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a b s t r a c t

Subsampling and the m out of n bootstrap have been suggested in the literature as methods for carrying
out inference based on post-model selection estimators and shrinkage estimators. In this paper we
consider a subsampling confidence interval (CI) that is based on an estimator that can be viewed either
as a post-model selection estimator that employs a consistent model selection procedure or as a super-
efficient estimator. We show that the subsampling CI (of nominal level 1 − α for any α ∈ (0, 1))
has asymptotic confidence size (defined to be the limit of finite-sample size) equal to zero in a very
simple regular model. The same result holds for the m out of n bootstrap provided m2/n → 0 and the
observations are i.i.d. Similar zero-asymptotic-confidence-size results hold in more complicated models
that are covered by the general results given in the paper and for super-efficient and shrinkage estimators
that are not post-model selection estimators. Based on these results, subsampling and the m out of n
bootstrap are not recommended for obtaining inference based on post-consistent model selection or
shrinkage estimators.

© 2009 Published by Elsevier B.V.

1. Introduction

Over the years, Peter Robinson has made path breaking
contributions to time series analysis. Particularly noteworthy is
his contribution to a class of non-regular time series models, viz.,
those with long memory. In this paper, we consider inference
in the presence of a different non-regular feature, viz., inference
based on a test statistic that has a discontinuity in its asymptotic
distribution as a function of some parameter. In particular, we
consider subsampling inference based on post-model selection
test statistics and test statistics based on shrinkage estimators.
Post-model selection tests and confidence intervals (CIs) are
widely used in practice, with both time series and cross-section
observations. Shrinkage estimators are important because many
new developments in nonparametric statistics rely on shrinkage
methods. Subsampling a super-efficient estimator has been

∗ Corresponding address: Department of Economics, Yale University, 30 Hill-
house Ave, Rm. 17, Box 208281, New Haven, CT 06520-8281, United States. Tel.:
+1 203 432 3698; fax: +1 203 432 6167.
E-mail address: donald.andrews@yale.edu (D.W.K. Andrews).

suggested in Politis et al. (1999) (hereafter PRW) and Lehmann and
Romano (2005). Using the m out of n bootstrap for a post-model
selection estimator has been suggested by Shao (1994, 1996).
Subsampling is a very generalmethod for carrying out inference

in econometric and statistical models, see Politis and Romano
(1994). Also see Shao and Wu (1989), Wu (1990), Sherman and
Carlstein (1996), and PRW.1 Minimal conditions are needed for
subsampling tests and confidence intervals (CIs) to have desirable
asymptotic properties, such as asymptotically correct rejection
rates and coverage probabilities under standard asymptotics based
on a fixed true probability distribution for the observations;
see PRW.
Recent papers by Andrews and Guggenberger (forthcoming-

a,c,d) and Guggenberger (2008, Supplement), however, show that
subsampling methods often do not yield the correct asymptotic
size (defined to be the limit of finite-sample size) when a test

1 Shao and Wu (1989) and Wu (1990) refer to subsampling as the delete d
jackknife.

0304-4076/$ – see front matter© 2009 Published by Elsevier B.V.
doi:10.1016/j.jeconom.2009.02.001
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statistic has a discontinuity in its asymptotic distribution.2 The
results in those papers rely on an assumption, viz., Assumption
B, that is violated in the cases of post-model selection inference
based on ‘‘consistent’’ model selection procedures and inference
based on shrinkage estimators; see Section 3.3.3 In this paper we
provide results based on a weaker condition than Assumption B,
viz., Assumption B1, and show that this assumption holds in the
cases above.
The results of this paper establish that subsampling CIs based

on a post-consistent model selection or shrinkage estimator have
asymptotic size equal to zero in a very simple model. The general
results provided in the paper also apply to more complicated
models.
The reason why the subsampling CI has asymptotic size equal

to zero in the present context is explained as follows. Consider a
shrinkage estimator θ̂n of a parameter θ that equals zero when
some preliminary estimator θ̂P,n satisfies |̂θP,n| ≤ n−1/4 and
otherwise equals θ̂P,n, where n is the sample size. A nominal 1− α
subsampling CI for θ is obtained by inverting subsampling tests
based on the test statistic Tn(θ0) = |n1/2(̂θn − θ0)| for testing
H0 : θ = θ0 for each θ0 ∈ R.4 This CI is of the usual form
θ̂n± cn,b(1−α)/n1/2, where cn,b(1−α) is the subsampling critical
value based on subsamples of size b, where b→∞ and b/n→ 0
as n→∞. The subsampling critical value, cn,b(1−α), is the 1−α
sample quantile of the subsample statistics of size b. The shrinkage
estimator θ̂n can be viewed as a post-consistent model selection
estimator where model 1 takes θ = 0 and model 2 takes θ ∈ R.
Suppose the true parameter is θn,h = h/n1/2 for some constant

h 6= 0 for n ≥ 1. We consider the asymptotic behavior of Tn(θn,h)
and cn,b(1 − α) under {θn,h : n ≥ 1}. As is typical, suppose the
preliminary estimator θ̂P,n satisfies n1/2(̂θP,n − θn,h) = Op(1) and
b1/2(̂θP,b−θn,h) = Op(1) under {θn,h : n ≥ 1}. Under {θn,h : n ≥ 1},
θ̂n = 0 with probability that goes to one (wp → 1), because
|̂θP,n| = |̂θP,n − θn,h| + Op(n−1/2) = Op(n−1/2) < n−1/4wp→ 1. In
consequence, Tn(θn,h) = |n1/2θn,h| = |h|wp→ 1.
On the other hand, it can be shown that the asymptotic

distribution of the subsample statistics of size b is the same as the
asymptotic distribution of the full-sample statistic based on a full
sample of size b, i.e., Tb(θn,h). Hence, the probability limit of the

2 The finite-sample (or exact) size of a test is defined to be themaximum rejection
probability of the test under distributions in the null hypothesis. A test is said to
have levelα if its finite-sample size isα or less. The asymptotic size of a test is defined
to be the limit of the finite-sample size of the test. The finite-sample (or exact) size
of a confidence interval (or confidence set) is defined to be the minimum coverage
probability of the confidence interval under distributions in themodel. Analogously,
a confidence interval is said to have level1 − α if its finite-sample size is 1 − α or
greater. The asymptotic size of a confidence interval is defined to be the limit of the
finite-sample size of the confidence interval.
3 A ‘‘consistent’’ model selection procedure, like BIC, selects the most parsimo-
nious correct model with probability that goes to one as n → ∞ under a fixed
probability distribution for the data. A ‘‘conservative’’ model selection procedure,
like AIC, selects a correct model, but not necessarily the most parsimonious cor-
rect model, with probability that goes to one as n → ∞ under a fixed probability
distribution for the data.
4 Here we consider a non-studentized test statistic because subsampling tests
do not require studentization given that changes in the scale of the test statistic
cancel with the corresponding changes in the scale of the subsample statistics. For
example, if the test statistic Tn(θ0) is multiplied by τ > 0, then by their definition
the subsample statistics also aremultiplied by τ , and the subsampling critical value
is multiplied by τ , which leaves the test unchanged. This does not mean that a
subsampling test is the same whether or not one studentizes the test statistic. It
means that studentization is not necessary for subsampling tests to work properly
when the purpose of studentization is to account for unknown scale τ . In other
contexts, such as with unit roots, studentization may be necessary, but in those
cases, studentization is doing more than just accounting for unknown scale τ .
Analogous results to those discussed here also hold for studentized statistics, as
is shown in the general results below.

subsampling critical value is the 1 − α quantile of the asymptotic
distribution of Tb(θn,h) under {θn,h : n ≥ 1}. By definition,
Tb(θn,h) = |b1/2(̂θb − θn,h)| and θ̂b = 0 if |̂θb| ≤ b−1/4. The latter
occurs wp → 1 because |̂θP,b| = |̂θP,b − θn,h| + Op(n−1/2) =
Op(b−1/2) < b−1/4 wp→ 1. Hence, θ̂b = 0 wp→ 1 and Tb(θn,h) =
|b1/2θn,h| + op(1) = op(1) since b/n → 0. In turn, this implies
that the subsampling critical value converges in probability to 0.
Since the test statistic Tn(θn,h) converges in probability to |h| > 0
and the subsampling critical value converges in probability to 0,
the subsampling test of H0 : θ = θn,h rejects wp → 1 and the CI
obtained by inverting the subsampling tests fails to include the true
value θn,h wp→ 1. This implies that the finite-sample confidence
size of the subsampling CI goes to zero as n→∞.
In short, the argument above is: Tn(θn,h)→p |h| under θn,h =

(h + o(1))/n1/2 for any h ∈ R implies that Tb(θb,h)→p |h| under
θb,h = (h + o(1))/b1/2 for all h ∈ R, and so, Tb(θn,h)→p 0 under
θn,h = (h + o(1))/n1/2 = (0 + o(1))/b1/2 since b/n → 0. So,
the subsample statistics are smaller than the full-sample statistic
in large samples and the subsampling test rejects wp→ 1.
The paper also gives results for CIs that are based on fixed

critical values (FCVs) rather than subsampling critical values. The
asymptotic results given here for subsampling tests also apply to
m out of n bootstrap tests applied to i.i.d. observations provided
m2/n → 0. The reason is that subsampling based on subsamples
of size m can be viewed as bootstrapping without replacement,
which is not too different from bootstrapping with replacement
whenm2/n is small.5
Related results in the literature include the following.

Samworth (2003) provides simulation results and heuristics in-
dicating that the m out of n bootstrap does not provide a good
approximation to the distribution of a shrinkage estimator.6 Beran
(1982) shows that the (standard) bootstrap is inconsistent for the
distribution of a shrinkage estimator. Kabaila (1995) shows that an
FCV CI based on a super-efficient estimator has asymptotic confi-
dence level equal to zero; see Leeb and Pötscher (2005) for related
results. The results of Leeb and Pötscher (2006) show that no uni-
formly consistent estimator of the distribution of a super-efficient
estimator exists. The results given in this paper are not a special
case of their result, because a uniformly consistent estimator of the
null distribution of a test statistic is not necessary to obtain a test of
level α. For example, Andrews and Guggenberger (forthcoming-b)
provides an example which illustrates this in the context of infer-
ence based on moment inequalities.
Subsequent to the present paper, Pötscher (unpublished

manuscript) has provided some results concerning confidence sets
based on sparse estimators. Some, but not all, of the subsampling
results of the present paper also can be established via results
in Pötscher (unpublished manuscript). In particular, Pötscher’s
(unpublished manuscript) results do not provide an expression
for the asymptotic coverage probability of a subsampling CI as
a function of the localization parameter h, which is the main
result of this paper; see Theorem 2 below. In addition, Pötscher’s
(unpublished manuscript) results do not apply to (i) the specific
example considered below with a > 0 because the estimator is
not a sparse estimator and (ii) models in which the subsampling

5 In an i.i.d. scenario, the distribution of a subsample of size b is the same as
the conditional distribution of a nonparametric bootstrap sample of size m = b
conditional on there being no duplicates of observations in the bootstrap sample. If
m2/n→ 0, then the probability of no duplicates goes to one as n→∞; see PRW,
p. 48. In consequence, m out of n bootstrap tests and subsampling tests have the
same first-order asymptotic properties.
6 The simulation results in Samworth (2003) are for the case where the constant
a, defined in (2.4) below, equals .5. For smaller values of a, such as a = 0, the results
are exacerbated.



D.W.K. Andrews, P. Guggenberger / Journal of Econometrics 152 (2009) 19–27 21

critical value cn,b(1 − α) is not stochastically bounded uniformly
in the parameter θ , which needs to be established for Pötscher’s
(unpublished manuscript) results to apply. For an example in
which the latter condition fails, see Andrews and Guggenberger
(forthcoming-d). This example concerns subsampling in a linear
instrumental variables regression model with possibly weak
instruments.
Other papers that consider uniformity properties of subsam-

pling methods include (i) Andrews and Guggenberger
(forthcoming-a,b,c,d), who provide explicit expressions for asymp-
totic size, improvements to subsampling based on hybrid and size-
correctionmethods, and applications to a variety of different mod-
els, (ii) Mikusheva (2007), who shows that equal-tailed two-sided
subsampling CIs do not have correct asymptotic size in an autore-
gressivemodelwith a root thatmay be near unity, and (iii) Romano
and Shaikh (2008), who provide high-level conditions underwhich
subsampling CIs have correct asymptotic size and apply them to
parameters defined by moment inequalities.
The remainder of the paper is organized as follows. Section 2

defines the class of FCV and subsampling CIs that are con-
sidered in the paper and introduces the post-consistent model
selection/shrinkage estimator example. Section 3 states the gen-
eral assumptions and verifies them in the post-consistent model
selection/shrinkage estimator example. Section 4 states the
general asymptotic results and shows that they imply that
the post-consistent model selection/shrinkage estimator CI has
asymptotic size equal to zero. Section 5 provides proofs of the gen-
eral results.

2. Confidence interval set-up

2.1. Test statistics

We are interested in confidence intervals (CIs) (or confidence
regions) for a parameter θ ∈ Rd in the presence of nuisance
parameters.We construct such intervals by inverting a test statistic
Tn(θ0) for testingH0 : θ = θ0. The test statistic Tn(θ0)may be an LR,
LM, Wald, t , or some other statistic. A test based on Tn(θ0) rejects
the null hypothesis when Tn(θ0) exceeds some critical value.
When Tn(θ0) is a t statistic, it is defined as follows. Let θ̂n be an

estimator of a scalar parameter θ based on a sample of size n. Let
σ̂n(∈ R) be an estimator of the scale of θ̂n. For alternatives of the
sort (i) H1 : θ > θ0, (ii) H1 : θ < θ0, and (iii) H1 : θ 6= θ0,
respectively, the t statistic is defined as follows:

Assumption t1. (i) Tn(θ0) = T ∗n (θ0), or (ii) Tn(θ0) = −T
∗
n (θ0), or

(iii) Tn(θ0) = |T ∗n (θ0)|, where T
∗
n (θ0) = τn(̂θn − θ0)/σ̂n and τn is

some known normalization constant.
In many cases, τn = n1/2.
A common case considered in the subsampling literature is

when Tn(θ0) is a non-studentized t statistic; see PRW. In this case,
Assumption t1 and the following assumption hold.

Assumption t2. σ̂n = 1.
We employ either a fixed critical value (FCV), cFix(1 − α), or a

subsampling critical value, cn,b(1−α), defined below. LetΘ(⊂ Rd)
denote the parameter space for θ . The CI for θ contains all points
θ0 ∈ Θ for which the test of H0 : θ = θ0 fails to reject the null
hypothesis:

CIn = {θ0 ∈ Θ : Tn(θ0) ≤ c1−α}, (2.1)

where c1−α equals cFix(1−α) or cn,b(1−α) (and c1−α may depend
on θ0).
For example, suppose Tn(θ0) is (i) an upper one-sided, (ii) lower

one-sided, or (iii) symmetric two-sided t test of nominal level α

(i.e., Assumption t1(i), (ii), or (iii) holds) and c1−α does not depend
on θ0. Then, the corresponding CI of nominal level α is defined by

CIn = [̂θn − τ−1n σ̂nc1−α,∞),

CIn = (−∞, θ̂n + τ−1n σ̂nc1−α], or

CIn = [̂θn − τ−1n σ̂nc1−α, θ̂n + τ−1n σ̂nc1−α], (2.2)

respectively.

We now introduce a running example that is used for
illustrative purposes.
Post-consistent model selection example. We consider a sub-
sampling CI that is based on an estimator that can be viewed either
as a post-model selection estimator based on a consistent model
selection procedure or as a super-efficient estimator.
The model is

Xi = θ + Ui, where Ui ∼ i.i.d. N(0, 1) for i = 1, . . . , n. (2.3)

For the model selection problem, model 2 takes θ = 0 and
model 3 takes θ ∈ R. Model selection is carried out using a
likelihood ratio test that selects model 2 if n1/2|Xn| ≤ κn and
model 3 otherwise, where κn > 0 is a critical value. If κn → ∞
and κn/n1/2 → 0 as n → ∞, the model selection procedure
is consistent. (That is, when θ0 = 0, model 2 is chosen with
probability that goes to one as n → ∞, and when θ0 6= 0,
model 3 is chosen with probability that goes to one as n →
∞, where θ0 is fixed and does not depend on n). For the results
that follow we only use the condition κn → ∞. When κn =√
log(n), this model selection procedure is BIC. The AIC criterion
is not covered by the results given below because it corresponds
to κn =

√
2 9 ∞. (The asymptotic size of subsampling CIs based

on post-conservative model selection procedures, such as AIC, is
determined inAndrews andGuggenberger (forthcoming-a). It is far
from the nominal level, but does not equal zero at least under some
restrictions on a correlation matrix that arises.) The post-model
selection estimator of θ0 equals zero if model 2 is selected and Xn
if model 3 is selected. This estimator is a super-efficient estimator
whenever κn → ∞ and κn/n1/2 → 0. It corresponds to Hodges’
super-efficient estimator when κn = n1/4.
The post-model selection/super-efficient estimator, θ̂n, of θ and

the test statistic, Tn(θ0), are defined by

θ̂n =

{
Xn if n1/2|Xn| > κn
aXn if n1/2|Xn| ≤ κn,

where Xn = n−1
n∑
i=1

Xi,

Tn(θ0) = |n1/2(̂θn − θ0)|, (2.4)

κn > 0, and 0 ≤ a < 1. A post-model selection estimator is
obtained by taking a = 0. Hodges’ super-efficient estimator is
obtained by taking κn = n1/4. For a super-efficient estimator, the
constant a is a tuning parameter that determines the magnitude
of shrinkage. The test statistic is a two-sided non-studentized t
statistic, so that Assumptions t1(iii) and t2 hold with τn = n1/2.
The CI for θ is defined in (2.1) with Tn(θ0) defined in (2.4) and

c1−α defined below. In the case where c1−α does not depend on θ0,
the CI is given by the third equation in (2.2).

2.2. Critical values and asymptotic size

We consider FCVs and subsampling critical values. The results
below allow cFix(1 − α) to be any constant. Often, however, one
takes

cFix(1− α) = c∞(1− α), (2.5)

where c∞(1 − α) denotes the 1 − α quantile of J∞ and J∞ is the
asymptotic null distribution of Tn(θ0) when the true parameter
is fixed and is not a point of discontinuity of the asymptotic
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distribution of Tn(θ0); see Section 3. In the post-consistent model
selection example this corresponds to the limit distribution of the
test statistic when the true θ0 is fixed and different from zero.
For studentized tests when Assumption t1(i), (ii), or (iii) holds,
c∞(1−α) typically equals z1−α, z1−α , or z1−α/2, respectively,where
z1−α denotes the 1−α quantile of the standard normal distribution.
If Tn(θ0) is an LR, LM, or Wald statistic, then c∞(1 − α) typically
equals the 1− α quantile of a χ2d distribution, denoted χ

2
d (1− α).

To define subsampling critical values, let {bn : n ≥ 1} be a
sequence of subsample sizes. For brevity, we often write bn as b.
Let {̂Tn,b,j : j = 1, . . . , qn} be subsample statistics defined below
that are based primarily on subsamples of size b rather than the
full sample. With i.i.d. observations, there are qn = n!/((n− b)!b!)
different subsamples of size b and T̂n,b,j is determined primarily
by the observations in the jth such subsample. With time series
observations, say {X1, . . . , Xn}, there are qn = n−b+1 subsamples
of b consecutive observations, e.g., Yj = {Xj, . . . , Xj+b−1}, and
T̂n,b,j is determined primarily by the observations in the jth
subsample Yj.
Let Ln,b(x) and cn,b(1 − α) denote the empirical distribution

function and 1−α sample quantile, respectively, of the subsample
statistics {̂Tn,b,j : j = 1, . . . , qn}. They are defined by

Ln,b(x) = q−1n
qn∑
j=1

1(̂Tn,b,j ≤ x) for x ∈ R and

cn,b(1− α) = inf{x ∈ R : Ln,b(x) ≥ 1− α}, (2.6)

where 1(·) denotes the indicator function, and they may depend
on θ0.
The subsample statistics {̂Tn,b,j : j = 1, . . . , qn} are defined

as follows. Let {Tn,b,j(θ0) : j = 1, . . . , qn} be subsample statistics
that are defined just as Tn(θ0) is defined, but based on subsamples
of size b rather than the full sample. For example, suppose
Assumption t1 holds. Let (̂θn,b,j, σ̂n,b,j) denote the estimators
(̂θb, σ̂b) applied to the jth subsample. In this case,

(i) Tn,b,j(θ0) = τb(̂θn,b,j − θ0)/σ̂n,b,j, or

(ii) Tn,b,j(θ0) = −τb(̂θn,b,j − θ0)/σ̂n,b,j, or

(iii) Tn,b,j(θ0) = |τb(̂θn,b,j − θ0)/σ̂n,b,j|. (2.7)

Below we use the empirical distribution of {Tn,b,j(θ0) : j =
1, . . . , qn} defined by

Un,b(x, θ0) = q−1n
qn∑
j=1

1(Tn,b,j(θ0) ≤ x). (2.8)

Inmost cases, subsampling critical values are based on a simple
adjustment to the statistics {Tn,b,j(θ0) : j = 1, . . . , qn}, where
the adjustment is designed to yield subsample statistics that
behave similarly under the null and the alternative hypotheses. In
particular, {̂Tn,b,j : j = 1, . . . , qn} often are defined to satisfy the
following condition.

Assumption Sub1. T̂n,b,j = Tn,b,j(̂θn) for all j ≤ qn, where θ̂n is an
estimator of θ .

In some cases, the subsample statistics are defined to satisfy:

Assumption Sub2 (̂Tn,b,j = Tn,b,j(θ0) for all j ≤ qn).
Note that cn,b(1 − α) depends on the hypothesized parameter

value θ0 under Assumption Sub2, but not under Assumption Sub1.
(Of course, the distribution of cn,b(1− α)may depend on the true
parameter under Assumption Sub1 or Assumption Sub2.)

The distribution of the data is determined by a parameter γ of
which θ is a sub-vector. Let Γ denote the parameter space for γ .
The coverage probability of the CI defined in (2.1) when γ is the
true parameter vector is

Pγ (θ ∈ CIn) = Pγ (Tn(θ) ≤ c1−α) = 1− RPn(γ ), (2.9)

where RPn(γ ) = Pγ (Tn(θ) > c1−α). The exact (i.e., finite-sample)
and asymptotic confidence sizes of CIn are

ExCSn = inf
γ∈Γ

(1− RPn(γ )) and AsyCS = lim inf
n→∞

ExCSn, (2.10)

respectively.
Post-consistent model selection example (cont.). The subsam-
pling critical values in this example are given by cn,b(1 − α)

obtained from the subsample statistics {Tn,b,j(̂θn) : j = 1, . . . , qn}
defined in equation (iii) of (2.7) with σ̂n,b,j = 1. Note that
Assumption Sub1 holds. (The results given below also hold if
Assumption Sub2 holds.)

3. Assumptions

3.1. Motivational example

In this section, we introduce the general assumptions under
which our results hold. These assumptions allow for test statistics
whose asymptotic distributions exhibit a type of discontinuity. The
running example, which is a very simple post-consistent model
selection example, is not sufficiently complex to illustrate the
complexities that arise in many examples. In consequence, to
illustrate the types of statistics that we want to cover, the type
of discontinuity of interest, and the complexities that often arise,
we start this section by describing a more complex example. After
doing this, we introduce the general assumptions.
The example is a simple version of the example of inference

in the linear instrumental variables model when instruments
are potentially weak discussed in Andrews and Guggenberger
(forthcoming-d) (AG hereafter). The model is given by a structural
equation and a reduced-form equation

y1 = y2θ + u, y2 = zπ + v, (3.1)

where y1, y2, z ∈ Rn and θ, π ∈ R are unknown parameters.
Assume {(ui, vi, zi) : i ≤ n} are i.i.d. with distribution F , where a
subscript i denotes the ith component of a vector. The goal is to test
H0 : θ = θ0 versus H1 : θ 6= θ0. The test is based on the t statistic
Tn(θ0) = |n1/2(̂θn − θ0)/σ̂n|, where θ̂n = (y′2Pzy2)

−1y′2Pzy1, σ̂n =
σ̂u(n−1y′2Pzy2)

−1/2, σ̂ 2u = (n − 1)−1(y1 − y2θ̂n)′(y1 − y2θ̂n), and
Pz = zz ′/z ′z. Define nuisance parameters γ = (γ1, γ2, γ3) by

γ1 = |(EF z2i )
1/2π/σv|, γ2 = ρ, and γ3 = (F , π), where

σ 2v = EFv
2
i , σ

2
u = EFu

2
i , and ρ = CorrF (ui, vi). (3.2)

The parameter spaces for γ1 and γ2 are Γ1 = {x ∈ R : x ≥ 0}
and Γ2 = [−1, 1]. The details for the restrictions on the parameter
space Γ3 = Γ3(γ1, γ2) for γ3 are given in AG and are such that
the following central limit theorem (CLT) holds under sequences
γ = γn for which γ2 = γ2,n → h2:(
(n−1z ′z)−1/2n−1/2z ′u/σu
(n−1z ′z)−1/2n−1/2z ′v/σv

)
→d

(
ψu,h2
ψv,h2

)
∼ N

(
0,
(
1 h2
h2 1

))
. (3.3)

In this example, the asymptotic distribution of the statistic Tn(θ0)
has a discontinuity at γ1 = 0. Under different sequences γ1 =
γ1,n such that γ1,n → 0, the limit distribution of Tn(θ0) may be
different. More precisely, denote by γn,h a sequence of nuisance
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parameters γ = γn such that n1/2γ1 → h1 and γ2 → h2 and h =
(h1, h2). It is shown below that under γn,h, the limit distribution
of Tn(θ0) depends on h1 and h2 and only on h1 and h2. As long
as h1 is finite, the sequence γ1 converges to zero, yet the limit
distribution of Tn(θ0) does not only depend on the limit point 0 of
γ1, but depends on how precisely γ1 converges to zero, indexed by
the convergence speed n1/2 and the localization parameter h1. In
contrast, the limit distribution of Tn(θ0) only depends on the limit
point h2 of γ2 but not on how γ2 converges to h2. In that sense, the
limit distribution is discontinuous in γ1 at 0, but continuous on Γ2
in γ2. The parameter γ3 does not influence the limit distribution of
Tn(θ0) by virtue of the CLT in (3.3).
If h1 <∞, it is shown in AG that under γn,hy′2Pzu/(σuσv)y′2Pzy2/σ

2
v

σ̂ 2u /σ
2
u

→d

ξ1,hξ2,h
η2u,h


=

 (ψv,h2 + h1)ψu,h2
(ψv,h2 + h1)

2

(1− h2ξ1,h/ξ2,h)2 + (1− h22)ξ
2
1,h/ξ

2
2,h

 (3.4)

and thus Tn(θ0)→d |ξ1,h/(ξ2,hη
2
u,h)

1/2
|. If h1 = ∞, Tn(θ0)→d |η∞|,

where η∞ has a standard normal limit distribution that does not
depend on h2.

3.2. Parameter space

We now return to the general case. The parameter γ has up to
three components: γ = (γ1, γ2, γ3) = ((θ ′1, η

′

1)
′, (θ ′2, η

′

2)
′, γ3),

where θ = (θ ′1, θ
′

2)
′, η = (η′1, η

′

2)
′, θj ∈ Rdj for j = 1, 2, and

ηj ∈ Rsj for j = 1, 2. Points of discontinuity of the asymptotic
distribution of the test statistic of interest are determined by the
first component, γ1 ∈ Rp, whichmay contain part of the parameter
of interest, viz., θ1. Through reparameterization we can assume
without loss of generality that the discontinuity occurs when one
or more elements of γ1 equal zero. The value of γ1 affects the limit
distribution of the test statistic of interest. The parameter space for
γ1 is Γ1 ⊂ Rp.
The second component, γ2(∈ Rq), of γ also affects the limit

distribution of the test statistic, but does not affect the distance of
the parameter γ to the point of discontinuity. The component γ2
may contain part of the parameter of interest, θ2. Inmost examples,
either no parameter θ1 or θ2 appears (i.e., d1 = 0 or d2 = 0) and
either no parameter η1 or η2 appears (i.e., s1 = 0 or s2 = 0). The
parameter space for γ2 is Γ2 ⊂ Rq.
The third component, γ3, of γ does not affect the limit

distribution of the test statistic. It is assumed to be an element
of an arbitrary space T3 and hence can be finite or infinite
dimensional. For example, error distributions can be included in γ3.
The parameter space for γ3 isΓ3(γ1, γ2)(⊂ T3), whichmay depend
on γ1 and γ2.

Assumption A1. The parameter space for γ is

Γ = {(γ1, γ2, γ3) : γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3(γ1, γ2)}. (3.5)

Post-consistent model selection example (cont.). In this exam-
ple, no parameters γ2, γ3, θ2, or η appear. Assumption A1 holds
with γ = γ1 = θ = θ1 ∈ R, p = d = d1 = 1, d2 = 0, and
Γ = Γ1 = Θ = R.

3.3. Convergence assumption

For an arbitrary distribution G, let G(·) denote the distribution
function (df) of G and let C(G) denote the continuity points of G(·).

Define the 1−α quantile of a distribution G by q(1−α) = inf{x ∈
R : G(x) ≥ 1 − α}. Let G(x−) = limε↘0 G(x − ε), where ‘‘limε↘0’’
denotes the limit as ε > 0 declines to zero. The distributions Jh and
Jh0 considered below are distributions of proper random variables
that are finite with probability one. All limits are as n→∞. For a
sequence of constants {κn : n ≥ 1}, let κn → [κ1,∞, κ2,∞] denote
that κ1,∞ ≤ lim infn→∞ κn ≤ lim supn→∞ κn ≤ κ2,∞.
Let r > 0 denote a rate of convergence index such that when the

true value of γ1 satisfies nrγ1 → h1, then the test statistic Tn(θ0)
has an asymptotic distribution that depends on the localization
parameter h1. In most examples, r = 1/2, but in the unit root exa-
mple considered in Andrews and Guggenberger (forthcoming-a)
r = 1. In a given example, the value of r is determined such that
under sequences γ1 satisfying nrγ1 → h1 we obtain sequences of
distributions that are contiguous to the distribution at a point of
discontinuity of the asymptotic distribution.
Next, we define the index set for the different asymptotic

distributions of the test statistic Tn(θ0) of interest. Let

H = {h = (h1, h2) ∈ Rp+q∞ : ∃ {γn = (γn,1, γn,2, γn,3)

∈ Γ : n ≥ 1}such that nrγn,1 → h1 and γn,2 → h2}, (3.6)

where R∞ = R ∪ {±∞} and R
p+q
∞ = R∞ × · · · × R∞ (with p + q

copies). For notational simplicity, in the definition of H and below,
we write (h1, h2), rather than (h′1, h

′

2)
′, even though h is a p + q

column vector.
Definition of {γn,h : n ≥ 1} : Given r > 0 and h = (h1, h2) ∈ H ,
let {γn,h = (γn,h,1, γn,h,2, γn,h,3) : n ≥ 1} denote a sequence of
parameters in Γ for which nrγn,h,1 → h1 and γn,h,2 → h2.
The sequence {γn,h : n ≥ 1} is defined such that, under {γn,h :

n ≥ 1}, the asymptotic distribution of Tn(θ0) depends on h and only
h; see Assumption B1 below. For a given model, there is a single
fixed r > 0. In addition, the limit distribution under {γn,h : n ≥ 1}
of the test statistic of interest does not depend on γn,h,3, so we do
not make the dependence of γn,h on γn,h,3 explicit.
Given any h = (h1, h2) ∈ H , define h0 = (0, h2). Let 0p denote

a p vector of zeros.
We use the following assumption.

Assumption B1. (i) For some r > 0, some h ∈ H ∩ Rp+q
such that h0 ∈ H , some sequence {γn,h : n ≥ 1}, and some
distribution Jh, Tn(θn,h)→d Jh under {γn,h : n ≥ 1}, where γn,h =
(γn,h,1, γn,h,2, γn,h,3) = ((θ ′n,h,1, η

′

n,h,1)
′, (θ ′n,h,2, η

′

n,h,2)
′, γn,h,3) and

θn,h = (θ
′

n,h,1, θ
′

n,h,2)
′, and (ii) for all sequences {γn,h0 : n ≥ 1} and

some distribution Jh0 , Tn(θn,h0)→d Jh0 under {γn,h0 : n ≥ 1}, where
γn,h0 = (γn,h0,1, γn,h0,2, γn,h0,3) = (0′p, (θ

′

n,h0,2
, η′
n,h0,2

)′, γn,h0,3)

and θn,h0 = (0
′
p, θ
′

n,h0,2
)′.

Assumption B1 models discontinuity in the asymptotic distri-
bution of Tn(θn,h) at γ1 = 0 when Jh and Jh0 differ because the
sequences {γn,h : n ≥ 1} and {γn,h0 : n ≥ 1} both converge
to (0p, h2, γ3) when γn,h,3 → γ3 yet the asymptotic distributions
Jh and Jh0 differ. If γn,h does not depend on n (which necessarily
requires h1 = 0 because ‖h‖ < ∞), Assumption B1(i) is a stan-
dard assumption in the subsampling literature. For example, it is
imposed in the basic theorem in PRW, Thm. 2.2.1, p. 43, for sub-
sampling with i.i.d. observations and in their Thm. 3.2.1, p. 70, for
stationary strong mixing observations. If γn,h does depend on n,
Assumption B1(i) usually can be verified using the same sort of
argument as when it does not. Similarly, Assumption B1(ii) usually
can be verified using the same sort of argument and, hence, is not
restrictive.
Assumption B1 is a weaker assumption than Assumption B,

which is employed in Andrews and Guggenberger (forthcoming-
c) (provided there exists an h ∈ H ∩ Rp+q such that h0 ∈ H , which
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holds quite generally). For example, Assumption B1 holds in
the consistent model selection example considered here, but
Assumption B does not because the latter requires convergence of
Tn(θn,h) to the same distribution J∞ for all sequences {γn,h : n ≥ 1}
for which h = ∞. The latter fails; see below.
Post-consistent model selection example (cont.). In this exam-
ple, we take r = 1/2 and γn,h (=θn,h) = hn−1/2, where h ∈ R,
in Assumption B1. We now verify Assumption B1. For any true
sequence {γn : n ≥ 1} for which n1/2γn (=n1/2θn) = O(1), we
have

Pγn(n
1/2
|Xn| ≤ κn) = Pγn(|n

1/2(Xn − θn)+ n1/2θn| ≤ κn)
= Pγn(|Op(1)+ O(1)| ≤ κn)→ 1 and

Pγn (̂θn = aXn)→ 1, (3.7)

where the second equality uses the fact that n1/2(Xn − θn) ∼
N(0, 1) and the second convergence result uses the definition of
θ̂n in (2.4).
Hence when the true value is θn,h, θ̂n = aXn wp → 1, and we

have wp→ 1 under θn,h,

Tn(θn,h) = |n1/2(aXn − θn,h)|
= |an1/2(Xn − θn,h)+ (a− 1)h|
∼ |aZ + (a− 1)h| ∼ Jh, where Z ∼ N(0, 1) and (3.8)

Jh(x) =

Φ(a
−1(x+ (1− a)h))
−Φ(a−1(−x+ (1− a)h)) if a ∈ (0, 1)

1(x ≥ |h|) if a = 0,

where Φ(·) denotes the standard normal distribution function.
Given that p = d = 1, we have h0 = 0 and Jh0 = J0. For
a = 0, J0(x) = 1(x ≥ 0) and ch0(1 − α) = c0(1 − α) = 0. For
a ∈ (0, 1), we have J0(x) = Φ(a−1x)−Φ(−a−1x) and ch0(1−α) =
c0(1− α) = az1−α/2.
Eq. (3.8) implies that Assumption B1(i) holds. For any sequence

{γn,h0 : n ≥ 1} as in Assumption B1(ii), we have n
1/2γn,h0 = O(1),

(3.7) holds, and (3.8) holdswith γn,h0 in place of γn,h (=θn,h). Hence,
Assumption B1(ii) holds with Jh0(x) = J0(x).
Assumption B of Andrews and Guggenberger (forthcoming-

c) fails in this example because, as is obvious and known, the
asymptotic distribution of Tn(θn,h) (when it exists) differs for a
sequence {θn,h : n ≥ 1} that converges to 0 but slowly enough that
n1/2|Xn| > κn occurs with probability that is bounded away from
0 and 1 from a sequence {θn,h : n ≥ 1} for which n1/2|Xn| > κn
occurs wp→ 1. For both such sequences, h = ∞.

3.4. Subsampling assumptions

To determine the asymptotic coverage probabilities of FCV CIs,
the assumptions above are all that are needed. For subsampling CIs,
we require the following additional assumptions7:

Assumption C. (i) b→∞ and (ii) b/n→ 0.

Assumption D. (i) {Tn,b,j(θ) : j = 1, . . . , qn} are identically
distributed under any γ ∈ Γ for all n ≥ 1, where γ =
(γ1, γ2, γ3) = ((θ ′1, η

′

1)
′, (θ ′2, η

′

2)
′, γ3) and θ = (θ ′1, θ

′

2)
′, and (ii)

Tn,b,j(θ) and Tb(θ) have the same distribution under any γ ∈ Γ for
all n ≥ 1.

7 Assumptions that are not indexed by ‘‘1’’ are the same as assumptions
in Andrews and Guggenberger (forthcoming-c). Assumptions that are indexed
by ‘‘1’’ concern the same quantities as, but are different from, corresponding
assumptions in Andrews and Guggenberger (forthcoming-c) that are not indexed
by ‘‘1.’’

Assumption E1. For the sequence {γn,h : n ≥ 1} in
Assumption B1(i), Un,b(x, θn,h)−EγnUn,b(x, θn,h)→p 0 under {γn,h :
n ≥ 1} for all x ∈ R.

Assumption F1. For all ε > 0, Jh0(ch0(1 − α) + ε) > 1 − α,
where ch0(1 − α) is the 1 − α quantile of Jh0 and h

0 is as in
Assumption B1(ii).

Assumption G1. For the sequence {γn,h : n ≥ 1} in
Assumption B1(i), Ln,b(x) − Un,b(x, θn,h)→p 0 for all x ∈ C(Jh0)
under {γn,h : n ≥ 1}.

Assumptions C and D are standard in the subsampling literature,
e.g., see PRW, Thm. 2.2.1, p. 43, and are not restrictive. The
sequence {b = bn : n ≥ 1} can be chosen to satisfy Assumption C.
Assumption D automatically holds when the observations are i.i.d.
or stationary and subsamples are constructed in the usual way
(described above).
Assumption E1holds automatically for subsample statistics that

are defined as above when the observations are i.i.d. for each
fixed γ ∈ Γ (by a U-statistic inequality of Hoeffding using the
same argument as in PRW, p. 44). For stationary strong mixing
observations, Assumption E1 holds provided

sup
γ∈Γ

αγ (m)→ 0 asm→∞, (3.9)

where {αγ (m) : m ≥ 1} are the strong mixing numbers of the
observations when the true parameter is γ . This follows by the
same argument as given in PRW, pp. 71–72 (which establishes L2
convergence using a strong mixing covariance bound).
Assumption F1 is designed to avoid the requirement that Jh(x)

is continuous in x because this assumption is violated in some
examples, such as the consistent model selection example, for
somevalues ofh and somevalues of x. Assumption F1holds if either
(i) Jh0(x) is continuous and strictly increasing at x = ch0(1− α) or
(ii) Jh0(x) has a jump at x = ch0(1−α)with Jh0(ch0(1−α)) > 1−α.
Condition (i) holds in most examples. But, if Jh0 is a pointmass,
as occurs in the post-consistent model selection estimator with
constant a = 0, then condition (i) fails, but condition (ii) holds.
Assumption G1 holds automatically when {̂Tn,b,j} satisfy

Assumption Sub2. To verify that Assumption G1 holdswhen {̂Tn,b,j}
satisfy Assumption Sub1 and Tn(θ0) is a non-studentized t statistic
(i.e., Assumptions t1 and t2hold),weuse the following assumption.

Assumption H. τb/τn → 0.

This is a standard assumption in the subsampling literature;
e.g., see PRW, Thm. 2.2.1, p. 43. In the leading case where τn = ns
for some s > 0, Assumption H follows from Assumption C(ii)
because τb/τn = (b/n)s → 0.

Lemma 1. Assumptions t1, t2, Sub1, A1, B1, C, D and H imply
Assumption G1.

Comment. Lemma 1 is a special case of Lemma 5, which does not
impose Assumption t2 and, hence, covers studentized and non-
studentized t statistics. Lemma 5 is stated in the Appendix for
expositional convenience.
Post-consistent model selection example (cont.).We now verify
Assumptions C, D, E1–G1, and H for this example for an arbitrary
choice of the parameter h. We choose {b = bn : n ≥ 1}
so that Assumption C holds, Assumption D and E1 hold because
the observations are i.i.d. for each fixed θ ∈ R, Assumption H
holds because τb/τn = b1/2/n1/2 → 0 by Assumption C, and
Assumption G1 holds by Lemma 1 using Assumption H. For a = 0,
Assumption F1 holds because Jh0(x) = 1 (x ≥ 0) has a jump at
x = ch0(1−α) = 0with Jh0(ch0(1−α)) = 1 > 1−α. For a ∈ (0, 1),
Assumption F1 holds because Jh0(x) = Φ(a−1x) − Φ(−a−1x) is
strictly increasing at ch0(1− α) = az1−α/2.



D.W.K. Andrews, P. Guggenberger / Journal of Econometrics 152 (2009) 19–27 25

4. Asymptotic results

The main result of this paper concerns the asymptotic behavior
of FCV and subsampling CIs under a sequence {γn,h : n ≥ 1}.

Theorem 2. (a) Suppose AssumptionB1 (i)holds. Then, Pγn,h(Tn(θn,h)
≤ cFix(1− α))→ [Jh(cFix(1− α)−), Jh(cFix(1− α))].
(b) Suppose Assumptions A1, B1, C, D, and E1–G1 hold. Then,

Pγn,h(Tn(θn,h) ≤ cn,b(1− α))→ [Jh(ch0(1− α)−), Jh(ch0(1− α))].

Comments. 1. If Jh(ch0(1 − α)) < 1 − α, then part (b) shows
that the subsampling CI has asymptotic confidence size less than
its nominal level 1−α: AsyCS < 1−α. If Jh(ch0(1−α)−) > 1−α,
then the subsampling CI is not asymptotically similar. Analogous
statements apply to FCV CIs with Jh(cFix(1 − α)) in place of Jh(ch0
(1− α)).

2. If Jh(x) is continuous at x = ch0(1 − α), then the result of
Theorem 2(b) becomes Pγn,h(Tn(θn,h) ≤ cn,b(1 − α)) → Jh(ch0
(1− α)).

3. Typically Assumption B1(i) holds for an infinite number of
values h, say h ∈ H∗(⊂ Rp). In this case, Comments 1 and 2 apply
for any h ∈ H∗.

Post-consistent model selection example (cont.). For a = 0,
Theorem 2(b) implies that the limit of the coverage probability of
the subsampling CI under γn,h (=θn,h) = hn−1/2 is

Jh(ch0(1− α)) = Jh(0) = 1(0 ≥ |h|) = 0 for |h| > 0. (4.1)

Hence, for a = 0, AsyCS = 0 for the subsampling CI.
For a ∈ (0, 1), the limit of the coverage probability of the

subsampling CI under γn,h (=θn,h) = hn−1/2 is

Jh(ch0(1− α)) = Jh(az1−α/2). (4.2)

Using (3.8), for a ∈ (0, 1), we have

lim
h→∞

Jh(az1−α/2) = 0. (4.3)

Hence, for a ∈ (0, 1) and h sufficiently large, the asymptotic
coverage probability of the symmetric two-sided subsampling CI
is arbitrarily close to zero. Since h ∈ R is arbitrary, this implies that
AsyCS = 0 for this CI.
Fig. 1 graphs the asymptotic coverage probability of the nominal

95% subsampling CI under γn,h as a function of |h| for various values
of a, namely a = 0, .25, .5, and .75. The results are obtained by
simulation from (4.2) using 100,000 simulation repetitions. Fig. 1
illustrates how the degree of under-coverage of the subsampling
CI increases as a decreases and as |h| increases. In the extreme
case of a = 0, the asymptotic coverage probability equals zero for
all |h| > 0. For any positive value a considered, the asymptotic
coverage probability equals the nominal level .95 when |h| = 0,
decreases as |h| increases, and approaches zero as |h| → ∞.
We obtain the same result that AsyCS = 0 if one-sided CIs or

equal-tailed two-sided CIs are considered. Furthermore, the size-
correction methods of Andrews and Guggenberger (forthcoming-
a,d) do not work in this example because Assumptions LF, LS, and
LH in the Appendix of Andrews and Guggenberger (forthcoming-
d) fail. (For example, Assumption LF fails when a = 0 because
H = R∞, ch(1 − α) = |h|, and suph∈R∞ |h| = ∞.)
Andrews and Guggenberger (forthcoming-a) does provide size-
correction methods for CIs based on post-conservative model
selection estimators.

Fig. 1. Asymptotic coverage probabilities as a function of |h| for several values of
the constant a.

5. Proofs

The following Lemmas are used in the proof of Theorem 2.

Lemma 3. Suppose (i) for some df’s Ln(·) and GL(·) on R, Ln(x)→p
GL(x) for all x ∈ C(GL), (ii) Tn→d GT , where Tn is a scalar random
variable and GT is some distribution on R, and (iii) for all ε > 0,
GL(c∞ + ε) > 1− α, where c∞ is the 1− α quantile of GL for some
α ∈ (0, 1). Then for cn := inf{x ∈ R : Ln(x) ≥ 1− α}, (a) cn→p c∞
and (b) P(Tn ≤ cn)→ [GT (c∞−),GT (c∞)].

Comments. 1. Condition (iii) holds if eitherGL(x) is continuous and
strictly increasing at x = c∞ or GL(x) has a jump at x = c∞ with
GL(c∞) > 1− α and GL(c∞−) < 1− α.

2. Lemma 3 is the same as Lemma 5 of Andrews and
Guggenberger (forthcoming-c). For completeness, we repeat its
proof below.

Lemma 4. Suppose Assumptions A1, B1, C, D, and E1–G1 hold. Let
{γn,h : n ≥ 1} be as in Assumption B1 (i). Then, under {γn,h : n ≥ 1},
we have

(a) Eγn,hUn,b(x, θn,h)→ Jh0(x) for all x ∈ C(Jh0),
(b) Un,b(x, θn,h)→p Jh0(x) for all x ∈ C(Jh0),
(c) Ln,b(x)→p Jh0(x) for all x ∈ C(Jh0),
(d) cn,b(1− α)→p ch0(1− α), and
(e) Pγn,h(Tn(θn,h) ≤ cn,b(1 − α)) → [Jh(ch0(1 − α)−), Jh(ch0(1 −

α))].

Proof of Lemma 3. For ε > 0 such that c∞ ± ε ∈ C(GL) ∩ C(GT ),
we have

Ln(c∞ − ε)→p GL(c∞ − ε) < 1− α and

Ln(c∞ + ε)→p GL(c∞ + ε) > 1− α (5.4)

by assumptions (i) and (iii) and the fact that GL(c∞ − ε) < 1 − α
by the definition of c∞. This and the definition of cn yield

P(An(ε))→ 1, where An(ε) = {c∞ − ε ≤ cn ≤ c∞ + ε}. (5.5)

There exists a sequence {εk > 0 : k ≥ 1} such that εk → 0 as
k→∞ and c∞ ± εk ∈ C(GL)∩ C(GT ) for all k ≥ 1. Hence, part (a)
holds.
Let P(A, B) denote P(A ∩ B). For part (b), using the definition of

An(ε), we have

P(Tn ≤ c∞ − ε, An(ε)) ≤ P(Tn ≤ cn, An(ε)) ≤ P(Tn ≤ c∞ + ε).
(5.6)
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Hence,

lim sup
n→∞

P(Tn ≤ cn) = lim sup
n→∞

P(Tn ≤ cn, An(ε))

≤ lim sup
n→∞

P(Tn ≤ c∞ + ε) = GT (c∞ + ε), and

lim inf
n→∞

P(Tn ≤ cn) = lim inf
n→∞

P(Tn ≤ cn, An(ε))

≥ lim inf
n→∞

P(Tn ≤ c∞ − ε, An(ε)) = GT (c∞ − ε) (5.7)

using assumption (ii), c∞± ε ∈ C(GT ), and (5.5). Given a sequence
{εk : k ≥ 1} as above, (5.7) establishes part (b). �

Proof of Lemma 4. First, we prove part (a). The proof is similar to
that of Lemma6(ii) of Andrews andGuggenberger (forthcoming-c).
We have

Eγn,hUn,b(x, θn,h) = q
−1
n

qn∑
j=1

Pγn,h(Tn,b,j(θn,h) ≤ x)

= Pγn,h(Tn,b,1(θn,h) ≤ x) = Pγn,h(Tb(θn,h) ≤ x), (5.8)

where the first equality holds by definition of Un,b(x, θn,h), the
second equality holds by Assumption D(i), and the last equality
holds by Assumption D(ii).
We now show that Pγn,h(Tbn(θn,h) ≤ x) → Jh0(x) for all x ∈

C(Jh0) by showing that any subsequence {tn} of {n} has a sub-
subsequence {sn} for which Pγsn,h(Tbsn (θsn,h) ≤ x)→ Jh0(x) (where
θsn is a sub-vector of γsn ). Given any subsequence {tn}, select a sub-
subsequence {sn} such that {bsn} is strictly increasing. This can be
done because bn →∞ by Assumption C(i). Because {bsn} is strictly
increasing, it is a subsequence of {n}.
Below we show that Assumption B1(ii) implies that for any

subsequence {un} of {n} and any sequence {γ ∗un = (γ ∗un,1, γ
∗

un,2,
γ ∗un,3) ∈ Γ : n ≥ 1} that satisfies (i) urnγ

∗

un,1 → 0 and (ii)
γ ∗un,2 → h2 ∈ Rq, we have

Pγ ∗un (Tun(θ
∗

un) ≤ y)→ Jh0(y), (5.9)

for all y ∈ C(Jh0) (where θ
∗
un is a sub-vector of γ

∗
un ). We apply this

result with un = bsn , γ
∗
un = γsn,h, and y = x to obtain the desired

result Pγsn,h(Tbsn (θsn,h) ≤ x)→ Jh0(x), where (i) and (ii) hold by the
properties of {γn,h : n ≥ 1}.
For the proof of part (a), it remains to show (5.9). Because

h0 ∈ H (by Assumption B1(i)), by definition of H there exists
a sequence {γ+k = (γ+k,1, γ

+

k,2, γ
+

k,3) ∈ Γ : k ≥ 1} such that
krγ+k,1 → 0 and γ+k,2 → h2 as k → ∞. Define a new sequence
{γ ∗∗k = (γ ∗∗k,1, γ

∗∗

k,2, γ
∗∗

k,3) ∈ Γ : k ≥ 1} as follows. For n ≥ 1,
if k = un set γ ∗∗k equal to γ ∗un . If k 6= un, set γ

∗∗

k equal to γ+k .
Clearly, γ ∗∗k ∈ Γ for all k ≥ 1 and k

rγ ∗∗k,1 → 0 and γ ∗∗k,2 → h2
as k → ∞. Hence, {γ ∗∗k : k ≥ 1} is of the form {γn,h0 : n ≥ 1}
and Assumption B1(ii) implies that Pγ ∗∗k (Tk(θ

∗∗

k ) ≤ y)→ Jh0(y) for
all y ∈ C(Jh0) (where θ

∗∗

k is a sub-vector of γ
∗∗

k ). Because {un} is a
subsequence of {k} and γ ∗∗k = γ

∗
un when k = un, the latter implies

that Pγ ∗un (Tun(θ
∗
un) ≤ y)→ Jh0(y), as desired.

Part (b) follows from part (a) and Assumption E1. Part (c)
follows from part (b) and Assumption G1. Parts (d) and (e) are
established by applying Lemma 3 with Ln(x) = Ln,b(x) and Tn =
Tn(θn,h) and verifying the conditions of Lemma 3 using (i) part (c),
(ii) Tn(θn,h)→d Jh under {γn,h : n ≥ 1} (by Assumption B1(i)), and
(iii) Assumption F1. �

Proof of Theorem 2. Part (a) holds by Assumption B1(i) and the
definition of convergence in distribution by considering points of
continuity of Jh(·) that are greater than cFix(1 − α) and arbitrarily
close to cFix(1 − α) as well as continuity points that are less
than cFix(1 − α) and arbitrarily close to it. Part (b) follows from
Lemma 4(e). �

We now provide sufficient conditions for Assumption G1 for
the case when Tn is a studentized t statistic and the subsample
statistics satisfy Assumption Sub1. This result generalizes Lemma1
because Assumption t2 is not imposed. The results apply tomodels
with i.i.d., stationary and weakly dependent, or nonstationary
observations.
Just as Tn,b,j(θ0) is defined, let (̂θn,b,j, σ̂n,b,j) be the subsample

statistics that are defined exactly as (̂θn, σ̂n) are defined, but based
on the jth subsample of size b. In analogy to Un,b(x, θn,h) defined in
(2.8), we define

Uσn,b(x) = q
−1
n

qn∑
j=1

1(dbσ̂n,b,j ≤ x) (5.10)

for a sequence of normalization constants {dn : n ≥ 1} (for
which Assumption BB1 below holds). Although Uσn,b(x) depends on
{dn : n ≥ 1}, we suppress thedependence for notational simplicity.
We now state modified versions of Assumptions B1, D, E1 and

H that are used with studentized statistics when Assumption Sub1
holds.

Assumption BB1. For r, h, h0, and {γn,h : n ≥ 1} as in
Assumption B1(i) and for some distribution (Vh,Wh) on R2,
(an(̂θn − θn,h), dnσ̂n)→d(Vh,Wh) under {γn,h : n ≥ 1}, where
γn,h = (γn,h,1, γn,h,2, γn,h,3) = ((θ ′n,h,1, η

′

n,h,1)
′, (θ ′n,h,2, η

′

n,h,2)
′,

γn,h,3) and θn,h = (θ ′n,h,1, θ
′

n,h,2)
′, (ii) Pγn,h(σ̂n,b,j > 0 for all j =

1, . . . , qn)→ 1 under {γn,h : n ≥ 1}, and (iii)Wh(0) = 0.

Assumption DD. (i) {(̂θn,b,j, σ̂n,b,j) : j = 1, . . . , qn} are identically
distributed under any γ ∈ Γ for all n ≥ 1 and (ii) (̂θn,b,1, σ̂n,b,1)
and (̂θb, σ̂b) have the same distribution under any γ ∈ Γ for all
n ≥ 1.

Assumption EE1. For the sequence {γn,h : n ≥ 1} in Assumption
BB1(i) and the constants {dn : n ≥ 1} in Assumption BB1(i),
Uσn,b(x)− Eγn,hU

σ
n,b(x)→p 0 under {γn,h : n ≥ 1} for all x ∈ R.

Assumption HH. ab/an → 0.

In a model with i.i.d. or stationary strong mixing observations,
one often takes dn = 1 for all n,Wh to be a pointmass distribution
with pointmass at the probability limit of σ̂n, and an = n1/2.
Assumption BB1 implies that Tn(θn,h)→d Jh in Assumption B1(i)

with τn = an/dn (by the continuous mapping theorem using
Assumption BB1(iii)). Assumption DD implies Assumption D.
Assumption DD is not restrictive given the standard methods of
defining subsample statistics. Assumption EE1 holds automatically
when the observations are i.i.d. for each fixed γ ∈ Γ or are
stationary, strong mixing, and satisfy the condition in (3.9) for
each fixed γ ∈ Γ provided the subsamples are constructed as
described in Section 2.2 (for the same reason that Assumption E1
holds in these cases). Assumption HH holds in many examples
when Assumption C holds, as is typically the case. However, it does
not hold if θ is unidentified when γ = 0 (because consistent
estimation of θ is not possible in this case and an = 1 in
Assumption BB1(i)). For example, this occurs in amodel withweak
instruments, see Andrews and Guggenberger (forthcoming-d).
The following Lemma generalizes Lemma 1 because (i) the

following Lemma does not impose Assumption t2 and (ii)
Assumptions t1, t2, B1, D, and H imply Assumptions BB1, DD, EE1,
and HH with σ̂n,b,j = dn = 1.

Lemma 5. Assumptions t1, Sub1, A1, B1, BB1, C, D, DD, E1, EE1, and
HH imply Assumption G1.
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Comment. The proof of Lemma 5 is a variant of those of Theorem
11.3.1(i) and 12.2.2(i) of PRW and Lemma 4 of Andrews and
Guggenberger (forthcoming-c).

Proof of Lemma 5. We have Un,b(x, θn,h)→p Jh0(x) for all x ∈
C(Jh0) under {γn,h : n ≥ 1} by Lemma 4(b) (which does not
require Assumptions F1 and G1 in its proof). Define Rn(t) := q−1n∑qn
j=1 1(|τb(̂θn − θn,h)/σ̂n,b,j| ≥ t). Using

Un,b(x− t, θn,h)− Rn(t) ≤ Ln,b(x) ≤ Un,b(x+ t, θn,h)+ Rn(t)
(5.11)

for any t > 0 (which holds for all versions (i)–(iii) of Tn(θn,h) in
Assumption t1), the desired result follows once we establish that
Rn(t)→p 0 under {γn,h} for any fixed t > 0. By τn = an/dn, we
have

|τb(̂θn − θn,h)/σ̂n,b,j| ≥ t iff (ab/an)an |̂θn − θn,h| ≥ dbσ̂n,b,jt (5.12)

provided σ̂n,b,j > 0, which holds uniformly in j = 1, . . . , qnwp→
1 by Assumption BB1(ii). By Assumption BB1(i) and Assump-
tion HH, (ab/an)an |̂θn − θn,h| = op(1) under {γn,h}. Therefore, for
any δ > 0, Rn(t) ≤ q−1n

∑qn
j=1 1(δ ≥ dbσ̂n,b,jt) = Uσn,b(δ/t),

where the inequality holds wp → 1. Now, by an argument as in
the proof of Lemma 4(a) and (b) (which uses Assumption EE1, but
does not use Assumption G1) applied to the statistic dnσ̂n rather
than Tn(θn,h), we have Uσn,b(x)→pWh0(x) for all x ∈ C(Wh0) under
{γn,h}. Therefore, Uσn,b(δ/t)→pWh0(δ/t) for δ/t ∈ C(Wh0) under
{γn,h}. By Assumption BB1(iii),Wh0 does not have positive mass at
zero and, hence,Wh0(δ/t)→ 0 as δ→ 0. We can therefore estab-
lish that Rn(t)→p 0 for any t > 0 by letting δ go to zero such that
δ/t ∈ C(Wh0). �
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