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INFERENCE FOR PARAMETERS DEFINED BY MOMENT
INEQUALITIES USING GENERALIZED MOMENT SELECTION

BY DONALD W. K. ANDREWS AND GUSTAVO SOARES1

The topic of this paper is inference in models in which parameters are defined by
moment inequalities and/or equalities. The parameters may or may not be identified.
This paper introduces a new class of confidence sets and tests based on generalized
moment selection (GMS). GMS procedures are shown to have correct asymptotic size
in a uniform sense and are shown not to be asymptotically conservative.

The power of GMS tests is compared to that of subsampling, m out of n bootstrap,
and “plug-in asymptotic” (PA) tests. The latter three procedures are the only general
procedures in the literature that have been shown to have correct asymptotic size (in
a uniform sense) for the moment inequality/equality model. GMS tests are shown to
have asymptotic power that dominates that of subsampling, m out of n bootstrap, and
PA tests. Subsampling and m out of n bootstrap tests are shown to have asymptotic
power that dominates that of PA tests.

KEYWORDS: Asymptotic size, asymptotic power, confidence set, exact size, general-
ized moment selection, m out of n bootstrap, subsampling, moment inequalities, mo-
ment selection, test.

1. INTRODUCTION

THIS PAPER CONSIDERS INFERENCE in models in which parameters are de-
fined by moment inequalities and/or equalities. The parameters need not be
identified. Numerous examples of such models are now available in the litera-
ture, for example, see Manski and Tamer (2002), Imbens and Manski (2004),
Andrews, Berry, and Jia (2004), Pakes, Porter, Ishii, and Ho (2004), Moon
and Schorfheide (2006), Chernozhukov, Hong, and Tamer (2007) (CHT), and
Ciliberto and Tamer (2009).

The paper introduces confidence sets (CS’s) based on a method called gener-
alized moment selection (GMS). The CS’s considered in the paper are obtained
by inverting tests that are of an Anderson–Rubin type. This method was first
considered in the moment inequality context by CHT.

In this paper, we analyze GMS critical values. We note that the choice of crit-
ical value is much more important in moment inequality/equality models than
in most models. In most models, the choice of critical value does not affect
the first-order asymptotic properties of a test or CS. In the moment inequal-
ity/equality model, however, it does, and the effect can be large.

The results of the paper hold for a broad class of test statistics including
modified method of moments (MMM) statistics, Gaussian quasilikelihood ra-
tio (QLR) statistics, generalized empirical likelihood ratio (GEL) statistics,
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and a variety of others. The results apply to CS’s for the true parameter, as in
Imbens and Manski (2004), rather than for the identified set (i.e., the set of
points that are consistent with the population moment inequalities/equalities),
as in CHT. We focus on CS’s for the true parameter because answers to policy
questions typically depend on the true parameter rather than on the identified
set.

Subsampling CS’s for the moment inequality/equality model are considered
in CHT, Andrews and Guggenberger (2009b) (hereafter AG4), and Romano
and Shaikh (2008, 2010). “Plug-in asymptotic” (PA) CS’s are widely used in the
literature on multivariate one-sided tests and CS’s. They are considered in the
moment inequality/equality model in AG4 and a variant of them is considered
in Rosen (2008).

Here we introduce GMS critical values. Briefly, the idea behind GMS crit-
ical values is as follows. The 1 − α quantile of the finite-sample null distri-
bution of a typical test statistic depends heavily on the extent to which the
moment inequalities are binding (i.e., are close to being equalities). In con-
sequence, the asymptotic null distribution of the test statistic under a suit-
able drifting sequence of parameters depends heavily on a nuisance parameter
h = (h1� � � � �hp)

′� whose jth element hj ∈ [0�∞] indexes the extent to which
the jth moment inequality is binding. For a suitable class of test statistics, the
larger is h� the smaller is the asymptotic null distribution in a stochastic sense.
This is key for obtaining procedures that are uniformly asymptotically valid.

The parameter h cannot be estimated consistently in a uniform sense, but
one can use the sample moment inequalities to estimate or test how close h
is to 0p� A computationally simple procedure is to use inequality-by-inequality
t-tests to test whether hj = 0 for j = 1� � � � �p� If a test rejects hj = 0� then that
inequality is removed from the asymptotic null distribution that is used to cal-
culate the critical value. The t-tests have to be designed so that the probability
of incorrectly omitting a moment inequality from the asymptotic distribution is
asymptotically negligible. Continuous/smooth versions of such procedures can
be employed in which moment inequalities are not “in or out,” but are “more
in or more out” depending on the magnitude of the t statistics.

Another type of GMS procedure is based on a modified moment selec-
tion criterion (MMSC), which is an information-type criterion analogous to
the Akaike information criterion (AIC), Bayesian information criterion (BIC),
and Hannan–Quinn information criterion (HQIC) model selection criteria;
see Hannan and Quinn (1979) regarding HQIC. Andrews (1999a) used an
information-type moment selection criterion to determine which moment
equalities are invalid in a standard moment equality model. Here we employ
one-sided versions of such procedures to determine which moment inequali-
ties are not binding. In contrast to inequality-by-inequality t-tests, the MMSC
jointly determines which moment inequalities to select and takes account of
correlations between sample moment inequalities.
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The results of the paper cover a broad class of GMS procedures that includes
all of those discussed above. Section 4.2 gives a step-by-step description of how
to calculate GMS procedures.

In this paper, we show that GMS critical values yield uniformly asymptoti-
cally valid CS’s and tests. These results hold for both independent and identi-
cally distributed (i.i.d.) and dependent observations. We also show that GMS
procedures are not asymptotically conservative. They are asymptotically non-
similar, but are less so than subsampling and PA procedures.

The volume of a CS that is based on inverting a test depends on the power
of the test; see Pratt (1961). Thus, power is important for both tests and CS’s.
We determine and compare the power of GMS, subsampling, and PA tests.
CHT and Beresteanu and Molinari (2008) also provided some asymptotic local
power results for testing procedures in models with partially identified parame-
ters. Otsu (2006), Bugni (2007a, 2007b), and Canay (2007) considered asymp-
totic power against fixed alternatives. Tests typically have asymptotic power
equal to 1 against such alternatives.

We investigate the asymptotic power of GMS, subsampling, and PA tests
for local and nonlocal alternatives. Such alternatives are more complicated in
the moment inequality/equality model than in most models. The reason is that
some inequalities may be violated while others may be satisfied as equalities, as
inequalities that are relatively close to being equalities, and/or as inequalities
that are far from being equalities. Furthermore, depending upon the particular
alternative hypothesis scenario considered, the data-dependent critical values
behave differently asymptotically. We derive the asymptotic power of the tests
under the complete range of alternatives from n−1/2 local, to more distant local,
through to fixed alternatives for each of the different moment inequalities and
equalities that appear in the model.

We show that (under reasonable assumptions) GMS tests are as powerful
asymptotically as subsampling and PA tests with strictly greater power in cer-
tain scenarios. The asymptotic power differences can be substantial. Further-
more, we show that subsampling tests are as powerful asymptotically as PA
tests with greater power in certain scenarios. m out of n bootstrap tests have
the same asymptotic properties as subsampling tests (at least in i.i.d. scenarios
when m= o(n1/2); see Politis, Romano, and Wolf (1999, p. 48)).

GMS tests are shown to be strictly more powerful asymptotically than sub-
sampling tests whenever (i) at least one population moment inequality is sat-
isfied under the alternative and differs from an equality by an amount that is
O(b−1/2) and is larger than O(κnn−1/2)� where b is the subsample size and κn
is a GMS constant such as κn = (lnn)1/2� and (ii) the GMS and subsampling
critical values do not have the degenerate probability limit of 0�Note that good
choices of b and κn in terms of size and power satisfy b≈ nη for some η ∈ (0�1)
and κn = o(nε) ∀ε > 0� so that condition (i) holds.

GMS and subsampling tests are shown to be strictly more powerful asymp-
totically than PA tests whenever at least one population moment inequality is
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satisfied under the alternative, and differs from an equality by an amount that
is larger than O(κnn−1/2) for GMS tests and is larger than o(b−1/2) for subsam-
pling tests.

The paper shows that (pure) generalized empirical likelihood (GEL) tests,
which are based on fixed critical values, are dominated in terms of asymptotic
power by GMS and subsampling tests based on a QLR or GEL test statistic.

The paper reports some finite-sample size and power results obtained via
simulation for tests based on GMS, subsampling, and PA critical values. The
GMS critical values are found to deliver very good null rejection probabilities
and power in the scenarios considered. They are found to outperform the sub-
sampling and PA critical values by a substantial margin, especially for larger
values of p� the number of moment inequalities. Additional simulation results
are reported in the Supplemental Material (Andrews and Soares (2010)) and
in Andrews and Jia (2008).

The determination of a best test statistic/GMS procedure is difficult because
uniformly best choices do not exist. Nevertheless, it is possible to make com-
parisons based on all-around performance. Doing so is beyond the scope of
the present paper and is the subject of research reported in Andrews and Jia
(2008). In the latter paper, the QLR test statistic combined with the GMS pro-
cedure based on t-tests is found to work very well in practice and hence is
recommended.

Bootstrap versions of GMS critical values are obtained by replacing the mul-
tivariate normal random vector that appears in the asymptotic distribution by
a bootstrap distribution based on the recentered sample moments. The block
bootstrap can be employed in time series contexts. GMS bootstrap critical val-
ues, however, do not yield higher-order improvements, because the asymptotic
null distribution is not asymptotically pivotal. Bugni (2007a, 2007b) and Canay
(2007) considered particular types of bootstrap GMS critical values. Andrews
and Jia (2008) found that the bootstrap version of the GMS critical values
outperforms the asymptotic normal version in i.i.d. scenarios and hence is rec-
ommended.

The paper introduces GMS model specification tests based on the GMS tests
discussed above. These tests are shown to be uniformly asymptotically valid.
They can be asymptotically conservative.

We now discuss related literature. Bugni (2007a, 2007b) showed that a par-
ticular type of GMS test (based on ϕ(1) defined below) has more accurate
pointwise asymptotic size than a (recentered) subsampling test. Such results
should extend to all GMS tests and to asymptotic size defined in a uniform
sense. Given that they do, GMS tests have both asymptotic power and size
advantages over subsampling tests. The relatively low accuracy of the size of
subsampling tests and CS’s in many models is well known in the literature.
We are not aware of any other papers or scenarios where the asymptotic
power of subsampling tests has been shown to be dominated by other pro-
cedures.



INFERENCE FOR PARAMETERS 123

GMS critical values based on ϕ(1)� defined below, are a variant of the Wald
test procedure in Andrews (1999b, Sec. 6.4; 2000, Sec. 4) for the problem of
inference when a parameter is on or near a boundary. The 2003 working paper
version of CHT discusses a bootstrap version of the GMS method based on ϕ(1)

in the context of the interval outcome model. Soares (2005) analyzed the prop-
erties of GMS critical values based on ϕ(1) and introduced GMS critical values
based on the function ϕ(5)� The present paper supplants Soares (2005). CHT
mentioned critical values of GMS type based on ϕ(1); see their Remark 4.5.
GMS critical values of types ϕ(2)–ϕ(4) were considered by the authors in Jan-
uary 2007. Galichon and Henry (2009) consider a set selection method that is
analogous to GMS based on ϕ(1)� Bugni (2007a, 2007b) considered GMS criti-
cal values based on ϕ(1)�His work was done independently of, but subsequently
to, Soares (2005). Canay (2007) independently considered GMS critical values
based on ϕ(3)� Bugni (2007a, 2007b) and Canay (2007) focused on bootstrap
versions of the GMS critical values.

Other papers in the literature that consider inference with moment in-
equalities include Andrews, Berry, and Jia (2004), Pakes et al. (2004), Ro-
mano and Shaikh (2008, 2010), Moon and Schorfheide (2006), Otsu (2006),
Woutersen (2006), Bontemps, Magnac, and Maurin (2007), Bugni (2007a,
2007b), Canay (2007), CHT, Fan and Park (2007), Beresteanu, Molchanov, and
Molinari (2008), Beresteanu and Molinari (2008), Guggenberger, Hahn, and
Kim (2008), Rosen (2008), AG4, Andrews and Han (2009), and Stoye (2009).

The remainder of the paper is organized as follows. Section 2 describes the
moment inequality/equality model. Section 3 introduces the class of test sta-
tistics that is considered and states assumptions. Section 4 introduces the class
of GMS CS’s. Section 5 introduces GMS model specification tests. Sections 6
and 7 define subsampling CS’s and PA CS’s, respectively. Section 8 determines
and compares the n−1/2-local alternative power of GMS, subsampling, and PA
tests. Section 9 considers the power of these tests against more distant alter-
natives. Section 10 discusses extensions to GEL test statistics and preliminary
estimation of identified parameters. Section 11 provides the simulation results.
The Appendix contains some assumptions concerning the test statistics consid-
ered, an alternative parametrization of the moment inequality/equality model,
and the treatment of dependent observations. The proofs of all results are
given in the Supplemental Material (Andrews and Soares (2010)).

For notational simplicity, throughout the paper we write partitioned column
vectors as h = (h1�h2)� rather than h = (h′

1�h
′
2)

′� Let R+ = {x ∈ R :x ≥ 0}�
R+�∞ =R+ ∪ {+∞}� R[+∞] =R∪ {+∞}� R[±∞] =R∪ {±∞}� Kp =K× · · · ×K
(with p copies) for any set K, and ∞p = (+∞� � � � �+∞)′ (with p copies). All
limits are as n→ ∞ unless specified otherwise. Let pd abbreviate positive def-
inite. Let cl(Ψ) denote the closure of a set Ψ . We let AG1 abbreviate Andrews
and Guggenberger (2010b).
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2. MOMENT INEQUALITY MODEL

We now introduce the moment inequality/equality model. The true value θ0

(∈Θ⊂Rd) is assumed to satisfy the moment conditions:

EF0mj(Wi�θ0)

{≥ 0 for j = 1� � � � �p�
= 0 for j = p+ 1� � � � �p+ v�(2.1)

where {mj(·� θ) : j = 1� � � � �k} are known real-valued moment functions, k =
p + v� and {Wi : i ≥ 1} are i.i.d. or stationary random vectors with joint dis-
tribution F0� The observed sample is {Wi : i ≤ n}� A key feature of the model
is that the true value θ0 is not necessarily identified. That is, knowledge of
EF0mj(Wi�θ) for j = 1� � � � �k for all θ ∈ Θ does not necessarily imply knowl-
edge of θ0� In fact, even knowledge of F0 does not necessarily imply knowledge
of the true value θ0� More information than is available in {Wi : i ≤ n} may be
needed to identify the true parameter θ0�

Note that both moment inequalities and moment equalities arise in the entry
game models considered in Ciliberto and Tamer (2009) and Andrews, Berry,
and Jia (2004), and in the macroeconomic model in Moon and Schorfheide
(2006). There are numerous models where only moment inequalities arise; for
example, see Manski and Tamer (2002) and Imbens and Manski (2004). There
are also unidentified models in which only moment equalities arise; see CHT
for references.

We are interested in CS’s for the true value θ0�
Generic values of the parameters are denoted (θ�F)� For the case of i.i.d.

observations, the parameter space F for (θ�F) is the set of all (θ�F) that sat-
isfy

(i) θ ∈Θ�(2.2)

(ii) EFmj(Wi�θ)≥ 0 for j = 1� � � � �p�

(iii) EFmj(Wi�θ)= 0 for j = p+ 1� � � � �k�

(iv) {Wi : i≥ 1} are i.i.d. under F�

(v) σ2
F�j(θ)= VarF(mj(Wi� θ)) ∈ (0�∞) for j = 1� � � � �k�

(vi) CorrF(m(Wi�θ)) ∈Ψ�
(vii) EF |mj(Wi�θ)/σF�j(θ)|2+δ ≤M for j = 1� � � � �k�

where Ψ is a set of k×k correlation matrices specified below, andM <∞ and
δ > 0 are constants. For expositional convenience, we specify F for dependent
observations in the Appendix, Section A.2.
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We consider a confidence set obtained by inverting a test. The test is based
on a test statistic Tn(θ0) for testing H0 :θ= θ0� The nominal level 1 − α CS for
θ is

CSn = {θ ∈Θ :Tn(θ)≤ c1−α(θ)}�(2.3)

where c1−α(θ) is a critical value.2 We consider GMS, subsampling, and plug-in
asymptotic critical values. These are data-dependent critical values and their
probability limits, when they exist, typically depend on the true distribution
generating the data.

The exact and asymptotic confidence sizes of CSn are

ExCSn = inf
(θ�F)∈F

PF(Tn(θ)≤ c1−α(θ)) and AsyCS = lim inf
n→∞

ExCSn�(2.4)

respectively. The definition of AsyCS takes the inf(θ�F)∈F before the limn→∞.
This builds uniformity over (θ�F) into the definition of AsyCS� Uniformity is
required for the asymptotic size to give a good approximation to the finite-
sample size of CS’s. Andrews and Guggenberger (2009a, 2010a, 2010b) and
Mikusheva (2007) showed that when a test statistic has a discontinuity in its
limit distribution, as occurs in the moment inequality/equality model, pointwise
asymptotics (in which one takes the lim before the inf) can be very misleading
in some models. See AG4 for further discussion.

The exact and asymptotic maximum coverage probabilities are

ExMaxCPn = sup
(θ�F)∈F

PF(Tn(θ)≤ c1−α(θ))�(2.5)

AsyMaxCP = lim sup
n→∞

ExMaxCPn�

respectively. The magnitude of asymptotic nonsimilarity of the CS is measured
by the difference AsyMaxCP − AsyCS�

If interest is in a subvector, sayβ� of θ� then confidence sets forβ can be con-
structed via projection. That is, one takes the CS to be {β ∈Rdβ : for some λ ∈
Rd−dβ� (β′�λ′)′ ∈ CSn}� By a standard argument, if CSn is a CS for θ with as-
ymptotic size greater than or equal to 1 − α� then this CS for β has the same
property. Typically, however, a CS for β constructed in this way has an asymp-
totic size that is strictly greater than 1−α�which implies that it is asymptotically
conservative.

3. TEST STATISTICS

In this section, we define the main class of test statistics Tn(θ) that we con-
sider. GEL statistics are discussed in Section 10 below.

2It is important that the inequality in the definition of CSn is less than or equal to, not less than.
When θ is in the interior of the identified set, it is often the case that Tn(θ)= 0 and c1−α(θ)= 0�
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3.1. Form of the Test Statistics

The sample moment functions are

mn(θ)= (mn�1(θ)� � � � �mn�k(θ))
′� where(3.1)

mn�j(θ)= n−1
n∑
i=1

mj(Wi�θ) for j = 1� � � � �k�

Let Σ̂n(θ) be an estimator of the asymptotic variance, Σ(θ)� of n1/2mn(θ)�
When the observations are i.i.d., we take

Σ̂n(θ)= n−1
n∑
i=1

(m(Wi�θ)−mn(θ))(m(Wi�θ)−mn(θ))
′� where(3.2)

m(Wi�θ)= (m1(Wi� θ)� � � � �mk(Wi�θ))
′�

With temporally dependent observations, a different definition of Σ̂n(θ) often
is required. For example, a heteroskedasticity and autocorrelation consistent
(HAC) estimator may be required.

The statistic Tn(θ) is defined to be of the form

Tn(θ)= S(n1/2mn(θ)� Σ̂n(θ)
)
�(3.3)

where S is a real function on Rp[+∞] × Rv × Vk×k� where Vk×k is the space of
k × k variance matrices. (The set Rp[+∞] × Rv contains k-vectors whose first
p elements are either real or +∞ and whose last v elements are real.) The
function S is required to satisfy Assumptions 1–6 stated below. We now give
several examples of functions that do so.

First, consider the MMM test function S = S1 defined by

S1(m�Σ)=
p∑
j=1

[mj/σj]2
− +

p+v∑
j=p+1

(mj/σj)
2� where(3.4)

[x]− =
{
x� if x < 0,
0� if x≥ 0� m= (m1� � � � �mk)

′�

and σ2
j is the jth diagonal element of Σ� With the function S1� the parameter

space Ψ for the correlation matrices in condition (vi) of (2.2) is Ψ =Ψ1� where
Ψ1 contains all k×k correlation matrices.3 The function S1 yields a test statistic
that gives positive weight to moment inequalities only when they are violated.

3Note that with temporally dependent observations, Ψ is the parameter space for the limiting
correlation matrix, limn→∞ CorrF(n1/2mn(θ))�
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This type of statistic has been considered in Romano and Shaikh (2008, 2010),
Soares (2005), CHT, and AG4. Note that S1 normalizes the moment functions
by dividing by σj in each summand. One could consider a function without this
normalization, as in Pakes et al. (2004) and Romano and Shaikh (2008, 2010),
but the resulting statistic is not invariant to rescaling of the moment conditions
and, hence, is not likely to have good properties in terms of the volume of its
CS. We use the function S1 in the simulations reported in Section 11 below.

Second, we consider a QLR test function defined by

S2(m�Σ)= inf
t=(t1�0v):t1∈Rp+�∞

(m− t)′Σ−1(m− t)�(3.5)

With this function, the parameter space Ψ in (2.2) is Ψ = Ψ2� where Ψ2 con-
tains all k×k correlation matrices whose determinant is greater than or equal
to ε for some ε > 0.4,5 This type of statistic has been considered in many pa-
pers on tests of inequality constraints (e.g., see Kudo (1963) and Silvapulle and
Sen (2005, Sec. 3.8)), as well as papers in the moment inequality literature (see
Rosen (2008)). We note that GEL test statistics behave asymptotically (to the
first order) under the null and alternative hypotheses like the statistic Tn(θ)
based on S2; see Section 10 below and AG4.

The requirement that Ψ = Ψ2 for S2 is restrictive in some cases, such as
when two moment inequalities have correlation equal to 1 in absolute value.
In such cases, one can alter the definition of S2 in (3.5) by replacing Σ by Σ+
εDiag(Σ) for some ε > 0� where Diag(Σ) denotes the k× k diagonal matrix
whose diagonal elements equal those of Σ� With this alteration, one can take
Ψ =Ψ1�

For a test with power directed against alternatives with p1 (< p) moment
inequalities violated, the following function is suitable:

S3(m�Σ)=
p1∑
j=1

[
m(j)/σ(j)

]2

− +
p+v∑
j=p+1

(mj/σj)
2�(3.6)

where [m(j)/σ(j)]2
− denotes the jth largest value among {[m�/σ�]2

− :�= 1� � � � �p}
and p1 < p is some specified integer. The function S3 satisfies (2.2) with Ψ =
Ψ1� The function S3 is considered in Andrews and Jia (2008).

4The condition that Ψ = Ψ2 for the function S2 is used in the proofs of various asymptotic
results. This condition may be just a consequence of the method of proof. It may not actually be
needed.

5The definition of S2(m�Σ) takes the infimum over t1 ∈ Rp+�∞� rather than over t1 ∈ Rp+� For
calculation of the test statistic based on S2� using the latter gives an equivalent value. To obtain
the correct asymptotic distribution, however, the former definition is required because it leads to
continuity at infinity of S2 when some elements of m may equal infinity. For example, suppose
k= p= 1� In this case, when m ∈R+� inft1∈R+�∞(m− t1)2 = inft1∈R+(m− t1)2 = 0� However, when
m= ∞� inft1∈R+�∞(m− t1)2 = 0� but inft1∈R+(m− t1)2 = ∞�
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Other examples of test functions S that satisfy Assumptions 1–6 are varia-
tions of S1 and S3 with the step function [x]− replaced by a smooth function,
with the square replaced by the absolute value to a different positive power
(such as 1), or with weights added.

It is difficult to compare the performance of one test function S with another
function without specifying the critical values to be used. Most critical values,
such as the GMS, subsampling, and PA critical values considered here, are data
dependent and have limits as n→ ∞ that depend on the distribution of the ob-
servations. For a given test function S� a different test is obtained for each type
of critical value employed and the differences do not vanish asymptotically.
The relative performances of different functions S are considered elsewhere;
see Andrews and Jia (2008).

3.2. Test Statistic Assumptions

Next, we state the most important assumptions concerning the function S,
namely, Assumptions 1, 3, and 6. For ease of reading, technical assumptions
(mostly continuity and strictly-increasing assumptions on asymptotic distrib-
ution functions (df’s)), namely, Assumptions 2, 4, 5, and 7, are stated in the
Appendix. We show below that the functions S1–S3 automatically satisfy As-
sumptions 1–6. Assumption 7 is not restrictive.

Let B ⊂ Rw� We say that a real function G on Rp[+∞] × B is continuous at
x ∈ Rp[+∞] × B if y → x for y ∈ Rp[+∞] × B implies that G(y)→ G(x)� In the
assumptions below, the set Ψ is as in condition (vi) of (2.2).6 For p-vectors
m1 and m∗

1� m1 < m
∗
1 means that m1 ≤ m∗

1 and at least one inequality in the
p-vector of inequalities holds strictly.

ASSUMPTION 1: (a) S((m1�m2)�Σ) is nonincreasing in m1 for all m1 ∈ Rp�
m2 ∈Rv� and variance matrices Σ ∈Rk×k�

(b) S(m�Σ)= S(Dm�DΣD) for all m ∈ Rk� Σ ∈ Rk×k� and pd diagonal D ∈
Rk×k�

(c) S(m�Ω)≥ 0 for all m ∈Rk and Ω ∈Ψ�
(d) S(m�Ω) is continuous at all m ∈Rp[+∞] ×Rv and Ω ∈Ψ .7

ASSUMPTION 3: S(m�Ω) > 0 if and only if mj < 0 for some j = 1� � � � �p or
mj = 0 for some j = p+ 1� � � � �k� where m= (m1� � � � �mk)

′ and Ω ∈Ψ�
ASSUMPTION 6: For some χ> 0� S(am�Ω)= aχS(m�Ω) for all scalars a > 0�

m ∈Rk� and Ω ∈Ψ�
6For dependent observations, Ψ is as in condition (v) of (A.2) in the Appendix.
7In Assumption 1(d) (and in Assumption 4(b) in the Appendix), S(m�Ω) and c(Ω�1 − α) are

viewed as functions defined on the space of all correlation matrices Ψ1� By definition, c(Ω�1 −α)
is continuous in Ω uniformly for Ω ∈ Ψ if for all η > 0, there exists δ > 0 such that whenever
‖Ω∗ −Ω‖< δ for Ω∗ ∈Ψ1 and Ω ∈Ψ , we have |cΩ∗(1 − α)− cΩ(1 − α)|<η�
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Assumptions 1–6 are shown in Lemma 1 below not to be restrictive. As-
sumption 1(a) is the key assumption that is needed to ensure that GMS and
subsampling CS’s have correct asymptotic size. Assumption 1(b) is a natural
assumption that specifies that the test statistic is invariant to the scale of each
sample moment. Assumption 1(b) and 1(d) are conditions that enable one to
determine the asymptotic properties of Tn(θ)� Assumption 1(c) normalizes the
test statistic to be nonnegative.

Assumption 3 implies that a positive value of S(m�Ω) only occurs if some in-
equality or equality is violated. Assumption 3 implies that S(∞p�Σ)= 0 when
v= 0� Assumption 6 requires S to be homogeneous of degree χ> 0 in m� This
is used to show that the test based on S has asymptotic power equal to 1 against
fixed alternatives.

LEMMA 1: The functions S1(m�Σ)–S3(m�Σ) satisfy Assumptions 1–6 with
Ψ =Ψ1 for S1(m�Σ) and S3(m�Σ), and with Ψ =Ψ2 for S2(m�Σ)�

4. GENERALIZED MOMENT SELECTION

This section is concerned with critical values for use with the test statistics
introduced in Section 3.

4.1. Description of the GMS Method

We start by motivating the GMS method. Consider the null hypothesis
H0 :θ= θ0� The finite-sample null distribution of Tn(θ0) depends continuously
on the degree of slackness of the moment inequalities. That is, it depends on
how much greater than zero is EFmj(Wi�θ0) for j = 1� � � � �p� Under Assump-
tion 1(a), the least favorable case (at least asymptotically) can be shown to be
the case where there is no slackness—each of the moments is zero. That is,
the distribution of Tn(θ0) is stochastically largest over distributions in the null
hypothesis when the inequality moments equal zero. One way to construct a
critical value for Tn(θ0)� then, is to take the 1 − α quantile of the distribution
(or asymptotic distribution) of Tn(θ0) when the inequality moments all equal
zero. This yields a test with correct (asymptotic) size, but its power properties
are poor against many alternatives of interest.

The reason for its poor power is that the least favorable critical value is rel-
atively large. This is especially true if the number of moment inequalities, p�
is large. For example, consider power against an alternative for which only the
first moment inequality is violated (i.e., EFm1(Wi� θ0) < 0) and the last p− 1
moment inequalities are satisfied by a wide margin (i.e., EFmj(Wi�θ0)� 0 for
j = 2� � � � �p). Then the last p− 1 moment inequalities have little or no effect
on the value of the test statistic Tn(θ0)� (This holds for typical test statistics and
is implied by Assumption 3.) Yet, the critical value does depend on the exis-
tence of the last p− 1 moment inequalities and is much larger than it would
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be if these moment inequalities were absent. In consequence, the test has sig-
nificantly lower power than if the last p− 1 moment inequalities were absent.

The idea behind generalized moment selection is to use the data to determine
whether a given moment inequality is satisfied and is far from being an equality,
and if so to take the critical value to be smaller than otherwise—both under the
null and under the alternative. Of course, in doing so, one has to make sure that
the (asymptotic) size of the resulting test is correct. We use the sample moment
functions to estimate or test whether the population moment inequalities are
close to or far from being equalities.

Using Assumption 1(b), we can write

Tn(θ)= S(n1/2mn(θ)� Σ̂n(θ)
)

(4.1)

= S(D̂−1/2
n (θ)n1/2mn(θ)� Ω̂n(θ)

)
� where

D̂n(θ)= Diag(Σ̂n(θ)) and Ω̂n(θ)= D̂−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ)�

Thus, the test statistic Tn(θ) depends only on the normalized sample moments
and the sample correlation matrix. Under an appropriate sequence of null dis-
tributions {Fn :n≥ 1}� the asymptotic null distribution of Tn(θ0) is that of

S
(
Ω1/2

0 Z∗ + (h1�0v)�Ω0

)
� where Z∗ ∼N(0k� Ik)�(4.2)

h1 ∈Rp+�∞� and Ω0 is a k× k correlation matrix. This result holds by (4.1), the
central limit theorem, and the convergence in probability of the sample cor-
relation matrix; see the proof of Theorem 1 of AG4. The p-vector h1 is the
limit of (n1/2EFnm1(Wi� θ0)/σFn�1(θ0)� � � � � n

1/2EFnmp(Wi�θ0)/σFn�p(θ0))
′ under

the null distributions {Fn :n ≥ 1}� By considering suitable sequences of distri-
butions Fn that depend on n� rather than a fixed distribution F� we obtain an
asymptotic distribution that depends continuously on the degree of slackness
of the population moment inequalities via the parameter h1 (≥ 0p). This re-
flects the finite-sample situation.

Note that the correlation matrix Ω0 can be consistently estimated, but the
n−1/2-local asymptotic mean parameter h1 cannot be (uniformly) consistently
estimated. It is the latter property that makes it challenging to determine a
critical value that yields a test with correct asymptotic size and good power
properties.

The GMS critical value is defined to be the 1 − α quantile of a data-
dependent version of the asymptotic null distribution, S(Ω1/2

0 Z∗ +(h1�0v)�Ω0)�
that replaces Ω0 by a consistent estimator and replaces h1 with a p-vector in
R
p
+�∞ whose value depends on a measure of the slackness of the moment in-

equalities. We measure the degree of slackness of the moment inequalities via

ξn(θ)= κ−1
n n

1/2D̂−1/2
n (θ)mn(θ) ∈Rk(4.3)
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evaluated at θ= θ0� where {κn :n≥ 1} is a sequence of constants that diverges
to infinity as n→ ∞� A suitable choice of κn is the BIC choice

κn = (lnn)1/2�(4.4)

The law of the iterated logarithm choice, κn = (2 ln lnn)1/2� also is possible,
but the simulations reported in Section 11 below indicate that the BIC choice
is preferable. CHT also suggested using the BIC value.

Let ξn�j(θ)� h1�j� and [Ω1/2
0 Z∗]j denote the jth elements of ξn(θ)� h1� and

Ω1/2
0 Z∗� respectively, for j = 1� � � � �p� When ξn�j(θ0) is zero or close to zero,

this indicates that h1�j is zero or fairly close to zero and the desired replacement
of h1�j in S(Ω1/2

0 Z∗ + (h1�0v)�Ω0) is 0� On the other hand, when ξn�j(θ0) is
large, this indicates h1�j is quite large (where the adjective “quite” is due to the
κn factor) and the desired replacement of h1�j in S(Ω1/2

0 Z∗ + (h1�0v)�Ω0) is ∞�

We replace h1�j in S(Ω1/2
0 Z∗ + (h1�0v)�Ω0) by ϕj(ξn(θ0)� Ω̂n(θ0)) for j =

1� � � � �p� where ϕj : (Rp[+∞] ×Rv[±∞])×Ψ → R[±∞] is a function that is chosen
to deliver the properties described above. Suppose ϕj satisfies (i) ϕj(ξ�Ω)= 0
for all ξ = (ξ1� � � � � ξk)

′ ∈ Rp[+∞] × Rv[±∞] with ξj = 0 and all Ω ∈ Ψ� and
(ii) ϕj(ξ�Ω)→ ∞ as (ξ�Ω)→ (ξ∗�Ω∗) for all ξ∗ = (ξ∗�1� � � � � ξ∗�k)′ ∈ Rp[+∞] ×
Rv[±∞] with ξ∗�j = ∞ and all Ω∗ ∈ Ψ� where ξ ∈ Rk and Ω ∈ Ψ� In this case,
if ξn�j(θ0) = 0� then ϕj(ξn(θ0)� Ω̂n(θ0)) = 0 and h1�j is replaced by 0� as
desired. On the other hand, if ξn�j(θ0) is large, condition (ii) implies that
ϕj(ξn(θ0)� Ω̂n(θ0)) is large and h1�j is replaced by a large value, as desired, for
j = 1� � � � �p� For j = p+ 1� � � � �k� we define ϕj(ξn(θ0)� Ω̂n(θ0)) = 0 because
no h1�j term appears in S(Ω1/2

0 Z∗ + (h1�0v)�Ω0)�
Examples of functions ϕj include

ϕ(1)j (ξ�Ω)=
{

0� if ξj ≤ 1
∞� if ξj > 1� ϕ(2)j (ξ�Ω)=ψ(ξj)�(4.5)

ϕ(3)j (ξ�Ω)= [ξj]+� and ϕ(4)j (ξ�Ω)= ξj
for j = 1� � � � �p� where ψ is defined below. Let ϕ(r)(ξ�Ω) = (ϕ(r)1 (ξ�Ω)� � � � �
ϕ(r)p (ξ�Ω)�0� � � � �0)′ ∈Rp[±∞] × {0}v for r = 1� � � � �4�

The function ϕ(1) generates a “moment selection t-test” procedure. Using
ϕ(1)� h1�j is replaced in S(Ω1/2

0 Z∗ + (h1�0v)�Ω0) by ∞ if ξn�j(θ0) > 1 and by 0
otherwise. Note that ξn�j(θ0) > 1 is equivalent to

n1/2mn�j(θ0)

σ̂n�j(θ0)
> κn�(4.6)

where σ̂2
n�j(θ0) is the (j� j) element of Σ̂n(θ0) for j = 1� � � � �p� The GMS proce-

dure based on ϕ(1) is the same as the Wald test procedure in Andrews (1999b,
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Sec. 6.4; 2000, Sec. 4) for the related problem of inference when a parameter
is on or near a boundary.

The function ϕ(2) in (4.5) depends on a nondecreasing function ψ(x) that
satisfies ψ(x) = 0 if x ≤ aL� ψ(x) ∈ [0�∞] if aL < x < aU� and ψ(x) = ∞ if
x > aU for some 0 < aL ≤ aU ≤ ∞� A key condition is that aL > 0; see As-
sumption GMS1(a) below. The function ϕ(2) is a continuous version of ϕ(1)

when ψ is taken to be continuous on R (where continuity at aU means that
limx→aU ψ(x)= ∞).

The functions ϕ(3) and ϕ(4) exhibit a less steep rate of increase than ϕ(1) as a
function of ξj for j = 1� � � � �p�

The functions ϕ(r) for r = 1� � � � �4 all exhibit “element-by-element” determi-
nation of ϕ(r)j (ξ�Ω) because the latter depends only on ξj� This has significant
computational advantages because ϕ(r)j (ξn(θ0)� Ω̂n(θ0)) is very easy to com-
pute. On the other hand, when Ω̂n(θ0) is nondiagonal, the whole vector ξn(θ0)
contains information about the magnitude of h1�j� We now introduce a func-
tion ϕ(5) that exploits this information (at least for certain choices of function
S such as S2). It is related to the information criterion-based moment selection
criteria (MSC) considered in Andrews (1999a) for a different moment selec-
tion problem. We refer to ϕ(5) as the modified MSC (MMSC) ϕ function. It is
computationally more expensive than the ϕ(r) functions considered above.

Define c = (c1� � � � � ck)
′ to be a selection k-vector of 0’s and 1’s. If cj = 1�

the jth moment condition is selected; if cj = 0� it is not selected. The moment
equality functions are always selected, that is, cj = 1 for j = p+ 1� � � � �k� Let
|c| = ∑k

j=1 cj� For ξ ∈ Rp[+∞] × Rv[±∞]� define c · ξ = (c1ξ1� � � � � ckξk)
′ ∈ Rp[+∞] ×

Rv[±∞]� where cjξj = 0 if cj = 0 and ξj = ∞� Let C denote the parameter space
for the selection vectors. In many cases, C = {0�1}p × {1}v� However, if there is
a priori information that one moment inequality cannot hold as an equality if
some other does and the sum of the degrees of slackness of the two moment
inequalities is bounded away from zero over all admissible distributions, then
this can be built into the definition of C ; see Rosen (2008) for a discussion
of examples of this sort. Let ζ(·) be a strictly increasing real function on R+�
Given (ξ�Ω) ∈ (Rp[+∞] ×Rv[±∞])×Ψ� the selected moment vector c(ξ�Ω) ∈ C is
the vector in C that minimizes the MMSC defined by

S(−c · ξ�Ω)− ζ(|c|)�(4.7)

Note the minus sign that appears in the first argument of the S function. This
ensures that a large positive value of ξj yields a large value of S(−c ·ξ�Ω) when
cj = 1� as desired. Since ζ(·) is increasing, −ζ(|c|) is a bonus term that rewards
inclusion of more moments. Hence, the minimizing selection vector c(ξ�Ω)
trades off the minimization of S(−c · ξ�Ω)� which is achieved by selecting few
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moment functions, with the maximization of the bonus term, which is decreas-
ing in the number of selected moments. For j = 1� � � � �p� define

ϕ(5)j (ξ�Ω)=
{

0 if cj(ξ�Ω)= 1,
∞ if cj(ξ�Ω)= 0�(4.8)

Using Assumptions 1(b) and 6,

κχn
(
S(−c · ξn(θ0)� Ω̂n(θ0))− ζ(|c|))(4.9)

= S(−c · n1/2mn(θ0)� Σ̂n(θ0)
) − ζ(|c|)κχn�

where χ is as in Assumption 6. In consequence, the MMSC selection vector
c(ξn(θ0)� Ω̂n(θ0)) minimizes both the left-hand and right-hand sides (r.h.s.) of
(4.9) over C� The r.h.s. of (4.9) is analogous to the BIC and HQIC criteria con-
sidered in the model selection literature in which case ζ(x)= x� κn = (lnn)1/2

for BIC, κn = (Q ln lnn)1/2 for some Q ≥ 2 for HQIC, and χ= 2 (which holds
for the functions S1–S3). Note that some calculations show that when Ω̂n(θ0) is
diagonal, S = S1 or S2� and ζ(x)= x� the function ϕ(5) reduces to ϕ(1)�

Returning now to the general case, given a choice of function ϕ(ξ�Ω) =
(ϕ1(ξ�Ω)� � � � �ϕp(ξ�Ω)�0� � � � �0)′ ∈ Rp[+∞] × {0}v� the replacement for the k-
vector (h1�0v) in S(Ω1/2

0 Z∗ +(h1�0v)�Ω0) is ϕ(ξn(θ0)� Ω̂n(θ0))� Thus, the GMS
critical value, ĉn(θ0�1 − α)� is the 1 − α quantile of

Ln(θ0�Z
∗)= S(Ω̂1/2

n (θ0)Z
∗ +ϕ(ξn(θ0)� Ω̂n(θ0))� Ω̂n(θ0)

)
�(4.10)

where Z∗ ∼N(0k� Ik) and Z∗ is independent of {Wi : i≥ 1}� That is,

ĉn(θ0�1 − α)= inf
{
x ∈R :P(Ln(θ0�Z

∗)≤ x)≥ 1 − α}
�(4.11)

where P(Ln(θ0�Z
∗) ≤ x) denotes the conditional df at x of Ln(θ0�Z

∗) given
(ξn(θ0)� Ω̂n(θ0))� One can compute ĉn(θ0�1 −α) by simulating R i.i.d. random
vectors {Z∗

r : r = 1� � � � �R} with Z∗
r ∼ N(0k� Ik) and taking ĉn(θ0�1 − α) to be

the 1 − α sample quantile of {Ln(θ0�Z
∗
r ) : r = 1� � � � �R}� where R is large.

A bootstrap version of the GMS critical value is obtained by replacing
Ln(θ0�Z

∗) in (4.11) by

S
(
M∗

n(θ0)+ϕ(ξn(θ0)� Ω̂n(θ0))� Ω̂
∗
n(θ0)

)
�(4.12)

where M∗
n(θ) is a recentered bootstrapped version of n1/2D̂−1/2

n (θ)mn(θ) and
Ω̂∗
n(θ) is a bootstrapped version of Ω̂n(θ) (defined as follows). Let {W ∗

i : i≤ n}
be a bootstrap sample, such as a nonparametric i.i.d. bootstrap sample in an
i.i.d. scenario or a block bootstrap sample in a time series scenario. By defini-
tion,

M∗
n(θ)= n1/2(D̂∗

n(θ))
−1/2(m∗

n(θ)−mn(θ))�(4.13)
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Ω̂∗
n(θ)= (D̂∗

n(θ))
−1/2Σ̂∗

n(θ)(D̂
∗
n(θ))

−1/2� where

m∗
n(θ)= n−1

n∑
i=1

m(W ∗
i � θ)� D̂∗

n(θ)= Diag(Σ̂∗
n(θ))�

and Σ̂∗
n(θ) is defined in the same manner as Σ̂n(θ) is defined (e.g., as in (3.2)

in the i.i.d. case) with W ∗
i in place of Wi� One can compute the bootstrap crit-

ical value by simulating R bootstrap samples {{W ∗
i�r : i ≤ n} : r = 1� � � � �R} (i.i.d.

across samples), computing {(M∗
n�r(θ0)� Ω̂

∗
n�r(θ0)) : r = 1� � � � �R} (defined as in

(4.13)), and taking the bootstrap critical value to be the 1 − α sample quantile
of {S(M∗

n�r(θ0)+ϕ(ξn(θ0)� Ω̂n(θ0))� Ω̂
∗
n�r(θ0)) : r = 1� � � � �R}� where R is large.

For the asymptotic results given below to hold with a bootstrap GMS critical
value, one needs that M∗

n(θn�h)→d Ω
1/2
0 Z∗ under certain triangular arrays of

true distributions and true parameters θn�h� where Ω0 is a k × k correlation
matrix and Z∗ is as in (4.10).8 This can be established for the nonparametric
i.i.d. and block bootstraps using fairly standard arguments. For brevity, we do
not do so here.

The 2003 working paper version of CHT discusses a bootstrap version of the
GMS critical value based on ϕ(1) in the context of the interval outcome regres-
sion model. CHT mentions critical values of GMS type based on ϕ(1); see their
Remark 4.5. Bugni (2007a, 2007b) and Canay (2007) provided results regard-
ing the pointwise asymptotic null properties of nonparametric i.i.d. bootstrap
procedures applied with ϕ(1) and ϕ(3)� respectively. Note that GMS bootstrap
critical values do not generate higher-order improvements in the present con-
text because the asymptotic null distribution of the test statistic Tn(θ) is not
asymptotically pivotal. Fan and Park (2007) considered a critical value based
on a function that is analogous to ϕ(1) except with ∞ replaced by κnξj and with
ξj replaced by ξjσ̂n�j(θ)� The latter makes their procedure lack invariance to
the scaling of the moment functions, which is not desirable. If Fan and Park’s
(2007) ϕ function is altered to be scale invariant, then the test based on it has
the same asymptotic properties under the null and local alternatives as the test
based on ϕ(1) because κn → ∞�

4.2. Step-by-Step Calculation of GMS Tests and CIs

Here we describe the steps in the calculation of a nominal level α GMS test
of H0 :θ= θ0� First, we describe the bootstrap version of the GMS procedure
based on (S2�ϕ

(1))� which is the recommended procedure for i.i.d. observa-

8More specifically, this convergence must hold under any sequence of distributions {γn :n≥ 1}
defined just above (A.3) in the Appendix (in which caseΩ0 =Ωh2�2 ), the convergence needs to be
joint with that in (A.3) of the Appendix, and the convergence must hold with {n} replaced by any
subsequence {wn} of sample sizes.
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tions. (For non-i.i.d. observations, we recommend using (S2�ϕ
(1))� but the as-

ymptotic version may perform as well as a bootstrap version.)
Compute (i) the sample moments mn(θ0)� (ii) the sample variance estima-

tor Σ̂n(θ0)� and (iii) the test statistic Tn(θ0) = S2(n
1/2mn(θ0)� Σ̂n(θ0))� Next,

to determine the GMS critical value ĉn(θ0�1 − α)� use the following steps:
(iv) simulate R bootstrap samples each of size n� i.i.d. across bootstrap sam-
ples, denoted {{W ∗

i�r : i ≤ n} : r = 1� � � � �R} (according to a bootstrap procedure
that is suitable for the observations under consideration, such as a nonpara-
metric i.i.d. bootstrap for i.i.d. observations and a block bootstrap for time se-
ries), where the number of bootstrap simulations R is large, say 1000 or more;
(v) compute {(M∗

n�r(θ0)� Ω̂
∗
n�r(θ0)) : r = 1� � � � �R} (defined in (4.13) with W ∗

i�r in
place of W ∗

i ); (vi) determine whether n1/2mn�j(θ0)/σ̂n�j(θ0) > κn = (lnn)1/2 for
j = 1� � � � �p� where σ̂2

n�j(θ0) is the (j� j) element of Σ̂n(θ0); (vii) eliminate the
elements in (M∗

n�r(θ0)� Ω̂
∗
n�r(θ0)) for all r = 1� � � � �R that correspond to the mo-

ment conditions that satisfy the condition in (vi), with the resulting quantities
denoted by (M∗∗

n�r(θ0)� Ω̂
∗∗
n�r(θ0)) for r = 1� � � � �R; (viii) take the critical value

ĉn(θ0�1 − α) to be the 1 − α sample quantile of {S2(M
∗∗
n�r(θ0)� Ω̂

∗∗
n�r(θ0)) : r =

1� � � � �R}� The GMS test rejects H0 :θ= θ0 if Tn(θ0) > ĉn(θ0�1 − α)�
A GMS CS is obtained by inverting tests of H0 :θ = θ0 for θ0 ∈ Θ� A GMS

CS can be calculated by employing a grid search (or some more sophisticated)
algorithm using the method described above to calculate whether Tn(θ0) ≤
ĉn(θ0�1 − α)� which implies that θ0 should be included in the CS.

For a general choice of (S�ϕ)� the asymptotic version of the GMS test is
computed as follows. Compute (i) the sample moments mn(θ0)� (ii) the sam-
ple variance estimator Σ̂n(θ0)� and (iii) the test statistic Tn(θ0) = S(n1/2 ×
mn(θ0)� Σ̂n(θ0))� Next, to determine the critical value ĉn(θ0�1 − α)� com-
pute (iv) Ω̂n(θ0) = Diag−1/2(Σ̂n(θ0))Σ̂n(θ0)Diag−1/2(Σ̂n(θ0))� (v) ξn(θ0) =
κ−1
n n

1/2 Diag−1/2(Σ̂n(θ0))mn(θ0)� where κn = (lnn)1/2� and (vi) ϕ(ξn(θ0)�

Ω̂n(θ0)); (vii) simulate R i.i.d. random vectors {Z∗
r : r = 1� � � � �R} with Z∗

r ∼
N(0k� Ik)� where R is large; and (viii) take ĉn(θ0�1 − α) to be the 1 − α sam-
ple quantile of {S(Ω̂1/2

n (θ0)Z
∗
r +ϕ(ξn(θ0)� Ω̂n(θ0))� Ω̂n(θ0)) : r = 1� � � � �R}� The

GMS test rejects H0 :θ= θ0 if Tn(θ0) > ĉn(θ0�1 − α)�
The bootstrap version of the GMS test with general choice of (S�ϕ) re-

places steps (vii) and (viii) with the following: (vii∗) simulate R bootstrap sam-
ples each of size n� i.i.d. across bootstrap samples, denoted {{W ∗

i�r : i ≤ n} : r =
1� � � � �R}� (viii∗) compute {(M∗

n�r(θ0)� Ω̂
∗
n�r(θ0)) : r = 1� � � � �R} (defined in

(4.13) with W ∗
i�r in place of W ∗

i ), and (ix∗) take the critical value ĉn(θ0�1 −α) to
be the 1−α sample quantile of {S(M∗

n�r(θ0)+ϕ(ξn(θ0)� Ω̂n(θ0))� Ω̂
∗
n�r(θ0)) : r =

1� � � � �R}� When S = S2 and ϕ = ϕ(1)� this procedure is equivalent to that for
the GMS test described three paragraphs above.



136 D. W. K. ANDREWS AND G. SOARES

4.3. Assumptions

Next we state assumptions on the function ϕ and the constants {κn :n ≥ 1}
that define a GMS procedure. The first two assumptions are used to show that
GMS CS’s and tests have correct asymptotic size.

ASSUMPTION GMS1: (a) ϕj(ξ�Ω) is continuous at all (ξ�Ω) ∈ (Rp[+∞] ×
Rv[±∞])×Ψ with ξj = 0� where ξ= (ξ1� � � � � ξk)

′� for j = 1� � � � �p�
(b) ϕj(ξ�Ω)= 0 for all (ξ�Ω) ∈ (Rp[+∞] ×Rv[±∞])×Ψ with ξj = 0� where ξ =

(ξ1� � � � � ξk)
′� for j = 1� � � � �p�

(c) ϕj(ξ�Ω)= 0 for all j = p+ 1� � � � �k for all (ξ�Ω) ∈ (Rp[+∞] ×Rv[±∞])×Ψ�

ASSUMPTION GMS2: κn → ∞�

Assumptions GMS1 and GMS2 are not restrictive. For example, the func-
tions ϕ(1)–ϕ(4) satisfy Assumption GMS1 and κn = (lnn)1/2 satisfies Assump-
tion GMS2. Assumption GMS1 also holds for ϕ(5) for all functions S that sat-
isfy Assumption 1(d), which includes S1–S3; see the Supplemental Material
(Andrews and Soares (2010)) for a proof.

The next two assumptions are used in conjunction with Assumptions GMS1
and GMS2 to show that GMS CS’s and tests are not asymptotically conserva-
tive. They also are used to determine the formula for the asymptotic power of
GMS tests against n−1/2-local alternatives.

ASSUMPTION GMS3: ϕj(ξ�Ω)→ ∞ as (ξ�Ω)→ (ξ∗�Ω∗) for all (ξ∗�Ω∗) ∈
R
p
[+∞] × Rv[±∞] × cl(Ψ) with ξ∗�j = ∞� where ξ∗ = (ξ∗�1� � � � � ξ∗�k)′� for j =

1� � � � �p�

ASSUMPTION GMS4: κ−1
n n

1/2 → ∞�

Assumptions GMS3 and GMS4 are not restrictive and are satisfied by ϕ(1)–
ϕ(4) and κn = (lnn)1/2� Assumption GMS3 also holds for ϕ(5) for all functions
S that satisfy Assumption 1(d) and for which S(−c · ξ�Ω)→ ∞ as (ξ�Ω)→
(ξ∗�Ω∗) whenever cj = 1� see the Supplemental Material for a proof. The latter
holds for the test functions S1–S3�

The next two assumptions are used in conjunction with Assumptions GMS2
and GMS3 to show that GMS tests dominate subsampling tests (based on a
subsample size b) in terms of n−1/2-local asymptotic power.

ASSUMPTION GMS5: κ−1
n (n/b)

1/2 → ∞� where b= bn is the subsample size.

ASSUMPTION GMS6: ϕj(ξ�Ω) ≥ 0 for all (ξ�Ω) ∈ (Rp[+∞] × Rv[±∞])× Ψ for
j = 1� � � � �p�
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Assumption GMS5 holds for all reasonable choices of κn and b. For exam-
ple, for κn = (lnn)1/2� Assumption GMS5 holds for b= nη for any η ∈ (0�1)�
Any reasonable choice of b satisfies the latter condition. Note that for recen-
tered subsampling tests, the optimal value of η in terms of size is 2/3; see
Bugni (2007a, 2007b). When η= 2/3�Assumption GMS5 holds easily for κn as
above. Assumption GMS5 fails when κn = (lnn)1/2 (or some other logarithmic
function) only if b is larger than O(nη) for all η ∈ (0�1) and the latter yields a
recentered subsampling test whose error in the null rejection probability is very
large—of order larger than O(n−ε) for all ε > 0� For a non-recentered subsam-
pling test, it yields a test whose power against n1/2-local alternatives converges
from below and very slowly to its asymptotic local power. The reason is that
if b is larger than O(nη) for all η ∈ (0�1), then under the alternative, the sub-
sampling critical value mimics the 1 −α quantile of the alternative distribution
of the test statistic unless n is very, very large, because the subsample size is al-
most equal to that of the full-sample statistic unless n is very, very large. Hence,
the finite-sample power of the subsampling test is poor in sample sizes that are
of interest in practice.

Assumption GMS6 is satisfied by the functions ϕ(1)–ϕ(5) except for ϕ(4)�
Hence, it is slightly restrictive.

The last assumption is used to show that GMS tests are consistent against
alternatives that are more distant from the null than n−1/2-local alternatives.

ASSUMPTION GMS7: ϕj(ξ�Ω)≥ min{ξj�0} for all (ξ�Ω) ∈ (Rp[+∞]×Rv[±∞])×
Ψ for j = 1� � � � �p�

Assumption GMS7 is not restrictive. For example, it is satisfied by ϕ(1)–ϕ(5)�
Next we introduce a condition that depends on the model, not on the GMS

method, and is only used when showing that GMS CS’s have AsyMaxCP = 1
when v= 0�

ASSUMPTION M: For some (θ�F) ∈ F� EFmj(Wi�θ) > 0 for all j = 1� � � � �p�

Assumption M typically holds if the identified set (i.e., the set of parameter
values θ that satisfy the population moment inequalities and equalities under
F) has a nonempty interior for some data-generating process included in the
model.

4.4. Asymptotic Size Results

The following theorem applies to i.i.d. observations, in which case F is as
defined in (2.2), and to dependent observations, in which case for brevity F is
as defined in (A.2) and (A.3) in the Appendix.

THEOREM 1: Suppose Assumptions 1–3, GMS1, and GMS2 hold and 0<α<
1/2� Then the nominal level 1 −αGMS CS based on Tn(θ) satisfies the following
statements:
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(a) AsyCS ≥ 1 − α�
(b) AsyCS = 1 − α if Assumptions GMS3, GMS4, and 7 also hold.
(c) AsyMaxCP = 1 if v= 0 (i.e., no moment equalities appear) and Assump-

tion M also holds.

COMMENTS: (i) Theorem 1(a) shows that a GMS CS is asymptotically valid
in a uniform sense. Theorem 1(b) shows it is not asymptotically conservative.
Theorem 1(c) shows it is not asymptotically similar.

(ii) Theorem 1 places no assumptions on the moment functions m(Wi�θ)
beyond the existence of mild moment conditions that appear in the definition
of F . Thus, the results apply to moment conditions based on instruments that
are weak. (The reason is that the test statistics considered are of the Anderson–
Rubin type.)

(iii) Theorem 1 holds even when there are restrictions on the moment in-
equalities such that when one moment inequality holds as an equality, then an-
other moment inequality cannot. Restrictions of this sort arise in some models,
such as models with interval outcomes (e.g., see Rosen (2008)).

(iv) The proof of Theorem 1 and all other results below are given in the
Supplemental Material (Andrews and Soares (2010)).

5. GMS MODEL SPECIFICATION TESTS

Tests of model specification can be constructed using the GMS CS intro-
duced above. The null hypothesis of interest is that (2.1) holds for some para-
meter θ0 ∈Θ (with additional conditions imposed by the parameter space for
(θ�F)). By definition, the GMS test rejects the model specification if Tn(θ) ex-
ceeds the GMS critical value ĉn(θ�1−α) for all θ ∈Θ� Equivalently, it rejects if
the GMS CS is empty. The idea behind such a test is the same as for the J test
of overidentifying restrictions in GMM; see Hansen (1982).

When the model of (2.1) is correctly specified, the GMS CS includes the true
value with asymptotic probability 1 − α (or greater) uniformly over the para-
meter space. Thus, under the null hypothesis of correct model specification,
the limit as n→ ∞ of the finite-sample size of the GMS model specification
test is less than or equal to α under the assumptions of Theorem 1(a). In other
words, the asymptotic size of this specification test is valid uniformly over the
parameter space.

Note that the asymptotic size of the GMS model specification test is not
necessarily equal to α under the assumptions of Theorem 1(b).9 That is, the
GMS model specification test may be asymptotically conservative.

9The reason is that when the null of correct model specification holds and (θ0�F0) is the
truth, the GMS test may fail to reject the null even when Tn(θ0) > ĉn(θ0�1 − α) because
Tn(θ)≤ ĉn(θ�1 − α) for some θ = θ0�
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6. SUBSAMPLING CONFIDENCE SETS

The volume of a CS is directly related to the power of the tests used in its
construction. Below we compare the power of GMS tests to that of subsam-
pling and PA tests. In this section and the following one we define subsampling
and PA CS’s.

We now define subsampling critical values and CS’s. Let b = bn denote the
subsample size when the full-sample size is n�We assume b→ ∞ and b/n→ 0
as n→ ∞ (here and below). The number of subsamples of size b considered is
qn�With i.i.d. observations, there are qn = n!/((n−b)!b!) subsamples of size b�
With time series observations, there are qn = n−b+ 1 subsamples, each based
on b consecutive observations.

Let Tn�b�j(θ) be a subsample statistic defined exactly as Tn(θ) is defined
but based on the jth subsample of size b rather than the full sample for
j = 1� � � � � qn� The empirical df and the 1 − α sample quantile of {Tn�b�j(θ) : j =
1� � � � � qn} are

Un�b(θ�x)= q−1
n

qn∑
j=1

1(Tn�b�j(θ)≤ x) for x ∈R�(6.1)

cn�b(θ�1 − α)= inf{x ∈R :Un�b(θ�x)≥ 1 − α}�
The subsampling test rejectsH0 :θ= θ0 if Tn(θ0) > cn�b(θ0�1−α)� The nominal
level 1 − α subsampling CS is given by (2.3) with c1−α(θ)= cn�b(θ�1 − α)�

One also can define “recentered” subsample statistics by defining Tn�b�j(θ)
using b1/2(mn�b�j(θ)−mn(θ))� rather than b1/2mn�b�j(θ)� in place of n1/2mn(θ)
in (3.3), where mn�b�j(θ) is the average of the moment conditions over the ob-
servations in the jth subsample; see AG4.

It is shown in AG4 that under Assumptions 1–3 and 0< α < 1/2� the nom-
inal level 1 − α subsampling CS based on Tn(θ) satisfies (a) AsyCS ≥ 1 − α�
(b) AsyCS = 1 − α if Assumption 7 also holds, and (c) AsyMaxCP = 1 if v= 0
(i.e., no moment equalities appear) and Assumption M also holds.

7. PLUG-IN ASYMPTOTIC CONFIDENCE SETS

Now we discuss CS’s based on a PA critical value. The least favorable as-
ymptotic null distributions of the statistic Tn(θ) are shown in AG4 to be those
for which the moment inequalities hold as equalities. These distributions de-
pend on the correlation matrixΩ of the moment functions. We analyze plug-in
asymptotic (PA) critical values that are determined by the least favorable as-
ymptotic null distribution for givenΩ evaluated at a consistent estimator ofΩ�
Such critical values have been considered for many years in the literature on
multivariate one-sided tests; see Silvapulle and Sen (2005) for references. AG4
considered them in the context of the moment inequality literature. Rosen
(2008) considered variations of PA critical values that make adjustments in
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the case where it is known that if one moment inequality holds as an equality,
then another cannot.

Let c(Ω�1 −α) denote the 1 −α quantile of S(Z�Ω)� where Z ∼N(0k�Ω)�
This is the 1 −α quantile of the asymptotic null distribution of Tn(θ) when the
moment inequalities hold as equalities.

The nominal 1−α PA CS is given by (2.3) with critical value c1−α(θ) equal to

c(Ω̂n(θ)�1 − α)�(7.1)

AG4 showed that if Assumptions 1 and 4 hold and 0 < α < 1/2� then the
nominal level 1 − α PA CS based on Tn(θ) satisfies AsyCS ≥ 1 − α�

8. LOCAL ALTERNATIVE POWER COMPARISONS

In this section and the next, we compare the power of GMS, subsampling,
and PA tests. These results have immediate implications for the volume of CS’s
based on these tests because the power of a test for a point that is not the
true value is the probability that the CS does not include that point. Here we
analyze the power of tests against n−1/2-local alternatives. In the next section
we consider “distant alternatives,” which differ from the null by more than
O(n−1/2) and may be fixed or local.

We show that a GMS test has asymptotic power that is greater than or equal
to that of a subsampling or PA test (based on the same test statistic) under all
alternatives. We show that a GMS test’s power is strictly greater than that of
a subsampling test in the scenario stated in the Introduction. In addition, we
show that GMS and subsampling tests have asymptotic power that is greater
than or equal to that of a PA test with strictly greater power in the scenarios
stated in the Introduction.

For given θn�∗� we consider tests of

H0 :EFnmj(Wi�θn�∗)
{≥ 0 for j = 1� � � � �p�

= 0 for j = p+ 1� � � � �k�(8.1)

where Fn denotes the true distribution of the data, versusH1 :H0 does not hold.
For brevity, we only give results for the case of i.i.d. observations. (The results
can be extended to dependent observations, and the advantage of GMS tests
over subsampling and PA tests also holds with dependent observations.) The
parameter space F for (θ�F) is assumed to satisfy (2.2).

With i.i.d. observations, F denotes the distribution of Wi� We consider the
Kolmogorov–Smirnov metric on the space of distributions F� Let

D(θ�F)= Diag{σ2
F�1(θ)� � � � �σ

2
F�k(θ)}� Ω(θ�F)= CorrF(m(Wi�θ))�(8.2)

We now introduce the n−1/2-local alternatives that are considered.
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ASSUMPTION LA1: The true parameters {(θn�Fn) ∈ F :n ≥ 1} satisfy the fol-
lowing statements:

(a) θn = θn�∗ − λn−1/2(1 + o(1)) for some λ ∈ Rd� θn�∗ → θ0� and Fn → F0

for some (θ0�F0) ∈ F �
(b) n1/2EFnmj(Wi�θn)/σFn�j(θn)→ h1�j for some h1�j ∈R+�∞ for j = 1� � � � �p�
(c) supn≥1EFn |mj(Wi�θn�∗)/σFn�j(θn�∗)|2+δ < ∞ for j = 1� � � � �k for some

δ > 0�

ASSUMPTION LA2: The k×dmatrixΠ(θ�F)= (∂/∂θ′)[D−1/2(θ�F)EFm(Wi�
θ)] exists and is continuous in (θ�F) for all (θ�F) in a neighborhood of (θ0�F0)�

Assumption LA1(a) specifies that the true values {θn :n≥ 1} are local to the
null values {θn�∗ :n ≥ 1}� Assumption LA1(b) specifies the asymptotic behav-
ior of the (normalized) moment inequality functions when evaluated at the
true parameter values {θn :n ≥ 1}. Under the true values, these (normalized)
moment inequalities are nonnegative. Assumption LA1(a) and (c) imply that
Ω(θn�∗�Fn) exists and Ω(θn�∗�Fn)→Ω0 =Ω(θ0�F0)�

The asymptotic distribution of the test statistic Tn(θn�∗) under n−1/2-local al-
ternatives depends on the limit of the (normalized) moment inequality func-
tions when evaluated at the null value θn�∗ because Tn(θn�∗) is evaluated at θn�∗�
Under Assumptions LA1 and LA2, we show that

lim
n→∞

n1/2D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗)= (h1�0v)+Π0λ ∈Rk� where(8.3)

h1 = (h1�1� � � � �h1�p)
′ and Π0 =Π(θ0�F0)�

By definition, if h1�j = ∞� then h1�j + y = ∞ for any y ∈ R� Let Π0�j denote
the jth row of Π0 written as a column d-vector for j = 1� � � � �k� Note that
(h1�0v)+Π0λ ∈Rp[+∞] ×Rv�

The following assumption states that the true distribution of the data Fn is
in the alternative, not the null (for n large).

ASSUMPTION LA3: h1�j +Π′
0�jλ < 0 for some j = 1� � � � �p or Π′

0�jλ = 0 for
some j = p+ 1� � � � �k�

The following is a simple example to illustrate Assumptions LA1–LA3.
Suppose m(Wi�θ) = Wi − θ� EFm(Wi�θ) ≥ 0, and VarF(m(Wi�θ)) = 1 for
all (θ�F) ∈ F � Then p = 1� v = 0� and D(θ�F) = 1� Consider a sequence
of true parameters/distributions {(θn�Fn) ∈ F :n ≥ 1} that satisfy θn = θn�∗ −
λn−1/2� EFnWi = θn + h1n

−1/2 for some θn�∗�λ ∈ R, and h1 ≥ 0� and θn�∗ →
θ0� Then Assumption LA1(a) holds and in Assumption LA1(b), we have
n1/2EFnmj(Wi�θn)/σFn�j(θn) = n1/2(EFnWi − θn) = h1 ≥ 0 for all n (using
σFn�j(θn)= 1). So, Assumption LA1(b) also holds. We have Π(θ�F)= −1 for
all (θ�F)� Hence, in Assumption LA3, h1 +Π0λ = h1 − λ� which is negative
whenever λ > h1� Hence, if the null value θn�∗ deviates from the true value θn
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by enough (i.e., if θn�∗ − θn = λn−1/2 is large enough) relative to the magnitude
of the slackness of the moment condition (i.e., EFnWi − θn = h1n

−1/2), then the
null hypothesis is violated for all n and Assumption LA3 holds.

The asymptotic distribution of Tn(θn�∗) under n−1/2-local alternatives is
shown to be Jh1�λ� where Jh1�λ is defined by

S
(
Ω1/2

0 Z∗ + (h1�0v)+Π0λ�Ω0

) ∼ Jh1�λ(8.4)

for Z∗ ∼ N(0k� Ik)� For notational simplicity, the dependence of Jh1�λ on Ω0

and Π0 is suppressed. Let ch1�λ(1 − α) denote the 1 − α quantile of Jh1�λ�
We now introduce two assumptions that are used for GMS tests only.

ASSUMPTION LA4: κ−1
n n

1/2EFnmj(Wi�θn)/σFn�j(θn) → π1�j for some π1�j ∈
R+�∞ for j = 1� � � � �p�

Note that in Assumption LA4, the functions are evaluated at the true value
θn� not at the null value θn�∗� and (θn�Fn) ∈ F � In consequence, the moment
functions in Assumption LA4 satisfy the inequalities and π1�j ≥ 0 for all j =
1� � � � �p�

Let π1 = (π1�1� � � � �π1�p)
′� Let cπ1(ϕ�1 − α) denote the 1 − α quantile of

S
(
Ω1/2

0 Z∗ +ϕ((π1�0v)�Ω0)�Ω0

)
� where Z∗ ∼N(0k� Ik)�(8.5)

Below the probability limit of the GMS critical value, ĉn(θn�∗�1 − α) is shown
to be cπ1(ϕ�1 − α)�

The following assumption is used to obtain the n−1/2-local alternative power
function of the GMS test. Let C(ϕ) = {π̃1 = (π̃1�1� � � � � π̃1�p)

′ ∈ Rp[+∞] : for j =
1� � � � �p� π̃1�j = ∞ or ϕj(ξ�Ω)→ ϕj((π̃1�0v)�Ω0) as (ξ�Ω)→ ((π̃1�0v)�Ω0)}�
Roughly speaking, C(ϕ) is the set of π̃1 vectors for which ϕ is continuous at
((π̃1�0v)�Ω0)� For example, C(ϕ(1)) = {π̃1 ∈ Rp[+∞] : π̃1�j = 1 for j = 1� � � � �p}�
C(ϕ(2)) = R

p
[+∞] provided ψ is continuous on [aL�aU ] (where continuity at

aU means that limx→aU ψ(x) = ∞), C(ϕ(3)) = R
p
[+∞]� C(ϕ

(4)) = R
p
[+∞]� and

C(ϕ(5))= {π1 ∈Rp[+∞] :S(−c · (π̃1�0v)�Ω0)−ζ(|c|) has a unique minimum over
c ∈ C}�

ASSUMPTION LA5: (a) π1 ∈ C(ϕ)�
(b) The df of S(Ω1/2

0 Z∗ + ϕ((π1�0v)�Ω0)�Ω0) is continuous and strictly in-
creasing at x= cπ1(ϕ�1 − α)�

Assumption LA5(a) implies that the n−1/2-local power formulae given below
do not apply to certain “discontinuity vectors” π1 = (π1�1� � � � �π1�p)

′�However,
this does not affect the power comparisons between GMS, subsampling, and
PA tests, because Assumption LA5 is not needed for those results. The power
comparisons hold for all π1 vectors.

We now introduce an assumption that is used for subsampling tests only.
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ASSUMPTION LA6: b1/2EFnmj(Wi�θn)/σFn�j(θn)→ g1�j for some g1�j ∈ R+�∞
for j = 1� � � � �p�

Assumption LA6 is not restrictive. It specifies the limit of the (normalized)
moment inequality functions when evaluated at the true parameter values
{θn :n≥ 1} and when scaled by the square root of the subsample size b1/2�

Define g1 = (g1�1� � � � � g1�p)
′� Note that 0p ≤ g1 ≤ π1 ≤ h1.10 The probability

limit of the subsampling critical value is shown to depend on

lim
n→∞

b1/2D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗)= (g1�0v) ∈Rk+�∞�(8.6)

Note that (g1�0v) ∈Rp+�∞ ×{0v}� Thus, elements of (g1�0v) are necessarily non-
negative. The probability limit of the subsampling critical value is shown to be
cg1�0d (1−α)� which denotes the 1−α quantile of Jg1�0d (where Jg1�0d equals Jh1�λ

with h1 = g1 and λ= 0). The probability limit of the PA critical value is shown
to be c0p�0d (1 −α)� which is the 1 −α quantile of J0p�0d (and also can be written
as c(Ω0�1 − α) using the notation introduced just above (7.1)).

THEOREM 2: Under Assumptions 1–5, LA1, and LA2, the following state-
ments hold:

(a) limn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1−α))= 1−Jh1�λ(cπ1(ϕ�1−α)) provided
Assumptions GMS2, GMS3, LA4, and LA5 hold.

(b) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α)) = 1 − Jh1�λ(cg1�0d (1 − α)) pro-
vided Assumption LA6 holds.

(c) limn→∞ PFn(Tn(θn�∗) > c(Ω̂n(θn�∗)�1 − α))= 1 − Jh1�λ(c0p�0d (1 − α))�

COMMENTS: (i) Theorem 2(a) provides the n−1/2-local alternative power
function of the GMS test. The probability limit of the GMS critical value
ĉn(θn�∗�1 − α) under n−1/2-local alternatives is cπ1(ϕ�1 − α)� Theorem 2(b)
and (c) provide the n−1/2-local alternative power function of the subsampling
and PA tests.

(ii) The results of Theorem 2 hold under the null hypothesis as well as under
the alternative. The results under the null quantify the degree of asymptotic
nonsimilarity of the GMS, subsampling, and PA tests.

The next result provides power comparisons of GMS, subsampling, and PA
tests.

THEOREM 3: Under Assumptions 1–5, LA1–LA4, LA6, GMS2, GMS3,
GMS5, and GMS6, the following statements hold:

(a) lim infn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) ≥ limn→∞ PFn(Tn(θn�∗) >
cn�b(θn�∗�1 − α)) with strict inequality whenever g1�j <∞ and π1�j = ∞ for some
j = 1� � � � �p and cg1�0d (1 − α) > 0�

10This holds by condition (ii) of (2.2) (since (θn�Fn) ∈ F ), Assumptions LA1(b), LA6, and
GMS5, and b/n→ 0�
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(b) lim infn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) ≥ limn→∞ PFn(Tn(θn�∗) >
c(Ω̂n(θn�∗)�1 − α)) with strict inequality whenever π1�j = ∞ for some j =
1� � � � �p�

(c) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α)) ≥ limn→∞ PFn(Tn(θn�∗) >
c(Ω̂n(θn�∗)�1 − α)) with strict inequality whenever g1 > 0p� where Assumptions
GMS2, GMS3, GMS5, GMS6, and LA4 are not needed for this result.

COMMENTS: (i) Theorem 3(a) and (b) show that a GMS test based on a
given test statistic has asymptotic power greater than or equal to that of sub-
sampling and PA tests based on the same test statistic. For GMS versus subsam-
pling tests, the inequality is strict whenever one or more moment inequality is
satisfied and has a magnitude that is o(b−1/2), and is larger thanO(κnn−1/2) and
cg1�0d (1 − α) > 0.11 For GMS versus PA tests, the inequality is strict whenever
one or more moment inequality is satisfied and has a magnitude that is larger
than O(κnn−1/2)�

The reason the GMS test has higher power in these cases is that its (data-
dependent) critical value is smaller asymptotically than the subsampling and
PA critical values. It is smaller because when some moment inequality is satis-
fied under the alternative and is sufficiently far from being an equality (specif-
ically, is larger than O(κnn−1/2)), then the GMS critical value takes this into
account and delivers a critical value that is suitable for the case where this mo-
ment inequality is omitted. On the other hand, in the scenarios specified, the
subsampling critical value does not take this into account, and in all scenarios
the PA critical value is based on the least favorable distribution (for given Ω0)
which occurs when all moment inequalities hold as equalities.

(ii) Theorem 3(c) shows that the subsampling test has asymptotic power
greater than or equal to that of the PA test for all local alternatives and is more
powerful asymptotically than the PA test for many local alternatives. The rea-
son is that when some moment inequality is satisfied under the alternative and
is sufficiently far from being an equality (specifically, is larger than o(b−1/2)),
then the subsampling critical value automatically takes this (at least partially)
into account and delivers a smaller critical value than the PA critical value.

(iii) The comparison of the power of GMS tests and subsampling tests given
in Theorem 3(a) does not impose Assumption LA5. Hence, the comparison
holds for all n−1/2-local alternatives.

(iv) We now show that the difference in power between the GMS test and
the subsampling and PA tests can be quite large. Suppose there are no equal-
ity constraints (i.e., v= 0) and the distribution considered is such that the first
inequality constraint may or may not be violated, but the other j = 2� � � � �p
inequality constraints are not violated and differ from being equalities by mag-

11For most test functions S� cg1�0d (1−α) > 0 whenever one or more of the moment inequalities
is violated asymptotically, so the latter condition holds under local alternatives.
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nitudes that are o(b−1/2) and are larger than O(κnn−1/2)� In this case, g1�j = 0�
h1�j = π1�j = ∞� and h1�j +Π′

0�jλ= ∞ for j = 2� � � � �p� Let μ1 = h1�1 +Π′
0�1λ�

If μ1 ∈ (−∞�0)� the first inequality constraint is violated asymptotically. If the
null hypothesis is true (for all n large), then θn = θn�∗� λ= 0� and μ1 = h1�1 ≥ 0�
Since |μ1| <∞� we have |h1�1| <∞ and g1�1 = 0� Thus, g1 = 0p� For simplic-
ity, suppose Ω0 = Ip� In this case, the asymptotic powers of the tests based on
the functions S1 and S2 are the same, so we consider the S1 test statistic. The
asymptotic distribution Jh1�λ in this case is the distribution of

p∑
j=1

[Z∗
j + h1�j +Π′

0�jλ]2
− = [Z∗

1 +μ1]2
−�(8.7)

where Z∗ = (Z∗
1� � � � �Z

∗
p)

′ ∼N(0p� Ip)� because Z∗
j + ∞ = ∞ for j = 2� � � � �p�

The probability limit of the GMS critical value, cπ1(ϕ�1 − α)� is the 1 − α
quantile of [Z∗

1 ]2
− which equals z2

1−α� where z1−α is the 1 − α quantile of a stan-
dard normal distribution. This holds using (8.5) because π1�1 = 0 and Assump-
tion GMS1(b) imply that ϕ1((π1�0v)�Ω0) = 0, and for j = 2� � � � �p� π1�j = ∞
and Assumption GMS3 imply that ϕj((π1�0v)�Ω0) = ∞� On the other hand,
Jg1�0d = J0p�0d is the distribution of

∑p

j=1[Z∗
j ]2

−� Hence, the probability limit of
the subsampling and PA critical values, c0p�0d (1 − α)� is the 1 − α quantile of∑p

j=1[Z∗
j ]2

−� call it zα(p)� Clearly, zα(1)= z2
1−α� zα(p) > z

2
1−α for p≥ 2� and the

difference is strictly increasing in p�
Table I provides the value of zα(p) for α= �05 and several values of p� One

sees that the critical value of the subsampling and PA tests increases substan-
tially as the number of nonviolated moment inequalities, p− 1� increases. Just
one nonviolated moment inequality (i.e., p = 2) increases the critical value
from 2�71 to 4�25�

TABLE I

ASYMPTOTIC CRITICAL VALUES AND POWER OF THE NOMINAL .05
GMS TEST COMPARED TO SUBSAMPLING AND PA TESTS

μ1

Critical Asy. Null
Values Rej. Prob. Asy. Power

p zα(p) .00 −1.645 −2.170 −2.930

GMS test All p 2.71 .050 .50 .70 .90

Sub & PA 2 4.25 .020 .34 .54 .81
tests 3 5.43 .010 .25 .44 .73

4 6.34 .005 .18 .35 .65
5 7.49 .003 .14 .29 .58

10 11.83 .000 .04 .10 .31
20 19.28 .000 .00 .01 .07
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By Theorem 2, the asymptotic powers of the GMS, subsampling, and PA
tests in the present scenario are

AsyPowGMS(μ1)= P([Z∗
1 +μ1]2

− > z
2
1−α)=Φ(−μ1 − z1−α)�(8.8)

AsyPowSub(μ1)= AsyPowPA(μ1)

= P([Z∗
1 +μ1]2

− > zα(p))=Φ(−μ1 − z1/2
α (p)

)
�

respectively. Table I reports the asymptotic power of the GMS test and the
subsampling and PA tests, where the power of the latter depends on p� for
four values of μ1� (Note that the asymptotic size of each test is α� so that no
asymptotic size correction is needed before comparing the asymptotic powers
of the tests.) The first value of μ1 is zero, which corresponds to a distribution in
the null hypothesis. In this case, the asymptotic rejection rate of the GMS test
is precisely �05� while that of the subsampling and PA tests is much less than
�05 due to the asymptotic nonsimilarity of these tests. The last three values of
μ1 are negative, which correspond to distributions in the alternative. Table I
shows that the power of the GMS test is substantially higher than that of the
subsampling and PA tests even when p= 2 and the difference increases with p�

(v) The difference in powers of the subsampling and PA tests can be as large
as the differences illustrated in Table I between GMS and PA tests. Consider
the same scenario as in comment (iv) except that the j = 2� � � � �p inequality
constraints differ from being equalities by a magnitude that is greater than
O(b−1/2)� In this case, g1�j = ∞ for j = 2� � � � �p and Jg1�0d is the distribution
of [Z∗

1 ]2
− because g1 = (0�∞� � � � �∞)′� Hence, the probability limit of the sub-

sampling critical value, cg1�0d (1 − α)� equals that of the GMS critical value and
AsyPowSub(μ1)= AsyPowGMS(μ1)� Everything else is the same as in comment
(iv). Hence, in the present scenario, Table I applies but with the results for the
subsampling test given by those of the GMS test.

(vi) The GMS, subsampling, and PA tests are not asymptotically unbiased.
That is, there exist local alternatives for which the asymptotic rejection prob-
abilities of the tests, namely 1 − Jh1�λ(cπ1(ϕ�1 − α))� 1 − Jh1�λ(cg1�0d (1 − α))�
and 1 − Jh1�λ(c0p�0d (1 − α))� respectively, are less than α (e.g., see Table I with
p = 10 or 20). This occurs because these tests are not asymptotically similar
on the boundary of the null hypothesis. Lack of asymptotic unbiasedness is a
common feature of tests of multivariate one-sided hypotheses, so this property
of GMS, subsampling, and PA tests in the moment inequality example is not
surprising.

(vii) Rosen (2008) introduced a critical value method that is a variant of
the PA critical value. His method has the advantage of being simple compu-
tationally. However, it sacrifices power relative to GMS critical values in two
respects. First, an upper bound on the 1 − α quantile of the asymptotic null
distribution is employed. Second, in models in which some moment inequality
can be slack without another being binding, his procedure yields larger critical
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values than GMS critical values because it does not use the data to detect slack
inequalities. His procedure only adjusts for slack moment inequalities when it
is known that if some inequality is binding, then some other necessarily can-
not be.

(viii) For moment conditions based on weak instruments, the results of The-
orem 2 still hold. But, the power comparisons of Theorem 3 do not because
Π′

0�jλ = 0 for all j = 1� � � � �k in this case and so Assumption LA3 does not
hold. With weak instruments, all of the tests have power less than or equal to
α against n−1/2-local alternatives, as is expected.

9. POWER AGAINST DISTANT ALTERNATIVES

Next we consider power against alternatives that are more distant from the
null than n−1/2-local alternatives. For all such alternatives, the powers of GMS,
subsampling, and PA tests are shown to converge to 1 as n → ∞� Thus, all
three tests are consistent tests.

The following assumption specifies the properties of “distant alternatives”
(DA), which include fixed alternatives and local alternatives that deviate from
the null hypothesis by more than O(n−1/2)� Define

m∗
n�j =EFnmj(Wi�θn�∗)/σFn�j(θn�∗)�(9.1)

βn = max{−m∗
n�1� � � � �−m∗

n�p� |m∗
n�p+1|� � � � � |m∗

n�k|}�

ASSUMPTION DA: (a) n1/2βn → ∞�
(b) Ω(θn�∗�Fn)→Ω1 for some k× k correlation matrix Ω1 ∈Ψ�
Assumption DA(a) requires that some moment inequality termm∗

n�j violates
the nonnegativity condition and is not o(n−1/2) for j = 1� � � � �p or some mo-
ment equality term m∗

n�j violates the zero condition and is not o(n−1/2) for
j = p + 1� � � � �k� In contrast to Assumption DA, under Assumptions LA1–
LA3 above, n1/2βn → max{−h1�1 − Π′

0�1λ� � � � �−h1�p − Π′
0�pλ� |Π′

0�p+1λ|� � � � �|Π′
0�kλ|}<∞�
As in Section 8, we consider i.i.d. observations and F satisfies (2.2).

THEOREM 4: Under Assumptions 1, 3, 6, and DA, we can make the following
assertions:

(a) limn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) = 1 provided Assumption GMS7
holds.

(b) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α))= 1�
(c) limn→∞ PFn(Tn(θn�∗) > c(Ω̂n(θn�∗)�1 − α))= 1�

COMMENT: Theorem 4 shows that GMS, subsampling, and PA tests are con-
sistent against all fixed alternatives and all non-n−1/2-local alternatives.
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10. EXTENSIONS

10.1. Generalized Empirical Likelihood Statistics

We now discuss CS’s based on generalized empirical likelihood (GEL) test
statistics. For definitions and regularity conditions concerning GEL test statis-
tics, see AG4. The asymptotic distribution of a GEL test statistic (under any
drifting sequence of parameters) is the same as that of the QLR test statistic;
see AG4 for a proof. Given the structure of the proofs below, this implies that
all of the asymptotic results stated above for QLR tests also hold for GEL tests.

Specifically, under the assumptions of Theorems 1–4, we have (i) GEL CS’s
based on GMS critical values have correct size asymptotically, (ii) GEL tests
based on GMS critical values have asymptotic power greater than or equal
to that of GEL tests based on subsampling or PA critical values with strictly
greater power in certain scenarios, and (iii) the “pure” GEL test that uses
a constant critical value (equal to cGEL(1 − α) = supΩ∈Ψ2

c(Ω�1 − α)� where
c(Ω�1 − α) is as defined above using the function S2) is dominated asymptot-
ically by various alternative tests. Such tests include tests constructed from a
GEL or QLR test statistic combined with GMS, subsampling, or PA critical
values. The results of (iii) indicate that there are notable drawbacks to the as-
ymptotic optimality criteria based on large deviation probabilities considered
by Otsu (2006) and Canay (2007).

10.2. Preliminary Estimation of Identified Parameters

Here we consider the case where the moment functions in (2.2) depend on
a parameter τ (i.e., are of the form {mj(Wi�θ� τ) : j ≤ k}), and a preliminary
consistent and asymptotically normal estimator τ̂n(θ0) of τ exists when θ0 is the
true value of θ� This requires that τ is identified. The sample moment functions
in this case are of the form mn�j(θ)=mn�j(θ� τ̂n(θ))� The asymptotic variance
of n1/2mn�j(θ) is different when τ is replaced by the estimator τ̂n(θ) and so
Σ̂n(θ) needs to be defined accordingly, but otherwise the theoretical treatment
of this model is the same as that given above. In fact, Theorem 1 holds in
this case using the conditions given in (A.3) of the Appendix. These are high-
level conditions that essentially just require that n−1

∑n

i=1mn�j(Wi� θ� τ̂n(θ)) is
asymptotically normal (after suitable normalization).

Furthermore, the power comparisons in Section 8, which are stated for i.i.d.
observations and no preliminary estimated parameters, can be extended to the
case of preliminary estimated parameters. Thus, in this case too, GMS tests
have power advantages over subsampling, and PA tests and subsampling tests
have power advantages over PA tests.
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11. MONTE CARLO EXPERIMENT

11.1. Experimental Design

In this section, we provide finite-sample comparisons of the maximum null
rejection probability (MNRP) over different null mean vectors and MNRP-
corrected power of GMS, recentered subsampling, and PA tests.12 (MNRP is
defined precisely below.) For each test, we consider the QLR test statistic. For
the GMS tests, we use the ϕ(1) critical value function, which yields the t-test
selection method. We use two values of κn� the BIC value κn = (lnn)1/2 and
the law of the iterated logarithm (LIL) value κn = (2 ln lnn)1/2� which yield
κn = 2�35 and κn = 1�85� respectively, when n= 250� which is the sample size
considered here. We provide results for the bootstrap and asymptotic versions
of the GMS test. The GMS tests are denoted by GMS/Boot1 and GMS/Asy1,
which use the BIC value of κn� and GMS/Boot2 and GMS/Asy2, which use the
LIL value of κn� (The focus on (S2�ϕ

(1)) is based on results in Andrews and Jia
(2008) that compare different choices of (S�ϕ) in terms of asymptotic size and
power.)

The subsampling and PA tests considered here also employ the QLR test
statistic. Hence, the tests differ only in the way in which the critical value is
calculated. Bugni (2007a, 2007b) showed that taking b of order n2/3 minimizes
the error in the null rejection probability for the recentered subsampling test.
In consequence, we use subsample sizes b= �75n2/3� n2/3� and 1�25n2/3� which
for n= 250 yields b= 30� 40� and 50� respectively. These subsampling tests are
denoted Sub1, Sub2, and Sub3, respectively.

We consider the case in which no equalities arise (i.e., v = 0) and the num-
ber of inequalities, p� is 2� 4� or 10� For given θ� the null hypothesis is
H0 :Em(Wi�θ)≥ 0p for some given moment functions m(Wi�θ) and the alter-
native hypothesis is that H0 does not hold. We consider a general formulation
of the testing problem of interest which does not require the specification of a
particular form for m(Wi�θ)� as in Andrews and Jia (2008). The finite-sample
properties of tests of H0 depend on m(Wi�θ) only through (i) μ= Em(Wi�θ)�
(ii) Ω = Corr(m(Wi�θ))� and (iii) the distribution of the mean zero, variance
Ip random vectorZ† = Var−1/2(m(Wi�θ))(m(Wi�θ)−Em(Wi�θ))�We consider
the case in which Z† ∼N(0p� Ip)�We consider three representative correlation
matricesΩNeg,ΩZero� andΩPos, which exhibit negative, zero, and positive corre-
lations, respectively. By definition, MNRP denotes the maximum null rejection
probability over mean vectors inH0 given the correlation matrixΩNeg,ΩZero� or
ΩPos and under the assumption of normally-distributed moment inequalities.13

12We consider recentered subsampling tests because non-recentered subsampling tests are
found to underreject the null hypothesis substantially for sample sizes of 250 and 1000� Even for
a sample size of 5000� there is some underrejection. For details, see the Supplemental Material.

13The MNRP of a test is the same as the size of the test except that the MNRP is for a fixed
correlation matrix and distribution—in the present case a normal distribution—whereas the size
is given by the maximum over all allowable correlation matrices and distributions.
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Specifically, ΩZero equals Ip for p = 2�4� and 10� The matrices ΩNeg and
ΩPos are Toeplitz matrices with correlations on the diagonals given by a p− 1
vector ρ� For p = 2: ρ = −�9 for ΩNeg and ρ = �5 for ΩPos� For p = 4,
ρ = (−�9� �7�−�5) for ΩNeg and ρ = (�9� �7� �5) for ΩPos� For p = 10, ρ =
(−�9� �8�−�7� �6�−�5� �4�−�3� �2�−�1) forΩNeg and ρ= (�9� �8� �7� �6� �5� � � � � �5)
for ΩPos�

Note that the finite-sample testing problem for any moment inequality
model fits into the framework above for some correlation matrix Ω and some
distribution of Z†� In large samples, the impact of the distribution of Z† van-
ishes because of the central limit theorem (CLT).

For all of the tests considered below, calculations for a subset of the cases
considered show without exception that the maximum null rejection proba-
bilities occur for mean vectors μ whose elements are 0’s and ∞’s. In conse-
quence, the MNRP results are obtained by computing the maximum null re-
jection probabilities over μ vectors with this form.

For the power comparisons given here, we compare MNRP-corrected
power. By this we mean that the critical values are adjusted by a constant
so that the MNRP equals the nominal level �05�

The power comparisons are made based on average power over certain sets,
Mp(Ω)� of vectors μ in the alternative (i.e., μ � 0p). For p = 2� the set
of μ vectors M2(Ω) includes seven elements and is of the form M2(Ω) =
{(−μ1�0), (−μ2�1), (−μ3�2), (−μ4�3), (−μ5�4), (−μ6�7), (−μ7�−μ7)}�
where μj > 0 depends on Ω for j = 1� � � � �7 and is such that the finite-sample
power envelope (for knownΩ) is �73 at each μ ∈ M2(Ω) (see Andrews and Jia
(2008) for more details). For brevity, the values of μj are given in the Supple-
mental Material. For p = 4 and 10� M4(Ω) includes 24 and 40 elements, re-
spectively. For brevity, the complete specifications of M4(Ω) and M10(Ω) are
given in the Supplemental Material. The sets M4(Ω) and M10(Ω) are defined
such that the finite-sample power envelope (for known Ω) is (approximately)
�79 and �84� respectively, at each μ ∈ Mp(Ω) for p= 4 and 10�

The simulation results are based on 2500 repetitions for the calculation of
the GMS, subsampling, and PA critical values, 2500 simulation repetitions for
the finite-sample MNRP results, and 1000 simulation repetitions for the finite-
sample MNRP-corrected power results.

11.2. Simulation Results

Table II provides the MNRP and power results. The table shows that the
GMS/Boot1 and GMS/Asy1 tests have better MNRP and power properties
than the GMS/Boot2 and GMS/Asy2 tests. The GMS1 tests have good MNRPs
in all cases. For example, the GMS/Boot1 test has MNRP in the interval
[�048� �065] for all cases considered. The GMS2 tests tend to overreject the
null somewhat with ΩNeg� The GMS/Boot1 test has slightly higher power than
the GMS/Asy1 test. Hence, the GMS/Boot1 test performs the best of the GMS
tests in terms of MNRP and power by a slight margin over the GMS/Asy1 test.
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TABLE II

FINITE-SAMPLE MNRP’S AND MNRP-CORRECTED POWER OF NOMINAL .05 TESTS BASED ON
THE QLR TEST STATISTIC COMBINED WITH GMS, RECENTERED SUBSAMPLING (SUB),

AND PA CRITICAL VALUES FOR SAMPLE SIZE n= 250

Number of
Moment
Inequalities

ΩNeg ΩZero ΩPos

Critical Avg. Avg. Avg.
Value MNRP Power MNRP Power MNRP Power

2 GMS/Boot1 .054 .66 .048 .71 .048 .73
GMS/Asy1 .047 .66 .041 .71 .046 .72

GMS/Boot2 .073 .61 .052 .71 .048 .73
GMS/Asy2 .066 .61 .043 .70 .046 .73

PA .040 .56 .039 .61 .046 .66
Sub1 .050 .60 .050 .65 .051 .68
Sub2 .061 .60 .061 .65 .060 .67
Sub3 .071 .60 .068 .65 .068 .68

P. Envelope — .73 — .73 —- .73

4 GMS/Boot1 .065 .58 .051 .68 .051 .76
GMS/Asy1 .064 .57 .052 .66 .052 .76

GMS/Boot2 .080 .53 .053 .69 .051 .76
GMS/Asy2 .079 .53 .055 .67 .044 .76

PA .050 .43 .045 .52 .045 .69
Sub1 .046 .43 .047 .53 .051 .71
Sub2 .060 .43 .062 .53 .062 .71
Sub3 .077 .43 .075 .53 .068 .71

P. Envelope — .79 — .79 — .77

10 GMS/Boot1 .059 .58 .050 .65 .051 .78
GMS/Asy1 .064 .56 .054 .63 .048 .78

GMS/Boot2 .075 .54 .051 .67 .051 .79
GMS/Asy2 .083 .52 .058 .64 .048 .79

PA .055 .29 .055 .37 .043 .66
Sub1 .010 .27 .017 .36 .049 .68
Sub2 .030 .27 .040 .35 .058 .69
Sub3 .052 .28 .060 .35 .067 .69

P. Envelope — .85 — .84 — .83

The power of the GMS/Boot1 test is substantially greater than that of the PA
test. The relative advantage is increasing in p� The average power differences
for p = 2� 4� and 10 are �09� �13� and �23� respectively, where the average is
over ΩNeg� ΩZero� and ΩPos�

The best subsampling test in terms of MNRP is Sub1. The MNRP’s of Sub1
are quite good except for p= 10 with ΩNeg and ΩZero� in which case Sub1 dra-
matically underrejects with MNRP’s of �010 and �017� The MNRP-corrected
power of Sub1, Sub2, and Sub3 is the same and hence does not depend on b�

The power gains of the GMS/Boot1 test over the subsampling tests are quite
similar to those of the GMS/Boot1 test over the PA test, although they are
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a bit smaller for p = 2� The power gains are substantial, especially for p =
4�10� For example, in the most extreme case, where p= 10 and Ω=ΩNeg� the
GMS/Boot1 and Sub1 tests have power �58 and �27� respectively.

The differences between the power of the GMS/Boot1 test and the power
envelope increase quickly in p� This is because the GMS/Boot1 test is a p-
directional test, whereas the power envelope is attained by a unidirectional
test. The differences are small for p= 2� but quite large for p= 10 when Ω=
ΩNeg andΩPos� The differences in power are decreasing as one moves fromΩNeg

to ΩZero to ΩPos� Even for p= 10� the difference for ΩPos is only �05� which is
remarkably small.

In conclusion, the finite-sample simulations reported here indicate that the
GMS/Boot1 test has good MNRP for the cases considered and good power
relative to the PA and subsampling tests that are considered. In consequence,
the GMS/Boot1 test is the recommended test. It is the bootstrap version of the
GMS test based on the QLR test statistic, the t-test moment selection critical
value, and the tuning parameter κn = (lnn)1/2�

APPENDIX

In this Appendix, we start by stating some assumptions on the test statis-
tic function S� Next, we give an alternative parametrization of the moment
inequality/equality model to that of Section 2. The new parametrization is con-
ducive to the calculation of the asymptotic properties of CS’s and tests. It was
first used in AG4. We also specify the parameter space for the case of depen-
dent observations. Proofs of the results of the paper are given in the Supple-
mental Material (Andrews and Soares (2010)).

A.1. Test Statistic Assumptions

The following assumptions concern the test statistic function S�

ASSUMPTION 2: For all h1 ∈ Rp+�∞� all Ω ∈ Ψ� and Z ∼ N(0k�Ω)� the df of
S(Z + (h1�0v)�Ω) at x ∈ R is (a) continuous for x > 0� (b) strictly increasing
for x > 0 unless v = 0 and h1 = ∞p� and (c) less than or equal to 1/2 at x = 0
whenever v≥ 1 or h1 = 0p�

ASSUMPTION 4: (a) The df of S(Z�Ω) is continuous at its 1 − α quantile,
c(Ω�1 − α)� for all Ω ∈Ψ� where Z ∼N(0k�Ω) and α ∈ (0�1/2)�

(b) c(Ω�1 − α) is continuous in Ω uniformly for Ω ∈Ψ�
ASSUMPTION 5: (a) For all � ∈ Rp[+∞] × Rv� all Ω ∈ Ψ� and Z ∼ N(0k�Ω)�

the df of S(Z + ��Ω) at x is (i) continuous for x > 0 and (ii) unless v = 0 and
�= ∞p� strictly increasing for x > 0�

(b) P(S(Z + (m1�0v)�Ω)≤ x) < P(S(Z + (m∗
1�0v)�Ω)≤ x) for all x > 0 for

all m1�m
∗
1 ∈Rp+�∞ with m1 <m

∗
1�
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For (θ�F) ∈ F� define h1�j(θ�F) = ∞ if EFmj(Wi�θ) > 0 and h1�j(θ�F) = 0
if EFmj(Wi�θ)= 0 for j = 1� � � � �p� Let h1(θ�F)= (h1�1(θ�F)� � � � �h1�p(θ�F))

′

and Ω(θ�F)= limn→∞ CorrF(n1/2mn(θ))�

ASSUMPTION 7: For some (θ�F) ∈ F� the df of S(Z+(h1(θ�F)�0v)�Ω(θ�F))
is continuous at its 1 − α quantile, where Z ∼N(0k�Ω(θ�F))�

In Assumption 2, if an element of h1 equals +∞� then by definition the
corresponding element of Z + (h1�0v) equals +∞�

Assumption 2 is used to show that certain asymptotic df’s satisfy suitable
continuity/strictly increasing properties. These properties ensure that the GMS
critical value converges in probability to a constant and the CS has asymptotic
size that is not affected by a jump in a df. Assumption 4 is a mild continuity
assumption. Assumption 5 is used for the n−1/2-local power results. Assump-
tion 5(a) is a continuity/strictly increasing df condition that is the same as As-
sumption 2(a) except that � can take negative values. Assumption 5(b) is a
stochastically strictly increasing condition. With a nonstrict inequality, it is im-
plied by Assumption 1(a). Assumption 7 is used to show that GMS CS’s are
not asymptotically conservative (i.e., AsyCS ≯ 1−α). It is a very weak continu-
ity condition. If the 1 −α quantile of S(Z+ (h1(θ�F)�0v)�Ω(θ�F)) is positive
for some (θ�F) ∈ F� which holds quite generally, Assumption 7 is implied by
Assumption 2(a). For example, Assumption 7 holds for S = S1 or S2 whenever
(i) EFmj(Wi�θ) = 0 for some j ≤ p for some (θ�F) ∈ F or (ii) v ≥ 1 (which
holds if an equality is present). It is hard to envision cases of interest where
condition (i) fails.

A.2. Alternative Parametrization and Dependent Observations

In this section we specify a one-to-one mapping between the parameters
(θ�F) with parameter space F and a new parameter γ = (γ1�γ2�γ3) with cor-
responding parameter space Γ�We define γ1 = (γ1�1� � � � � γ1�p)

′ ∈Rp+ by writing
the moment inequalities in (2.1) as moment equalities:

σ−1
F�j(θ)EFmj(Wi�θ)− γ1�j = 0 for j = 1� � � � �p�(A.1)

where σ2
F�j(θ) = AsyVarF(n

1/2mn�j(θ)) denotes the variance of the asymptotic
distribution of n1/2mn�j(θ) when the true parameter is θ and the true dis-
tribution of the data is F� Let Ω = Ω(θ�F) = AsyCorrF(n

1/2mn(θ))� where
AsyCorrF(n

1/2mn(θ)) denotes the correlation matrix of the asymptotic distrib-
ution of n1/2mn(θ) when the true parameter is θ and the true distribution of the
data is F� (We only consider (θ�F) for which these asymptotic variances and
correlation matrices exist, see conditions (iv) and (v) of (A.2) below.) When
no preliminary parameter τ is estimated σ2

F�j(θ) = limn→∞ VarF(n1/2mn�j(θ))
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and Ω(θ�F) = limn→∞ CorrF(n1/2mn(θ))� where VarF(·) and CorrF(·) denote
finite-sample variance and correlation under (θ�F)� respectively. Let γ2 =
(γ2�1�γ2�2) = (θ� vech∗(Ω(θ�F))) ∈ Rq� where vech∗(Ω) denotes the vector of
elements ofΩ that lie below the main diagonal, q= d+k(k−1)/2� and γ3 = F�

For the case described in Section 10.2 (where the sample moment functions
depend on a preliminary estimator τ̂n(θ) of an identified parameter vector τ0),
we define mj(Wi�θ) = mj(Wi�θ� τ0)�m(Wi�θ) = (m1(Wi� θ� τ0)� � � � �mk(Wi�
θ� τ0))

′�mn�j(θ) = n−1
∑n

i=1mj(Wi�θ� τ̂n(θ))� and mn(θ) = (mn�1(θ)� � � � �
mn�k(θ))

′� (Hence, in this case, mn(θ) = n−1
∑n

i=1m(Wi�θ).)
For i.i.d. observations (and no preliminary estimator τ̂n(θ)), the parameter

space for γ is defined by Γ = {γ = (γ1�γ2�γ3) : for some (θ�F) ∈ F� where F
is defined in (2.2), γ1 satisfies (A.1), γ2 = (θ� vech∗(Ω(θ�F)))� and γ3 = F}�

For dependent observations and for sample moment functions that depend
on preliminary estimators of identified parameters, we specify the parameter
space Γ for the moment inequality model using a set of high-level conditions.
To verify the high-level conditions using primitive conditions, one has to specify
an estimator Σ̂n(θ) of the asymptotic variance matrix Σ(θ) of n1/2mn(θ)� For
brevity, we do not do so here. Since there is a one-to-one mapping from γ to
(θ�F)� Γ also defines the parameter space F of (θ�F)� Let Ψ be a specified
set of k× k correlation matrices. The parameter space Γ is defined to include
parameters γ = (γ1�γ2�γ3)= (γ1� (θ�γ2�2)�F) that satisfy

(i) θ ∈Θ�(A.2)

(ii) σ−1
F�j(θ)EFmj(Wi�θ)− γ1�j = 0 for j = 1� � � � �p�

(iii) EFmj(Wi�θ)= 0 for j = p+ 1� � � � �k�

(iv) σ2
F�j(θ)= AsyVarF

(
n1/2mn�j(θ)

)
exists and lies in (0�∞)

for j = 1� � � � �k�

(v) AsyCorrF
(
n1/2mn(θ)

)
exists and equals Ωγ2�2 ∈Ψ�

(vi) {Wi : i≥ 1} are stationary under F�

where γ1 = (γ1�1� � � � � γ1�p)
′ andΩγ2�2 is the k×k correlation matrix determined

by γ2�2.14 Furthermore, Γ must be restricted by enough additional conditions
such that, under any sequence {γn�h = (γn�h�1� (θn�h� vech∗(Ωn�h))�Fn�h) :n ≥ 1}
of parameters in Γ that satisfies n1/2γn�h�1 → h1 and (θn�h� vech∗(Ωn�h))→ h2 =

14In AG4, a strong mixing condition is imposed in condition (vi) of (A.2). This condition is
used to verify Assumption E0 in that paper and is not needed with GMS critical values. To extend
the subsampling power results of the paper to dependent observations, this assumption needs to
be imposed.
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(h2�1�h2�2) for some h= (h1�h2) ∈Rp+�∞ ×Rq[±∞]� we have

(vii) An = (An�1� � � � �An�k)
′ →d Zh2�2 ∼N(0k�Ωh2�2) as(A.3)

n→ ∞� where

An�j = n1/2

(
mn�j(θn�h)− n−1

n∑
i=1

EFn�hmj(Wi� θn�h)

)
/
σFn�h�j(θn�h)�

(viii) σ̂n�j(θn�h)/σFn�h�j(θn�h)→p 1 as n→ ∞ for j = 1� � � � �k�

(ix) D̂−1/2
n (θn�h)Σ̂n(θn�h)D̂

−1/2
n (θn�h)→p Ωh2�2 as n→ ∞�

(x) conditions (vii)–(ix) hold for all subsequences {wn} in place
of {n}�

where Ωh2�2 is the k × k correlation matrix for which vech∗(Ωh2�2) = h2�2�

σ̂2
n�j(θ) = [Σ̂n(θ)]jj for 1 ≤ j ≤ k, and D̂n(θ) = Diag{σ̂2

n�1(θ)� � � � � σ̂
2
n�k(θ)}

(= Diag(Σ̂n(θ))).15,16

For example, for i.i.d. observations, conditions (i)–(vi) of (2.2) imply condi-
tions (i)–(vi) of (A.2). Furthermore, conditions (i)–(vi) of (2.2) plus the defini-
tion of Σ̂n(θ) in (3.2) and the additional condition (vii) of (2.2) imply conditions
(vii)–(x) of (A.3). For a proof, see Lemma 2 of AG4.

For dependent observations, one needs to specify a particular variance es-
timator Σ̂n(θ) before one can specify primitive “additional conditions” be-
yond conditions (i)–(vi) in (A.2) that ensure that Γ is such that any sequences
{γn�h :n≥ 1} in Γ satisfy (A.3). For brevity, we do not do so here.
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