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a b s t r a c t

This paper analyzes the properties of subsampling, hybrid subsampling, and size-correction methods in
twonon-regularmodels. The latter twoprocedures are introduced inAndrews andGuggenberger (2009a).
The models are non-regular in the sense that the test statistics of interest exhibit a discontinuity in their
limit distribution as a function of a parameter in the model. The first model is a linear instrumental
variables (IV) model with possibly weak IVs estimated using two-stage least squares (2SLS). In this
case, the discontinuity occurs when the concentration parameter is zero. The second model is a linear
regressionmodel inwhich the parameter of interestmaybenear a boundary. In this case, the discontinuity
occurs when the parameter is on the boundary.
The paper shows that in the IV model one-sided and equal-tailed two-sided subsampling tests and

confidence intervals (CIs) based on the 2SLS t statistic do not have correct asymptotic size. This holds
for both fully- and partially-studentized t statistics. But, subsampling procedures based on the partially-
studentized t statistic can be size-corrected. On the other hand, symmetric two-sided subsampling tests
and CIs are shown to have (essentially) correct asymptotic size when based on a partially-studentized t
statistic. Furthermore, all types of hybrid subsampling tests and CIs are shown to have correct asymptotic
size in this model. The above results are consistent with ‘‘impossibility’’ results of Dufour (1997) because
subsampling and hybrid subsampling CIs are shown to have infinite length with positive probability.
Subsampling CIs for a parameter that may be near a lower boundary are shown to have incorrect

asymptotic size for upper one-sided and equal-tailed and symmetric two-sided CIs. Again, size-correction
is possible. In this model as well, all types of hybrid subsampling CIs are found to have correct asymptotic
size.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper continues the investigation initiated in Andrews and
Guggenberger (2009a; 2009b; forthcoming) (hereafter denoted
AG2, AG3, and AG1) of the properties of subsampling and
subsampling-based procedures in non-regular models. We apply
the results of AG1–AG3 to two models. The first model is an
instrumental variables (IVs) regression model with possibly weak
IVs. This is a leading example of a broad class of models in which
lack of identification occurs at some point(s) in the parameter
space. It is a model that has been studied extensively in the recent
econometrics literature. For this reason, it is a natural model to
use to assess the behavior of subsampling methods. The second
example that we consider in this paper concerns a CI when the
parameter of interest may be near a boundary. This example is a

∗ Corresponding address: Cowles Foundation for Research in Economics, Yale
University, P.O. Box 208281, Yale Station, New Haven, CT 06520-8281, United
States. Tel.: +1 203 432 3698; fax: +1 203 432 6167.
E-mail address: donald.andrews@yale.edu (D.W.K. Andrews).

generalization of the example used in the introduction of AG1 to
illustrate heuristically a problem with subsampling. Here we treat
the example rigorously.
In the first example, for comparability to the literature,we focus

on amodelwith a single right-hand-side (rhs) endogenous variable
and consider inference concerning the parameter on this variable.
It is well-known that standard two-stage least squares (2SLS)
based t tests and CIs have poor size properties in this case, e.g., see
Dufour (1997), Staiger and Stock (1997), and references cited
therein. In particular, one-sided, symmetric two-sided, and equal-
tailed two-sided fixed critical value (FCV) tests have finite-sample
size of 1.0. Furthermore, these tests cannot be size-corrected by
increasing the FCV.1

1 The finite-sample (or exact) size of a test is defined to be themaximum rejection
probability of the test under distributions in the null hypothesis. A test is said to
have levelα if its finite-sample size isα or less. The asymptotic size of a test is defined
to be the limit superior of the finite-sample size of the test. The finite-sample (or
exact) size of a confidence interval (or confidence set) is defined to be theminimum
coverage probability of the confidence interval under distributions in the model.

0304-4076/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2010.01.002
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We are interested in the properties of subsampling methods in
this model. We are also interested in whether the hybrid and size-
correction (SC) methods introduced in AG2 can be used to obtain
valid inference in this well-known non-regular model. Hence, we
investigate the size properties of subsampling and hybrid tests
based on the 2SLS estimator. The test results given here apply
without change to CIs (because of location invariance). We also
consider size-corrected versions of these methods. Alternatives
in the literature to the size-corrected methods include the
conditional likelihood ratio (CLR) test of Moreira (2003), the rank
CLR test of Andrews and Soares (2007), and the adaptive CLR test of
Cattaneo et al. (2007). These tests are asymptotically similar, and
hence, have good size properties. Also, their power properties have
been shown to be quite good in Andrews et al. (2006, 2007, 2008)
and the other references above. Other tests in the literature that are
robust to weak IVs include those given in Kleibergen (2002, 2005),
Guggenberger and Smith (2005, 2008), and Otsu (2006). Although
wehave not investigated the power properties of the hybrid and SC
subsampling tests considered here,we expect that they are inferior
to those of the CLR, rank CLR, and adaptive CLR tests. Hence, we do
not advocate the use of subsamplingmethods in theweak IVmodel
for inference on the parameter of a single rhs endogenous variable.
However, the CLR-based tests and the other tests mentioned

above do not apply to inference concerning the parameter on one
endogenous variable when multiple rhs endogenous variables are
present that may be weakly identified. This is a testing problem
for which no asymptotically similar test is presently available. The
methods analyzed in this paper are potentially useful for such
inference problems. We leave this to future research.
We now summarize the results for the IV example. We

show that subsampling tests and CIs do not have correct
size asymptotically, but can be size-corrected. The asymptotic
rejection probabilities of the subsampling tests are found to
provide poor approximations to the finite-sample rejection
probabilities in many cases. But, the finite-sample adjusted
asymptotic rejection probabilities introduced in AG2 perform
very well across all scenarios. In consequence, the adjusted size-
corrected subsampling (ASC-Sub) tests performwell. For example,
the nominal 5% ASC-Sub tests based on partially-studentized t
statistics have finite-sample sizes of 4.4%, 5.3%, and 4.4% for upper
one-sided, symmetric two-sided, and equal-tailed two-sided tests
in a model with n = 120, b = 12, 5 IVs, and normal errors.
The hybrid test is found to have correct size asymptotically and

very good size in finite samples for upper one-sided and symmetric
two-sided tests—4.8% and 4.7%, respectively. For equal-tailed two-
sided tests, the hybrid test has correct size asymptotically, but is
conservative in finite samples. For the same parameter values as
above, the nominal 5% hybrid test has finite-sample size of 2.8%.
We show that nominal 1 − α subsampling CIs have infinite

length with probability 1 − α asymptotically when the model is
completely unidentified and the correlation between the structural
and reduced-form errors is ±1. This holds for both fully- and
partially-studentized t statistics. This result is of particular interest
given Dufour’s (1997) result that the 2SLS CI based on a fixed
critical value, and any CI that has finite lengthwith probability one,
have a finite-sample size of zero for all sample sizes. The results
given in this paper are consistent with those of Dufour (1997) and
explain why size-correction of subsampling procedures is possible
even in the presence of lack of identification at some parameter
values.

Analogously, a confidence interval is said to have level 1 − α if its finite-sample
size is 1− α or greater. The asymptotic size of a confidence interval is defined to be
the limit inferior of the finite-sample size of the confidence interval. A test is called
asymptotically similar if the limit of the null rejection probability of the test is the
same under any sequence of nuisance parameters.

In the second example we consider a multiple linear regression
model where the regression parameter of interest θ (∈R) is
restricted to be non-negative. We consider a studentized t statistic
based on the least squares estimator of θ that is censored to be
non-negative.
The results for this example are summarized as follows.

Lower one-sided, symmetric two-sided, and equal-tailed two-
sided subsampling CIs for θ based on the studentized t statistic
do not have correct asymptotic coverage probability. In particular,
these three nominal 1 − α CIs have asymptotic confidence levels
of 1/2, 1 − 2α, and (1 − α)/2, respectively. Hence, the lower
and equal-tailed subsampling CIs perform very poorly in terms of
asymptotic size. The finite-sample sizes of these tests are found to
be close to their asymptotic sizes in models with (n = 120, b =
12) and (n = 240, b = 24) and normal errors and regressors. Size-
correction is possible for all three types of subsampling CIs. The SC
subsampling CIs are found to have good size in finite samples, but
display a relatively high degree of non-similarity. The upper one-
sided subsampling CI has correct asymptotic size 1− α.
We show that all types of FCV and hybrid CIs have correct

asymptotic size—no size correction is necessary. These CIs are
found to have finite-sample sizes that are fairly close to their
nominal sizes. The FCV CIs exhibit the smallest degree of finite-
sample non-similarity, which has CI length advantages. Hence,
somewhat ironically, the best CIs in this example are FCV CIs that
ignore the presence of a boundary. We caution, however, that the
scope of this result is limited to CIs when a scalar parameter of
interest may be near a boundary and no other parameters are.
Using results in the literature, such as Andrews (1999, 2001),

the asymptotic results given here for subsampling, FCV, and hybrid
CIs should generalize to a wide variety of models other than
regression models in which one or more parameters may be near
a boundary.
The Appendix of the paper provides necessary and sufficient

conditions for size-correction (of the type considered in AG2) to
be possible in the general set-up considered in AG1 and AG2.
Literature that is related to this paper include AG1 and AG2,

as well as Politis and Romano (1994) and Politis et al. (1999).
Andrews and Guggenberger (2009c) discusses an additional
example regarding the performance of subsampling methods.
Somewhat related is the paper by Moreira et al. (2009) on
bootstrapping the CLR test in an IV regression model with possibly
weak IVs.
The remainder of this paper is organized as follows. Section 2

summarizes the most relevant results in AG1 and AG2 to make the
paper more self-contained. Section 3 discusses the IV regression
example. Section 4 discusses the regression example in which
the parameter of interest may be near a boundary. An Appendix
contains the verifications of assumptions in AG1 and AG2,
including proofs of the asymptotic distributions of t statistics in
these examples. The Appendix also provides the necessary and
sufficient conditions for size-correction to be possible.

2. Summary of AG1 and AG2

The treatment of the two examples considered in Sections 3
and 4 relies heavily on the theoretical results on the ‘‘asymptotic
size’’ of a test given in AG1 and AG2. To make the paper more self-
contained and easier to read, we summarize in this section some
of the most relevant results of AG1 and AG2. We illustrate and
motivate the assumptions and theoretical results in AG1 and AG2
through a simplified version of the weak IV example of Section 3.
We also provide a brief discussion of the relevance of the two
examples considered in Sections 3 and 4.
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Asymptotic size
We are interested in determining the ‘‘asymptotic size’’ of a test

of H0 : θ = θ0 defined as

AsySz(θ0) = lim sup
n→∞

sup
γ∈Γ

Pθ0,γ (Tn(θ0) > c(1− α)), (2.1)

where Tn(θ0) is the test statistic, c(1 − α) denotes the critical
value of the test at nominal size α, and γ ∈ Γ denotes a
nuisance parameter vector and its parameter space. Note that the
supγ∈Γ is taken before the lim supn→∞. This definition reflects
the fact that our interest is in the exact finite-sample size of the
test supγ∈Γ Pθ0,γ (Tn(θ0) > c(1 − α)). We use asymptotics to
approximate the finite-sample size. Uniformity over γ ∈ Γ is
built into the definition of AsySz(θ0). If only the pointwise null
rejection probability of a test is controlled but the convergence
is not uniform over γ ∈ Γ then, at every sample size n, the
finite-sample null rejection probability of the test might differ
substantially from its nominal size for certain γ = γn. This is
a problem (and the pointwise justification is not meaningful) if
the lack of uniformity is ‘‘in an upward direction’’ and the finite-
sample null rejection probability exceeds the nominal size of the
test. Obviously, if AsySz(θ0) > α, then the nominal level α test has
asymptotic size greater than α and the test does not have correct
asymptotic level.
In this paper, Tn(θ0) denotes a t statistic (or the absolute value

of a t statistic or (−1) times a t statistic).
Critical values
Weconsider three types of critical values c(1−α). The first type

of critical value is fixed (FCV), cFix(1− α), that is, it is non-random,
and could, for example, be the 1−α quantile of a standard normal
distribution. The second type of critical value is a subsampling
critical value denoted by cn,b(1 − α). To describe it, let {bn :
n ≥ 1} be a sequence of subsample sizes. As is standard, for the
asymptotic results we assume that bn → ∞ and bn/n → 0 as
n → ∞. For brevity, we sometimes write bn as b. The number of
data subsamples of length b is qn = n!/((n− b)!b!). Let Ln,b(x) and
cn,b(1 − α) denote the empirical distribution function and 1 − α
sample quantile, respectively, of subsample statistics {̂Tn,b,j : j =
1, . . . , qn}. They are defined by

Ln,b(x) = q−1n
qn∑
j=1

1(̂Tn,b,j ≤ x) for x ∈ R and

cn,b(1− α) = inf{x ∈ R : Ln,b(x) ≥ 1− α}. (2.2)

Under Assumption Sub2 of AG1, {̂Tn,b,j : j = 1, . . . , qn} equals
{Tn,b,j(θ0) : j = 1, . . . , qn}, where Tn,b,j(θ0) are subsample statistics
that are defined just as Tn(θ0) is defined but are based on the data
in the jth subsample of length b rather than the entire data set.
Under Assumption Sub1 of AG1, {̂Tn,b,j : j = 1, . . . , qn} equals
{Tn,b,j(̂θn) : j = 1, . . . , qn}, where θ̂n is an estimator of θ0. The
nominal level α subsampling test rejects H0 if

Tn(θ0) > cn,b(1− α). (2.3)

Third, the critical value could be a hybrid critical value, defined
in AG2 as the maximum of the subsampling and the FCV, c∗n,b(1 −
α) = max{cn,b(1−α), cFix(1−α)}. Thus, the nominal levelα hybrid
test is defined to reject H0 if

Tn(θ0) > c∗n,b(1− α). (2.4)

We consider upper and lower one-sided and symmetric and
equal-tailed two-sided tests. For example, the nominal level α
equal-tailed two-sided subsampling test rejects H0 if

Tn(θ0) > cn,b(1− α/2) or Tn(θ0) < cn,b(α/2). (2.5)

The equal-tailed hybrid test is defined analogously with cn,b(1 −
α/2) and cn,b(α/2) replaced by max{cn,b(1− α/2), cFix(1− α/2)}
and min{cn,b(α/2), cFix(α/2)}, respectively.

Example. Consider the simple model given by a structural
equation and a reduced-form equation y1 = y2θ + u, y2 =
zπ + v, where y1, y2, z ∈ Rn and θ, π ∈ R are unknown
parameters. Assume {(ui, vi, zi) : i ≤ n} are i.i.d. with distribution
F , where a subscript i denotes the ith component of a vector.
To test H0 : θ = θ0 against a two-sided alternative say, the t
statistic Tn(θ0) = |n1/2(̂θn − θ0)/σ̂n| and critical value cFix(1 −
α) = z1−α/2 is used, where θ̂n = (y′2Pzy2)

−1y′2Pzy1, Pz =
zz ′/(z ′z), σ̂n = σ̂u(N−1y′2Pzy2)

−1/2, σ̂ 2u = (n − 1)−1(y1 −
y2θ̂n)′(y1 − y2θ̂n), and z1−α denotes the 1 − α quantile of a
standard normal distribution. The nuisance parameter vector γ
equals (F , π), where certain restrictions are imposed on F , such as
conditional homoskedasticity, exogeneity of the instrument, and
existence of second moments.

Nuisance parameters
The parameter γ is decomposed into three components:

γ = (γ1, γ2, γ3). The points of discontinuity of the asymptotic
distribution of the test statistic of interest are determined by the
first component, γ1. The parameter space of γ1 is Γ1. The second
component, γ2, of γ also affects the limit distribution of the test
statistic, but does not affect the distance of the parameter γ to the
point of discontinuity. The parameter space of γ2 is Γ2. The third
component, γ3, of γ does not affect the limit distribution of the test
statistic. The parameter space for γ3 is Γ3(γ1, γ2), which generally
may depend on γ1 and γ2. The parameter space Γ for γ satisfies

Assumption A. (i) Γ satisfies

Γ = {(γ1, γ2, γ3) : γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3(γ1, γ2)} (2.6)

and (ii) Γ1 =
∏p
m=1 Γ1,m, where Γ1,m = bγ

`
1,m, γ

u
1,mc for some

−∞ ≤ γ `1,m < γ u1,m ≤ ∞ that satisfy γ
`
1,m ≤ 0 ≤ γ u1,m for

m = 1, . . . , p and b denotes the left endpoint of an interval that
may be open or closed at the left end. Define c analogously for the
right endpoint.

Assumption A imposes a finite dimensional product space
structure on γ1 and γ2.

Example (Continued). Decompose the nuisance parameter into
γ = (γ1, γ2, γ3), where γ1 = |(EF z2i )

1/2π/σv|, γ2 = ρ, and γ3 =
(F , π), where σ 2v = EFv

2
i , σ

2
u = EFu

2
i , and ρ = CorrF (ui, vi). The

parameter spaces for γ1 and γ2 are Γ1 = R+ and Γ2 = [−1, 1]. The
details for the restrictions on the parameter space Γ3 = Γ3(γ1, γ2)
for γ3 are given below and are such that the following central
limit theorem (CLT) holds under sequences γ = γn for which
γ2 = γ2,n → h2:(
(n−1z ′z)−1/2n−1/2z ′u/σu
(n−1z ′z)−1/2n−1/2z ′v/σv

)
→d

(
ψu,h2
ψv,h2

)
∼ N

(
0,
(
1 h2
h2 1

))
. (2.7)

In this example, the asymptotic distribution of the statistic Tn(θ0)
has a ‘‘discontinuity’’ at γ1 = 0. Under different sequences γ1 =
γ1,n such that γ1,n → 0, the limit distribution of Tn(θ0) may be
different. More precisely, denote by γn,h a sequence of nuisance
parameters γ = γn such that n1/2γ1 → h1 and γ2 → h2 and h =
(h1, h2). It is shown below that under γn,h, the limit distribution
of Tn(θ0) depends on h1 and h2 and only on h1 and h2. As long
as h1 is finite, the sequence γ1 converges to zero, yet the limit
distribution of Tn(θ0) does not only depend on the limit point 0 of
γ1, but depends on how precisely γ1 converges to zero, indexed by
the convergence speed n1/2 and the localization parameter h1. In
contrast, the limit distribution of Tn(θ0) only depends on the limit
point h2 of γ2 but not on how γ2 converges to h2. In that sense, the
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limit distribution is discontinuous in γ1 at 0, but continuous on Γ2
in γ2. The parameter γ3 does not influence the limit distribution of
Tn(θ0) by virtue of the CLT in (2.7).
If h1 <∞, it is shown below that under γn,hy′2Pzu/(σuσv)y′2Pzy2/σ

2
v

σ̂ 2u /σ
2
u

→d

ξ1,hξ2,h
η2u,h


=

 (ψv,h2 + h1)ψu,h2
(ψv,h2 + h1)

2

(1− h2ξ1,h/ξ2,h)2 + (1− h22)ξ
2
1,h/ξ

2
2,h

 (2.8)

and thus Tn(θ0)→d Jh, where Jh is the distribution of |ξ1,h/(ξ2,h
η2u,h)

1/2
|. If h1 = ∞, Tn(θ0)→d Jh, where in this case Jh is the

distribution of the absolute value of a standard normal random
variable independent of h2.

Formalizing the additional aspects of the example, we now
define the index set of h vectors for the different asymptotic null
distributions of the test statistic Tn(θ0) of interest. Let

H = {h = (h1, h2) ∈ Rp+q∞ : ∃{γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}

such that n1/2γn,1 → h1 and γn,2 → h2}, (2.9)

where R∞ = R ∪ {±∞}.
Definition of {γn,h : n ≥ 1}: Given h = (h1, h2) ∈ H , let {γn,h =
(γn,h,1, γn,h,2, γn,h,3) : n ≥ 1} denote a sequence of parameters in
Γ for which n1/2γn,h,1 → h1 and γn,h,2 → h2.
In the example, H = R+,∞ × [−1, 1], where R+,∞ = {x ∈ R : x ≥
0} ∪ {+∞}. The sequence {γn,h : n ≥ 1} is defined such that under
{γn,h : n ≥ 1}, the asymptotic distribution of Tn(θ0) depends on h
and only h. This is formalized in the following assumption and has
already been illustrated in the above example.

Assumption B. For all h ∈ H , all sequences {γn,h : n ≥ 1}, and
some distributions Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}.

For subsampling tests we need additional assumptions.

Assumption C. (i) b→∞ and (ii) b/n→ 0.

Assumption D. (i) {Tn,b,j(θ0) : j = 1, . . . , qn} are identically
distributed under any γ ∈ Γ for all n ≥ 1 and (ii) Tn,b,j(θ0) and
Tb(θ0) have the same distribution under any γ ∈ Γ for all n ≥ 1.

Assumption C holds by a choice of the blocksize. In the linear IV
example, Assumption D holds trivially by the i.i.d. assumption on
the data. For the hybrid test we need one additional assumption.

Assumption K. The asymptotic distribution Jh in Assumption B is
the same (proper) distribution, call it J∞, for all h = (h1, h2) ∈ H
for which h1,m = +∞ or −∞ for all m = 1, . . . , p, where
h1 = (h1,1, . . . , h1,p)′.

In the linear IV example, Assumption K holds with J∞ equal
to the distribution of the absolute value of a standard normal
random variable. Theorem 1 in AG1 provides a formula for AsySz.
In contrast to the formula of AsySz in (2.1), the formula in the
theorem can be used for explicit calculation. It shows that the
‘‘worst case’’ sequence of nuisance parameters, a sequence that
yields the highest asymptotic null rejection probability, is of the
type {γn,h : n ≥ 1}. The formulation of the theorem is valid for one-
sided and symmetric two-sided case. The equal-tailed case can be
dealt with analogously. Let R−,∞ = {x ∈ R : x ≤ 0} ∪ {−∞} and
denote by cg(1− α), for g ∈ H , the 1− α quantile of Jg .

Theorem 1 (Simplified Version of AG1). Under AssumptionsA–Dand
K, continuity of Jh, and additional weak technical assumptions, the

asymptotic size of a FCV, subsampling, and hybrid test equals

sup
h∈H
[1− Jh(cFix(1− α))],

sup
(g,h)∈GH

[1− Jh(cg(1− α))],

sup
(g,h)∈GH

[1− Jh(max(cg(1− α), cFix(1− α)))],

respectively, where

GH = {(g, h) ∈ H × H : g = (g1, g2), h = (h1, h2), g2 = h2,
and for m = 1, . . . , p, (i) g1,m = 0 if |h1,m| <∞,
(ii) g1,m ∈ R+,∞ if h1,m = +∞, and

(iii) g1,m ∈ R−,∞ if h1,m = −∞}. (2.10)

The set GH arises in the size formula, because when the limit
distribution of the test statistic is Jh for some h ∈ H , then the
probability limit of the subsampling critical value, cn,b(1 − α), is
the 1 − α quantile of the limit distribution Jg , viz., cg(1 − α), for
some g ∈ H for which (g, h) ∈ GH.

Example (Continued).We have AsySz(θ0) = suph∈R+,∞×[−1,1][1 −
Jh(z1−α/2)] for the FCV case, where for h1 < ∞, Jh is the distribu-
tion of |ξ1,h/(ξ2,hη2u,h)

1/2
| and for h1 = ∞, Jh is the distribution

of the absolute value of a standard normal random variable. The
asymptotic size can be calculated easily by simulation of Jh over a
fine grid of vectors h in H .

In situations where the limit distribution of the test statistic is
discontinuous in the above sense, the resulting FCV, subsampling,
and hybrid procedures are size distorted in many examples we
have studied. Often the test procedures can be size corrected by
appropriately increasing the critical value of the test. For one-sided
and symmetric two-sided tests, the size-corrected fixed critical
value (SC-FCV), subsampling (SC-Sub), and hybrid (SC-Hyb) tests
with nominal level α are defined to reject the null hypothesis H0 :
θ = θ0 when

Tn(θ0) > cv(1− α),
Tn(θ0) > cn,b(1− α)+ κ(α),

Tn(θ0) > max{cn,b(1− α), c∞(1− α)+ κ∗(α)}, (2.11)

respectively, where

cv(1− α) = sup
h∈H
ch(1− α),

κ(α) = sup
(g,h)∈GH

[ch(1− α)− cg(1− α)],

κ∗(α) = sup
h∈H∗

ch(1− α)− c∞(1− α), and (2.12)

H∗ = {h ∈ H : for some (g, h) ∈ GH, cg(1− α) < ch(1− α)}.

Equal-tailed SC tests can be defined analogously.

Theorem 1 (AG2). Suppose the Assumptions of Theorem 1 in AG1
hold and additional technical conditions. Then, the SC-FCV, SC-Sub,
and SC-Hyb tests satisfy AsySz(θ0) = α.

The results presented above for tests hold also (with minor
modifications) for CIs.
In this paper, we study the asymptotic size and the possibility

of size-correction in two examples where the limit distribution of
the test statistic has the discontinuity feature discussed above. The
first example is inference on the structural parameter in a linear
IV regression with possibly weak instruments and the second
example is inference on a slope parameter in a linear regression
model when another parameter is restricted to be non-negative.
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The examples are instructive because, besides other findings,
they illustrate that (i) subsampling based inference is not a panacea
and often is (extremely) size distorted, (ii) the asymptotic size
of subsampling in a given model can vary widely across lower
one-sided, upper one-sided, two-sided symmetric, and two-sided
equal-tailed inference, (iii) sometimes FCV methods have correct
asymptotic size when subsamplingmethods do not and vice versa,
(iv) the ‘‘simple’’ hybrid procedure often produces inference with
correct asymptotic size, (v) the (more difficult) SC methods in AG2
can often be successfully applied (even when the hybrid method
fails) but not always, and (vi) that implementation of subsampling
tests based on partially – rather than fully – studentized statistics
can be beneficial from a size perspective.
While (SC) subsampling or hybrid methods in these examples

are probably not the preferred inference method from a power
perspective they may prove to be beneficial for other reasons. For
example, in Guggenberger (2009), robustness properties of (SC)
subsamplingmethods in the linear IV are investigated in situations
where the IVs are ‘‘slightly’’ correlated with the structural error
term. In such situations the asymptotic size of (SC) subsampling
methods are shown to be not less distorted than the Anderson and
Rubin (1949) test but are likely to be less distorted in overidentified
situations than the asymptotic size of inference procedures that
are more competitive from a power perspective, such as the
CLR test of Moreira (2003). Also, (SC) subsampling methods may
prove to be the best currently available inference procedure in
situations where (currently) no similar inference procedure is
known, namely, in a modification to the linear IV example, where
there are multiple rhs endogenous variables.

3. Instrumental variables regressionwithpossiblyweak instru-
ments

3.1. IV model and tests

The model we consider consists of a structural equation with
one right-hand side endogenous variable y2 and a reduced-form
equation for y2:
y1 = y2θ + Xζ + u,
y2 = Zπ + Xφ + v, (3.1)
where y1, y2 ∈ Rn are endogenous variable vectors, X ∈ Rn×k1 for
k1 ≥ 0 is a matrix of exogenous variables, Z ∈ Rn×k2 for k2 ≥ 1
is a matrix of IVs, and (θ, ζ ′, φ′, π ′)′ ∈ R1×k1×k1×k2 are unknown
parameters. Let Z = [X : Z] and k = k1+k2. Denote by ui, vi, Xi, Zi,
and Z i the ith rows of u, v, X, Z , and Z, respectively, written as
column vectors (or scalars).
The null hypothesis of interest is H0 : θ = θ0. The alternative

hypothesis may be one-sided or two-sided. Below we consider
upper and lower one-sided and symmetric and equal-tailed two-
sided tests of nominal level α of the null hypothesis H0.
We define a partially-studentized test statistic T ∗n (θ0) as

follows:

T ∗n (θ0) =
n1/2(̂θn − θ0)

σ̂n
, θ̂n =

y′2PZ⊥y1
y′2PZ⊥y2

,

σ̂n = (n−1y′2PZ⊥y2)
−1/2,

(3.2)

Z⊥ = Z−PXZ , and PX = X(X ′X)−1X ′. If no X appears, Z⊥ = Z . Note
that T ∗n (θ0) does not employ an estimator of σu, the square root of
the second moment of ui. Hence, it is only partially-studentized.
The standard fully-studentized test statistic is

T ∗n (θ0)/σ̂u, where σ̂ 2u = (n− 1)
−1(y⊥1 − y

⊥

2 θ̂n)
′(y⊥1 − y

⊥

2 θ̂n)

and y⊥m = ym − PXym
(3.3)

form = 1, 2.
Standard nominal level α 2SLS tests based on a fixed critical

value (FCV) employ the test statistic Tn(θ0)/σ̂u, where Tn(θ0) =

T ∗n (θ0),−T
∗
n (θ0), and |T

∗
n (θ0)| for upper one-sided, lower one-

sided, and symmetric two-sided tests, respectively. In each case,
the test rejects H0 if

Tn(θ0)/σ̂u > c∞(1− α), (3.4)

where c∞(1 − α) = z1−α, z1−α , and z1−α/2, respectively, and z1−α
denotes the 1 − α quantile of the standard normal distribution.
Note that for the FCV tests full studentization of the test statistic
is necessary for the normal critical values to be suitable (when the
IVs are strong).
Next, we consider subsampling tests based on T ∗n (θ0), rather

than T ∗n (θ0)/σ̂u. The rationale for using the partially-studentized t
statistic, T ∗n (θ0), is that σ

2
u is difficult to estimate when the IVs are

weak and a subsampling test does not require normalization for the
scale of the error because the subsample statistics have the same
error scale as the full sample statistic. It turns out that omitting the
estimator ofσ 2u improves the performance of the subsampling tests
considerably. It also simplifies the asymptotic distribution of the t
statistic considerably.
In the definition of Ln,b(x) in (2.2), {̂Tn,b,j : j = 1, . . . , qn} equals

{T ∗n,b,j(θ0) : j = 1, . . . , qn}, the latter being partially-studentized
subsample t statistics that are defined just as T ∗n (θ0) is defined
but are based on the data in the jth subsample of length b. That
is, T ∗n,b,j(θ0) = b1/2(̂θn,b,j − θ0)/σ̂n,b,j, where θ̂n,b,j and σ̂n,b,j are
analogues of θ̂n and σ̂n, respectively, based on the jth subsample.
Note that the subsample t statistic T ∗n,b,j(θ0) is centered at the
null hypothesis value θ0, rather than the full-sample estimator
θ̂n, which is often used in other examples. The reason is that the
full-sample estimator is not consistent if the IVs are weak and,
hence, centering at this value would yield poor performance of the
subsampling test.
The nominal level α subsampling test rejects H0 : θ = θ0 if

Tn(θ0) > cn,b(1− α). (3.5)

Next, we define a hybrid test that differs somewhat from the
definition given above and in AG2 in order for the test to be a
combination of the subsampling test that does not rely on an
estimator of σ 2u and the FCV test that does. The nominal level α
hybrid test is defined to reject H0 if

Tn(θ0) > max{cn,b(1− α), σ̂uc∞(1− α)} (3.6)

(where c∞(1− α) is as above).
Nowwe consider equal-tailed two-sided tests. The equal-tailed

FCV test is the same as the symmetric FCV test by symmetry of the
normal distribution. The nominal level α equal-tailed two-sided
subsampling test rejects H0 if

Tn(θ0) > cn,b(1− α/2) or Tn(θ0) < cn,b(α/2), (3.7)

where Tn(θ0) = T ∗n (θ0). The equal-tailed hybrid test is de-
fined analogously with cn,b(1 − α/2) and cn,b(α/2) replaced by
max{cn,b(1−α/2), σ̂uc∞(1−α/2)} andmin{cn,b(α/2), σ̂uc∞(α/2)},
respectively, where c∞(1 − α/2) = z1−α/2 and c∞(α/2) =
−z1−α/2.
Upper, lower, symmetric, and equal-tailed nominal level α CIs

based on the tests above are defined by

CIn = [̂θn − n−1/2σ̂nc1−α,∞),
CIn = (−∞, θ̂n + n−1/2σ̂nc1−α],
CIn = [̂θn − n−1/2σ̂nc1−α, θ̂n + n−1/2σ̂nc1−α], and

CIn = [̂θn − n−1/2σ̂nc1−α/2, θ̂n − n−1/2σ̂ncα/2], (3.8)

where for FCV, Sub, and Hyb CIs we have cβ = σ̂uc∞(β), cn,b(β),
and max{cn,b(β), σ̂uc∞(β)}, respectively, for β = 1− α, 1− α/2,
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and α/2 except that for Hyb CIs when β = α/2 we have cβ =
min{cn,b(β), σ̂uc∞(β)}.2

3.2. Assumptions and parameter space

We assume that {(ui, vi, Xi, Zi) : i ≤ n} are i.i.d. with
distribution F . We define a vector of nuisance parameters γ =
(γ1, γ2, γ3) by
γ1 = ‖Ω

1/2π/σv‖, γ2 = ρ, and γ3 = (F , π, ζ , φ),
where σ 2v = EFv

2
i , σ 2u = EFu

2
i , ρ = CorrF (ui, vi),

Ω = QZZ − QZXQ−1XX QXZ , and Q =
[
QXX QXZ
QZX QZZ

]
= EFZ iZ

′

i. (3.9)

We choose this specification for γ1 and γ2 because the asymptotic
distribution of the t statistic depends only on these scalar
parameters, as shown below.
The parameter spaces for γ1 and γ2 are Γ1 = R+ (={x ∈ R : x ≥

0}) and Γ2 = [−1, 1]. For given (γ1, γ2) ∈ Γ1 × Γ2, the parameter
space for γ3 is

Γ3(γ1, γ2) =

{
(F , π, ζ , φ) : EFu2i = σ

2
u , EFv

2
i = σ

2
v , EFZ iZ

′

i

= Q =
[
QXX QXZ
QZX QZZ

]
,& EFuivi/(σuσv) = ρ for some

σ 2u , σ
2
v > 0, some pd Q ∈ R

k×k,& some π ∈ Rk2

that satisfy ‖Ω1/2π/σv‖ = γ1 forΩ = QZZ − QZXQ−1XX QXZ ,

& ρ = γ2; ζ , φ ∈ Rk1; EFuiZ i = EFviZ i = 0;

EF (u2i , v
2
i , uivi)Z iZ

′

i = (σ
2
u , σ

2
v , σuσvρ)Q ; λmin(EFZ iZ

′

i) ≥ ε;∥∥∥EF (|ui/σu|2+δ, |vi/σv|2+δ, |uivi/(σuσv)|2+δ)′∥∥∥ ≤ M,&∥∥∥EF (‖Z iui/σu‖2+δ, ‖Z ivi/σv‖2+δ, ‖Z i‖2+δ)′∥∥∥ ≤ M} (3.10)

for some constants ε > 0, δ > 0, and M < ∞, where pd denotes
‘‘positive definite’’.
The tests introduced above are equivalent to analogous tests

defined with T ∗n (θ0), T
∗

n,b,j(θ0), and σ̂u replaced by

T ∗∗n (θ0) = T
∗

n (θ0)/σu, T ∗∗n,b,j(θ0) = T
∗

n,b,j(θ0)/σu, and σ̂u/σu,

(3.11)
respectively. (They are ‘‘equivalent’’ in the sense that they generate
the same critical regions.) The reason is that for all of the tests
above 1/σu scales both the test statistic and the critical value
equally, e.g., T ∗n (θ0) > σ̂uc∞(1 − α) iff T ∗∗n (θ0) > (σ̂u/σu)c∞(1 −
α). We determine the asymptotic size of the tests (denoted by
AsySz(θ0)) written as in (3.11) because this eliminates σu from
the asymptotic distributions that arise and, hence, simplifies the
expressions.

3.3. Asymptotic distributions

In this section, we determine the asymptotic null distribution
of the test statistic T ∗∗n (θ0) under certain sequences of parameters.
The sequences that we consider are the ones that determine the
asymptotic size of the tests based on the results in AG1 and AG2.
By asymptotic size, we mean the limit of the finite sample size,

2 Because the 2SLS estimator is location equivariant, the finite-sample distribu-
tion of the 2SLS t statistic under the null hypothesis H0 : θ = θ0 does not depend
on θ0 . In consequence, test results for fixed θ0 automatically hold uniformly over
θ0 ∈ R. This implies that the test results apply immediately to CIs constructed by
inverting the tests. Hence, in this example, there is no need to adjust the assump-
tions and definitions as in Section 6 of AG2 and Section 9 of AG3.

which is the maximum over γ ∈ Γ of the rejection probability
of the test under H0, see (2.1) below. Not surprisingly, these
sequences correspond to the sequences considered in the weak IV
asymptotics of Staiger and Stock (1997).
The asymptotic distributions of the statistic T ∗∗n (θ0) depend on

a localization parameter h = (h1, h2)′ ∈ H, where the parameter
space H is
H = R+,∞ × [−1, 1]. (3.12)
For h ∈ H , let {γn,h : n ≥ 1} denote a sequence of parameters with
subvectors γn,h,j for j = 1, 2, 3 defined by

γn,h,1 = ‖(Ω
1/2
n πn)/(EFnv

2
i )
1/2
‖,

Ωn = EFnZiZ
′

i − EFnZiX
′

i (EFnXiX
′

i )
−1EFnXiZ

′

i ,

γn,h,2 = CorrFn(ui, vi), n
1/2γn,h,1 → h1, γn,h,2 → h2, and

γn,h,3 = (Fn, πn, ζn, φn) ∈ Γ3(γn,h,1, γn,h,2). (3.13)
As shown in the Appendix, under any sequence {γn,h : n ≥ 1}, we
have the following convergence results(
(n−1Z⊥′Z⊥)−1/2n−1/2Z⊥′u/σu
(n−1Z⊥′Z⊥)−1/2n−1/2Z⊥′v/σv

)
→d

(
ψu,h2
ψv,h2

)
∼ N(0, Vh2 ⊗ Ik2) for Vh2 =

[
1 h2
h2 1

]
,

n−1(u′u/σ 2u , v
′v/σ 2v , u

′v/(σuσv))→p(1, 1, h2), (3.14)

Ω−1n (n
−1Z⊥′Z⊥)→p Ik2 , n−1Z

′
[u : v]→p 0, and

(EFnXiX
′

i )
−1(n−1X ′X)→p Ik1 ,

where ψu,h2 , ψv,h2 ∈ R
k2 and h2 ∈ [−1, 1]. These convergence

results are very similar to the ones given in Staiger and Stock
(1997).
If h1 < ∞, then the IVs are weak, see (3.13). In this case, it

follows from (3.14) (see the Appendix) that jointly under {γn,h}, we
have(
y′2PZ⊥u/(σuσv)
y′2PZ⊥y2/σ

2
v

)
→d

(
ξ1,h
ξ2,h

)
=

(
(ψv,h2 + h1sk2)

′ψu,h2
(ψv,h2 + h1sk2)

′(ψv,h2 + h1sk2)

)
, (3.15)

where sk2 is any vector in R
k2 that lies on the unit sphere,

i.e., ‖sk2‖ = 1, (which holds because the distribution of (ξ1,h, ξ2,h)
is invariant to sk2 , see the Appendix). This, (3.14), and some
calculations (see the Appendix) yield(
T ∗∗n (θ0)
σ̂ 2u /σ

2
u

)
→d

(
η∗∗h

η2u,h

)
=

(
ξ1,h/ξ

1/2
2,h

(1− h2ξ1,h/ξ2,h)2 + (1− h22)ξ
2
1,h/ξ

2
2,h

)
(3.16)

under {γn,h : n ≥ 1}. Let J∗∗h be the distribution of η
∗∗

h = ξ1,h/ξ
1/2
2,h .

It depends on k2, but not on k1. The random variable ηu,h is positive
a.s. except when h1 = 0 and h2 = ±1. In the latter case, ηu,h = 0
a.s. because ξ1,h = ±ξ2,h. Note that with fixed Z and normal (u, v),
the distribution of T ∗∗n (θ0) is exactly J

∗∗

h with h1 = (Z
′Z)1/2π/σv.

Next, suppose that h1 = ∞. In this case, the IVs are strong, see
(3.13). It is shown in the Appendix that under the null hypothesis
and {γn,h : n ≥ 1}with h1 = ∞, we have

T ∗∗n (θ0)→d η
∗∗

h ∼ N(0, 1), σ̂ 2u /σ
2
u →p η

2
u,h = 1, (3.17)

and J∗∗h is the standard normal distribution function.
The asymptotic distribution function Jh of Tn(θ0) is given by

Jh = J∗∗h ,−J
∗∗

h , and |J
∗∗

h | for the upper, lower, and symmetric tests,
respectively, where−J∗∗h and |J

∗∗

h | are the distribution functions of
−X and |X |, respectively, if X ∼ J∗∗h . Eqs. (3.16) and (3.17) imply
that Assumption B of AG1 holds for Tn(θ0) as defined above.
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Fig. 1. Instrumental variables example: 0.95 quantile graphs, ch(0.95), for J∗∗h and |J
∗∗

h | for the partially-studentized t statistic as functions of h1 for several values of the
correlation h2 and k2 = 5.

3.4. Asymptotic size

For upper and lower one-sided and symmetric two-sided tests,
the asymptotic sizes of the nominal level α FCV, subsampling, and
hybrid tests, respectively, are

AsySz(θ0) = sup
h∈H
P(ηh > ηu,hc∞(1− α)),

AsySz(θ0) = sup
(g,h)∈GH

[1− Jh(cg(1− α))], and

AsySz(θ0) = sup
(g,h)∈GH

P(ηh > max{cg(1− α), ηu,hc∞(1− α)}),

(3.18)

where ηh = η∗∗h ,−η
∗∗

h , and |η
∗∗

h | for the upper, lower, and
symmetric tests, respectively. The result for the subsampling test
follows from Theorem 1(ii) of AG1. The results for the FCV and
hybrid tests follow from variations of Theorem 1(i) of AG1 and
Theorem 1 of AG2. The assumptions used for these results are
verified in the Appendix.
For upper, lower, and symmetric FCV tests, the result in (3.18)

implies that AsySz(θ0) = 1. This follows from (3.18) by considering
the properties of these tests when the IVs are asymptotically
unidentified, i.e., h1 = 0, and the correlation between the errors h2
is±1. For hĎ = (0,±1)′, we have (i) ηu,hĎ = 0 a.s., which implies
that AsySz(θ0) ≥ P(ηhĎ > 0), (ii) η∗∗hĎ = ξ1,hĎ/ξ

1/2
2,hĎ = ±ξ

1/2
2,hĎ a.s.,

(iii) ηhĎ = ξ
1/2
2,hĎ > 0, ηhĎ = −ξ

1/2
2,hĎ < 0, and ηhĎ = ξ

1/2
2,hĎ > 0 a.s.

for upper, lower, and symmetric tests when hĎ = (0, 1)′, and (iv)
the first two inequalities in (iii) are reversed when hĎ = (0,−1)′.
Analogously to (3.18), for nominal level α equal-tailed two-

sided subsampling and hybrid tests, we have

AsySz(θ0) = sup
(g,h)∈GH

[1− J∗∗h (c
∗∗

g (1− α/2))+ J
∗∗

h (c
∗∗

g (α/2))]

and
AsySz(θ0) = sup

(g,h)∈GH
[P(η∗∗h > max{c∗∗g (1− α/2), ηu,h

× c∞(1− α/2)})+ P(η∗∗h <min{c
∗∗

g (α/2), ηu,hc∞(α/2)})], (3.19)

respectively, where c∞(1−α) is the 1−α quantile of the standard
normal distribution.

3.5. Quantile graphs

Graphs of the quantiles ch(1 − α) of Jh as a function of h1 for
fixed h2, where h = (h1, h2)′, are quite informative regarding
the behavior of subsampling and FCV tests. When the test statistic
Tn(θ0) has limit distribution Jh, a test will have asymptotic null
rejection probability less than or equal to α only if the probability
limit of the critical value is greater than or equal to the 1 − α
quantile of Jh, viz., ch(1− α). Hence, for a subsampling test to have
correct asymptotic size, one needs cg(1 − α) ≥ ch(1 − α) for all
(g, h) ∈ GH . For example, this occurs if the graph is decreasing
in h1 for each h2. On the other hand, if the graph is increasing in
h1 for some h2, then the subsampling test over-rejects the null
hypothesis.
Fig. 1 provides graphs of the quantiles, ch(1−α), when Jh equals

J∗∗h and |J
∗∗

h | for upper one-sided and symmetric two-sided tests,
respectively, as a function of h1 ≥ 0 for several values of h2.
(We do not consider graphs for −J∗∗h because they are the same
as those for J∗∗h with h2 replaced by −h2.) In Fig. 1(a) for J

∗∗

h , for
positive values of h2, the graph slopes down and exceeds the value
1.645. Hence, these quantile graphs suggest that the upper sub-
sampling test does not over-reject asymptotically for h2 positive.
On the other hand, for h2 negative, the graph slopes up and lies be-
low the value 1.645. Thus, for h2 negative, the graphs indicate that
the upper subsampling test over-rejects asymptotically. Quantita-
tive results for these tests are provided below.
In Fig. 1(b) for |J∗∗h |, the quantile graphs are invariant to the sign

of h2, so only non-negative values are shown. The graphs slope
up very slightly for h2 = 0.0 and slope down for other values
of h2. The graphs lie above the value 1.96 and by a substantial
amount when h2 is close to one. Thus, these graphs suggest that
the symmetric subsampling test over-rejects slightly. Quantitative
details are given below.
For upper and symmetric FCV tests, graphs of the quantiles

ch(1 − α) of the limit distributions of the fully-studentized test
statistic Tn(θ0)/σ̂u and its absolute value |Tn(θ0)/σ̂u|, which we
denote by J∗h and |J

∗

h |, respectively, as functions of h1 for fixed h2
are quite informative. As above, results for lower one-sided tests
are the same as those for upper tests with h2 replaced by−h2. For
an FCV test to have correct asymptotic size, one needs c∞(1−α) ≥
ch(1 − α) for all h ∈ H . For example, this occurs if the graph is
increasing in h1 for each h2—the opposite of the condition given
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Fig. 2. Instrumental variables example: 0.95 quantile graphs, ch(0.95), for J∗h and |J
∗

h | for the fully-studentized t statistic as functions of h1 for several values of the correlation
h2 and k2 = 5.
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Fig. 3. Instrumental variables example: 0.95 quantile graphs, ch(0.95), for |J∗h | for
the fully-studentized t statistic as functions ofh1 for several values of the correlation
h2 that are close to one and k2 = 5.

above that is sufficient for subsampling test to have the correct
asymptotic size.
Quantile graphs for J∗h and |J

∗

h | are provided in Fig. 2. The general
shapes of the quantile graphs in Fig. 2 are the same as in Fig. 1 but
themagnitude of the slopes are different. In consequence, for upper
one-sided tests, for positive values of h2, the FCV test over-rejects
the null hypothesis asymptotically, whereas the subsampling test
does not. On the other hand, the opposite occurs for negative values
of h2. For symmetric two-sided tests, the quantiles graphs are
invariant to the sign of h2. In this case, the graphs are decreasing in
h1 for large values of |h2|. This causes severe over-rejection because
of the large values of the graph at h1 = 0 compared to the value at
h1 = ∞when |h2| is close to one (also see Fig. 3 regarding this). In
fact, as calculated in the previous section, AsySz(θ0) = 1 for upper,
lower, and symmetric FCV tests. On the other hand, when h2 = 0,
the quantile graph of the symmetric FCV test is strictly increasing
in h1. This indicates that its null rejection probability is less than α
asymptotically in this part of the null hypothesis even though the
test has AsySz(θ0) = 1.
The graphs in Fig. 2 have considerably larger slopes than

those in Fig. 1 for values of |h2| close to one. This implies that
subsampling tests based on T ∗n (θ0) are preferred to subsampling

tests based on T ∗n (θ0)/σ̂u because the former are less non-similar
asymptotically.

3.6. Size-corrected tests

We now discuss size-corrected (SC) tests in the IV regression
model. Subsampling tests based on the partially-studentized test
statistic can be size-corrected by adding a positive constant κ(α)
to the subsampling critical value cn,b(1−α). For upper, lower, and
symmetric tests, the constant κ(α) is chosen to be the smallest
constant such that

sup
(g,h)∈GH

(
1− Jh((cg(1− α)+ κ(α)))

)
≤ α. (3.20)

Results in AG2 show that the solution is

κ(α) = sup
(g,h)∈GH

(
ch(1− α)− cg(1− α)

)
<∞. (3.21)

The test that uses the critical value cn,b(1 − α) + κ(α) is referred
to as the SC-Sub test.
The equal-tailed subsampling test is size-corrected by replacing

the subsampling critical values (cn,b(1 − α/2), cn,b(α/2)) by
(cn,b(1−α/2)+κET (α), cn,b(α/2)−κET (α)) for a positive constant
κET (α). The constant κET (α) is chosen to be the smallest constant
such that

sup
(g,h)∈GH

[1− Jh(cg(1− α/2)+ κET (α))

+ Jh(cg(α/2)− κET (α))] ≤ α. (3.22)

The resulting test is referred to as the equal-tailed SC-Sub test.
The SCmethods discussed above are asymptotically valid by Corol-
lary 3 of Appendix A.3. The results given there also show that
the symmetric two-sided SC subsampling test based on the fully-
studentized test statistic has correct asymptotic size.
AG2 also introduces plug-in SC methods that are preferable to

the SC method described above. However, such methods are not
applicable in this example because it is not possible to consistently
estimate ρ = Corr(ui, vi) when the IVs are weak, i.e., when h1 <
∞.
Size-correction methods for FCV tests also are considered in

Appendix A.3. However, it is shown in Appendix A.1.3 that it is not
possible to size-correct FCV tests in this example (at least by the
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methods considered there). The FCV test cannot be size-corrected
because suph∈H ch(1 − α) = ∞ for upper, symmetric, and equal-
tailed tests, see Fig. 3. Fig. 3 provides quantile graphs of |J∗∗h | for the
fully-studentized t statistic for values of h2 very close to one. It
illustrates that the 0.95 quantile approaches infinity as h2 → 1
for h1 = 0. Note that this graph is invariant to the sign of h2. These
results are consistent with the results of Dufour (1997).
The hybrid test is found to have (essentially) asymptotic size

equal to its nominal size. That is, numerical calculation of AsySz(θ0)
for the hybrid test given in (3.18) shows that it equals α up
to simulation error. Hence, we do not consider size-corrected
versions of the hybrid test.

3.7. Finite-sample adjusted asymptotic size

AG2 introduces finite-sample adjustments to the AsySz(θ0) of
subsampling and hybrid tests that take into account that δn =
(bn/n)1/2 is not zero in a given application of interest even though
the asymptotic approximations take it to be so. Given that δn is
observed, one can adjust the asymptotic approximation to the
AsySz(θ0) of subsampling andhybrid tests using δn. The adjustment
consists of making the following changes in (3.18) and (3.19). One
replaces g (which equals (g1, h2)′) by (δ

1/2
n h1, h2) and one replaces

the supremum over (g, h) ∈ GH by the supremum over h =
(h1, h2)′ ∈ H . See AG2 for an explanation of this adjustment.
Finite-sample adjusted SC subsampling tests are defined using

the adjusted asymptotic formula. In this case, the SC factor κ(α)
depends on δn and is written κ(δn, α). Calculations in AG2 show
that

κ(δn, α) = sup
h=(h1,h2)∈H

[c(h1,h2)(1− α)− c(δ1/2n h1,h2)
(1− α)]. (3.23)

The test that rejects when Tn(θ0) > cn,b(1 − α) + κ(δn, α)
is referred to as the adjusted size-corrected subsampling (ASC-
Sub) test. Equal-tailed ASC-Sub tests are defined bymaking similar
adjustments to the equal-tailed SC-Sub test defined in (3.22), see
AG2 for details.
Adjusted size-corrected hybrid (ASC-Hyb) tests also can be

defined, see AG2 for details. But, in the cases considered below, the
hybrid test has correct finite-sample adjusted asymptotic size, so
the hybrid and ASC-Hyb tests are the same.

3.8. Numerical results for asymptotic and finite-sample size

In this section we report numerical calculations of the
asymptotic, finite-sample adjusted asymptotic, and actual finite-
sample sizes of the tests described above. The finite-sample results
are for the case of (n, bn) = (120, 12), mean zero normal errors
with correlation ρ (denoted by h2 in the table), k2 = 5 standard
normal IVs Zi that are independent of each other and the errors,
k1 = 0 exogenous regressors Xi, a π vector with equal elements,
and without loss of generality σu = σv = 1 and θ0 = 0.
Results for this case are reported in Table 1. Results for the same
case except with k2 = 1 IVs are reported in Table 2. In Tables 1
and 2 the subsampling test results are based on the partially-
studentized t statistic while the FCV test results are based on the
fully-studentized t statistic. The hybrid test results are based on a
combination of the two, as described above.
To dramatically increase computational speed, the finite-

sample subsampling and hybrid results are based on qn = 119
subsamples of consecutive observations.3 Hence, only a small
fraction of the ‘‘120 choose 12’’ available subsamples are used.

3 This includes 10 ‘‘wrap-around’’ subsamples that contain observations at
the end and beginning of the sample, for example, observations indexed by

In cases where the subsampling and hybrid tests have correct
asymptotic size, their finite-sample performance is expected to be
betterwhen all available subsamples are used thanwhenonly qn =
119 are used. This should be taken into accountwhen assessing the
results of the tables.
The expressions for AsySz(θ0) in (3.18) and (3.19) are given as

suprema of functions of (h1, h2) ∈ H or ((g1, h2), (h1, h2)) ∈ GH .
In Tables 1 and 2, in columns 2, 7, and 9, we report the suprema of
these functions over h1 ≥ 0 with h2 fixed for a grid of h2 values
and nominal level α = 0.05 for subsampling, FCV, and hybrid
tests, respectively, under the headings Sub Asy, FCV Asy, and Hyb
Asy.4 Recall that h1 indexes the strength of the IVs and h2 indexes
the correlation between the errors ui and vi (as they appear in
the asymptotic distribution). The results for upper, symmetric, and
equal-tailed tests are given in panels (a), (b), and (c), respectively,
of Tables 1 and 2. In columns 3 and 10, we report analogous finite-
sample adjusted asymptotic values for the Sub andHyb tests under
the headings Sub Adj-Asy andHyb Adj-Asy. In columns 4, 8, and 11,
we report the actual finite-sample values for the subsampling, FCV,
and hybrid tests under the headings Sub n = 120, FCV n = 120,
and Hyb n = 120, respectively. (In the finite-sample case, the
values reported are the suprema of the null rejection probabilities
over γ1 ≥ 0 with h2 fixed for a grid of h2 values, where for present
purposes h2 denotes the finite-sample correlation ρ between the
errors ui and vi.) In columns 5 and 6, we report the finite-sample
rejection probabilities of the SC-Sub and ASC-Sub tests under the
headings SC-Sub n = 120 and ASC-Sub n = 120. Tables 1 and 2 do
not report results for SC-Hyb or ASC-Hyb tests because these tests
are (essentially) the same as the Hyb test.
We now discuss the results in Table 1. Table 1(a) for upper

one-sided tests shows the following: (i) The Sub and FCV tests
over-reject asymptotically by a substantial amount, but the Hyb
test does not over-reject asymptotically. (ii) The FCV test has
asymptotic size of 100%, which is consistent with results of Dufour
(1997). (iii) For the FCV test, the asymptotic rejection probabilities
approximate the finite-sample rejection probabilities extremely
well. (iv) For the Sub test, the asymptotic rejection probabilities
approximate the finite-sample rejection probabilities very poorly.
They are much too large when the finite-sample rejection
probabilities exceed 5%. On the other hand, the finite-sample-
adjusted asymptotic rejection probabilities are quite accurate,
comparing columns 3 and 4. (v) The Sub test can be size-
corrected. However, the nominal 5% SC-Sub test under-rejects
substantially – its size is 0.1% – because the asymptotic size of
the Sub test is over-stated. But, the ASC-Sub test performs very
well. The nominal 5% ASC-Sub test has finite-sample size of 4.4%.

(110, . . . , 120, 1). The choice of qn = 119 subsamples ismade because this reduces
rounding errors when qn is small when computing the sample quantiles of the
subsample statistics. The values να that solve να/(qn+1) = α for α = 0.025, 0.95,
and 0.975 are the integers 3,114, and 117. In consequence, the 0.025, 0.95, and 0.975
sample quantiles are given by the 3rd, 114th, and 117th largest subsample statistics.
See Hall (1992, p. 307) for a discussion of this choice in the context of the bootstrap.
4 The results in Tables 1 and 2 are based on 20,000 simulation repetitions. For the
finite-sample results, the search over h1 is done on the intervals [0, 1], [1, 4],
[4, 10], and [10, 25] with stepsizes 0.01, 0.1, 0.5, and 1.5, respectively, as well
as the single value h1 = 35. For all results, the search over h2 is done over the
set {−1,−0.99,−0.95,−0.9,−0.8,−0.7, . . . , 0.7, 0.8, 0.9., 95, 0.99, 1}. For the
asymptotic results and the calculation of the size-correction values, the search over
h1 is done on the interval [−10, 10]with a stepsize of 0.1 and also includes the two
values h1 = ±9, 999, 999, 999. The size-correction values κ(α) and κ(δ, α) for
k2 = 5 are as follows: for the upper tests, κ(0.05) = 2.73 & κ(0.10, 0.05) = 1.23;
for the symmetric tests, κ(0.05) = 0.04 & κ(0.10, 0.05) = 0.03; and for the equal-
tailed tests, κ(0.05) = 2.58 & κ(0.10, 0.05) = 1.01. The size correction values
κ(α) & κ(δ, α) for k2 = 1 are as follows: for the upper tests, κ(0.05) = 1.73 &
κ(0.10, 0.05) = 1.00; for the symmetric tests, κ(0.05) = 0.0 & κ(0.10, 0.05) =
0.0; and for the equal-tailed tests, κ(0.05) = 1.70 & κ(0.10, 0.05) = 0.93.
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Table 1
Weak IV example: Maximum (over h1) null rejection probabilities (×100) for different values of the correlation h2 for various nominal 5% tests, where the probabilities are
asymptotic, finite-sample-adjusted asymptotic, and finite sample for n = 120, b = 12, and k2 = 5.

h2 Test: Sub Sub Sub SC-Sub ASC-Sub FCV FCV Hyb Hyb Hyb
Prob: Asy Adj-Asy n = 120 n = 120 n = 120 Asy n = 120 Asy Adj-Asy n = 120

(a) Upper one-sided tests

−1.00 85.9 38.1 37.0 0.0 4.4 5.1 5.5 5.1 5.0 2.8
−0.99 85.0 37.1 36.7 0.0 4.2 5.1 5.2 5.1 5.0 2.6
−0.95 81.5 34.0 33.0 0.1 3.6 5.1 5.2 5.1 5.0 2.6
−0.90 76.6 30.7 29.1 0.0 2.9 5.1 5.3 5.1 5.0 2.6
−0.80 65.9 24.9 23.3 0.0 1.8 5.1 5.0 5.1 5.0 2.4
−0.60 42.3 16.6 14.4 0.0 0.8 5.1 4.9 5.1 5.0 2.5
−0.40 23.3 11.5 9.7 0.0 0.4 5.1 5.3 5.1 5.0 2.6
−0.20 11.5 7.6 5.9 0.0 0.2 5.1 5.0 5.1 5.0 2.5
0.00 5.5 5.3 5.2 0.0 0.1 5.1 5.4 5.1 5.0 2.5
0.20 5.0 5.0 5.0 0.0 0.2 7.1 7.4 5.0 5.0 2.9
0.40 5.0 5.0 5.0 0.0 0.1 18.5 19.0 5.0 5.0 4.3
0.60 5.0 5.0 4.9 0.0 0.1 43.7 44.8 5.0 5.0 4.8
0.80 5.0 5.0 4.5 0.0 0.0 76.9 77.9 5.0 5.0 4.5
0.90 5.0 5.0 4.5 0.0 0.1 91.9 92.3 5.0 5.0 4.5
0.95 5.0 5.0 4.7 0.0 0.0 97.2 97.2 5.0 5.0 4.7
0.99 5.0 5.0 4.7 0.0 0.0 99.7 99.7 5.0 5.0 4.7
1.00 5.0 5.0 4.6 0.0 0.0 100 100 5.0 5.0 4.6

Max 85.9 38.1 37.0 0.1 4.4 100 100 5.1 5.0 4.8

(b) Symmetric two-sided tests

0.00 5.5 5.4 5.7 5.2 5.3 5.0 5.3 5.0 5.0 3.1
0.20 5.3 5.1 5.4 4.8 5.0 5.0 5.2 5.0 5.0 2.8
0.40 5.2 5.0 5.0 4.5 4.6 9.6 10.0 5.0 5.0 3.5
0.60 5.0 5.0 4.9 4.4 4.5 31.3 32.3 5.0 5.0 4.6
0.80 5.0 5.0 4.5 4.1 4.2 68.9 70.2 5.0 5.0 4.5
0.90 5.0 5.0 4.5 3.9 4.1 88.6 88.8 5.0 5.0 4.5
0.95 5.0 5.0 4.7 4.2 4.3 95.9 95.9 5.0 5.0 4.7
0.99 5.0 5.0 4.7 4.1 4.3 99.6 99.6 5.0 5.0 4.7
1.00 5.0 5.0 4.6 4.0 4.2 100 100 5.0 5.0 4.6

Max 5.5 5.4 5.7 5.2 5.3 100 100 5.0 5.0 4.7

(c) Equal-tailed two-sided tests

0.0 5.5 5.4 5.7 0.0 0.3 5.0 5.3 5.0 5.0 2.2
0.20 8.3 5.9 5.7 0.0 0.3 5.0 5.2 5.0 5.0 2.0
0.40 16.1 7.6 6.7 0.0 0.4 9.8 10.0 5.0 5.0 2.1
0.60 31.6 10.8 9.6 0.0 0.7 31.7 32.3 5.0 5.0 2.7
0.80 56.6 17.1 16.4 0.0 1.7 69.2 70.2 5.0 5.0 2.6
0.90 69.9 22.7 21.8 0.0 2.9 88.7 88.8 5.0 5.0 2.7
0.95 76.0 26.0 25.0 0.0 3.7 95.9 95.9 5.0 5.0 2.7
0.99 80.7 29.0 28.1 0.0 4.4 99.6 99.6 5.0 5.0 2.8
1.00 82.0 30.1 29.0 0.0 4.4 100 100 5.0 5.0 2.7

Max 82.0 30.1 29.0 0.0 4.4 100 100 5.0 5.0 2.8

(vi) The nominal 5% Hyb test has asymptotic size 5.1% and finite-
sample size of 4.8%. TheHyb test is less non-similar than the SC-Sub
test and both are based on the same test statistic. So, the Hyb test
is the preferred test of those considered here.
Table 1(b) for symmetric two-sided tests shows the following:

(i) The FCV and Sub tests over-reject asymptotically, but the
Hyb test does not. (ii) The FCV test has asymptotic size of 100%.
(iii) The nominal 5% Sub test only over-rejects by a small amount—
its adjusted asymptotic size is 5.4% and its finite-sample size is
5.7%. (iv) The SC-Sub and ASC-Sub tests provide small corrections
to the Sub test. Their finite-sample sizes are 5.2% and 5.3%,
respectively. (v) The nominal 5% Hyb test has asymptotic and
an adjusted asymptotic size of 5% and finite-sample size of 4.7%.
Hence, the Hyb test performs very well. (vi) The Hyb test is less
non-similar than the SC-Sub and ASC-Sub tests and is based on
the same test statistic. Hence, it is the preferred test of those
considered here.
Table 1(c) for equal-tailed two-sided tests shows that (i)–(v) for

upper tests also hold for equal-tailed tests with the finite-sample
size of the 5% ASC-Sub being 4.4%. The nominal 5% Hyb test has
asymptotic size of 5.0% and finite-sample size of 2.8%. Hence, the
Hyb test is somewhat conservative in this case. On the other hand,
the Hyb test is less non-similar than the ASC-Sub test.

The same general features exhibited in Table 1, which considers
k2 = 5, also are exhibited in the analogous Table 2, which
considers k2 = 1. The main quantitative difference is that the
magnitude of asymptotic over-rejection of the Sub test for upper
and equal-tailed tests is noticeably lower for k2 = 1 than for
k2 = 5. However, the differences between k2 = 1 and k2 =
5 are much less for the magnitudes of ‘‘finite-sample adjusted
asymptotic over-rejection’’ and ‘‘finite-sample over-rejection’’.

3.9. Can subsampling CIs have infinite length?

In this section, we address the question of whether the asymp-
totic results for subsampling CIs in the IV regression example are
consistent with the finite-sample results of Dufour (1997). Dufour
(1997, Sec. 5.2) has shown that in an IV regressionmodel with i.i.d.
normal errors and a parameter space that includes θ ∈ R, π ∈ Rk2 ,
and |ρ| ≤ 1, a necessary condition for a CI to have finite-sample
level ϕ is that the probability that the CI has infinite length is≥ ϕ
when π = 0 (which implies that θ is unidentified).5 Here we

5 If the parameter space for ρ bounds |ρ| away from one, then this result does
not hold because in this case the diameter of Ψ0 , using Dufour’s notation, is finite.
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Table 2
Weak IV example: Maximum (over h1) null rejection probabilities (×100) for different values of the correlation h2 for various nominal 5% tests, where the probabilities are
asymptotic, finite-sample-adjusted asymptotic, and finite sample for n = 120, b = 12, and k2 = 1.

h2 Test: Sub Sub Sub SC-Sub ASC-Sub FCV FCV Hyb Hyb Hyb
Prob: Asy Adj-Asy n = 120 n = 120 n = 120 Asy n = 120 Asy Adj-Asy n = 120

(a) Upper one-sided tests

−1.00 52.7 30.2 29.9 0.4 4.5 5.1 5.3 5.1 5.0 1.9
−0.99 50.4 29.4 29.3 0.3 4.0 5.1 5.0 5.1 5.0 1.7
−0.95 43.9 26.3 25.8 0.2 2.8 5.1 4.8 5.1 5.0 1.7
−0.90 37.8 22.9 21.7 0.2 2.1 5.1 5.1 5.1 5.0 1.8
−0.80 28.3 18.4 16.2 0.1 1.2 5.1 4.8 5.1 5.0 1.7
−0.60 17.3 12.1 9.8 0.0 0.7 5.1 5.3 5.1 5.0 1.9
−0.40 11.2 8.6 6.3 0.0 0.4 5.1 5.3 5.1 5.0 2.0
−0.20 7.3 6.5 4.8 0.0 0.2 5.1 5.1 5.1 5.0 2.0
0.00 5.1 5.2 4.1 0.0 0.1 5.1 5.1 5.0 5.0 1.8
0.20 5.1 5.1 4.0 0.0 0.1 5.5 5.4 5.0 5.0 1.8
0.40 5.0 5.0 4.1 0.0 0.1 6.5 6.5 5.0 5.0 2.0
0.60 5.0 5.0 3.9 0.0 0.1 8.9 8.8 5.0 5.0 2.0
0.80 5.0 5.0 3.9 0.0 0.0 18.7 19.0 5.0 5.0 3.2
0.90 5.0 5.0 3.7 0.0 0.1 32.5 32.8 5.0 5.0 3.5
0.95 5.0 5.0 3.6 0.0 0.1 44.8 45.7 5.0 5.0 3.6
0.99 5.0 5.0 3.9 0.0 0.1 65.8 66.1 5.0 5.0 3.9
1.00 5.0 5.0 3.7 0.0 0.1 100 99.6 5.0 5.0 3.7

Max 52.7 30.2 29.9 0.4 4.5 100 99.6 5.1 5.0 3.9

(b) Symmetric two-sided tests

0.00 5.0 5.0 3.7 3.7 3.7 5.0 5.2 5.0 5.0 2.7
0.20 5.0 5.0 3.7 3.7 3.7 5.0 5.1 5.0 5.0 2.7
0.40 5.0 5.0 4.0 4.0 4.0 5.0 5.2 5.0 5.0 2.8
0.60 5.0 5.0 3.8 3.8 3.8 5.5 5.4 5.0 5.0 2.8
0.80 5.0 5.0 3.8 3.8 3.8 13.0 13.1 5.0 5.0 3.0
0.90 5.0 5.0 3.7 3.7 3.7 26.4 26.6 5.0 5.0 3.5
0.95 5.0 5.0 3.6 3.6 3.6 39.1 40.0 5.0 5.0 3.6
0.99 5.0 5.0 3.9 3.9 3.9 62.3 62.2 5.0 5.0 3.9
1.00 5.0 5.0 3.7 3.7 3.7 100 99.6 5.0 5.0 3.7

Max 5.0 5.0 4.0 4.0 4.0 100 99.6 5.0 5.0 3.9

(c) Equal-tailed two-sided tests

0.0 5.0 5.1 4.5 0.0 0.2 5.0 5.2 5.0 5.0 1.7
0.20 5.7 5.4 4.4 0.0 0.2 5.0 5.1 5.0 5.0 1.7
0.40 7.9 6.6 5.2 0.0 0.2 5.0 5.2 5.0 5.0 1.8
0.60 12.8 9.0 7.2 0.0 0.4 5.6 5.4 5.0 5.0 1.7
0.80 23.6 13.9 12.7 0.0 0.9 13.2 13.1 5.0 5.0 1.9
0.90 33.5 19.2 17.5 0.1 1.7 26.6 26.6 5.0 5.0 1.8
0.95 40.4 23.6 22.3 0.1 2.5 39.2 40.0 5.0 5.0 1.9
0.99 49.5 28.6 27.1 0.3 3.6 62.4 62.2 5.0 5.0 2.1
1.00 52.7 30.2 28.9 0.3 4.2 100 99.6 5.0 5.0 2.1

Max 52.7 30.2 28.9 0.3 4.2 100 99.6 5.0 5.0 2.1

show that the limit of the probability that a subsampling CI equals
(−∞,∞) (and hence has infinite length) is 1−αwhen π = 0 and
ρ = ±1.Wealso present some simulation results that indicate that
the nominal 1 − α subsampling CI has infinite length with prob-
ability ≥ 1 − α when π = 0 and ρ ∈ [−1, 1]. These results are
consistent with those of Dufour (1997).
We now establish the first claim in the previous paragraph.

Suppose θ is the true value, then

θ̂n = θ +
y′2PZ⊥u
y′2PZ⊥y2

and (3.24)

T ∗∗n (θ0) =
n1/2(̂θn − θ0)/σu
(n−1y′2PZ⊥y2)−1/2

=
y′2PZ⊥u/(σvσu)
(y′2PZ⊥y2/σ 2v )1/2

+
(θ − θ0)σv/σu

(y′2PZ⊥y2/σ 2v )−1/2
.

In addition, suppose π = 0 and ρ = 1. Then, PZ⊥y2 = PZ⊥v and
u = vσu/σv a.s. In consequence,

T ∗∗n (θ0) = (v
′PZ⊥v/σ

2
v )
1/2
+

(θ − θ0)σv/σu

(v′PZ⊥v/σ 2v )−1/2

= (v′PZ⊥v/σ
2
v )
1/2(1+ (θ − θ0)σv/σu). (3.25)

We consider a symmetric two-sided subsampling CI. Let
cn,b(θ0, 1 − α) denote the subsampling critical value based on
|T ∗∗n (θ0)|. By an argument analogous to that used to obtain (3.25),
we have

T ∗∗n,b,j(θ0) = (v
′

n,b,jPZ⊥n,b,jvn,b,j/σ
2
v )
1/2(1+ (θ − θ0)σv/σu)

∀j ≤ qn and
cn,b(θ0, 1− α) = cn,b(θ, 1− α)(1+ (θ − θ0)σv/σu), (3.26)

where vn,b,j ∈ Rb denotes the jth subsample of size b taken from
{v1, . . . , vn} and Z⊥n,b,j ∈ R

b×k2 is defined analogously to Z⊥ but
based on the jth subsample of size b taken from {Z1, . . . , Zn}.
We now have

Pθ,γ (CIn = (−∞,∞)) = Pθ,γ (θ0 ∈ CIn for all θ0 ∈ R)
= Pθ,γ (|T ∗∗n (θ0)| ≤ cn,b(θ0, 1− α) for all θ0 ∈ R)
= Pθ,γ ((|T ∗∗n (θ)| ≤ cn,b(θ, 1− α)))

→ Jh(ch(1− α)) = 1− α, (3.27)

where the third equality holds by (3.25) and (3.26) and the
convergence holds by Lemma 6(vi) of AG1 when (π, ρ) = (0, 1)
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Table 3
Weak IV example: Finite-sample probabilities (×100) that a nominal 95% symmetric two-sided subsampling confidence interval has infinite length as a function of the error
correlation ρ and the square root of the expected value of the concentration parameter ‖π‖ for n = 120, b = 12, and k2 = 5.

‖π‖

0.00 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(a) Partially-studentized confidence interval
0.00 95.3 89.4 63.8 27.1 5.8 0.7 0.4 0.0 0.0
0.25 95.4 89.4 63.6 26.9 5.7 0.7 0.4 0.0 0.0

ρ 0.50 95.5 89.2 63.6 27.0 6.0 0.7 0.4 0.0 0.0
0.75 95.5 89.4 63.7 27.0 6.2 0.7 0.6 0.0 0.0
1.00 95.5 89.0 63.9 27.2 5.9 0.6 0.5 0.0 0.0

(b) Fully-studentized confidence interval
0.00 99.3 98.1 89.8 65.9 34.6 13.9 5.2 2.2 1.1
0.25 99.3 98.2 90.1 67.5 37.8 17.2 6.9 3.0 1.4

ρ 0.50 99.4 98.2 91.1 73.5 49.5 27.7 13.6 6.3 3.0
0.75 99.4 98.3 94.3 86.3 72.7 53.5 34.2 19.7 10.3
1.00 99.5 99.9 100.0 99.9 99.5 96.3 85.1 64.6 42.2

and, hence, h = g = (0, 1). Analogous results hold when (π, ρ) =
(0,−1) and with upper and lower one-sided subsampling CIs.
Next, in Table 3, we present simulations of the finite-sample

probability that a symmetric two-sided subsampling CI has infinite
length for n = 120, b = 12, mean zero normal errors with
correlation ρ, k2 = 5 standard normal IVs that are independent of
each other and the errors, k1 = 0, a π vector with equal elements,
and (without loss of generality) σu = σv = 1 and θ0 = 0.
The probabilities depend on ‖π‖, which measures the strength

of the IVs and equals the square root of the expectation of the
concentration parameter, and ρ, which is the correlation between
the structural and reduced-form errors. Results are given for the
subsampling CI constructed using (a) the ‘‘partially-studentized’’ t
statistic, which does not use an estimator of the structural error
variance σ 2u , and (b) the ‘‘fully-studentized’’ t statistic, which uses
an estimator of σ 2u . Table 3 shows that both types of CIs have very
high probabilities of having infinite length when the IVs are weak,
i.e., ‖π‖ is close to zero. The probabilities for the CI based on the
fully-studentized t statistic are noticeably higher than those based
on the partially-studentized t statistic. This indicates that the latter
CI is preferable.
We now discuss how the probabilities in Table 3 are calculated.

A confidence interval CIn for θ of nominal level 95% is given as the
collection of θ0 values for which the hypothesis H0 : θ = θ0 is
not rejected at the 5% significance level. In the present context, for
partially-studentized symmetric two-sided subsampling CIs, this
means that

CIn = {θ0 ∈ R : Tn(θ0) ≤ Tn,b,i(θ0) for at least 5% of the
i = 1, . . . , q}

= {θ0 ∈ R : |n1/2(̂θn − θ0)/σ̂n| ≤ |b1/2(̂θn,b,i − θ0)/σ̂n,b,i|

for at least 5% of the i = 1, . . . , q}. (3.28)
We are interested in the percentage of times that CIn is

unbounded. Rather than constructing the confidence interval by
testing H0 : θ = θ0 for each θ0 ∈ R, we use a simple shortcut based
on the following observation:

{θ0 ∈ R : |a− wθ0| ≤ |c − dθ0|} (3.29)

is unbounded if and only if |w| ≤ |d|. For each simulation repeti-
tion the subsampling CI is unbounded if and only if for at least 5%
of the i = 1, . . . , qwe have6

n1/2/σ̂n ≤ b1/2/σ̂n,b,i. (3.30)

6 Note that we can be imprecise about the case when this inequality holds as an
equality because this is a zero probability event. If we have equality |b| = |d|, we
have to be careful with this statement because the set S = {θ0 ∈ R : |a − bθ0| ≤
|c−dθ0|} satisfies either s < S or s > S for some finite number s (in the case a 6= c),
whereas in the case |b| < |d| the set S is ‘‘unbounded in both directions’’.

This condition can be checked without much computational effort.
The computational method for fully-studentized statistics is the
same with σ̂n replaced by σ̂nσ̂u (and similarly for the subsample
statistic σ̂n,b,j).
Note that the probability that the symmetric hybrid CI is

unbounded equals that for the symmetric subsampling CI.

3.10. Extensions

With some work the results of this section can be extended
along the lines of Staiger and Stock (1997) to (i) any k-class
estimator, including the limited information maximum likelihood
(LIML) estimator, (ii) non-i.i.d. observations by defining Γ3(γ1, γ2)
to be such that a convergence condition of the form of Assumption
M of Staiger and Stock (1997) holds for any sequence {γn,h : n ≥
1} (defined below), and (iii) multiple right-hand side endogenous
variables with the parameter of interest being a subvector of
the endogenous variable parameter vector. AG1 studies inference
concerning the exogenous variable parameters. It is shown that the
asymptotic size of a t test equals 1 both for subsampling and the
FCV critical values.

4. CI when the parameter of interest may be near a boundary

4.1. Model and confidence intervals

In this section, we consider confidence intervals for a regression
parameter θ that is known to satisfy θ ≥ 0. We consider the linear
model with dependent variable Yi ∈ R and regressors Xi ∈ Rk and
Zi ∈ R:

Yi = X ′iβ + Ziθ + Ui (4.1)

for i = 1, . . . , n. We assume that {(Ui, Xi, Zi) : i ≥ 1} are i.i.d. with
distribution F and satisfy EFU2i = σ 2U > 0 and EFUi(X

′

i , Zi) = 0.
We also assume conditional homoskedasticity, that is, EFU2i (X

′

i , Zi)
′

(X ′i , Zi) = σ 2UQF , where QF = EF (X
′

i , Zi)
′(X ′i , Zi) > 0. We decom-

pose QF into matrices QXX ,QXZ ,QZX , and QZZ in the obvious way.
We denote by Y , Z,U ∈ Rn and X ∈ Rn×k the matrices with rows
Yi, Zi,Ui, and X ′i , respectively, for i = 1, . . . , n.
The parameter space for θ is R+ and that for β is Rk. Denote by

θ̂n the censored LS estimator of θ . That is,

θ̂n = max{̂θLS, 0}, where

θ̂LS = (Z ′MXZ)−1Z ′MXY and MX = I − X(X ′X)−1X ′. (4.2)

The t statistics upon which upper, lower, and symmetric CIs
are based are given by Tn(θ0) = T ∗n (θ0),−T

∗
n (θ0), and |T

∗
n (θ0)|,

respectively. By definition,
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T ∗n (θ0) = n
1/2(̂θn − θ0)/̂ηn, where

η̂n = σ̂U(n−1Z ′MXZ)−1/2,

σ̂ 2U = n
−1

n∑
i=1

Û2i , Ûi = Yi − X ′i β̂n − Zîθn, (4.3)

and (β̂n, θ̂n) are the LS estimators of (β, θ) subject to the restriction
θ ≥ 0.
We consider FCV, subsampling, and hybrid CIs. Upper and

lower one-sided and symmetric and equal-tailed two-sided CIs of
nominal level 1− α for α < 1/2 are defined by

CIn = [̂θn − n−1/2η̂nc1−α,∞),
CIn = (−∞, θ̂n + n−1/2η̂nc1−α],
CIn = [̂θn − n−1/2η̂nc1−α, θ̂n + n−1/2η̂nc1−α], and

CIn = [̂θn − n−1/2η̂nc1−α/2, θ̂n − n−1/2η̂ncα/2], (4.4)

respectively, where the left endpoint is replaced by zero if it is
smaller than 0, and where the critical value c1−α is defined as
follows.7 For FCV CIs, c1−α = z1−α, c1−α = z1−α, c1−α = z1−α/2,
and (cα/2, c1−α/2) = (zα/2, z1−α/2), respectively, where z1−α de-
notes the 1 − α quantile of the standard normal distribution. For
subsampling CIs, c1−α equals the 1−α sample quantile, cn,b(1−α),
of the subsample statistics {Tn,b,j(̂θn) : j = 1, . . . , qn}.8 By defini-
tion, for upper, lower, symmetric, and equal-tailed CIs, the subsam-
ple t statistic is Tn,b,j(̂θn) = T ∗n,b,j(̂θn),−T

∗

n,b,j(̂θn), |T
∗

n,b,j(̂θn)|, and
T ∗n,b,j(̂θn), respectively,where T

∗

n,b,j(̂θn) = n
1/2(̂θn,b,j−θ̂n)/̂ηn,b,j and

(̂θn,b,j, η̂n,b,j) are defined just as (̂θn, η̂n) are defined but using the
jth subsample in place of the full sample. For the hybrid CIs,we take
c1−α = max{cn,b(1− α), z1−α} for the upper and lower one-sided
CI, c1−α = max{cn,b(1 − α), z1−α/2} for the symmetric two-sided
CI, and (cα/2, c1−α/2) = (min{cn,b(α/2), zα/2},max{cn,b(1− α/2),
z1−α/2}) for the equal-tailed two-sided CI.

7 Except for the left boundary censoring, these definitions are as in (6.2) of AG2
and (3.8) above with σ̂n = η̂n and τn = n1/2.
An alternative CI for θ could be obtained from inverting a t statistic based on
the (uncensored) OLS estimator θ̂LS with lower endpoint censored at zero. The
resulting FCV and subsampling CIs have correct asymptotic size. The resulting FCV
CI has smaller length than the FCV in the paper but smaller coverage probability
in finite samples and the same comparison typically holds between the resulting
subsampling CI and the SC subsampling CI in the paper. To verify this claim, consider
for simplicity the symmetric two-sided CI in the paper that uses the (smaller) OLS
variance estimator rather than σ̂ 2u to estimate σ

2
u . For a FCV CI, if θ̂LS ≥ 0 then the

resulting CIs are identical. If θ̂LS < 0, then the alternative CI has smaller length, but
also has smaller coverage probability in finite samples (but both CIs have correct
asymptotic confidence size). Also, with positive probability, the alternative CI is
empty (which could be artificially overcome by defining it as {0} in this case). In
sum, for a FCV CI there is a length versus coverage probability trade-off in finite
samples. Next, consider the subsampling version of the alternative CI. By using
θ̂LS rather than θ̂n , the limit distribution of the test statistic is continuous in the
nuisance parameters and therefore, the alternative subsampling CI has correct
asymptotic confidence size (unlike the subsampling CIs considered in the paper
whose asymptotic confidence size is 1 − 2α). Therefore, the meaningful length
comparison is between the size-corrected subsampling CI in the paper and the
alternative CI. Asymptotically, the critical value of the size-corrected subsampling
procedure is c0(1 − α/2) when h1 is finite and c∞(1 − α/2) when h1 = ∞,
whereas the critical value of the alternative subsampling CI is the 1 − α quantile
of |J∗

∞
| in all cases, that is c∞(1 − α). For a symmetric two-sided CI and α =

5%, c0(1 − α/2) = c0(0.975) = 1.960, c∞(1 − α/2) = c∞(0.975) = 2.241,
and c∞(1 − α) = c∞(0.95) = 1.960. Just like in the FCV case, it follows that the
size-corrected subsampling CI has length (in large sample sizes) at least as large
as for the alternative CI. While both CIs have asymptotic size equal to 1 − α, the
alternative CI typically has smaller coverage probability in finite samples and is
empty with positive probability. These findings have been verified in simulations
available from the authors upon request.
8 The asymptotic results given below also hold when the subsample statistics are
{Tn,b,j(θ0) : j = 1, . . . , n}.

The coverage probability of a CI defined in (4.4) when γ is the
true parameter vector is

Pγ (θ ∈ CIn) = Pγ (Tn(θ) ≤ c1−α) (4.5)

for the first three CIs and Pγ (θ ∈ CIn) = Pγ (cα/2 ≤ Tn(θ) ≤ c1−α/2)
for the equal-tailed CI. The exact and asymptotic confidence sizes
of CIn are

ExCSn = inf
γ∈Γ
Pγ (θ ∈ CIn) and AsyCS = lim inf

n→∞
ExCSn, (4.6)

respectively.

4.2. Parameter space

The parameter spaces for θ, η, and β are Θ = R+, [ηL, ηU ] for
some 0 < ηL ≤ ηU <∞, and Rk, respectively. For given θ, γ1 ≥ 0,
the parameter space for the distribution F of (Ui, Xi, Zi) is

F (θ, γ1) = {F : EF |Ui|2+δ ≤ M, EFU2i > 0, EFUi(X
′

i , Zi) = 0,

QF > 0, EFU2i (X
′

i , Zi)
′(X ′i , Zi) = EFU

2
i QF ,

σ 2U (QZZ − QZXQ
−1
XX QXZ )

−1
= η2, η ∈ [ηL, ηU ], γ1 = θ/η} (4.7)

for some δ > 0 and 0 < M < ∞. (The condition EF |Ui|2+δ ≤
M in F (θ, γ1) guarantees that the Liapounov CLT applies un-
der sequences {γn,h} as in (4.11).) The parameter space for γ =
(γ1, γ3) = (θ/η, (θ, β, F)) is

Γ = {γ = (γ1, γ3) = (θ/η, (θ, β, F)) : γ1 ∈ R+,

θ/γ1 ∈ [ηL, ηU ], β ∈ Rk,& F ∈ F (θ, γ1)}. (4.8)

4.3. Asymptotic distributions

Here we establish the asymptotic distribution of the t statistic
T ∗n (θ0) under sequences of parameter values. As in Section 3.3,
the sequences that we consider are the ones that determine the
asymptotic size of the CIs of interest (according to the results
in AG1–AG3). Because CIs require uniformity of the coverage
probability over the parameter of interest θ , we actually need
to derive the asymptotic distribution of T ∗n (θn,h) under certain
sequences {θn,h : n ≥ 1} defined below.
We have

n1/2(̂θn − θ) = max{n1/2(Z ′MXZ)−1Z ′MXU,−n1/2θ}. (4.9)

By the law of large numbers and the CLT,

n1/2(Z ′MXZ)−1Z ′MXU→d ζη ∼ N(0, η2), where

η2 = σ 2U (QZZ − QZXQ
−1
XX QXZ )

−1, (4.10)

under F .
The asymptotic distributions of the t statistic depend on a local-

ization parameter hwith parameter space H = R+,∞. We consider
sequences {γn,h = (γn,h,1, γn,h,3) = (θn,h/ηn,h, (θn,h, βn,h, Fn,h)) :
n ≥ 1} of true parameters (θ/η, (θ, β, F)) that satisfy h =
limn→∞ n1/2θn,h/ηn,h, θn,h ≥ 0, ηn,h ∈ [ηL, ηU ], βn,h ∈ Rk, and
Fn,h ∈ F (θn,h, γn,h,1) for all n ≥ 1. (Using the notation of AG2
and AG3, no parameters γn,h,2 or h2 appear in this example.9) Un-
der a sequence {γn,h : n ≥ 1}, the Liapounov CLT, the continuous

9 Strictly speaking, the foregoing definitions of γn,h and F (θn,h, γn,h,1) do not fit
into the general CI set-up given inAG2 andAG3. The reasons are that (i) these papers
consider CIs for θ , where θ is a sub-vector of γn,h,whereas here θ/η is a sub-vector
of γ , and (ii) these papers allow the parameter space for γn,h,3 to depend on γn,h,1 ,
whereas here it depends on γn,h,1 and θn,h. In fact, the results of AG2 and AG3 can
be altered straightforwardly to accommodate these differences.
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Fig. 4. Parameter of interest near a boundary example: 0.95 quantile graphs,
ch(0.95), for−J∗h and |J

∗

h | as functions of h.

mapping theorem (CMT), and standard asymptotic calculations
imply that

T ∗n (θn,h)→dmax{ζ ,−h}, where ζ = ζη/η ∼ N(0, 1). (4.11)

Define the distribution J∗h by

max{ζ ,−h} ∼ J∗h . (4.12)

As defined, J∗h is standard normal when h = ∞. When h = ∞, we
also write J∗

∞
for J∗h .

For Tn(θ0) = T ∗n (θ0),−T
∗
n (θ0), and |T

∗
n (θ0)|, we have

Tn(θn,h)→d Jh, where Jh = J∗h ,−J
∗

h , and |J
∗

h |, (4.13)

respectively, using the CMT. (Here −J∗h and |J
∗

h | denote the
distributions of −S and |S| when S ∼ J∗h .) The distribution
functions (dfs) of J∗h ,−J

∗

h , and |J
∗

h | are given by

J∗h (x) =
{
0 for x < −h
Φ(x) for x ≥ −h,

(−J∗h )(x) =
{
Φ(x) for x < h
1 for x ≥ h, and

|J∗h |(x) =

{0 for x ≤ 0
2Φ(x)− 1 for 0 < x < h
Φ(x) for x ≥ h,

(4.14)

where Φ(x) is the standard normal df. A key property of J∗h for the
asymptotic properties of subsampling CIs is that J∗h is stochastically
decreasing in h and−J∗h and |J

∗

h | are stochastically increasing in h.

4.4. Quantile graphs

As discussed in Section 3.5, quantile graphs are very informative
concerning the behavior of FCV, subsampling, and hybrid tests
and CIs. Fig. 4 provides graphs of the 0.95 quantiles of −J∗h and
|J∗h | as a function of h. The graphs have distinctive stepwise linear
shapes that are increasing functions of h. This suggests that lower,
symmetric, and equal-tailed nominal 0.95 subsampling CIs have
AsyCS less than the desired value 0.95. On the other hand, it
indicates that FCV and hybrid CIs have AsyCS equal to 0.95, but the
CIs are not asymptotically similar.

4.5. Asymptotic size and size-correction

We now apply Corollary 2 of AG2 and Corollary 1 of AG3
to determine AsyCS analytically for each CI. The details of these
calculations are given in Appendix A.2.2. The assumptions of AG2
and AG3 are verified in Appendix A.2.1.

We find that the upper one-sided FCV, subsampling, and hybrid
CIs all have AsyCS = 1 − α for α < 1/2, as desired. For the
lower one-sided FCV and hybrid CIs, AsyCS = 1 − α because
Jh (=−J∗h ) is stochastically increasing in h. For the lower one-
sided subsampling CI, AsyCS = 1/2, again because Jh (=−J∗h ) is
stochastically increasing in h. For symmetric two-sided FCV and
hybrid CIs, AsyCS = 1 − α, because Jh (=|J∗h |) is stochastically
increasing in h. For the symmetric two-sided subsampling CI,
AsyCS = 1− 2α and the CI under-covers by α.
For equal-tailed two-sided FCV and hybrid CIs, AsyCS = 1− α,

because Jh (=J∗h ) is stochastically decreasing in h. For equal-tailed
two-sided subsampling CIs, AsyCS = 1/2 − α/2 for α < 1/2,
because Jh (=J∗h ) is stochastically decreasing in h.
Lower one-sided SC and ASC subsampling CIs can be con-

structed using the method described in AG2. A symmetric two-
sided SC subsampling CI can be constructed by making a quantile
adjustment. That is, to obtain a subsampling CI with AsyCS = 1−α
one constructs a CIwith nominal level ξ(α) = α/2. Size-correction
of the equal-tailed subsampling CI using the ‘‘alternative’’ method
defined in Section 7 of the Supplement to AG2 can be applied.

4.6. Numerical results

Tables 4 and 5 provide asymptotic, finite-sample adjusted
asymptotic, and actual finite-sample coverage probabilities for a
variety of nominal 0.95 CIs for this example.10 The finite-sample
results are for the case of (n, bn) = (120, 12), standard normal
errors, and five regressors including four independent standard
normal regressors and an intercept. The vector Xi contains three
standard normal regressors and the intercept and Zi is a standard
normal regressor. The finite sample results are invariant to the
error variance and the parameters β and θ.
Table 4 gives finite-sample results for n = 120 and b = 12,

whereas Table 5 gives analogous results for n = 240 and b = 24.
The asymptotic and adjusted asymptotic sizes of the subsampling
CIs are quite close to the finite-sample sizes, see the rows labelled
Min for columns 2–4. The only exception is for symmetric CIs with
the smaller sample size n = 120. The FCV and hybrid CIs have
asymptotic and adjusted asymptotic sizes that are quite similar to
the finite-sample sizes in all cases.
As predicted by the asymptotic results above, lower and equal-

tailed subsampling CIs have very poor finite-sample size, viz., 49.7%
and 48.9%, respectively, when n = 120 and 51.7% and 49.1% when
n = 240. The SC subsampling CIs have good size in most cases. The
main exception is for symmetric CIs with n = 120, in which case
the size is too high, viz., 98.6%. For n = 240, its size is better, viz.,
96.0%. The SC subsampling CIs exhibit a relatively high degree of
non-similarity, which is not desirable from a CI length perspective.
The ASC CIs have size that is too low for lower and equal-tailed CIs,
ranging from 88.7% to 91.7%.
The FCV CI has very good finite-sample size, ranging from 94.1%

to 94.9%. Its degree of finite-sample non-similarity also is quite
good (i.e., small) relative to other CIs. The hybrid CI has good

10 The results of Tables 4 and 5 are based on 20,000 simulation repetitions.
For Table 4, the search over h to determine the Min is done on the interval
[0, 5] with stepsize 0.01 on [0, 1], stepsize 0.1 on [1.0, 5.0], plus the values
10−6, 10−4, 10−3 , and 0.005. For Table 5, the search over h to determine the Min is
done on the interval [0, 2]with stepsize 0.01 on [0, 1] and stepsize 0.1 on [1.0, 2.0]
plus the value 10−6 . The size-correction values are as follows: for lower tests,
κ(0.05) = 1.645 & κ(0.10, 0.05) = 1.14; for symmetric tests, κ(0.05) = 0.315 &
κ(0.10, 0.05) = 0.321; and for equal-tailed tests, κET ,1(0.05) = 0, κET ,2(0.05) =
1.645, κET ,1(0.10, 0.05) = 0, & κET ,2(0.10, 0.05) = 1.36. Tables 4 and 5 do not
provide asymptotic coverage probabilities for each value of θ for subsampling and
hybrid CIs, just minimum coverage probabilities over all values. The reason is that
there is not a one-to-one transformation from (g, h) ∈ GH to θ.
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Table 4
Parameter of interest near a boundary example: Asymptotic, finite-sample adjusted asymptotic, and finite-sample coverage probabilities (×100) for various nominal 95%
confidence intervals for different values of the parameter h for n = 120 and b = 12.

θ Test: Sub Sub Sub SC-Sub ASC-Sub FCV FCV Hyb Hyb
Prob: Asy Adj-Asy n = 120 n = 120 n = 120 Asy n = 120 Asy n = 120

(a) Lower one-sided confidence intervals

0.0 100 100 100 100 100 100 100
10−6 49.8 49.7 100 100 100 100 100
0.01 51.3 51.2 100 100 100 100 100
0.05 56.7 56.8 100 100 100 100 100
0.10 63.3 63.8 100 95.1 100 100 100
0.15 69.6 69.8 97.0 90.0 100 96.7 96.7
0.20 75.6 75.4 96.2 92.6 95.0 94.3 94.3
0.30 84.7 83.9 98.2 96.1 95.0 94.3 94.4
0.40 91.4 89.6 99.3 98.0 95.0 94.3 94.5
0.60 95.0 95.1 99.8 99.5 95.0 94.3 95.9
0.80 95.0 97.0 100 99.8 95.0 94.3 97.3
1.6 95.0 97.9 100 99.9 95.0 94.3 98.1
2.5 95.0 97.9 100 99.9 95.0 94.3 98.2

Min 50.0 49.8 49.7 95.6 88.7 95.0 94.3 95.0 94.3

(b) Symmetric two-sided confidence intervals

0.0 95.0 97.9 99.0 99.1 97.5 97.1 98.7
0.10 95.0 97.9 99.2 99.2 97.5 97.1 98.8
0.15 95.0 97.2 99.0 99.0 97.5 97.0 98.8
0.20 89.9 96.7 98.6 98.7 95.0 94.5 97.8
0.25 89.9 96.7 98.6 98.6 95.0 94.1 97.6
0.35 89.9 97.0 98.6 98.7 95.0 94.1 97.7
0.50 91.4 97.7 98.9 98.9 95.0 94.1 98.0
1.0 95.0 98.7 99.5 99.5 95.0 94.1 98.8

Min 90.0 89.9 96.7 98.6 98.6 95.0 94.1 95.0 97.6

(c) Equal-tailed two-sided confidence intervals

0.00 97.5 99.2 99.2 99.2 97.5 97.1 99.3
10−6 47.3 48.9 99.2 99.2 97.5 97.1 99.3
0.01 48.8 50.5 99.2 99.2 97.5 97.1 99.3
0.05 54.4 56.6 99.2 99.2 97.5 97.1 99.3
0.10 60.8 64.3 99.2 99.0 97.5 97.1 99.3
0.20 73.1 76.7 97.1 98.7 95.0 94.4 96.5
0.30 82.2 85.4 98.4 98.6 95.0 94.1 96.3
0.40 88.9 91.0 98.9 98.8 95.0 94.1 96.3
0.60 95.0 96.1 99.1 99.1 95.0 94.1 97.2
0.80 95.0 97.7 99.2 99.4 95.0 94.1 98.1
1.6 95.0 98.4 99.2 99.2 95.0 94.1 98.6
2.5 95.0 98.4 99.2 99.2 95.0 94.1 98.6

Min 47.5 47.3 48.9 97.0 91.7 95.0 94.1 95.0 96.3

finite-sample size, though not quite as good as for the FCV CI. It
ranges from 94.3% to 97.6%. Somewhat ironically, the best CI in this
example is the naive FCV CI that ignores the boundary problem.
Its asymptotic size is correct for all types of CI, lower, upper,
symmetric, and equal-tailed. Although it is not asymptotically
similar, its degree of non-similarity is low relative to the other CIs
that have correct size.
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Appendix

This Appendix provides supporting technical material for the IV
regression example and the parameter of interest near a boundary
example. It also provides necessary and sufficient conditions for

the size-correction methods considered here and in AG2 to apply
to a given example. In contrast, AG2 provides sufficient conditions
that are stronger than the conditions given here. The weaker
conditions given here are needed for some of the results in the IV
regression example.

A.1. IV regression example

This section of the Appendix verifies assumptions for the IV
regression model, provides proofs of results stated in the text
concerning this model, and shows that FCV tests cannot be size
corrected in this model.

A.1.1. Verification of assumptions
In this section, we verify Assumptions t1, Sub2, A–G, and J of

AG1 and Assumption K of AG2. Under these assumptions, Theorem
1 of AG1 gives the subsampling AsySz(θ0) result in (3.18) and
variations of Theorem 1 of AG2 give the FCV and hybrid AsySz(θ0)
results in (3.18) using the continuity of the joint distribution of
(ηh, η

2
u,h)whenever h 6= (0,±1).

Assumption t1 holds with τn = 1/2 by the definition of T ∗n (θ0).
Assumption Sub2 holds because the subsample statistics are
centered at θ0, rather than θ̂n. Assumption A holds by definition
of Γ1 = R+. In Assumption B, we take r = 1/2. Assumption B
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Table 5
Parameter of interest near a boundary example: Asymptotic, finite-sample adjusted asymptotic, and finite-sample coverage probabilities (×100) for various nominal 95%
confidence intervals for different values of the parameter h for n = 240 and b = 24.

θ Test: Sub Sub Sub SC-Sub ASC-Sub FCV FCV Hyb Hyb
Prob: Asy Adj-Asy n = 240 n = 240 n = 240 Asy n = 240 Asy n = 240

(a) Lower one-sided confidence intervals

0.0 100 100 100 100 100
0.01 51.7 100 100 100 100
0.05 58.9 100 100 100 100
0.10 67.1 99.0 89.4 98.9 98.9
0.15 74.1 96.6 92.9 94.9 94.9
0.20 80.1 98.0 95.4 94.9 94.9
0.30 88.3 99.2 98.2 94.9 94.9
0.40 92.8 99.8 99.1 94.9 95.2
0.60 95.3 99.9 99.7 94.9 96.4
0.80 95.6 100 99.7 94.9 96.7
1.6 95.6 100 99.7 94.9 96.7

Min 50.0 49.8 51.7 95.7 88.5 95.0 94.9 95.0 94.9

(b) Symmetric two-sided confidence intervals

0.0 95.4 97.4 97.5 97.3 97.7
0.10 92.4 96.6 96.7 97.3 97.7
0.15 91.8 96.0 96.1 94.7 95.7
0.20 92.4 96.2 96.3 94.7 95.8
0.25 92.9 96.4 96.5 94.7 95.9
0.35 93.8 96.9 96.9 94.7 96.0
0.50 95.1 97.4 97.5 94.7 96.4
1.0 95.6 97.8 97.8 94.7 96.7

Min 90.0 89.9 91.8 96.0 96.1 95.0 94.7 95.0 95.7

(c) Equal-tailed two-sided confidence intervals

0.00 97.2 97.3 98.3
0.01 49.1 97.3 98.3
0.05 56.6 97.3 98.3
0.10 65.2 97.3 98.3
0.20 78.7 94.7 95.6
0.30 87.2 94.7 95.6
0.40 91.6 94.7 95.7
0.60 94.3 94.7 96.4
0.80 94.6 94.7 96.7
1.6 94.6 94.7 96.7

Min 47.5 47.3 49.1 92.9 89.5 95.0 94.7 95.0 95.6

is verified by (3.16) and (3.17). Assumption C holds by a choice of
bn such that bn → ∞ and bn/n → 0. Assumptions D and E hold
by the i.i.d. assumption. Assumptions F and J hold because Jh(x) is
strictly increasing on R for all h ∈ H . Assumption G holds because
Assumption Sub2 holds. Assumption K of AG2 holds by (3.17).
For the SC subsampling tests, asymptotic validity established

in Corollary 3 below requires verification of Assumption LS that
sup(g,h)∈GH(ch(1−α)−cg(1−α)) <∞.We do not provide a formal
proof of this condition. However, numerical results indicate that
this condition holds for upper, lower, and symmetric tests based on
the partially-studentized t statistic and for symmetric tests based
on the fully-studentized t statistic, see Figs. 1–3.

A.1.2. Proofs for the IV regression example
First we prove (3.14). The weak law of large numbers (WLLN)

for independent L1+δ-bounded random variables for δ > 0 gives

n−1(u′u/σ 2u , v
′v/σ 2v , u

′v/(σuσv))→p(1, 1, h2),

n−1Z ′Z − EFnZiZ
′

i→p 0,

n−1X ′Z − EFnXiZ
′

i→p 0, n−1Z
′
[u : v]→p 0, and

n−1X ′X − EFnXiX
′

i→p 0

(A.1)

given the moment conditions in Γ3(γ1, γ2). The last result in
(A.1) gives (EFnXiX

′

i )
−1(n−1X ′X)→p Ik1 because the conditions in

Γ3(γ1, γ2) imply that λmin(EFnXiX
′

i ) ≥ ε1 for some ε1 > 0. This and

the results in (A.1) imply that

n−1Z ′X(n−1X ′X)−1n−1X ′Z − EFnZiX
′

i (EFnXiX
′

i )
−1EFnXiZ

′

i→p 0. (A.2)

Combined with the second result in (A.1), this gives n−1Z⊥′Z⊥ −
Ωn→p 0. In turn, this implies that Ω−1n (n

−1Z⊥′Z⊥)→p Ik2 , as
desired, because supn≥1 ‖Ω−1n ‖ ≤ M1 for some M1 < ∞ given
the condition λmin(EFnZ iZ

′

i) ≥ ε > 0 of Γ3(γ1, γ2).
It remains to establish the first result of (3.14). Using the results

above, it suffices to show that(
Ω−1/2n n−1/2(Z ′ − EFnZiX

′

i (EFnXiX
′

i )
−1X ′)u/σu

Ω−1/2n n−1/2(Z ′ − EFnZiX
′

i (EFnXiX
′

i )
−1X ′)v/σv

)
→d

(
ψu,h2
ψv,h2

)
, (A.3)

where (ψ ′u,h2 , ψ
′

v,h2
)′ ∼ N(0, Vh2 ⊗ Ik2), because n

−1/2
[Z : X]′

[u/σu : v/σv] = Op(1) by the Liapounov CLT for independent,
mean zero, L2+δ-bounded random variables and supn≥1 ‖Ω−1n ‖ ≤
M1 < ∞. The Liapounov CLT implies that (A.3) holds because the
left-hand side quantity has mean zero, variance matrix Vh2 ⊗ Ik2 ,
and is L2+δ-bounded by the conditions inΓ3(γ1, γ2). This concludes
the proof of (3.14). �
Next, we show that the distribution of (ξ1,h, ξ2,h), defined in

(3.15), is invariant to sk2 for sk2 on the unit sphere. This is used in
the convergence result in (3.15). To establish invariance, let B be an
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orthogonal k2 × k2 matrix. Then, for λ ∈ Rk2 ,

(ψv,h2 + λ)
′(ψv,h2 + λ) = (Bψv,h2 + Bλ)

′(Bψv,h2 + Bλ)

≈ (ψv,h2 + Bλ)
′(ψv,h2 + Bλ), (A.4)

where ‘‘≈’’ denotes equality in distribution and ‘‘≈’’ holds because
(Bψu,h2 , Bψv,h2) ∼ N(0, Vh2⊗Ik2). Analogously, (ψv,h2+λ)

′ψu,h2 ≈
(ψv,h2+Bλ)

′ψu,h2 .Hence, the distribution of (ξ1,h, ξ2,h) is the same
for all sk2 with ‖sk2‖ = 1.
Eq. (3.15) follows from (3.14) by the following result. If

Xn→d X ∼ N(0, V ) for X ∈ Rk2 , hn → h ∈ R, and sn ∈ Rk2
satisfies ‖sn‖ = 1 for all n, where hn and sn are nonrandom, then
(Xn + hnsn)′Xn→d(X + hs)′X for any s ∈ Rk2 with ‖s‖ = 1. This
can be proved by showing that any subsequence {vn} of {n} has
a subsequence {wn} such that the claimed convergence holds with
wn in place of n. The latter is shown by taking {wn} to be a sequence
for which {swn} converges to some s ∈ R

k2 with ‖s‖ = 1. The result
of the previous paragraph shows that the limit distribution does
not depend on s provided ‖s‖ = 1. �
We now show that (3.16) holds when h1 < ∞. The proof uses

(3.14), (3.15), and the following argument. The result T ∗∗n (θ0)→d ηh
follows immediately from (3.14). To show σ̂ 2u /σ

2
u →d η

2
u,h when

h1 <∞, we write

y⊥1 − y
⊥

2 θ̂n = (In − PX )(u− y2(̂θn − θ0)+ Xζn)

= (In − PX )(u− (v + Zπn + Xφn)(̂θn − θ0)) (A.5)
= u− v(̂θn − θ0)− PX (u− v(̂θn − θ0))
− (Z⊥πn/σv)(̂θn − θ0)σv,

where for notational simplicity here and belowwe do not index σv
by n. Next, we have

n−1‖Z⊥πn/σv‖2 = ‖Ω1/2n πn/σv‖
2(1+ op(1))

= γ 2n,h,1(1+ op(1))→p 0, (A.6)

where the first equality holds using (3.14) and the convergence
holds because nγ 2n,h,1 → h21 <∞. In addition, by (3.14),

(̂θn − θ0)σv/σu→d ξ1,h/ξ2,h,

n−1‖PXu/σu‖2 = n−1u′X(n−1X ′X)−1n−1X ′u/σ 2u →p 0, and

n−1‖PXv/σv‖2→p 0. (A.7)

Using these results, we obtain

n−1‖PX (u− v(̂θn − θ0))/σu‖2→p 0. (A.8)

Combining (A.5)–(A.8) yields

((n− 1)/n)σ̂ 2u /σ
2
u = n

−1(y⊥1 − y
⊥

2 θ̂n)
′(y⊥1 − y

⊥

2 θ̂n)/σ
2
u

= n−1(u− v(̂θn − θ0))′(u− v(̂θn − θ0))/σ 2u + op(1)

= n−1u′u/σ 2u − 2(n
−1u′v/(σuσv))(̂θn − θ0)σv/σu

+ (n−1v′v/σ 2v )(̂θn − θ0)
2(σv/σu)

2
+ op(1)

→d 1− 2h2ξ1,h/ξ2,h + (ξ1,h/ξ2,h)2

= (1− h2ξ1,h/ξ2,h)2 + (1− h22)(ξ1,h/ξ2,h)
2, (A.9)

where the second equality uses the Cauchy–Schwarz inequality
and (A.5)–(A.8) to handle the cross-terms and the convergence
holds by (3.14) and (A.7). �
Next, we establish that (3.17) holds when h1 = ∞. Let an =

n1/2γn,h,1. The first result of (3.17), viz., T ∗∗n (θ0)→d N(0, 1), follows
from

y′2PZ⊥y2
a2nσ 2v

→p 1 and
y′2PZ⊥u
anσuσv

→d N(0, 1) (A.10)

under {γn,h} and the null hypothesis. To establish (A.10), we have

(n−1Z⊥′Z⊥)−1/2
n−1/2Z⊥′y2
anσv

= (n−1Z⊥′Z⊥)−1/2
n−1/2Z⊥′Z⊥πn

anσv
+ (n−1Z⊥′Z⊥)−1/2

n−1/2Z⊥′v
anσv

= (n−1Z⊥′Z⊥)1/2Ω−1/2n
n1/2Ω1/2n πn/σv

‖n1/2Ω1/2n πn/σv‖
+ op(1)

=
n1/2Ω1/2n πn/σv

‖n1/2Ω1/2n πn/σv‖
+ op(1), (A.11)

where the second equality uses the definitions of an and γn,h,1,
(3.14), and an →∞, and the third equality uses (3.14). This yields

y′2PZ⊥y2
a2nσ 2v

= 1+ op(1). (A.12)

Next, we have

y′2PZ⊥u
anσuσv

=

(
(n−1Z⊥′Z⊥)−1/2

n−1/2Z⊥′y2
anσv

)′
× (n−1Z⊥′Z⊥)−1/2

n−1/2Z⊥′u
σu

=

(
n1/2Ω1/2n πn/σv

‖n1/2Ω1/2n πn/σv‖

)′
(n−1Z⊥′Z⊥)−1/2

×
n−1/2Z⊥′u

σu
+ op(1)

→d N(0, 1), (A.13)

where the second equality uses (A.11) and the convergence holds
by (3.14) and the fact that χn→d N(0, Ik2) and λn ∈ R

k2 with
‖λn‖ = 1 imply that λ′nχn→d N(0, 1). Hence, (A.10) holds and the
first result of (3.17) is established.
We now establish the second result of (3.17), viz., σ̂ 2u /σ

2
u →p 1

under {γn,h} and the null hypothesis when h1 = ∞. Eq. (A.10)
implies that

(̂θn − θ0)σv/σu = Op(a−1n ) = op(1). (A.14)

The desired result follows from (A.5), which holds when h1 = ∞,
combined with the following results:

n−1‖(In − PX )v(̂θn − θ0)‖2/σ 2u
≤ (n−1v′v/σ 2v )((̂θn − θ0)σv/σu)

2
→p 0,

n−1u′PXu/σ 2u = (n
−1u′X/σu)(n−1X ′X)−1n−1X ′u/σu→p 0, and

n−1‖(Z⊥πn/σv)(̂θn − θ0)σv‖2/σ 2u =
π ′n(n

−1Z⊥′Z⊥)πn
a2nσ 2v

Op(1)

=
π ′nΩnπn

a2nσ 2v
Op(1) = Op(n−1), (A.15)

where the convergence in the first and second lines holds by
(3.14) and (A.14) and the first through third equalities of the third
equation hold by (A.14), (3.14), and definitions of an and γn,h,1,
respectively. �

A.1.3. Size-correction of FCV tests
We now show that FCV tests cannot be size corrected in the IV

regression model. There are two ways in which one can define an
SC-FCV test. First, consider a nominal 1−α SC-FCV test that rejects
H0 : θ = θ0 when

Tn(θ0)/σ̂u > c∞(1− α)+ κ(α), where κ(α) <∞ satisfies

sup
h∈H
P(ηh > ηuh[c∞(1− α)+ κ(α)]) ≤ α. (A.16)
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The condition on κ(α) is needed for AsySz(θ0) ≤ α. For h∗ =
(0, 1), we have ηu,h∗ = 0 a.s. and η∗∗h = ξ

1/2
2,h∗ > 0 a.s., see the

discussion following (3.16). Hence, for upper and symmetric tests,
ηh = ξ

1/2
2,h∗ > 0 a.s. and for all κ ∈ R,

sup
h∈H
P(ηh > ηuh[c∞(1− α)+ κ]) ≥ P(ξ

1/2
2,h∗ > 0) = 1. (A.17)

Thus, no value κ(α) < ∞ exists that satisfies (A.16) when α < 1.
For lower one-sided tests, one needs to replace h∗ = (0, 1) by
h∗ = (0,−1) in the argument above to show that no value κ(α)
exists that satisfies (A.16).
On the other hand, one can define an SC-FCV test to be one for

which H0 is rejected when
Tn(θ0) > σ̂uc∞(1− α)+ κ(α). (A.18)
For the symmetric version of this test, under {γn,h}we have
Pθ0,γn,h(Tn(θ0) > σ̂uc∞(1− α)+ κ(α))

= Pθ0,γn,h(|T
∗∗

n (θ0)| > (σ̂u/σu)c∞(1− α)+ κ(α)/σu)

→ P(ηh > ηuhc∞(1− α)+ κ(α)/σu), (A.19)
where the convergence holds by (3.16). Hence, for a test with
AsySz(θ0) ≤ α, κ(α) needs to be defined such that
sup

h∈H,σu>0
P(ηh > ηuhc∞(1− α)+ κ(α)/σu) ≤ α (A.20)

when the parameter space for σu is R+. For h∗ = (0, 1) and all
κ ∈ R, we have
sup

h∈H,σu>0
P(ηh > ηuhc∞(1− α)+ κ/σu)

≥ sup
σu>0

P(ηh∗ > κ/σu) = 1. (A.21)

Hence, no value κ(α) exists that satisfies (A.20) when the
parameter space for σu is R+ and α < 1. The argument for upper
and lower one-sided tests is similar.
We conclude that FCV tests cannot be size-corrected in the IV

regression model. These results are consistent with the results in
Dufour (1997).

A.2. Parameter of interest near boundary example

A.2.1. Verification of assumptions
We now verify the assumptions needed to apply Corollary 2

of AG2 and Corollary 1 of AG3 in this example. First, consider
the case of an upper one-sided CI based on Tn(θ0) = T ∗n (θ0).
Assumption A holds by definition of Γ . Assumption B follows from
(4.11). We choose {bn : n ≥ 1} so that Assumption C holds.
Assumption D holds by the i.i.d. assumption. Assumption E holds
by the general argument given in Section 3.3 of AG1. Assumption
F holds because Jh(x) = J∗h (x) is strictly increasing for x ≥ 0
and ch(1 − α) ≥ 0 for α ≤ 1/2 by (4.14). Assumption G
follows by Lemma 4 in Section 7 of AG1 under Assumption Sub1
and follows trivially under Assumption Sub2. The assumptions
of Lemma 4 are verified as follows. Assumption BB holds with
(an, dn) = (τnη

−1
n,h, η

−1
n,h), where τn = 1/2, Vh is the distribution

of max{ζ ,−h}, and Wh is a point mass distribution at 1 under
sequences γn,h = (θn,h/ηn,h, (θn,h, βn,h, Fn,h))′ such that h ∈
R+,∞. Assumptions DD and EE hold by the same arguments as for
AssumptionsD and E. AssumptionHHholds because an = τnη−1n,h =
n1/2η−1n,h and ηn,h ∈ [ηL, ηU ]. The verification of the assumptions
for the lower one-sided and two-sided cases is analogous with the
exceptions of Assumptions F and J. Using (4.14), one can verify that
Assumption F holds for Jh = −J∗h and Jh = |J

∗

h | and Assumption J
holds for Jh = J∗h because for all h ∈ H (i) Jh(x) is strictly increasing
at x = ch(1 − α) or (ii) Jh(x) has a jump at x = ch(1 − α) with
Jh(ch(1 − α)) > 1 − α and Jh(ch(1 − α)−) < 1 − α provided
α ∈ (0, 1), where for a function G(·),G(x−) denotes the limit from
the left at x.

A.2.2. Analytic calculation of AsyCS
In this section, we use Corollary 2 of AG2 and Corollary 1 of AG3

to calculate analytically the AsyCS of subsampling, FCV, and hybrid
tests.
For upper one-sided CIs, Jh(·) (=J∗h (·)) is continuous at all x > 0

for all h ∈ R+,∞ using (4.14). Because the 1 − α quantile of Jh is
positive for any h ∈ H given α < 1/2, the intervals for AsyCS in
Corollary 1 of AG3 collapse to points. By Corollary 1 of AG3, we
find that the upper one-sided FCV, subsampling, and hybrid CIs all
have AsyCS = 1 − α for α < 1/2 because the 1 − α quantile of Jh
for any h ∈ H equals z1−α using (4.14).
For the lower one-sided FCV CI, Corollary 1 of AG3 implies

that AsyCS ∈ [infh∈H Jh(z1−α−), infh∈H Jh(z1−α)]. In this case,
Jh (=−J∗h ) is stochastically increasing in h. Hence, infh∈H Jh(z1−α) =
J∞(z1−α) = Φ(z1−α) = 1 − α using (4.14). Thus, AsyCS = 1 − α
for the lower one-sided FCV CI. For the lower one-sided hybrid
CI, we have max{cg(1 − α), c∞(1 − α)} = c∞(1 − α) = z1−α
for all g ∈ H because Jh (=−J∗h ) is stochastically increasing in h.
Hence, by Corollary 2 of AG2 and the above result for the FCV CI,
AsyCS = 1− α for the lower one-sided hybrid CI.
For the lower one-sided subsampling CI, Corollary 1 of AG3

implies that AsyCS ∈ [inf(g,h)∈GH Jh(cg(1 − α)−), inf(g,h)∈GH Jh
(cg(1− α))]. We have

inf
(g,h)∈GH

Jh(cg(1− α)) = inf
h∈H
Jh(c0(1− α)) = inf

h∈H
Jh(0)

= J∞(0) = 1/2, (A.22)

where the first and third equalities hold because Jh (=−J∗h ) is
stochastically increasing in h, the second equality holds because
J0(x) = 1 for all x ≥ 0 using (4.14), and the last equality holds
because J∞(x) = Φ(x) using (4.14). Therefore, AsyCS = 1/2 for
the lower one-sided subsampling CI.
We now provide the results for symmetric two-sided CIs. By

Corollary 1 of AG3, we have AsyCS ∈ [infh∈H Jh(z1−α/2−), infh∈H
Jh(z1−α/2)] for the FCV CI. Because Jh (=|J∗h |) is stochastically
increasing in h and using (4.14), we have infh∈H Jh(z1−α/2) =
J∞(z1−α/2) = 2Φ(z1−α/2) − 1 = 1 − α. Hence, AsyCS = 1 − α
for the symmetric two-sided FCV CI. For the hybrid CI, we have
max{cg(1 − α), c∞(1 − α)} = c∞(1 − α) = z1−α/2 for all g ∈ H
because Jh (=|J∗h |) is stochastically increasing in h and using (4.14).
Thus, using Corollary 2 of AG2 and the above result for the FCV CI,
we have AsyCS = 1− α for the symmetric two-sided hybrid CI.
For the symmetric two-sided subsampling CI, Corollary 1 of

AG3 implies that AsyCS ∈ [inf(g,h)∈GH Jh(cg(1 − α)−), inf(g,h)∈GH Jh
(cg(1− α))]. We have

inf
(g,h)∈GH

Jh(cg(1− α)) = inf
h∈H
Jh(c0(1− α)) = inf

h∈H
Jh(z1−α)

= J∞(z1−α) = 1− 2α, (A.23)

where the first and third equalities hold because Jh (=|J∗h |) is
stochastically increasing in h, the second equality holds because
J0(x) = Φ(x) for all x ≥ 0 using (4.14), and the last equality holds
because J∞(x) = (|J∗

∞
|)(x) = 2Φ(x) − 1 using (4.14). Eq. (A.23)

holds with cg(1 − α)− in place of cg(1 − α). Hence, the (nominal
1 − α) symmetric two-sided subsampling CI has AsyCS = 1 − 2α
and under-covers by α. An SC subsampling CI can be constructed
by taking ξ(α) = α/2.
Next, we discuss the results for the equal-tailed two-sided CIs.

Here, Jh = J∗h . By Corollary 2 of AG2, AsyCS ∈ [1 − Max
`−
ET ,Type(α),

1 − Maxr−ET ,Type(α)] for Type equal to Fix, Sub, and Hyb for the
FCV, subsampling, and hybrid CIs, respectively. For the FCV CI,
(cα/2, c1−α/2) = (zα/2, z1−α/2) yields

Maxr−ET ,Fix(α) = sup
h∈H
[1− Jh(z1−α/2)+ Jh(zα/2−)]

= sup
h∈H
[1− Φ(z1−α/2)+ Jh(zα/2−)] = α/2+ J∞(zα/2−)

= α/2+ Φ(zα/2−) = α, (A.24)
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where the second equality holds by (4.14), the third equality holds
because Jh (=J∗h ) is stochastically decreasing in h, and the fourth
equality holds by (4.14). Analogously,Max`−ET ,Type(α) = α. It follows
that AsyCS = 1− α for the equal-tailed FCV CI.
For the equal-tailed hybrid CI, the quantities max{cg(1− α/2),

c∞(1 − α/2)} and min{cg(α/2), c∞(α/2)} that appear in
Maxr−ET ,Hyb(α) equal z1−α/2 and zα/2, respectively, because
cg(1 − α/2) = z1−α/2 for all g ∈ H provided α ≤ 1/2 using
(4.14) and cg(α/2) ≥ c∞(α/2) = zα/2 for all g ∈ H using the
fact that Jh (=J∗h ) is stochastically decreasing in h and (4.14). Hence,
Maxr−ET ,Hyb(α) = Max

r−
ET ,Fix(α) and likewise with ` in place of r . In

consequence, the result that AsyCS = 1 − α for the equal-tailed
FCV CI yields the same result for the equal-tailed hybrid CI.
Finally, for the equal-tailed subsampling CI, we have

Maxr−ET ,Sub(α) = sup
(g,h)∈GH

[1− Jh(z1−α/2)+ Jh(cg(α/2)−)]

= sup
(g,h)∈GH

[1− Φ(z1−α/2)+ Jh(cg(α/2)−)]

= α/2+ sup
h∈H
Jh(0−)

= α/2+ J∞(0−) = α/2+ Φ(0) = α/2+ 1/2, (A.25)

where the first equality holds because cg(1 − α/2) = z1−α/2 for
all g ∈ H provided α ≤ 1/2 by (4.14), the second equality holds
as in (A.24), the third equality holds because cg(α/2) ≤ 0 with
equality when g = 0 for α ≤ 1/2 using (4.14), the fourth equality
holds because Jh (=J∗h ) is stochastically decreasing in h, and the
fifth equality holds because J∞ = J∗∞ = Φ using (4.14). Likewise,
Max`−ET ,Sub(α) = α/2+ 1/2. Therefore, AsyCS = 1/2− α/2 for the
equal-tailed subsampling CI. Size-correction (of the type discussed
in the paper) is not possible here.

A.3. Size-correction

A.3.1. Results for size-corrected tests
In this section we consider more general definitions of SC

tests than given in AG2. These conditions allow us to determine
necessary and sufficient conditions for the existence of SC tests of
the form given in (3.2) of AG2. These conditions relax Assumption
L of AG2 and are needed to cover symmetric two-sided SC
subsampling tests based on the fully-studentized t statistic in the
IV example.
We start by altering the definitions of cv(1 − α), κ(α), and

κ∗(α) from those given in AG2. We define the constants cv(1 −
α), (∈ R), κ(α)(∈ [0,∞)), and κ∗(α) (∈ {−∞} ∪ [0,∞)) to be
the smallest values that satisfy

sup
h∈H
[1− Jh(cv(1− α)−)] ≤ α,

sup
(g,h)∈GH

(
1− Jh((cg(1− α)+ κ(α))−)

)
≤ α and

sup
(g,h)∈GH

(
1− Jh

(
max{cg(1− α), c∞(1− α)+ κ∗(α)}−

))
≤ α, (A.26)

respectively.11 The constants are defined in this way because the
left-hand side of each inequality in (A.26) is an upper bound on
the AsySz(θ0) of each test.12 If (A.26) holds with cv(1 − α) =

11 If no such smallest value exists,we take somevalue that is arbitrarily close to the
infimum of the values that satisfy (A.26). Note that under the assumptions below,
there exist values that satisfy (A.26).
12 This holds by Theorem 1(i) of AG1 with cFix(1 − α) = cv(1 − α), by Theorem
1(ii) of AG1with cn,b(1−α)+κ(α) in place of cn,b(1−α), and by Theorem 1 of AG2
with max{cn,b(1−α), c∞(1−α)+κ∗(α)} in place of max{cn,b(1−α), c∞(1−α)}.

cFix(1 − α) (or with κ(α) = 0 or κ∗(α) = 0), then (i) no size
correction is needed and (ii) the SC-FCV test (or SC-Sub test or SC-
Hyb test, respectively) is just the uncorrected test. It is shown in
the proof of Theorem 2 of AG2 that cv(1 − α), κ(α), and κ∗(α)
as defined in (3.2) of AG2 satisfy (A.26) (under the assumptions of
that Theorem). Hence, the definition of these quantities via (A.26)
is indeed more general than the definition given in (3.2) of AG2.
The following conditions are necessary and sufficient for the

existence of constants cv(1 − α), κ(α), and κ∗(α), respectively,
that satisfy (A.26).

Assumption LF. suph∈H ch(1− α) <∞.

Assumption LS. sup(g,h)∈GH
(
ch(1− α)− cg(1− α)

)
<∞.

Define

H∗ = {h ∈ H : for some (g, h) ∈ GH, cg(1− α) < ch(1− α)}
and

H∗∗ = {h∈H : Jh(ch(1− α)−) < 1− α and ∃g ∈ H, (g, h)
∈ GH,max{cg(1− α), sup

h∗∈H∗
ch∗(1− α)} = ch(1− α)}. (A.27)

Assumption LH. (i) suph∈H∗ ch(1 − α) < ∞, and (ii) suph∈H∗∗
ch(1− α) <∞.

(If H∗ is empty, suph∈H∗ ch(1 − α) = −∞ by definition and
analogously for H∗∗.)
Below we use Assumption K of AG2 for the results concerning

hybrid tests. It states that the asymptotic distribution Jh of the
statistic Tn(θ0) under {γn,h : n ≥ 1} is the same (proper)
distribution, call it J∞, for all h = (h1, h2) ∈ H for which h1,m =
+∞ or−∞ for allm = 1, . . . , p, where h1 = (h1,1, . . . , h1,p)′.
Let ‘‘iff’’ abbreviate ‘‘if and only if’’.

Lemma 1. (a) A value cv(1 − α) that satisfies (A.26) exists iff
Assumption LF holds.
(b)A valueκ(α) that satisfies (A.26) exists iff Assumption LSholds.
(c) Suppose AssumptionK holds. A value κ∗(α) that satisfies (A.26)

exists iff Assumption LH holds.

(Note that Lemma 1 does not provide conditions for the existence
of a smallest value that satisfies (A.26). Rather, it provides
conditions for the existence of some value that satisfies (A.26).)
Assumptions LF, LH and LS are satisfied in many examples.

However, they are all violated in some examples, e.g., see the
consistent model selection/super-efficient example in Andrews
and Guggenberger (2009c). Size correction (at least of the type
considered here) is not possible in that example. In addition, in
some examples, Assumption LF fails, but Assumptions LH and LS
hold. This implies that the FCV test cannot be size-corrected by the
method considered here, but the subsampling and hybrid tests can
be. This occurs in the IV example considered abovewith symmetric
two-sided tests (when the test statistic T ∗n (θ0) is defined with σu
estimated). Furthermore, in some examples, Assumption LS fails,
but Assumptions LF and LH hold. This occurs in the IV example
considered above with upper one-sided tests and H2 = [−1, 0]
(when the test statistic T ∗n (θ0) is defined with σu estimated). The
restriction of H2 to [−1, 0] in this example, which requires the
correlation between the structural and reduced form errors to be
non-positive, may not arise naturally in practice. But this case
serves to illustrate the point that it is possible for Assumption LS
to fail even when Assumption LF holds.
Assumption LH(ii) is not restrictive because H∗∗ is typically

empty or a small set. Sufficient conditions for Assumption LH(ii)
are either of the following:
LH(ii)′. For all h ∈ H, Jh(ch(1− α)−) = 1− α.
LH(ii)′′. For all h ∈ H, Jh(·) is continuous at its (1−α)–quantile

ch(1− α).
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Note that LH(ii)′′ implies LH(ii)′. Assumptions LH(ii)′ and LH(ii)′′
imply that H∗∗ = ∅ and thus imply LH(ii).
We now provide conditions under which Assumptions LF, LH

and LS are equivalent. Define

Assumption L∗. suph2∈H2 c(0,h2)(1− α) <∞.

Assumption L∗∗. infh∈H ch(1− α) > −∞.

Assumptions L∗ and L∗∗ often hold, but L∗ is violated in the
symmetric two-sided IV example mentioned above and L∗∗ is
violated in the upper one-sided IV example mentioned above.

Lemma 2. (a) LF& L∗∗ ⇒ LS, (b) LF⇒ LH, (c) LS&L ∗ ⇒ LF, (d) LH
(i) & L∗ ⇒ LF, and (e) if L∗ and L∗∗ hold, then LF⇔ LS⇔ LH.

Comment. Assumption L of AG2 is equivalent to the combination
of Assumptions LF and L∗∗. Hence, the lemma shows that
Assumption L implies Assumptions LF, LH and LS.
The following corollary to Theorem 1 of AG1 and Theorem 1 of

AG2 shows that the SC tests have asymptotic size less than or equal
to their nominal level α. Assumptions A–G are stated in AG1.

Corollary 3. (a) Suppose Assumptions A, B, and LF hold. Then, the
SC-FCV test has AsySz(θ0) ≤ α.
(b) Suppose Assumptions A, B, C–G and LS hold. Then, the SC-Sub

test has AsySz(θ0) ≤ α.
(c) Suppose Assumptions A, B, C–G, K and LH hold. Then, the

SC-Hyb test has AsySz(θ0) ≤ α.

Comment. Under the assumptions of the corollary plus Assump-
tion M(a) (respectively, M(b), M(c) of AG2), the SC-FCV (SC-Sub,
SC-Hyb) test has AsySz(θ0) = α.

A.3.2. Proofs for size-correction results
For notational simplicity, we write cv(1− α) and ch(1− α) as

cv and ch hereafter.

Proof of Lemma 1. For part (a), first supposeAssumption LF holds.
Consider the value cv = suphĎ∈H chĎ + ε (<∞) for some ε > 0.
We have

sup
h∈H
[1− Jh(cv−)] = sup

h∈H
[1− Jh((sup

hĎ∈H
chĎ + ε)−)]

≤ sup
h∈H
[1− Jh((ch + ε)−)] ≤ sup

h∈H
[1− Jh(ch)] ≤ α, (A.28)

where the first and second inequalities hold because Jh is
nondecreasing and the last inequality holds by the definition of ch.
Eq. (A.28) implies that there exists a value cv such that (A.26) holds.
To prove the converse for part (a), suppose that there exists a

constant cv (∈ R) such that (A.26) holds. Then, for all h ∈ H,

Jh(cv) ≥ Jh(cv−) ≥ 1− α, (A.29)

where the second inequality holds by (A.26). By (A.29) and the
definition of ch, ch ≤ cv <∞ for all h ∈ H . Hence, Assumption LF
holds.
To prove part (b), first suppose that Assumption LS holds.

Consider the value κ(α) = sup(g∗,h∗)∈GH [ch∗ − cg∗ ] + ε (<∞) for
some ε > 0. Then, for any (g, h) ∈ GH, cg + κ(α) ≥ ch + ε, and
we have

sup
(g,h)∈GH

[1− Jh((cg + κ(α))−)] ≤ sup
(g,h)∈GH

[1− Jh((ch + ε)−)]

≤ sup
h∈H
[1− Jh(ch)] ≤ α. (A.30)

Hence, κ(α) satisfies (A.26).
To prove the converse for part (b), suppose that some κ(α) ∈

[0,∞) satisfies (A.26). Then, for all (g, h) ∈ GH,

Jh(cg + κ(α)) ≥ Jh((cg + κ(α))−) ≥ 1− α, (A.31)

where the second inequality holds by (A.26). Hence, by the
definition of ch, cg + κ(α) ≥ ch. This implies that κ(α) ≥ ch − cg
for all (g, h) ∈ GH and Assumption LS holds.
For part (c), suppose that Assumption LH holds. For some ε > 0,

define

κ∗(α) = max{ sup
h∗∈H∗

ch∗ − c∞, sup
h∗∗∈H∗∗

ch∗∗ − c∞ + ε} (A.32)

and recall that suph∗∈H∗ ch∗ = −∞when H∗ = ∅ and analogously
for H∗∗. By Assumption LH, κ∗(α) <∞. Then,

max{cg , c∞ + κ∗(α)} = max{cg , sup
h∗∈H∗

ch∗ , sup
h∗∗∈H∗∗

ch∗∗ + ε}.

(A.33)

For all (g, h) ∈ GH , we have

max{cg , sup
h∗∈H∗

ch∗} ≥ ch (A.34)

because max{cg , suph∗∈H∗ ch∗} < ch implies that cg < ch, which
implies that h ∈ H∗, which implies that suph∗∈H∗ ch∗ ≥ ch, which
is a contradiction.
For any (g, h) ∈ GH with max{cg , suph∗∈H∗ ch∗} > ch, we have

1− Jh(max{cg , c∞ + κ∗(α)}−) ≤ 1− Jh(ch) ≤ α. (A.35)

For any (g, h) ∈ GH with max{cg , suph∗∈H∗ ch∗} = ch, we have

1− Jh(max{cg , c∞ + κ∗(α)}−)

= 1− Jh(max{ch, sup
h∗∗∈H∗∗

ch∗∗ + ε}−) ≤ α, (A.36)

where the last inequality holds by the following argument. If ch ≥
suph∗∗∈H∗∗ ch∗∗+ε, then Jh(ch−) = 1−α (because if Jh(ch−) < 1−α
then h ∈ H∗∗, a contradiction) and if ch < suph∗∗∈H∗∗ ch∗∗ + ε,
then 1 − Jh(max{ch, suph∗∗∈H∗∗ ch∗∗ + ε}−) ≤ 1 − Jh(ch) ≤ α.
Combining (A.35) and (A.36) gives sup(g,h)∈GH [1− Jh(max{cg , c∞+
κ∗(α)}−)] ≤ α, as desired.
To prove the converse of part (c), suppose that some κ∗(α) ∈

[0,∞) satisfies (A.26).We show that this implies Assumption LH(i)
and (ii). For all (g, h) ∈ GH , we have

Jh(max{cg , c∞ + κ∗(α)})

≥ Jh(max{cg , c∞ + κ∗(α)}−) ≥ 1− α, (A.37)

where the second inequality holds because κ∗(α) satisfies (A.26).
By (A.37) and the definition of ch,max{cg , c∞ + κ∗(α)} ≥ ch. In
consequence, either (i) cg ≥ ch or (ii) cg < ch and c∞+κ∗(α) ≥ ch.
Hence, for all (g, h) ∈ GH for which cg < ch, we have ch ≤
c∞ + κ∗(α) < ∞. That is, suph∗∈H∗ ch∗ ≤ c∞ + κ∗(α) < ∞ and
Assumption LH(i) holds.
If Assumption LH(ii) does not hold, then by the definition of

H∗∗, we can pick a sequence {(gn, hn) ∈ GH} such that chn =
max{cgn , suph∗∈H∗ ch∗} → ∞ and Jhn(chn−) < 1 − α. From this
sequence pick a chn > max{c∞ + κ

∗(α), suph∗∈H∗ ch∗}, which can
be done given that LH(i) holds. Then, chn = cgn > c∞ + κ∗(α)
and thus 1 − Jhn(max{cgn , c∞ + κ

∗(α)}−) = 1 − Jhn(chn−) > α
contradicting (A.26). �

Proof of Lemma 2. For part (a), LF and L∗∗ imply that sup(g,h)∈GH(ch
− cg) ≤ suph∈H ch − infh∈H ch < ∞, so LS holds. Part (b) holds
because (H∗ ∪ H∗∗) ⊂ H . To prove part (c), suppose that LS &
L∗ hold and LF does not hold. Then, by LF, there is a sequence
hn = (hn,1, hn,2) ∈ H such that chn → ∞, and because K

∗
=

suph2∈H2 c(0,h2) < ∞, we have c(hn,1,hn,2) − c(0,hn,2) ≥ c(hn,1,hn,2) −
K ∗ →∞. Since ((0, hn,2), (hn,1, hn,2)) ∈ GH , this contradicts LS.
To prove part (d), suppose that LH(i) & L∗ hold and LF does

not hold. Then, by LF, there is a sequence hn = (hn,1, hn,2) ∈ H



D.W.K. Andrews, P. Guggenberger / Journal of Econometrics 158 (2010) 285–305 305

such that chn → ∞, and because suph2∈H2 c(0,h2) < ∞, we have
c(hn,1,hn,2) > c(0,hn,2) and hn ∈ H

∗ for n sufficiently large. LH(i) is
contradicted by chn →∞ and hn ∈ H

∗ for n sufficiently large.
Part (e) follows from parts (a)–(d). �

Proof of Corollary 3. First, the SC-FCV, SC-Sub, and SC-Hyb tests
are well-defined given Assumptions LF, LH and LS, respectively,
because Lemma 1 guarantees that there exist values cv(1 − α),
κ(α), and κ∗(α) that satisfy (A.26).
For part (a), Theorem 1(i) of AG1 applied with cFix(1− α) = cv

implies that the SC-FCV test satisfies AsySz(θ0) ≤ suph∈H [1 −
Jh(cv−)] ≤ α, where the second inequality holds by (A.26). For
part (b), Theorem 1(ii) of AG1 with cn,b + κ(α) in place of cn,b
implies that the SC-Sub test satisfies AsySz(θ0) ≤ sup(g,h)∈H [1 −
Jh((cg + κ(α))−)] ≤ α,where the second inequality holds by
(A.26). For part (c), Theorem 1 of AG2 with max{cn,b, c∞ + κ∗(α)}
in place of max{cn,b, c∞} implies that the SC-Hyb test satisfies
AsySz(θ0) ≤ sup(g,h)∈H [1−Jh(max{cg , c∞+κ∗(α)}−)] ≤ α,where
the second inequality holds by (A.26). �
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