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a b s t r a c t

We consider a first-order autoregressive model with conditionally heteroskedastic innovations. The
asymptotic distributions of least squares (LS), infeasible generalized least squares (GLS), and feasible GLS
estimators and t statistics are determined. The GLS procedures allow for misspecification of the form of
the conditional heteroskedasticity and, hence, are referred to as quasi-GLS procedures. The asymptotic
results are established for drifting sequences of the autoregressive parameter ρn and the distribution
of the time series of innovations. In particular, we consider the full range of cases in which ρn satisfies
n(1 − ρn) → ∞ and n(1 − ρn) → h1 ∈ [0, ∞) as n → ∞, where n is the sample size. Results of this
type are needed to establish the uniform asymptotic properties of the LS and quasi-GLS statistics.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

We are very happy to contribute this paper to the Special Issue
in Honor of Peter C.B. Phillips. The topic of the paper is the first-
order autoregressive AR(1) model with a stationary, unit, or near
unit root. This is a topic to which Peter Phillips has made seminal
contributions over several decades ranging from Phillips (1977)
to Phillips and Magdalinos (2007). The current paper considers
an AR(1) model with conditional heteroskedasticity and, hence, is
closely related to Guo and Phillips (2001).

This paper establishes the asymptotic distributions of LS and
quasi-GLS statistics in an AR(1) model with intercept and con-
ditional heteroskedasticity. The LS and GLS procedures allow for
misspecification of the form of the conditional heteroskedasticity
and, hence, are referred to as quasi-GLS procedures. The statistics
considered include infeasible and feasible quasi-GLS estimators,
heteroskedasticity-consistent (HC) standard error estimators, and
the t statistics formed from these estimators. The paper considers:
(i) the stationary and near stationary case, where the autoregres-
sive parameter ρn satisfies n(1 − ρn) → ∞ as n → ∞ and (ii) the
unit-root and near unit-root case, where n(1−ρn) → h1 ∈ [0, ∞).
Our interest in asymptotics under drifting sequences of parameters
is due to the fact that near unit-root asymptotics are well-known
to provide better finite-sample approximations than fixed parame-
ter asymptotics for parameter values that are close to, but different
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from, unity. In addition, uniform asymptotic results rely on asymp-
totic results under drifting sequences of parameters, see Andrews
and Guggenberger (2010a).

In case (i), the quasi-GLS t statistic is shown to have a standard
normal asymptotic distribution. In case (ii), its asymptotic distribu-
tion is shown to be that of a convex linear combination of a random
variable with a ‘‘demeaned near unit-root distribution’’ and an in-
dependent standard normal random variable. The weights on the
two randomvariables depend on the correlation between the inno-
vation, sayUi, and the innovation rescaled by the quasi-conditional
variance, say Ui/φ

2
i . Here φ2

i is the (possibly misspecified) condi-
tional variance used by the GLS estimator. In the case of LS, we
have φ2

i = 1, the correlation between Ui and Ui/φ
2
i is one, and the

asymptotic distribution is a demeaned near unit-root distribution
(based on an Ornstein–Uhlenbeck process).

For an AR(1) model without conditional heteroskedasticity,
case (i) is studied by Park (2002), Giraitis and Phillips (2006), and
Phillips and Magdalinos (2007). An AR(1) model with conditional
heteroskedasticity and ρ = 1, which falls within case (ii) above,
has been considered by Seo (1999) and Guo and Phillips (2001).
The results given here make use of ideas in these two papers.
Case (ii) is the ‘‘near integrated’’ case that has been studied in
AR models without conditional heteroskedasticity by Bobkowski
(1983), Cavanagh (1985), Chan and Wei (1987), Phillips (1987),
Elliott (1999), Elliott and Stock (2001), and Müller and Elliott
(2003). The latter three papers consider the situation that also is
considered here in which the initial condition yields a stationary
process. Gonçalves and Kilian (2004, 2007) consider inference in

http://dx.doi.org/10.1016/j.jeconom.2012.01.017
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:donald.andrews@yale.edu
http://dx.doi.org/10.1016/j.jeconom.2012.01.017
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autoregressive models with conditional heteroskedasticity but do
not allow for unit roots or roots near unity.

As noted above, in this paper, we consider a heteroskedasticity-
consistent (HC) standard error estimator. Such an estimator is
needed in order for the quasi-GLS t statistic to have a standard
normal asymptotic distribution in case (i) when the form of the
conditional heteroskedasticity is misspecified.

The paper provides high-level conditions under which infea-
sible and feasible quasi-GLS estimators are asymptotically equiv-
alent.1 The high-level conditions are verified for cases in which
the GLS estimator employs a parametric model, with some pa-
rameter π , for the form of the conditional heteroskedasticity. For
technical reasons, we take the estimator of π to be a discretized
estimator and we require the parametric form of the conditional
heteroskedasticity to be such that the conditional variance de-
pends upon a finite number of lagged squared innovations. Neither
of these conditions is particularly restrictive because (a) the grid
size for the discretized estimator can be defined such that there
is little difference between the discretized and non-discretized
versions of the estimator of π , (b) the parametric model for the
conditional heteroskedasticity may be misspecified, and (c) any
parametric model with stationary conditional heteroskedasticity,
such as a GARCH(1, 1) model, can be approximated arbitrarily well
by a model with a large finite number of lags.

The results of this paper are used in Andrews andGuggenberger
(2009) to show that symmetric two-sided subsampling confidence
intervals (based on the quasi-GLS t statistic described above)
have correct asymptotic size in an AR(1) model with conditional
heteroskedasticity. (Here ‘‘asymptotic size’’ is defined to be
the limit as the sample size n goes to infinity of the exact,
i.e., finite-sample, size.) This result requires uniformity in the
asymptotics and, hence, relies on asymptotic results in which
the autoregressive parameter and the innovation distribution
may depend on n. (Triangular array asymptotics are needed to
establish uniformity in the asymptotics in a wide variety of
models, e.g., see Andrews and Guggenberger, 2010a.) In addition,
Andrews and Guggenberger (2009) shows that upper and lower
one-sided and symmetric and equal-tailed two-sided hybrid-
subsampling confidence intervals have correct asymptotic size. No
other confidence intervals in the literature, including those in Stock
(1991), Andrews (1993), Andrews and Chen (1994), Nankervis and
Savin (1996), Hansen (1999), Chen and Deo (2011), andMikusheva
(2007), have correct asymptotic size in an AR(1) model with
conditional heteroskedasticity.

The remainder of the paper is organized as follows. Section 2
introduces the model and statistics considered. Section 3 gives
the assumptions, normalization constants, and asymptotic results.
Section 4 and Andrews and Guggenberger (2010b) provide proofs
of the results.

2. Model, estimators, and t statistic

We use the unobserved components representation of the
AR(1) model. The observed time series {Yi : i = 0, . . . , n} is based
on a latent no-intercept AR(1) time series {Y ∗

i : i = 0, . . . , n}:

Yi = α + Y ∗

i ,

Y ∗

i = ρY ∗

i−1 + Ui, for i = 1, . . . , n, (1)

1 By definition, the feasible quasi-GLS estimator is based on (possibly misspeci-
fied) estimators {φ2

n,i : i ≤ n} of the conditional variances of the innovations. The
corresponding infeasible quasi-GLS estimator is based on the limits {φ2

i : i ≤ n}
of the estimators {φ2

n,i : i ≤ n} in the sense of Assumption CHE. If the latter are
misspecified, then the true conditional variances are different from {φ2

i : i ≤ n}.
where ρ ∈ [−1+ε, 1] for some 0 < ε < 2, {Ui : i = . . . , 0, 1, . . .}
are stationary and ergodic with conditional mean 0 given a
σ -field Gi−1 defined at the end of this section, conditional variance
σ 2
i = E(U2

i |Gi−1), and unconditional variance σ 2
U ∈ (0, ∞). The

distribution of Y ∗

0 is the distribution that yields strict stationarity
for {Y ∗

i : i ≤ n}when ρ < 1, i.e., Y ∗

0 =


∞

j=0 ρ jU−j, and is arbitrary
when ρ = 1.

The model can be rewritten as

Yi =α + ρYi−1 + Ui, whereα = α(1 − ρ), (2)

for i = 1, . . . , n.2
We consider a feasible quasi-GLS (FQGLS) estimator of ρ and

a t statistic based on it. The FQGLS estimator depends on estima-
tors {φ2

n,i : i ≤ n} of the conditional variances {σ 2
i : i ≤ n}. The

estimators {φ2
n,i : i ≤ n} may be from a parametric specification

of the conditional heteroskedasticity, e.g., a GARCH(1, 1) model, or
from a nonparametric estimator, e.g., one based on q lags of the ob-
servations. We do not assume that the conditional heteroskedas-
ticity estimator is consistent. For example, we allow for incorrect
specification of the parametric model in the former case and con-
ditional heteroskedasticity that depends onmore than q lags in the
latter case. The estimated conditional variances {φ2

n,i : i ≤ n} are
defined such that they approximate a stationary Gi−1-adapted se-
quence {φ2

i : i ≤ n} in the sense that certain normalized sums
have the same asymptotic distribution whetherφ2

n,i or φ2
i appears

in the sum. This is a typical property of feasible and infeasible GLS
estimators.

As an example, the results (i.e., Theorems 1 and 2 below)
allow for the case where (i) {φ2

n,i : i ≤ n} are from a
GARCH(1, 1) parametric model with parameters π estimated
using LS residualswith GARCH and LS parameter estimatorsπn and
(αn,ρn), respectively, (ii) (αn,ρn) have a probability limit given
by the true values (α0, ρ0), (iii) πn has a probability limit defined
as the ‘‘pseudo-true’’ value π0, (iv)φ2

n,i = φ2
i,1(αn,ρn,πn), where

φ2
i,1(α, ρ, π) is the i-th GARCH conditional variance based on a

start-up at time 1 and parameters (α, ρ, π), and (v)φ2
i,−∞

(α, ρ, π)
is the GARCH conditional variance based on a start-up at time−∞

and parameters (α, ρ, π). In this case, φ2
i = φ2

i,−∞
(α0, ρ0, π0).

Thus, φ2
i is just φ2

n,i with the estimation error and start-up
truncation eliminated.

Under the null hypothesis that ρ = ρn, the studentized t
statistic is

T ∗

n (ρn) =
n1/2(ρn − ρn)σn

, (3)

where ρn is the LS estimator from the regression of Yi/φn,i on
Yi−1/φn,i and 1/φn,i, and σ 2

n is the (1, 1) element of the standard
heteroskedasticity-robust variance estimator for the LS estimator
in the preceding regression.

To define T ∗
n (ρn) more explicitly, let Y ,U, X1, and X2 be

n-vectors with ith elements given by Yi/φn,i,Ui/φn,i, Yi−1/φn,i, and
1/φn,i, respectively. Let ∆ be the diagonal n × n matrix with ith
diagonal element given by the ith element of the residual vector
MXY , where X = [X1 : X2] and MX = In − X(X ′X)−1X ′. That is,
∆ = Diag(MXY ). Then, by definition,

ρn =

X ′

1MX2X1
−1 X ′

1MX2Y , and (4)σ 2
n =


n−1X ′

1MX2X1
−1 

n−1X ′

1MX2∆
2MX2X1


×

n−1X ′

1MX2X1
−1

.

2 By writing the model as in (1), the case ρ = 1 andα ≠ 0 is automatically ruled
out. Doing so is desirable because when ρ = 1 andα ≠ 0, Yi is dominated by a
deterministic trend and the LS estimator of ρ converges at rate n3/2 .
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We assume {(Ui, φ
2
i ) : i ≥ 1} are stationary and strong mixing.

We define Gi to be some non-decreasing sequence of σ -fields for
i ≥ 1 for which (Uj, φ

2
j+1) ∈ Gi for all j ≤ i.

3. Asymptotic results

3.1. Assumptions

We let F denote the distribution of {(Ui, φ
2
i ) : i = . . . , 0, 1, . . .}.

Our asymptotic results below are established under drifting
sequences {(ρn, Fn) : n ≥ 1} of autoregressive parameters ρn
and distributions Fn. In particular, we provide results for the cases
n(1 − ρn) → ∞ and n(1 − ρn) → h1 ∈ [0, ∞). When Fn depends
on n, {(Ui, φ

2
i ) : i ≤ n} for n ≥ 1 form a triangular array of random

variables and (Ui, φ
2
i ) = (Un,i, φ

2
n,i). We now specify assumptions

on (Un,i, φ
2
n,i). The assumptions place restrictions on the drifting

sequence of distributions {Fn : n ≥ 1} that are considered.
The statisticsρn,σn, and T ∗

n (ρn) are invariant to the value of α.
Hence, without loss of generality, from now on we take α = 0 and
Yn,i = Y ∗

n,i.
Let λmin(A) denote the smallest eigenvalue of the matrix A.

Assumption INNOV. (i) For each n ≥ 1, {(Un,i, φ
2
n,i, σ

2
n,i) : i =

. . . , 0, 1, . . .} are stationary and strong mixing, where σ 2
n,i =

EFn(U
2
n,i|Gn,i−1), EFn(Un,i | Gn,i−1) = 0 a.s., and Gn,i is some

non-decreasing sequence of σ -fields for i = . . . , 1, 2, . . . for
n ≥ 1 for which (Un,j, φ

2
n,j+1) ∈ Gn,i for all j ≤ i,3

(ii) the strong-mixing numbers {αn(m) : m ≥ 1} satisfy α(m) =

supn≥1 αn(m) = O(m−3ζ/(ζ−3)) as m → ∞ for some ζ > 3,
(iii) supn,i,s,t,u,v,A EFn |


a∈A a|

ζ < ∞, where 0 ≤ i, s, t, u, v < ∞,

n ≥ 1, and A is a non-empty subset of {Un,i−s,Un,i−t ,U2
n,i+1/

φ4
n,i+1,Un,−u,Un,−v, (U2

n,1 + σ 2
n,1)/φ

4
n,1} or a subset of {Un,i−s,

Un,i−t , φ
−k
n,i+1,Un,−u,Un,−v, φ

−k
n,1} for k = 2, 3, 4, supn EFn(σ

2
n,i)

ζ

< ∞, infn EFnU
2
n,i ≥ δ > 0.

(iv) φ2
n,i ≥ δ > 0 a.s.,

(v) λmin(EFn(X
1X1′U2

n,1/φ
2
n,1)) ≥ δ > 0, where X1

= (Y ∗

n,0/φn,1,

φ−1
n,1)

′, and
(vi) the following limits exist and are positive: h2,1 = limn→∞

EFnU
2
n,i, h2,2 = limn→∞ EFn(U

2
n,i/φ

4
n,i), h2,3 = limn→∞ EFn(U

2
n,i/

φ2
n,i), h2,4 = limn→∞ EFnφ

−1
n,i , h2,5 = limn→∞ EFnφ

−2
n,i , and

h2,6 = limn→∞ EFnφ
−4
n,i .

Assumptions INNOV(i) and (ii) specify the dependence struc-
ture of the innovations. These conditions rule out long-memory
innovations, but otherwise are not very restrictive. Assumption IN-
NOV(iii) is a moment condition on the innovations. This assump-
tion can be restrictive because it restricts the thickness of the tails
of the innovations and financial time series often have thick tails. It
would be desirable to relax this assumption but the current meth-
ods of proof, namely the proofs of Lemmas 6–9, require the as-
sumption as stated. Note that the use of the heteroskedasticity-
robust variance estimatorσ 2

n requires strongermoment conditions
than would a variance estimator that is designed for homoskedas-
ticity, but the latter would not yield a standard normal asymptotic
distribution under stationarity and heteroskedasticity. Assump-
tion INNOV(iv) bounds φ2

n,i away from zero. This is not restrictive
because most conditional variance estimators φ2

n,i are defined so

3 By ‘‘(Un,j, φ
2
n,j+1) ∈ Gn,i for all j ≤ i’’ we mean that the σ -field generated by

{(Un,j, φ
2
n,j+1) : j ≤ i} is a sub-σ -field of Gn,i .
that they are bounded away from zero. The terms φ2
n,i then in-

herit the same property, see Assumption CHE below. Assumption
INNOV(v) is a nonsingularity condition that is not very restrictive
because Y ∗

n,0 is not equal to a constant. For example, in the trivial
case in which {Un,i : i ≤ n} are i.i.d. and φ2

n,i = 1, it reduces to
EFnU

2
n,i being bounded away from zero. Assumption INNOV(vi) re-

quires that the limits of certain moments exist. This assumption
is not very restrictive. For example, it still allows one to establish
uniform asymptotic results for tests and confidence intervals, see
Andrews and Guggenberger (2009).

We now discuss Assumption INNOV for the example of a
correctly-specified GARCH(1, 1) model

Un,i = σn,iεn,i, for {εn,i} i.i.d. in i = . . . , 0, 1, . . . ,

EFnεn,i = 0, EFnε
2
n,i = 1, and

σ 2
n,i = φ2

n,i = cn + αnU2
n,i + βnσ

2
n,i−1 (5)

with GARCH innovations {εn,i} that satisfy supn≥1 EFn |εn,i|
6ζ < ∞

with ζ = 3 + ε for any small ε > 0 and with GARCH parameters
(cn, αn, βn) restricted by infn≥1 cn > 0, supn≥1 cn < ∞, supn≥1
(αn + βn) < 1, αn > 0, βn ≥ 0 for all n, and the additional
restriction supn≥1 EFn(βn +αnε

2
n,1)

3ζ < 1.4 We show in Section 4.1
how these conditions imply the stationarity part of Assumptions
INNOV(i), (iii), and (iv). To do so, we use results about GARCH(1, 1)
processes given in Bollerslev (1986) and Lindner (2009). Lindner
(2009, Theorem 8) states that for given n, {(Un,i, σ

2
n,i) : i = . . . , 0,

1, . . .} is strongly mixing with geometric decay rate of the mixing
numbers, i.e. αn(m) = O(λm

n ) as m → ∞ for a λn ∈ (0, 1),
if in addition εn,1 is absolutely continuous with Lebesgue density
fn(x) ≥ f (x) > 0 for all |x| < δ for some δ > 0 and some function
f . For example, this requirement is satisfied if εn,1 is normally
distributed. Therefore, the mixing part of Assumptions INNOV(i)
and (ii) holds provided supn≥1 λn < 1. (The latter obviously holds
when the GARCH parameters and the distribution of εn,1 do not
depend on n and should hold when they do depend on n given the
restrictions that supn≥1(αn +βn) < 1 and the innovation densities
are bounded away from zero in a neighborhood of the origin.)
Regarding Assumption INNOV(v), we refer to the discussion above.
Assumption INNOV(vi) just requires the existence of certain limits
and is innocuous.

We now return to the general case. If ρn = 1, the initial condi-
tion Y ∗

n,0 is arbitrary. If ρn < 1, then the initial condition satisfies
the following assumption:

Assumption STAT. Y ∗

n,0 =


∞

j=0 ρ
j
nUn,−j.

Assumption STAT states that a stationary initial condition is
employedwhen ρn < 1. If a different initial condition is employed,
such as Y ∗

n,0 = 0, then the asymptotic distributions in Theorems 1
and 2 below are different in the near unit-root case (which
corresponds to h1 ∈ (0, ∞) in those theorems). In particular, in
(15), the second summand in the definition of I∗h (r) is attributable
to the stationary initial condition.

We determine the asymptotic distributionsρn,σ 2
n , and T ∗

n (ρn)
under sequences {(ρn, Fn) : n ≥ 1} such that (a) Assumption
INNOV holds and if ρn < 1 Assumption STAT also holds, and

(b) n(1 − ρn) → h1 for (i) h1 = ∞ and (ii) 0 ≤ h1 < ∞. (6)

4 E.g., for the case where εn,1 is N(0, 1) and ε = 1/30, the latter restriction
implies that for given αn, βn is restricted to the interval [0, βαn ], where some val-
ues of (αn, βαn ) are given as (0.01, 0.98), (0.02, 0.97), (0.03, 0.96), (0.04, 0.94),
(0.05, 0.91), (0.06, 0.88), (0.07, 0.83), (0.08, 0.78), (0.09, 0.71), (0.1, 0.62),
(0.11, 0.51), (0.12, 0.39), (0.13, 0.25), and (0.14, 0.1). For αn ≥ 0.15, the set of
possible βn values is empty.
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The asymptotic distributions ofρn andσ 2
n are shown to depend on

the parameters h1, h2,1, and h2,2 (where h2,1 and h2,2 are defined in
Assumption INNOV(vi)) and the parameter h2,7, which is defined
by

h2,7 =
h2,3

(h2,1h2,2)1/2
= lim

n→∞
CorrFn(Un,i,Un,i/φ

2
n,i). (7)

The asymptotic distribution of T ∗
n (ρn) is shown to depend only on

h1 and h2,7.
Define

h2 = (h2,1, . . . , h2,7)
′ and

h = (h1, h′

2)
′
∈ H = R+,∞ × H2, (8)

where R+ = {x ∈ R : x ≥ 0}, R+,∞ = R+ ∪ {∞}, and H2 ⊂

(0, ∞)6 × (0, 1].
For notational simplicity, we index the asymptotic distributions

ofρn,σ 2
n , and T ∗

n (ρn) by h below (even though they only depend on
a subvector of h).

3.2. Normalization constants

The normalization constants an and dn used to obtain the
asymptotic distributions of ρn and σn, respectively, depend on
(ρn, Fn) and are denoted an(ρn, Fn) and dn(ρn, Fn). They are defined
as follows. Let {ρn : n ≥ 1}be a sequence forwhichn(1−ρn) → ∞

or n(1 − ρn) → h1 ∈ [0, ∞). Define the 2-vectors

X1
= (Y ∗

n,0/φn,1, φ
−1
n,1)

′ and

Z = (1, −EFn(Y
∗

n,0/φ
2
n,1)/EFn(φ

−2
n,1))

′. (9)

Define

an = an(ρn, Fn) = n1/2dn(ρn, Fn) and (10)
dn = dn(ρn, Fn)

=


EFn(Y

∗2
n,0/φ

2
n,1) − (EFn(Y

∗

n,0/φ
2
n,1))

2/EFn(φ
−2
n,1)

(Z ′EFn(X1X1′U2
n,1/φ

2
n,1)Z)1/2

if n(1 − ρn) → ∞

n1/2 if n(1 − ρn) → h1 ∈ [0, ∞).

Note that the normalization constant for the t statistic T ∗
n (ρn) is

an(ρn, Fn)/dn(ρn, Fn) = n1/2.
In certain cases, the normalization constants simplify. In the

case where n(1 − ρn) → ∞ and ρn → 1, the constants an and
dn in (10) simplify to

an = n1/2 EFn(Y
∗2
n,0/φ

2
n,1)

(EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1))

1/2
and

dn =
EFn(Y

∗2
n,0/φ

2
n,1)

(EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1))

1/2

(11)

up to lower order terms. This holds because by Lemma 6 below

Z ′EFn(X
1X1′U2

n,1/φ
2
n,1)Z

= EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1) − 2EFn(Y

∗

n,0U
2
n,1/φ

4
n,1)

× EFn(Y
∗

n,0/φ
2
n,1)/EFn(φ

−2
n,1)

+ (EFn(Y
∗

n,0/φ
2
n,1))

2EFn(U
2
n,1/φ

4
n,1)/(EFn(φ

−2
n,1))

2

= EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1)(1 + O(1 − ρn)) (12)

and

EFn(Y
∗2
n,0/φ

2
n,1) − (EFn(Y

∗

n,0/φ
2
n,1))

2/EFn(φ
−2
n,1)

= EFn(Y
∗2
n,0/φ

2
n,1)(1 + O(1 − ρn)). (13)
If, in addition, {Un,i : i = . . . , 0, 1, . . .} are i.i.d. with mean 0,
variance σ 2

U,n ∈ (0, ∞), and distribution Fn and φ2
n,i = 1, then the

constants an and dn simplify to

an = n1/2(1 − ρ2
n )

−1/2 and dn = (1 − ρ2
n )

−1/2. (14)

This follows because in the present case φ2
n,i = 1, EFnY

∗2
n,0 =

∞

j=0 ρ
2j
n EFnU

2
n,−j = (1 − ρ2

n )
−1σ 2

U,n, and EFn(Y
∗2
n,0U

2
n,1/φ

2
n,1) =

(1 − ρ2
n )

−1σ 4
n,U . The expression for an in (14) is as in Giraitis and

Phillips (2006).
The form of dn in (11) is explained as follows. For the

infeasible QGLS estimator, one can write n1/2(ρn − ρn) =

(n−1X ′

1MX2X1)
−1n−1/2X ′

1MX2U as in (4) with X1, X2, and U defined
with φn,i in place ofφn,i. The numerator of dn in (11) is the rate of
growth of n−1X ′

1MX2X1, see (37) and (40), and the denominator of
dn in (11) is the rate of growth of n−1/2X ′

1MX2U , see (37)–(39).

3.3. Results for LS and infeasible QGLS

In this section, we provide results for the infeasible QGLS
estimator which is based on {φ2

n,i : i ≤ n} rather than {φ2
n,i :

i ≤ n} (i.e., the estimator ρn in (4) with φn,i in place of φn,i).
Conditions under which feasible and infeasible QGLS estimators
are asymptotically equivalent are given in Section 3.4. The LS
estimator is covered by the results of this section by takingφ2

n,i = 1
for all n, i (i.e., the estimatorρn in (4) withφn,i = 1 for all n, i).

LetW (·) andW2(·) be independent standard Brownianmotions
on [0, 1]. Let Z1 be a standard normal random variable that is
independent ofW (·) and W2(·). We define

Ih(r) =

 r

0
exp(−(r − s)h1)dW (s),

I∗h (r) = Ih(r) +
1

√
2h1

exp(−h1r)Z1 for h1 > 0 and

I∗h (r) = W (r) for h1 = 0,

I∗D,h(r) = I∗h (r) −

 1

0
I∗h (s)ds, and

Z2 =

 1

0
I∗D,h(r)

2dr
−1/2  1

0
I∗D,h(r)dW2(r). (15)

As defined, Ih(r) is an Ornstein–Uhlenbeck process. Note that the
conditional distribution of Z2 givenW (·) and Z1 is standard normal.
Hence, its unconditional distribution is standard normal and it is
independent ofW (·) and Z1.

The asymptotic distribution of the infeasible QGLS estimator
and t statistic are given in the following theorem.

Theorem 1. Suppose that (i) Assumption INNOV holds, (ii)
Assumption STAT holds when ρn < 1, (iii) ρn ∈ [−1 + ε, 1] for
some 0 < ε < 2, and (iv) ρn = 1− hn,1/n and hn,1 → h1 ∈ [0, ∞].
Then, the infeasible QGLS estimatorρn and t statistic T ∗

n (ρn) (defined
in (3) and (4) with φn,i in place of φn,i) satisfy

an(ρn − ρn) →d Vh, dnσn →d Qh, and

T ∗

n (ρn) =
n1/2(ρn − ρn)σn

→d Jh,

where an, dn, Vh,Qh, and Jh are defined as follows.5

5 For simplicity, in Theorem 1 and Theorem 2 below, for a sequence of random
variables {Wn : n ≥ 1} and a distribution V , we write Wn →d V as n → ∞, rather
than Wn →d W as n → ∞ for a random variableW with distribution V .
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(a) For h1 ∈ [0, ∞), an = n, dn = n1/2, Vh is the distribution of

h−1/2
2,1 h1/2

2,2 h
−1
2,5


h2,7

 1
0 I∗D,h(r)dW (r) 1

0 I∗D,h(r)2dr

+ (1 − h2
2,7)

1/2

 1
0 I∗D,h(r)dW2(r) 1

0 I∗D,h(r)2dr


(16)

Qh is the distribution of

h−1/2
2,1 h1/2

2,2 h
−1
2,5

 1

0
I∗D,h(r)

2dr
−1/2

, (17)

and Jh is the distribution of

h2,7

 1
0 I∗D,h(r)dW (r) 1
0 I∗D,h(r)2dr

1/2 + (1 − h2
2,7)

1/2Z2. (18)

(b) For h1 = ∞, an and dn are defined as in (10), Vh is the N(0, 1)
distribution, Qh is the distribution of the constant one, and Jh is the
N(0, 1) distribution.

Comments.

1. Theorem 1 shows that the asymptotic distribution of the QGLS
t statistic is a standard normal distribution when n(1 − ρn) →

∞ and a mixture of a standard normal distribution and a
‘‘demeaned near unit-root distribution’’ when n(1 − ρn) →

h1 ∈ [0, ∞). In the latter case, the mixture depends on h2,7,
which is the asymptotic correlation between the innovationUn,i
and the rescaled innovation Un,i/φ

2
n,i. When the LS estimator is

considered (which corresponds to φ2
n,i = 1), we have h2,7 = 1

and the asymptotic distribution is a ‘‘demeaned near unit-root
distribution.’’

2. It is important to note that the t statistic considered in
Theorem 1 employs a heteroskedasticity-robust standard error
estimator σn, see its definition in (4). This differs from other
papers in the literature, such as Stock (1991), Hansen (1999),
Giraitis and Phillips (2006), Mikusheva (2007), and Phillips
and Magdalinos (2007), which consider the LS estimator and
the usual LS standard error estimator that is designed for
homoskedasticity. In consequence, the results of Theorem 1
with φn,i = 1 (which corresponds to the LS estimator of ρn)
do not imply that the t statistics considered in the latter papers
have a standard normal distribution when n(1 − ρn) → ∞

in the presence of conditional heteroskedasticity. The standard
error estimator designed for homoskedasticity is not consistent
under conditional heteroskedasticity.

3. The asymptotic results of Theorem 1 apply to a first-order AR
model. They should extend without essential change to a p-th
order autoregressive model in which ρ equals the ‘‘sum of the
AR coefficients’’. Of course, the proofswill bemore complex.We
do not provide them here.

4. Theorem 1 is used in the AR(1) example of Andrews and
Guggenberger (2009) to verify their Assumptions BB(i) and (iii)
for the (infeasible) QGLS estimator (with Qh playing the role
of Wh in Assumption BB). In turn, the results of Andrews and
Guggenberger (2009) show that whether or not conditional
heteroskedasticity is present: (i) the symmetric two-sided
subsampling confidence interval for ρ has correct asymptotic
size (defined to be the limit as n → ∞ of exact size) and
(ii) upper and lower one-sided and symmetric and equal-tailed
two-sided hybrid-subsampling confidence intervals for ρ have
correct asymptotic size. These results hold even if the form of
the conditional heteroskedasticity is misspecified.
3.4. Asymptotic equivalence of feasible and infeasible QGLS

Here we provide sufficient conditions for the feasible and
infeasible QGLS statistics to be asymptotically equivalent. In
particular, we give conditions under which Theorem 1 holds whenρn is defined using the feasible conditional heteroskedasticity
estimators {φn,i : i ≤ n}.

We assume that the conditional heteroskedasticity estimators
(CHE) {φ2

n,i : i ≤ n} satisfy the following assumption.

Assumption CHE. (i) For some ε > 0,φ 2
n,i ≥ ε a.s. for all i ≤

n, n ≥ 1.
(ii) For random variables {(Un,i, φ

2
n,i) : i = . . . , 0, 1, . . .} for n ≥ 1

that satisfy Assumption INNOV and for Yn,i = α + Y ∗

n,i, Y
∗

n,i =

ρnY ∗

n,i−1 + Un,i, with α = 0, that satisfies Assumption STAT
when ρn < 1 and n(1 − ρn) → h1 ∈ [0, ∞], we have
(a) when h1 ∈ [0, ∞), n−1/2n

i=1(n
−1/2Y ∗

n,i−1)
jUn,i(φ−2

n,i −

φ−2
n,i ) = op(1) for j = 0, 1,

(b) when h1 ∈ [0, ∞), n−1n
i=1 |Un,i|

d
|φ−j

n,i −φ
−j
n,i| = op(1) for

(d, j) = (0, 1), (1, 2), and (2, 2),
(c) when h1 = ∞, n−1/2n

i=1 ((1 − ρn)
1/2Y ∗

n,i−1)
jUn,i(φ−2

n,i −

φ−2
n,i ) = op(1) for j = 0, 1, and

(d) when h1 = ∞, n−1n
i=1 |Un,i|

k
|φ−j

n,i − φ
−j
n,i|

d
= op(1) for

(d, j, k) = (1, 2, 0), (2, 2, 0), and (2, 4, k) for k = 0, 2, 4.

Assumption CHE(i) is not restrictive. For example, if φn,i is
obtained by specifying a parametric model for the conditional
heteroskedasticity, then Assumption CHE(i) holds provided the
specified parametric model (which is user chosen) consists of an
intercept that is bounded away from zero plus a non-negative
random component (as in (19)). Most parametric models in the
literature have this form and it is always possible to use one that
does. Assumption CHE(ii) specifies the sense in which φn,i must
converge to φn,i for i ≤ n, n ≥ 1 in order for the feasible
and infeasible QGLS estimators to be asymptotically equivalent.
Typically, Assumptions CHE(ii)(a) and (c) are more difficult to
verify than Assumptions CHE(ii)(b) and (d) because they have the
scale factor n−1/2 rather than n−1.

Theorem 2. Suppose (i) Assumptions CHE and INNOV hold, (ii)
Assumption STAT holds when ρn < 1, (iii) ρn ∈ [−1 + ε, 1] for
some 0 < ε < 2, and (iv) ρn = 1− hn,1/n and hn,1 → h1 ∈ [0, ∞].
Then, the feasible QGLS estimator ρn and t statistic T ∗

n (ρn) (defined
in (3) and (4) using φn,i) satisfy

an(ρn − ρn) →d Vh, dnσn →d Qh, and

T ∗

n (ρn) =
n1/2(ρn − ρn)σn

→d Jh,

where an, dn, Vh,Qh, and Jh are defined as in Theorem 1 (that is, with
an and dn defined using φn,i, not φn,i).

Comment. Theorem 2 shows that the infeasible and feasible
QGLS statistics have the same asymptotic distributions under
Assumption CHE.

We now provide sufficient conditions for Assumption CHE.
Suppose {φ2

n,i : i ≤ n} are based on a parametric model with
conditional heteroskedasticity parameter π estimated using
residuals. Let πn be the estimator of π and let (αn,ρn) be the
estimators of (α, ρ) used to construct the residuals, where α is
the intercept when the model is written in regression form, see
(2). For example, πn may be an estimator of π based on residuals
in place of the true errors and (αn,ρn) may be the LS estimators



D.W.K. Andrews, P. Guggenberger / Journal of Econometrics 169 (2012) 196–210 201
(whose properties are covered by the asymptotic results given in
Theorem 1 by taking φn,i = 1). In particular, suppose thatφ2
n,i = φ2

n,i(αn,ρn,πn), where

φ2
n,i(α, ρ, π) = ω +

Li
j=1

µj(π)U2
n,i−j(α, ρ),

Un,i(α, ρ) = Yn,i −α − ρYn,i−1, (19)

Li = min{i − 1, L}, and ω is an element of π . Here L < ∞ is a
bound on the maximum number of lags allowed. Any model with
stationary conditional heteroskedasticity (bounded away from
the nonstationary region), such as a GARCH(1, 1) model, can be
approximated arbitrarily well by taking L sufficiently large. Hence,
the restriction to finite lags is not overly restrictive. The upper
bound Li, rather than L, on the number of lags in the sum in (19)
takes into account the truncation at 1 that naturally occurs because
one does not observe residuals for i < 1.

The parameter space for π is Π , which is a bounded subset of
Rdπ , for some dπ > 0. Let πn ∈ Π be an nδ1-consistent estimator
of π for some δ1 > 0. For technical reasons, we base φ2

n,i on an
estimator πn that is a discretized version of πn that takes values
in a finite set Πn (⊂Π) for n ≥ 1, where Πn consists of points
on a uniform grid with grid size that goes to zero as n → ∞ and
hence the number of elements ofΠn diverges to infinity as n → ∞.
The reason for considering a discretized estimator is that when the
grid size goes to zero more slowly than n−δ1 , then wp → 1 the
estimators {πn : n ≥ 1} take values in a sequence of finite sets
{Πn,0 : n ≥ 1} whose numbers of elements is bounded as n → ∞.
The latter property makes it easier to verify Assumption CHE(ii).
The set Πn can be defined such that there is very little difference
betweenπn andπn in a finite sample of size n.

We employ the following sufficient condition for the FQGLS
estimator to be asymptotically equivalent to the (infeasible) QGLS
estimator.

Assumption CHE2. (i) φ2
n,i satisfies (19)with L < ∞ andµj(·) ≥

0 for all j = 1, . . . , L,
(ii) φ2

n,i = ωn +
L

j=1 µj(πn)U2
n,i−j and πn → π0 for some π0 ∈ Π

(andπ0 may depend on the sequence), whereωn is an element
of πn,

(iii) an(ρn − ρn) = Op(1), n1/2αn = Op(1), and nδ1(πn − πn) =

op(1) for some δ1 > 0 under any sequence (Un,i, φ
2
n,i)

that satisfies Assumption INNOV and for Yn,i defined as in
Assumption CHEwith α = β = 0 satisfying Assumption STAT
when ρn < 1, and with ρ = ρn that satisfies n(1 − ρn) →

h1 ∈ [0, ∞], where an is defined in (10),
(iv) πn minimizes ∥π − πn∥ over π ∈ Πn for n ≥ 1, where

Πn (⊂Π) consists of points on a uniform grid with grid size
Cn−δ2 for some 0 < δ2 < δ1 and 0 < C < ∞,

(v) Π bounds the intercept ω away from zero, and
(vi) µj(π) is continuous on Π for j = 1, . . . , L.

The part of Assumption CHE2(iii) concerning ρn holds for the LS
estimator by Theorem1(a) (by takingφn,i = 1), the part concerningαn holds for the LS estimator by similar, but simpler, arguments,
and typically the part concerning πn holds for all δ1 < 1/2.
Assumptions CHE2(iv)–(vi) can always be made to hold by choice
ofπn, Π , and µj(π).

Lemma 1. Assumption CHE2 implies Assumption CHE.

Comment. The use of a discretized estimatorπn and a finite bound L
on the number of lags in Assumption CHE2 are made for technical
convenience. Undoubtedly, they are not necessary for the lemma
to hold (although other conditions may be needed in their place).
4. Proofs

This section verifies parts of Assumption INNOV for a GARCH(1,
1) model and provides proofs of Theorems 1 and 2, and Lemma 1.
Section 4.1 is concerned with verification of parts of Assumption
INNOV for a GARCH(1, 1) model. Section 4.2.1 states Lemmas 2–
9, which are used in the proof of Theorem 1. Section 4.2.2 proves
Theorem 1. For brevity, the proofs of Lemmas 2–9 are left out.
They are given in Andrews and Guggenberger (2010b). Section 4.3
proves Theorem 2. Section 4.4 proves Lemma 1.

4.1. Verification of Assumption INNOV for GARCH(1, 1)

To verify the stationarity part of Assumption INNOV(i) for the
model in (5), we use Lindner (2009, Theorem 1(a)) for the case
βn > 0 and Lindner (2009, Theorem 1(b)(i)–(ii)) for the case
βn = 0. These results imply that {(Un,i, σ

2
n,i) : i = . . . , 0, 1, . . .}

are strictly stationary if for all n ≥ 1we have cn > 0, αn > 0, βn ≥

0, EFn log(βn + αnε
2
n,1) > −∞, and EFn log(βn + αnε

2
n,1) < 0.

When βn = 0, the fourth and fifth conditions can be replaced by
P(εn,1 = 0) > 0. The first three restrictions hold by assumption.
The fourth requirement clearly holds when βn > 0. When βn = 0
and P(εn,1 = 0) = 0, it also follows that EFn log(αnε

2
n,1) > −∞. By

Jensen’s inequality, a sufficient condition for the fifth requirement
is that αnEFnε

2
n,1 + βn = αn + βn < 1, which is assumed.

To verify Assumption INNOV(iii), we use Bollerslev (1986,
Theorem2) and Lindner (2009, Theorem5). First, for alln, EFnU

2
n,i =

EFnσ
2
n,i ≥ infn≥1 cn > 0. Next, it is enough to establish that

supn≥1 EFn(σ
2
n,i)

ζ < ∞ and

sup
n≥1

EFn |Un,i−sUn,i−t(U2
n,i+1/φ

4
n,i+1)

×Un,−uUn,−v((U2
n,1 + σ 2

n,1)/φ
4
n,1)|

ζ < ∞. (20)

For notational simplicity, we now often leave out the subscript
n on random variables and Fn on expectations. We first establish
that supn≥1 E|ε1|

6ζ < ∞ and supn≥1 E|σ1|
6ζ < ∞ imply supn≥1

E|Ui−sUi−t(U2
i+1/φ

4
i+1)U−uU−v((U2

1 + σ 2
1 )/φ4

1)|
ζ < ∞. We then

specify conditions on (cn, αn, βn) that imply supn≥1 E|σ1|
6ζ < ∞.

To deal with the first task, we consider only the case where
i − t < 1 < i − s. All other cases can be handled analogously (or
more easily). Note that because s ≥ 0 it follows that i − s < i + 1.
Therefore, using the law of iterated expectations (LIE),

E|U−uU−vUi−t((U2
1 + σ 2

1 )/φ4
1)Ui−s(U2

i+1/φ
4
i+1)|

ζ

= EE(|U−uU−vUi−t((U2
1 + σ 2

1 )/σ 4
1 )Ui−s(U2

i+1/σ
4
i+1)|

ζ
|Gi)

= E[(|U−uU−vUi−t((U2
1 + σ 2

1 )/σ 4
1 )Ui−sσ

−2
i+1 |

ζ )E(|εi+1 |
2ζ

|Gi)].

(21)

Because (σ−2
i+1)

ζ and (σ−2
1 )ζ are uniformly bounded by Assumption

INNOV(iv) and E(|εi+1 |
2ζ

|Gi) = E|εi+1|
2ζ is uniformly bounded it

is enough to show that E|U−uU−vUi−t(ε
2
1 + 1)Ui−s|

ζ is uniformly
bounded. Again, by the LIE and i − s > 1, we have

E|U−uU−vUi−t(ε
2
1 + 1)Ui−s|

ζ

= EE(|U−uU−vUi−t(ε
2
1 + 1)Ui−s|

ζ
|Gi−s−1)

= E|U−uU−vUi−t(ε
2
1 + 1)σi−s |

ζ E|εi−s |
ζ . (22)

ByHölder’s inequality E|U−uU−vUi−t(ε
2
1+1)σi−s|

ζ
≤(E|U2

−uU
2
−vU

2
i−t

× (ε2
1 +1)2|ζ E|σ 2

i−s|
ζ )1/2. By the generalized H ölder inequality we

finally obtain

E|U2
−uU

2
−vU

2
i−t(ε

2
1 + 1)2|ζ = E|U2

−uU
2
−vU

2
i−t |

ζ E(ε2
1 + 1)2ζ

≤ (E|U−u|
6ζ E|U−v|

6ζ E|Ui−t |
6ζ )1/3E(ε2

1 + 1)2ζ

= E|U1|
6ζ E(ε2

1 + 1)2ζ , (23)
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where in the last line we used stationarity. Now, E|U1|
6ζ

=

E|ε1|
6ζ E|σ1|

6ζ which is boundedby assumption. Also, supn≥1 E(ε2
1+

1)2ζ < ∞ because supn≥1 E | ε1 |
6ζ < ∞ by assumption. This

proves the first claim.
Next,we specify conditions on (cn, αn, βn) that imply supn≥1 EFn

|σn,1|
6ζ < ∞. By Lindner (2009, Eq. (10)) we have σ 2

n,t =
∞

i=0
i−1

j=0 cn(βn + αnε
2
n,t−1−j). Therefore, using Minkowski’s

inequality and {εn,i} i.i.d. we have

(EFn |σ
2
n,1|

3ζ )1/(3ζ )
≤ cn

∞
i=0

(EFn(βn + αnε
2
n,1)

3ζ )i/(3ζ ), (24)

see Lindner (2009, first equationp. 57). Therefore supn≥1 EFn |σn,1|
6ζ

< ∞ if supn≥1 cn < ∞ and supn≥1 EFn(βn + αnε
2
n,1)

3ζ < 1.
For the casewhere εn,1 isN(0, 1)we simulate EFn(βn+αnε

2
n,1)

3ζ

for a gridwith stepsize 0.01 of parameter combinations for (αn, βn)
for which αn, βn ≥ 0 and αn + βn < 1 using 2000,000 draws from
εn,1 and ζ = 3+ ε with ε = 1/30. The expectation is smaller than
1 for the parameter combinations (αn, βn) reported in the footnote
below (5).

Assumption INNOV(iv) is clearly satisfied if infn≥1 cn > 0. �

4.2. Proof of Theorem 1

To simplify notation, in the remainder of the paper we omit the
subscript Fn on expectations.

4.2.1. Lemmas 2–9
The proof of Theorem 1 uses eight lemmas that we state in this

section. The first four lemmas deal with the case of h1 ∈ [0, ∞).
The last four deal with the case of h1 = ∞.

In integral expressions below, we often leave out the lower
and upper limits zero and one, the argument r , and dr to simplify
notation when there is no danger of confusion. For example, 1
0 Ih(r)2dr is typically written as


I2h . By ‘‘⇒’’ we denote weak

convergence of a stochastic process as n → ∞.

Lemma 2. Suppose Assumptions INNOV and STAT hold, ρn ∈

(−1, 1) and ρn = 1−hn,1/nwhere hn,1 → h1 ∈ [0, ∞) as n → ∞.
Then,

(2hn,1/n)1/2Y ∗

n,0/StdDevFn(Un,0) →d Z1 ∼ N(0, 1).

Define h∗

n,1 ≥ 0 by ρn = exp(−h∗

n,1/n). As shown in the proof
of Lemma 2, h∗

n,1/hn,1 → 1 when h1 ∈ [0, ∞). By recursive
substitution, we have

Y ∗

n,i =Yn,i + exp(−h∗

n,1i/n)Y
∗

n,0, where

Yn,i =

i
j=1

exp(−h∗

n,1(i − j)/n)Un,j. (25)

Let BM(Ω) denote a bivariate Brownian motion on [0, 1] with
variance matrix Ω . The next lemma is used to establish the
simplified form of the asymptotic distribution that appears in
Theorem 1(a).

Lemma 3. Suppose (h1/2
2,1W (r),M(r))′ = BM(Ω), where

Ω =


h2,1 h2,3
h2,3 h2,2


.

Then, M(r) can be written as M(r) = h1/2
2,2


h2,7W (r) + (1 − h2

2,7)
1/2

W2(r)

, where (W (r),W2(r))′ = BM(I2) and h2,7 = h2,3/(h2,1

h2,2)
1/2 is the correlation that arises in the variance matrix Ω .
The following lemma states some general results on weak
convergence of certain statistics to stochastic integrals. It is proved
using Theorems 4.2 and 4.4 of Hansen (1992) and Lemma 2 above.
Let ⊗ denote the Kronecker product.

Lemma 4. Suppose {vn,i : i ≤ n, n ≥ 1} is a triangular array
of row-wise strictly-stationary strong-mixing random dv-vectors
with (i) strong-mixing numbers {αn(m) : m ≥ 1, n ≥ 1} that
satisfy α(m) = supn≥1 αn(m) = O(m−ζ τ/(ζ−τ)) as m → ∞ for
some ζ > τ > 2, and (ii) supn≥1 ∥vn,i∥ζ < ∞, where ∥ · ∥ζ

denotes the Lζ -norm. Suppose n−1EVnV ′
n → Ω0 as n → ∞, where

Vn =
n

i=1 vn,i, and Ω0 is some dv × dv variance matrix. Let Xn,i =

ρnXn,i−1 + vn,i, where n(1 − ρn) → h1 ∈ [0, ∞). If h1 > 0,
the first element of Xn,i has a stationary initial condition and all of
the other elements have zero initial conditions. If h1 = 0, all of
the elements of Xn,i have zero initial conditions, i.e., Xn,0 = 0. Let
Λ = limn→∞ n−1n

i=1
n

j=i+1 Evn,iv
′

n,j. Let Kh(r) =
 r
0 exp((r −

s)h1)dB(s), where B(·) is a dv-vector BM(Ω0) on [0, 1]. If h1 > 0,
let K ∗

h (r) = Kh(r) + e1(2h1)
−1/2 exp(−h1r)Ω

1/2
0,1,1Z1, where Z1 ∼

N(0, 1) is independent of B(·), e1 = (1, 0, . . . , 0)′ ∈ Rdv , andΩ0,1,1
denotes the (1, 1) element of Ω0. If h1 = 0, let K ∗

h (r) = Kh(r). Then,
the following results hold jointly,

(a) n−1/2Xn,[nr] ⇒ K ∗

h (r),
(b) n−1n

i=1 Xn,i−1v
′

n,i →d

K ∗

h dB
′
+ Λ,

(c) for τ ≥ 3, n−3/2n
i=1(Xn,i−1⊗Xn,i−1)v

′

n,i →d

(K ∗

h ⊗K ∗

h )dB′
+

Λ ⊗

K ∗

h


+


K ∗

h ⊗ Λ

, and

(d) n−1/2n
i=1 v′

n,i →d

dB′.

We now use Lemma 4 to establish the following results which
are key in the proof of Theorem 1(a). Let [a] denote the integer part
of a.

Lemma 5. Suppose Assumptions INNOV and STAT hold, ρn ∈

(−1, 1], ρn = 1 − hn,1/n where hn,1 → h1 ∈ (0, ∞). Then, the
following results (a)–(k) hold jointly,

(a) n−1/2Y ∗

n,[nr] ⇒ h1/2
2,1 I

∗

h (r),

(b) n−1n
i=1 φ

−j
n,i →p limn→∞ Eφ

−j
n,i = h2,(j+3) for j = 1, 2, 4,

(c) n−1n
i=1 Un,i/φ

4
n,i →p limn→∞ E(Un,i/φ

4
n,i) = 0,

(d) n−1n
i=1 U

2
n,i/φ

4
n,i →p limn→∞ E(U2

n,i/φ
4
n,i) = h2,2,

(e) n−1/2n
i=1 Un,i/φ

2
n,i →d M(1) =


dM = h1/2

2,2


d[h2,7W (r) +

(1 − h2
2,7)

1/2W2(r)],

(f) n−3/2n
i=1 Y

∗

n,i−1/φ
2
n,i = n−3/2n

i=1 Y
∗

n,i−1Eφ−2
n,1 + Op(n−1/2)

→d h2,5h
1/2
2,1


I∗h ,

(g) n−1n
i=1 Y

∗

n,i−1Un,i/φ
2
n,i →d h

1/2
2,1


I∗h dM = h1/2

2,2 h
1/2
2,1


I∗h d[h2,7

W (r) + (1 − h2
2,7)

1/2W2(r)],

(h) n−2n
i=1 Y

∗2
n,i−1/φ

2
n,i = n−2n

i=1 Y
∗2
n,i−1Eφ−2

n,1 + Op(n−1/2) →d

h2,5h2,1

I∗2h ,

(i) n−3/2n
i=1 Y

∗

n,i−1U
2
n,i/φ

4
n,i = n−3/2n

i=1 Y
∗

n,i−1E(U2
n,1/φ

4
n,1) +

Op(n−1/2) →d h2,2h
1/2
2,1


I∗h ,

(j) n−2n
i=1 Y

∗2
n,i−1U

2
n,i/φ

4
n,i = n−2n

i=1 Y
∗2
n,i−1E(U2

n,1/φ
4
n,1) +

Op(n−1/2) →d h2,2h2,1

I∗2h ,

(k) n−1−ℓ1/2
n

i=1 Y
∗ℓ1
n,i−1U

ℓ2
n,i/φ

4
n,i = op(n) for (ℓ1, ℓ2) = (1, 0),

(1, 1), (2, 0), (2, 1), (3, 0), (3, 1), and (4, 0), and
(l) when h1 = 0, parts (a) and (f)–(k) hold with Y ∗

n,i−1 replaced byYn,i−1.
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In the proof of Theorem 1(b), we use the following well-
known strong-mixing covariance inequality, see e.g. Doukhan
(1994, Theorem 3, p. 9). Let X and Y be strong-mixing random
variables with respect to σ -fields F

j
i (for integers i ≤ j) such that

X ∈ F n
−∞

andY ∈ F ∞
n+m with strong-mixingnumbers {α(m) : m ≥

1}. For p, q > 0 such that 1−p−1
− q−1 > 0, let ∥X∥p = (E|X |

p)1/p

and ∥Y∥q = (E|Y |
q)1/q. Then, the following inequality holds

Cov(X, Y ) ≤ 8∥X∥p∥Y∥qα(k)1−p−1
−q−1

. (26)

The proof of Theorem1(b) uses the following technical Lemmas.
The lemmas make repeated use of the mixing inequality (26)
applied with p = q = ζ > 3, where ζ appears in Assumption
INNOV.

Lemma 6. Suppose n(1 − ρn) → ∞, ρn → 1, and Assumptions
INNOV and STAT hold, then we have

E(Y ∗2
n,0U

2
n,1/φ

4
n,1) − (1 − ρ2

n )
−1(EU2

n,1)E(U2
n,1/φ

4
n,1) = O(1),

E(Y ∗2
n,0/φ

2
n,1) − (1 − ρ2

n )
−1EU2

n,1Eφ−2
n,1 = O(1),

E(Y ∗

n,0/φ
2
n,1) = O(1), and

E(Y ∗

n,0U
2
n,1/φ

4
n,1) = O(1).

Lemma 7. Suppose n(1 − ρn) → ∞, ρn → 1 and Assumptions
INNOV and STAT hold, then we have

E


n

i=1

[Eζ 2
n,i − E(ζ 2

n,i|Gn,i−1)]

2

→ 0,

where ζn,i ≡ n−1/2 Y ∗

n,i−1Un,i/φ
2
n,i

(E(Y ∗2
n,0U

2
n,1/φ

4
n,1))

1/2
.

In Lemma8,X1, X2, INNOVandU are defined as in the paragraph
containing (4), but with φn,i in place ofφn,i.

Lemma 8. Suppose n(1 − ρn) → ∞, ρn → 1, and Assumptions
INNOV and STAT hold, then we have

(a) n−1(1 − ρn)
1/2X ′

1X2 = op(1),
(b) E(Y ∗2

n,0/φ
2
n,1)

−1n−1X ′

1X1 →p 1,
(c) (E(Y ∗2

n,0U
2
n,1/φ

4
n,1))

−1n−1n
i=1(Y

∗2
n,i−1U

2
n,i/φ

4
n,i) →p 1,

(d) (X ′X)−1X ′U = (Op((1 − ρn)
1/2n−1/2),Op(n−1/2))′,

(e) (E(Y ∗2
n,0U

2
n,1/φ

4
n,1))

−1n−1X ′

1∆
2X1 →p 1,

(f) (1 − ρn)
1/2n−1(X ′

2∆
2X1) = Op(1), and

(g) n−1(X ′

2∆
2X2) = Op(1).

Lemma 9. Suppose n(1 − ρn) → ∞, ρn → 1, and Assumptions
INNOV and STAT hold. Then, we have

n
i=1 E(ζ 2

n,i1(|ζn,i| >

δ)|Gn,i−1) →p 0 for any δ > 0.

4.2.2. Proof of Theorem 1
To simplify notation, in the remainder of the paper we often

leave out the subscript n. For example, instead ofρn, σ
2
U,n, Y

∗

n,i,Un,i,

φn,i,φn,i, and ζn,i, we write ρ, σ 2
U , Y ∗

i ,Ui, φi,φi, and ζi. We do not
drop n from hn,1 because hn,1 and h1 are different quantities. As
above, we omit the subscript Fn on expectations.

In the proof of Theorem 1, X1, X2,U, ∆, and Y are defined as in
the paragraph containing (4), but with φi in place ofφn,i.
Proof of Theorem 1. First we prove part (a) of the theorem when
h1 > 0. In this case, an = n and dn = n1/2. We can write

n(ρn − ρ) =

n−2X ′

1MX2X1
−1

n−1X ′

1MX2U and

nσ 2
n =


n−2X ′

1MX2X1
−1 

n−2X ′

1MX2∆
2MX2X1


×

n−2X ′

1MX2X1
−1

. (27)

We consider the terms in (27) one at a time. First, we have

n−2X ′

1MX2X1

= n−2
n

i=1

Y ∗

i−1/φi −


n

j=1

Y ∗

j−1/φ
2
j


n

j=1

φ−2
j

−1

φ−1
i

2

= n−2
n

i=1

Y ∗2
i−1/φ

2
i −


n−3/2

n
j=1

Y ∗

j−1/φ
2
j

2 
n−1

n
j=1

φ−2
j

−1

→d h2,5h2,1


I∗2h −


h2,5h

1/2
2,1


I∗h

2

h−1
2,5

= h2,5h2,1


I∗2D,h, (28)

where the first two equalities hold by definitions and some algebra,
and the convergence holds by Lemma 5(b), (f), and (h) with j = 2
in part (b).

Similarly, we have

n−1X ′

1MX2U = n−1
n

i=1

Y ∗

i−1/φi −


n

j=1

Y ∗

j−1/φ
2
j



×


n

j=1

φ−2
j

−1

φ−1
i

Ui/φi

= n−1
n

i=1

Y ∗

i−1Ui/φ
2
i −


n−3/2

n
j=1

Y ∗

j−1/φ
2
j



×


n−1

n
j=1

φ−2
j

−1

n−1/2
n

i=1

Ui/φ
2
i

→d h1/2
2,1


I∗h dM − h1/2

2,1


I∗h


dM

= h1/2
2,1


I∗D,hdM, (29)

where the first two equalities hold by definitions and some algebra,
and the convergence holds by Lemma 5(b) and (e)–(g) with j = 2
in part (b).

To determine the asymptotic distribution ofn−2X ′

1MX2∆
2MX2X1,

we make the following preliminary calculations. LetUi/φi denote
the ith element ofMXY = MXU . That is,

Ui/φi = Ui/φi − A′

nB
−1
n


n−1/2φ−1

i
n−1Y ∗

i−1/φi


, where

An =


n−1/2

n
j=1

Uj/φ
2
j

n−1
n

j=1

Y ∗

j−1Uj/φ
2
j

 and
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Bn =


n−1

n
j=1

φ−2
j n−3/2

n
j=1

Y ∗

j−1/φ
2
j

n−3/2
n

j=1

Y ∗

j−1/φ
2
j n−2

n
j=1

Y ∗2
j−1/φ

2
j

 . (30)

Using (30), we have

n−2
n

i=1

Y ∗2
i−1
U2

i /φ
4
i

= n−2
n

i=1

Y ∗2
i−1U

2
i /φ

4
i − 2n−1A′

nB
−1
n

×


n−3/2

n
i=1

Y ∗2
i−1Ui/φ

4
i

n−2
n

i=1

Y ∗3
i−1Ui/φ

4
i

+ n−1A′

nB
−1
n

×


n−2

n
i=1

Y ∗2
i−1/φ

4
i n−5/2

n
i=1

Y ∗3
i−1/φ

4
i

n−5/2
n

i=1

Y ∗3
i−1/φ

4
i n−3

n
i=1

Y ∗4
i−1/φ

4
i

 B−1
n An

= n−2
n

i=1

Y ∗2
i−1U

2
i /φ

4
i + op(1), (31)

where the second equality holds using Lemma 5(k) with (ℓ1, ℓ2) =

(2, 1), (3, 1), (2, 0), (3, 0), and (4, 0) and to show that An and B−1
n

are Op(1) we use Lemma 5(b) and (e)–(h) with j = 2 in part (b).
Similarly to (31) but with Y ∗

i−1 in place of Y ∗2
i−1, and then with

Y ∗2
i−1 deleted, we have

n−3/2
n

i=1

Y ∗

i−1
U2

i /φ
4
i = n−3/2

n
i=1

Y ∗

i−1U
2
i /φ

4
i + op(1) and

n−1
n

i=1

U2
i /φ

4
i = n−1

n
i=1

U2
i /φ

4
i + op(1) (32)

using Lemma 5 as above to show that An and B−1
n are Op(1),

using Lemma 5(k) with (ℓ1, ℓ2) = (1, 1), (2, 1), (1, 0), (2, 0), and
(3, 0) for the first result, and using Lemma 5(k) with (ℓ1, ℓ2) =

(1, 1), (1, 0), and (2, 0), Lemma 5(b) with j = 4, and Lemma 5(c)
for the second result.

We now have

n−2X ′

1MX2∆
2MX2X1

= n−2
n

i=1

U2
i /φ

2
i

Y ∗

i−1/φi −


n

j=1

Y ∗

j−1/φ
2
j



×


n

j=1

φ−2
j

−1

φ−1
i

2

= n−2
n

i=1

Y ∗2
i−1
U2

i /φ
4
i − 2


n−3/2

n
j=1

Y ∗

j−1/φ
2
j



×


n−1

n
j=1

φ−2
j

−1

n−3/2
n

i=1

Y ∗

i−1
U2

i /φ
4
i

+


n−3/2

n
j=1

Y ∗

j−1/φ
2
j

2 
n−1

n
j=1

φ−2
j

−2

n−1
n

i=1

U2
i φ

−4
i

= n−2
n

i=1

Y ∗2
i−1U

2
i /φ

4
i − 2


n−3/2

n
j=1

Y ∗

j−1/φ
2
j



×


n−1

n
j=1

φ−2
j

−1

n−3/2
n

i=1

Y ∗

i−1U
2
i /φ

4
i

+


n−3/2

n
j=1

Y ∗

j−1/φ
2
j

2 
n−1

n
j=1

φ−2
j

−2

× n−1
n

i=1

U2
i /φ

4
i + Op(n−1)

→d h2,2h2,1


I∗2h − 2h1/2

2,1


I∗h ·


h2,2h

1/2
2,1


I∗h


+


h1/2
2,1


I∗h

2

h2,2

= h2,2h2,1

 
I∗h −


I∗h

2

= h2,2h2,1


I∗2D,h, (33)

where the first two equalities follow from definitions and some
algebra, the third equality holds by (31), (32), and Lemma 5(b), (d),
(f), (i), and (j) with j = 2 in part (b), and the convergence holds by
the same parts of Lemma 5.

Putting the results of (27)–(29) and (33), and Lemma 3 together
gives

T ∗

n (ρn) →d
h1/2
2,1


I∗D,hdM

h2,2h2,1

I∗2D,h

1/2
=

h1/2
2,2


I∗D,hd


h2,7W + (1 − h2

2,7)
1/2W2


h1/2
2,2


I∗2D,h

1/2
= h2,7


I∗2D,h

−1/2 
I∗D,hdW

+ (1 − h2
2,7)

1/2Z2, (34)

where the last equality uses the definition of Z2 in (15). This
completes the proof of part (a) of the theorem when h1 > 0.

Next, we consider the case where h1 = 0. In this case, (27)–(34)
hold except that the convergence results in (28), (29) and (33) only
hold with Y ∗

i−1 replaced byYi−1 because Lemma 5(l) only applies to
random variables based on a zero initial condition when h1 = 0.
Hence, we need to show that the difference between the second
last line of (28)withY ∗

i−1 appearing andwithYi−1 appearing is op(1)
and that analogous results hold for (29) and (33).

For h1 = 0, by a mean value expansion, we have

max
0≤j≤2n

|1 − ρ j
| = max

0≤j≤2n
|1 − exp(−h∗

n,1j/n)|

= max
0≤j≤2n

|1 − (1 − h∗

n,1j exp(mj)/n)|

≤ 2h∗

n,1 max
0≤j≤2n

| exp(mj)| = O(h∗

n,1), (35)

for 0 ≤ |mj| ≤ h∗

n,1j/n ≤ 2h∗

n,1 → 0, where h∗

n,1 is defined just
above (25).

Using the decomposition in (25), we have Y ∗

i−1 =Yi−1+ρ i−1Y ∗

0 .
To show the desired result for (28), we write the second last line of
(28) as

n−2
n

i=1

Y ∗

i−1/φi −


n

j=1

Y ∗

j−1/φ
2
j


n

j=1

φ−2
j

−1

φ−1
i

2
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= n−2
n

i=1

Yi−1/φi + ρ i−1Y ∗

0 /φi

−


n

j=1

Yj−1/φ
2
j + ρ j−1Y ∗

0 /φ2
j


n

j=1

φ−2
j

−1

φ−1
i

2

= n−2
n

i=1

Yi−1/φi −


n

j=1

Yj−1/φ
2
j


n

j=1

φ−2
j

−1

φ−1
i

+Op(h∗

n,1Y
∗

0 )/φi

2

= n−2
n

i=1

Yi−1/φi −


n

j=1

Yj−1/φ
2
j


n

j=1

φ−2
j

−1

φ−1
i

2

+Op(n−1/2h∗

n,1Y
∗

0 ), (36)

where the second equality holds because ρ i−1
= 1 + O(h∗

n,1) uni-
formly in i ≤ n by (35), and the third equality holds using Lemma5.
Next, Lemma 2 and h∗

n,1/hn,1 → 1 (which is established at the be-
ginning of the proof of Lemma 2 in Andrews and Guggenberger
(2010b)) show that n−1/2h∗

n,1Y
∗

0 = Op(h
∗1/2
n,1 ) = op(1). This com-

pletes the proof of the desired result for (28) when h1 = 0. The
proofs for (29) and (33) are similar. This completes the proof of
part (a) of the theorem.

It remains to consider the case where h1 = ∞, i.e., part (b)
of the theorem. The results in part (b) generalize the results in
Giraitis and Phillips (2006) in the following ways: (i) from a no-
interceptmodel to amodel with an intercept, (ii) to a case inwhich
the innovation distribution depends on n, (iii) to allow for condi-
tional heteroskedasticity in the error distribution, (iv) to cover a
quasi-GLS estimator in place of the LS estimator, and (v) to cover
the standard deviation estimator as well as the GLS/LS estimator
itself.

It is enough to consider the two cases ρ → ρ∗ < 1 and ρ → 1.
First, assume ρ → 1 and n(1 − ρ) → ∞. In this case, the se-
quences an and dn are equal to the expressions in (11) up to lower
order terms. We first prove an(ρn − ρ) →d N(0, 1). Note that

an(ρn − ρ) =


n−1 X ′

1MX2X1

E(Y ∗2
0 /φ2

1)

−1 n−1/2X ′

1MX2U
(E(Y ∗2

0 U2
1/φ

4
1))

1/2

≡ νnξn, (37)

where νn and ξn have been implicitly defined. We now show
νn →p 1 and ξn →d N(0, 1).

To show the latter, define the martingale difference sequence

ζi ≡ n−1/2 Y ∗

i−1Ui/φ
2
i

(E(Y ∗2
0 U2

1/φ
4
1))

1/2
. (38)

We show that

n−1/2X ′

1PX2U
(E(Y ∗2

0 U2
1/φ

4
1))

1/2
→p 0 and

n
i=1

ζi →d N(0, 1). (39)

To show the first result, note that n−1/2X ′

2U = n−1/2n
i=1 Ui/φ

2
i =

Op(1) by a CLT for a triangular array of martingale difference
random variables Ui/φ

2
i for which E|Ui/φ

2
i |

3 < ∞ and n−1n
i=1

(U2
i /φ

4
i − EU2

i /φ
4
i ) →p 0. The latter convergence in probability

condition holds by Lemma 5(d). Furthermore, (n−1X ′

2X2)
−1

=

Op(1) by Lemma 5(d) and Assumption INNOV(vi). Finally, n−1(1 −

ρ)1/2X ′

1X2 = n−1(1 − ρ)1/2
n

i=1 Y
∗

i−1/φ
2
i = op(1) by Lemma 8(a).
The first result in (39) then follows because E(Y ∗2
0 U2

1/φ
4
1) = O((1−

ρ)−1) by Lemma 6.
To show the latter we adjust the proof of Lemma 1 in Giraitis

and Phillips (2006). It is enough to prove the analogue of Eqs.
(11) and (12) in Giraitis and Phillips (2006), namely the Lindeberg
condition

n
i=1 E(ζ 2

i 1(|ζi| > δ)|Gi−1) →p 0 for any δ > 0 andn
i=1 E(ζ 2

i |Gi−1) →p 1. Lemma 9 shows the former and Lemma 7
implies the latter, because by stationarity (within rows) we haven

i=1 Eζ 2
i = 1.

By Lemma 8(b) and Lemma 6

n−1X ′

1X1

E(Y ∗2
0 /φ2

1)
→p 1 and

n−1X ′

1PX2X1

E(Y ∗2
0 /φ2

1)
→p 0 (40)

which imply νn →p 1.
We next show that dnσn →p 1. By (40) it is enough to show

that

n−1X ′

1MX2∆
2MX2X1

E(Y ∗2
0 U2

1/φ
4
1)

→p 1. (41)

Lemma 8(e)–(g) shows that (E(Y ∗2
0 U2

1/φ
4
1))

−1n−1X ′

1∆
2X1 →p 1,

(1 − ρ)1/2n−1(X ′

2∆
2X1) = Op(1), and n−1(X ′

2∆
2X2) = Op(1).

These results combined with Lemma 6, (n−1X ′

2X2)
−1

= Op(1), and
n−1(1 − ρ)1/2X ′

1X2 = op(1) imply (41).
In the case ρ → ρ∗ < 1, Theorem 1(b) follows by using ap-

propriate CLTs for martingale difference sequences and weak laws
of large numbers. For example, the analogue to the expression in
parentheses in (37) satisfies

n−1X ′

1MX2X1

E(Y ∗2
0 /φ2

1) − (E(Y ∗

0 /φ2
1))

2/E(φ−2
1 )

→p 1. (42)

This follows by a weak law of large numbers for triangular arrays
of mean zero, L1+δ bounded (for some δ > 0), near-epoch de-
pendent random variables. Andrews (1988, p. 464) shows that the
latter conditions imply that the array is a uniformly integrable L1
mixingale for which a WLLN holds, see Andrews (1988, Theorem
2). For example, to show n−1X ′

1X1 − E(Y ∗2
0 /φ2

1) →p 0, note that
Y ∗2
i−1/φ

2
1 − EY ∗2

0 /φ2
1 is near-epoch dependent with respect to the

σ -field Gi using the moment conditions in Assumption INNOV(iii),
∞

j=0 ρ∗j
= (1 − ρ∗)−1 < ∞, and ρ → ρ∗ < 1. �

4.3. Proof of Theorem 2

Proof of Theorem 2. Suppose h1 ∈ [0, ∞). Inspection of the proof
of Theorem 1 shows that it suffices to show that Lemma 5 holds
withφi in place of φi. The difference between the lhs quantity in
Lemma 5(b) with j = 1 and the corresponding quantity withφi in
place of φi is op(1) by Assumption CHE(ii)(b) with (d, j) = (0, 1).
The same result holds for j = 2 becausen−1

n
i=1

φ−2
i − φ−2

i


≤ n−1

n
i=1

φ−1
i |φ−1

i − φ−1
i | + n−1

n
i=1

φ−1
i |φ−1

i − φ−1
i |

≤ 2ε−1/2n−1
n

i=1

|φ−1
i − φ−1

i | = op(1), (43)

where the first inequality holds by the triangle inequality, the
second inequality holds by Assumption CHE(i), and the equality
holds by Assumption CHE(ii)(b) with (d, j) = (0, 1). For j = 4,
the same result holds by the same argument as just given with 4 in
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place of 2 in the first line and 2 in place of 1 in the second and third
lines.

The differences between the lhs quantities in Lemma 5(c) and
(d) and the corresponding quantities with φi in place of φi are
op(1) by the same argument as in (43) (with 4 in place of 2 in the
first line and 2 in place of 1 in the second and third lines) using
Assumption CHE(ii)(b) with (d, j) = (1, 2) and (2, 2), respectively.

The differences between the lhs quantities in Lemma 5(e) and
(g) and the corresponding quantities withφi in place of φi are op(1)
by Assumption CHE(ii)(a) with j = 0 and j = 1, respectively.

The difference between the lhs quantity in Lemma 5(f) and the
corresponding quantity withφi in place of φi is op(1) becausen−3/2

n
i=1

Y ∗

i−1(
φ−2

i − φ−2
i )


≤ sup

i≤n,n≥1
|n−1/2Y ∗

i−1| · n−1
n

i=1

|φ−2
i − φ−2

i | = op(1), (44)

where the equality holds by (43) and supi≤n,n≥1 |n−1/2Y ∗

i−1| =

Op(1), which holds by Lemma 5(a) and the continuous mapping
theorem. Analogous results hold for Lemma 5(h)–(j) using
Assumption CHE(ii)(b) with (d, j) = (2, 2) for parts (i) and (j).

Next, we show that the lhs quantity in Lemma 5(k) withφi in
place of φi is op(n). We haven−1−ℓ1/2

n
i=1

Y ∗ℓ1
i−1U

ℓ2
i /φ4

i


≤ ε−2 sup

i≤n,n≥1
|n−1/2Y ∗

i−1|
ℓ1 · n−1

n
i=1

|Ui| = Op(1), (45)

using Assumption CHE(i), supi≤n,n≥1 |n−1/2Y ∗

i−1| = Op(1), and
a WLLN for strong-mixing triangular arrays of L1+δ-bounded
randomvariables, seeAndrews (1988),which relies onAssumption
INNOV(iii). The results in Lemma 5(l) hold by the same arguments
as given above.

Next, suppose h1 = ∞. Lemma 6 shows that E(Y ∗2
0 /φ2

1) =

O((1 − ρ)−1) and E(Y ∗2
0 U2

1/φ
4
1) = O((1 − ρ)−1), where O((1 −

ρ)−1) = O(1) in the case where ρ → ρ∗ < 1. Inspection of the
proof of Theorem 1 then shows that it suffices to show that the
equivalent of (39)–(41) holds when φi is replaced by φi. More
precisely, by Lemma 6, for (40) it is sufficient to show that

(i) n−1(1 − ρ)

n
i=1

(Y ∗

i−1)
2(φ−2

i − φ−2
i ) = op(1), (46)

(ii) n−1(1 − ρ)1/2
n

i=1 Y
∗

i−1(
φ−2

i − φ−2
i ) = op(1), and (iii)

n−1n
i=1(

φ−2
i − φ−2

i ) = op(1). In addition, for (39), it is sufficient
to show that (iv) n−1/2n

i=1((1 − ρ)1/2Y ∗

i−1)
jUi × (φ−2

i − φ−2
i ) =

op(1) for j = 0, 1. To show (41), it is enough to show that
in addition n−1(1 − ρ)X ′

1∆
2X1 →p 1, n−1(1 − ρ)1/2(X ′

2∆
2X1) =

Op(1), and n−1(X ′

2∆
2X2) = Op(1) hold (with X1, X2, and ∆

defined with φi, not φi). Inspecting the proof of Lemma 8(e)–(g)
in Andrews and Guggenberger (2010b) carefully, it follows that
to show the latter three conditions, it is enough to show that in
addition to (i)–(iv), we have (v) n−1(1 − ρ)

n
i=1(Y

∗

i−1)
2U2

i (
φ−4

i −

φ−4
i ) = op(1) and (vi) n−r1(1 − ρ)r2

n
i=1(Y

∗

i−1)
r3U r4

i (φ−4
i −

φ−4
i ) = op(1) for (r1, . . . , r4) = (3/2, 1, 2, 1), (2, 1, 2, 0),

(3/2, 3/2, 3, 1), (2, 3/2, 3, 0), and (2, 3/2, 4, 0). These conditions
come from the proof of Lemma 8.

Conditions (iii) and (iv) are assumed in Assumption CHE(ii)(c)
and (d). Immediately below we prove (i) in (46) using Assump-
tion CHE(ii)(d) with (d, j, k) = (2, 2, 0); (ii), (v), and (vi) can
be shown using exactly the same approach by applying Assump-
tion CHE(ii)(d) with (d, j, k) = (1, 2, 0), (2, 4, 0), (2, 4, 2), and
(2, 4, 4), respectively.

We now prove (i) in (46). Note that by the Cauchy–Schwarz
inequality we have

n−1(1 − ρ)

n
i=1

(Y ∗

i−1)
2(φ−2

i − φ−2
i )

≤


n−1(1 − ρ)2

n
i=1

(Y ∗

i−1)
4

1/2 
n−1

n
i=1

(φ−2
i − φ−2

i )2

1/2

(47)

and therefore by Assumption CHE(ii)(d) it is enough to show that
n−1(1 − ρ)2

n
i=1 (Y ∗

i−1)
4

= Op(1). By Markov’s inequality, we
have

P


n−1(1 − ρ)2

n
i=1

(Y ∗

i−1)
4 > M



≤ M−2n−2(1 − ρ)4
n

i,j=1

E(Y ∗

i−1Y
∗

j−1)
4. (48)

Thus, it is enough to show that for

Eijstuvabcd = E(Ui−1−sUi−1−tUi−1−uUi−1−v

×Uj−1−aUj−1−bUj−1−cUj−1−d), (49)

we have

n−2(1 − ρ)4
n

i,j=1

∞
s,t,u,v=0

∞
a,b,c,d=0

ρa+b+c+d+s+t+u+vEijstuvabcd

= O(1). (50)

In the case where ρ → ρ∗ < 1, (50) holds by Assumption
INNOV(iii). Next consider the case when ρ → 1. Note that
when the largest subindex i − 1 − s, . . . , j − 1 − d in (50)
appears only once in Eijstuvabcd, then the expectation equals zero
becauseUi is amartingale difference sequence. As in someproofs of
Lemmas 2–9, one can then show that it is enough to consider
the case where the largest subindex appears twice and all other
subindices are different from each other. One has to consider
different subcases regarding the order of the subindices. We
consider only one case here, namely the case where i − 1 − s <
i−1−t < · · · < j−1−b < j−1−c = j−1−d and thus c = d. The
other cases are handledusing an analogous approach.Wemakeuse
of the mixing inequality in (26) and apply Assumption INNOV(iii).
Note that

n−2(1 − ρ)4
n

i,j=1

∞
s>t>u>v=0

∞
a>b>c=0

ρa+b+2c+s+t+u+vEijstuvabcc

= O(n−2(1 − ρ)4)

n
i,j=1

∞
s>t>u>v=0

∞
a>b>c=0

ρa+b+2c+s+t+u+v

× (max{s − t, t − u, b − c})−3−ε

= O(n−2(1 − ρ)3)

n
i,j=1

∞
s>t=0

ρs(s − t)−1−ε/3

×

∞
u>v=0

ρs(s − t)−1−ε/3
∞

b>c=0

ρb(b − c)−1−ε/3

= O(1), (51)

where the last equality holds because


∞

b>c=0 ρb(b − c)−1−ε/3
=

∞

c=0 ρc ∞

b=1 ρbb−1−ε/3
= O((1 − ρ)−1). This completes the

proof of (i) in (46). �
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4.4. Proof of Lemma 1

Proof of Lemma 1. By Assumption CHE2(i) and (v), Assump-
tion CHE(i) holds. We verify Assumption CHE(ii)(a) (which applies
when h1 ∈ [0, ∞)) for j = 1. The proof for j = 0 is similar. We
need to show that

n−1/2
n

i=1

(n−1/2Y ∗

i−1)Ui[φ−2
i − φ−2

i ] = op(1). (52)

To do so, we need to take account of the fact that under
Assumption CHE2, φ2

i differs from φ2
i in three ways. First, φ2

i is
based on the estimated conditional heteroskedasticity parameterπn, not the pseudo-true value πn; second,φ2

i is based on residuals,
i.e., it uses (αn,ρn), not the true values (0, ρn); and third φ2

i is
defined using the truncated-at-time-period-one value Li, not L.

Assumption CHE2(iii) and (iv) implies that ∥πn − πn∥ ≤

Cn−δ2 wp → 1 for some constant C < ∞. Hence, πn ∈ Πn,0 =

Πn ∩ B(πn, Cn−δ2)wp → 1 (where B(π, δ) denotes a ball with
center at π and radius δ). The set Πn,0 contains a finite number of
elements and the number is bounded over n ≥ 1. Without loss of
generality, we can assume that Πn,0 contains K < ∞ elements for
each n ≥ 1. We order the elements in each set Πn,0 and call them
πn,k for k = 1, . . . , K . This yields K sequences {πn,k : n ≥ 1} for
k = 1, . . . , K .

To show (52), we use the following argument. Suppose for some
random variables {(Zn,0, Zn(πn,1), . . . , Zn(πn,K ))′ : n ≥ 1} and Z ,
we have

(Zn,0, Zn(πn,1), . . . , Zn(πn,K ))′ →d(Z, . . . , Z)′ (53)

as n → ∞. In addition, suppose πn ∈ {πn,1, . . . , πn,K }wp → 1.
Then, by the continuous mapping theorem,

min
k≤K

Zn(πn,k) − Zn,0 →d


min
k≤K

Z


− Z = 0,

max
k≤K

Zn(πn,k) − Zn,0 →d


max
k≤K

Z


− Z = 0,

Zn(πn) − Zn,0 ∈ [min
k≤K

Zn(πn,k) − Zn,0,

max
k≤K

Zn(πn,k) − Zn,0]wp → 1, and hence,

Zn(πn) − Zn,0 →d 0. (54)

Since convergence in distribution to zero is equivalent to
convergence in probability to zero, this gives Zn(πn) − Zn,0 →p 0.
We apply this argument with

Zn,0 = n−1/2
n

i=1

(n−1/2Y ∗

i−1)Uiφ
−2
i and

Zn(πn,k) = n−1/2
n

i=1

(n−1/2Y ∗

i−1)Uiφ
−2
i (αn,ρn, πn,k) (55)

for k = 1, . . . , K .
Hence, it suffices to show (53), where {πn,k : n ≥ 1} is a fixed

sequence such that πn,k → π0 for k = 1, . . . , K . To do so, we show
below that

Zn(πn,k) − Zn(πn,k) = op(1), where

Zn(πn,k) = n−1/2
n

i=1

(n−1/2Y ∗

i−1)Uiφ
−2
i (0, ρn, πn,k). (56)

(By definition, Zn(πn,k) is the same as Zn(πn,k) except that it is
definedusing the trueparameters (0, ρn) rather than the estimated
parameters (αn,ρn).) It is then enough to show that (53) holdswith
Zn(πn,k) in place of Zn(πn,k).
For the case h1 ∈ [0, ∞) considered here, we do the latter by
applying Lemma 4 with

vn,i = (Ui,Uiφ
−2
i ,Uiφ

−2
i (0, ρn, πn,1), . . . ,

Uiφ
−2
i (0, ρn, πn,K ))′. (57)

Conditions (i) and (ii) of Lemma 4 hold by Assumptions INNOV
and CHE2(v) (which guarantees that φ−2

i and φ−2
i (0, ρn, πn,k)

are uniformly bounded above). In addition, Λ = 0 because
{(vn,i, Gn,i−1) : i = . . . , 0, 1, . . . ; n ≥ 1} is a martingale difference
triangular array. Using Assumption CHE2(vi), for all k1, k2, k3, k4 =

0, . . . , K , we have

lim
n→∞

n−1EVn,k1V
′

n,k2 = lim
n→∞

n−1EVn,k3V
′

n,k4 , where

Vn,0 =

n
i=1

Uiφ
−2
i =

n
i=1

Ui


ωn +

L
j=1

µj(πn)U2
i−j


and

Vn,k =

n
i=1

Uiφ
−2
i (0, ρn, πn,k)

=

n
i=1

Ui


ωn,k +

Li
j=1

µj(πn,k)U2
i−j


(58)

for k = 1, . . . , K . In consequence, the matrix Ω0 in Lemma 4 has
all elements that are not in the first row or column equal to each
other. For this reason, the elements in the limit random vector in
(53) are equal to each other. We conclude that (53) holds when
Zn(πn,k) appears in place of Zn(πn,k) by Lemma 4(b). In this case,
Z = h1/2

2,1


I∗h dM , see Lemma 5(g) and its proof in Andrews and

Guggenberger (2010b). The verification of Assumption CHE(ii)(a)
when j = 0 is the same as that above because one of the elements
of Xi−1 in Lemma 4(b) can be taken to equal 1 and the latter result
still holds with the corresponding element of K ∗

h being equal to 1,
see Hansen (1992, Theorem 3.1).

It remains to show (56) holds in the case h1 ∈ [0, ∞) consid-
ered here. We only deal with the case j = 1. The case j = 0 can be
handled analogously. To evaluate φ−2

i (αn,ρn, πn,k) − φ−2
i (0, ρn,

πn,k), we use the Taylor expansion

(x + δ)−1
= x−1

− x−2δ + x−3
∗

δ2, (59)

where x∗ is between x + δ and x, applied with x + δ =

φ2
i (αn,ρn, πn,k), x = φ2

i (0, ρn, πn,k), and

δ = δi = φ2
i (αn,ρn, πn,k) − φ2

i (0, ρn, πn,k). (60)

Thus, to show Assumption CHE(ii)(a), it suffices to show that

n−1/2
n

i=1

(n−1/2Y ∗

i−1)Ui(φ
−4
i (0, ρn, πn,k)δ − x−3

∗
δ2) = op(1). (61)

Note that in the Taylor expansion, x−2 and x−3
∗

are both bounded
above (uniformly in i) because both x + δ and x are bounded away
from zero by Assumption CHE2(v). Simple algebra gives

δ =

Li
t=1

µt(πn,k)[−2Ui−tαn − 2Y ∗

i−t−1Ui−t(ρn − ρn)

+α2
n + 2Y ∗

i−t−1(ρn − ρn)αn + Y ∗2
i−t−1(ρn − ρn)

2
]. (62)

The effect of truncation by Li rather than L only affects the finite
number of summands with i ≤ L and hence its effect is easily
seen to be asymptotically negligible and hence without loss of
generality we can set Li = L for the rest of the proof.

We first deal with the contributions from φ−4
i (0, ρn, πn,k)δ in

(61). Rather than considering the sum
Li

t=1 in (62) when showing
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(61), it is enough to show that for every fixed t = 1, . . . , L the
resulting expression in (61) is op(1). Fix t ∈ {1, . . . , L} and set
bi = φ−4

i (0, ρ, πn,k). It is enough to show that

n−1/2
n

i=1

(n−1/2Y ∗

i−1)Uibicit = op(1), (63)

where cit equals

(i) Ui−tαn, (ii) Y ∗

i−t−1Ui−t(ρn − ρ), (iii)α2
n,

(iv) Y ∗

i−t−1(ρn − ρ)αn, or (v) Y ∗2
i−t−1(ρn − ρ)2. (64)

By Assumption CHE2(iii) and because h1 ∈ [0, ∞), we have (1)αn
= Op(n−1/2) and ρn − ρ = Op(n−1). Terms of the form
(2) n−1n

i=1 Y
∗

i−1UibiUi−t and n−3/2n
i=1 Y

∗

i−1Y
∗

i−t−1UiUi−tbi are
Op(1) by Lemma 4(b)–(c) applied with vn,i = (Ui,Ui−t ,UiUi−tbi)′.
Note here that bi is an element of the σ -field σ(Ui−L, . . . ,Ui−1)
by definition of φ2

i (0, ρ, πn,k) in (19) and by Assumption CHE2(i)
and (v), (3) supi≤n,n≥1 |n−1/2Y ∗

i−1| = Op(1) by Lemma 5(a),
(4) terms of the form n−1n

i=1 |UiU
j
i−1| for j = 1, 2 are Op(1) by

a WLLN for strong-mixing triangular arrays, see Andrews (1988),
and (5) the bi are Op(1) uniformly in i. The result in (63) for
cases (i)–(ii) of (64) follows from (2). Cases (iii)–(v) are established
by |n−1/2n

i=1(n
−1/2Y ∗

i−1)Uibicit | ≤ supi≤n,n≥1 |n−1/2Y ∗

i−1|n
−3/2

×
n

i=1 |Ui| = op(1) using (1) and (3)–(5).
Next,wedealwith the contributions from x−3

∗
δ2 in (61). Because

x−3
∗

andµt(πn,k) are both Op(1) uniformly in i, it is enough to show
that

n−1/2
n

i=1

|n−1/2Y ∗

i−1Uicij1dij2 | = op(1), (65)

where cij and dij ∈ {Ui−jαn, Y ∗

i−j−1Ui−j(ρn − ρ),α2
n, Y

∗

i−j−1(ρn −

ρ)αn, Y ∗2
i−j−1(ρn − ρ)2} and j1, j2 ∈ {1, . . . , Li}. Conditions

(1), (3), and (4) imply (65). This completes the proof of
Assumption CHE(ii)(a).

Next, we verify Assumption CHE(ii)(b) (which applies when
h1 ∈ [0, ∞)). For the cases of (d, j) = (0, 2), (1, 2), and (2, 2),
the proof is similar to that given below for Assumption CHE(ii)(d)
but with an = O(n1/2(1 − ρ)−1/2) replaced by an = n and using
the results above that (i) supi≤n,n≥1 |n−1/2Y ∗

i−1| = Op(1) and (ii)
terms of the form n−1n

i=1 |U j1
i U j2

i−1| for j1 = 1, 2 and j2 = 1, 2
areOp(1), which holds using Assumption INNOV(iii). (Note that the
case of (d, j) = (0, 2) is not needed for Assumption CHE(ii) but is
used in the verification of Assumption CHE(ii)(b) for the casewhere
(d, j) = (0, 1), which follows.)

We now verify Assumption CHE(ii)(b) for (d, j) = (0, 1). We
have

n−1
n

i=1

|φ−1
i − φ−1

i | = n−1
n

i=1

|φi − φi|/(φiφi)

≤ ε−1n−1
n

i=1

|φi − φi|

≤ ε−3/2n−1
n

i=1

|φ2
i − φ2

i |, (66)

where the first inequality holds because φ2
i and φ2

i are bounded
away from zero by some ε > 0 by Assumption CHE2(i), (ii), and
(v) and the second inequality holds by the mean-value expansion
(x + δ)1/2 = x1/2 + (1/2)x−1/2

∗ δ, where x∗ lies between x + δ
and x, applied with x + δ = φ2

i , x = φ2
i , δ = φ2

i − φ2
i , and

x−1/2
∗ = φ−1

i,∗ ≤ ε−1/2 using Assumption CHE2(v), where φ2
i,∗ lies
betweenφ2
i and φ2

i . The rhs of (66) is op(1) by the result above that
Assumption CHE(ii)(b) holds for (d, j) = (0, 2).

Next, we verify Assumption CHE(ii)(c) (which applies when
h1 = ∞). We only show the case j = 1, the case j = 0 is handled
analogously.We use a very similar approach to the one in the proof
of Assumption CHE(ii)(a). We show that (56) holds when h1 = ∞

and that

Zn,0 − Zn(πn,k) = op(1) (67)

for every k = 1, . . . , K , where

Zn,0 = n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Uiφ
−2
i ,

Zn(πn,k)

= n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Uiφ
−2
i (αn,ρn, πn,k), and

Zn(πn,k) = n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Uiφ
−2
i (0, ρ, πn,k). (68)

We first show (56). By (59),

n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Ui(φ
−2
i (αn,ρn, πn,k)

− φ−2
i (0, ρ, πn,k))

= n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Ui(−φ−4
i (0, ρ, πn,k)δ

+ x−3
∗

δ2), (69)

where δ is defined in (62) and x∗ in (59). Hence, it suffices to
show that the expression in the second line of (69) is op(1). First,
we deal with the contributions from −φ−4

i (0, ρ, πn,k)δ in (69).
Rather than considering the sum

Li
j=1 in (62) when showing

(69), it is enough to show that for every fixed j = 1, . . . , Li the
expression in the second line of (69) is op(1). Fix j ∈ {1, . . . , Li},
set bi = φ−4

i (0, ρ, πn,k), and note that µj(πn,k) is bounded by
Assumption CHE2(vi). It is enough to show that

n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Uibicij = op(1), (70)

where cij equals

(i) Ui−jαn, (ii) Y ∗

i−j−1Ui−j(ρn − ρ), (iii)α2
n,

(iv) Y ∗

i−j−1(ρn − ρ)αn, or (v) Y ∗2
i−j−1(ρn − ρ)2. (71)

In case (i) of (71), we use Assumption CHE2(iii) which impliesαn = Op(n−1/2). By Markov’s inequality and Assumption STAT, we
have

P

n−1(1 − ρ)1/2
n

i=1

Y ∗

i−1UibiUi−j

 > ε



= O(n−2(1 − ρ))

n
i,k=1

EbibkY ∗

i−1Y
∗

k−1UiUi−jUkUk−j

= O(n−2(1 − ρ))

n
i,k=1

∞
s,t=0

ρs+tEbibkUi−s−1

×Uk−t−1UiUi−jUkUk−j. (72)

Note that bi is an element of the σ -field σ(Ui−L, . . . ,Ui−1).
The latter holds by definition of φ2

i (0, ρ, πn,k) in (19) and by
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Assumption CHE2(i) and (v). To show that the last expression in
(72) is o(1) we have to distinguish several subcases. As in several
proofs above, we can assume that all subindices i − s − 1, k − t −

1, . . . , k − j are different. We only consider the case i − s − 1 <
k − t − 1 < i − j < k − j. The other cases can be dealt with using
an analogous approach. By Assumption INNOV(iii) and the mixing
inequality in (26), we have

n
k=1

∞
s,t=0

n
i=1

ρs+tEbibkUi−s−1Uk−t−1UiUi−jUkUk−j

= O(1)
n

k=1

∞
s,t=0

k−t+s−1
i=1

ρs+t(k − t − i + s)−3−ε

= O(1)
n

k=1

∞
s,t=0

ρs+t
k−t+s−1

i=1

i−3−ε

= O(n(1 − ρ)−2), (73)

where in the third linewe do the change of variable i → k−t−i+s.
This implies that the expression in (72) is o(1) because n(1 − ρ)
→ ∞.

In case (ii) of (71), using ρn − ρ = Op(n−1/2(1 − ρ)1/2)
by Assumption CHE2(iii), (11), and Lemma 6, and using Markov’s
inequality as for case (i), it is enough to show that

n
i,k=1

∞
s,t=0

∞
u,v=0

ρs+t+u+vEbijbkjUi−s−1

×Ui−j−1−tUiUi−jUk−u−1Uk−j−1−vUkUk−j (74)

is o(n2(1 − ρ)−2). Again, one has to separately examine several
subcases regarding the order of the subindices i − s − 1, . . . , k − j
on the random variables Ui. We can assume that all subindices are
different. We only study the case i − s − 1 < i − j − 1 − t <
k − u − 1 < k − j − 1 − v < i − j. The other cases can be handled
analogously. By Assumption INNOV(iii), boundedness of bi, and the
mixing inequality in (26), the expression in (74) is of order

O(1)
n

k=1

∞
s,t=0

∞
u,v=0

n
i=k−v

ρs+t+u+v

× max(s − t − j, i − k + v + 1)−3−ε

= O(1)
∞

u,v=0

ρu+v
n

k=1

n
i=k−v

(i − k + v + 1)−3/2

×

∞
s,t=0

ρs+t(s − t − j)−3/2

= O((1 − ρ)−3n), (75)

where in the first line we use k − 1 − v < i and in the last line
we use

n
i=k−v(i − k + v + 1)−3/2

=
n−k+v+1

i=1 i−3/2
= O(1).

The desired result then follows because n(1 − ρ) → ∞ implies
O((1 − ρ)−3n) = o(n2(1 − ρ)−2).

Cases (iii)–(v) of (71) can be handled analogously.
Next, we show that the contribution from x−3

∗
δ2 in (69) is

op(1). Noting that x−3
∗

and µj(πn,k) are Op(1) uniformly in i by
Assumption CHE2(ii), (v), and (vi), it is enough to show that
n−1/2(1 − ρ)1/2

n
i=1 |Y ∗

i−1Uicij1dij2 | = op(1), where cij and dij ∈

{Ui−jαn, Y ∗

i−j−1Ui−j(ρn −ρ),α2
n, Y

∗

i−j−1(ρn −ρ)αn, Y ∗2
i−j−1(ρn −ρ)2}

and j1, j2 ∈ {1, . . . , Li}. Using αn = Op(n−1/2) and ρn −

ρ = Op(n−1/2(1 − ρ)1/2) the latter follows easily from Markov’s
inequality. For example,

P


n−1/2(1 − ρ)1/2

n
i=1

|Y ∗

i−1Ui(Ui−j1αn)(Ui−j2αn)| > ε



= O(n−3(1 − ρ))

n
i,k=1

∞
s,t=0

ρs+tE|Ui−1−sUiUi−j1

×Ui−j2Uk−1−tUkUk−j1Uk−j2 |

= O(n−3(1 − ρ))(1 − ρ)−2n2

= o(1) (76)

by Assumption INNOV(iii) and n(1 − ρ) → ∞.
Next we show that (67) holds. We have

Zn,0 − Zn(πn,k)

= n−1/2
n

i=1

((1 − ρ)1/2Y ∗

i−1)Ui(φ
−2
i − φ−2

i (0, ρ, πn,k))

= n−1/2(1 − ρ)1/2
n

i=1

Y ∗

i−1Ui(φ
2
i (0, ρ, πn,k) − φ2

i )

× (φ−2
i φ−2

i (0, ρ, πn,k))

= n−1/2(1 − ρ)1/2
n

i=1

Y ∗

i−1Ui


ωn − ωn,k +

L
j=1

(µj(πn)

− µj(πn,k))U2
i−j


(φ−2

i φ−2
i (0, ρ, πn,k)) + op(1), (77)

where ωn is defined in Assumption CHE2(ii). Thus, it is enough to
show that

D1 = n−1/2(1 − ρ)1/2
n

i=1

Y ∗

i−1Ui(ωn − ωn,k)

× (φ−2
i φ−2

i (0, ρ, πn,k)) and

D2j = n−1/2(1 − ρ)1/2
n

i=1

Y ∗

i−1Ui((µj(πn) − µj(πn,k))U2
i−j)

× (φ−2
i φ−2

i (0, ρ, πn,k)) (78)

are op(1) for j = 1, . . . , L. We can prove D2j = op(1) along the
same lines as D1 = op(1) and we therefore only prove D1 = op(1).
By Assumption CHE2(ii) and πn,k → π0, we have ωn − ωn,k → 0.
Thus, by Markov’s inequality and Assumption STAT,

P(|D1| > ε)

= o(n−1(1 − ρ))

n
i,v=1

∞
s,t=0

ρs+tEUi−1−sUiUv−1−tUv

× φ−2
i φ−2

i (0, ρ, πn,k)φ
−2
v φ−2

v (0, ρ, πn,k). (79)

The random variable eiv = (φ−2
i φ−2

i (0, ρ, πn,k))(φ
−2
v φ−2

v (0, ρ,
πn,k)) is an element of the σ -field σ(Umin{i,v}−L, . . . ,Umax{i,v}) by
definition of φ2

i (0, ρ, πn,k) in (19) and by Assumption CHE2(i) and
(v). To prove that the rhs in (79) is op(1) we have to study several
subcases.We only examine the subcasewhere all subindices i−1−

s, i, v−1−t, v are different andwhere i−1−s < i < v−1−t < v.
The other cases can be dealt with analogously. By Assumption
INNOV(iii), boundedness of eiv , and the mixing inequality in (26),
the rhs in (79) for the particular subcase is of order

o(n−1(1 − ρ))

n
i,v=1

∞
s,t=0

ρs+t(s + 1)−3/2(v − 1 − t − i)−3/2

= o(n−1(1 − ρ))

∞
s,t=0

ρs+t(s + 1)−3/2

×

n
v=1

v−2−t
i=1

(v − 1 − t − i)−3/2
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= o(n−1(1 − ρ))O((1 − ρ)−1)O(n)
= o(1), (80)

where in the third line a change of variable i → −i− t −1+v was
used. This completes the verification of Assumption CHE(ii)(c).

Finally, we show that Assumption CHE(ii)(d) holds. First, note
that Assumptions CHE2(i), (ii), and (v) imply φ−j

i φ
−j
i = Op(1)

uniformly in i. Therefore, writing |φ−j
i −φ

−j
i |

d as |(φ
j
i −
φj

i)/(
φj

iφ
j
i)|

d

we have

n−1
n

i=1

|Uk
i (
φ−j

i − φ
−j
i )d| = Op(1)n−1

n
i=1

|Uk
i | · |φj

i − φ
j
i |
d. (81)

We need to show that the quantity in (81) is op(1). Note that by the
definition ofφ2

i in (19) and φ2
i in Assumption CHE2(ii) we have

|φj
i − φ

j
i |
d

=


ωn +

Li
v=1

µv(πn)U2
i−v(αn,ρn)

j/2

−


ωn +

L
v=1

µv(πn)U2
i−v

j/2

d

(82)

with U2
i−v(αn,ρn) = (−(ρn − ρ)Y ∗

i−v−1 − αn + Ui−v)
2. It can be

shown that the additional terms in (81), that arise if we replace Li
by L in (82), are of order op(1). We first study the case where j = 2.
Multiplying out in (82), it follows that when d = 1,φ2

i −φ2
i can be

bounded by a finite sum of elements in S = {|ωn − ωn|, |µv(πn) −

µv(πn)|U2
i−v, (ρn − ρ)2Y ∗2

i−v−1,α2
n, |(ρn − ρ)Y ∗

i−v−1αn|, |(ρn −

ρ)Y ∗

i−v−1Ui−v|,αnUi−v : for v = 1, . . . , L}. When d = 2, (φj
i −φ

j
i)

2

can be bounded by a finite sum of elements given as products of
two terms in S. By Assumption CHE2(iii) and an = O(n1/2(1 −

ρ)−1/2), we haveρn − ρ = Op(n−1/2(1 − ρ)1/2),αn = Op(n−1/2),
and ωn − ωn = Op(n−δ2). To show the quantity in (81) is op(1),
it is enough to verify that n−1n

i=1 |Uk
i si1si2| = op(1) where for

d = 1, si1 ∈ S and si2 = 1 and for d = 2, si1, si2 ∈ S. We only
show this for one particular choice of si1, si2, namely, si1 = si2 =

|µv(πn)−µv(πn)|U2
i−v; the other cases canbehandled analogously.

In that case, we have |µv(πn) − µv(πn)|
2n−1n

i=1 |Uk
i U

2
i−v| =

op(1) because |µv(πn)−µv(πn)|
2

= o(1) by Assumption CHE2(iii),
(iv), and (vi), and n−1n

i=1 |Uk
i U

2
i−v| = Op(1) by a weak law of

large numbers for triangular arrays of L1+δ-bounded strong-mixing
randomvariables for δ > 0, seeAndrews (1988), using themoment
conditions in Assumption INNOV(iii).

The case j = 4 can be proved analogously. �
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