. The first improvement is that the product space
form of �1 and �1 ×�2 is eliminated (Assumption A of Andrews and Guggen-
berger, 2010, is replaced by Assumption A0). This extension is useful in many
models. The price to pay for this extension is the more complicated form of GH
here than in Andrews and Guggenberger (2010) and the more complicated forms
of Assumptions B0, E0, and G0, which involve subsequences {wn}, than Assump-
tions B, E, and G of Andrews and Guggenberger (2010).

The second improvement is that Theorem 3 provides a larger lower bound on
AsyCS than does the straight analogue of Theorem 1 of Andrews and Guggen-
berger (2010). In most examples, continuity of Jh(x) at suitable values of (h, x)
yields the lower and upper bounds given in Theorem 1 of Andrews and Guggen-
berger (2010) to be equal, and, hence, the latter delivers the precise value of
asymptotic size. This continuity does not hold in the moment inequality exam-
ple when v = 0. We introduce an improvement that is applicable in models in
which Jh(x) has a discontinuity at x = cg(1 −α) for some (g,h) ∈ GH and the
test statistic and the subsample statistics have a common lower bound on their
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support for all n ≥ 1. The improvement is possible because the test statistic and
the subsampling critical values cannot be smaller than the lower bound.

Let GH∗ be the set of points (g,h) ∈ GH such that for all sequences {γwn ,g,h :
n ≥ 1} we have

liminf
n→∞ Pγwn ,g,h (Twn (θwn ,g,h) ≤ cwn ,bwn

(θwn ,g,h,1−α)) ≥ Jh(cg(1−α)). (9.4)

The improved lower bound on AsyCS for subsampling CSs is

Min−
CS,Sub(α) = min

{
inf

(g,h)∈GH\GH∗ Jh(cg(1−α)−), inf
(g,h)∈GH∗ Jh(cg(1−α))

}
(9.5)

(where infimum over a null set is defined to be ∞). Clearly, Min−
CS,Sub(α) ≥

inf(g,h)∈GH Jh(cg(1−α)−), where the latter is the lower bound on AsyCS without
the improvement. Define Max−

CS,Sub(α) analogously to Min−
CS,Sub(α) with min and

inf replaced by max and sup .
Sufficient conditions for (g,h) to be in GH∗ are that for all sequences {γwn ,g,h :

n ≥ 1}, (a) there exists a finite nonstochastic lower bound LBh such that the
subsample statistics are ≥ LBh almost surely (a.s.) under {γwn ,g,h : n ≥ 1}, (b)
Jh(LBh) ≥ Jh(cg(1 − α)), and (c) liminfn→∞ Pγwn ,g,h (Twn (θwn ,g,h) ≤ LBh) ≥
Jh(LBh). (Conditions (a)–(c) imply (9.4) because liminfn→∞ Pγwn ,g,h (Twn

(θwn ,g,h) ≤ cwn ,bwn
(θwn ,g,h,1 − α)) ≥ liminfn→∞ Pγwn ,g,h (Twn (θwn ,g,h) ≤ LBh)

≥ Jh(LBh) ≥ Jh(cg(1−α)).)
The main results of this section are as follows.

THEOREM 3.

(i) Suppose Assumptions A0 and B0 hold. Then, an FCV CS satisfies

AsyCS ∈ [ inf
h∈H

Jh(cFix(1−α)−), inf
h∈H

Jh(cFix(1−α))] and

AsyMaxCP ∈ [sup
h∈H

Jh(cFix(1−α)−), sup
h∈H

Jh(cFix(1−α))].

(ii) Suppose Assumptions A0, B0, C, D, E0, F, and G0 hold. Then, a subsam-
pling CS satisfies

AsyCS ∈ [Min−
CS,Sub(α), inf

(g,h)∈GH
Jh(cg(1−α))] and

AsyMaxCP ∈ [Max−
CS,Sub(α), sup

(g,h)∈GH
Jh(cg(1−α))].
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Remarks.

1. Theorem 3(ii) is used in the Appendix to prove Theorem 1.
2. When the parameter space � takes on a partial product-space form as in

Assumption A of Andrews and Guggenberger (2010), then the forms of the
localization parameter spaces H and GH can be made more explicit, and
the results of Theorem 3 hold under a somewhat simpler assumption than
Assumption B0. See the Appendix for details.

NOTES

1. The lack of a uniformly most powerful test even in a Gaussian location testing problem with
a multivariate one-sided null hypothesis (which is a special case of the nonlinear moment inequality
model considered here) indicates that it is not possible to unambiguously rank the different statistics
that one might use. However, some choices have better all around properties than others.

2. The uniformity issue arises whether one is interested in a confidence set for the true parameter
or for the identified set. The issue is uniformity over the true distribution generating the data, not
uniformity of coverage of all the points in the identified set. See Romano and Shaikh (2005) for some
results concerning the uniformity of subsampling confidence sets for the identified set.
We note that correct asymptotic size depends on the specification of the parameter space. A procedure
that does not have correct asymptotic size for one parameter space may have correct asymptotic size
for a subset of this parameter space. Hence, it is important to exclude from the parameter space points
that are not empirically relevant, especially if these are points that cause problems of uniformity.

3. Such critical values can be calculated by computing the appropriate bound from a weighted
chi-square distribution or by simulating from the least favorable asymptotic distribution given the
estimated variance matrix.

4. The m out of n bootstrap uses a bootstrap sample of size m when the full-sample size is n, where
m → ∞ and m/n → 0 as n → ∞.

5. In an i.i.d. scenario, the distribution of a subsample of size b is the same as the conditional
distribution of a nonparametric bootstrap sample of size b conditional on there being no duplicates of
observations in the bootstrap sample. If b2/n → 0, then the probability of no duplicates goes to one
as n → ∞; see Politis et al. (1999, p. 48). In consequence, b out of n bootstrap tests and subsampling
tests have the same first-order asymptotic properties.

6. Moment equalities cannot be handled in the setup of Romano and Shaikh (2008) by writing a
moment equality as two moment inequalities because this approach yields a singular variance matrix
for the resulting moment inequalities and the latter is not covered by their Lemma 3.1, which is used
in their proof of uniformity.

7. These results and the ones given elsewhere in the paper are based on simulation of the formula
for asymptotic size and hence are accurate up to simulation error.

8. The “adjusted” asymptotic size is defined in Andrews and Guggenberger (2009a). It is based
on a formula for the asymptotic size that is adjusted to take into account the ratio of the subsample
size, b, to the full-sample size, n, that is actually used in a given problem. In many cases, the adjusted
asymptotic size is found to be more accurate than the usual “unadjusted” asymptotic size.

9. Also note that the probability of obtaining a singleton set does not have to be large to have
adverse effects on some procedures because errors in tests or confidence intervals with probability .05
are what is typically relevant.

10. The moment condition (vii) could be relaxed slightly to uniform integrability of second
moments.

11. With dependent observations, � is the parameter space for the limiting correlation matrix,
limn→∞ CorrF (n1/2mn(θ)).
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12. If 
 is singular, we define S2 using the Moore–Penrose inverse 
+ in place of 
−1 in (3.12).
With some work, it may be possible to extend the results given in the text for the function S = S2 to
the case where � = �1.

The definition of S2(m,
) takes the infimum over t1 ∈ R p
+,∞, rather than over t1 ∈ R p

+. For
calculation of the test statistic based on S2, using the latter gives an equivalent value. To obtain the
correct asymptotic distribution, however, the former definition is required because it leads to continuity
at infinity of S2 when some elements of m may be infinity. For example, suppose k = p = 1. In
this case, when m ∈ R+, inft1∈R+,∞ (m − t1)2 = inft1∈R+ (m − t1)2 = 0. However, when m = ∞,

inft1∈R+,∞ (m − t1)2 = 0, but inft1∈R+ (m − t1)2 = ∞.

13. Note that the tests based on S1 and S3 depend on � through the subsampling critical value.
However, the subsampling critical value converges in probability to a constant (as is shown explicitly
in Theorem 3). In consequence, the form of the test (by which we mean the shape of the rejection
region in the k-dimensional space of outcomes of the sample moment conditions) does not depend on
� for large n, and the test fails to exploit some information provided by �.

14. For temporally dependent observations, � is as in condition (v) of (A.2) in the Appendix.
15. In Assumptions 1(d) and 4(b), S(m,�) and c(�,1 −α) are viewed as functions defined on the

space of all correlation matrices �1. By definition, c(�,1−α) is continuous in � uniformly for � ∈ �

if for all η > 0 there exists δ > 0 such that whenever ||�∗ −�|| < δ for �∗ ∈ �1 and � ∈ � we have
|c�∗ (1−α)− c�(1−α)| < η.

16. This result holds under Assumption GEL (stated in the Appendix) under sequences of parame-
ters {γwn ,h : n ≥ 1} as in Assumption B0 in Section 9.4.
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APPENDIX

In the Appendix, we first show how the moment inequality model fits into the general
framework for CSs introduced in Section 9. Next, we prove the main results stated in
the paper for the moment inequality model, and, in particular, we use the general result
Theorem 3 to prove Theorem 1. Then, we provide results for GEL test statistics. Finally,
we prove Theorem 3.

A1. Moment Inequality Model.
A1.1. Specification of Parameters. In this section we specify a one-to-one mapping be-

tween the parameters (θ, F) in the moment inequality model and the parameter
γ = (γ1,γ2,γ3) that appears in the general results of Section 9. We define γ1 =
(γ1,1, . . . ,γ1,p)′ ∈ R p

+ by writing the moment inequalities in (3.1) as moment equalities:

σ−1
F, j (θ)EF mj (Wi ,θ)−γ1, j = 0 and γ1, j ≥ 0 for j = 1, . . . , p, (A.1)

where σ 2
F, j (θ) = AsyVarF (n1/2mn, j (θ)) denotes the variance of the asymptotic distri-

bution of n1/2mn, j (θ) when the true parameter is θ and the true distribution of the data

is F. Let � = �(θ, F) = AsyCorrF (n1/2mn(θ)), where AsyCorrF (n1/2mn(θ)) denotes
the correlation matrix of the asymptotic distribution of n1/2mn(θ) when the true param-
eter is θ and the true distribution of the data is F. (We only consider (θ, F) for which
these asymptotic variances and correlation matrix exist; see conditions (iv) and (v) of
(A.2) later in this section.) When no preliminary estimator τ̂n(θ) appears, σ 2

F, j (θ) =
limn→∞ VarF (n1/2mn, j (θ)) and �(θ, F) = limn→∞ CorrF (n1/2mn(θ)), where
VarF (·) and CorrF (·) denote finite-sample variance and correlation under (θ, F), respec-
tively. Let γ2 = (γ2,1,γ2,2) = (θ,vech∗(�(θ, F))) ∈ Rq , where vech∗(�) denotes the vec-
tor of elements of � that lie below the main diagonal, q = d + k(k −1)/2, and γ3 = F.

For the case described in Section 8.2 (where the sample moment functions depend on a
preliminary estimator τ̂n(θ) of an identified parameter vector τ0), we define mj (Wi ,θ) =
mj (Wi ,θ,τ0), m(Wi ,θ) = (m1(Wi ,θ,τ0), . . . ,mk(Wi ,θ,τ0))′, mn, j (θ) = n−1 ∑n

i=1 mj

(Wi ,θ, τ̂n(θ)), and mn(θ) = (mn,1(θ), . . . ,mn,k(θ))′. (Hence, in this case, mn(θ) = n−1

∑n
i=1 m(Wi ,θ).)
For i.i.d. observations (and no preliminary estimator τ̂n(θ)), the parameter space � for γ

in the moment inequality example is defined by � ={γ = (γ1,γ2,γ3) : for some (θ, F)∈F ,
where F is defined in (3.3), γ1 satisfies (A.1), γ2 = (θ,vech∗(�(θ, F))), and γ3 = F}.
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For dependent observations and for sample moment functions that depend on prelimi-
nary estimators of identified parameters, we specify the parameter space � for the moment
inequality model using a set of high-level conditions. To verify the high-level conditions
using primitive conditions one has to specify an estimator 
̂n(θ) of the asymptotic vari-
ance matrix 
(θ) of n1/2mn(θ). For brevity, we do not do so here. Because there is a
one-to-one mapping from γ to (θ, F), � also defines the parameter space F of (θ, F).
Let � be a specified set of k × k correlation matrices. Let {α( j) : j ≥ 1} be a sequence of
nonnegative numbers that satisfies α( j) → 0 as j → ∞. The parameter space � is defined
to include parameters γ = (γ1,γ2,γ3) = (γ1, (θ,γ2,2), F) that satisfy

(i) θ ∈ �,

(ii) σ−1
F, j (θ)EF mj (Wi ,θ)−γ1, j = 0 and γ1, j ≥ 0 for j = 1, . . . , p,

(iii) EF mj (Wi ,θ) = 0 for j = p +1, . . . ,k,

(iv) σ 2
F, j (θ) = AsyVarF

(
n1/2mn, j (θ)

)
exists and lies in (0,∞) for j = 1, . . . ,k,

(v) AsyCorrF

(
n1/2mn(θ)

)
exists and equals �γ2,2 ∈ �,

(vi) {Wi : i ≥ 1} are stationary and strong mixing under F

with strong mixing numbers αF ( j) ≤ α( j) for all j ≥ 1, (A.2)

where γ1 = (γ1,1, . . . ,γ1,p)′ and �γ2,2 is the k × k correlation matrix determined by γ2,2.
Furthermore, � must be restricted by enough additional conditions such that under any
sequence {γn,h = (γn,h,1, (θn,h ,vech∗ (�n,h)), Fn,h) : n ≥ 1} of parameters in � that satis-
fies n1/2γn,h,1 → h1 and (θn,h,vech∗(�n,h)) → h2 = (h2,1,h2,2) for some
h = (h1,h2) ∈ R p

+,∞ × Rq∞, we have

(vii) An = (An,1, . . . , An,k)′ →d Zh2,2 ∼ N (0k ,�h2,2) as n → ∞, where

An, j = n1/2

(
mn, j (θn,h)−n−1

n

∑
i=1

EFn,h mj (Wi ,θn,h)

)/
σFn,h , j (θn,h),

(viii) σ̂n, j (θn,h)/σFn,h , j (θn,h) →p 1 as n → ∞ for j = 1, . . . ,k,

(ix)D̂−1/2
n (θn,h)
̂n(θn,h)D̂−1/2

n (θn,h) →p �h2,2 as n → ∞, and (A.3)

(x) conditions (vii)–(ix) hold for all subsequences {wn} in place of {n},
where �h2,2 is the k × k correlation matrix for which vech∗(�h2,2) = h2,2, σ̂ 2

n, j (θ) =
[
̂n(θ)]j j for j = 1, . . . ,k, and D̂n(θ) = Diag{̂σ 2

n,1(θ), . . . , σ̂ 2
n,k(θ)} (= Diag(
̂n(θ))).

(When a preliminary estimator τ̂n(θ) appears, An, j can be written equivalently as

n1/2(n−1 ∑n
i=1 mj (Wi ,θn,h, τ̂n(θn,h)) − n−1 ∑n

i=1 EFn,h mj (Wi ,θn,h ,τ0))/σFn,h , j (θn,h),
which typically is asymptotically normal with an asymptotic variance matrix �h2,2 that
reflects the fact that τ0 has been estimated. When a preliminary estimator τ̂n(θ) appears,

̂n(θ) needs to be defined to take account of the fact that τ0 has been estimated. When no
preliminary estimator τ̂n(θ) appears, An, j can be written equivalently as n1/2(mn, j (θn,h)−
EFn,h mn, j (θn,h))/σFn,h , j (θn,h). Condition (x) of (A.3) requires that conditions (vii)–(ix)
must hold under any sequence of parameters {γwn ,h : n ≥ 1} that satisfies the conditions
preceding (A.3) with n replaced by wn .)



VALIDITY OF SUBSAMPLING AND PA INFERENCE 697

For example, for i.i.d. observations, conditions (i)–(vi) of (3.3) imply conditions (i)–(vi)
of (A.2). Furthermore, conditions (i)–(vi) of (3.3) plus the definition of 
̂n(θ) in (3.8) and
the additional condition (vii) of (3.3) imply conditions (vii)–(x) of (A.3).

LEMMA 2. The parameter space � for i.i.d. observations (that is, for � defined by the
restrictions summarized in (3.3)) is such that conditions (i)–(x) of (A.2)–(A.3) hold when

̂n(θ) is defined by (3.8).

For dependent observations, one needs to specify a particular variance estimator 
̂n(θ)
before one can specify primitive “additional conditions” beyond conditions (i)–(vi) in (A.2)
that ensure that � is such that any sequence {γn,h : n ≥ 1} in � satisfies (A.3). For brevity,
we do not do so here. Note that the strong mixing assumption in condition (vi) of (A.2) is
used to verify Assumption E0.

A1.2. Proofs for the Moment Inequality Model.

Proof of Theorem 1. We prove Theorem 1 for the moment inequality/equality model
by showing (a) Assumptions A0, B0, C, D, E0, F, and G0 hold and hence Theorem 3
applies, (b) Min−

CS,Sub(α) = inf(g,h)∈GH Jh(cg(1 − α)) ≥ 1 − α, (c) inf(g,h)∈GH
Jh(cg(1−α)) ≤ 1−α, and (d) sup(g,h)∈GH Jh(cg(1−α)) = 1 when v = 0.

Assumption A0 holds with � defined as in Section A1.1. Assumption B0 is verified with
r = 1/2 as follows. Using Assumption 1(b), we have

Tn(θ) = S
(

D̂−1/2
n (θ)n1/2mn(θ), D̂−1/2

n (θ)
̂n(θ)D̂−1/2
n (θ)

)
. (A.4)

For i.i.d. or dependent observations, (A.3) holds (using the fact that γ ∈ � if and only
if (θ, F) ∈ F and using Lemma 2 for i.i.d. observations). By (A.3), the j th element of

D̂−1/2
n (θn,h)n1/2mn(θn,h) equals (1 + op(1))(An, j + n1/2γn,h,1, j ), where γn,h,1 =

(γn,h,1,1, . . . ,γn,h,1,p)′ and by definition γn,h,1, j = 0 for j = p + 1, . . . ,k. Condition
(vii) of (A.3) and the definition of {γn,h : n ≥ 1} imply that if h1, j = ∞ and j ≤ p, where

h1 = (h1,1, . . . ,h1,p)′, then An, j + n1/2γn,h,1, j →p ∞ under {γn,h : n ≥ 1}. In conse-

quence, if any element of h1 equals ∞, D̂−1/2
n (θn,h)n1/2mn(θn,h) does not converge in

distribution (to a proper finite random vector), and the continuous mapping theorem cannot
be applied to obtain the asymptotic distribution of the right-hand side of (A.4).

To circumvent these problems, we consider a k-vector-valued function of

D̂−1/2
n (θn,h)n1/2mn(θn,h) that converges in distribution whether or not some elements

of h1 equal ∞. Then, we write the right-hand side of (A.4) as a continuous function of
this k-vector and apply the continuous mapping theorem. Let G(·) be a strictly increasing
continuous df on R, such as the standard normal df. For j ≤ k, we have

Gn, j = G
(
σ̂−1

n, j (θn,h)n1/2mn, j (θn,h)
)

= G
(
σ̂−1

n, j (θn,h)σFn,h , j (θn,h)
[

An, j +n1/2γn,h,1, j

])
. (A.5)

Let Zh2,2 = (Zh2,2,1, . . . , Zh2,2,k)′ ∼ N (0k ,�h2,2). Define h1, j = 0 for j = p + 1, . . . ,k.
If j ≤ p and h1, j < ∞ or if j = p +1, . . . ,k, then

Gn, j →d G
(

Zh2,2, j +h1, j

)
(A.6)
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by (A.5), conditions (vii) and (viii) of (A.3), and the continuous mapping theorem. If j ≤ p
and h1, j = ∞, then

Gn, j = G
(
σ̂−1

n, j (θn,h)n1/2mn, j (θn,h)
)

→p 1 (A.7)

by (A.5), An, j = Op(1), and G(x) → 1 as x → ∞. The results in (A.6)–(A.7) hold jointly
and combine to give

Gn = (Gn,1, . . . ,Gn,k)′ →d (G(Zh2,2,1 +h1,1), . . . ,G(Zh2,2,k +h1,k))′ = G∞, (A.8)

where G(Zh2,2, j +h1, j ) denotes G(∞) = 1 when h1, j = ∞.

Let G−1 denote the inverse of G. For x = (x1, . . . , xk)′ ∈ R p
[+∞] × Rv , let G(k)(x) =

(G(x1), . . . ,G(xk))′ ∈ (0,1]p × (0,1)v . For y = (y1, . . . , yk)′ ∈ (0,1]p × (0,1)v ,

let G−1
(k)(y) = (G−1(y1), . . . , G−1(yk))′ ∈ R p

[+∞] × Rv . Define S∗ as

S∗(y,�) = S(G−1
(k)(y),�) (A.9)

for y ∈ (0,1]p × (0,1)v and � ∈ �. Assumption 1(d) implies that S∗(y,�) is continuous
at all (y,�) for y ∈ (0,1]p × (0,1)v and � ∈ �. We now have

Tn(θn,h) = S
(

G−1
(k)(Gn), D̂−1/2

n (θn,h)
̂n(θn,h)D̂−1/2
n (θn,h)

)
= S∗(Gn, D̂−1/2

n (θn,h)
̂n(θn,h)D̂−1/2
n (θn,h)

)
→ d S∗(G∞,�h2,2)

= S(G−1
(k)(G∞),�h2,2)

= S(Zh2,2 + (h1,0v ),�h2,2)

∼ Jh , (A.10)

where the first equality holds by (A.4) and the definition of G−1
(k)(Gn), the second and

third equalities hold by the definition of S∗, the convergence holds by (A.8), condition
(ix) of (A.3), and the continuous mapping theorem, the last equality holds by the def-
initions of G−1

(k) and G∞ and the definition that if h1, j = ∞, then the corresponding
element of Zh2,2 + (h1,0v ) equals ∞, and the last line gives the definition of Jh (where

h = (h1,h2), h2 = (h2,1,h2,2), h2,1 ∈ Rd is arbitrary because it does not appear in
S(Zh2,2 + (h1,0v ),�h2,2), and h2,2 = vech∗(�h2,2)). By the same argument but using
condition (x) of (A.3) in place of conditions (vii)–(ix), the result of (A.10) holds with {wn}
in place of {n} for any subsequence {wn}. Hence, Assumption B0 holds with Jh defined as
in (A.10).

Assumption C is assumed in Section 5. Assumption D holds by stationarity and the
standard definition of subsample statistics in the i.i.d. and dependent cases. Assumption
E0 holds for i.i.d. and stationary strong mixing observations by the remarks at the end of
Section 9.5 using condition (vi) of (A.2).

Next, we verify Assumption F. When v = 0 and h1 = ∞p, the limit random variable in
(A.10) is S(Zh2,2 +∞p,�h2,2) = S(∞p,�h2,2) = 0 using Assumption 3. In consequence,
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Jh(x) = 1 for all x ≥ 0, ch(1−α) = 0, and Assumption F holds for α > 0. Now, suppose
v ≥ 1 or h1 = ∞p. Then, by Assumption 2(b), Jh(x) is strictly increasing for x > 0.
Using this, we have (a) if ch(1−α) > 0, then Jh(x) is strictly increasing at x = ch(1−α)
and Assumption F holds, (b) if ch(1 − α) = 0, then Jh(0) ≥ 1 − α (by the definition of
ch(1 − α)), (c) if ch(1 − α) = 0 and Jh(0) ≥ 1 − α, then Jh(x) > 1 − α for all x > 0
and Assumption F holds (otherwise, Jh(x) = 1 −α for some x > 0 and Jh(x/2) = 1 −α
because Jh is nondecreasing, which contradicts the fact that Jh(x) is strictly increasing
for x > 0). Hence, Assumption F holds. Assumption G0 holds automatically because the
subsampling procedure satisfies Assumption Sub2.

Given that Assumptions A0, B0, C, D, E0, F, and G0 hold, the result of Theorem 3(ii)
holds, i.e., AsyCS ∈ [Min−

CS,Sub(α), inf(g,h)∈GH Jh(cg(1−α))].

We now prove Theorem 1(i) by showing that Min−
CS,Sub(α) ≥ 1 −α. First, by Assump-

tion 1(a), for 0 ≤ g1 ≤ h1 ∈ R p
+,∞ and all (g,h) ∈ GH, we have

S(Zh2,2 + (g1,0v ),�h2,2) ≥ S(Zh2,2 + (h1,0v ),�h2,2),

cg(1−α) ≥ ch(1−α), and

Jh(cg(1−α)) ≥ Jh(ch(1−α)). (A.11)

Next, we show that GH∗ = GH. Given (g,h) ∈ GH, suppose cg(1−α)>0. Then, Jh(cg(1−
α)−) = Jh(cg(1−α)) because Jh(x) is continuous for all x > 0 by Assumption 2(a). This
and Lemma 6(vi) of Andrews and Guggenberger (2010) (which holds under
Assumptions A0, B0, C, D, E0, F, and G0 by the proof of Theorem 3 in Section A2)
establish (9.4). Hence, (g,h) ∈ GH∗.

Now, suppose cg(1 −α) = 0. (Assumption 1(c) rules out cg(1 −α) < 0.) This implies
that ch(1−α) = 0 by (A.11). The conditions ch(1−α) = 0 and 0 < α < 1/2 are consistent
with Assumption 2(c) only if v = 0. Given v = 0, we show (g,h) ∈ GH∗ by verifying
conditions (a)–(c) in the paragraph preceding Theorem 3. Condition (a) holds with LBh =0
by Assumption 1(c). Condition (b) holds because LBh = cg(1 − α) = 0. Next we show
condition (c). Under {γn,h : n ≥ 1} and with v = 0, we have

Pγn,h (Tn(θn,h) ≤ 0)

= Pγn,h (n1/2mn, j (θn,h)/σFn,h , j (θn,h) ≥ ζ for all j = 1, . . . , p)

= Pγn,h (An, j +n1/2γn,h,1, j ) ≥ ζ for all j = 1, . . . , p)

→ P(Zh2,2, j +h1, j ≥ ζ for all j = 1, . . . , p)

= P(S(Zh2,2 +h1,�h2,2) ≤ 0)

= Jh(0), (A.12)

where the first and third equalities hold by (A.4) and Assumption 3, the second equality
and the convergence hold by (A.3), and the last equality holds by the definition of Jh
given in (A.10) and v = 0. The same argument holds with {γwn ,g,h : n ≥ 1} in place of
{γn,h : n ≥ 1}. Hence, (A.12) completes the verification of condition (c) and concludes the
proof that GH∗ = GH.

For subsampling CSs, we now have

AsyCS = inf
(g,h)∈GH

Jh(cg(1−α)) ≥ inf
h∈H

Jh(ch(1−α)) ≥ 1−α, (A.13)
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where the equality holds by Theorem 3 and GH∗ = GH, the first inequality holds by
(A.11), and the second inequality holds by the definition of ch(1 − α). This establishes
Theorem 1(i). (Note that AsyMaxCP is given by the second expression in (A.13) with
“sup” in place of “ inf .”)

Next, let (θ∗, F∗) be an element of F for which Assumption C1 applies and let γ ∗
be the value in � that corresponds to (θ∗, F∗) ∈ F . Define h∗ = (h∗

1,h∗
2), where h∗

1 =
h1(θ∗, F∗), h∗

2,1 = θ∗ ∈ Rd , and h∗
2,2 = vech∗(�(θ∗, F∗)). We have (h∗,h∗) ∈ GH be-

cause the sequence {γwn ,g,h : n ≥ 1} defined by γwn ,g,h = γ ∗ for all n ≥ 1 leads to the point
(h∗,h∗) ∈ GH by the definition of GH given in (9.3). By Assumption C1, Jh∗(ch∗(1 −
α)) = 1−α. In consequence, we have

AsyCS = inf
(g,h)∈GH

Jh(cg(1−α)) ≤ Jh∗ (ch∗(1−α)) = 1−α. (A.14)

Combining (A.13) and (A.14) completes the proof of Theorem 1(ii).
Now, we prove Theorem 1(iii). By assumption, v = 0. Assumption C2 guarantees the

existence of (θ∗, F∗) ∈ F for which EF∗mj (Wi ,θ
∗)/σF∗, j (θ

∗) > 0 for all j = 1, . . . , p.

The sequence of constant true values {(θ∗, F∗) ∈F : n ≥ 1} satisfies n1/2EF∗mj (Wi ,θ
∗)/

σF∗, j (θ
∗) → ∞ and b1/2EF∗mj (Wi ,θ

∗)/σF∗, j (θn) → ∞ for all j = 1, . . . , p. Let γ ∗ =
(γ ∗

1 , (θ∗,γ ∗
2,2), F∗) ∈ � correspond to (θ∗, F∗) ∈ F . Define g∗ = h∗ = (∞p, (θ∗,γ ∗

2,2)).

Then, (g∗,h∗) ∈ GH and h∗
1 = ∞p. We have Jh∗(x) = 1 for x ≥ 0 because S(Zh∗

2,2
+

∞p,�h∗
2,2

) = S(∞p,�h∗
2,2

) = 0 using Assumption 3 and cg∗(1 −α) ≥ 0 by Assumption

1(c). Hence, Jh∗(cg∗(1 − α)) = 1. Given the previous result that GH∗ = GH, we have

Max−
CS,Sub(α) = sup(g,h)∈GH Jh(cg(1−α)) ≥ Jh∗(cg∗(1−α)) = 1. n

Proof of Theorem 2. We prove Theorem 2 using the confidence set analogue of Theo-
rem 3 of Andrews and Guggenberger (2009a) discussed in Section 3.3 of that paper. (Note
that the PA CS considered in this paper is an example of the plug-in size-corrected (PSC)
FCV CS considered in Andrews and Guggenberger, 2009a.) Theorem 3 of Andrews and
Guggenberger (2009a) can be extended to hold with Assumptions A0, B0, E0, and G0 in
place of Assumptions A, B, E, and G (defined in Andrews and Guggenberger, 2009a, and
used in their Thm. 3) using the same arguments as in the proof of Theorem 3 in Section
A2. The definitions of H and GH are then given by (9.2) and (9.3) of the current paper.
For the case of PSC-FCV tests, which are relevant here, only Assumptions A, B, L(i), N,
and O(a), defined in Andrews and Guggenberger (2009a), are needed for Theorem 3 of
Andrews and Guggenberger (2009a). Hence, we only need to verify Assumptions A0, B0,
L(i), N, and O(a) here and the set GH is not relevant.

In the present case, the quantity cvh2(1 − α) in (3.5) of Andrews and Guggenberger
(2009a) satisfies

cvh2(1−α) = sup
h1∈H1

c(h1,h2)(1−α) ≤ c(0p,h2)(1−α), (A.15)

where H1 = {h1 ∈ R p∞ : h = (h1,h2) ∈ H for some h2 ∈ Rq∞}, the equality is by definition,
and the inequality holds by (A.11) because (A.11) holds for all g = (0p,h2), h = (h1,h2),

and h1 ∈ R p
+,∞ whether or not (g,h) ∈ GH (which is not necessarily the case here). (Note

that the inequality in (A.15) is not necessarily an equality because 0p is not necessarily
in H1.) Hence, the critical value c(�̂n(θ),1 − α) in (6.2) is greater than or equal to the
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critical value cvγ̂n,2
(1−α) of Andrews and Guggenberger (2009a), and Theorem 3 of the

same paper yields AsyCS ≥ 1 −α. Under Assumption C3, the inequality in (A.15) holds
as an equality because (0p,h2) ∈ H for some h2 (by a similar argument to that preceding
(A.14)) and so 0p ∈ H1. In this case, c(�̂n(θ),1−α) equals the critical value cvγ̂n,2

(1−α)
of Andrews and Guggenberger (2009a), and Theorem 3 of that paper yields AsyCS = 1−α.

Now, it suffices to show that Assumptions L(i), N, and O(a) of Andrews and Guggen-
berger (2009a) hold because Assumptions A0 and B0 hold by the proof of Theorem 1. As-
sumption L(i) holds, i.e., sup�∈� c(�,1−α) < ∞ because c(�,1−α) is a uniformly con-
tinuous function (by Assumption 4(b)) on the subset � of the compact set �1 of all k × k
correlation matrices and hence is bounded on �. For dependent observations, Assumption
N holds by condition (ix) of (A.3) (which holds for i.i.d. observations by Lemma 2) and
the definition of {γn,h : n ≥ 1}—which implies that γn,h,2 → h2. Assumptions O(a)(i) and
O(a)(iii) hold by Assumptions 4(b) and 4(a), respectively. Assumption O(a)(ii) holds with
h∗

1 = 0p. n

Proof of Lemma 1. For S1, Assumptions 1 and 3 hold immediately with ζ = 0 in
Assumption 3. Assumption 2(a) holds because (a) if v ≥ 1, the summand ∑p+v

j=p+1 Z2
j is

absolutely continuous, where Z = (Z1, . . . , Zk)′, (b) if v = 0 and h1 = ∞p, the summands
[Zj + h1, j ]2− are absolutely continuous for x > 0 for all j = 1, . . . , p such that h1, j <
∞, and (c) if v = 0 and h1 = ∞p, S1(Z + h1,�) = 0 and its df equals 1 for all x > 0.

Assumption 2(b) holds because (a) if v ≥ 1, the summand ∑p+v
j=p+1 Z2

j has positive density

on R+, each summand [Zj + h1, j ]2− for which h1, j < ∞ (of which there may be none)
has positive density on R+ and so does the sum and (b) if v = 0 and h1 = ∞p, each
summand [Zj + h1, j ]2− for which h1, j < ∞ (of which there is at least one) has positive
density on R+ and the sum does also. Assumption 2(c) holds because if v ≥ 1, P(S1(Z +
(h1,0v ),�) ≤ 0) ≤ P(∑p+v

j=p+1 Z2
j ≤ 0) = 0, and if h1 = 0 and v = 0, P(S1(Z ,�) ≤ 0) ≤

P([Zj ]2− ≤ 0) = P(Zj ≥ 0) = 1/2 where the inequality holds for any j ≤ p. Assumption
4(a) holds by the same argument as for Assumption 2(a). Assumption 4(b) holds because
c(�,1 −α) is continuous at each � ∈ � and � = �1 is compact. To see the former, let
{�N : N ≥1} be a sequence of correlation matrices such that �N → � as N → ∞. We need
to show that c(�N ,1−α) → c(�,1−α). Denote by fN and f the dfs of S1(Z N ,�N ) and
S1(Z ,�), respectively, where Z N ∼ N (0k ,�N ) and Z ∼ N (0k ,�). By Assumption 2(b),
f is increasing for x > 0 (because h1 = 0p, not ∞p, in this case). By Assumption 2(c) we
have c(�,1 −α) > 0, and it follows that f is increasing at c(�,1 −α). This implies that
c(�N ,1 −α) → c(�,1 −α) because by S1(Z ,�) = ∑p

j=1[Zj ]2− + ∑p+v
j=p+1 Z2

j we have
supx∈R | fN (x)− f (x)| → 0.

For S2, Assumptions 1(b) and (c) and 3 hold immediately with ζ = 0 in Assumption 3.
Assumption 1(d) holds straightforwardly using the specification of �2, which bounds the
determinant of the correlation matrix � away from zero. Assumption 1(a) holds because
for x ∈ R p with x ≥ 0, we have

S2((m1 + x,m2),
) = inf
t1∈R p

+,∞

(
m1 + x − t1

m2

)′

−1

(
m1 + x − t1

m2

)

= inf
t1∈R p

+,∞−x

(
m1 − t1

m2

)′

−1

(
m1 − t1

m2

)
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≤ inf
t1∈R p

+,∞

(
m1 − t1

m2

)′

−1

(
m1 − t1

m2

)
= S2((m1,m2,
). (A.16)

To show Assumption 2(c), first suppose h1 = 0p; then

S2(Z ,�) = inf
t=(t1,0v ):t1∈R p

+,∞
(Z − t)′�−1(Z − t) (A.17)

= inf
t=(t1,0v ):t1∈R p

+,∞
(Z∗ − Bt)′(Z∗ − Bt) = inf

t1∈R p
+,∞

(Z∗ − B1t1)′(Z∗ − B1t1),

where Z ∼ N (0k ,�), B′B = �−1, Z∗ = BZ ∼ N (0k , Ik), B = [B1 : B2], and B1 is k × p
and full rank p ≤ k. The right-hand side of (A.17) is zero only if Z∗ = B1t1 for some
t1 ∈ R p

+,∞. The latter holds with probability zero if k > p and with probability ≤ 1/2 if
k = p, which verifies Assumption 2(c) for h1 = 0p. Next, suppose v ≥ 1; without loss of
generality (wlog) we can assume ||h1|| < ∞ (because if some element of h1 equals infinity
then the infimum in S2(Z ,�) is obtained by taking the corresponding element of t1 equal
to infinity). Then, using (A.17), we have

S2(Z + (h1,0v ),�) = inf
t1∈R p

+,∞
(Z∗ − B1t1)′(Z∗ − B1t1), (A.18)

where Z∗ = B(Z + (h1,0v )) ∼ N (B1h1, Ik) and B and B1 are as before. As previously,
S2(Z ,�) = 0 is zero only if Z∗ = B1t1 for some t1 ∈ R p

+,∞. The support of Z∗ is Rk ,

whereas {B1t1 : t1 ≥ 0p} is a subset of a p-dimensional linear subspace of Rk . Because
v = k − p > 0, S2(Z ,�) = 0 with probability zero.

Next, we show that Assumptions 2(a) and (b) hold for S2. If v = 0 and h1 = ∞p,
then S2(Z + h1,�) = 0, Jh(x) = 1 for all x > 0, Assumption 2(a) holds, and Assump-
tion 2(b) does not impose any restriction. Otherwise, v ≥ 1 or h1 = ∞p. As before,
wlog we can assume ||h1|| < ∞ (because “v ≥ 1 or h1 = ∞p” implies that at least one
element of Z remains after setting to zero all those elements Zj + h1, j − t1, j for which
h1, j = ∞). Equation (A.18) holds in the present case (whether or not v ≥ 1). The ran-
dom variable S2(Z + (h1,0v ),�) in (A.18) has support R+ and is absolutely continuous.
Hence, Assumptions 2(a) and 2(b) hold. Assumption 4(a) holds by the same argument as
for Assumption 2(a).

To show Assumption 4(b) for S2, first we show continuity of c(�,1 − α) at a fixed
� ∈ �2. Let {�N : N ≥ 1} be a sequence of correlation matrices not necessarily in �2
such that �N → � as N → ∞. We need to show that c(�N ,1−α) → c(�,1−α). Denote
by fN and f the dfs of S2(Z N ,�N ) and S2(Z ,�), respectively, where ZN ∼ N (0k ,�N )
and Z ∼ N (0k ,�). By Assumption 2(b), f is increasing for x > 0 (because h1 = 0p, not
∞p, in this case). By Assumption 2(c) we have c(�,1 −α) > 0, and it follows that f is
increasing at c(�,1−α). This implies that c(�N ,1−α) → c(�,1−α) because by (A.18)
with h1 = 0p we have supx∈R | fN (x)− f (x)| → 0.

Next, choose δ > 0 small enough that for the compact set �∗
2 = {� ∈ � : det(�) ≥ ε/2}

(where ε > 0 is as in the definition of �2); it holds that for every �2 ∈ �2 we have
{� ∈ � : ||�2 −�|| < δ} ⊂ �∗

2 . By the argument in the preceding paragraph, c(�,1−α)
is continuous on �∗

2 as a function on �∗
2 and thus is uniformly continuous on �∗

2 . This
implies that c(�,1−α) is uniformly continuous on �2 as a function on c(�,1−α).

The proof for S3 is essentially the same as that for S1. n
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Proof of Lemma 2. Condition (ii) of (A.2) holds by the definition of γ1, j in (A.1) for
j = 1, . . . , p using condition (ii) of (3.3). Conditions (i), (iii), (iv), (v), and (vi) of (A.2)
hold by conditions (i), (iii), (iv) and (v), (iv) and (vi), and (iv) of (3.3), respectively.

Condition (vii) of (A.3) holds by the combination of the Cramér–Wold device and the
Liapounov triangular array central limit theorem (CLT) for row-wise i.i.d. random vari-
ables with mean zero and variance one by conditions (iv) and (vii) of (3.3). Conditions
(viii) and (ix) of (A.3) hold by standard arguments using a weak law of large numbers
(LLN) for row-wise i.i.d. random variables with variance one by conditions (iv) and (vii)
of (3.3). Condition (x) of (A.3) holds by the same argument as for conditions (vii)–(ix)
of (A.3). n

A1.3. Results for GEL Statistics. Here we prove that Theorems 1 and 2 hold for CSs
based on the GEL statistic T GEL

n (θ) rather than Tn(θ), provided Assumption GEL, which
follows, holds, which requires that the observations are i.i.d. for each fixed (θ, F) ∈ F . It
suffices to show that for any sequence {γwn ,h : n ≥ 1} for h = (h1,h2) ∈ R p

+,∞ × Rq∞ and
corresponding {(θwn ,h, Fwn ,h) ∈ F : n ≥ 1}, we have

T GEL
wn

(θwn ,h)− Twn (θwn ,h) = op(1). (A.19)

The result in (A.19) implies that T GEL
wn

(θwn ,h) satisfies Assumption B0. The remainder of
the proofs are the same as the proofs of Theorems 1 and 2.

We use the following notation. Let

tn,h = EFn,h m(Wi ,θn,h),

t̂n = argmin
t∈R p

+
sup

λ∈�̂n(t,θn,h)

n P̂ρ(t,θn,h,λ), if it exists,

m̂n(t) = n−1 ∑n
i=1 mi (t,θn,h),

�̂(t) = n−1 ∑n
i=1 mi (t,θn,h)mi (t,θn,h)′, and

�n = {λ ∈ Rk : ||λ|| ≤ n−1/(2+δ/2)} (A.20)

for δ > 0 as in condition (vii) of (3.3). Let ρj (x) = (∂ j ρ/∂x j )(x) for j = 1,2. Let w.p.a.1
denote “with probability that approaches one as n → ∞.”

We make the following assumption.

Assumption GEL.

(a) The observations are i.i.d. for each fixed (θ, F) ∈ F .

(b) Condition (v) of (3.3) is strengthened to VarF (mj (Wi ,θ)) ∈ [ε∗, M∗] for some
ε∗ > 0 and M∗ < ∞ for j = 1, . . . ,k.

(c) The parameter space � in (3.3) equals �2.

(d) For any sequence {γwn ,h : n ≥ 1} and corresponding {(θwn ,h, Fwn ,h) ∈F : n ≥ 1},
t̂wn = argmint∈R p

+ sup
λ∈�̂wn (t,θwn ,h)

wn P̂ρ(t,θwn ,h ,λ) and t∗wn
= argmint∈R p

+
wn(mwn (θwn ,h) − (t,0v ))′
̂−1

wn
(θwn ,h)(mwn (θwn ,h) − (t,0v )) exist and satisfy

supn≥1 ||t̂wn || ≤ K and supn≥1 ||t∗wn
|| ≤ K w.p.a.1 for some constant K < ∞,

where 
̂wn (θ) is defined in (3.8).
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The proof of (A.19) uses a similar approach to that in Newey and Smith (2004). The
proof uses the following four lemmas.

LEMMA 3. Suppose Assumption GEL holds. For any sequence {γwn ,h : n ≥ 1} and cor-
responding {(θwn ,h , Fwn ,h) ∈F : n ≥ 1}, there exist constants K < ∞ and ε > 0 such that

(i) λmin(�̂(twn ,h)) ≥ ε w.p.a.1 and w−1
n ∑wn

i=1 ||mi (twn ,h,θwn ,h)mi (twn ,h,θwn ,h)′|| =
Op(1),

(ii) for every random sequence {̃twn ∈ R p
+ : n ≥ 1} with supn≥1 ||t̃wn || ≤ K w.p.a.1,

max1≤i≤wn ||mi (t̃wn ,θwn ,h)|| = Op(w
1/(2+δ)
n ) and λmax(�̂(t̃wn )) ≤ K w.p.a.1,

(iii) m̂wn (twn ,h) = Op(w
−1/2
n ), and

(iv) w−1
n ∑wn

i=1 ||m(Wi ,θwn ,h)|| = Op(1) and ||twn ,h || ≤ K .

The next three lemmas are analogues of Lemmas 7–9 of Guggenberger and Smith
(2005). They all hold under a given sequence {γn,h : n ≥ 1} and corresponding {(θn,h, Fn,h)
∈ F : n ≥ 1} and Assumption GEL.

LEMMA 4. Assume that for a (possibly random) sequence {tn ∈ R p
+ : n ≥ 1} we have

max1≤i≤n ||mi (tn,θn,h)|| = Op(n1/(2+δ)). Then, supλ∈�n ,1≤i≤n |λ′mi (tn,θn,h)| →p 0

and �n ⊂ �̂n(tn,θn,h) w.p.a.1.

LEMMA 5. Assume that for a (possibly random) sequence {tn ∈ R p
+ : n ≥ 1} we have

max1≤i≤n ||mi (tn,θn,h)|| = Op(n1/(2+δ)), λmin(�̂(tn)) ≥ ε w.p.a.1 for an ε > 0, and

m̂n(tn) = Op(n−1/2). Then, λ(tn,θn,h) ∈ �̂n(tn,θn,h) satisfying P̂ρ(tn,θn,h,λ(tn,θn,h))

= sup
λ∈�̂n(tn ,θn,h)

P̂ρ(tn,θn,h,λ) exists w.p.a.1, λ(tn,θn,h) = Op(n−1/2), and

sup
λ∈�̂n(tn ,θn,h)

P̂ρ(tn,θn,h,λ) = Op(n−1).

LEMMA 6. Suppose t̂n (defined in (A.20)) exists w.p.a.1, max1≤i≤n ||mi (t̂n,θn,h)|| =
Op(n1/(2+δ)), λmax(�̂(t̂n)) ≤ K w.p.a.1 for some K < ∞, and sup

λ∈�̂n(tn,h ,θn,h)
P̂(tn,h ,

θn,h ,λ) = Op(n−1). Then, m̂n(t̂n) = Op(n−1/2).

Remark. Lemmas 4–6 hold for any subsequence {wn : n ≥ 1} in place of {n}.

Proof of (A.19). For notational simplicity we use n instead of wn in the proof. We
use the abbreviations P̂ρ(t,λ) = P̂ρ(t,θn,h,λ) and mi (t) = mi (t,θn,h). Using Lemma 3,
Lemma 5 with tn = tn,h yields sup

λ∈�̂n(tn,h ,θn,h)
P̂ρ(tn,h ,λ) = Op(n−1). Using this result,

Assumption GEL(d), and Lemma 3(ii), Lemma 6 gives m̂n(t̂n) = Op(n−1/2). Therefore,

Op(n−1/2) = m̂n(t̂n) = n−1 ∑n
i=1 m(Wi ,θn,h)− (tn,h,0v )+ (tn,h,0v )− (t̂n,0v )

= op(1)+ (tn,h ,0v )− (t̂n,0v ) (A.21)

and hence t̂n − tn,h →p 0p. By Lemma 3(i) we have λmin(�̂(twn ,h)) ≥ ε w.p.a.1, and it

was just shown that t̂n − tn,h →p 0p. These two statements imply λmin(�̂(t̂n)) ≥ ε w.p.a.1
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using the technicalities in Lemma 3(iv) and simply multiplying out. By Lemma 3(ii), the
second part of Lemma 3(iv), and t̂n − tn,h →p 0p, we have max1≤i≤n ||mi (t̂n,θn,h)||
= Op(n1/(2+δ)). Using this, we apply Lemma 5 with tn = t̂n and conclude that λn ≡
λ(t̂n,θn,h) ∈ �̂n(t̂n,θn,h) satisfying P̂ρ(t̂n,λn) = sup

λ∈�̂n(t̂n ,θn,h)
P̂ρ(t̂n,λ) exists w.p.a.1

and λn = Op(n−1/2). Therefore, the first-order conditions

n−1 ∑n
i=1 ρ1(λ′

nmi (t̂n))mi (t̂n) = 0k (A.22)

hold w.p.a.1. Expanding the first-order conditions in λ around 0k , there exists a mean value
λ̃n between 0k and λn (that may be different for each row) such that w.p.a.1

0k = −m̂n(t̂n)+ [n−1 ∑n
i=1 ρ2(λ̃′

nmi (t̂n))mi (t̂n)mi (t̂n)′]λn

= −m̂(t̂n)− �̂nλn, (A.23)

where the matrix �̂n has been defined implicitly. Because λn = Op(n−1/2), max1≤i≤n

||mi (t̂n,θn,h)|| = Op(n1/(2+δ)), and ρ2(0) = −1, we have max1≤i≤n |ρ2(λ̃′
nmi (t̂n)) +

1| →p 0. Thus, by Lemma 3(i), �̂n − �̂(t̂n) →p 0k×k . In addition, by the preceding argu-
ment, λmin(�̂(t̂n)) ≥ ε w.p.a.1. In consequence, �̂n is invertible w.p.a.1, and

λn = −�̂−1
n m̂n(t̂n) (A.24)

w.p.a.1. Inserting this into a second-order Taylor expansion for P̂ρ(t̂n,λ) with mean value
λ∗

n, it follows that w.p.a.1

P̂ρ(t̂n,λn) = −2λ′
nm̂n(t̂n)+λ′

n[n−1 ∑n
i=1 ρ2(λ∗′

n mi (t̂n))mi (t̂n)mi (t̂n)′]λn

= 2m̂n(t̂n)′�̂−1
n m̂n(t̂n)− m̂n(t̂n)′�̂−1

n �̃n�̂−1
n m̂n(t̂n), (A.25)

where �̃n ≡ n−1 ∑n
i=1 ρ2(λ∗′

n mi (t̂n))mi (t̂n)mi (t̂n)′ satisfies �̃n − �̂n →p 0 by the same

argument as used earlier to show �̂n − �̂(t̂n) →p 0k×k . Therefore, up to op(1) terms, we
have

T GEL
n (θn,h) = nm̂n(t̂n)′�̂(t̂n)−1m̂n(t̂n)

= n(mn(θn,h)− (t̂n,0v ))′�̂(t̂n)−1(mn(θn,h)− (t̂n,0v ))

= n(mn(θn,h)− (t̂n,0v ))′
̂n(θn,h)−1(mn(θn,h)− (t̂n,0v ))

= min
t∈R p

+,∞
n(mn(θn,h)− (t,0v ))
̂n(θn,h)−1(mn(θn,h)− (t,0v ))

= S2(n1/2mn(θn,h), 
̂n(θn,h)), (A.26)

where the third equality holds because 
̂n(θn,h) = n−1 ∑n
i=1(m(Wi ,θn,h)− Emn(θn,h))

(m(Wi ,θn,h)−Emn(θn,h))′+op(1) and tn,h − t̂n →p 0p. The second to last equality holds
by the following argument. Denote by t∗n the minimizing t ∈ R p

+,∞ in the second to last
equality of (A.26). We have to show that

n(mn(θn,h)− (t̂n,0v ))′
̂n(θn,h)−1(mn(θn,h)− (t̂n,0v ))

− n(mn(θn,h)− (t∗n ,0v ))
̂n(θn,h)−1(mn(θn,h)− (t∗n ,0v )) (A.27)
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is op(1). If this does not hold, then it could not be the case that m̂n(t∗n ) = Op(n−1/2)
because if the latter were true, then the argument in (A.21)–(A.26) could be applied to
t∗n instead of t̂n, yielding T GEL

n (θn,h) = n(mn(θn,h)− (t∗n ,0v ))′
̂n(θn,h)−1(mn(θn,h)−
(t∗n ,0v )) w.p.a.1, which is a contradiction. Therefore, m̂n(t∗n ) is not Op(n−1/2). But then
Tn(θn,h) = mint∈R p

+,∞ n(mn(θn,h) − (t,0v )) 
̂n(θn,h)−1(mn(θn,h) − (t,0v )) cannot be

Op(1) because λmin(
̂n(θn,h)−1) ≥ ε w.p.a.1 by the second part of Lemma 3(ii). There-
fore, we get a contradiction to (A.10) (where the latter shows that Tn(θn,h) →d Jh and
thus Tn(θn,h) = Op(1)). Therefore, the expression in (A.27) is indeed op(1). n

Proof of Lemma 3. The first part of Lemma 3(i) holds because (a) �̂(twn ,h)− EFwn

�̂(twn ,h) = op(1) by a weak LLN for row-wise i.i.d. random variables given Assumptions

GEL(a) and (b) and condition (vii) of (3.3) and (b) λmin(EFwn
�̂(twn ,h)) ≥ ε for some ε > 0

for all n by Assumptions GEL(b) and (c). The second part of Lemma 3(i) and the first part
of Lemma 3(iv) hold by a weak LLNs, Assumptions GEL(a) and (b), and condition (vii) of
(3.3). The first part of Lemma 3(ii) holds using Assumptions GEL(a) and (b) and condition
(vii) of (3.3); e.g., see Guggenberger and Smith (2005, eqn. (2.4)). The second part of
Lemma 3(ii) holds by a weak LLN, Assumptions GEL(a) and (b), and condition (vii) of
(3.3). Lemma 3(iii) holds by a Liapounov CLT for a row-wise i.i.d. triangular array of
random variables applied to {mi (twn ,h ,θwn ,h) : i = 1, . . . ,n; n ≥ 1} using Assumptions
GEL(a) and (b), condition (vii) of (3.3), and the fact that mi (twn ,h,θwn ,h) has mean zero
given the definition of tn,h . The second part of Lemma 3(iv) holds by Assumption GEL(b)
and condition (vii) of (3.3). n

Proof of Lemma 4. The result of the lemma follows from supλ∈�n ,1≤i≤n |λ′mi

(tn,θn,h)| ≤ Op(n−1/(2+δ/2)n1/(2+δ)) = op(1). n

Proof of Lemma 5. We use the abbreviations P̂ρ(λ) = P̂ρ(tn,θn,h ,λ) and mi =
mi (tn,θn,h) in this proof. Let λn ∈ �n be such that P̂ρ(λn) = maxλ∈�n P̂ρ(λ). Such a
λn ∈ �n exists w.p.a.1 because a continuous function takes on its maximum on a compact
set and by Lemma 4 P̂ρ(·) is twice continuously differentiable, i.e., C2, on some open
neighborhood of �n w.p.a.1. We now show that actually P̂ρ(λn) = sup

λ∈�̂n(tn ,θn,h)
P̂ρ(λ)

w.p.a.1, which then proves the first part of the lemma. By a second-order Taylor expan-
sion around λ = 0, there is a λ∗

n on the line segment joining 0k and λn such that for some
positive constants C1 and C2, we have

0 = P̂ρ(0) ≤ P̂ρ(λn)

= −2λ′
nm̂n(tn)+λ′

n[n−1 ∑n
i=1 ρ2(λ∗′

n mi )mi m′
i ]λn

≤ −2λ′
nm̂n(tn)−C1λ′

n�̂(tn)λn ≤ 2||λn || ||m̂n(tn)||−C2||λn ||2 (A.28)

w.p.a.1, where the second inequality follows because max1≤i≤n ρ2(λ∗′
n mi ) < −1/2 w.p.a.1

by Lemma 4, continuity of ρ2(·) at zero, and ρ2(0) = −1. The last inequality follows
from λmin(�̂(tn)) ≥ ε > 0 w.p.a.1. Now, (A.28) implies that (C2/2)||λn || ≤ ||m̂n(tn)||
w.p.a.1, the latter being Op(n−1/2). Therefore, λn ∈ int (�n) w.p.a.1. Hence, the first-
order conditions for an interior maximum ∂ P̂ρ(λ)/∂λ = 0 hold at λ = λn w.p.a.1. By
Lemma 4, λn ∈ �̂n(tn,θn,h) w.p.a.1, and thus by concavity of P̂ρ(λ) and convexity of
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�̂n(tn,θn,h) it follows that P̂ρ(λn) = sup
λ∈�̂n(tn ,θn,h)

P̂ρ(λ) w.p.a.1, which implies the

first part of the lemma. From before, λ(tn,θn,h) = λn = Op(n−1/2). Thus, the second part
of the lemma holds. This, ||m̂n(tn)|| = Op(n−1/2), and (A.28) give the third part of the
lemma. n

Proof of Lemma 6. We use the abbreviations P̂ρ(t,λ) = P̂ρ(t,θn,h,λ) and mi (t) =
mi (t,θn,h) in this proof. Wlog, m̂n(t̂n) = 0 can be assumed. Define λn = −n−1/2m̂n(t̂n)/

||m̂n(t̂n)||. Note that λn ∈ �n and thus λn ∈ �̂n(t̂n,θn,h) w.p.a.1 by Lemma 4 (applied
with tn = t̂n). By a second-order Taylor expansion around λ = 0, there is a λ̃n on the line
segment joining 0k and λn such that for some positive constants C1 and C2, we have

P̂ρ(t̂n,λn) = −2λ′
nm̂n(t̂n)+λ′

n[n−1 ∑n
i=1 ρ2(λ̃′

nmi (t̂n))mi (t̂n)mi (t̂n)′]λn

≥ 2n−1/2||m̂n(t̂n)||−C1λ′
n�̂(t̂n)λn

≥ 2n−1/2||m̂n(t̂n)||−C2n−1 (A.29)

w.p.a.1, where the first inequality follows from min1≤i≤n ρ2(λ̃′
nmi (t̂n)) ≥ −1.5 w.p.a.1,

which is implied by Lemma 4. The second inequality follows by λmax(�̂(t̂n)) ≤ K < ∞
w.p.a.1. The definition of t̂n implies

P̂ρ(t̂n,λn) ≤ sup
λ∈�̂n(t̂n ,θn,h)

P̂(t̂n,λ) ≤ sup
λ∈�̂n(tn,h ,θn,h)

P̂(tn,h,λ) = Op(n−1). (A.30)

Combining equations (A.29) and (A.30) implies n−1/2||m̂n(t̂n)|| = Op(n−1). n

A2. General Results. This section is concerned with the general results of Section 9.
First, we state a corollary to Theorem 3 that applies when the parameter space � takes on a
partial product-space form, as in Assumption A of Andrews and Guggenberger (2010). In
this case, the form of H and GH can be made more explicit, and the results of Theorem 3
hold under an assumption that eliminates the subsequences that appear in Assumption B0.
Second, we prove Theorem 3.

Let � denote the left endpoint of an interval that may be open or closed at the left end.
Define � analogously for the right endpoint. The following assumption implies Assumption
A0. Let R− = {x ∈ R : x ≤ 0} and R−,∞ = R− ∪{−∞}.

Assumption A.

(a) For some �1 ⊂ R p, �2 ⊂ Rq , and �3(γ1,γ2) ⊂ T3, which may depend on γ1 and
γ2, � satisfies

� = {(γ1,γ2,γ3) : γ1 ∈ �1,γ2 ∈ �2,γ3 ∈ �3(γ1,γ2)} (A.31)

and

(b) �1 = ∏p
m=1 �1,m , where �1,m = �γ �

1,m ,γ u
1,m� for some −∞ ≤ γ �

1,m < γ u
1,m ≤ ∞

that satisfy γ �
1,m ≤ 0 ≤ γ u

1,m for m = 1, . . . , p.
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Under Assumption A, it follows that

H = H1 × H2, H1 =
p

∏
m=1

⎧⎪⎪⎨⎪⎪⎩
R+,∞ if γ �

1,m = 0

R−,∞ if γ u
1,m = 0

R∞ if γ �
1,m < 0 and γ u

1,m > 0,

H2 = cl(�2),

(A.32)

where cl(�2) is the closure of �2 with respect to Rq∞. For example, if p = 1, γ �
1,1 = 0, and

�2 = Rq , then H1 = R+,∞, H2 = Rq∞, and H = R+,∞ × Rq∞.
Under Assumption A, the set G H reduces to

GH = {(g,h) ∈ H × H : g = (g1,g2), h = (h1,h2), g2 = h2, and for

m = 1, . . . , p, (i) g1,m = 0 if |h1,m | < ∞, (ii) g1,m ∈ R+,∞ if h1,m

= +∞, and (iii) g1,m ∈ R−,∞ if h1,m = −∞},
(A.33)

where g1 = (g1,1, . . . ,g1,p)′ ∈ H1 and h1 = (h1,1, . . . ,h1,p)′ ∈ H1. Note that for (g,h) ∈
GH, we have |g1,m | ≤ |h1,m | for all m = 1, . . . , p.

Given Assumption A, the following weakened version of Assumption B0 is sufficient.

Assumption B′. For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, and some
distributions Jh , Tn(θn,h) →d Jh under {γn,h : n ≥ 1}, where γn,h = ((θn,h,1,ηn,h,1),
(θn,h,2,ηn,h,2),γn,h,3) and θn,h = (θn,h,1,θn,h,2).

Assumption B′ is the same as Assumption B of Andrews and Guggenberger (2010)
except that it applies to CSs rather than tests, so that Tn(θ) is evaluated at θn,h rather than
at the null value θ0 and γn,h is defined differently.

We have the following corollary to Theorem 3.

COROLLARY 1. Theorem 3 holds with H and GH defined in (A.32) and (A.33),
respectively, with Assumptions A0 and B0 replaced by Assumptions A and B′.

Remarks.

1. Assumption B′ is simpler and weaker than Assumption B0. But typically the work
needed to verify these assumptions and the strength of the assumptions are almost the
same. Hence, the main advantage of Corollary 1 is that when Assumption A holds
one has the explicit forms for H and GH given in (A.32) and (A.33).

2. Corollary 1 is proved using the proof of Theorem 3 coupled with the argument given
in (8.6)–(8.7) of the proof of Lemma 6 of Andrews and Guggenberger (2010).

Proof of Theorem 3. The proof of the results of Theorem 3 for AsyCS is analogous
to that of Theorem 1 of Andrews and Guggenberger (2010) with the following changes:
AsySz(θ0) is replaced by 1 − AsyCS, probabilities Pθ,γ (·) and expectations Eθ,γ (·) are
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replaced by Pγ (·) and Eγ (·), respectively, because θ is a subvector of γ, the test statis-
tic Tn(θ0) is replaced by Tn(θn) throughout, where θn denotes the true value of θ which
may depend on n, and one makes use of the fact that infh∈H Jh(cFix (1 − α)−) = 1 −
Max−

Fix(α), inf(g,h)∈GH Jh(cg(1 − α)) = 1 − MaxSub(α), etc., where Max−
Fix(α) and

MaxSub(α) are defined in Andrews and Guggenberger (2010). The proof of the results
for AsyMaxCP is quite similar to those for AsyCS and hence is not discussed.

The replacement of Assumptions A, B, E, and G of Andrews and Guggenberger (2010)
by Assumptions A0, B0, E0, and G0 requires the following changes in the proof of
Theorem 1 of that paper. First, we show that the results of Lemma 6(i)–(vi) of Andrews
and Guggenberger (2010) hold with {γwn : n ≥ 1} equal to {γwn ,g,h : n ≥ 1} (defined in
this paper) under the assumptions of Theorem 3 of this paper. Lemma 6(i) of Andrews
and Guggenberger (2010) (i.e., (g,h) ∈ GH) holds by the definition of GH in this paper.
The proof of Lemma 6(ii) is the same as in Andrews and Guggenberger (2010) (noting
that {γwn : n ≥ 1} in Lemma 6 is of the form {γwn ,g,h : n ≥ 1} considered in this paper)
but with (8.6) holding by Assumption B0 rather than by the proof given in Andrews and
Guggenberger (2010). The proof of Lemma 6(c) is much simpler than that in Andrews and
Guggenberger (2010). By Assumption E0, Uwn ,bwn

(x)−Eγwn ,g,h Uwn ,bwn
(x) →p 0 under

{γwn ,g,h : n ≥ 1}, and so (8.7) of Andrews and Guggenberger (2010) is not needed. This
result and the result of Lemma 6(ii) yield Lemma 6(iii). Similarly, the proof of Lemma
6(d) is much simpler than that in Andrews and Guggenberger. The result of Lemma 6(iv)
holds immediately by Assumption G0 and the result of Lemma 6(iii). The proof of Lem-
mas 6(v)–(vi) of Andrews and Guggenberger (2010) is the same as in that paper but with
the result of (II) stated in the proof holding by Assumption B0 rather than by the proof
given in Andrews and Guggenberger (2010).

Second, in the proof of Theorem 1 of Andrews and Guggenberger (2010), (8.10) holds
by the definition of GH (which guarantees that for each (g,h) ∈ GH there is a sequence
{γwn ,g,h : n ≥ 1}) and the result of Lemma 6(vi) of Andrews and Guggenberger (2010). The
remainder of the proof holds using the modified version of Lemma 6 (which holds under
Assumptions A0, B0, C, D, E0, F, and G0) with the only change being that h2 ∈ cl(�2) in
(8.14) is replaced by h2 ∈ Rq∞. This concludes the adjustment of the proof of Theorem 1
of Andrews and Guggenberger (2010) to take account of the change in assumptions.

The improvement to the lower bound on AsyCS for subsampling CSs is obtained as fol-
lows. If the assumption is added to Lemma 5 of Andrews and Guggenberger (2010) that
liminfn→∞ P(Tn ≤ cn) ≥ GT (c∞), then the lemma yields the stronger conclusion that
P(Tn ≤ cn) → GT (c∞). This follows directly from the proof of Lemma 5(ii) of Andrews
and Guggenberger (2010). Therefore, for any (g,h) ∈ GH∗ and any sequence {γwn ,g,h :
n ≥ 1}, the proof of Lemma 6(vi) of Andrews and Guggenberger (2010) yields the stronger
conclusion that Pγwn ,g,h (Twn (θwn ,g,h ) ≤ cwn ,bwn

(θwn ,g,h ,1 −α)) → Jh(cg(1 −α)). Com-
bining this with the proof of Theorem 1(ii) of Andrews and Guggenberger (2010) estab-
lishes the lower bound Min−

CS,Sub(α) to AsyCS given in the theorem.
n


