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PATRIK GUGGENBERGER
University of California at Los Angeles

This paper considers inference based on a test statistic that has a limit distribution
that is discontinuous in a parameter. The paper shows that subsampling and m out
of n bootstrap tests based on such a test statistic often have asymptotic size—defined
as the limit of exact size—that is greater than the nominal level of the tests. This is
due to a lack of uniformity in the pointwise asymptotics. We determine precisely
the asymptotic size of such tests under a general set of high-level conditions that are
relatively easy to verify. The results show that the asymptotic size of subsampling
and m out of n bootstrap tests is distorted in some examples but not in others.

1. INTRODUCTION

When the bootstrap is pointwise inconsistent it is common in the literature to
consider using subsampling or the m out of n bootstrap instead (see Bretagnolle,
1983; Swanepoel, 1986; Athreya, 1987; Beran and Srivastava, 1987; Shao and
Wu, 1989; Wu, 1990; Eaton and Tyler, 1991; Politis and Romano, 1994; Shao,
1994, 1996; Beran, 1997; Bickel, Götze, and van Zwet, 1997; Andrews, 1999,
2000; Politis, Romano, and Wolf, 1999 (hereafter PRW); Romano and Wolf,
2001; Guggenberger and Wolf, 2004; and Lehmann and Romano, 2005). (Here
n denotes the sample size, b denotes the subsample size, and m denotes the boot-
strap sample size.) Minimal conditions are needed for subsampling and m out
of n bootstrap tests and confidence intervals (CIs) to have asymptotically correct
rejection rates and coverage probabilities under pointwise asymptotics, e.g., see
Politis and Romano (1994) and PRW. Given these results, subsamplingand the
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m out of n bootstrap have been viewed in the literature as cure-all methods that
are asymptotically valid under very weak assumptions.

This paper considers subsampling and the m out of n bootstrap in a broad class
of problems in econometrics and statistics in which a test statistic has a discon-
tinuity in its asymptotic distribution as a function of the true distribution that
generates the data. These are precisely the sorts of scenarios where one may want
to employ subsampling or the m out of n bootstrap. We show that subsampling
and the m out of n bootstrap are not necessarily asymptotically valid in a uniform
sense in these problems. Specifically, the asymptotic sizes, i.e., the limits of the
exact (or finite-sample) sizes, of subsampling and m out of n bootstrap tests can
exceed their nominal level—in some cases by a lot.1,2 This is a serious problem
because it implies that in such cases the size of the test is far from its nominal
level even for large n. Correct size is the standard measure of validity of a test
in finite samples. Asymptotic size is a large sample approximation to exact size.
Our results determine when a problem concerning asymptotic size arises, when it
does not, and the magnitude of the problem. The latter is provided by an explicit
formula for asymptotic size, which is the main contribution of this paper. The
reason for distorted asymptotic size, when it occurs, is a lack of uniformity in the
asymptotics.

We now briefly illustrate the problem with subsampling by considering a sim-
ple boundary example. Suppose Xi ∼ i.i.d. N (θ0,1) for i = 1, . . . ,n and θ0 ≥ 0.
The maximum likelihood estimator of θ0 is θ̂n = max{Xn,0}, where Xn = n−1

∑n
i=1 Xi . The distribution of the normalized estimator, Tn, is

Tn = n1/2(θ̂n − θ0) = max{n1/2(Xn − θ0),−n1/2θ0} ∼ max{Z ,−h}, (1)

where Z ∼ N (0,1) and h = n1/2θ0. The j th subsample estimator based on a sub-
sample of size b = o(n) starting at the j th observation is θ̂b, j = max{Xb, j ,0},
where Xb, j = b−1 ∑ j+b−1

i= j Xi . The distribution of the normalized subsample esti-
mator, Tb, j , is

Tb, j = b1/2(θ̂b, j − θ0) = max{b1/2(Xb, j − θ0),−b1/2θ0}
∼ max{Z ,−(b/n)1/2 h}. (2)

The distributions in (1) and (2) can be quite different. For example, when h
is large and (b/n)1/2 h is small, the distribution in (1) is approximately that of
Z while that in (2) is approximately that of max{Z , 0}. Clearly, in such cases,
the subsampling distribution gives a very poor approximation of the full-sample
distribution in the left tail. Hence, a lower one-sided subsampling confidence in-
terval (C.I) for θ0 performs poorly. Furthermore, equal-tailed and symmetric two-
sided subsampling confidence intervals also perform poorly. Note that these are
finite-sample results. The asymptotic sizes of these confidence intervals detect the
problems. With nominal level .95, the asymptotic sizes for lower, equal-tailed,
and symmetric CIs are found to be .50, .475, and .90, respectively.
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In spite of the clear finite-sample problems with subsampling in this exam-
ple, pointwise asymptotics fail to detect any problem. The reason is that for θ0
fixed at zero, one has h = n1/2θ0 = 0 in (1) and (b/n)1/2h = b1/2θ0 = 0 in (2)
for all n. For θ0 fixed at a positive value, one has h = n1/2θ0 → ∞ in (1) and
(b/n)1/2h = b1/2θ0 → ∞ in (2) as n → ∞. These asymptotic results, however,
do not hold uniformly. This is seen by considering the sequence of parameter val-
ues θ0 = h/n1/2, where h �= 0 is fixed, which approaches zero as n → ∞. For such
a sequence, the difference between the asymptotic distributions of the full-sample
and subsample statistics becomes apparent. In consequence, the asymptotic size
exceeds the nominal size, which reflects the finite-sample situation. (We use this
CI example because of its simplicity. The results of the paper concern tests. Gen-
eral results for CIs are given in Andrews and Guggenberger (2009b).)

More generally, the idea behind problems with subsampling is as follows. Sup-
pose (i) one is interested in testing H0 : θ = θ0, (ii) a nuisance parameter γ ∈ R
appears under H0, (iii) we have a test statistic Tn for which large values lead to re-
jection of H0, and (iv) the asymptotic distribution of Tn when θ = θ0 is discontin-
uous at γ = 0. Typically in such situations the asymptotic distribution of Tn under
θ = θ0 and under any drifting sequence of parameters {γn = (h +o(1))/nr : n ≥ 1}
depends on the “localization parameter” h ∈ R. That is,

Tn →d Jh as n → ∞ under θ = θ0 and {γn = (h +o(1))/nr : n ≥ 1},
(3)

where Jh is some distribution. (The constant r > 0 is the smallest constant such
that the distribution of Tn under γn is contiguous to its distribution under γ = 0.
Usually r = 1/2, but not always, for example, in an autoregressive model with a
discontinuity at a unit root, r = 1.)

We assume that the subsample size b satisfies b → ∞ and b/n → 0. By (3),

Tb →d J0 under θ = θ0 and {γn = (h +o(1))/nr : n ≥ 1} (4)

because γn = (h +o(1))/nr = (b/n)r (h +o(1))/br = o(1)/br . Subsample statis-
tics with subsample size b have the same asymptotic distribution J0 as Tb has.
In consequence, the subsampling critical value converges in probability to
c0(1 − α), the 1 − α quantile of J0. In contrast, Tn converges in distribution
to Jh and Tn requires the critical value ch(1 − α), the 1 − α quantile of Jh, in
order to have an asymptotic null rejection probability of α under {γn : n ≥ 1}.
If c0(1 −α) < ch(1 −α), the subsampling test over-rejects asymptotically under
{γn : n ≥ 1}. This implies that it has asymptotic size greater than α. On the other
hand, if c0(1−α) > ch(1−α), then the subsampling test under-rejects asymptot-
ically and is asymptotically nonsimilar in a uniform sense.

There are other (noncontiguous) sequences of drifting parameters that can cause
problems for subsampling. Suppose γn = (g + o(1))/br for g ∈ R. Then, by (3),
Tb has asymptotic distribution Jg and the subsampling critical value converges
in probability to cg(1 − α). On the other hand, γn = (n/b)r (g + o(1))/nr and
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(n/b)r → ∞, so the full-sample statistic Tn converges to J∞ (when g �= 0),
which is assumed to be the asymptotic distribution of Tn when γn is farther from
0 than O(n−r ) (i.e., when the distribution of Tn under γn is not contiguous to its
distribution under γ = 0). If cg(1 − α) < c∞(1 − α), where c∞(1 − α) denotes
the 1 −α quantile of J∞, the subsampling test over-rejects asymptotically under
{γn : n ≥ 1}.

As stated above, we are interested in the asymptotic size of a test because it
can be used to approximate the exact size of the test. In this paper, we show
that sequences of the two types discussed above determine the asymptotic size
of the subsampling test. Specifically, the asymptotic size equals the maximum of
1− Jh(cg(1−α)) over those pairs (g,h) ∈ (R ∪{∞})2 such that g = 0 if h < ∞
and g ∈ R ∪{∞} if h = ∞.

In many models, the test statistic Tn depends on more than just a scalar nuisance
parameter γ. For example, in some cases Tn depends on two nuisance parameters
(γ1,γ2) and its asymptotic distribution is discontinuous in γ1, depends on γ2, but
is not discontinuous in γ2. In such cases, the asymptotic distribution of Tn depends
on a localization parameter h1 analogous to h above and the fixed value of γ2. The
asymptotic behavior of subsampling tests in this case is as described above with
h1 in place of h except that the conditions for the asymptotic size to be α or less
must hold for each value of γ2. The results given below allow for cases of this
type, including cases where γ1 and γ2 are vectors. The results given below also
allow for the common case where a third nuisance parameter γ3 appears and has
the property that it does not affect the asymptotic distribution of Tn . For example,
γ3 may be an infinite-dimensional parameter such as the distribution of an error
term that is normalized to have mean zero and variance one.

The paper gives asymptotic results for subsampling tests with subsample size b.
Such results also apply to m out of n bootstrap tests with bootstrap size m = b
when the observations are i.i.d. and b2/n → 0. (This holds because the difference
between sampling with and without replacement goes to zero as n → ∞ in this
case, see PRW, p. 48.) In consequence, in the remainder of the paper, we focus on
subsampling procedures only.

The results of the paper are shown below, in Andrews and Guggenberger (2005,
2009a, 2009b, 2009c), and in Guggenberger (2007, 2009) to apply to a wide va-
riety of examples. In these examples, the asymptotic sizes of subsampling tests
and CIs are found to vary widely depending on the particular model and statistic
considered and on the type of inference considered, e.g., upper or lower one-sided
or symmetric or equal-tailed two-sided tests or CIs.

In this paper, the general results are used to show the following. (i) In a model
with a nuisance parameter near a boundary, lower one-sided, upper one-sided,
symmetric two-sided, and equal-tailed two-sided subsampling tests with nomi-
nal level .05 have asymptotic sizes of (approximately) .50, .50, .10, and .525,
respectively. (ii) In an instrumental variables (IVs) regression model with po-
tentially weak IVs, all nominal level 1 − α one-sided and two-sided subsam-
pling tests concerning the coefficient on an exogenous variable and based on the
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two-stage least squares (2SLS) estimator have asymptotic size equal to one (for
both partially- and fully-studentized test statistics).

Results established elsewhere using the approach of this paper are as follows:
(iii) In an autoregressive model with an intercept and an autoregressive root that
may be near unity, as considered in Romano and Wolf (2001), equal-tailed and
symmetric two-sided subsampling CIs of nominal level .95 based on least squares
estimators are found to have asymptotic sizes of (approximately) .60 and .95,
respectively, see Andrews and Guggenberger (2009a). When conditional hetero-
skedasticity is present, the same asymptotic sizes are obtained for subsampling
procedures based on generalized least squares estimators and heteroskedasticity-
consistent standard error estimators. (iv) In models where (partially-identified)
parameters are restricted by moment inequalities, subsampling tests and CIs
based on suitable test statistics have correct asymptotic size, see Andrews and
Guggenberger (2009b). (v) A subsampling CI of nominal level 1 −α based on a
post-consistent-model-selection estimator (such as one based on BIC), a shrink-
age estimator, or a super-efficient estimator is found to have asymptotic size of
zero, see Andrews and Guggenberger (2009c).

The results of the paper also are shown in Andrews and Guggenberger (2005,
2009a) to apply to inference for (vi) post-conservative model-selection procedures
(such as those based on AIC), (vii) models with lack of identification at some
point(s) in the parameter space, such as models with weak instruments where the
focus is on tests concerning the coefficient of an endogenous variable, and (viii)
parameters of interest that may be near a boundary. In all of the examples listed
above except (iv), some types of subsampling procedures (such as equal-tailed
ones) do not have asymptotic size equal to their nominal level, although other
types sometimes do. The results of the paper can be applied with some modifi-
cations to inference in linear instrumental variables models when the instruments
are locally nonexogenous; see Guggenberger (2009).

The results of the paper also can be applied to inference for (ix) predictive
regression models with nearly-integrated regressors, (x) threshold autoregressive
models, (xi) tests of stochastic dominance, (xii) nondifferentiable functions of
parameters, (xiii) differentiable functions of parameters that have zero first-order
derivatives, and (xiv) tests for a breakpoint with small magnitude.

The testing results of the paper extend to CIs with some adjustments, see
Andrews and Guggenberger (2009b). Adjustments are needed because a CI for
θ requires uniformity over the nuisance parameters and the parameter of interest
θ, whereas a test concerning θ only requires uniformity over the nuisance param-
eters (because θ is fixed by the null hypothesis).

Problems arising from lack of uniformity in asymptotics have long been rec-
ognized in the statistical literature. For example, see LeCam (1953), Bahadur
and Savage (1956), Rao (1963, 1973), Hájek (1971), Pfanzagl (1973), and Sen
(1979). More recent references include Loh (1985), Gleser and Hwang (1987),
Sen and Saleh (1987), Stock (1991), Cavanagh, Elliot, and Stock (1995), Hall and
Jing (1995), Kabaila (1995), Dufour (1997), Staiger and Stock (1997), Pötscher
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(2002), Anatolyev (2004), Imbens and Manski (2004), and Leeb and Pötscher
(2005, 2006). For the bootstrap, different types of uniformity are discussed in,
e.g., Bickel and Freedman (1981), Beran (1984), Romano (1989), Giné and Zinn
(1990), and Sheehy and Wellner (1992).

In the specific context of subsampling and the m out of n bootstrap, however,
the only other papers in the literature that we are aware of that raise the issue
of uniformity in the sense discussed in this paper are as follows: (i) Dümbgen
(1993) shows that under drifting sequences of true parameters the asymptotic
distribution of the m out of n bootstrap estimator of the distribution of a non-
differentiable function of a statistic need not equal the asymptotic distribution of
the nondifferentiable function of the full-sample statistic. The latter property in-
dicates that caution is warranted. However, this property does not imply that an
m out of n bootstrap test or CI necessarily has incorrect asymptotic size. Exam-
ples where it holds, but subsampling and m out of n bootstrap tests and CIs have
correct asymptotic size, include symmetric two-sided CIs in an autoregressive
model with a possible unit root, see Andrews and Guggenberger (2009a), and
tests and CIs in the moment inequality model, see Andrews and Guggenberger
(2009b).

(ii) Beran (1997, p.15) notes that the pointwise m out of n bootstrap conver-
gence typically is not locally uniform at parameter points that are not locally
asymptotically equivariant, but does not discuss the consequences. In particular,
results in Beran (1997) do not show that an m out of n bootstrap or subsampling
test or CI has incorrect asymptotic size.

(iii) Andrews (2000, p.403) notes that subsampling is not consistent for the
distribution of an estimator when the true parameter converges to a boundary at
rate 1/n1/2.

(iv) Samworth (2003) shows by simulation that the m out of n bootstrap can
perform poorly when estimating the distribution of Hodges estimator, but does
not provide any asymptotic results.

(v) Romano and Shaikh (2005, 2008) provide high-level sufficient conditions
for uniform validity of subsampling, but do not discuss invalidity in any contexts.
Their conditions have been verified in the context of inference based on moment
inequalities for a simple test statistic that is not scale equivariant, but to the best
of our knowledge have not been verified in any other models.

(vi) Mikusheva (2007) presents a counterexample to the uniform asymptotic
validity of an equal-tailed subsampling CI in the context of an autoregressive
model.

Romano and Shaikh (2005, 2008) and Mikusheva (2007) were written inde-
pendently of and at about the same time as the present paper. As far as we are
aware, the first explicit counterexample to the uniform asymptotic validity of a
subsampling or m out of n bootstrap test or CI was given by the present authors
for a boundary example in early work on this paper in November 2004.

The remainder of the paper is organized as follows. Section 2 describes the ba-
sic testing setup. Sections 3 and 4 specify the general assumptions and asymptotic
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results of the paper for one-sided and symmetric two-sided tests. Section 5 ex-
tends the results to equal-tailed two-sided tests. Section 6 discusses two examples
of the general results. Section 7 gives sufficient conditions for a technical assump-
tion used in the paper. Section 8 provides proofs.

2. TESTING SETUP

We now describe the general testing setup. We are interested in tests concerning
a parameter θ ∈ Rd in the presence of a nuisance parameter γ ∈ �, where �
is specified below. The null hypothesis is H0 : θ = θ0 for some θ0 ∈ Rd . The
alternative hypothesis may be one-sided or multi-sided. Let Tn(θ0) denote a real-
valued test statistic for testing H0 based on a sample of size n. The leading case
is when Tn(θ0) is a t statistic, but the results cover other test statistics. The focus
of this paper is on the behavior of tests when the asymptotic null distribution of
Tn(θ0) depends on the nuisance parameter γ and is discontinuous at some value(s)
of γ.

A test rejects the null hypothesis when Tn(θ0) exceeds some critical value. We
consider two types of critical values for use with the test statistic Tn(θ0). The first
is a fixed critical value (FCV) and is denoted cFix (1−α), where α ∈ (0,1) is the
nominal size of the FCV test. The FCV test rejects H0 when Tn(θ0) > cFix (1−α).
A common choice when Tn(θ0) has the same asymptotic distribution for all fixed
γ that are not points of discontinuity is cFix (1−α) = c∞(1−α), where c∞(1−α)
denotes the 1 − α quantile of J∞ and J∞ is the asymptotic null distribution of
Tn(θ0) when γ is fixed and is not a point of discontinuity.

The second type of critical value that we consider is a subsampling critical
value. Let b denote the subsample size, which depends on n. The number of dif-
ferent subsamples of size b is qn . With i.i.d. observations, there are qn = n!/
((n − b)!b!) different subsamples of size b. With time series observations, there
are qn = n −b+1 subsamples, each consisting of b consecutive observations. The
subsample statistics that are used to construct the subsampling critical value are
denoted by {T̂n,b, j : j = 1, . . . ,qn}.

Let {Tn,b, j (θ0) : j = 1, . . . ,qn} be subsample statistics that are defined exactly
as Tn(θ0) is defined, but are based on subsamples of size b rather than the full
sample. The empirical distribution of {Tn,b, j (θ0) : j = 1, . . . ,qn} is

Un,b(x) = q−1
n

qn

∑
j=1

1(Tn,b, j (θ0) ≤ x). (5)

In most cases, the subsample statistics {T̂n,b, j : j = 1, . . . ,qn} are defined to
satisfy one or other of the following assumptions.

Assumption Sub1. T̂n,b, j = Tn,b, j (θ̂n) for all j ≤qn, where θ̂n is an estimator
of θ .

Assumption Sub2. T̂n,b, j =Tn,b, j (θ0) for all j ≤ qn .
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The estimator θ̂n in Assumption Sub1 usually is chosen to be an estimator that
is consistent under both the null and alternative hypotheses.

Let Ln,b(x) and cn,b(1−α) denote the empirical distribution function and 1−α

sample quantile, respectively, of the subsample statistics {T̂n,b, j : j = 1, . . . ,qn}.
By definition,

Ln,b(x) = q−1
n

qn

∑
j=1

1(T̂n,b, j ≤ x) for x ∈ R and

cn,b(1−α) = inf{x ∈ R : Ln,b(x) ≥ 1−α}. (6)

The subsampling test rejects H0 : θ = θ0 if

Tn(θ0) > cn,b(1−α). (7)

The exact and asymptotic sizes of FCV and subsampling tests are

ExSzn(θ0) = sup
γ∈�

Pθ0,γ (Tn(θ0) > c1−α) and

AsySz(θ0) = limsup
n→∞

Ex Szn(θ0), (8)

where c1−α = cFix (1−α) or c1−α = cn,b(1−α) and Pθ,γ (·) denotes probability
when the true parameters are (θ,γ ). Uniformity over γ ∈ �, which is built into
the definition of AsySz(θ0), is necessary for the asymptotic size to give a good
approximation to the finite-sample size. Obviously, the specification of the pa-
rameter space � plays a key role in the exact size of a test. We are interested here
in problems in which the elements of � at which discontinuities of the asymptotic
distribution of the test statistic occur are parameter values that are empirically
relevant. In addition to asymptotic size, we also are interested in the minimum re-
jection probability of the test and its limit: Min RPn(θ0) = infγ∈� Pθ0,γ (Tn(θ0) >
c1−α) and AsyMin RP(θ0) = liminf

n→∞ Min RPn(θ0). If α−AsyMin RP(θ0) > 0, then

the test is not asymptotically similar in a uniform sense and, hence, may sacrifice
power.

We now introduce a running example that is used for illustrative purposes.

Example 1

We consider a testing problem where a nuisance parameter may be near a bound-
ary of the parameter space under the null hypothesis. Suppose {Xi ∈ R2 : i ≤ n}
are i.i.d. with distribution F . Then

Xi =
(

Xi1

Xi2

)
, EF Xi =

(
θ

μ

)
, and VarF (Xi ) =

(
σ 2

1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
. (9)

The null hypothesis is H0 : θ = 0, i.e., θ0 = 0. (The results below are invariant
to the choice of θ0.) The parameter space for the nuisance parameter μ is [0,∞).
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We consider lower and upper one-sided tests and symmetric and equal-tailed two-
sided tests of nominal level α. Each test is based on a studentized test statistic
Tn(θ0), where Tn(θ0) = T ∗

n (θ0),−T ∗
n (θ0), or |T ∗

n (θ0)|, and T ∗
n (θ0) = n1/2(θ̂n −

θ0)/σ̂n1.
The estimators (θ̂n, σ̂n1) of (θ,σ1) are defined as follows. Let σ̂n1, σ̂n2, and ρ̂n

denote any consistent estimators of σ1, σ2, and ρ. We suppose that σ̂n1 is scale
equivariant, i.e., the distribution of σ̂n1/σ1 does not depend on σ1, as is true of
most estimators of σ1. Let (θ̂n, μ̂n) be the Gaussian quasi-maximum likelihood
(ML) estimator of (θ,μ) under the restriction that μ ≥ 0 and under the assumption
that the standard deviations and correlation of Xi1 and Xi2 equal σ̂n1, σ̂n2, and ρ̂n .
This allows for the case where (θ̂n, μ̂n, σ̂n1, σ̂n2, ρ̂n) is the Gaussian quasi-ML
estimator of (θ,μ,σ1,σ2,ρ) under the restriction μ ≥ 0. Alternatively, σ̂n1, σ̂n2,
and ρ̂n could be the sample standard deviations and correlation of Xi1 and Xi2.
A Kuhn-Tucker maximization shows that

θ̂n = Xn1 − (ρ̂n σ̂n1)min(0, Xn2/σ̂n2), where

Xnj = n−1 ∑n
i=1 Xi j for j = 1,2. (10)

The FCVs employed in this example are the usual standard normal critical val-
ues that ignore the fact that μ may be on or near the boundary. They are z1−α,
z1−α, and z1−α/2, respectively, for the upper, lower, and symmetric versions of
the test. The subsampling critical values are given by cn,b(1 −α) obtained from
the subsample statistics {Tn,b, j (θ̂n) : j ≤ qn} that satisfy Assumption Sub1. (The
same results as given below hold under Assumption Sub2.)

3. ASSUMPTIONS

3.1. Parameter Space

The model is indexed by a parameter γ that has up to three components: γ =
(γ1,γ2,γ3). The points of discontinuity of the asymptotic distribution of the test
statistic of interest are determined by the first component, γ1 ∈ R p. We assume
that the discontinuities occur when one or more elements of γ1 equal zero. The
parameter space for γ1 is �1 ⊂ R p. The second component of γ , γ2 (∈ Rq), also
affects the limit distribution of the test statistic, but does not affect the distance
of the parameter γ to the point of discontinuity. The parameter space for γ2 is
�2 ⊂ Rq . The third component of γ , γ3, does not affect the limit distribution of
the test statistic. It is assumed to be an element of an arbitrary space T3. Infinite
dimensional γ3 parameters, such as error distributions, arise frequently in exam-
ples. Due to the central limit theorem (CLT), the asymptotic distribution of a
test statistic often does not depend on the specific error distribution—only on
whether it has certain moments finite and uniformly bounded (and for nonstu-
dentized statistics on its scale). The parameter space for γ3 is �3(γ1,γ2) (⊂ T3),
which may depend on γ1 and γ2.
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The parameter space for γ is

� = {(γ1,γ2,γ3) : γ1 ∈ �1,γ2 ∈ �2,γ3 ∈ �3(γ1,γ2)}. (11)

Let 
 denote the left endpoint of an interval that may be open or closed at the
left end. Define � analogously for the right endpoint.

Assumption A. (i) � satisfies (11) and (ii) �1 = ∏p
m=1 �1,m, where �1,m =


γ �
1,m,γ u

1,m� for some −∞ ≤ γ �
1,m < γ u

1,m ≤ ∞ that satisfy γ �
1,m ≤ 0 ≤ γ u

1,m for
m = 1, . . . , p.

Assumption A(ii) is satisfied in many examples, including all of those con-
sidered in Andrews and Guggenberger (2005, 2009a, 2009b, 2009c) except the
moment inequality model when restrictions arise such that one inequality cannot
hold as an equality if another inequality holds as an equality. The results in An-
drews and Guggenberger (2009b) do not require Assumption A(ii). Neither do
the results in Romano and Shaikh (2008) (but the latter do not cover any cases in
which subsampling does not have correct asymptotic size).

In the “continuous limit” case, in which no discontinuity of the asymptotic
distribution of the test statistic occurs, no parameter γ1 appears and p = 0.

Example 1 (cont.)

In this example, the vector of nuisance parameters γ = (γ1,γ2,γ3) is defined by
γ1 = μ/σ2, γ2 = ρ, and γ3 = (σ1,σ2, F). In Assumption A, set �1 = R+, where
R+ = {x ∈ R : x ≥ 0}, �2 = [−1,1], and

�3(γ1,γ2) = {(σ1,σ2, F) : σ1 ∈ (0,∞), σ2 ∈ (0,∞),EF ||Xi ||2+δ ≤ M,

EF Xi = (0,μ)′,VarF (Xi1) = σ 2
1 , VarF (Xi2) = σ 2

2 ,

CorrF (Xi1, Xi2) = γ2, & γ1 = μ/σ2} (12)

for some M < ∞ and δ > 0. Given these definitions, Assumption A holds. The
condition EF ||Xi ||2+δ ≤ M in �3(γ1,γ2) ensures that the Liapunov CLT applies
in (15)–(17) below. In �3(γ1,γ2), EF Xi1 = 0 because the results given are under
the null hypothesis.

The null distribution of T ∗
n (θ0) is invariant to σ 2

1 because σ̂n1 is scale equiv-
ariant. Hence, for simplicity and without loss of generality, when analyzing the
asymptotic properties of the tests in this example, we assume that σ 2

1 = 1 for all
n and �3(γ1,γ2) is restricted correspondingly.

3.2. Convergence Assumptions

In this section, the true value of θ is the null value θ0 and all limits are as
n → ∞. For a sequence of constants {κn : n ≥ 1}, let κn → [κ1,∞,κ2,∞] denote
that κ1,∞ ≤ liminfn→∞ κn ≤ limsupn→∞ κn ≤ κ2,∞. For an arbitrary
distribution G, let G(·) denote the distribution function (df) of G, let G(x−)
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denote the limit from the left of G(·) at x, and let C(G) denote the set of con-
tinuity points of G(·). Define the 1 − α quantile, q(1 − α), of a distribution G
by q(1 − α) = inf{x ∈ R : G(x) ≥ 1 − α}. The distribution Jh considered be-
low is the distribution of a proper random variable that is finite with probabil-
ity one. Let R+ = {x ∈ R : x ≥ 0}, R− = {x ∈ R : x ≤ 0}, R+,∞ = R+ ∪{∞},
R−,∞ = R− ∪{−∞}, R∞ = R ∪{±∞}, R p

+ = R+ × . . .× R+ (with p copies),
and R p∞ = R∞ × . . .× R∞ (with p copies).

Let r > 0 denote a rate of convergence index such that when the true parameter
γ1 satisfies nrγ1 → h1, then the test statistic Tn(θ0) has an asymptotic distribu-
tion that depends on the localization parameter h1 (see Assumption B below). The
constant r is the smallest constant such that sequences of parameters γ1 of order
O(1/nr ) yield distributions of the observations that are contiguous to the distri-
butions at γ1 = 0p, which is the discontinuity point of the asymptotic distribution
of Tn(θ0). In most examples, r = 1/2, but in the unit root example considered in
Andrews and Guggenberger (2009a), r = 1.

We now define the index set for the different asymptotic null distributions of
the test statistic Tn(θ0) of interest. Let

H ={h = (h1,h2) ∈ R p+q∞ : ∃ {γn = (γn,1,γn,2,γn,3) ∈ � : n ≥ 1}
such that nrγn,1 → h1 and γn,2 → h2}. (13)

For notational simplicity, we write h = (h1,h2), rather than (h′
1,h′

2)
′, even though

h is a p +q column vector. Under Assumption A, it follows that

H = H1 × H2, H1 =
p

∏
m=1

⎧⎪⎨⎪⎩
R+,∞ if γ �

1,m = 0

R−,∞ if γ u
1,m = 0

R∞ if γ �
1,m < 0 and γ u

1,m > 0,

H2 = cl(�2),

(14)

where cl(�2) is the closure of �2 with respect to Rq∞. For example, if p = 1,
γ �

1,1 = 0, and �2 = Rq , then H1 = R+,∞, H2 = Rq∞, and H = R+,∞ × Rq∞.

DEFINITION OF {γn,h : n ≥ 1}. Given r > 0 and h = (h1,h2) ∈ H, let {γn,h =
(γn,h,1,γn,h,2,γn,h,3) : n ≥ 1} denote a sequence of parameters in � for which
nrγn,h,1 → h1 and γn,h,2 → h2.

For a given model, we assume there is a single fixed r > 0. The sequence {γn,h :
n ≥ 1} is defined such that under {γn,h : n ≥ 1}, the asymptotic distribution of
Tn(θ0) depends on h and only h.

Assumption B. For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, and
some distributions Jh, Tn(θ0) →d Jh under {γn,h : n ≥ 1}.

Assumption B holds in a wide variety of examples of interest, see below and
Andrews and Guggenberger (2005, 2009a, 2009b). For a fixed value of h, if γn,h
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does not depend on n, Assumption B is a standard assumption in the subsampling
literature. For example, it is imposed in the basic theorem in PRW, Theorem 2.2.1,
p. 43, for subsampling with i.i.d. observations and in Theorem 3.2.1, p. 70, for
stationary strong mixing observations. When γn,h does depend on n, the result
Tn(θ0) →d Jh of Assumption B usually can be verified using the same sort of
argument as when it does not. In the “continuous limit” case (where Assumption
B holds with p = 0 and H = H2), the asymptotic distribution Jh may depend on
h but is continuous in the sense that one obtains the same asymptotic distribution
for any sequence {γn,h : n ≥ 1} for which γn,h,2 converges to h2 ∈ H2.

Example 1 (cont.)

In this example, r = 1/2 and H = R+,∞ × [−1,1] because �1 = R+ and �2 =
[−1,1]. We now verify Assumption B. For more complicated boundary exam-
ples, results in Andrews (1999, 2001) can be used to verify Assumption B. The
following results are all under the null hypothesis, so the true parameter θ equals
zero. For any h = (h1,h2) ∈ H with h1 < ∞ and any sequence {γn,h : n ≥ 1} of
true parameters, consistency of (σ̂n1, σ̂n2, ρ̂n) and the CLT imply that(

n1/2 Xn1/σ̂n1

n1/2 Xn2/σ̂n2

)
→d

(
0

h1

)
+ Zh2 , (15)

where Zh2 = (Zh2,1, Zh2,2)
′ ∼ N (0,Vh2) and Vh2 is a 2 × 2 matrix with diago-

nal elements 1 and off-diagonal elements h2. (For this and the results below, we
assume that σ̂n1, σ̂n2, and ρ̂n are consistent in the sense that σ̂nj/σj,n,h →p 1
for j = 1,2 and ρ̂n −ρn,h →p 0 under {γn,h = (μn,h/σ2,n,h,ρn,h, (σ1,n,h,σ2,n,h,
Fn,h)) : n ≥ 1}, where σj,n,h denotes σj for j = 1,2 and ρn,h denotes ρ when
γ = γn,h .)

By the continuous mapping theorem, we obtain

T ∗
n (θ0) = n1/2θ̂n/σ̂n1 = n1/2 Xn1/σ̂n1 − ρ̂n min(0,n1/2 Xn2/σ̂n2)) →d J ∗

h (16)

under {γn,h}, where J ∗
h is the distribution of

Zh2,1 −h2 min(0, Zh2,2 +h1). (17)

Note that J ∗
h is stochastically increasing (decreasing) in h1 for h2 < 0 (h2 ≥ 0).

Likewise, −J ∗
h is stochastically decreasing (increasing) in h1 for h2 < 0 (h2 ≥ 0).

(If Y ∼ J ∗
h , then by definition, −Y ∼ −J ∗

h and |Y | ∼ |J ∗
h |.)

For h ∈ H with h1 = ∞, we have θ̂n = Xn1 with probability that goes to one
(wp→1) under {γn,h} because n1/2 Xn2/σ̂n2 →p ∞ under {γn,h}. (The latter holds
because n1/2γn,h,1 = n1/2μn,h/σ2,n,h → ∞, n1/2(Xn2 −EXn2)/σ̂n2 = Op(1) by
the CLT and σ̂n2/σn2 →p 1, and n1/2EXn2/σ̂n2 = n1/2μn/σ̂n2 →p ∞.) There-
fore, under {γn,h} with h1 = ∞, we have

T ∗
n (θ0) →d J ∗∞, where J ∗∞ is the N (0,1) distribution. (18)

Note that J ∗
h and J ∗∞ do not depend on γ3 = (σ1,σ2, F).



438 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

For Tn(θ0) = T ∗
n (θ0),−T ∗

n (θ0), and |T ∗
n (θ0)|, we have Tn(θ0) →d Jh under

{γn,h}, where Jh = J ∗
h ,−J ∗

h , and |J ∗
h |, respectively. Hence, Assumption B holds

for upper, lower, and symmetric tests.

3.3. Subsampling Assumptions

For subsampling tests, we require the following additional assumptions.

Assumption C. (i) b → ∞ and (ii) b/n → 0.

Assumption D. (i) {Tn,b, j (θ0) : j = 1, . . . ,qn} are identically distributed under
any γ ∈ � for all n ≥ 1 and (ii) Tn,b, j (θ0) and Tb(θ0) have the same distribution
under any γ ∈ � for all n ≥ 1.

Assumption E. For all sequences {γn ∈ � : n ≥ 1}, Un,b(x) − Eθ0,γn Un,b(x)
→p 0 under {γn : n ≥ 1} for all x ∈ R.

Assumption F. For all ε > 0 and h ∈ H, Jh(ch(1 − α) + ε) > 1 − α, where
ch(1−α) is the 1−α quantile of Jh .

Assumption G. For all h = (h1,h2) ∈ H and all sequences {γn,h : n ≥ 1} for
which brγn,h,1 → g1 for some g1 ∈ R p∞, if Un,b(x) →p Jg(x) under {γn,h : n ≥ 1}
for all x ∈ C(Jg) for g = (g1,h2) ∈ R p+q∞ , then Ln,b(x)−Un,b(x) →p 0 under
{γn,h : n ≥ 1} for all x ∈ C(Jg).

Assumptions C and D are standard assumptions in the subsampling literature
(e.g., see PRW, Thm. 2.2.1, p. 43) and are not restrictive. Assumption D nec-
essarily holds when the observations are i.i.d. or stationary and the subsamples
are constructed in the usual way. It also holds in some cases with nonstationary
observations, such as in the unit root example, see Andrews and Guggenberger
(2009a).

Assumption E holds quite generally. For i.i.d.observations, the condition in As-
sumption E when γn does not depend on n is verified in PRW, p. 44, using a
U-statistic inequality of Hoeffding. It also holds for any triangular array of row-
wise i.i.d. [0,1]-valued random variables by the same argument. Hence, Assump-
tion E holds automatically when the observations are i.i.d. for each fixed
γ ∈ �.

For stationary strong mixing observations, the condition in Assumption E when
γn does not depend on n is verified in PRW, pp. 71–72, by establishing L2 con-
vergence using a strong mixing covariance bound. It holds for any sequence
{γn ∈ � : n ≥ 1} and, hence, Assumption E holds, by the same argument as in
PRW, provided the observations are stationary and strong mixing for each γ ∈ �
and supγ∈� αγ (m) → 0 as m → ∞, where {αγ (m) : m ≥ 1} are the strong mixing
numbers of the observations when the true parameters are (θ0,γ ).
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Assumption F is not restrictive. It holds in all of the examples that we have
considered. Assumption G holds automatically when {T̂n,b, j } satisfy Assumption
Sub2. In Section 7, we give sufficient conditions for Assumption G when Assump-
tion Sub1 holds.

Example 1 (cont.)

We now verify Assumptions C–F for this example. Assumption G is verified in
Section 7 below. We assume b is chosen such that Assumption C holds. Assump-
tion D holds by the i.i.d. assumption. Assumption E holds by the general argument
given above for i.i.d. observations. For α < 1/2, Assumption F holds for Jh = J ∗

h
(defined above in (17)–(18)) because for h2 �= −1, J ∗

h (x) is strictly increasing
for positive x and J ∗

h (0) = 1/2. For h2 = −1, J ∗
h (x) is strictly increasing for

x ≤ h1 and J ∗
h (x) = 1 for x ≥ h1. Assumption F holds by analogous reasoning

for Jh = −J ∗
h . Finally, it holds for Jh = |J ∗

h | because |J ∗
h (x)| is strictly increasing

in x for all h2 ∈ [−1,1] (where for |h2| = 1, |J ∗
h (x)| has a jump at x = h1 of

height Pr(Z ≥ h1) for Z ∼ N (0,1)).

4. ASYMPTOTIC RESULTS

Theorem 1 below shows that the asymptotic size of a subsampling test is de-
termined by the asymptotic distributions of the full-sample statistic Tn(θ0) and
the subsample statistic Tn,b, j (θ0) under sequences {γn,h : n ≥ 1}. By Assump-
tion B, the asymptotic distribution of Tn(θ0) is Jh . The asymptotic distribution of
Tn,b, j (θ0) under {γn,h : n ≥ 1} is shown to be Jg for some g ∈ H. Given h ∈ H,
under {γn,h : n ≥ 1} not all g ∈ H are possible indices for the asymptotic distribu-
tion of Tn,b, j (θ0). The set of all possible pairs of localization parameters (g,h) is
denoted GH and is defined by

GH = {(g,h) ∈ H × H : g = (g1,g2), h = (h1,h2), g2 = h2, and for

m = 1, . . . , p, (i) g1,m = 0 if |h1,m | < ∞, (ii) g1,m ∈ R+,∞ if h1,m

= +∞, and (iii) g1,m ∈ R−,∞ if h1,m = −∞}, (19)

where g1 = (g1,1, . . . ,g1,p)
′ ∈ H1 and h1 = (h1,1, . . . ,h1,p)

′ ∈ H1. Note that for
(g,h) ∈ GH, we have |g1,m | ≤ |h1,m | for all m = 1, . . . , p. In the “continuous
limit” case (where there is no γ1 component of γ ), GH simplifies considerably:
GH = {(g2,h2) ∈ H2 × H2 : g2 = h2}.

The set GH is a crucial ingredient to the asymptotic size of a subsampling
test. We now give a simple explanation of its form. Consider the case in which
no parameters γ2, γ3, and h2 appear (where γ = (γ1,γ2,γ3) and h = (h1,h2)),
p = 1, and γ = γ1 ≥ 0. Then, H = R+,∞ and GH = {(g,h) ∈ H × H : (i) g = 0 if
h < ∞ & (ii) g ∈ [0,∞] if h = ∞}. The asymptotic distribution of Tn(θ0) under
the combinations of sample sizes and true values given by {(n,γn,h) : n ≥ 1} is
Jh when nrγn,h → h by Assumption B. The question is “What is the asymptotic
distribution of Tn,b, j (θ0) under {γn,h : n ≥ 1}?”
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Because Tn,b, j (θ0) has the same distribution as Tb(θ0) for all j by Assump-
tion D, it suffices to determine the asymptotic distribution of Tb(θ0) under {γn,h :
n ≥ 1}. By a subsequence argument, the asymptotic distribution of Tb(θ0) under
the combinations of sample sizes and true values given by {(b,γn,h) : n ≥ 1} is Jg

when brγn,h → g by Assumption B. If nrγn,h → h < ∞, then brγn,h → g = 0
because b/n → 0 by Assumption C. Hence, if h < ∞, then g = 0, which is the
first condition in GH (defined in the previous paragraph). On the other hand, for
any g ∈ [0,∞], there exists a sequence {γn,h : n ≥ 1} such that nrγn,h → ∞ and
brγn,h → g. This explains the second condition in GH.

We return now to the general case. Consistent with the heuristics above, Theo-
rem 1 below shows that for a subsampling test AsySz(θ0) ∈ [MaxSub(α),
Max−

Sub(α)], where

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1−α))] and

Max−
Sub(α) = sup

(g,h)∈GH
[1− Jh(cg(1−α)−)]. (20)

Define MinSub(α) and Min−
Sub(α) analogously with “ inf” in place of “sup .” In

the “continuous limit” case, MaxSub(α) simplifies to suph∈H [1− Jh(ch(1−α))],
which is less than or equal to α by the definition of ch(1−α).

Analogously, for FCV tests, define

MaxFix (α) = sup
h∈H

[1− Jh(cFix (1−α))] and

Max−
Fix (α) = sup

h∈H
[1− Jh(cFix (1−α)−)]. (21)

Define MinFix (α) and Min−
Fix (α) analogously with “ inf” in place of “sup .”

THEOREM 1.

(i) Suppose Assumptions A and B hold. Then, an FCV test satisfies

AsySz(θ0) ∈[MaxFix (α),Max−
Fix (α)] and

AsyMinR P(θ0) ∈[MinFix (α),Min−
Fix (α)].

(ii) Suppose Assumptions A–G hold. Then, a subsampling test satisfies

AsySz(θ0) ∈[MaxSub(α),Max−
Sub(α)] and

AsyMinR P(θ0) ∈[MinSub(α),Min−
Sub(α)].

Comments

1. If Jh(x) is continuous at the appropriate value(s) of x (which holds in almost
all examples), then MaxFix (α) = Max−

Fix (α) and MaxSub(α) = Max−
Sub(α).
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In this case, Theorem 1 gives the precise value of AsySz(θ0) and analo-
gously for AsyMinRP(θ0).

2. A key question concerning nominal level α FCV and subsampling tests is
whether AsySz(θ0) ≤ α. For an FCV test with MaxFix (α) = Max−

Fix (α),
Theorem 1(i) shows that this holds if and only if (iff) cFix (1 − α) is
greater than or equal to the 1 − α quantile of Jh , ch(1 − α), for all
h ∈ H.

3. For a subsampling test with Max−
Sub(α) = MaxSub(α), Theorem 1(ii) shows

that AsySz(θ0) ≤ α iff cg(1 −α) ≥ ch(1 −α) for all (g,h) ∈ GH. In conse-
quence, a graph of ch(1 − α) as a function of h is very informative about
the asymptotic size of a subsampling test. Figure 1 provides four examples
of shapes of ch(1 − α) as a function of h in the special case where h =
h1 ∈ R+,∞. In Figure 1(a), ch(1−α) is decreasing in h. Hence, cg(1−α) ≥
ch(1−α) for all (g,h) ∈ GH (since g ≤ h) and AsySz(θ0) ≤ α. A decreasing
quantile graph occurs in (i) the nuisance parameter near a boundary exam-
ple for one-sided tests for one sign of a correlation parameter (but not the
other sign), see Section 6.1; (ii) the weak instruments regression example
for tests concerning the coefficient on an endogenous variable for one-sided
tests for one sign of a correlation and for symmetric two-sided tests for all
values of a correlation not close to zero, see Andrews and Guggenberger
(2005); (iii) the moment inequality example, see Andrews and Guggenberger
(2009b), and (iv) the autoregressive example for lower one-sided and sym-
metric two-sided tests, see Andrews and Guggenberger (2009a). (In all of
these examples except the autoregressive example, a parameter h2 appears,
which corresponds to a correlation parameter, and the graphs described are
actually for h1 for a given value of h2.)

In contrast, in Figures 1(b), 1(c), and 1(d), there are pairs (g,h) ∈ GH for
which cg(1 −α) < ch(1 −α) for g < h and, hence, AsySz(θ0) > α. Figure
1(c) illustrates a case in which subsampling does not lead to over-rejection
for alternatives that typically are contiguous to h = 0, i.e., those with h < ∞,
but leads to over-rejection for alternatives that typically are not contiguous,
i.e., h = ∞.

An increasing quantile graph, as in Figure 1(b), occurs in (i) the nui-
sance parameter near a boundary example for one-sided tests for the other
sign of the correlation parameter than in the case described above; (ii) the
weak instruments regression example referred to above for one-sided tests
for the other sign of the correlation; and (iii) the autoregressive example for
upper one-sided tests. The bowl shape of Figure 1(c) occurs in the weak
instruments regression example referred to above for symmetric two-sided
tests for values of the correlation very close to zero. The hump shape of Fig-
ure 1(d) occurs in the post-conservative model selection example with the
height of the hump depending on a correlation parameter, see Andrews and
Guggenberger (2009a).
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FIGURE 1. 1−α quantile of Jh , ch(1−α), as a function of h.

4. The same argument as used to prove Theorem 1 shows that, for FCV and
subsampling tests, ExSzn(θ0) → [MaxT ype(α), Max−

T ype(α)] for T ype = Fix

and Sub, respectively. Hence, when MaxT ype(α) = Max−
T ype(α), we have

limn→∞ ExSzn(θ0) = MaxT ype(α) for T ype = Fix and Sub.
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5. Andrews and Guggenberger (2009a) utilizes the results of Theorem 1 to in-
troduce and analyze various new procedures including (i) hybrid subsam-
pling/FCV, (ii) size-corrected FCV, (iii) size-corrected subsampling, and (iv)
size-corrected hybrid tests and CIs (and analogous m out of n bootstrap pro-
cedures). These procedures extend the applicability of subsampling, m out
of n bootstrap, and FCV methods to a wide variety of models whose asymp-
totic distributions are discontinuous in some parameter.

5. EQUAL-TAILED t-TESTS

This section considers equal-tailed two-sided t-tests. It is of interest to see how
the asymptotic size properties of equal-tailed tests compare to those of symmetric
tests. In short, it turns out that in many examples, equal-tailed subsampling tests
perform worse.

Suppose Tn(θ0) is a t statistic. A nominal level α(∈ (0,1/2)) equal-tailed t-test
of H0 : θ = θ0 versus H1 : θ �= θ0 rejects H0 when

Tn(θ0) > c1−α/2 or Tn(θ0) < cα/2, (22)

where c1−α = cFix (1−α) for FCV tests and c1−α = cn,b(1−α) for subsampling
tests.

The exact size, ExSzn(θ0), of the equal-tailed t-test is

ExSzn(θ0) = sup
γ∈�

(
Pθ0,γ (Tn(θ0) > c1−α/2)+ Pθ0,γ (Tn(θ0) < cα/2)

)
. (23)

The asymptotic size of the test is AsySz(θ0) = limsupn→∞ ExSzn(θ0). For
brevity, we only state results for the AsySz(θ0) of subsampling tests. Results for
AsyMinR P(θ0) and FCV tests are analogous. Define

Maxr−
ET,Sub(α) = sup

(g,h)∈GH
[1− Jh(cg(1−α/2))+ Jh(cg(α/2)−)] and

Max�−
ET,Sub(α) = sup

(g,h)∈GH
[1− Jh(cg(1−α/2)−)+ Jh(cg(α/2))]. (24)

Here “r −” denotes that the limit from the left “−” appears in the right summand.
Assumption F is replaced by Assumption J.

Assumption J. For all ε > 0 and h ∈ H, Jh(ch(τ )+ ε) > τ for τ = α/2 and
τ = 1−α/2, where ch(τ ) is the τ quantile of Jh .

The proof of Theorem 1 can be adjusted straightforwardly to yield the follow-
ing result.

COROLLARY 2. Let α ∈ (0,1/2) be given. Suppose Assumptions A–E, G,
and J hold. Then, an equal-tailed subsampling test satisfies

AsySz(θ0) ∈ [Maxr−
ET,Sub(α),Max�−

ET,Sub(α)].
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Comments

1. If Jh(x) is continuous at the appropriate value(s) of x, then Maxr−
ET,Sub(α) =

Max�−
ET,Sub(α) = AsySz(θ0).

2. By Corollary 2 and the definition of Max�−
ET,Sub(α), sufficient conditions

for a nominal level α equal-tailed subsampling test to have asymptotic level
α are: (i) cg(1 − α/2) ≥ ch(1 − α/2) for all (g,h) ∈ GH, (ii) cg(α/2) ≤
ch(α/2) for all (g,h) ∈ GH, and (iii) suph∈H [1 − Jh(ch(1 − α/2)−) +
Jh(ch(α/2))] = suph∈H [1 − Jh(ch(1 −α/2))+ Jh(ch(α/2)−)]. Conditions
(i) and (ii) automatically hold in “continuous limit” cases. They also hold in
some “discontinuous limit” cases, but often fail in such cases. Condition (iii)
holds in most examples.

Example 1 (cont.)

In this example, the critical values (cα/2,c1−α/2) for the equal-tailed FCV and
subsampling tests are (zα/2, z1−α/2) and (cn,b(α/2),cn,b(1−α/2)), respectively.
Next, we verify Assumption J for this example. For |h2| < 1, Jh(x) = J ∗

h (x)
is strictly increasing for all x ∈ R. When h2 = 1, Jh(x) = J ∗

h (x) equals zero
for x < −h1 and is strictly increasing for all x ≥ −h1. Finally, for h2 = −1,
Jh(x) = J ∗

h (x) is strictly increasing for all x ≤ h1 and equals 1 otherwise. In
consequence, Assumption J holds.

6. EXAMPLES

6.1. Test When a Nuisance Parameter May Be Near a
Boundary (cont.)

For this example, some calculations (given in Appendix A) show that for upper
and lower one-sided and symmetric two-sided tests, Max−

T ype(α) = MaxT ype(α)
for Type = Fix and Sub. Hence, by Theorem 1, AsySz(θ0) = MaxT ype(α) for these
tests. Analogously, for equal-tailed tests, calculations (given in Appendix A) show
that Maxr−

ET,T ype(α) = Max�−
ET,T ype(α) for any α ∈ (0,1/2) (and the limit from the

left “−” in both can be deleted) for Type = Fix and Sub. Hence, by Corollary 2,
AsySz(θ0) = Maxr−

ET,T ype(α) for equal-tailed tests.
Given that Jh = J ∗

h is stochastically increasing (decreasing) in h1 for fixed
h2 < 0 (h2 ≥ 0), some calculations (given in Appendix A) yield the following
simplifications for upper one-sided tests:

MaxFix (α) = sup
h∈H

[1− Jh(cFix (1−α))] = sup
h2∈[0,1]

(1− J(0,h2)(z1−α)) and

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1−α))] = sup
h2∈[−1,0]

(1− J∞(c(0,h2)(1−α))),

(25)

where J(0,h2) is the distribution of Zh2,1 − h2 min(0, Zh2,2), (Zh2,1, Zh2,2) is bi-
variate normal with means zero, variances one, and correlation h2, and J∞ is the
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standard normal distribution. The results for lower one-sided tests are analogous
with h2 ∈ [0,1] and h2 ∈ [−1,0] replaced by h2 ∈ [−1,0] and h2 ∈ [0,1], respec-
tively.

Figure 2 provides .95 quantile graphs of J ∗
h and |J ∗

h | as functions of h1 ≥ 0
for several values of h2 ∈ [−1,1]. As discussed in Comment 3 to Theorem 1,
these graphs provide considerable qualitative information concerning the
null rejection probabilities of subsampling and FCV tests as a function of h1
(= limn→∞ n1/2μn,h/σ2,n,h) and h2 (= limn→∞ ρn,h). For example, the quan-
tile graphs for J ∗

h indicate that the upper one-sided subsampling test over-rejects
for negative values of h2 for all (g1,h1) pairs with g1 < h1 (because the graphs
are increasing in h1), with the greatest degree of over-rejection being quite large
and occurring for (g1,h1) = (0,∞) and h2 close to −1. On the other hand, for
positive values of h2, the upper subsampling test underrejects (because the graph
is decreasing in h1), with the greatest degree of underrejection being relatively
small and occurring for (g1,h1) = (0,∞) and h2 around .5. In sum, the quantile
graphs indicate qualitatively that the size of the upper subsampling test exceeds
.05 by a substantial amount.

Table 1 provides quantitative information concerning the size properties of the
tests in this example. It is obtained by calculating asymptotic quantities by simula-
tion. Table 1 reports AsySz(θ0) as well as the maximum asymptotic null rejection
probabilities (×100) for given h2 for a range of h2 values in [−1,1] and α = .05.

FIGURE 2. Nuisance parameter near a boundary example: .95 quantile graphs, ch(.95), for
J∗

h and
∣∣J∗

h

∣∣ as functions of h1 for several values of h2.
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TABLE 1. Nuisance parameter near a boundary example: Maximum asymptotic
null rejecton probabilities (×100) as a function of the true correlation h2 for
nominal 5% tests

Upper 1-sided Symmetric 2-sided Equal-tailed 2-sided
h2 Sub FCV Sub FCV Sub FCV
−1.00 50.2 5.0 10.0 5.0 52.5 5.0
−.99 42.8 5.0 10.0 5.0 43.1 5.0
−.95 33.8 5.0 10.0 5.0 32.4 5.0
−.90 27.6 5.0 10.0 5.0 25.3 5.0
−.80 20.2 5.0 9.5 5.0 17.4 5.0
−.60 12.3 5.0 7.5 5.0 10.0 5.0
−.40 8.3 5.0 6.0 5.0 6.8 5.0
−.20 6.2 5.0 5.2 5.0 5.4 5.0

.00 5.0 5.0 5.0 5.0 5.0 5.0

.20 5.0 5.6 5.2 5.0 5.4 5.0

.40 5.0 5.8 6.0 5.0 6.8 5.0

.60 5.0 5.6 7.5 5.0 10.0 5.0

.80 5.0 5.1 9.5 5.0 17.4 5.0

.90 5.0 5.0 10.0 5.0 25.3 5.0

.95 5.0 5.0 10.0 5.0 32.4 5.0

.99 5.0 5.0 10.0 5.0 43.1 5.0
1.00 5.0 5.0 10.0 5.0 52.5 5.0

AsySz(θ0) 50.2 5.8 10.0 5.0 52.5 5.0

(These maxima are over h ∈ H for FCV tests and (g,h) ∈ GH for subsampling
tests with h2 fixed. For example, for upper one-sided FCV and subsampling tests,
these maxima simplify to 1 − J(0,h2)(z1−α) and 1 − J∞(c(0,h2)(1 − α)), respec-
tively. For the two-sided FCV test, the maximum is suph1∈[0,∞][1 − J(h1,h2)

(z1−α/2)].) Results for lower one-sided tests are not reported in Table 1 because
they are the same as those for upper one-sided tests, but with h2 replaced by −h2.
The simulations use 50,000 repetitions, and when maximization over h1 is needed
the upper bound is 12 and a grid of size 0.05 is used. The last row of Table 1 gives
the AsySz(θ0) of each test, which is maximum of the numbers in each column.

The results of Table 1 are summarized as follows: For upper one-sided tests,
we find large asymptotic size distortions for the subsampling tests and very small
size distortions for the FCV tests for all nominal sizes α ∈ [.01, .2] that we con-
sider. (Only results for α = .05 are reported.) The upper one-sided subsampling
test overrejects the null when the correlation h2 is negative, does not overreject
when h2 is positive, and the magnitude of overrejection increases as h2 gets closer
to −1. This test has asymptotic size approximately equal to 1/2 for all nominal
sizes α ∈ [.01, .2] that we consider.

The symmetric two-sided subsampling test also is found to be size-distorted
asymptotically, but by a much smaller amount. The Monte Carlo simulations
for α ∈ [.01, .2] show that AsySz(θ0) is approximately 2α for the symmetric
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subsampling test. Its rejection rate is invariant to the sign of h2. In contrast, the
two-sided FCV test is found to have asymptotic size equal to its nominal level,
although this test is not asymptotically similar in a uniform sense.

The equal-tailed subsampling test is found to have a large asymptotic size dis-
tortion: AsySz(θ0) is approximately 1/2 +α/2 = .525. The two-sided FCV test
has no asymptotic size distortion, but is not asymptotically similar in a uniform
sense.

6.2. Tests Concerning an Exogenous Variable in an IV Regression
Model with Possibly Weak Instruments

We consider the following IV regression model:

y1 = y2β + Xθ +u,

y2 = Z̃π + X φ̃ + v, (26)

where y1, y2 ∈ Rn are endogenous variable vectors, X ∈ Rn is an exogenous
variable vector, Z̃ ∈ Rn×k2 for k2 ≥ 1 is a matrix of IVs, and (β,θ, φ̃,π ′)′ ∈
R1×1×1×k2 are unknown parameters. Denote by ui , vi , Xi , and Z̃i the i th rows of
u, v, X, and Z̃ , respectively, written as column vectors (or scalars). Let k = 1+k2.

We are interested in tests concerning the parameter θ on the exogenous variable
X in the equation for y1 when the IVs Z̃ may be weak (i.e., π may be close to 0).
The null hypothesis is

H0 : θ = θ0. (27)

The alternative hypothesis may be one-sided or two-sided. Below we consider
FCV and subsampling tests based on the two-stage least squares (2SLS) estimator.
We consider upper and lower one-sided and symmetric and equal-tailed two-sided
tests of nominal level α.

The literature on IV regression models when the IVs may be weak is now volu-
minous. For surveys, see Stock, Wright, and Yogo (2002), Dufour (2003), Hahn
and Hausman (2003), and Andrews and Stock (2007). Most of the papers in the
literature focus on tests that concern the coefficient β on the endogenous variable
y2. For example, the subsampling results in Andrews and Guggenberger (2005)
consider this null and differ from the results given here in this respect. Kleibergen
(2008) is one paper that focuses on tests of H0 : θ = θ0. It considers different
test statistics from the 2SLS-based statistics that are considered here. Given the
focus here on the 2SLS estimator, the results below are closely related to results
in Staiger and Stock (1997). In fact, part of the proofs utilizes results from Staiger
and Stock (1997).

Define

Zi = Z̃i − (EZ̃i Xi )(EX2
i )−1 Xi and φ = φ̃ + (EX2

i )−1(EXi Z̃ ′
i )π. (28)
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The reduced-form equation for y2 can be rewritten as

y2i = Z ′
iπ + Xiφ + vi . (29)

By construction, EZi Xi = 0. Note that Zi is unobserved. As explained below, for
our purposes, this does not matter.

Let Z = [X :Z ], where Z = [Z1 · · · Zn]′. For any matrix M we let PM =
M(M ′M)−1 M ′, and for any conformable matrix M we let M⊥ = M − PX M.

We define a partially-studentized test statistic T ∗
n (θ0) based on the 2SLS

estimator, θ̂n, of θ as follows:

T ∗
n (θ0) = θ̂n − θ0

σ̂n
, where θ̂n = (X ′ X)−1 X ′(y1 − y2β̂n), β̂n = y′

2 PZ⊥ y1

y′
2 PZ⊥ y2

,

σ̂n = (X ′SX)−1/2, and S = P Z − P Z y2 y′
2 P Z

y′
2 P Z y2

. (30)

Note that T ∗
n (θ0) is unchanged if Z is replaced by Z̃ in its definition because P Z =

P[X :Z̃ ] and PZ⊥ = PZ̃⊥ . The statistic T ∗
n (θ0) is only partially studentized because

it does not employ an estimator of σu = Eu2
i . The standard fully-studentized test

statistic is

T ∗
n (θ0)/σ̂u, where σ̂ 2

u = (n −1)−1(y⊥
1 − y⊥

2 β̂n)
′(y⊥

1 − y⊥
2 β̂n). (31)

Standard nominal-level α 2SLS tests based on a fixed critical value (FCV) em-
ploy the test statistic Tn(θ0)/σ̂u, where Tn(θ0) = T ∗

n (θ0),−T ∗
n (θ0), and |T ∗

n (θ0)|
for upper one-sided, lower one-sided, and symmetric two-sided tests, respectively.
In each case, the test rejects H0 if

Tn(θ0)/σ̂u > c∞(1−α), (32)

where c∞(1 −α) = z1−α, z1−α, and z1−α/2, respectively, and z1−α denotes the
1−α quantile of the standard normal distribution. For FCV tests, full studentiza-
tion of the test statistic is necessary for the normal critical values to be suitable
when the IVs are strong.

Next, we consider subsampling tests. Subsampling tests can be based on the
partially-studentized statistic T ∗

n (θ0) or the fully-studentized statistic T ∗
n (θ0)/σ̂u .

We focus on T ∗
n (θ0) but provide some results for T ∗

n (θ0)/σ̂u as well. The rationale
for using T ∗

n (θ0) is that σ 2
u is difficult to estimate when the IVs are weak and a

subsampling test does not require normalization for the scale of the error because
the subsample statistics have the same error scale as the full-sample statistic.

Let {T ∗
n,b, j (θ0) : j = 1, . . . ,qn} be partially-studentized subsample t statistics

that are defined just as T ∗
n (θ0) is defined but are based on the j th subsample of

length b. That is, T ∗
n,b, j (θ0) = (θ̂n,b, j − θ0)/σ̂n,b, j , where θ̂n,b, j and σ̂n,b, j are

analogues of θ̂n and σ̂n, respectively, based on the j th subsample. Note that the
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subsample statistic T ∗
n,b, j (θ0) is centered at θ0, rather than θ̂n, and hence Assump-

tion Sub2 holds. This choice of centering is made because θ̂n is not consistent if
the IVs are weak and φ is local to zero, hence, centering at θ̂n would yield poor
performance of the subsampling test.

The nominal level α subsampling test rejects H0 : θ = θ0 if

Tn(θ0) > cn,b(1−α), (33)

where Tn(θ0) = T ∗
n (θ0),−T ∗

n (θ0), and |T ∗
n (θ0)| and cn,b(1 −α) denotes the sub-

sampling critical value defined in (6). Equal-tailed two-sided subsampling tests
are defined in (22) with c1−α = cn,b(1−α).

Neither the distribution of θ̂n −θ0 nor that of σ̂n depend on θ0 when θ0 is the true
value. Therefore, the finite-sample distribution of T ∗

n (θ0) under H0 : θ = θ0 does
not depend on θ0 and the test results given below for fixed θ0 hold uniformly over
θ0 ∈ R. This implies that the test results apply immediately to CIs constructed by
inverting the tests.

6.2.1. Assumptions and Parameter Space. We assume that {(ui ,vi , Xi , Zi ) :
i ≤ n} are i.i.d. with distribution F. We define a vector of nuisance parameters
γ = (γ1,γ2,γ3) as follows: Let γ1 = (γ11,γ12)

′ ∈ R2. Define

γ11 = ||Q1/2
Z Z π/σv ||, γ12 = Q1/2

X Xφ/σv, γ2 = ρ = CorrF (ui ,vi ), and

γ3 = (F,π,φ), where σ 2
v = EFv2

i , σ 2
u = EF u2

i , and

Q =
[

Q X X Q X Z

Q Z X Q Z Z

]
= EF Zi Z

′
i . (34)

We choose this specification for γ11, γ12, and γ2 because the asymptotic distribu-
tion of the t statistic depends only on these scalar parameters, as shown below.

The parameter space for γ1 is �1 = R+ × R. We specify the parameter space
for γ2 to be �2 = �2,ρU = [−ρU ,ρU ] for some ρU ∈ (0,1]. We allow for different
bounds ρU because we are interested in how the asymptotic sizes of FCV and
subsampling tests vary with the upper bound ρU . For given (γ1,γ2) ∈ �1 ×�2,ρU ,
the parameter space for γ3 is

�3(γ1,γ2)

=
{

(F,π,φ) : EF u2
i = σ 2

u ,EFv2
i = σ 2

v ,EF Zi Z
′
i = Q =

[
Q X X Q X Z

Q Z X Q Z Z

]
,

& EF uivi/(σuσv) = ρ for some σ 2
u ,σ 2

v > 0, pd Q ∈ Rk×k, ρ ∈ [−1,1],

π ∈ Rk2 , & φ ∈ R that satisfy
∥∥Q1/2

Z Zπ/σv

∥∥= γ11, Q1/2
X Xφ/σv = γ12 &
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ρ = γ2; EF ui Zi = EFvi Z i = 0; EF (u2
i ,v

2
i ,uivi )Zi Z

′
i = (σ 2

u ,σ 2
v ,σuσvρ)Q;

λmin(EF Zi Z
′
i ) ≥ ε;

∥∥∥∥EF

(
|ui/σu |2+δ, |vi/σv |2+δ, |uivi/(σuσv)|2+δ

)′∥∥∥∥≤ M,

&

∥∥∥∥EF

(
||Zi ui/σu ||2+δ, ||Zivi/σv ||2+δ, ||Zi ||2+δ

)′∥∥∥∥≤ M

}
(35)

for some constants ε > 0, δ > 0, and M < ∞, where pd denotes “positive
definite.” Assumption A holds in this example.

The tests introduced above are equivalent to analogous tests defined with T ∗
n (θ0),

T ∗
n,b, j (θ0), and σ̂u replaced by

T ∗∗
n (θ0) = T ∗

n (θ0)/σu, T ∗∗
n,b, j (θ0) = T ∗

n, j (θ0)/σu, and σ̂u/σu, (36)

respectively. (They are “equivalent” in the sense that they generate the same
critical regions. The reason is that for all of the tests above 1/σu scales both
the test statistic and the critical value equally, e.g., T ∗

n (θ0) > σ̂uc∞(1 − α) iff
T ∗∗

n (θ0) > (σ̂u/σu)c∞(1 −α).) We determine the AsySz(θ0) of the tests written
as in (36) because this eliminates σu from the asymptotic distributions that arise
and, hence, simplifies the expressions.

6.2.2. Asymptotic Distributions. Next, we verify Assumption B for the test
statistic T ∗∗

n (θ0). In this example, r = 1/2 and the parameter space H is

H = HρU = R+,∞ × R∞ × [−ρU ,ρU ]. (37)

For h ∈ H, let {γn,h : n ≥ 1} denote a sequence of parameters in � with subvectors
γn,h, j for j = 1,2,3 defined by

γn,h,1 = (||(EFn Zi Z ′
i )

1/2πn/(EFn v
2
i )1/2||, (EFn Xi X ′

i )
1/2φn/(EFn v

2
i )1/2)′,

γn,h,2 = CorrFn (ui ,vi ), n1/2γn,h,1 → h1, γn,h,2 → h2, and

γn,h,3 = (Fn,πn,φn) ∈ �3(γn,h,1,γn,h,2). (38)

By the central limit theorem and EZi Xi = 0, it follows that⎛⎜⎜⎜⎜⎝
(X ′ X)−1/2 X ′u/σu

(X ′ X)−1/2 X ′v/σv

(Z ′Z)−1/2 Z ′u/σu

(Z ′Z)−1/2 Z ′v/σv

⎞⎟⎟⎟⎟⎠→d

⎛⎜⎜⎜⎜⎝
ψXu,h2

ψXv,h2

ψZu,h2

ψZv,h2

⎞⎟⎟⎟⎟⎠∼ N

(
0,

(
Vh2 0

0 Vh2 ⊗ Ik2

))
for

Vh2 =
[

1 h2

h2 1

]
, (39)

where ψXu,h2 ,ψXv,h2 ∈ R, ψZu,h2 ,ψZv,h2 ∈ Rk2 , and h2 ∈ [−ρU ,ρU ].
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If ||h1|| < ∞, then the IVs are weak, see (38). From (39) and calculations in
Andrews and Guggenberger (2005), it follows that under {γn,h}, we have(

y′
2 PZ⊥u/(σuσv)

y′
2 PZ⊥ y2/σ

2
v

)
→d

(
ξ1,h

ξ2,h

)
=
(

(ψZv,h2 +h11sk2)
′ψZu,h2

(ψZv,h2 +h11sk2)
′(ψZv,h2 +h11sk2)

)
,

(40)

where sk2 is any vector in Rk2 that lies on the unit sphere, i.e., ||sk2 || = 1. Note
that ξ1,h = ±ξ2,h when h11 = 0 and h2 = ±1.

Using (40), we show in Appendix B that for any h ∈ H,(
T ∗∗

n (θ0)

σ̂ 2
u /σ 2

u

)
→d

(
η∗∗

h

η2
u,h

)
(41)

under {γn,h : n ≥ 1}, where η∗∗
h and η2

u,h are defined as follows: (i) For h11 < ∞
and |h12| < ∞, define(

η∗∗
h

η2
u,h

)
=
(

(1− T1,h/T2,h)1/2T3,h

(1−h2ξ1,h/ξ2,h)2 + (1−h2
2)ξ

2
1,h/ξ2

2,h

)
, where

T1,h = (h12 +ψXv,h2)
2,

T2,h = T1,h +h2
11 +ψ ′

Zv,h2
ψZv,h2 +2h11s′

k2
ψZv,h2 , and

T3,h = − (h12 +ψXv,h2)ξ1,h/ξ2,h +ψXu,h2 . (42)

Note that the random variable ηu,h is positive a.s. except when h11 = 0 and h2 =
±1. In the latter case, ηu,h = 0 a.s. because ξ1,h = ±ξ2,h .

(ii) For h11 < ∞ and |h12| = ∞, define(
η∗∗

h

η2
u,h

)
=
(−(h2

11 +ψ ′
Zv,h2

ψZv,h2 +2h11s′
k2

ψZv,h2)
1/2ξ1,h/ξ2,h

(1−h2ξ1,h/ξ2,h)2 + (1−h2
2)ξ

2
1,h/ξ2

2,h

)
. (43)

(iii) For h11 = ∞, define η∗∗
h ∼ N (0,1) and η2

u,h = 1 for any value of h12.
Let J ∗∗

h denote the distribution of η∗∗
h . The asymptotic distribution function

Jh of Tn(θ0) is given by Jh = J ∗∗
h , −J ∗∗

h , and |J ∗∗
h | for the upper, lower, and

symmetric tests, respectively. Equation ( 41) implies that Assumption B holds for
Tn(θ0) as defined above.

We now verify Assumptions C–F for this example. We assume b is chosen such
that Assumption C holds. Assumptions D and E hold by the i.i.d. assumption.
Assumption G holds automatically because the subsample statistics are defined to
satisfy Assumption Sub2. The distribution function of η∗∗

h is continuous and strictly
increasing on R except when h11 = 0, |h12| < ∞, and h2 = ±1. In the latter case,
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(i) η∗∗
h = ∓(1− T1,h/T2,h)1/2h12 (because ξ1,h = ±ξ2,h and ψXv,h2 = ±ψXu,h2),

(ii) when h12 �= 0, η∗∗
h has support on R+ or R− and has a continuous and

strictly increasing distribution function on R+ or R−, (iii) hence, when h12 �= 0,
Jh(ch(1−α)+ε) > Jh(ch(1−α)) = 1−α, (iv) when h12 = 0, η∗∗

h is a pointmass
at zero, and (v) hence, when h12 = 0, Jh(ch(1−α)) = 1 > 1−α. In consequence,
Assumptions F and J hold for α ∈ (0,1).

6.2.3. Asymptotic Size. For upper and lower one-sided and symmetric two-
sided tests and for all ρU ∈ (0,1], the asymptotic sizes of the nominal level α
FCV and subsampling tests are

AsySz(θ0) = sup
h∈HρU

P(ηh > ηu,hc∞(1−α)) and

AsySz(θ0) = sup
(g,h)∈GHρU

[1− Jh(cg(1−α))], (44)

respectively, where ηh = η∗∗
h , −η∗∗

h , and |η∗∗
h | and Jh = J ∗∗

h , −J ∗∗
h , and |J ∗∗

h | for
the upper, lower, and symmetric tests, respectively, η∗∗

h ∼ J ∗∗
h , and GHρU denotes

the set GH defined in (19) when H = HρU . The subsampling result in (44) holds
for all ρU ∈ (0,1] by Theorem 1.3 The FCV result in (44) holds for all ρU ∈ (0,1)
by Theorem 1. The FCV result in (44) holds for ρU = 1 because AsySz(θ0) → 1
as ρU → 1 (by numerical calculation) and AsySz(θ0) for ρU = 1 is greater than or
equal to AsySz(θ0) for all ρU ∈ (0,1).4

When ρU = 1, AsySz(θ0) in (44) equals one for each of the subsampling tests.
This holds because when h11 = 0, |h12| < ∞, and h2 = ±1, we have (i) η∗∗

h =
∓(1−T1,h/T2,h)1/2h12, (ii) g11 = 0, g12 = 0, g2 = h2 = ±1, where g = (g1,g2),
g1 = (g11,g12), and (g,h) ∈ GHρU , (iii) η∗∗

g = ∓(1 − T1,g/T2,g)
1/2g12 = 0 by

part (i), (iv) cg(1 −α) = 0 for all α ∈ (0,1), and (v) Jh(cg(1 −α)) = Jh(0) = 0,
where the second equality holds for upper one-sided, lower one-sided, and sym-
metric two-sided tests for all h such that ∓h12 > 0, ∓h12 < 0, and h12 �= 0,
respectively, because (1− T1,h/T2,h)1/2 > 0 a.s.

For the nominal level α equal-tailed subsampling test, Tn(θ0) = T ∗∗
n (θ0), η∗∗

h ∼
J ∗∗

h , Jh = J ∗∗
h , and its asymptotic size for all ρU ∈ (0,1] is

AsySz(θ0) = sup
(g,h)∈GHρU

[1− Jh(cg(1−α/2))+ Jh(cg(α/2))]. (45)

The result in (45) holds by Corollary 2 (by analogous arguments to those given
in the endnotes above.) Furthermore, when ρU = 1, AsySz(θ0) of the equal-tailed
subsampling test equals one (using the same argument as above for one-sided and
symmetric two-sided subsampling tests).

For the FCV and partially-studentized subsampling tests, Table 2 provides the
maximum asymptotic rejection probabilities (× 100) for a given value of the
asymptotic correlation h2 for a range of h2 values in [0,1]. (As in Table 1, these
maxima are over h ∈ HρU for FCV tests and (g,h) ∈ GHρU for subsampling tests
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TABLE 2. Weak IV example: maximum asymptotic null rejection probabilities
(×100) as a function of the true correlation h2 for nominal 5% tests

Upper 1-sided Lower 1-sided Sym 2-sided Eq-tail 2-sided
h2 Sub FCV Sub FCV Sub FCV Sub FCV

1.00 100 100 100 100 100 100 100 100
.99 100 99.8 100 99.8 100 99.7 100 99.7
.95 98.9 97.2 100 97.3 98.3 95.9 100 95.9
.90 95.0 91.9 100 91.9 92.4 88.5 100 88.5
.80 80.6 77.3 99.6 77.4 73.7 69.3 99.1 69.3
.60 48.0 44.4 88.4 44.4 37.0 31.6 81.2 31.6
.40 24.5 18.8 55.2 18.8 16.4 9.6 42.6 9.6
.20 11.8 7.3 21.5 7.3 7.6 5.0 13.8 5.0
.00 5.2 5.1 5.3 5.1 5.3 5.0 5.3 5.0

with h2 fixed.) Negative values of h2 are not given because the values in Table 2
are invariant to the sign of h2 for the FCV and symmetric two-sided subsampling
test and the values for the upper one-sided subsampling test for h2 negative equal
that of −h2 for the lower one-sided subsampling test and vice versa. The nominal
level of the tests is α = .05 and k2 = 5 IVs are considered. The numbers in Table
2 are obtained by simulation using 50,000 simulation repetitions. When maxi-
mization over h11 and h12 is needed, a grid of size 0.02 is used for h1 j ∈ [0, .1],
0.2 is used for h1 j ∈ [.1, .9], 2.0 is used for h1 j ∈ [1,9], and 200 is used for
h1 j ∈ [10,1010] for j = 1,2.

For the FCV and symmetric and equal-tailed two-sided subsampling tests, the
maximum of the values in the appropriate column in Table 2 over h2 ∈ [0,ρU ]
gives the asymptotic size for the parameter space �ρU = [−ρU ,ρU ] (up to nu-
merical and finite grid approximations). For each of the one-sided subsampling
tests, the asymptotic size for the parameter space �ρU = [−ρU ,ρU ] is given by
the maximum of the values in the columns of Table 2 over h2 ∈ [0,ρU ] for both
the upper and lower subsampling tests (because the maximum rejection rates for
negative values of h2 for the upper test equal those for −h2 for the lower test and
vice versa).

Table 2 shows that the asymptotic sizes of the FCV and subsampling tests are
all quite poor even if h2 is bounded away from one by a substantial amount.

All of the subsampling results above are based on the partially-studentized
statistic T ∗∗

n (θ0). Using the result above that σ̂ 2
u /σ 2

u →d η2
u,h, analogous results

to (44) and (45) with η∗∗
h replaced by η∗∗

h /ηu,h can be obtained for subsampling
tests based on the fully-studentized statistic T ∗∗

n (θ0)/σ̂u . For this statistic as well,
we find that all types of subsampling tests have asymptotic size equal to one when
ρU = 1. A table analogous to Table 2 but based on the fully-studentized test statis-
tic shows that fully-studentizing the test statistic does not improve the asymptotic
sizes of the subsampling tests. In particular, the values in such a table for the fully-
studentized statistic (not reported) for h2 ≥ .80 are mostly very similar to those in
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Table 2 (and always at least as large), and the values for h2 ≤ .60 are larger than
those in Table 2.

We conclude by contrasting the negative findings of this section regarding the
asymptotic size of all types of FCV and subsampling tests with the results in
Andrews and Guggenberger (2005). The latter paper considers the same model
and 2SLS estimator as here but inference is focused on tests concerning the coef-
ficient on the endogenous variable, i.e., H0 : β = β0, rather than on the coefficient
on an exogenous variable. For testing H0 : β = β0, the symmetric two-sided sub-
sampling test has asymptotic size that is equal, or almost equal, to its nominal
size, depending on the value of k2. On the other hand, the FCV and one-sided and
equal-tailed two-sided subsampling tests of H0 : β = β0 exhibit the same large
asymptotic size distortions that are found here for tests of H0 : θ = θ0.

7. ASSUMPTION G

In this section we give sufficient conditions for Assumption G when Assumption
Sub1 holds and Tn(θ0) is a t statistic. The results and proof are variants of Theo-
rems 11.3.1(i) and 12.2.2(i) and their proofs in PRW. Let θ̂n be an estimator of a
scalar parameter θ based on a sample of size n. Let σ̂n (∈ R) be an estimator of
the scale of θ̂n . For alternatives of the sort (i) H1 : θ > θ0, (ii) H1 : θ < θ0, and
(iii) H1 : θ �= θ0, respectively, the t statistic is defined to satisfy:

Assumption t1. (i) Tn(θ0) = T ∗
n (θ0), or (ii) Tn(θ0) =−T ∗

n (θ0), or (iii) Tn(θ0) =
|T ∗

n (θ0)|, where T ∗
n (θ0) = τn(θ̂n − θ0)/σ̂n and τn is some known normalization

constant.

In most cases, τn = n1/2. This is true even in a unit root time series example.
When θ is the lower bound of the support of a random variable, however, τn = n.

A common case considered in the subsampling literature is when Tn(θ0) is a
non-studentized t statistic, see PRW. In this case, Assumption t1 and the following
assumption hold.

Assumption t2. σ̂n = 1.

We now give sufficient conditions for Assumption G when {T̂n,b, j } satisfy
Assumption Sub1 and Tn(θ0) is a nonstudentized t statistic.

Assumption H. τb/τn → 0.

Assumption H is not very restrictive. When τn = nλ for some λ > 0, it is implied
by Assumption C(ii).

LEMMA 3. Assumptions B, t1, t2, Sub1, and H imply Assumption G.
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Next, we provide sufficient conditions for Assumption G for the case when
Assumption Sub1 holds and Tn(θ0) is a studentized t statistic. Let (θ̂n,b, j , σ̂n,b, j )

be the subsample statistics that are defined exactly as (θ̂n, σ̂n) are defined, but are
based on the j th subsample of size b. Define

Uσ
n,b(x) = q−1

n

qn

∑
j=1

1(dbσ̂n,b, j ≤ x) (46)

for a sequence of normalization constants {dn : n ≥ 1}.
The following are modified versions of Assumptions B, D, E, and H.

Assumption BB. (i) For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1},
some normalization sequences of positive constants {an : n ≥ 1} and {dn : n ≥ 1},
and some distribution (Vh,Wh) on R2, (an(θ̂n − θ0),dn σ̂n) →d (Vh,Wh) under
{γn,h : n ≥ 1}, (ii) Pθ0,γn,h (σ̂n,b, j > 0 for all j = 1, . . . ,qn) → 1 under all sequences
{γn,h : n ≥ 1} and all h ∈ H, and (iii) Wh(0) = 0 for all h ∈ H.

Assumption DD. (i) {(θ̂n,b, j , σ̂n,b, j ) : j = 1, . . . ,qn} are identically distributed
under any γ ∈ � for all n ≥ 1 and (ii) (θ̂n,b,1, σ̂n,b,1) and (θ̂b, σ̂b) have the same
distribution under any γ ∈ � for all n ≥ 1.

Assumption EE. For all h ∈ H and all sequences {γn,h : n ≥ 1} with cor-
responding normalization {dn : n ≥ 1} as in Assumption BB, Uσ

n,b(x) − Eθ0,γn,h

Uσ
n,b(x) →p 0 under {γn,h : n ≥ 1} for all x ∈ R.

Assumption HH. ab/an → 0.

In most examples, the normalization sequences {an : n ≥ 1} and {dn : n ≥ 1} in
Assumptions BB, EE, and HH do not depend on {γn,h : n ≥ 1}. In consequence,
for notational simplicity, this dependence is suppressed. For example, in a model
with i.i.d. or stationary strong mixing observations, one often takes dn = 1 for all
n, Wh to be a pointmass distribution with pointmass at the probability limit of σ̂n,
and an = n1/2.

However, in some cases the normalization sequences {an : n ≥1} and {dn : n ≥1}
need to depend on {γn,h : n ≥ 1}. For example, this occurs in an autoregressive
model with a root that is less than or equal to one, see Andrews and Guggenberger
(2009a). When {an : n ≥ 1} and {dn : n ≥ 1} depend on {γn,h : n ≥ 1}, it must be
the case that τn = an(γn,h)/dn(γn,h) does not depend on {γn,h : n ≥ 1}. Also, in
this case, Assumption HH becomes: For all sequences {γn,h : n ≥ 1} for which
brγn,h,1 → g1 for some g1 ∈ R p∞, ab(γn,h)/an(γn,h) → 0. When dn depends on
γn,h, the normalization constant db that appears in Uσ

n,b(x) in Assumption EE is
db = db(γn,h).

Assumption BB implies Assumption B with τn = an/dn (by the conti-
nuous mapping theorem using Assumption BB(iii)). Assumption DD implies
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Assumption D. Assumption DD is not restrictive, given the standard methods
of defining subsample statistics. Assumption EE holds automatically when the
observations are i.i.d. for each γ ∈ � or are stationary and strong mixing for each
γ ∈ � and satisfy supγ∈� αγ (m) → 0 as m → ∞ (for the same reason that As-
sumption E holds in these cases). Assumption HH is implied by Assumption C in
many examples. However, it does not hold if θ is unidentified when γ1 = 0 (be-
cause uniformly consistent estimation of θ is not possible in this case and an = 1 in
Assumption BB(i)). For example, this occurs in a model with weak instruments,
see Andrews and Guggenberger (2005). (In this case, one needs to define the sub-
sample statistics so that Assumption Sub2 holds, in which case Assumption G
holds automatically.)

The following lemma generalizes Lemma 3. It does not impose Assumption t2.

LEMMA 4. Assumptions t1, Sub1, A, BB, C, DD, EE, and HH imply Assump-
tion G.

Example 1 ((cont.)

Assumption G follows from Lemma 4 in this example by noting that Assumptions
BB and HH hold with an = n1/2, dn = 1, τn = n1/2, Vh = Jh, and Wh equal to
pointmass at one (where, as above, we assume σ 2

1 = 1 without loss of generality).

8. PROOFS

The following lemmas are used in the proof of Theorem 1. (The expression κn →
[κ1,∞,κ2,∞] used below is defined in Section 3.2.)

LEMMA 5. Suppose (a) for some df’s Ln(·) and GL(·) on R, Ln(x) →p

GL(x) for all x ∈ C(GL), (b) Tn →d GT , where Tn is a scalar random variable
and GT is some distribution on R, and (c) for all ε > 0, GL(c∞ + ε) > 1 −α,
where c∞ is the 1−α quantile of GL for some α ∈ (0,1). Then for cn := inf{x ∈
R : Ln(x) ≥ 1−α}, (i) cn →p c∞ and (ii) P(Tn ≤ cn) → [GT (c∞−),GT (c∞)].

Comment
If GT (x) is continuous at c∞, then part (ii) yields P(Tn ≤ cn) → GT (c∞).

LEMMA 6. Suppose Assumptions A–G hold. Let {wn : n ≥ 1} be any subse-
quence of {n}. Let {γwn = (γwn ,1,γwn ,2,γwn ,3) : n ≥ 1} be a sequence of points in
� that satisfies (a) wr

nγwn ,1 → h1 for some h1 ∈ R p∞, (b) br
wn

γwn ,1 → g1 for some
g1 ∈ R p∞, and (c) γwn ,2 → h2 for some h2 ∈ Rq∞. Let h = (h1,h2), g = (g1,g2),
and g2 = h2. Then, we have

(i) (g,h) ∈ GH,

(ii) Eθ0,γwn
Uwn ,bwn

(x) → Jg(x) for all x ∈ C(Jg),
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(iii) Uwn ,bwn
(x) →p Jg(x) for all x ∈ C(Jg) under {γwn : n ≥ 1},

(iv) Lwn ,bwn
(x) →p Jg(x) for all x ∈ C(Jg) under {γwn : n ≥ 1},

(v) cwn ,bwn
(1−α) →p cg(1−α) under {γwn : n ≥ 1}, and

(vi) Pθ0,γwn
(Twn (θ0) ≤ cwn ,bwn

(1−α)) → [Jh(cg(1−α)−), Jh(cg(1−α))].

(In Lemma 6, bwn denotes the subsample size b when the full-sample size is wn .)

LEMMA 7. Suppose Assumptions A–G hold. Let (g,h) ∈ GH be given. Then,
there is a sequence {γn = (γn,1,γn,2,γn,3) : n ≥ 1} of points in � that satisfy
conditions (a)–(c) of Lemma 6 and for this sequence parts (ii)–(vi) of Lemma 6
hold with wn replaced by n.

Proof of Lemma 5. For ε > 0 such that c∞ ± ε ∈ C(GL)∩C(GT ), we have

Ln(c∞ − ε) →p GL(c∞ − ε) < 1−α and

Ln(c∞ + ε) →p GL(c∞ + ε) > 1−α (47)

by assumptions (a) and (c) and the fact that GL(c∞ −ε) < 1−α by the definition
of c∞. This and the definition of cn yield

P(An(ε)) → 1, where An(ε) = {c∞ − ε ≤ cn ≤ c∞ + ε}. (48)

There exists a sequence {εk > 0 : k ≥ 1} such that εk → 0 as k → ∞ and c∞ ±εk ∈
C(GL)∩C(GT ) for all k ≥ 1. Hence, part (i) holds.

Let P(A, B) denote P(A ∩ B). For part (ii), using the definition of An(ε), we
have

P(Tn ≤ c∞ − ε, An(ε)) ≤ P(Tn ≤ cn, An(ε)) ≤ P(Tn ≤ c∞ + ε). (49)

Hence,

lim sup
n→∞

P(Tn ≤ cn) = lim sup
n→∞

P(Tn ≤ cn, An(ε))

≤ lim sup
n→∞

P(Tn ≤ c∞ + ε) = GT (c∞ + ε), and

lim inf
n→∞ P(Tn ≤ cn) = lim inf

n→∞ P(Tn ≤ cn, An(ε))

≥ lim inf
n→∞ P(Tn ≤ c∞ − ε, An(ε)) = GT (c∞ − ε) (50)

using assumption (b), c∞ ± ε ∈ C(GT ), and (48). Given a sequence {εk : k ≥ 1}
as above, (50) establishes part (ii). n

Proof of Lemma 6. First, we prove part (i). We need to show that g ∈ H, h ∈
H, g2 = h2, and conditions (a)-(c) in the definition of GH hold. For
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m = 1, . . . , p, if γ �
1,m = 0, then g1,m,h1,m ∈ R+,∞ by conditions (a) and (b) of the

lemma. Likewise, if γ u
1,m = 0, then g1,m,h1,m ∈ R−,∞. Otherwise, g1,m,h1,m ∈

R∞. Hence, by the definition of H1, g1,h1 ∈ H1. By condition (c) of the lemma,
h2 ∈cl(�2) = H2. Combining these results gives g,h ∈ H. By assumption of the
lemma, g2 = h2. By conditions (a) and (b) of the lemma and Assumption C(ii),
conditions (a)–(c) of GH hold. Hence, (g,h) ∈ GH.

Next, we prove part (ii). For notational simplicity, we drop the subscript θ0
from Pθ0,γ and Eθ0,γ . We have

Eγwn
Uwn ,bwn

(x) = q−1
wn

qwn

∑
j=1

Pγwn
(Twn ,bwn , j (θ0) ≤ x)

= Pγwn
(Twn ,bwn ,1(θ0) ≤ x) = Pγwn

(Tbwn
(θ0) ≤ x), (51)

where the first equality holds by definition of Uwn ,bwn
(x), the second equality

holds by Assumption D(i), and the last equality holds by Assumption D(ii).
We now show that Pγwn

(Tbwn
(θ0) ≤ x) → Jg(x) for all x ∈ C(Jg) by show-

ing that any subsequence {tn} of {wn} has a sub-subsequence {sn} for which
Pγsn

(Tbsn
(θ0) ≤ x) → Jg(x).

Given any subsequence {tn}, select a sub-subsequence {sn} such that {bsn } is
strictly increasing. This can be done because bwn → ∞ by Assumption C(i). Be-
cause {bsn } is strictly increasing, it is a subsequence of {n}.

Below we show that Assumption B implies that for any subsequence {un} of
{n} and any sequence {γ ∗

un
= (γ ∗

un ,1,γ
∗
un ,2,γ

∗
un ,3) ∈ � : n ≥ 1}, that satisfies (a′)

ur
nγ ∗

un ,1 → g1 and (b′) γ ∗
un ,2 → g2 ∈ Rq , we have

Pγ ∗
un

(Tun (θ0) ≤ y) → Jg(y), (52)

for all y ∈ C(Jg). We apply this result with un = bsn , γ ∗
un

= γsn , and y = x to
obtain the desired result Pγsn

(Tbsn
(θ0) ≤ x) → Jg(x), where (a′) and (b′) hold by

Assumptions (b) and (c) on {γwn : n ≥ 1}.
For the proof of part (ii), it remains to show (52). Because g ∈ H, by def-

inition of H there exists a sequence {γ +
k = (γ +

k,1,γ
+
k,2,γ

+
k,3) ∈ � : k ≥ 1} such

that krγ +
k,1 → g1 and γ +

k,2 → g2 as k → ∞. Define a new sequence {γ ∗∗
k =

(γ ∗∗
k,1,γ

∗∗
k,2,γ

∗∗
k,3) ∈ � : k ≥ 1} as follows. If k = un set γ ∗∗

k equal to γ ∗
un

. If k �= un,

set γ ∗∗
k equal to γ +

k . Clearly, γ ∗∗
k ∈ � for all k ≥ 1 and krγ ∗∗

k,1 → g1 and γ ∗∗
k,2 → g2

as k → ∞. Hence, {γ ∗∗
k : k ≥ 1} is of the form {γn,g : n ≥ 1} and Assump-

tion B implies that Pγ ∗∗
k

(Tk(θ0) ≤ y) → Jg(y) for all y ∈ C(Jg). Because {un}
is a subsequence of {k} and γ ∗∗

k = γ ∗
un

when k = un, the latter implies that
Pγ ∗

un
(Tun (θ0) ≤ y) → Jg(y), as desired.

For part (iii) we have to show that Uwn ,bwn
(x) →p Jg(x) for all x ∈ C(Jg)

under {γwn : n ≥ 1}. Define a new sequence {γ ∗
k = (γ ∗

k,1,γ
∗
k,2,γ

∗
k,3) ∈ � : k ≥

1} as follows: If k = wn, set γ ∗
k equal to γwn . If k �= wn, for m = 1, . . . , p,
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define

γ ∗
k,1,m = max{k−r h1,m,γ �

1,m/2} if g1,m = 0 & −∞ < h1,m < 0

γ ∗
k,1,m = min{k−r h1,m,γ u

1,m/2} if g1,m = 0 & 0 < h1,m < ∞

γ ∗
k,1,m = max{−k−2r ,γ �

1,m/2} if g1,m = h1,m = 0 & γ �
1,m < 0

γ ∗
k,1,m = min{k−2r ,γ u

1,m/2} if g1,m = h1,m = 0, γ �
1,m = 0,

& γ u
1,m > 0

γ ∗
k,1,m = max{−(bkk)−r/2,γ �

1,m/2} if g1,m = 0 & h1,m = −∞

γ ∗
k,1,m = min{(bkk)−r/2,γ u

1,m/2} if g1,m = 0 & h1,m = ∞

γ ∗
k,1,m = max{b−r

k g1,m,γ �
1,m/2} if −∞ < g1,m < 0 & h1,m = −∞

γ ∗
k,1,m = min{b−r

k g1,m,γ u
1,m/2} if 0 < g1,m < ∞ & h1,m = ∞

γ ∗
k,1,m = γ �

1,m/2 if g1,m = h1,m = −∞

γ ∗
k,1,m = γ u

1,m/2 if g1,m = h1,m = ∞, (53)

where γ ∗
k,1 = (γ ∗

k,1,1, . . . ,γ
∗
k,1,p)

′, define γ ∗
k,2 = γwnk ,2, where nk = max{� ∈ N :

w� ≤ k}, and define γ ∗
k,3 to be any element of �3(γ

∗
k,1,γ

∗
k,2). As defined, γ ∗

k ∈ �
for all k ≥ 1 using Assumption A(ii) and straightforward calculations show that
{γ ∗

k : k ≥ 1} satisfies (a)–(c) of Lemma 6 with {wn} replaced by {k}. By Assump-
tion E, we know that Uk,bk (x)− Eθ0,γ

∗
k

Uk,bk (x) →p 0 under {γ ∗
k : n ≥ 1} for all

x ∈ R. Because for k = wn , γ ∗
k equals γwn , the latter implies that Uwn ,bwn

(x)−
Eθ0,γwn

Uwn ,bwn
(x) →p 0 under {γwn : n ≥ 1} for all x ∈ R. Part (iii) then follows

from part (ii).
To prove part (iv), we show that Assumptions A and G imply that

Lwn ,bwn
(x)−Uwn ,bwn

(x) →p 0 under {γwn : n ≥ 1} for all x ∈ C(Jg).

(54)

This and part (iii) of the lemma establish part (iv). To show (54), define the same
sequence {γ ∗

k } as in part (iii) that satisfies (a)–(c) of Lemma 6 with {wn} replaced
by {k}. Hence, by Lemma 6(iii) with {wn} replaced by {k}, Uk,bk (x) →p Jg(x) as
k → ∞ under {γ ∗

k : k ≥ 1} for all x ∈ C(Jg). In consequence, because {γ ∗
k : k ≥ 1}

is of the form {γn,h : n ≥ 1} and satisfies br
kγ

∗
k,1 → g1, Assumption G implies that

Lk,bk (x)−Uk,bk (x) →p 0 as k → ∞ under {γ ∗
k : k ≥ 1} for all x ∈ C(Jg). Since

γ ∗
k = γwn for k = wn, this implies that (54) holds.
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Parts (v) and (vi) are established by applying Lemma 5 with Ln(x) = Lwn ,bwn
(x)

and Tn = Twn (θ0) and verifying the conditions of Lemma 5 using (I) part (iv), (II)
Twn (θ0) →d Jh under {γwn : n ≥ 1} (which is verified below), and (III) Assump-
tion F. The result of (II) holds because {γ ∗

k : k ≥ 1} in the proof of part (iii) is of
the form {γn,h : n ≥ 1} for h as defined in the statement of Lemma 6; this and
Assumption B imply that Tk(θ0) →d Jh as k → ∞ under {γ ∗

k : k ≥ 1}; and the
latter and γ ∗

k = γwn for k = wn imply the result of (II). n

Proof of Lemma 7. Define γn,1,m as in (53) with n in place of k for m =
1, . . . , p and let γn,1 = (γn,1,1, . . . ,γn,1,p)

′. Define {γn,2 : n ≥ 1} to be any se-
quence of points in �2 such that γn,2 → h2 as n → ∞. Let γn,3 be any el-
ement of �3(γn,1,γn,2) for n ≥ 1. Then, γn = (γn,1,γn,2,γn,3) is in � for all
n ≥ 1 using Assumption A. Also, using Assumption C, straightforward calcula-
tions show that {γn : n ≥ 1} satisfies conditions (a)–(c) of Lemma 6 with wn = n.
Hence, parts (ii)–(vi) of Lemma 6 hold with wn = n for {γn : n ≥ 1}, as defined
above. n

Proof of Theorem 1. The proof of part (i) is similar to that of part (ii), but
noticeably simpler because cFix (1 −α) is a constant. Furthermore, the proof of
the second result of part (ii) is quite similar to that of the first result. Hence, for
brevity, we only prove the first result of part (ii).

We first show that AsySz(θ0) ≥ MaxSub(α). Equation (8) implies that for any
sequence {γn ∈ � : n ≥ 1},
AsySz(θ0) ≥ lim sup

n→∞
[1− Pθ0,γn (Tn(θ0) ≤ cn,b(1−α))]. (55)

In consequence, to show AsySz(θ0) ≥ MaxSub(α), it suffices to show that given
any (g,h) ∈ GH, there exists a sequence {γn = (γn,1,γn,2,γn,3) ∈ � : n ≥ 1} such
that

lim sup
n→∞

[1− Pθ0,γn (Tn(θ0) ≤ cn,b(1−α))] ≥ 1− Jh(cg(1−α)). (56)

The latter inequality holds by Lemma 7.
It remains to show AsySz(θ0) ≤ Max−

Sub(α). Let R Pn(γ ) = Pθ0,γ (Tn(θ0) >
cn,b(1 − α)). Let {γ ∗

n = (γ ∗
n,1,γ

∗
n,2,γ

∗
n,3) ∈ � : n ≥ 1} be a sequence such that

limsupn→∞ R Pn(γ ∗
n ) = limsupn→∞ supγ∈� R Pn(γ ) (= AsySz(θ0)). Such a se-

quence always exists. Let {vn : n ≥ 1} be a subsequence of {n} such that limn→∞
R Pvn (γ

∗
vn

) exists and equals limsupn→∞ R Pn(γ ∗
n ) = AsySz(θ0). Such a subse-

quence always exists.
Let γ ∗

n,1,m denote the mth component of γ ∗
n,1 for m = 1, . . . , p. Either (1)

limsupn→∞ |vr
nγ ∗

vn ,1,m | < ∞ or (2) limsupn→∞ |vr
nγ ∗

vn ,1,m | = ∞. If (1) holds,
then for some subsequence {wn} of {vn},
br
wn

γ ∗
wn ,1,m → 0 and

wr
nγ ∗

wn ,1,m → h1,m for some h1,m ∈ R. (57)
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If (2) holds, then either (2a) limsupn→∞ |br
vn

γ ∗
vn ,1,m | < ∞ or (2b) limsupn→∞

|br
vn

γ ∗
vn ,1,m | = ∞. If (2a) holds, then for some subsequence {wn} of {vn},

br
wn

γ ∗
wn ,1,m → g1,m for some g1,m ∈ R and

wr
nγ ∗

wn ,1,m → h1,m, where h1,m = ∞ or −∞ with

sgn(h1,m) = sgn(g1,m). (58)

If (2b) holds, then for some subsequence {wn} of {vn},
br
wn

γ ∗
wn ,1,m → g1,m, where g1,m = ∞ or −∞, and

wr
nγ ∗

wn ,1,m → h1,m, where h1,m = ∞ or −∞ with

sgn(h1,m) = sgn(g1,m). (59)

In addition, for some subsequence {wn} of {vn},
γ ∗
wn ,2 → h2 for some h2 ∈ cl(�2). (60)

By taking successive subsequences over the p components of γ ∗
vn ,1 and γ ∗

vn ,2, we
find that there exists a subsequence {wn} of {vn} such that for each m = 1, . . . , p,
exactly one of the cases (57)–(59) applies and (60) holds. In consequence, condi-
tions (a)–(c) of Lemma 6 hold. In addition, γ ∗

wn ,3 ∈ �3(γ
∗
wn ,1,γ

∗
wn ,2) for all n ≥ 1

because γ ∗
wn

∈ �. Hence,

R Pwn (γ
∗
wn

) → [1− Jh(cg(1−α)),1− Jh(cg(1−α)−)] (61)

by Lemma 6(vi). Also, (g,h) ∈ GH by Lemma 6(i). Since limn→∞ R Pvn (γ
∗
vn

) =
AsySz(θ0) and {wn} is a subsequence of {vn}, we have limn→∞ R Pwn (γ

∗
wn

) =
AsySz(θ0). This, (61), and (g,h) ∈ GH imply that AsySz(θ0) ≤ Max−

Sub(α),
which completes the proof of the first result of part (ii). n

Proof of Lemma 4. Assume Un,b(x) →p Jg(x) for all x ∈ C(Jg) under {γn,h :
n ≥ 1} for some g ∈ H and h ∈ H such that brγn,h,1 → g1 and g2 = h2. To show
Ln,b(x)−Un,b(x) →p 0 for all x ∈ C(Jg) under {γn,h}, we use the argument in
the proofs of Theorems 11.3.1(i) and 12.2.2(i) in PRW.

Define Rn(t) := q−1
n ∑qn

j=1 1(|τb(θ̂n − θ0)/σ̂n,b, j | ≥ t). Using

Un,b(x − t)− Rn(t) ≤ Ln,b(x) ≤ Un,b(x + t)+ Rn(t) (62)

for any t > 0 (which holds for all versions (i)–(iii) of Tn(θ0) in Assumption t1),
the desired result follows once we establish that Rn(t) →p 0 under {γn,h} for any
fixed t > 0. By τn = an/dn , we have

|τb(θ̂n − θ0)/σ̂n,b, j | ≥ t iff (ab/an)an|θ̂n − θ0| ≥ dbσ̂n,b, j t, (63)

provided σ̂n,b, j > 0, which by Assumption BB(ii) holds uniformly in j = 1, . . . ,qn

wp→1. (In the case where an and dn depend on γn,h, the expression on the rhs
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of (63) is (ab(γn,h)/an(γn,h))an(γn,h)|θ̂n − θ0| ≥ db(γn,h)σ̂n,b, j t.) By Assump-
tion BB(i) and HH, (ab/an)an|θ̂n − θ0| = op(1) under {γn,h}. Therefore, for any
δ > 0, Rn(t) ≤ q−1

n ∑qn
j=1 1(δ ≥ dbσ̂n,b, j t) = Uσ

n,b(δ/t) where the inequality holds
wp→1. Now, by an argument as in the proof of Lemma 6(ii) and (iii) (which
uses Assumption EE but not Assumption G) applied to the statistic dn σ̂n rather
than Twn (θ0), we have Uσ

n,b(x) →p Wg(x) for all x ∈ C(Wg) under {γn,h}, where
g ∈ H is defined as in Lemma 6 with {γwn } being equal to {γn,h}. Therefore,
Uσ

n,b(δ/t) →p Wg(δ/t) for δ/t ∈ C(Wg) under {γn,h}. By Assumption BB(iii),
Wg does not have positive mass at zero and, hence, Wg(δ/t) → 0 as δ → 0. We
can therefore establish that Rn(t) →p 0 for any t > 0 by letting δ go to zero such
that δ/t ∈ C(Wg). n

NOTES

1. We use the term “exact” size because we want to distinguish clearly between asymptotic size
and finite-sample size. We do not use the term “finite-sample size” because it can be misunderstood
easily to mean “a sample size n that is finite.” By “exact size” we mean “size for a finite-sample size
n.” We note that the term “exact” is widely used as a synonym for “finite-sample” in the econometrics
literature on finite-sample distribution theory.

We use the standard definition of the “size” of a test, viz., the maximum rejection probability
of a test under the null hypothesis. By “asymptotic size” we mean the limit as n → ∞ of the exact
size of the test, i.e., the limit as n → ∞ of the maximum rejection probability of a test under the null
hypothesis. As defined, the term “asymptotic size” incorporates uniformity. This is natural because
the term “size” by its standard definition incorporates uniformity.

2. The bootstrap typically is not asymptotically valid in a pointwise sense in these problems,
whereas subsampling and the m out of n bootstrap are. However, if one is interested in the exact
size for large n, then a method that is asymptotically valid in a pointwise sense, but not in a uniform
sense, is not necessarily better than a method that is not asymptotically valid in either sense. The
asymptotic size of the former can be worse than that of the latter. Asymptotic validity in a pointwise
sense is a desirable feature, but it only gives partial information about the large sample properties of a
procedure.

We note that the “problem” with subsampling and the m out of n bootstrap, alluded to in the title,
is that they do not necessarily have correct asymptotic size. The “problem” is not that they necessarily
have incorrect asymptotic size.

3. For ρU < 1, Theorem 1 delivers this result because continuity of Jh on R for all h ∈ HρU ,

which holds because |h2| < 1, implies that Max−
Sub(α) = MaxSub(α). For ρU = 1, it holds because

MaxSub(α) = 1, see the text below, implies that [MaxSub(α), Max−
Sub(α)] = {1} = {sup(g,h)∈GHρU

[1− Jh(cg(1−α))]}.
4. Theorem 1 delivers the FCV result in (44) when ρU ∈ (0,1) because continuity of Jh on R for

all h ∈ HρU implies that Max−
Fix (α) = MaxFix (α). The FCV result in (44) does not follow from

Theorem 1 when ρU = 1 because ηh and ηu,h both equal zero a.s. when h2 = ±1 and h11 = h12 = 0
and Assumption B does not necessarily hold for some sequences {γn,h : n ≥ 1}.
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APPENDIX A: Tests When a Nuisance
Parameter May Be Near a Boundary

Here we show that Max−
T ype(α) = MaxT ype(α) for T ype = Fix and Sub in this example

and verify the formulae given in (25). For all h = (h1,h2) ∈ H with |h2| < 1, ±J∗
h (x) and

|J∗
h (x)| are continuous at all x ∈ R . If h2 = 1, J∗

h (x),−J∗
h (x), and |J∗

h (x)| have jumps
at x = −h1,h1, and h1, respectively, but are continuous for all other x ∈ R. Likewise, if
h2 = −1, J∗

h (x),−J∗
h (x), and |J∗

h (x)| have jumps at x = h1,−h1, and h1, respectively,
but are continuous for all other x ∈ R. In addition, Jh = J∗

h is stochastically increasing
(decreasing) in h1 for h2 < 0 (h2 ≥ 0).

Using these results, for Jh = J∗
h , we have

Max−
Fix (α) = 1− inf

h∈H
Jh(cFix (1−α)−) = 1− inf

h2∈[0,1]
J(0,h2)(z1−α) and

Max−
Sub(α) = 1−min

{
inf

(g,h)∈GH
Jh(cg(1−α)), inf

((g1,−1),(h1,−1))∈GH

{
J(h1,−1)(c(g1,−1)(1−α)−)

}}
= 1− inf

h2∈[−1,0]
J∞(c(0,h2)(1−α)). (A.1)

In the second and last equalities of (A.1), we use that Jh = J∗
h is stochastically increasing

(decreasing) in h1 for h2 < 0 (h2 ≥ 0), which implies that

inf
h1∈[0,∞],h2∈[−1,0)

J(h1,h2)(z1−α−) = J∞(z1−α) = 1−α,

inf
(g,h)∈GH,h2∈[0,1]

Jh(cg(1−α))

= min

{
inf

h1∈[0,∞),h2∈[0,1]
J(h1,h2)(c(0,h2)(1−α)),

inf
h1∈[0,∞],h2∈[0,1]

J∞(c(h1,h2)(1−α))

}
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= min{1−α,1−α} = 1−α, and

inf
((g1,−1),(h1,−1))∈GH

J(h1,−1)(c(g1,−1)(1−α)−) = J∞(c(0,−1)(1−α)). (A.2)

By the same argument as above, MaxFix (α) and MaxSub(α) equal the right-hand side
expressions in (A.1). This implies that Max−

T ype(α) = MaxT ype(α) for T ype = Fix and

Sub for Jh = J∗
h and verifies the expressions for MaxT ype(α) given in (25).

The proof that Max−
T ype(α) = MaxT ype(α) for lower one-sided tests is the same with

h2 replaced by −h2. The proof for symmetric two-sided tests is similar.
Next, we show that Max�−

ET,Fix (α) = Maxr−
ET,Fix (α). For α < 1/2, we have

sup
h∈H :h2=1

[1− Jh(cFix (1−α/2)−)+ Jh(cFix (α/2))]

= sup
h1∈[0,∞]

[1− J(h1,1)(z1−α/2)+ J(h1,1)(zα/2)]

= α/2+ sup
h1∈[0,∞]

J(h1,1)(zα/2)

= α/2+ J∞(zα/2) = α, (A.3)

where for the first and second equalities we use continuity of J(h1,1)(x) for x > 0 and
the fact that J(h1,1)(x) for x ≥ 0 does not depend on h1 ∈ [0,∞]. Similarly, because
infh∈H :h2=−1 Jh(cFix (1 −α/2)−) = J∞(z1−α/2) = 1 −α/2 and J(h1,−1)(x) for x ≤ 0
does not depend on h1 ∈ [0,∞], we also have suph∈H :h2=−1[1− Jh(cFix (1−α/2)−)+
Jh(cFix (α/2))] = α. Therefore, by continuity of Jh(x) = J∗

h (x) for |h2| < 1, it follows

that Max�−
ET,Fix (α) = Maxr−

ET,Fix (α). Similar arguments yield Max�−
ET,Sub(α) =

Maxr−
ET,Sub(α).

APPENDIX B: Tests on Parameters of Exogenous
Variables in Weak IV Regression

First, we show that (41) holds. The limit distribution of σ̂ 2
u /σ 2

u has been derived in Andrews
and Guggenberger (2005), hereafter AG (2005). We now derive the limit of T ∗∗

n (θ0). Using
X ′ P Z = X ′, we have

T ∗∗
n (θ0) = (X ′SX)1/2(θ̂n − θ0)/σu

=
(

X ′ P Z X − X ′ P Z y2 y′
2 P Z X

y′
2 P Z y2

)1/2

(X ′X)−1
(

X ′y2(β − β̂n)+ X ′u
)
/σu

=
(

1− (X ′y2/(σv (X ′X)1/2))2

σ−2
v y′

2 P Z y2

)1/2

×
(

X ′Zπ

σv(X ′X)1/2 + (X ′X)1/2φ

σv
+ X ′v

σv (X ′ X)1/2

)
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×
(

(β − β̂n)
σv

σu
+ X ′u

σu(X ′ X)1/2

)
= (1− T1/T2)1/2 × T3, (B.1)

where T1, T2, and T3 are implicitly defined.
First, consider the case h11 < ∞ and |h12| < ∞. We have

T1 = (X ′y2/(σv (X ′ X)1/2))2

=
(

X ′Z
σv (X ′X)1/2 π + (X ′X)1/2

σv
φ + X ′v

σv (X ′X)1/2

)2

→ d (h12 +ψXv,h2)
2, (B.2)

using (X ′X)−1/2 X ′Zπ/σv = Op(n−1/2), which holds because n−1/2 X ′Z = Op(1) (since
EXi Zi = 0) and because h11 < ∞ implies that n1/2π/σv = Op(1). Similarly, by multi-

plying out and by using Z ′ P Z = Z ′
, we obtain

T2 = y′
2 P Z y2/σ 2

v

=
∥∥∥∥∥ (Z ′Z)1/2π

σv

∥∥∥∥∥
2

+2
(X ′ X)1/2φ

σv

X ′Zπ

σv(X ′X)1/2 +
(

(X ′X)1/2φ

σv

)2

+ v ′Z(Z ′Z)−1 Z ′
v

σ 2
v

+2
π ′(Z ′Z)1/2

σv

(Z ′Z)−1/2 Z ′v
σv

+2
φ(X ′X)1/2

σv

(X ′X)−1/2 X ′v
σv

(B.3)

→ d h2
11 +h2

12 +ψ2
Xv,h2

+ψ ′
Zv,h2

ψZv,h2 +2h11s′
k2

ψZv,h2 +2h12ψXv,h2 ,

where the last line again uses (X ′X)−1/2 X ′Zπ/σv = Op(n−1/2). Using this result a third
time and using (β̂n −β)σv/σu →d ξ1,h/ξ2,h, which is established in AG (2005), lead to

T3 →d −(h12 +ψXv,h2)ξ1,h/ξ2,h +ψXu,h2 . (B.4)

Next, consider the case where h11 < ∞ and |h12| = ∞. In this case, both T1 and T2 equal
((X ′X)1/2φ/σv )2(1 + op(1)). Multiplying out in T1 and using again (X ′ X)−1/2 X ′Zπ/

σv = Op(n−1/2) shows that

T2 − T1 =
(

nγ 2
11 + v ′Z(Z ′Z)−1 Z ′

v

σ 2
v

+2
π ′(Z ′Z)1/2

σv

(Z ′Z)−1/2 Z ′v
σv

−
(

X ′v
σv (X ′ X)1/2

)2
)(

1+op(1)
)
. (B.5)
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Because T3 = [(X ′ X)1/2φ/σv ](β − β̂n)(σv/σu)(1+op(1)), it follows that

T ∗∗
n (θ0) =

(
T2 − T1

T2

)1/2
T3 = (T2 − T1)1/2(β − β̂n)

σv

σu
(1+op(1))

→ d − (h2
11 +ψ2

Xv,h2
+ψ ′

Zv,h2
ψZv,h2 +2h11s′

k2
ψZv,h2 −ψ2

Xv,h2
)1/2

× ξ1,h/ξ2,h . (B.6)

Next, consider the case h11 = ∞ and |h12| < ∞. In this case, T3 →d ψXu,h2 be-

cause c1,n(β − β̂n)σv/σu = Op(1) for c1,n = n1/2γn,h,1,1 by AG (2005). By assumption,
c1,n → ∞ and (X ′X)−1/2 X ′Zπ/σv +(X ′X)1/2φ/σv +(X ′X)−1/2 X ′v/σv = Op(1). Be-
cause T1 = Op(1) and T2 = c2

1,n(1+op(1)), we have T ∗∗
n (θ0) →d ψXu,h2 .

Finally, consider the case h11 = ∞ and |h12| = ∞. Let c2,n = n1/2γn,h,1,2. By as-
sumption, cj,n → ∞ for j = 1,2. We have T3 = ((c2,n + Op(1))/c1,n)× (c1,n(β − β̂n))+
(X ′X)−1/2 X ′u/σu . From AG (2005) we have that c1,n(β − β̂n)σv/σu →d s′

k2
ψZu,h2 ∼

N (0,1), and s′
k2

ψZu,h2 is independent of ψXu,h2 ∼ N (0,1). We have T1/T2 = c2
2,n(1 +

op(1))/(c2
1,n + c2

2,n) and thus, asymptotically, T ∗∗
n (θ0) is distributed as c1,n(c2

1,n +
c2

2,n)−1/2((c2,n/c1,n)s′
k2

ψZu,h2 + ψXu,h2). Being the sum of two independent normal
random variables, the limit distribution of T ∗∗

n (θ0) is a standard normal. This completes
the verification of (41).


