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ESTIMATION AND INFERENCE WITH WEAK, SEMI-STRONG,
AND STRONG IDENTIFICATION

BY DONALD W. K. ANDREWS AND XU CHENG1

This paper analyzes the properties of standard estimators, tests, and confidence sets
(CS’s) for parameters that are unidentified or weakly identified in some parts of the
parameter space. The paper also introduces methods to make the tests and CS’s ro-
bust to such identification problems. The results apply to a class of extremum estima-
tors and corresponding tests and CS’s that are based on criterion functions that satisfy
certain asymptotic stochastic quadratic expansions and that depend on the parameter
that determines the strength of identification. This covers a class of models estimated
using maximum likelihood (ML), least squares (LS), quantile, generalized method of
moments, generalized empirical likelihood, minimum distance, and semi-parametric
estimators.

The consistency/lack-of-consistency and asymptotic distributions of the estimators
are established under a full range of drifting sequences of true distributions. The
asymptotic sizes (in a uniform sense) of standard and identification-robust tests and
CS’s are established. The results are applied to the ARMA(1�1) time series model es-
timated by ML and to the nonlinear regression model estimated by LS. In companion
papers, the results are applied to a number of other models.

KEYWORDS: Asymptotic size, confidence set, estimator, identification, nonlinear
models, strong identification, test, weak identification.

1. INTRODUCTION

THE MAIN CONTRIBUTIONS of this paper are as follows. (i) We provide a
unified treatment of a class of models in which lack of identification and
weak identification occurs in part of the parameter space. (ii) We analyze the
asymptotic properties of extremum estimators, and t and quasi-likelihood ratio
(QLR) tests and confidence sets (CS’s). The results extend standard results for
extremum estimators under high-level conditions to allow for singularity of the
variance matrix. (iii) We introduce tests and CS’s that are robust to identifica-
tion issues. (iv) We provide asymptotic results that are uniform over distribu-
tions that generate the observations. This requires results for what we call the
region of semi-strong identification, which bridges the gap between weak and
strong identification. (v) We give a detailed analysis of the effects of identifica-
tion weakness in the workhorse (autoregressive moving average) ARMA(1�1)
time series model.

The main technical innovations of the paper are the following. (i) For
the weak identification asymptotic results, we do a quadratic approximation

1Andrews gratefully acknowledges the research support of the National Science Foundation
via Grants SES-0751517 and SES-1058376. The authors thank a co-editor, three referees, Xiao-
hong Chen, Patrik Guggenberger, Sukjin Han, Yuichi Kitamura, Ulrich Müller, Peter Phillips,
Eric Renault, Frank Schorfheide, Yixiao Sun, and Ed Vytlacil for helpful comments.
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around the point of lack of identification, rather than around the true param-
eter.2 (ii) In the semi-strong identification case, we obtain consistency using a
nonstochastic limit of the criterion function that has not appeared before in
the literature.3 (iii) To obtain the asymptotic distribution in the semi-strong
identification case, we use a quadratic expansion of the criterion function that
is novel in that it only holds in a rapidly shrinking (as n→ ∞) neighborhood
of the true parameter, combined with a key rate of convergence result for the
estimator.4

We consider models in which the parameter θ of interest is of the form θ=
(β�ζ�π), where π is identified if and only if β �= 0, ζ is not related to the
identification of π, and ψ = (β�ζ) is always identified.5 This is a canonical
parametrization that may or may not hold in the natural parametrization of
the model, but is assumed to hold after suitable reparametrization.

We suppose θ is estimated by minimizing a criterion function Qn(θ) over
a parameter space Θ, where n denotes the sample size. The true distribution
that generates the data is indexed by a parameter γ∗ = (θ∗�φ∗) with parameter
space Γ . Here θ∗ denotes the true value of θ and φ∗ indexes the part of the
distribution of the data that is not determined by θ∗� A key assumption used in
the paper is the following.

ASSUMPTION A: If β = 0, Qn(θ) does not depend on π ∀θ = (β�ζ�π) =
(0� ζ�π) ∈Θ, ∀n≥ 1, for any true parameter γ∗ ∈ Γ .6

Under Assumption A (and other conditions given below), Qn(θ) is (rela-
tively) flat with respect to (w.r.t.) π when β is close to 0� This causes difficulties
with standard asymptotic approximations because the second derivative matrix
of Qn(θ) is singular or near singular and standard asymptotic approximations
involve the inverse of this matrix.

2In consequence, the leading term of the expansion does not depend on the unidentified pa-
rameter, which is key to determining the asymptotic properties of the extremum estimator. This
introduces a bias in the first derivative in the expansion—its mean is not zero.

3This limit is a nonstochastic quadratic form in the bias vector of the first derivative that ap-
pears in the quadratic approximation in part (i). See the function η(π;γ0�ω0) in (3.8) below.

4The shrinking neighborhood depends on the strength of identification. The rate of conver-
gence result for the estimator establishes that the estimator lies in the shrinking neighborhood
with probability that goes to 1. It is based on a different quadratic expansion—the quadratic
expansion used for the weak-identification results in part (i).

5The parameters β�ζ, and π may be scalars or vectors.
6Throughout the paper, we use the term identification/lack of identification in the sense of

identification by a criterion function Qn(θ), as specified in Assumption A. Lack of identification
by the criterion function Qn(θ) is not the same as lack of identification in the usual or strict
sense of the term, although there is a close relationship. For example, with a likelihood criterion
function, the former implies the latter. See Sargan (1983) for a related distinction between lack
of identification in the strict sense and lack of first-order identification.
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EXAMPLE 1: Consider the nonlinear regression model Yi = β∗h(Xi�π
∗)+

Z′
iζ

∗ + Ui and the least squares criterion function Qn(θ) = n−1
∑n

i=1(Yi −
βh(Xi�π)−Z′

iζ)
2�7 The parameter π∗ is not identified when β∗ = 0� Assump-

tion A holds. The first derivative of Qn(θ) w.r.t. π is proportional to β. Hence,
when β is close to zero, the criterion function Qn(θ) is relatively flat in the
direction of π.

EXAMPLE 2: Consider the ARMA(1�1) model estimated by (quasi-) maxi-
mum likelihood (ML). In this model, the autoregressive (AR) and the moving
average (MA) parameters are not identified when their values are equal. This
occurs when the time series is serially uncorrelated—a case of considerable in-
terest in many practical applications.8 By definition, the observed ARMA(1�1)
time series {Yt : 0 ≤ t ≤ n} satisfies

Yt = (π∗ +β∗)Yt−1 + εt −π∗εt−1 for t = � � � �0�1� � � � �(1.1)

where the true MA parameter is π∗, the true AR parameter is π∗ + β∗, the
innovations {εt : t = � � � �0�1� � � �} are independent and identically distributed
(i.i.d.) with mean zero and variance ζ∗� and φ∗ is the distribution of (ζ∗)−1/2εt�
When β∗ = 0, the model is Yt = π∗Yt−1 + εt − π∗εt−1, which is equivalent to
Yt = εt� In this case, π∗ and π∗ +β∗ are not identified.

In the ARMA(1�1) model, the Gaussian quasi-log-likelihood function for
θ= (β�ζ�π) conditional on Y0 and ε0 multiplied by −n−1 and ignoring a con-
stant is

Qn(θ)= 1
2

logζ + 1
2ζ
n−1

n∑
t=1

(
Yt −β

t−1∑
j=0

πjYt−j−1

)2

�(1.2)

Assumption A holds because Qn(θ) does not depend on π when β= 0�
The approach of this paper is to consider a general class of extremum esti-

mators. The criterion functions considered may be smooth or nonsmooth func-
tions of θ. We place high-level conditions on the behavior of the criterion func-
tion Qn(θ), provide a variety of more primitive sufficient conditions, and verify
the latter in several examples.

We are concerned with cases in which the model is strongly identified in
part of the parameter space, but unidentified or weakly identified in another
part of the parameter space. In consequence, we establish the large sam-
ple properties of extremum estimators, t and QLR tests, and CS’s over the

7Here φ∗ is the true distribution of (Xi�Zi�Ui) and the latter is i.i.d. for i= 1� � � � � n�
8Simulation results in Ansley and Newbold (1980) and Nelson and Startz (2007) demonstrate

that this causes substantial bias, variance, and size problems when the AR and MA parameters
are close in value. Ma and Nelson (2008) provide analogous simulation results for the nonlinear
regression model when β∗ is close to zero. We provide an asymptotic analysis of these problems.
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full range of strength-of-identification scenarios. These large sample prop-
erties provide good approximations to the statistics’ finite-sample properties
under all strengths of identification, whereas standard asymptotic theory only
provides good approximations under strong identification. We determine the
asymptotic size of standard t and QLR tests and CS’s, which often deviate from
their nominal size in the presence of lack of identification at some points in the
parameter space.9

We introduce methods of making standard tests and CS’s robust to lack of
identification, that is, to have correct asymptotic size (in a uniform sense).
These methods include least-favorable (LF), type 1 robust, and type 2 robust
critical values. With type 1 and type 2 robust critical values, the idea is to use
an identification-category selection procedure to determine whether β is close
to the nonidentification value 0 and, if so, to adjust the critical value to take ac-
count of the effect of nonidentification or weak identification on the behavior
of the test statistic. We also introduce null-imposed (NI) and plug-in versions
of these robust critical values.

These methods apply to subvectors and low dimensional functions, r(θ), of
the full parameter vector θ. They allow for procedures that are asymptotically
efficient when identification is not weak. In general, they do not have asymp-
totic optimality properties under weak identification. Nevertheless, we investi-
gate their power in the linear instrumental variable (IV) regression model in
which the conditional likelihood ratio (CLR) test of Moreira (2003) has ap-
proximate asymptotic optimality properties; see Andrews, Moreira, and Stock
(2006, 2008). We find that one of the robust tests introduced here has power
that is essentially the same as that of the CLR test and, hence, is approxi-
mately asymptotically optimal in a class of invariant tests. Both of these tests
are based on the same test statistic and the same conditioning statistic (which
is used in the construction of the data-dependent critical value). The results
show that the method of constructing the data-dependent critical value con-
sidered in this paper can yield approximately asymptotically optimal tests. In
addition, the robust tests are generally applicable and often have the advan-
tage of computational ease. See Elliott, Müller, and Watson (2011) for tests
that have some approximate asymptotic optimality properties in models where
a nuisance parameter appears under the null hypothesis.10

This paper applies the general results to the ARMA(1�1) model and the
nonlinear regression model. The results for the ARMA(1�1) model are sum-

9Asymptotic size is defined to be the limit of exact (i.e., finite-sample) size. For a test, exact size
is the maximum rejection probability over distributions in the null hypothesis. For a confidence
interval (CI), exact size is the minimum coverage probability over all distributions. Because exact
size has uniformity built into its definition, so does asymptotic size as defined here.

10Other procedures with asymptotic optimality/admissibility properties in models with poten-
tial identification failure include those of Elliott and Müller (2007, 2008) for some change-point
models. These models are not covered by this paper because the quadratic approximation condi-
tion fails.
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marized as follows. The distributions of the ML estimators of the MA and AR
parameters are greatly effected by weak identification, both asymptotically and
in finite samples. Their distributions are bi- or trimodal, biased for nonzero
true values, and far from the standard normal distribution. The asymptotic dis-
tributions for the MA and AR parameter estimators are the same under weak
identification. The uniform asymptotic approximations to the finite-sample dis-
tributions are remarkably good.

Standard t CI’s are found to have asymptotic and finite-sample sizes that
are very poor—less than 0�60 for nominal 95% CI’s concerning the MA and
AR parameters. Standard CI’s based on the QLR statistic and a χ2 critical
value, on the other hand, have asymptotic and finite-sample sizes that are not
correct, but are far superior to those of standard |t| CI’s. Their asymptotic size
is 0�933 for nominal 95% CI’s and their finite-sample sizes are close to this. The
uniform asymptotic approximations for the standard t and QLR CI’s work very
well.

The nominal 95% robust CI’s have asymptotic and finite-sample size that
are equal to and close to 0�95, respectively. This is true even for the robust
CI’s based on the t statistic. The best robust CI in terms of false coverage
probabilities is a type 2 robust CI based on the QLR statistic. The uniform
asymptotic approximations for the robust CI’s are found to work very well.

Two companion papers—Andrews and Cheng (2011a, 2011b) (hereafter
AC2 and AC3, respectively) apply the results of this paper to a smooth transi-
tion threshold autoregressive (STAR) model, a smooth transition switching re-
gression model, a nonlinear binary choice model, a nonlinear regression model
with endogenous regressors, and a binary probit model with endogeneity and a
linear reduced-form equation for the endogenous variable(s), as in Nelson and
Olson (1978), Lee (1981), Rivers and Vuong (1988), and Magnusson (2010).
Han (2009) shows that, via reparametrization, a simple bivariate probit model
with endogeneity falls into the class of models considered here.11

Other examples covered by the results of this paper include mixed data
sampling (MIDAS) regressions in empirical finance, which combine data with
different sampling frequencies (see Ghysels, Sinko, and Valkanov (2007)),
models with autoregressive distributed lags, continuous transition structural
change models, continuous transition threshold autoregressive models (e.g.,
see Chan and Tsay (1998)), seasonal ARMA(1�1) models (e.g., see Andrews,
Liu, and Ploberger (1998)), models with correlated random coefficients (e.g.,
see Andrews (2001)), (generalized autoregressive conditional heteroskedastic-
ity) GARCH(p�q) models, and time series models with nonlinear determinis-
tic time trends of the form tπ or (tπ − 1)/π.12

11See Supplemental Appendix A in the Supplemental Material (Andrews and Cheng (2012))
for a brief discussion.

12Nonlinear time trends can be analyzed asymptotically in the framework considered in this
paper via sample size rescaling, that is, by considering (t/n)π or ((t/n)π −1)/π (e.g., see Andrews
and McDermott (1995)).
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Not all models with lack of identification at some points in the parameter
space fall into the class of models considered here. The models considered
here must satisfy a set of criterion function (stochastic) quadratic approxima-
tion conditions, as described in more detail below, that do not apply to some
models of interest. For example, abrupt transition structural change models,
(unobserved) regime switching models, and abrupt transition threshold au-
toregressive models are not covered by the results of the present paper; for
example, see Picard (1985), Chan (1993), Bai (1997), Hansen (2000), Liu and
Shao (2003), Elliott and Müller (2007, 2008), Qu and Perron (2007), and Drton
(2009) for analyses of these models. In addition, the criterion functions con-
sidered here depend on the parameter that determines the strength of iden-
tification. This differs from the criterion functions considered in the weak IV
literature.

Next, we discuss the literature that is related to this paper. Cheng (2008)
considers a nonlinear regression model with multiple nonlinear regressors and,
hence, multiple sources of lack of identification. Here we consider a single
source of lack of identification, but cover a much wider variety of models.13

In the models considered in this paper, a test of H0 :β= 0 versus H1 :β �= 0,
is a test for which π is a nuisance parameter that is unidentified under the
null hypothesis. Testing problems of this type have been considered in the lit-
erature; for example, see Davies (1977, 1987), Andrews and Ploberger (1994,
1995), Hansen (1996), and Cho, Ishida, and White (2011). In contrast, we con-
sider a full range of nonlinear hypotheses concerning (β�ζ�π) and CS’s, where
β can be 0, close to 0, or far from 0� When the null hypothesis involves (ζ�π),
the identification scenario is substantially more complicated than when H0 is
β= 0�

The weak instrumental variable (IV) literature (e.g., see Nelson and Startz
(1990), Dufour (1997), Staiger and Stock (1997), Stock and Wright (2000),
Kleibergen (2002, 2005), Moreira (2003), and other papers referenced in
Andrews and Stock (2007)) is related to the present paper because it considers
weak identification. In the weak IV literature, the criterion functions consid-
ered do not have the parameters that are the source of weak identification as
arguments. Thus, in linear IV models, the reduced-form parameters are not ar-
guments of the criterion function. Similarly, in Stock and Wright (2000), which
applies to nonlinear models, high-level conditions are placed on the popula-
tion moment functions under which the IV’s are weak for some parameters.
On the other hand, in the present paper, the potential source of weak identifi-
cation is an explicit part of the model.14 In consequence, the present paper and
the weak IV literature are complements.

13In addition, the treatment of the nonlinear regression model here allows for a whole class of
error distributions, whereas Cheng (2008) considers a single error distribution.

14To help clarify the differences, we show in Supplemental Appendix E that Stock and Wright’s
(2000) Assumption C fails in the nonlinear regression model when a nonlinear regression param-
eter is weakly identified due to its multiplicative coefficient being close to zero.
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However, in one case there is an overlap. The criterion function for the lim-
ited information maximum likelihood (LIML) estimator in the linear IV re-
gression model can be written as either (i) a function of the parameters in the
structural equation plus the parameters in the accompanying reduced-form
equations, which fits the framework of the present paper, or (ii) a function
of the structural equation parameters only via concentrating out the reduced-
form parameters, as in Anderson and Rubin (1949) and Staiger and Stock
(1997). This permits the comparison of the CLR test with the robust tests in-
troduced here, as discussed above.

The finite-sample results of Dufour (1997) and Gleser and Hwang (1987) for
CS’s and tests are applicable to the models considered in this paper.15

Antoine and Renault (2009, 2010) and Caner (2010) consider generalized
method of moment (GMM) estimation with instruments that lie in what we
call the semi-strong category. Their emphasis is on asymptotic efficiency with
semi-strong instruments, rather than the behavior of statistics across the full
range of strengths of identification as is considered here.

In likelihood scenarios, Lee and Chesher (1986) consider Lagrange multi-
plier (LM) tests and Rotnitzky, Cox, Bottai, and Robins (2000) consider ML
estimators and likelihood ratio tests, when the model is identified at all param-
eter values, but the information matrix is singular at some parameter values,
such as those in the null hypothesis. This is a different scenario than is consid-
ered in the present paper, because the present paper considers scenarios where
identification fails at some parameter values in the parameter space, which
causes the information matrix in likelihood scenarios to be singular at these
parameter values. In recent papers, I. Andrews and Mikusheva (2011) and Qu
(2011) consider a LM statistic in a likelihood context with weak identification.

Nelson and Startz (2007) introduce the zero-information-limit condition,
which applies to the models considered in this paper, and discuss its implica-
tions. Ma and Nelson (2008) consider tests based on linearization for models
of the type considered in this paper. Neither of these papers establishes the
large sample properties of estimators, tests, and CS’s along the lines given in
this paper.

Sargan (1983) provides asymptotic results for linear-in-variables and nonlin-
ear-in-parameters simultaneous equations models in which some parameters
are unidentified. Phillips (1989) and Choi and Phillips (1992) provide finite-
sample and asymptotic results for linear simultaneous equations and linear
spurious regression models in which some parameters are unidentified. Their
results do not overlap very much with those in this paper because the present
paper is focused on nonlinear models. Their asymptotic results are pointwise

15This paper considers the case where the potentially unidentified parameter π lies in a
bounded set Π. In this case, Corollary 3.4 of Dufour (1997) implies that if the diameter of a
CS for π is as large as the diameter of Π with probability less than 1 − 2α, then the CS has
(exact) size less than 1 − α (under certain assumptions).
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in the parameters, which covers the unidentified and strongly identified cat-
egories, but not the weakly identified and semi-strongly identified categories
described above.

Supplemental Appendix E (in the Supplemental Material (Andrews and
Cheng (2012))) applies the results of the present paper to the nonlinear regres-
sion model with i.i.d. or stationary and ergodic regressors. One also can apply
the approach of this paper to the case where the regressors are integrated. In
this case, the general results given below do not apply directly. However, by
using the asymptotics for nonlinear and nonstationary processes developed by
Park and Phillips (1999, 2001), the approach goes through, as shown recently
by Shi and Phillips (2011).16

The remainder of the paper is organized as follows. Section 2 introduces
the extremum estimators, criterion functions, tests, confidence sets, and drift-
ing sequences of distributions considered in the paper. Section 3 states the
high-level assumptions employed and provides the asymptotic results for the
extremum estimators. Section 4 establishes the asymptotic distributions of t
and QLR statistics, and determines the asymptotic size of standard t and QLR
CS’s. Section 5 introduces methods of constructing robust tests and CS’s whose
asymptotic size equals their nominal size, and applies them to t and QLR
tests and CS’s. This section also includes the comparison of the asymptotic
power of one of the robust tests with the CLR test in the linear IV regression
model. Section 6 provides asymptotic and finite-sample numerical results for
the ARMA(1�1) model. The Supplemental Material contains all the appen-
dices. Supplemental Appendix A gives a verbal description of the steps in the
proofs of the results in Sections 3–5 and sufficient conditions for some of the
high-level conditions stated in Section 3. Supplemental Appendix B provides
proofs of the results given in Sections 3–5. Supplemental Appendix C veri-
fies the assumptions of the paper for the ARMA example. Supplemental Ap-
pendix D provides additional Monte Carlo simulation results for the ARMA
example. Supplemental Appendices E and F verify the assumptions of the pa-
per for the nonlinear regression and linear IV regression models, respectively.

AC2 provides primitive sufficient conditions for the high-level assumptions
of this paper for the class of estimators based on sample averages that are
smooth functions of the parameter θ, which includes ML and least squares
(LS) estimators. AC3 provides sufficient conditions for the high-level assump-
tions for the class of GMM estimators and provides general results for Wald
tests.

All limits below are taken “as n → ∞.” Let Xn(π) = opπ(1) mean that
supπ∈Π ‖Xn(π)‖ = op(1), where ‖ · ‖ denotes the Euclidean norm. Let “for all
δn → 0” abbreviate “for all sequences of positive scalar constants {δn :n ≥ 1}

16Shi and Phillips (2011) employs the same method of computing asymptotic size and of con-
structing identification-robust CS’s as was introduced in an early version of this paper and in
Cheng (2008).
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for which δn → 0�” Let λmin(A) and λmax(A) denote the smallest and largest
eigenvalues, respectively, of a matrixA�All vectors are column vectors. For no-
tational simplicity, we often write (a�b) instead of (a′� b′)′ for vectors a and b�
Also, for a function f (c) with c = (a�b) (= (a′� b′)′), we often write f (a�b)
instead of f (c)� Let 0d denote a d-vector of zeros. Because it arises frequently,
we let 0 denote a dβ-vector of zeros, where dβ is the dimension of a parame-
ter β. Let ⇒ denote weak convergence of a sequence of stochastic processes
indexed by π ∈Π for some space Π.

2. ESTIMATOR AND CRITERION FUNCTION

2.1. Extremum Estimators

By definition, the estimator θ̂n (approximately) minimizes a criterion func-
tion Qn(θ) over an “optimization parameter space” Θ:17

θ̂n ∈Θ and Qn(θ̂n)= inf
θ∈Θ
Qn(θ)+ o(n−1)�(2.1)

The function Qn(θ) depends on the observations {Wi : i ≤ n}� which may be
i.i.d., independent and nonidentically distributed (i.n.i.d.), or temporally de-
pendent.18

As stated above, θ is partitioned into three subvectors:

θ= (β�ζ�π)= (ψ�π)� where ψ= (β�ζ)�(2.2)

The parameter π ∈ Rdπ is unidentified when β = 0 (∈ Rdβ). The parameter
ψ = (β�ζ) ∈ Rdψ is always identified. The parameter ζ ∈ Rdζ does not effect
the identification of π.

The argument θ of the criterion function need not determine the distribu-
tion of the data. We introduce an additional parameter φ such that γ = (θ�φ)
completely determines the distribution of the data.19 The true distribution of

17The o(n−1) term in (2.1), and in (3.2) and (3.3) below, is a fixed sequence of constants that
does not depend on the true parameter γ ∈ Γ and does not depend on π in (3.2). The o(n−1)
term makes it clear that the infima in these equations need not be achieved exactly. This allows
for some numerical inaccuracy in practice and also circumvents the issue of the existence of
parameter values that achieve the infima. In contrast to many results in the extremum estimator
literature, the o(n−1) term is not a random op(n

−1) term here.
18The indices i and t are interchangeable in this paper. For the general results and cross section

examples, the observations are indexed by i (= 1� � � � � n). To conform with standard notation, the
observations are indexed by t (= 1� � � � � n or = −r� � � � � n for some r ≥ 0) in time series examples,
such as the ARMA(1�1) example.

19In a nonlinear regression model estimated by least squares, θ indexes the regression func-
tion and possibly a finite-dimensional feature of the distribution of the errors, such as its vari-
ance, and φ indexes the remaining characteristics of the distribution of the errors, which may
be infinite dimensional. In an unconditional likelihood scenario, no parameter φ appears. In a
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the observations {Wi : i ≤ n} is denoted Fγ where γ ∈ Γ . We let Pγ and Eγ de-
note probability and expectation under Fγ�

The parameter space Γ for the true parameter γ, referred to as the “true
parameter space,” is assumed to be compact and of the form

Γ = {γ = (θ�φ) :θ ∈Θ∗�φ ∈Φ∗(θ)}�(2.3)

where the true parameter space for θ, Θ∗, is a compact subset of Rdθ and
Φ∗(θ) ⊂ Φ∗ ∀θ ∈ Θ∗ for some compact metric space Φ∗ with a metric that
induces weak convergence of the bivariate distributions (Wi�Wi+m) for all
i�m≥ 1.20– 22

2.2. Confidence Sets and Tests

We are interested in the effect of lack of identification or weak identification
on the behavior of the extremum estimator θ̂n� In addition, we are interested in
its effects on CS’s for various functions r(θ) of θ and on tests of null hypotheses
of the form H0 : r(θ)= v�

A CS is obtained by inverting a test. For example, a nominal 1 − α CS for
r(θ) is

CSn = {v : Tn(v)≤ cn�1−α(v)}�(2.4)

where Tn(v) is a test statistic, such as a t� Wald, or QLR statistic, and cn�1−α(v)
is a critical value for testing H0 : r(θ) = v� Critical values considered in this
paper may depend on the null value v of r(θ) as well as on the sample size n�
The coverage probability of a CS for r(θ) is

Pγ(r(θ) ∈ CSn)= Pγ
(

Tn(r(θ))≤ cn�1−α(r(θ))
)
�(2.5)

This paper focuses on the smallest finite-sample coverage probability of a
CS over the parameter space, that is, the finite-sample size of the CS. It is

conditional likelihood scenario, with conditioning variables {Xi : i≥ 1},φ indexes the distribution
of {Xi : i≥ 1}� In a moment condition model, θ is a finite-dimensional parameter that appears in
the moment functions and φ indexes those aspects of the distribution of the observations that are
not determined by θ.

20The true parameter space Θ∗ is the space of parameter values that the researcher specifies
as including the true value. The optimization parameter space Θ is the space over which the
researcher optimizes the sample criterion function. For reasons stated below (see the discussion
preceding Assumption B1), we allow for a difference between Θ and Θ∗�

21The metric dΦ∗ on Φ∗ must satisfy the condition if γ → γ0� then (Wi�Wi+m) under γ
converges in distribution to (Wi�Wi+m) under γ0� Note that Γ is a metric space with metric
dΓ (γ1�γ2)= ‖θ1 − θ2‖ + dΦ∗(φ1�φ2)� where γj = (θj�φj) ∈ Γ for j = 1�2�

22The asymptotic results below give uniformity results over the parameter space Γ . If one has
a noncompact parameter space Φ∗

1 for the parameter φ� instead of Φ∗� then one can apply the
results established here to show that the uniformity results hold for all compact subsets Φ∗ of Φ∗

1
that satisfy the given conditions.
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approximated by the asymptotic size, which is defined to be

AsySz = lim inf
n→∞

inf
γ∈Γ

Pγ(r(θ) ∈ CSn)(2.6)

= lim inf
n→∞

inf
γ∈Γ

Pγ
(

Tn(r(θ))≤ cn�1−α(r(θ))
)
�

For a test, we are interested in its maximum null rejection probabil-
ity, which is the size of the test. A test’s asymptotic size is an approx-
imation to the latter. The test’s null rejection probability is Pγ(Tn(v) >
cn�1−α(v)) for γ = (θ�φ) ∈ Γ with r(θ) = v and its asymptotic size is AsySz =
lim supn→∞ supγ∈Γ :r(θ)=v Pγ(Tn(v) > cn�1−α(v)).

2.3. Drifting Sequences of Distributions

In (2.6), the uniformity over γ ∈ Γ for any given sample size n is crucial
for the asymptotic size to be a good approximation to the finite-sample size.
The value of γ at which the finite-sample size of a CS or test is attained of-
ten varies with the sample size. Therefore, to determine the asymptotic size,
we need to derive the asymptotic distribution of the test statistic Tn(vn) under
sequences of true parameters γn = (θn�φn) and vn = r(θn) that may depend
on n.23 Similarly, to investigate the finite-sample behavior of the extremum es-
timator under weak identification, we need to consider its asymptotic behavior
under drifting sequences of true distributions, as in Staiger and Stock (1997),
Stock and Wright (2000), and numerous other papers that consider weak in-
struments.

Suppose the true value of the parameter is θn = (βn� ζn�πn) for n≥ 1� where
n indexes the sample size. The behavior of extremum estimators and tests de-
pends on the magnitude of ‖βn‖, and varies across the three categories of
sequences {βn :n ≥ 1} defined in Table I.24 In consequence, the following se-
quences {γn} are key:

Γ (γ0)= {{γn ∈ Γ :n≥ 1} :γn → γ0 ∈ Γ }�(2.7)

Γ (γ0�0� b)= {{γn} ∈ Γ (γ0) :β0 = 0 and

n1/2βn → b ∈ (R∪ {±∞})dβ}�
23Drifting sequences of parameters have been shown to play a crucial role in the literature

on the (uniform) asymptotic size properties of tests and CS’s when the statistics of interest dis-
play discontinuities in their pointwise asymptotic distributions; see Mikusheva (2007), Andrews
and Guggenberger (2009, 2010), and Andrews, Cheng, and Guggenberger (2009). The situation
considered here is an example of the latter phenomenon.

24Hahn and Kuersteiner (2002) and Antoine and Renault (2009, 2010) refer to sequences in
our semi-strong category as nearly weak. For this paper at least, we prefer our terminology because
estimators are consistent and asymptotically normal under semi-strong sequences, just as under
sequences in the strong category. The only difference is that their rate of convergence is slower.
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TABLE I

IDENTIFICATION CATEGORIES

Category {βn} Sequence Identification Property of π

I(a) βn = 0 ∀n≥ 1 Unidentified
I(b) βn �= 0 and n1/2βn → b ∈Rdβ Weakly identified

(and, hence, ‖βn‖ =O(n−1/2))
II βn → 0 and n1/2‖βn‖ → ∞ Semi-strongly identified
III βn → β0 �= 0 Strongly identified

Γ (γ0�∞�ω0)= {{γn} ∈ Γ (γ0) :n1/2‖βn‖ → ∞ and

βn/‖βn‖ →ω0 ∈Rdβ
}
�

where γ0 = (β0� ζ0�π0�φ0) and γn = (βn� ζn�πn�φn)�
25

The sequences in Γ (γ0�0� b) are in categories I and II, and are sequences
for which {βn} is close to 0: βn → 0� When ‖b‖ <∞� {βn} is within O(n−1/2)
of 0 and the sequence is in category I. The sequences in Γ (γ0�∞�ω0) are in
categories II and III and are more distant from β = 0: n1/2‖βn‖ → ∞. The
sets Γ (γ0�0� b) and Γ (γ0�∞�ω0) are not disjoint. Both contain sequences in
category II.

Throughout the paper, we use the terminology “under {γn} ∈ Γ (γ0)” to
mean “when the true parameters are {γn} ∈ Γ (γ0) for any γ0 ∈ Γ ”; “under
{γn} ∈ Γ (γ0�0� b)” to mean “when the true parameters are {γn} ∈ Γ (γ0�0� b)
for any γ0 ∈ Γ with β0 = 0 and any b ∈ (R ∪ {±∞})dβ”; and “under {γn} ∈
Γ (γ0�∞�ω0)” to mean “when the true parameters are {γn} ∈ Γ (γ0�∞�ω0) for
any γ0 ∈ Γ and any ω0 ∈Rdβ with ‖ω0‖ = 1�”

Lemma 2.1 below shows that the AsySz of a sequence of CS’s is determined
by the asymptotic coverage probabilities of the CS’s under the drifting se-
quences of distributions in Γ (γ0�0� b) and Γ (γ0�∞�ω0)� We emphasize that
asymptotic coverage probabilities for sequences in all three categories I–III,
including the semi-strong category II, are needed to establish the asymptotic
size of a sequence of CS’s.

Consider the CS for r(θ) in (2.4). Denote the coverage probability of the CS
under γn = (θn�φn) by CPn(γn)= Pγn(Tn(r(θn))≤ cn�1−α(r(θn)))� Let

h= (b�γ0) and H = {h= (b�γ0) :‖b‖<∞�γ0 ∈ Γ with β0 = 0}�(2.8)

ASSUMPTION ACP: (i) For any {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞� CPn(γn)→
CP(h) for some CP(h) ∈ [0�1]� where h= (b�γ0) ∈H�

25Note that the 0 in Γ (γ0�0� b) and the ∞ in Γ (γ0�∞�ω0) stand for different things. In the
former, β0 = 0; in the latter, n1/2‖βn‖ → ∞.
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(ii) For any {γn} ∈ Γ (γ0�∞�ω0)� lim infn→∞ CPn(γn)≥ CP∞ for some CP∞ ∈
[0�1]�

(iii) For some {γn} ∈ Γ (γ0�∞�ω0)� CPn(γn)→ CP∞�
(iv) For some δ > 0� γ = (β�ζ�π�φ) ∈ Γ with 0 ≤ ‖β‖< δ implies that γ̃ =

(β̃� ζ�π�φ) ∈ Γ for all β̃ ∈Rdβ with 0 ≤ ‖β̃‖< δ�
Here ACP abbreviates asymptotic coverage probability.

LEMMA 2.1: Suppose Assumption ACP holds. Then

AsySz = min{ inf
h∈H

CP(h)�CP∞}�

COMMENTS: (i) Assumption ACP is verified below for standard t and QLR
CS’s, as well as several CS’s that are robust to weak identification. Lemma 2.1
then gives their AsySz� Note that Assumption ACP(ii) requires asymptotic re-
sults for the semi-strongly identified category II sequences, not just the strongly
identified category III sequences.

(ii) The sets Γ (γ0�0� b) and Γ (γ0�∞�ω0) are distinguished by whether
n1/2‖βn‖ → ‖b‖ with ‖b‖<∞ or ‖b‖ = ∞. Similarly, Assumptions ACP(i) and
ACP(ii) and (iii) are distinguished by ‖b‖<∞ and ‖b‖ = ∞. The reason this
distinction arises and is important is that the asymptotic behavior of the nor-
malized (generalized) stochastic first derivative of the criterion function Qn(θ)
depends on whether ‖b‖ < ∞ or ‖b‖ = ∞. If ‖b‖ < ∞� its limit is the sum
of deterministic and stochastic terms, because the signal and noise are of the
same order of magnitude. If ‖b‖ = ∞� its limit is deterministic, because the
signal dominates the noise (see (3.7) below).

(iii) Lemma 2.1 is proved by showing that one can reduce uniform coverage
probability results to coverage probability results under suitable subsequences.
Then one shows that results under such subsequences are implied by results
under suitable full sequences. The proof follows the lines of the argument in
Andrews and Guggenberger (2010).

3. ASSUMPTIONS AND ESTIMATION RESULTS

3.1. Parameter Space Assumptions

First, we specify conditions on the parameter spaces Θ and Γ . To obtain
asymptotic size results for tests and CS’s, the parameter space must be speci-
fied precisely. Without loss of generality (w.l.o.g.), the optimization parameter
space Θ can be written as

Θ= {θ= (ψ�π) :ψ ∈Ψ(π)�π ∈Π}� where(3.1)

Π = {π : (ψ�π) ∈Θ for some ψ}�
Ψ(π)= {ψ : (ψ�π) ∈Θ} for π ∈Π�



2166 D. W. K. ANDREWS AND X. CHENG

Allowing Ψ(π) to depend on π is needed in the ARMA(1�1) example, among
others.26

We consider the case where the optimization parameter space Θ includes
Θ∗ in its interior (Assumption B1(i) below). Because Θ is user selected, of-
ten this can be accomplished by the choice of Θ. Given int(Θ)⊃Θ∗� the true
value of θ cannot lie on the boundary of the optimization parameter space. In
consequence, the asymptotic distribution of θ̂n is not affected by boundary con-
straints for any sequence of true parameters in Θ∗� This allows us to focus in
this paper on the effects of weak identification, independently from boundary
constraints, on the behavior of estimators, tests, and CS’s.27

Define Θ∗
δ = {θ ∈Θ∗ :‖β‖< δ}� where Θ∗ is the true parameter space for θ.

The optimization parameter space Θ satisfies the following assumption.

ASSUMPTION B1: (i) int(Θ)⊃Θ∗�
(ii) For some δ > 0� Θ ⊃ {β ∈ Rdβ :‖β‖ < δ} × Z 0 × Π ⊃ Θ∗

δ for some
nonempty open set Z 0⊂Rdζ and Π as in (3.1).

(iii) Π is compact.

Assumption B1(ii) ensures that Θ is compatible with Assumptions C1, C3,
and C5 below.28

The true parameter space Γ satisfies the next assumption.

ASSUMPTION B2: (i) Γ is compact and (2.3) holds.
(ii) For some δ > 0, γ = (β�ζ�π�φ) ∈ Γ with 0 ≤ ‖β‖< δ implies that γ̃ =

(β̃� ζ�π�φ) ∈ Γ for all β̃ ∈Rdβ with 0 ≤ ‖β̃‖< δ.
(iii) For δ > 0 as in (ii), ∃γ = (β�ζ�π�φ) ∈ Γ with 0< ‖β‖< δ.

Assumption B2(ii) ensures that Assumption ACP(iv) holds. Assump-
tions B2(ii) and (iii) guarantee that there exist elements γ of Γ whose β values
are nonzero but are arbitrarily close to zero, which is the region of near lack of
identification, and that Γ is compatible with Assumption C5 below.

26We write Θ in terms of the sets Π and Ψ(π)� rather than sets Ψ and Π(ψ)� because below
we carry out quadratic expansions of Qn(ψ�π) w.r.t. ψ for each π ∈Π and this yields stochastic
processes that are indexed by the fixed set Π and that converge weakly as processes on Π.

27If the true and optimization parameters spaces both equal a set Θ� then the uniform results
of this paper apply to any subset Θ∗ of Θ that satisfies the conditions listed below, but they do not
apply to the entire true parameter space Θ because of boundary effects.

28Assumption B1(iii) is used to show that certain continuous functions on Π introduced in
Assumptions C6 and C7 below, which have unique minima onΠ� satisfy “identifiable uniqueness”
properties. Assumption B1(iii) could be avoided by imposing identifiable uniqueness properties
directly in Assumptions C6 and C7.
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3.2. Concentrated Estimator and Probability Limit Results

Define the concentrated extremum estimator ψ̂n(π) (∈Ψ(π)) ofψ for given
π ∈Π by

Qn(ψ̂n(π)�π)= inf
ψ∈Ψ(π)

Qn(ψ�π)+ o(n−1)�(3.2)

Let Qc
n(π) denote the concentrated sample criterion function Qn(ψ̂n(π)�π)�

Define an extremum estimator π̂n (∈Π) by

Qc
n(π̂n)= inf

π∈Π
Qc
n(π)+ o(n−1)�(3.3)

We assume that the extremum estimator θ̂n in (2.1) can be written as θ̂n =
(ψ̂n(π̂n)� π̂n)�

29

Next, we specify the limit of the sample criterion function Qn(θ) along drift-
ing sequences of true parameters {γn} ∈ Γ (γ0) whose limit is γ0 ∈ Γ and deter-
mine the probability limit of θ̂n�

ASSUMPTION B3: (i) For some nonstochastic real-valued functionQ(θ;γ0) on
Θ× Γ� supθ∈Θ |Qn(θ)−Q(θ;γ0)| →p 0 under {γn} ∈ Γ (γ0) ∀γ0 ∈ Γ .

(ii) When β0 = 0� for every neighborhood Ψ0 (⊂ Rdψ) of ψ0 = (β0� ζ0)�
infπ∈Π(infψ∈Ψ(π)/Ψ0 Q(ψ�π;γ0)−Q(ψ0�π;γ0)) > 0 ∀γ0 = (ψ0�π0�φ0) ∈ Γ .

(iii) When β0 �= 0� for every neighborhood Θ0 (⊂ Θ) of θ0 = (β0� ζ0�π0)�
infθ∈Θ/Θ0 Q(θ;γ0)−Q(θ0;γ0) > 0 ∀γ0 = (θ0�φ0) ∈ Γ .

Assumption B3(i) defines the (asymptotic) population criterion function
Q(θ;γ0). Assumption B3(ii) provides a condition for the identification of β
and ζ despite the nonidentification of π when β0 = 0� Uniformity over Π is
required due to the nonidentification of π. A condition of this type also is
used in Andrews (1993) for the uniform consistency of a family of estimators.
Assumption B3(iii) is a standard identification condition for θ when β0 �= 0�
A condition of this sort is verified for various extremum estimators in Newey
and McFadden (1994).

A set of primitive sufficient conditions for Assumption B3(ii) and (iii) is
given in Assumption B3∗ in Supplemental Appendix A.

LEMMA 3.1: Suppose Assumptions A and B3 hold. Under {γn} ∈ Γ (γ0)� where
γ0 = (β0� ζ0�π0�φ0)� there are two alternatives:

(a) When β0 = 0� supπ∈Π ‖ψ̂n(π)−ψn‖ →p 0 and ψ̂n −ψn →p 0.
(b) When β0 �= 0� θ̂n − θn →p 0�

COMMENT: When β0 = 0� the asymptotic behavior of π̂n is determined be-
low.

29If (3.2) and (3.3) hold and θ̂n = (ψ̂n(π̂n)� π̂n)� then (2.1) automatically holds.
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3.3. Close to β= 0 Assumptions and Estimation Results

The following Assumptions C1–C8 are used to determine the asymptotic dis-
tributions of estimators and test statistics under sequences of true parameters
{γn} ∈ Γ (γ0�0� b) with ‖b‖<∞ and to establish the consistency of π̂n under se-
quences {γn} ∈ Γ (γ0�0� b) with ‖b‖ = ∞. The “C” denotes that the sequences
of parameters {γn} considered are close to the point of nonidentification.

The first assumption, Assumption C1, requires that the criterion function
Qn(θ) has a stochastic quadratic expansion in ψ around the nonidentification
point ψ0�n = (0� ζn) uniformly in π ∈Π. Assumptions C2 and C3 concern the
behavior of the (generalized) first derivative in the expansion. Assumption C4
concerns the behavior of the (generalized) second derivative. Assumptions C5
and C7 arise because the quadratic expansion is about the nonidentification
point ψ0�n� rather than the true value ψn� Assumptions C6–C8 are used when
determining the asymptotic behavior of π̂n�

We now define a sequence of scalar constants {an(γn) :n ≥ 1} that pro-
vides the normalization required so that the (generalized) first derivative in
the quadratic expansion in Assumption C1 is nondegenerate asymptotically.30

These constants appear in the conditions on the remainder term of the approx-
imation in Assumption C1. Define

an(γn)=
{
n1/2� if {γn} ∈ Γ (γ0�0� b) and ‖b‖<∞,
‖βn‖−1� if {γn} ∈ Γ (γ0�0� b) and ‖b‖ = ∞.

(3.4)

Note that ‖βn‖−1 < n1/2 for n large when ‖b‖ = ∞� because n1/2‖βn‖ → ∞.31

Hence, an(γn)≤ n1/2 for n large.

ASSUMPTION C1: Under {γn = (βn� ζn�πn�φn)} ∈ Γ (γ0�0� b)� for some
δ > 0� ∀θ= (ψ�π) ∈Θδ = {θ ∈Θ :‖β‖< δ}, the following statements hold:

(i) The sample criterion function Qn(ψ�π) has a quadratic expansion in ψ
around ψ0�n = (0� ζn) for given π,

Qn(ψ�π)=Qn(ψ0�n�π)+DψQn(ψ0�n�π)
′(ψ−ψ0�n)

+ 1
2
(ψ−ψ0�n)

′DψψQn(ψ0�n�π)(ψ−ψ0�n)+Rn(ψ�π)�

where DψQn(ψ0�n�π) ∈Rdψ is a stochastic generalized first partial-derivative vec-
tor, andDψψQn(ψ0�n�π) ∈Rdψ×dψ is a generalized second partial-derivative matrix
that is symmetric and may be stochastic or nonstochastic.

(ii) The remainder, Rn(ψ�π)� satisfies

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

|a2
n(γn)Rn(ψ�π)|

(1 + ‖an(γn)(ψ−ψ0�n)‖)2
= opπ(1)

30See Lemma 9.1 in Supplemental Appendix B.
31The quantity an(γn) actually depends on the entire sequence {γn} because b depends on {γn}�
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for all constants δn → 0�
(iii) DζQn(θ) and DζζQn(θ) do not depend on π when β = 0� where θ =

(β�ζ�π) ∈Θ� DζQn(θ) denotes the last dζ elements of DψQn(θ)� and DζζQn(θ)
is the lower dζ × dζ block of DψψQn(θ)�

Because the expansion in Assumption C1 is about the point of lack of identi-
fication ψ0�n� rather than the true value ψn� the leading term Qn(ψ0�n�π) does
not depend on π by Assumption A. This is key. It implies that θ̂n = (ψ̂n� π̂n) not
only minimizes Qn(ψ�π)� but also Qn(ψ�π)−Qn(ψ0�n�π)� The latter has the
quadratic expansion in Assumption C1 with linear and quadratic terms whose
asymptotic properties one can determine using Assumptions C2–C5 below.

Sufficient conditions for Assumption C1 when Qn(θ) is a sample average
that is smooth in θ are given in Lemma 8.6 in Supplemental Appendix A. In
this case, DψQn(θ) and DψψQn(θ) are the pointwise partial and second par-
tial derivatives of Qn(θ)� For the nonsmooth sample average case, sufficient
conditions are given in Lemma 8.7 in Supplemental Appendix A. In this case,
DψQn(θ) is a “stochastic derivative” ofQn(θ)� which typically equals the point-
wise derivative for points where the latter exists, and DψψQn(θ) is the (non-
stochastic) second partial derivative of the expected value of Qn(θ)� This case
covers quantile estimators and ML and LS estimators in continuous, but not
smooth, threshold autoregressive models, as in Chan and Tsay (1998). Suffi-
cient conditions for Assumption C1 when Qn(θ) is a GMM or minimum dis-
tance (MD) criterion function, smooth or nonsmooth in θ� are given in AC3.

If DψQn(θ) and DψψQn(θ) are the pointwise partial and second partial
derivatives of Qn(θ)� then Assumption C1(iii) is implied by Assumption A.
Otherwise, in the presence of Assumption A, Assumption C1(iii) is not restric-
tive.

Note that Assumption C1 is compatible with semiparametric estimators.
The (generalized) first derivative of Qn(θ) w.r.t. ψ is assumed to satisfy the

following assumption.

ASSUMPTION C2: (i) DψQn(θ) takes the form DψQn(θ)= n−1
∑n

i=1m(Wi�θ)
for some function m(Wi�θ) ∈Rdψ ∀θ ∈Θδ� for any true parameter γ∗ ∈ Γ .

(ii) Eγ∗m(Wi�ψ
∗�π)= 0 ∀π ∈Π, ∀i ≥ 1 when the true parameter is γ∗ ∀γ∗ =

(ψ∗�π∗�φ∗) ∈ Γ with β∗ = 0.32

Define an empirical process {Gn(π) :π ∈Π} by

Gn(π)= n−1/2
n∑
i=1

(
m(Wi�ψ0�n�π)−Eγnm(Wi�ψ0�n�π)

)
�(3.5)

32In some time series examples, DψQn(θ) is of the form n−1∑n
i=1mi(θ)� where mi(θ) depends

on {Wj :∀1 ≤ j ≤ i}� Assumption C2 can be relaxed to cover such cases without any changes to the
results of the paper. In such cases, Assumption C3 below still can hold provided {mi(θ) : i ≤ n}
satisfies a suitable “asymptotic weak dependence” condition, such as near-epoch dependence.
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The recentered and rescaled (generalized) first derivative of Qn(θ) w.r.t. ψ
is assumed to satisfy an empirical process central limit theorem (CLT):

ASSUMPTION C3: Under {γn} ∈ Γ (γ0�0� b)� Gn(·)⇒G(·;γ0)� whereG(·;γ0)
is a mean zero Gaussian process indexed by π ∈ Π with bounded continuous
sample paths and some covariance kernel Ω(π1�π2;γ0) for π1�π2 ∈Π.

Numerous empirical process results in the literature can be used to verify
this assumption, including results in Pollard (1984, 1990), Andrews (1994), and
van der Vaart and Wellner (1996).

The (generalized) second derivative of Qn(θ) w.r.t. ψ is assumed to satisfy
the following assumption.

ASSUMPTION C4: (i) Under {γn} ∈ Γ (γ0�0� b)� supπ∈Π ‖DψψQn(ψ0�n�π) −
H(π;γ0)‖ →p 0 for some nonstochastic symmetric dψ × dψ matrix-valued func-
tion H(π;γ0) on Π × Γ that is continuous on Π ∀γ0 ∈ Γ .

(ii) λmin(H(π;γ0)) > 0 and λmax(H(π;γ0)) < ∞ ∀π ∈ Π� ∀γ0 ∈ Γ with
β0 = 0�

Define the dψ × dβ matrix of partial derivatives of the average population
moment function w.r.t. the true β value, β∗� to be

Kn(θ;γ∗)= n−1
n∑
i=1

∂

∂β∗′Eγ∗m(Wi�θ)�(3.6)

The domain of the functionKn(θ;γ∗) isΘδ×Γ0� whereΘδ = {θ ∈Θ :‖β‖< δ}�
Γ0 = {γa = (aβ�ζ�π�φ) ∈ Γ :γ = (β�ζ�π�φ) ∈ Γ with ‖β‖< δ and a ∈ [0�1]}�
and δ > 0 is as in Assumption B2(ii). The set Γ0 is not empty by Assump-
tions B2(ii) and (iii).

ASSUMPTION C5: (i) Kn(θ;γ∗) exists ∀(θ�γ∗) ∈Θδ × Γ0� ∀n≥ 1�
(ii) For some nonstochastic dψ × dβ matrix-valued function K(ψ0�π;γ0)�

Kn(ψn�π; γ̃n) → K(ψ0�π;γ0) uniformly over π ∈ Π for all nonstochastic se-
quences {ψn} and {γ̃n} such that γ̃n ∈ Γ� γ̃n → γ0 = (0� ζ0�π0�φ0) for some
γ0 ∈ Γ� (ψn�π) ∈Θ� and ψn →ψ0 = (0� ζ0)�

(iii) K(ψ0�π;γ0) is continuous on Π ∀γ0 ∈ Γ with β0 = 0�

Assumption C5 is not restrictive. A set of primitive sufficient conditions for
Assumption C5 is given in Supplemental Appendix A.

For simplicity, K(ψ0�π;γ0) is abbreviated asK(π;γ0). Note that (ψn� γ̃n) in
Assumption C5(ii) is in Θδ × Γ0 for n large.

Due to the expansion about ψ0�n� rather than about the true value ψn� in
Assumption C1, a bias is introduced in the first derivative DψQn(ψ0�n�π): its
mean is not zero. In consequence, its behavior differs between category I and
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II sequences. With category I sequences, it converges (after suitable normal-
ization) to the sum of the stochastic term G(π) and the nonstochastic term
K(π;γ0)b due to the bias, and the two are of the same order of magnitude.
With category II sequences, the true βn is farther from the point of expansion
0 than with category I sequences and, in consequence, the nonstochastic bias
term is of a larger order of magnitude than the stochastic term. In this case,
the limit is K(π;γ0)ω0� which is nonstochastic.

Specifically, Assumptions C2, C3, and C5 are used to show the key result

an(γn)DψQn(ψ0�n�π)(3.7)

= [Gn(π)+ (Kn(ψ0�n�π;γn)+ o(1))n1/2βn
]
n−1/2an(γn)

⇒

⎧⎪⎨⎪⎩
G(π;γ0)+K(π;γ0)b�

if n1/2βn → b ∈Rdβ�

K(π;γ0)ω0�
if ‖n1/2βn‖ → ∞ and βn/‖βn‖ →ω0�

where the convergence holds under {γn} ∈ Γ (γ0�0� b).33

Next, we introduce the limits of the concentrated criterion functionQc
n(π)=

Qn(ψ̂n(π)�π) after suitable normalization. Define a “weighted noncentral chi-
square” process {ξ(π;γ0� b) :π ∈ Π} and a nonstochastic function {η(π;γ0�
ω0) :π ∈Π} by

ξ(π;γ0� b)= −1
2
(G(π;γ0)+K(π;γ0)b)

′H−1(π;γ0)(3.8)

× (G(π;γ0)+K(π;γ0)b)�

η(π;γ0�ω0)= −1
2
ω′

0K(π;γ0)
′H−1(π;γ0)K(π;γ0)ω0�

Under Assumptions C3, C4, and C5(iii), {ξ(π;γ0� b) :π ∈ Π} has bounded
continuous sample paths almost surely (a.s.).

Let Q0�n =Qn(ψ0�n�π)� where ψ0�n = (0� ζn) as in Assumption C1. Note that
Q0�n does not depend on π by Assumption A.

LEMMA 3.2: Suppose Assumptions A, B1–B3, and C1–C5 hold. Under {γn} ∈
Γ (γ0�0� b)� there are two alternatives:

(a) When ‖b‖<∞� n(Qc
n(·)−Q0�n)⇒ ξ(·;γ0� b).

(b) When ‖b‖ = ∞ and βn/‖βn‖ → ω0 for some ω0 ∈ Rdβ with ‖ω0‖ = 1�
‖βn‖−2(Qc

n(π)−Q0�n)→p η(π;γ0�ω0) uniformly over π ∈Π.

To obtain the asymptotic distribution of π̂n when βn =O(n−1/2) via the con-
tinuous mapping theorem, we use the following assumption.

33See Lemma 9.1 in Supplemental Appendix B.
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ASSUMPTION C6: Each sample path of the stochastic process {ξ(π;γ0� b) :π ∈
Π} in some set A(γ0� b) with Pγ0(A(γ0� b))= 1 is minimized over Π at a unique
point (which typically depends on the sample path), denoted π∗(γ0� b) ∀γ0 ∈ Γ
with β0 = 0 ∀b with ‖b‖<∞.

In Assumption C6, π∗(γ0� b) is random. In Supplemental Appendix A, we
provide a primitive sufficient condition for Assumption C6 for the case when
β is a scalar, that is, dβ = 1� which covers many cases of interest.

Define the Gaussian process {τ(π;γ0� b) :π ∈Π} by

τ(π;γ0� b)= −H−1(π;γ0)(G(π;γ0)+K(π;γ0)b)− (b�0dζ )�(3.9)

where (b�0dζ ) ∈ Rdψ� Note that, by (3.8) and (3.9), ξ(π;γ0� b)= −(1/2)(τ(π;
γ0� b) + (b�0dζ ))

′H(π;γ0)(τ(π;γ0� b) + (b�0dζ ))� As in Assumption C6,
π∗(γ0� b)= arg minπ∈Π ξ(π;γ0� b)�

The following theorem is one of the main results of this paper. It provides
the asymptotic distribution of the estimator θ̂n and the optimized objective
function Qn(θ̂n) for category I sequences.

THEOREM 3.1: Suppose Assumptions A, B1–B3, and C1–C6 hold. Under
{γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, the following results hold:

(a) (
n1/2(ψ̂n −ψn)

π̂n

)
→d

(
τ(π∗(γ0� b);γ0� b)

π∗(γ0� b)

)
�

(b) n(Qn(θ̂n)−Q0�n)→d infπ∈Π ξ(π;γ0� b)�

COMMENTS: (i) Define the Gaussian process {τβ(π;γ0� b) :π ∈Π} by

τβ(π;γ0� b)= Sβτ(π;γ0� b)+ b�(3.10)

where Sβ = [Idβ : 0dβ×dζ ] is the dβ × dψ selector matrix that selects β out
of ψ. The asymptotic distribution of n1/2β̂n (without centering at βn) under
Γ (γ0�0� b) with ‖b‖<∞ is given by τβ(π∗(γ0� b);γ0� b)� This quantity appears
in the asymptotic distributions of t statistics below.

(ii) Assumption C6 is not needed for Theorem 3.1(b).
(iii) Using Theorem 3.1, Figure 1 provides the asymptotic and finite-sample

densities of the ML estimator of the MA parameter π in the ARMA(1�1)
model when the true π value, π0� is 0�4� It gives the densities for b = 0� −2�
−4� and −12� where b indexes the magnitude of the difference β between the
AR and MA parameters.34 Specifically, for the finite-sample results, b= n1/2β�

34The asymptotic density in Figure 1 is invariant to the sign of b�
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FIGURE 1.—Asymptotic and finite-sample (n= 250) densities of the estimator of the MA pa-
rameter π in the ARMA(1�1) model when π0 = 0�4.

n = 250� and εt ∼ N(0�1)� Note that for n = 250� the values b = 0� −2� −4�
and −12 correspond to β = 0�0� −0�13� −0�25� and −0�76� respectively. For
n= 100� these b values correspond to β= 0�0� −0�2� −0�4� and −1�2� respec-
tively. The optimization parameter spaces for the MA and AR parameters are
[−0�85�0�85] and [−0�90�0�90]� respectively. The true parameter spaces are
[−0�80�0�80] and [−0�85�0�85]� respectively.35 For the asymptotic and finite-
sample results 50,000 simulation repetitions are used.

Figure 1 shows that the ML estimator has a distribution that is very far from
a normal distribution in the unidentified and weakly identified cases. In these
cases, there is a buildup of mass at the boundaries of the optimization space.
There also is a bias toward 0� Figure 1 indicates that the asymptotic approxima-
tions based on Theorem 3.1 work strikingly well. There are some differences
between the asymptotic and finite-sample densities, but they are small.

(iv) Figure 2 provides analogous results to those of Figure 1 for the ML es-
timator of β� the difference between the AR and MA parameters. Figure 2
shows a very pronounced bimodal distribution in the unidentified case and a
side lobe in one weakly identified case. As in Figure 1, the asymptotic approx-
imations are found to work exceptionally well.

3.4. Intermediate Assumptions and Estimation Results

Next, we specify an assumption that is used in the proof of consistency of π̂n
in the “less close, local to β= 0” case in which βn → 0 and n1/2‖βn‖ → ∞.

35These choices cover a broad range of parameters, but avoid unit root and boundary effects.
These parameter spaces satisfy Assumptions B1 and B2.
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FIGURE 2.—Asymptotic and finite-sample (n= 250) densities of the estimator of β (centered
at the true value) in the ARMA(1�1) model when π0 = 0�4.

ASSUMPTION C7: The nonstochastic function η(π;γ0�ω0) is uniquely mini-
mized over π ∈Π at π0 ∀γ0 ∈ Γ with β0 = 0�

In Assumption C7, the minimizing value π0 is nonrandom. In some exam-
ples, such as the ARMA(1�1) example, Assumption C7 can be verified di-
rectly. In other examples, Assumption C7 can be verified using the Cauchy–
Schwarz inequality or a matrix version of it (see Tripathi (1999)) whenK(π;γ0)
and H(π;γ0) take proper forms. For example, see the verification of Assump-
tion C7 for the nonlinear regression example in Supplemental Appendix E and
the verification of Assumption C7 for GMM estimators in AC3.

Lemma 9.3 in Supplemental Appendix B shows that when π = π0� K(π;
γ0) = −H(π;γ0)S

′
β� where Sβ = [Idβ : 0] ∈ Rdβ×dψ� whereas this relationship

does not hold for π �= π0 in general.

LEMMA 3.3: Suppose Assumptions A, B1–B3, C1–C5, and C7 hold. Under
{γn} ∈ Γ (γ0�∞�ω0)� (a) π̂n −πn →p 0 and (b) ψ̂n −ψn →p 0�

The following assumption is used when obtaining a key rate of convergence
result for ψ̂n for sequences {γn} for which βn → 0 and n1/2‖βn‖ → ∞�

ASSUMPTION C8: Under {γn} ∈ Γ (γ0�0� b)� ∂
∂ψ′EγnDψQn(ψ�πn)|ψ=ψn →

H(π0;γ0).

By Assumption C4(i), H(π;γ0) is the probability limit of DψψQn(ψ0�n�πn)
under {γn} ∈ Γ (γ0�0� b)� When Qn(θ) is a twice differentiable sample average,
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DψQn(θ) andDψψQn(θ) are its first- and second-order partial derivatives w.r.t.
ψ� respectively. One can switch E and ∂ under certain regularity conditions,
so that (∂/∂ψ′)EγnDψQn(ψn�πn) is the expectation of DψψQn(ψn�πn) in this
case. Hence, Assumption C8 can be verified by a uniform law of large numbers
(LLN) and the continuity of DψψQn(ψ�π) in ψ.36

LEMMA 3.4: Suppose Assumptions A, B1–B3, C1–C5, C7, and C8 hold. Then,
‖βn‖−1 × (ψ̂n −ψn)= op(1) under {γn} ∈ Γ (γ0�∞�ω0) with β0 = 0�

COMMENT: Lemma 3.4 is a key result because it allows one to apply the
quadratic expansion in Assumption D1 below, which only holds in a rapidly
shrinking neighborhood of the true value for category II sequences {γn}�

3.5. Distant From β= 0 Assumptions and Estimation Results

Assumptions D1–D3 below are used to derive asymptotic distributions under
sequences of true parameters {γn} ∈ Γ (γ0�∞�ω0)� The “D” denotes that the
sequences of true parameters considered are more distant from the point of
nonidentification than are the sequences in the C assumptions.

We define a matrix B(β) that is used to normalize the (generalized) second-
derivative matrix D2Qn(θn) of Qn(θn) (which is introduced in Assumption D1
below) so that it is nonsingular asymptotically, as specified in Assumption D2.
Let

B(β)=
[
Idψ 0dψ×dπ

0dπ×dψ ι(β)Idπ

]
∈Rdθ×dθ� where(3.11)

ι(β)=
{
β� if β is a scalar,
‖β‖� if β is a vector.

We use a different definition of B(β) in the scalar and vector β cases because
in the scalar case the use of β� rather than ‖β‖� produces noticeably simpler
(but equivalent) formulae, but in the vector case ‖β‖ is required.

ASSUMPTION D1: When the true parameters are {γn} ∈ Γ (γ0�∞�ω0), the fol-
lowing statements hold:

(i) The sample criterion function Qn(θ) has a quadratic expansion in θ
around θn:

Qn(θ)=Qn(θn)+DQn(θn)
′(θ− θn)

+ 1
2
(θ− θn)D

2Qn(θn)(θ− θn)+R∗
n(θ)�

36When Qn(θ) is nonsmooth, one can show that EγnDψQn(θ) is close to the first-order partial
derivative ofQ(θ;γ0) w.r.t.ψ� roughly by switching Eγn andDψ under some regularity conditions,
and DψψQn(θ) is typically taken to be the second-order partial derivative of Q(θ;γ0) w.r.t. ψ in
this case.
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where DQn(θn) ∈ Rdθ is a stochastic generalized first derivative vector and
D2Qn(θn) ∈Rdθ×dθ is a generalized second derivative matrix that is symmetric and
may be stochastic or nonstochastic.

(ii) The remainder, R∗
n(θ)� satisfies

sup
θ∈Θn(δn)

|nR∗
n(θ)|

(1 + ‖n1/2B(βn)(θ− θn)‖)2
= op(1)

for all constants δn → 0� where Θn(δn)= {θ ∈Θ :‖ψ−ψn‖ ≤ δn‖βn‖ and ‖π −
πn‖ ≤ δn}�

The quadratic approximation in Assumption D1 only holds for θ in a neigh-
borhood Θn(δn) of θn whose radius shrinks as the sample size gets larger.
In particular, the distance between ψ and ψn shrinks faster than ‖βn‖ when
βn → 0� It is for this reason that the rate of convergence result in Lemma 3.4
is a key result.37

The sufficient conditions for Assumption C1 referenced in the previous sub-
section also are sufficient for Assumption D1. The quantities DQn(θn) and
D2Qn(θn) take similar forms to DψQn(ψ0�n�π) and DψψQn(ψ0�n�π) (see the
discussion following Assumption C1), but involve derivatives w.r.t. θ� not ψ�
and hence are not functions of π.

The next assumption requires good behavior of the (generalized) second
derivative of Qn(θn) after it has been rescaled to eliminate its singularity when
βn → 0�

ASSUMPTION D2: Under {γn} ∈ Γ (γ0�∞�ω0)� Jn = B−1(βn)D
2Qn(θn)×

B−1(βn)→p J(γ0) ∈Rdθ×dθ� where J(γ0) is nonsingular and symmetric.

The next assumption requires the rescaled (generalized) first derivative to
satisfy a CLT.

ASSUMPTION D3: (i) Under {γn} ∈ Γ (γ0�∞�ω0)� n
1/2B−1(βn)DQn(θn) →d

G∗(γ0)∼N(0dθ� V (γ0)) for some symmetric dθ × dθ matrix V (γ0)�
38

(ii) V (γ0) is positive definite ∀γ0 ∈ Γ�

The following theorem is a key result. It provides the asymptotic distribution
of the estimator θ̂n and the optimized objective function Qn(θ̂n) for category II
and III sequences.

37The quadratic approximation requires θ ∈ Θn(δn) because for such θ = (β�ζ�π), one has
‖β‖/‖βn‖ = 1+o(1) and, hence, the rescaling that enters the Hessian is asymptotically equivalent
whether it is based on β or the true value βn�

38In the vector β case, J(γ0) and V (γ0) may depend on ω0 as well as γ0�
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THEOREM 3.2: Suppose Assumptions A, B1–B3, C1–C5, C7, C8, and D1–D3
hold. Under {γn} ∈ Γ (γ0�∞�ω0), the following results hold:

(a) n1/2B(βn)(θ̂n−θn)→d −J−1(γ0)G
∗(γ0)∼N(0dθ� J

−1(γ0)V (γ0)J
−1(γ0)).

(b) n(Qn(θ̂n)−Qn(θn))→d − 1
2G

∗(γ0)
′J−1(γ0)G

∗(γ0)�

In sum, the asymptotic results of this paper for θ̂n = (β̂n� ζ̂n� π̂n) are as fol-
lows: The estimator ψ̂n = (β̂n� ζ̂n) is n1/2 consistent for all categories of se-
quences {βn} in Table I. The estimator π̂n is inconsistent for category I se-
quences and consistent for categories II and III. The asymptotic distribution
of n1/2(ψ̂n −ψn) (= n1/2((β̂n� ζ̂n)− (βn� ζn))) is a functional of a Gaussian pro-
cess with a mean that is (typically) nonzero for category I sequences (due to
the inconsistency of π̂n) and is normal with mean zero for categories II and III.
The asymptotic distribution of π̂n is a functional of the same Gaussian process
for category I sequences. These estimation results permit the calculation of the
asymptotic biases of (β̂n� ζ̂n� π̂n) for category I sequences as a function of the
strength of identification. The asymptotic distribution of n1/2‖βn‖(π̂n − πn) is
normal with mean zero for category II sequences. The asymptotic distribution
of n1/2(π̂n −πn) is normal with mean zero for category III sequences.

4. t AND QLR CONFIDENCE SETS AND TESTS

In this section, we determine the asymptotic size of standard CS’s for a func-
tion r(θ) (∈Rdr ) of θ obtained by inverting t and QLR tests of the hypothesis
H0 : r(θ)= v for v ∈ r(Θ)�We also consider standard t and QLR tests ofH0� In
Section 5 below, we introduce robust CS’s whose asymptotic size is guaranteed
to equal their nominal size. For brevity, results for Wald CS’s for vector-valued
functions r(θ) are given in AC3.

4.1. t Statistics

The t statistic is defined as follows. Let

Σ(γ0)= J−1(γ0)V (γ0)J
−1(γ0) and Σ̂n = Ĵ−1

n V̂nĴ
−1
n �(4.1)

where Ĵn and V̂n are estimators of J(γ0) and V (γ0) that do not depend on the
nuisance parameter φ.

The t statistic is defined when r(θ) is real-valued, that is, dr = 1� It takes the
form

Tn(v)= n1/2(r(θ̂n)− v)

(rθ(θ̂n)B−1(β̂n)Σ̂nB−1(β̂n)rθ(θ̂n)′)1/2
�(4.2)

where rθ(θ) = (∂/∂θ′)r(θ) = [rψ(θ) : rπ(θ)] ∈ Rdr×dθ� rψ(θ) = (∂/∂ψ′)r(θ) ∈
Rdr×dψ� and rπ(θ)= (∂/∂π ′)r(θ) ∈Rdr×dπ �
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Although this definition of the t statistic involves B−1(β̂n)� it is the same
as the standard definition used in practice. By Theorem 3.2(a), when β0 �= 0�
B−1(β0)Σ(γ0)B

−1(β0) is the asymptotic covariance matrix of θ̂n� In the t statis-
tic, the asymptotic covariance is replaced by the estimator B−1(β̂n)Σ̂nB

−1(β̂n).
The same form of the t statistic is used under all sequences of true parameters
{γn} ∈ Γ (γ0).

In the results below, we consider the behavior of the t statistic when the null
hypothesis holds. Thus, under a sequence {γn}� we consider the sequence of
null hypotheses H0 : r(θ) = vn� where vn equals r(θn) and γn = (θn�φn)� We
employ the notational simplification

Tn = Tn(vn)� where vn = r(θn)�(4.3)

The function of interest, r(θ)� satisfies the following assumption.

ASSUMPTION R: (i) r(θ) ∈R is continuously differentiable on Θ.
(ii) rθ(θ) �= 0dθ ∀θ ∈Θ.
(iii) rank(rπ(θ)) = d∗

π for some constant d∗
π ≤ min(dr� dπ) ∀θ ∈ Θδ = {θ ∈

Θ :‖β‖< δ} for some δ > 0.

A sufficient condition for Assumption R is r(θ)= R′
1θ� where R1 ∈ Rdθ and

R1 �= 0�

4.2. Variance Matrix Estimators

The estimators of the components of the asymptotic variance matrix are as-
sumed to satisfy the following Assumptions V1 and V2. Two forms of Assump-
tion V1 are needed: one for scalar β and one for vector β.39 For brevity, we
only state the scalar β version here; the vector β version is given in Supple-
mental Appendix A.

When β is a scalar, let J(θ;γ0) and V (θ;γ0) for θ ∈Θ be some nonstochastic
dθ × dθ matrix-valued functions such that J(θ0;γ0) = J(γ0) and V (θ0;γ0) =
V (γ0)� where J(γ0) and V (γ0) are as in Assumptions D2 and D3. Let

Σ(θ;γ0)= J−1(θ;γ0)V (θ;γ0)J
−1(θ;γ0) and(4.4)

Σ(π;γ0)= Σ(ψ0�π;γ0)�

Let Σββ(π;γ0) denote the upper left (1�1) element of Σ(π;γ0)�
Assumption V1 below applies when β is a scalar.

39The reason for the difference is that the normalizing matrix B(β) is different in these two
cases.
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ASSUMPTION V1—Scalar β: (i) Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n) for some
(stochastic) dθ × dθ matrix-valued functions Ĵn(θ) and V̂n(θ) on Θ that sat-
isfy supθ∈Θ ‖Ĵn(θ)− J(θ;γ0)‖ →p 0 and supθ∈Θ ‖V̂n(θ)− V (θ;γ0)‖ →p 0 under
{γn} ∈ Γ (γ0�0� b) with ‖b‖<∞.

(ii) J(θ;γ0) and V (θ;γ0) are continuous in θ on Θ ∀γ0 ∈ Γ with β0 = 0�
(iii) λmin(Σ(π;γ0)) > 0 and λmax(Σ(π;γ0)) < ∞ ∀π ∈ Π� ∀γ0 ∈ Γ with

β0 = 0�

The following assumption applies with both scalar and vector β.

ASSUMPTION V2: Under Γ (0�∞�ω0)� Ĵn →p J(γ0) and V̂n →p V (γ0)�

4.3. Asymptotic Distribution of the t Statistic

Next, we provide the asymptotic distribution of the t statistic under H0� De-
fine

Tψ(π;γ0� b)= rψ(π)τ(π;γ0� b)

(rψ(π)Σψψ(π;γ0� b)rψ(π)′)1/2
�(4.5)

where rψ(π)= rψ(ψ0�π) ∈R1×dψ� τ(π;γ0� b) ∈Rdψ� Σψψ(π;γ0� b) is the upper
left dψ × dψ block of Σ(π;γ0� b)� Σ(π;γ0� b) = Σ(π;γ0) in the scalar β case
(and is defined differently in the vector β case; see (8.2) in Supplemental Ap-
pendix A), Σ(π;γ0) is defined in (4.4), and τβ(π;γ0� b) is defined in (3.10).
Also, define

Tπ(π;γ0� b)= ‖τβ(π;γ0� b)‖(r(ψ0�π)− r(ψ0�π0))

(rπ(π)Σππ(π;γ0� b)rπ(π)′)1/2
�(4.6)

where Σππ(π;γ0� b) is the lower right dπ ×dπ block of Σ(π;γ0� b) and rπ(π)=
rπ(ψ0�π)�

The following theorem provides the asymptotic null distribution of the t
statistic for a scalar restriction. (The null holds by the definition Tn = Tn(vn)
in (4.3).)

THEOREM 4.1: Suppose Assumptions A, B1–B3, C1–C8, D1–D3, R, V1, and
V2 hold and dr = 1�

(a) Under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞ and d∗
π = 0� Tn →d Tψ(π

∗(γ0� b);
γ0� b)�

(b) Under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞ and d∗
π = 1� Tn →d Tπ(π

∗(γ0� b);
γ0� b)�

(c) Under {γn} ∈ Γ (γ0�∞�ω0)� Tn →d N(0�1)�
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FIGURE 3.—Asymptotic and finite-sample (n = 250) densities of the t statistic for the MA
parameter π in the ARMA(1�1) model when π0 = 0�4 and with standard normal density (black
line).

COMMENTS: (i) When d∗
π = 0� the scalar restriction only involves ψ by As-

sumption R(iii). When d∗
π = 1� the restriction involves π and possibly ψ. How-

ever, the randomness in ψ̂n is dominated by that in π̂n under the conditions
of Theorem 4.1(b) because ψ̂n is consistent but π̂n is not. In consequence,
the asymptotic distribution in Theorem 4.1(b) is as if the restriction is only
on π.

(ii) Using Theorem 4.1, Figure 3 provides the asymptotic and finite-sample
(n= 250) densities of the t statistic for tests concerning the MA parameter π
in the ARMA(1�1) model for π0 = 0�4 and b = 0� −2� −4� and −12� The
black line in Figure 3 is the standard normal density, which is the strong-
identification asymptotic density of the t statistic. Figure 3 shows that the t
statistic has a noticeably nonnormal shape due to skewness and kurtosis for
small |b|� although it is much less nonnormal than the distribution of the cor-
responding estimator.40

(iii) Figure 4(a) provides graphs of the 0�95 asymptotic quantiles of the
|t| statistic for π as a function of |b|.41 For small to medium |b| values, the
graphs exceed the 0�95 quantile under strong identification (given by the hor-
izontal black line). This implies that |t| tests and CI’s that employ the stan-

40The distributions of the estimator of π and the t statistic for π are not the same up to a
scale shift, even asymptotically. This occurs because the variance estimator that appears in the t
statistic involves an estimator of π, that is not consistent when |b|<∞; it is random even in the
limit.

41The asymptotic quantiles are invariant to the sign of b� but the finite-sample quantiles are
not.
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FIGURE 4.—Asymptotic 0.95 quantiles of the |t| and QLR statistics for tests concerning the
MA parameter π in the ARMA(1�1) model.

dard critical value (based on the normal distribution) have incorrect asymp-
totic size. The exceedance is very large. For example, for π0 = 0�8 and b = 0�
the quantile is roughly 10, whereas for strong identification (|b| = ∞), it is
roughly 2.

(iv) The results of Theorem 4.1 are used below to obtain the asymptotic size
of standard and robust t CI’s. But first, we provide analogous results for the
QLR statistic.

4.4. QLR Statistics

Here, we consider the quasi-likelihood ratio (QLR) statistic. In this subsec-
tion, dr ≥ 1� The function r(θ) is assumed to be smooth and to be of the form

r(θ)=
[
r1(ψ)
r2(π)

]
�(4.7)

where r1(ψ) ∈ Rdr1 � dr1 ≥ 0 is the number of restrictions on ψ� r2(π) ∈ Rdr2 �
dr2 ≥ 0 is the number of restrictions on π� and dr = dr1 + dr2 �

Given the form in (4.7), our results for the QLR statistic do not cover the
case where a single restriction depends on both ψ and π. This can be restric-
tive. However, in some cases, it is possible to obtain results for restrictions of
this type by a simple reparametrization; see Comment (iii) to Theorem 4.2 be-
low.
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For v ∈ r(Θ)� we define a restricted estimator θ̃n(v) of θ subject to the re-
striction that r(θ)= v� By definition,

θ̃n(v) ∈Θ� r(θ̃n(v))= v� and(4.8)

Qn(θ̃n(v))= inf
θ∈Θ:r(θ)=v

Qn(θ)+ o(n−1)�

For testing H0 : r(θ)= v� the QLR test statistic is

QLRn(v)= 2n
(
Qn(θ̃n(v))−Qn(θ̂n)

)
/̂sn�(4.9)

where ŝn is a real-valued scaling factor that is employed in some cases to yield
a QLR statistic that has an asymptotic χ2

dr
null distribution under strong iden-

tification; see Assumptions RQ2 and RQ3 below.

4.5. QLR Assumptions

If r(θ) includes restrictions on π (i.e., dr2 > 0), then not all values π ∈Π are
consistent with the restriction r2(π) = v2� For v2 ∈ r2(Θ)� the set of π values
that are consistent with r2(π)= v2 is denoted by

Πr(v2)= {π ∈Π : r2(π)= v2 for some θ= (ψ�π) ∈Θ}�(4.10)

If dr2 = 0� then by definition Πr(v2)=Π ∀v2 ∈ r2(Θ)�
We assume that r(θ) satisfies the following assumption.

ASSUMPTION RQ1: (i) r(θ) is continuously differentiable on Θ.
(ii) rθ(θ) is full row rank dr ∀θ ∈Θ.
(iii) r(θ) satisfies (4.7).
(iv) dH(Πr(v2)�Πr(v0�2))→ 0 as v2 → v0�2 ∀v0�2 ∈ r2(Θ

∗)�
(v) Q(ψ�π;γ0) is continuous in ψ at ψ0 uniformly over π ∈ Π (i.e.,

supπ∈Π |Q(ψ�π;γ0)−Q(ψ0�π;γ0)| → 0 as ψ→ψ0) ∀γ0 ∈ Γ with β0 = 0�
(vi) Q(θ;γ0) is continuous in θ at θ0 ∀γ0 ∈ Γ with β0 �= 0�

In Assumption RQ1(iv), dH denotes the Hausdorff distance. Assump-
tion RQ1(i) and (ii) are standard. Assumption RQ1(iv) is easy to verify in
most cases. Assumption RQ1(v) and (vi) are not restrictive.

Even under strong identification, it is known that the QLR statistic has an
asymptotic χ2

dr
null distribution only under additional assumptions to those

used for Wald and Lagrange multiplier (LM) statistics.42 The following as-
sumptions correspond to these additional conditions.

42The reason is that the weight matrices of the Wald and LM statistics can be designed specif-
ically to achieve an asymptotic χ2

dr
null distribution, whereas with the QLR statistic, no weight

matrix appears and at most one has a real-valued scaling factor ŝn with which to make adjust-
ments.
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ASSUMPTION RQ2: Either (i) V (γ0)= s(γ0)J(γ0) for some nonrandom scalar
constant s(γ0) ∀γ0 ∈ Γ , or (ii) V (γ0) and J(γ0) are block diagonal (possibly af-
ter reordering their rows and columns), the restrictions r(θ) only involve param-
eters that correspond to one block of V (γ0) and J(γ0)—call them V11(γ0) and
J11(γ0)—and for this block, V11(γ0) = s(γ0)J11(γ0) for some nonrandom scalar
constant s(γ0) ∀γ0 ∈ Γ�

ASSUMPTION RQ3: The scalar statistic ŝn satisfies ŝn →p s(γ0) under {γn} ∈
Γ (γ0�0� b) and under {γn} ∈ Γ (γ0�∞�ω0)�

For example, Assumptions RQ2(i) and RQ3 hold with s(γ0) = ŝn = 1 for
a correctly specified log-likelihood criterion function, a GMM criterion func-
tion with asymptotically optimal weight matrix, and an empirical likelihood
criterion function. For a homoskedastic nonlinear regression model, Assump-
tions RQ2(i) and RQ3 hold with s(γ0) equal to the error variance σ2 and ŝn
equal to a consistent estimator of σ2� such as the sample variance based on the
residuals.

4.6. Asymptotic Distribution of the QLR Statistic

Now we determine the asymptotic distribution of the QLR statistic under
the sequences {γn} ∈ Γ (γ0�0� b) and {γn} ∈ Γ (γ0�∞�ω0) when the null hy-
potheses are true, that is, when v= vn = r(θn) for γn = (θn�φn) ∀n≥ 1� These
results are needed to obtain asymptotic size results for QLR-based CS’s. The
results for the QLR statistic rely on results for the restricted estimator θ̃n(vn)�
These results are complicated by the fact that not all values π ∈Π are neces-
sarily consistent with the restrictions r((ψn�π)) = vn� For brevity, results for
the restricted estimators are stated in Supplemental Appendix B.

We use the notational simplifications

QLRn = QLRn(vn) and θ̃n = θ̃n(vn)� where(4.11)

vn = r(θn) and γn = (θn�φn)�

The matrix rθ(θ) of partial derivatives of r(θ) can be written as

rθ(θ)= ∂

∂θ′ r(θ)=
[
r1�ψ(ψ) 0dr1 ×dπ
0dr2 ×dψ r2�π(π)

]
�(4.12)

where r1�ψ(ψ)= (∂/∂ψ′)r1(ψ) ∈Rdr1 ×dψ and r2�π(π)= (∂/∂π ′)r2(π) ∈Rdr2 ×dπ �
For notational simplicity, let Πr�0 = Πr(v0�2)� where v0�2 = r2(π0) and γ0 =

(θ0�φ0) ∈ Γ� That is, Πr�0 is the set of values π that are compatible with the
restrictions on π when γ0 is the true parameter value.

Next, we introduce the limit under {γn} ∈ Γ (γ0�0� b) with ‖b‖ < ∞ of the
restricted concentrated criterion function after suitable normalization. For
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π ∈Π� define

ξr(π;γ0� b)= ξ(π;γ0� b)+ 1
2
τ(π;γ0� b)

′Pψ(π;γ0)
′(4.13)

×H(π;γ0)Pψ(π;γ0)τ(π;γ0� b)� where

Pψ(π;γ0)=H−1(π;γ0)r1�ψ(ψ0)
′(r1�ψ(ψ0)

×H−1(π;γ0)r1�ψ(ψ0)
′)−1r1�ψ(ψ0)

and τ(π;γ0� b) is defined in (3.9). The dψ × dψ matrix Pψ(π;γ0) is an
oblique projection matrix that projects onto the space spanned by the rows
of r1�ψ(ψ0)�

The following result gives the asymptotic distribution of the QLR statistic
under sequences {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞.

THEOREM 4.2: Suppose Assumptions A, B1–B3, C1–C5, RQ1, and RQ3
hold. Under {γn} ∈ Γ (γ0�0� b) with ‖b‖ < ∞� QLRn →d 2(infπ∈Πr�0 ξr(π;γ0�
b)− infπ∈Π ξ(π;γ0� b))/s(γ0)�

COMMENTS: (i) Using Theorem 4.2, Figure 5 provides the asymptotic and
finite-sample (n= 250) densities of the QLR statistic for tests concerning the
MA parameter π in the ARMA(1�1) model for π0 = 0�4 and b= 0� −2� −4�
and −12� The black line in Figure 5 is the χ2

1 density, which is the strong-

FIGURE 5.—Asymptotic and finite-sample (n= 250) densities of the QLR statistic for the MA
parameter π in the ARMA(1�1) model when π0 = 0�4 and with χ2

1 density (black line).
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identification asymptotic density of the QLR statistic. Figure 5 indicates that
the QLR statistic is well approximated by a χ2

1 distribution, even under weak
identification. This suggests that the QLR statistic yields tests and CI’s that are
substantially less sensitive to weak identification than t-based tests and CI’s
are.

(ii) Figure 4(b) provides graphs of the 0�95 asymptotic quantiles of the
QLR statistic for π as a function of |b|� For small to medium |b| values, the
graphs exceed the 0�95 quantile under strong identification (given by the hor-
izontal black line). Thus, tests and CI’s based on the standard critical values
(from the χ2

1 distribution) have incorrect asymptotic size. For the QLR statistic
the exceedance is much smaller than for the |t| statistic. For the QLR statistic,
for π0 = 0�8 and b= 0� the quantile is roughly 4�4� whereas for strong identifi-
cation it is roughly 3�8�

(iii) The proof of Theorem 4.2 requires an extension of the arg max theorem
(e.g., see Lemma 3.2.1 of van der Vaart and Wellner (1996, p. 286)) to the case
where the maximum is taken over a sample-size dependent sequence of sets.43

See Lemma 9.10 in Supplemental Appendix B. This lemma may be of use in
other contexts.

(iv) Assumption RQ1(iii) rules out the case where any single restriction de-
pends on both ψ and π, but, in some cases, a reparametrization can be used
to obtain results for such restrictions. Suppose dπ = dβ� Consider restrictions
of the form r(θ)= (r1(ψ)�π + β)� In this case, the asymptotic distribution of
the QLR statistic in Theorems 4.2 and 4.3 (below) is the same as its distribu-
tion when r(θ)= (r1(ψ)�π)� We use this result in the ARMA(1�1) example to
obtain CI’s for the AR parameter, which equals π +β.44

(v) The proof of Theorem 4.2 can be altered easily to yield some results for
the QLR test under sequences of alternative hypothesis distributions, which
yield asymptotic power results for QLR-based tests. Suppose the restrictions
r(θ) depend only on π, that is, dr1 = 0 and r(θ)= r2(π)� The sequence of true
values of r2(π) satisfies r2(πn) → r2(π0) = v0�2 as n → ∞. Now suppose the
null hypothesis value of r2(π) is vnull

0�2 � where vnull
0�2 �= v0�2� Then the asymptotic

distribution of QLRn for this null hypothesis under the alternative hypothe-
sis distributions {γn} ∈ Γ (γ0�0� b) is given by the expression in Theorem 4.2,
but with Πr�0 =Πr(v0�2) replaced by Πr(v

null
0�2 )� This covers both local and fixed

alternatives.
(vi) The proof of Theorem 4.2 makes use of the approach of Chernoff

(1954).

43The arg max/min theorem provides the asymptotic distribution of a maximizer/minimizer of
a stochastic process that converges weakly to some limit process.

44See Section 9.4.4 of Supplemental Appendix B for more details.
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Next, we give results for the QLR statistic under sequences {γn} ∈ Γ (γ0�∞�
ω0). Define

λQLR(γ0)=G∗(γ0)
′J−1(γ0)Pθ(γ0)

′J(γ0)(4.14)

× Pθ(γ0)J
−1(γ0)G

∗(γ0)� where

Pθ(γ0)= J−1(γ0)rθ(θ0)
′(rθ(θ0)J

−1(γ0)rθ(θ0)
′)−1rθ(θ0)

and J(γ0) and G∗(γ0) are defined in Assumptions D2 and D3. The matrix
Pθ(γ0) is an oblique projection matrix that projects onto the space spanned
by the rows of rθ(θ0).

THEOREM 4.3: Suppose Assumptions A, B1–B3, C1–C5, C7, C8, D1–D3,
RQ1, and RQ3 hold. Under {γn} ∈ Γ (γ0�∞�ω0)� QLRn →d λQLR(γ0)/s(γ0)�

COMMENT: When Assumption RQ2 holds, by Theorem 4.3 and some calcu-
lations, under {γn} ∈ Γ (γ0�∞�ω0)�

QLRn →d λQLR(γ0)/s(γ0)∼ χ2
dr
�(4.15)

4.7. Asymptotic Size of Standard t and QLR Confidence Sets

Now, we establish the asymptotic size of standard CS’s obtained by inverting
t and QLR statistics using Lemma 2.1 and Theorems 4.1–4.3. The standard
nominal 1 − α symmetric two-sided t� upper one-sided t� lower one-sided t,
and QLR CS’s take the form in (2.4) with Tn(v)= |Tn(v)|� Tn(v)� −Tn(v)� and
QLRn(v)� respectively, and cn�1−α(v) = z1−α/2� z1−α� z1−α� and χ2

dr �1−α� where
Tn(v) is defined in (4.2), QLRn(v) is defined in (4.9), z1−α is the 1 − α quantile
of a standard normal distribution, and χ2

dr �1−α is the 1 − α quantile of the χ2
dr

distribution.
For h= (b�γ0) with ‖b‖<∞ and H as in (2.8), define

T(h)=
{
Tψ(π

∗(γ0� b);γ0� b)� if d∗
π = 0,

Tπ(π
∗(γ0� b);γ0� b)� if d∗

π = 1,
(4.16)

QLR(h)= 2
(

inf
π∈Πr�0

ξr(π;γ0� b)− inf
π∈Π

ξ(π;γ0� b)
)/
s(γ0)�

As defined, T(h) is the asymptotic distribution of Tn under {γn} ∈ Γ (γ0�0� b)
for ‖b‖ <∞ given in Theorem 4.1(a) or (b) depending on the rank of rπ(θ)�
which is denoted by d∗

π� Only one of the cases applies for any particular pa-
rameter of interest r(θ) and it is known which applies. Here, QLR(h) is the
asymptotic distribution of QLRn under {γn} ∈ Γ (γ0�0� b) for ‖b‖<∞ given in
Theorem 4.2.

Let c|t|�1−α(h)� ct�1−α(h)� c−t�1−α(h)� and cQLR�1−α(h) denote the 1 − α quan-
tiles of |T(h)|� T (h)� −T(h)� and QLR(h)� respectively, for h ∈H�
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As in (2.6), AsySz denotes the asymptotic size of a CS of nominal level 1−α.
The asymptotic size results for the t and QLR CS’s use the following distribu-
tion function (d.f.) continuity assumptions, which typically are not restrictive.

ASSUMPTION V3: The d.f. of T(h) is continuous at zα/2 and z1−α/2� zα� and
z1−α ∀h ∈H in the two-sided, upper one-sided, and lower-sided cases, respectively.

ASSUMPTION RQ4: The d.f. of QLR(h) is continuous at (i) χ2
dr �1−α and

(ii) suph∈H cQLR�1−α(h)�

THEOREM 4.4: (a) Suppose Assumptions A, B1–B3, C1–C8, D1–D3, R, and
V1–V3 hold and dr = 1� The standard nominal 1 − α symmetric two-sided, up-
per one-sided, and lower one-sided t CI’s have AsySz = min{infh∈H P(|T(h)| ≤
z1−α/2)� 1 − α}� min{infh∈H P(T(h)≤ z1−α)�1 − α}� and min{infh∈H P(−T(h)≤
z1−α)�1 − α}� respectively.

(b) Suppose Assumptions A, B1–B3, C1–C5, C7, C8, D1–D3, RQ1–RQ3,
and RQ4(i) hold. Then the standard nominal 1 − α QLR CS has AsySz =
min{infh∈H P(QLR(h)≤ χ2

dr �1−α)�1 − α}�

COMMENTS: (i) Depending on the distributions of {T(h) :h ∈ H} and
{QLR(h) :h ∈H}� the t and QLR CS’s have asymptotic sizes equal to or less
than 1 − α.

(ii) Figure 6 reports asymptotic and finite-sample coverage probabilities
(CP’s) of nominal 95% standard |t| and QLR CI’s (which employ normal and
χ2

1 critical values, respectively) for the MA parameter π in the ARMA(1�1)

FIGURE 6.—Coverage probabilities of standard |t| and QLR CI’s for the MA parameter π in
the ARMA(1�1) model when π0 = 0.
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model. The CP’s are given as a function of b (≤ 0) for true π0 = 0�0� for
n = 100� 250� 500� and ∞ (i.e., asymptotic).45 The CP’s of the |t| CI are very
low for |b| values less than 10� For b = 0� the asymptotic and finite-sample
CP’s are all below 0�60� Hence, the size of this nominal 95% CI is less than
0�60 asymptotically and in finite samples.46 Figure 6 shows that the undercov-
erage of the standard QLR CI for π is much less severe than for the |t| CI. The
asymptotic size of the standard QLR CI is approximately 0�935� which is not
much less than the nominal asymptotic size of 0�950� Note that the asymptotic
CP’s in Figure 6 provide a very good approximation to the finite-sample CP’s.

In sum, the asymptotic results for tests and CS’s vary over the three cate-
gories in Table I. For category I sequences, standard tests and CS’s have asymp-
totic rejection/coverage probabilities that may differ, sometimes substantially,
from their nominal level. In consequence, the asymptotic size of standard tests
and CS’s often is substantially different from the desired nominal size. For cat-
egory II and III sequences, standard tests and CS’s have the desired asymptotic
rejection/coverage probability properties. For hypotheses or CS’s that involve
π� their power/noncoverage properties are standard for category II and III se-
quences.

5. ROBUST CONFIDENCE SETS

In this section, we construct robust CS’s for r(θ) that have correct asymptotic
size. A robust CS is obtained by inverting a test statistic, denoted here gener-
ically by Tn� using a robust critical value that differs from a standard strong-
identification critical value (such as a normal or χ2

dr
quantile). The robust crit-

ical value can be data dependent. The test statistic Tn can be the t statistic
defined in (4.3), the absolute value of the t statistic, the QLR statistic defined
in (4.11), the Wald statistic analyzed in AC3, or some other statistic.

A robust critical value takes into account the fact that the test statistic,
Tn� has a nonstandard asymptotic distribution under {γn} ∈ Γ (γ0�0� b) with
‖b‖<∞. As a result, a larger critical value often is required under weak iden-
tification (i.e., ‖b‖ <∞) than under semi-strong or strong identification (i.e.,
‖b‖ = ∞).

45In Figures 6 and 7 below, the graphs for n = 100 are not given for all values of b because
b is restricted by the parameter space. The same is true for the graphs for n = 250 in Figures 6
and 7(a) and (b). See Supplemental Appendix D for details. These parameter space restrictions
are responsible for the wiggles that occur in some of the n= 100 and 250 graphs in Figures 6 and
7 near the right end of the graphs.

46More specifically, the asymptotic sizes of the nominal 95% standard |t| and QLR CI’s for
π are computed to be 0�523 and 0�933� respectively. These results also apply to CI’s for the AR
parameter ρ. This is based on a grid of π0 values with grid size 0�05 for |π0| ≤ 0�60 and grid size
0�025 for 0�625 ≤ |π0| ≤ 0�825�
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A simple robust critical value is the “least favorable” (LF) critical value that
is large enough for all identification categories. This yields a CS with correct
asymptotic size, but one that typically is overly long and is not as informative
as desirable when the model is strongly identified.

In consequence, we introduce data-dependent critical values that improve
upon the LF critical value by using an identification-category-selection (ICS)
procedure in the construction of the critical value. Two methods are consid-
ered: type 1 and type 2. The first is relatively simple. The second has preferable
statistical properties, but is more intensive computationally.

We also introduce versions of these robust critical values that (i) impose the
known null hypothesis value and (ii) plug in consistent estimators of consis-
tently estimable nuisance parameters in the formulae for the robust critical
values. We recommend employing combined null-imposed/plug-in versions of
the robust critical values whenever possible because they yield the smallest crit-
ical values and still deliver asymptotically correct size. However, they may be
more burdensome computationally than other versions of the robust critical
values.

5.1. Least Favorable Critical Values

Let T (h) denote the asymptotic distribution of Tn under {γn} ∈ Γ (γ0�0� b)�
where h= (b�γ0) ∈H, and h and H are defined in (2.8). Let cT �1−α(h) denote
the 1 − α quantile of T (h) for h ∈H� For example, when Tn is the two-sided t
statistic |Tn| of Section 4, then T (h) and cT �1−α(h) equal |T(h)| and c|t|�1−α(h)�
respectively.

Under semi-strong and strong identification (i.e., {γn} ∈ Γ (γ0�∞�ω0)), Tn is
assumed to have a standard asymptotic distribution, such as the standard nor-
mal or chi-squared distribution, as is typically the case. Let cT �1−α(∞) denote
the 1 − α quantile of this distribution.

The LF critical value is

cLF
T �1−α = max

{
sup
h∈H

cT �1−α(h)� cT �1−α(∞)
}
�(5.1)

The LF critical value can be improved (i.e., made smaller) by exploiting the
knowledge of the null hypothesis value of r(θ)� For example, if the null hy-
pothesis specifies the value of π to be 3� then the supremum in (5.1) does not
need to be taken over all h ∈H� only over the h values for which π = 3� We
call such a critical value a null-imposed (NI) LF critical value. Using a NI-LF
critical value increases the computational burden because a different critical
value is employed for each null hypothesis value.

To be precise, let

H(v)= {h= (b�γ0) ∈H :‖b‖<∞� r(θ0)= v}�(5.2)
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where γ0 = (θ0�φ0)� By definition, H(v) is the subset of H that is consistent
with the null hypothesis H0 : r(θ0) = v� where θ0 denotes the true value. The
NI-LF critical value, denoted cNI-LF

T �1−α(v)� is defined by replacing H with H(v)
in (5.1) when the null hypothesis value is r(θ0)= v� Note that v takes values in
the set Vr = {v0 : r(θ0)= v0 for some h= (b�γ0) ∈H}.47

When part of γ is unknown underH0 but can be consistently estimated, then
a plug-in LF (or plug-in NI-LF) critical value can be used that has the correct
size asymptotically and is smaller than the LF (or NI-LF) critical value. The
plug-in critical value replaces elements of γ with consistent estimators in the
formulae in (5.1), and the supremum over H (or H(v)) is reduced to a supre-
mum over the resulting subset of H� denoted Ĥn� for which the consistent es-
timators appear in each vector γ. For example, if ζ is consistently estimated by
ζ̂n� then H is replaced by Ĥn = {h= (b�γ) ∈H :γ = (β� ζ̂n�π�φ)} or H(v) is
replaced byH(v)∩Ĥn�Note that the parameter b is not consistently estimable,
so it cannot be replaced by a consistent estimator.

5.2. Data-Dependent Robust Critical Values: Type 1

Here we improve on the LF critical value by employing an identification-
category-selection (ICS) procedure that uses the data to determine whether
b is finite. If b is deemed to be finite (i.e., π is weakly identified (or uniden-
tified)), then the LF critical value is used; otherwise, the standard asymptotic
critical value is used. This ICS critical value is closely related to a method sug-
gested in Andrews (1999, Sec. 6.4, 2000, Sec. 4) for boundary problems, and to
the generalized moment selection critical value method used in Andrews and
Soares (2010) and some other papers for inference in partially identified mod-
els based on moment inequalities. It also is related to, but quite distinct from,
the approach in Forchini and Hillier (2003).48

The ICS procedure chooses between the identification categories I C 0 :‖b‖<
∞ and I C 1 :‖b‖ = ∞. The (unrestricted) statistic used for identification-
category selection is

An = (nβ̂′
nΣ̂

−1
ββ�nβ̂n/dβ)

1/2�(5.3)

where Σ̂ββ�n is the upper left dβ × dβ block of Σ̂n and Σ̂n is the estimator of
the covariance matrix defined in (4.1). We use An to assess the strength of
identification.

47When r(θ)= β and the null hypothesis imposes that β= v� the parameter b can be imposed
to equal n1/2v� In this case, H(v) = Hn(v) = {h = (b�γ0) ∈ H :b = n1/2v}� The asymptotic size
results given below for NI-LF CI’s and robust CI’s with NI critical values hold in this case.

48Forchini and Hillier (2003) advocate carrying out inference conditional on a test statistic
that measures the strength of identification. They focus on estimation. Here we consider tests
and inference that is unconditional.
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Alternatively, one can use a null-imposed ICS (NI-ICS) statistic. For the re-
striction r(θn)= vn� the NI-ICS statistic isAn(vn)= (nβ̃′

nΣ̃
−1
ββ�nβ̃n/dβ)

1/2� where
β̃n is the restricted estimator of β (subject to r(θ) = vn) and Σ̃ββ�n is an esti-
mator of its asymptotic variance. Specifically, we take Σ̃ββ�n to be the upper
left dβ × dβ block of Σ̃n� where Σ̃n = P̃⊥

n J̃
−1
n ṼnJ̃

−1
n P̃

⊥′
n � J̃n = Ĵn(θ̃n)� Ṽn = V̂n(θ̃n)�

P̃⊥
n = Idθ − P̃n� P̃n = J̃−1

n rθ(θ̃n)
′(rθ(θ̃n)J̃−1

n rθ(θ̃n)
′)−1rθ(θ̃n)� and Ĵn(θ) and V̂n(θ)

are as in Assumption V1. This form for Σ̃ββ�n is based on the asymptotic re-
sults for the restricted estimator θ̃n given in Supplemental Appendix B. The
NI-ICS statistic has better ICS properties under the null hypothesis than the
unrestricted ICS statistic because it exploits the restrictions, but it is misspeci-
fied under the alternative. Hence, the preference for one ICS statistic over the
other may depend on the model of interest.

Let {κn :n ≥ 1} be a sequence of constants, that is, tuning parameters, that
diverges to infinity as n→ ∞. One selects I C 0 if An ≤ κn and one selects I C 1

otherwise. Under I C 0� An is Op(1)� Hence, one consistently selects I C 0 pro-
vided κn diverges to infinity. We make the following assumption:

ASSUMPTION K: (i) κn → ∞ and (ii) κn/n1/2 → 0�

For example, κn = (lnn)1/2� which is analogous to the Bayesian information
criterion (BIC) penalty term, satisfies Assumption K.

Using the ICS procedure described above, the type 1 robust CS with nominal
level 1 −α is obtained by inverting a test based on Tn with critical value c̃T �1−α�n
defined by

c̃T �1−α�n =
{
cLF

T �1−α� if An ≤ κn,
cT �1−α(∞)� if An > κn.

(5.4)

The type 1 robust critical value c̃T �1−α�n can be improved by employing NI
and/or plug-in versions of it. They are defined by replacing H with H(v)� Ĥn�

or H(v) ∩ Ĥn� as in Section 5.1. The type 1 NI robust critical value is denoted
c̃T �1−α�n(v) for v ∈ Vr�

5.3. Data-Dependent Robust Critical Values: Type 2

Next, we consider a type 2 robust critical value that does not require the tun-
ing parameter κn to diverge to infinity as n→ ∞. In consequence, asymptotic
size-correction factors Δ1 and Δ2 can be introduced. These size-correction fac-
tors are designed to improve the asymptotic approximations. The type 2 robust
critical value also provides a continuous transition from a weak-identification
critical value to a strong-identification critical value using a transition function
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s(x)� This robust critical value is akin to the method employed in Andrews and
Barwick (2012) for moment inequality models.

Let s(x) be a continuous function on [0�∞) that satisfies (i) 0 ≤ s(x) ≤ 1�
(ii) s(x) is nonincreasing in x� (iii) s(0) = 1� and (iv) s(x) → 0 as x → ∞.
Examples of transition functions include s(x) = exp(−c · x) for some c > 0
and s(x)= (1 + c · x)−1 for some c > 0.49,50 In the ARMA example, we use the
function s(x)= exp(−x/2)�

The type 2 robust critical value is

ĉT �1−α�n =
{
cB� if An ≤ κ,
cS + [cB − cS] · s(An − κ)� if An > κ,

where(5.5)

cB = cLF
T �1−α +Δ1� cS = cT �1−α(∞)+Δ2�

and Δ1 ≥ 0 and Δ2 ≥ 0 are defined below. Here, “B” denotes big and “S” de-
notes small. When An ≤ κ� ĉT �1−α�n equals the LF critical value cLF

T �1−α plus a
size-correction factor Δ1� When An > κ� ĉT �1−α�n is a convex combination of
cLF

T �1−α +Δ1 and cT �1−α(∞)+Δ2� where Δ2 is another size-correction factor and
the weight given to the standard critical value cT �1−α(∞) increases with the
strength of identification, as measured by An − κ.

The unrestricted ICS statistic An satisfies An →d A(h) under {γn} ∈
Γ (γ0�0� b) with ‖b‖<∞� where

A(h)= (τβ(π
∗;γ0� b)

′Σ−1
ββ(π

∗;γ0)τβ(π
∗;γ0� b)/dβ)

1/2�(5.6)

where π∗ abbreviates π∗(γ0� b), and τβ(π;γ0� b) and Σββ(π;γ0) are defined in
(3.10) and (4.4), respectively.51– 53

For any Δ1 and Δ2� under γn ∈ Γ (γ0�0� b) with ‖b‖<∞� the asymptotic null
rejection probability (NRP) of a test based on the statistic Tn and the robust

49The asymptotic size results given in Theorem 5.1 below also hold for the abrupt transition
function s(x)= 1 − 1(x > 0)� which is discontinuous at x= 0� provided one adds the assumption
that P(A(h) = κ) = 0 ∀h ∈ H� where A(h) is defined in (5.6) below. The latter condition is
satisfied in most examples.

50If cLF
T �1−α = ∞� one should take s(x) to equal 0 for x sufficiently large and define ∞ × 0

in (5.5) to equal 0� Then the critical value ĉT �1−α�n is infinite if An is small and is finite if An is
sufficiently large.

51The convergence in distribution follows from Theorem 3.1(a) and Assumption V1.
52In the vector β case, Σββ(π;γ0) is replaced with Σββ(π�ω

∗(π;γ0� b);γ0) in (5.6), where
Σββ(π�ω;γ0) is defined in (8.1) andω∗(π;γ0� b) is defined in (8.2) in Supplemental Appendix A.
When the type 2 robust critical value is considered in the vector β case, h is defined to include
ω0 ∈ Rdβ with ‖ω0‖ = 1 as an element, that is, h = (b�γ0�ω0) and H = {h = (b�γ0�ω0) :‖b‖ <
∞�γ0 ∈ Γ with β0 = 0�‖ω0‖ = 1}�

53Analogously, the NI-ICS statistic An(vn) satisfies An(vn) →d A(h�v0) under {γn} ∈
Γ (γ0�0� b) with ‖b‖ < ∞� where, for brevity, A(h�v0) is defined in Comment (iii) to Theo-
rem 9.1 in Supplemental Appendix B. When the NI-ICS statistic is employed, A(h) is replaced
with A(h�v0) in all formulae that follow.
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critical value ĉT �1−α�n is

NRP(Δ1�Δ2;h)(5.7)

=P(T (h) > cB & A(h)≤ κ)+ P(T (h) > cA(h) & A(h) > κ)

= P(T (h) > cB)+ P
(

T (h) ∈ (cA(h)� cB] & A(h) > κ
)
� where

cA(h)= cS + (cB − cS) · s(A(h)− κ)�

The constants Δ1 and Δ2 are chosen such that NRP(Δ1�Δ2;h) ≤ α ∀h ∈H�
In particular, we define

Δ1 = sup
h∈H1

Δ1(h)� where(5.8)

Δ1(h)≥ 0 solves NRP(Δ1(h)�0;h)= α or

Δ1(h)= 0 if NRP(0�0;h) < α�
H1 = {(b�γ0) : (b�γ0) ∈H & ‖b‖ ≤ ‖bmax‖ +D}�
Δ2 = sup

h∈H
Δ2(h)� where

Δ2(h) solves NRP(Δ1�Δ2(h);h)= α or

Δ2(h)= 0 if NRP(Δ1�0;h) < α�
By definition bmax is such that cT �1−α(h) is maximized over h ∈ H at hmax =
(bmax�γmax) ∈ H for some γmax ∈ Γ and D is a nonnegative constant, such
as 1.54,55 As defined, Δ1 and Δ2 can be computed sequentially, which is com-
putationally convenient.

The adjustment via Δ1 size-corrects for b values that are at or near bmax� Size
correction is needed here because the ICS statistic An is larger than κ with a
positive probability asymptotically, even under sequences of true parameters
for which the LF critical value is needed to achieve correct asymptotic size.

The adjustment via Δ2 size-corrects for relatively large values of b� Size cor-
rection may be needed here to handle the difference between the ideal critical
value for the given value of b and the robust critical value that is determined by

54When NRP(0�0;h) > α� a unique solution Δ1(h) typically exists because NRP(Δ1�0;h)
is always nonincreasing in Δ1 and is typically strictly decreasing and continuous in Δ1� If no
exact solution to NRP(Δ1(h)�0;h) = α exists, then Δ1(h) is taken to be any value for which
NRP(Δ1(h)�0;h) ≤ α and Δ1(h) ≥ 0 is as small as possible. Analogous comments apply to the
equation NRP(Δ1�Δ2(h);h)= α and the definition of Δ2(h)�

55When the LF critical value is achieved at ‖b‖ = ∞, that is, cT �1−α(∞) ≥ suph∈H cT �1−α(h)�
the standard asymptotic critical value cT �1−α(∞) yields a test or CI with correct asymptotic size,
and constants Δ1 and Δ2 are not needed. Hence, here we consider the case where ‖bmax‖ <∞.
If suph∈H cT �1−α(h) is not attained at any point hmax� then bmax can be taken to be any point such
that cT �1−α(hmax) is arbitrarily close to suph∈H cT �1−α(h) for some hmax = (bmax�γmax) ∈H�
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the transition function s(An − κ)� Typically, this discrepancy is small and only
a small adjustment Δ2 is needed.

Given the definitions of Δ1 and Δ2� the rejection probability is close to the
nominal level α when h is close to hmax (due to the adjustment with Δ1) and
when ‖b‖ is large (due to the adjustment with Δ2).

The type 2 robust critical value can be improved by employing NI and/or
plug-in versions of it, denoted by ĉT �1−α�n(v)� as in Section 5.1; see Supplemen-
tal Appendix A for details.

For any given value of κ� the type 2 robust CS has correct asymptotic size
due to the choice of Δ1 and Δ2� In consequence, we choose κ based on the
false coverage probabilities (FCP’s) of the robust CS. When dr = 1� an FCP of
a CI for r(θ) is the probability that the CI includes a value different from the
true value r(θ)� Small FCP’s are closely linked to short CI’s; see Pratt (1961).

The method we use to choose κ is to minimize the average asymptotic FCP
of the robust CS at a chosen set of points.56 We are interested in a robust CS
for r(θ)� Let K denote the set of κ values from which we select. First, for given
h ∈H� we choose a null value vH0(h) that differs from the true value v0 = r(θ0)
(where h = (b�γ0) and γ0 = (θ0�φ0)). The null value vH0(h) is selected such
that the robust CS, based on a reasonable choice of κ such as κ = 1�5 or 2�
has a FCP that is in a range of interest such as close to 0�50.57,58 Second, we
compute the FCP of the value vH0(h) for each robust CS with κ ∈ K� Third, we
repeat the first two steps for each h ∈ H� where H is a representative subset
of H.59 The optimal choice of κ is the value that minimizes over K the average
FCP at vH0(h) over h ∈ H�

5.4. Asymptotic Size of Robust t and QLR CS’s

In this section, we show that the LF and data-dependent robust CS’s defined
above have correct asymptotic size when Tn equals the t statistic, the absolute
value of the t statistic, or the QLR statistic. Analogous results for robust Wald
CS’s are given in AC3.

56For t and Wald CS’s, asymptotic FCP’s follow from the results in this paper and AC3. For
QLR CI’s, asymptotic FCP’s follow from the results of this paper only for restrictions involving π
or π +β; see Comments (iv) and (v) to Theorem 4.2. For other restrictions, one can use a large
finite-sample size when determining κ.

57For reasonable choices, the value of κ used to obtain vH0(h) typically has very little effect
on the final comparison across different values of κ. For example, this is true in the ARMA(1�1)
example considered below.

58When b is close to 0� the FCP may be larger than 0�50 for all admissible v due to weak
identification. In such cases, vH0(h) is taken to be the admissible value that minimizes the FCP
for the selected value of κ that is being used to obtain vH0(h)�

59When r(θ) = π or r(θ) = π + β, we do not include h values in H for which b = 0 because
when b = 0, there is no information about π and it is not necessarily desirable to have a small
FCP.
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The asymptotic size results of this section rely on the following d.f. continuity
conditions, which are not restrictive in most examples.

ASSUMPTION LF: (i) The d.f. of T (h) is continuous at cT �1−α(h) ∀h ∈H�
(ii) If cLFT �1−α > cT �1−α(∞)� cLFT �1−α is attained at some hmax ∈H�
ASSUMPTION NI-LF: (i) The d.f. of T (h) is continuous at cT �1−α(h) ∀h ∈

H(v)� ∀v ∈ Vr�
(ii) For some v ∈ Vr� cLFT �1−α(v) = cT �1−α(∞) or cLFT �1−α(v) is attained at some

hmax ∈H�
For h ∈ H� define ĉT �1−α(h) as ĉT �1−α�n is defined in (5.5), but with A(h)

in place of An� The distribution of ĉT �1−α(h) is the asymptotic distribution of
ĉT �1−α�n under {γn} ∈ Γ (γ0�0� b) for ‖b‖<∞�

ASSUMPTION ROB2: (i) P(T (h)= ĉT �1−α(h))= 0 ∀h ∈H�
(ii) If Δ2 > 0� NRP(Δ1�Δ2;h∗) = α for some point h∗ ∈H� where Δ1 and Δ2

are defined in (5.8).

The NI asymptotic quantile ĉT �1−α(h� v) and Assumption NI-Rob2 are de-
fined analogously to ĉT �1−α(h) and Assumption Rob2; see Supplemental Ap-
pendix A for details.

For Tn equal to |Tn|� Tn� −Tn� or QLRn� we have T (h) equal to |T(h)|�
T (h)� −T(h)� or QLR(h)� respectively, the quantile cT �1−α(h) equal to
c|t|�1−α(h)� ct�1−α(h)� c−t�1−α(h)� or cQLR�1−α(h) defined just below (4.16), the
quantile cT �1−α(∞) equal to z1−α/2� z1−α� z1−α� or χ2

dr �1−α� and the quanti-
ties cLF

T �1−α� c
LF

T �1−α(v)� c̃T �1−α�n� c̃T �1−α�n(v)� ĉT �1−α�n� ĉT �1−α�n(v)� ĉT �1−α(h)� and
ĉT �1−α(h� v) defined as above with T = |t|� t� −t� or QLR� respectively.

THEOREM 5.1: (a) Suppose Assumptions A, B1–B3, C1–C8, D1–D3, R, V1,
and V2 hold and dr = 1� Then the nominal 1−α symmetric two-sided, upper one-
sided, and lower one-sided robust t CI’s all have AsySz = 1−α when based on the
following critical values: (i) LF, (ii) NI-LF, (iii) type 1 robust, (iv) type 1 robust
with NI critical values, (v) type 2 robust, and (vi) type 2 robust with NI critical
values, provided the following additional Assumptions hold, respectively: (i) LF,
(ii) NI-LF, (iii) K and V3, (iv) K and V3, (v) Rob2, and (vi) NI-Rob2, where
T (h) in Assumptions LF, NI-LF, Rob2, and NI-Rob2 is equal to |T(h)|� T (h)�
and −T(h) in the two-sided, upper one-sided, and lower-sided cases, respectively.

(b) Suppose Assumptions A, B1–B3, C1–C5, C7, C8, D1–D3, RQ1–RQ3, and
RQ4(i) hold. Then the nominal 1−αQLR CS has AsySz = 1−α when based on
the following critical values: (i) LF, (ii) NI-LF, (iii) type 1 robust, (iv) type 1 robust
with NI critical values, (v) type 2 robust, and (vi) type 2 robust with NI critical
values, provided the following additional Assumptions hold, respectively: (i) LF,
(ii) NI-LF, (iii) K, RQ4, V1, and V2, (iv) K, RQ4, V1, and V2, (v) C6, Rob2,
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V1, and V2, and (vi) C6, NI-Rob2, V1, and V2, where T (h) in Assumptions LF,
NI-LF, Rob2, and NI-Rob2 is equal to QLR(h)�

COMMENTS: (i) Plug-in versions of the robust CI’s considered in Theo-
rem 5.1 also have asymptotically correct size under continuity assumptions on
cT �1−α(h) that typically are not restrictive. For brevity, we do not provide formal
results here. Theorem 5.1 also applies to robust tests that employ the NI-ICS
statistic An(vn) in place of An�

(ii) If part (ii) of Assumptions LF, NI-LF, Rob2, or NI-Rob2 does not hold,
then the corresponding part of Theorem 5.1(a) or (b) still holds, but with
AsySz ≥ 1 − α. For example, Assumption LF(ii) fails in the unusual case that
cLF

T �1−α = ∞ and Assumption NI-LF(ii) fails if cLFT �1−α(v)= ∞ ∀v ∈ Vr�

FIGURE 7.—Coverage probabilities of robust |t| and QLR CI’s for the MA parameter π in the
ARMA(1�1) model when π0 = 0 and π0 = 0�4� κ= 1�5� and s(x)= exp(−x/2).
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(iii) Figure 7 reports the asymptotic and finite-sample CP’s of type 2 robust
|t| and QLR CI’s for the MA parameter π in the ARMA(1�1) model as a
function of b (≤ 0) for π0 = 0�0 and 0�4� The type 2 robust CI’s use NI criti-
cal values and the (unrestricted) ICS statistic An� They employ the transition
function s(x)= exp(−x/2) and the constants κ= 1�5 and D= 1� The choices
of s(x) and D were determined via some experimentation to be good choices
in terms of yielding CP’s that are relatively close to the nominal size 0�95 across
different values of b� Given s(x) and D� the choice of κ was determined using
the method described at the end of Section 5.3 based on minimizing average
FCP’s. The details are given in Supplemental Appendix D. It turns out that a
wide range of κ values yields similar average FCP’s, so the particular choice of
κ= 1�5 is not at all crucial.60,61

Figure 7(a) and (b) shows that the CP’s of both the |t| and QLR CI’s are
greater than or equal to 0�95 for all b when π0 = 0�0� However, the QLR CI
is closer to being similar, both asymptotically and in finite samples. Only for
|b| ≤ 3 are its CP’s greater than 0�95� The asymptotic approximations provided
by Theorem 5.1 perform very well in Figure 7(a) and (b).

The results in Figure 7(d) for the QLR CI for π0 = 0�4 are quite similar to
those in Figure 7(b) for π0 = 0�0� For the |t| CI in Figure 7(c) for π0 = 0�4�
however, there is a greater discrepancy between the asymptotic and finite-
sample results than when π0 = 0�0� In addition, there is some undercoverage.
For n= 100� the CP’s of |t| CI are as low as 0�93 for some b values. However,
the magnitude of the undercoverage of the robust |t| CI is very small compared
to that of the standard |t| CI.

5.5. Asymptotic Power Comparisons for Robust QLR Tests

In this section, we compare the power of type 2 robust QLR tests to the
CLR test of Moreira (2003) in the linear IV regression model. The CLR
test is approximately asymptotically optimal under weak and strong identi-
fication in the classes of invariant similar and invariant tests; see Andrews,
Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and Jansson
(2009). This is the only model covered by the general results of this pa-
per for which an asymptotically optimal test exists under weak identifica-
tion, as far as we are aware. Hence, this is a good benchmark model to con-
sider.

60This is shown in several tables in Supplemental Appendix D. The reason for similar average
FCP’s across different κ values is that if κ is changed, the constants Δ1 and Δ2 change in a manner
that substantially offsets the effect of the change in κ. This occurs because, for any given κ� the
constants Δ1 and Δ2 must yield a CI with the desired size.

61The value κ = 1�5 is used for all CI’s considered, whether they are |t| or QLR-based and
whether they are for π or ρ. This value of κ minimizes the average FCP measured to two signifi-
cant digits for all cases considered; see the tables in Supplemental Appendix D.
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In short, we find that the type 2 robust test based on the NI-ICS statistic
has power that is essentially equal to that of the CLR test. Hence, this robust
test has approximately asymptotically optimal power. The type 2 robust test
based on the unrestricted ICS statistic generally has lower power than the CLR
test.

The structural model we consider is

y1�i = y2�iπ + u∗
i and y2�i =Z′

iβ+ v∗
i �(5.9)

where (u∗
i � v

∗
i )

′ ∼N(0�Υ ∗) for a positive definite (p.d.) 2×2 matrix Υ ∗� (u∗
i � v

∗
i )

and Zi are independent, {(Z′
i� u

∗
i � v

∗
i )

′ : i = 1� � � � � n} are i.i.d., y1�i� y2�i� u
∗
i � v

∗
i ∈

R� Zi ∈Rk� π ∈R, and β ∈Rk�62,63 The reduced-form equations are

y1�i = π ·Z′
iβ+ ui and y2�i =Z′

iβ+ vi�(5.10)

where ui = u∗
i + v∗

i π� vi = v∗
i � and (ui� vi)′ ∼N(0�Υ)�

Let ζ = vech(Υ−1) ∈R3� The log-likelihood function for θ= (β�ζ�π) (mul-
tiplied by −n−1 and ignoring a constant) is

Qn(θ)= 1
2

log |Υ | + 1
2
n−1

n∑
i=1

εi(β�π)
′Υ−1εi(β�π)� where(5.11)

εi(β�π)= (y1�i −π ·Z′
iβ� y2�i −Z′

iβ)
′ ∈R2�

Assumption A holds because Qn(θ) does not depend on π when β= 0�
For brevity, Supplemental Appendix F provides the details of the parameter

space, the quantities that appear in the assumptions and asymptotic distribu-
tions, formulae for the asymptotic power calculations (see (13.18), (13.21), and
(13.23)), and verification of the assumptions for this model.

We now report asymptotic power comparisons for tests concerning the struc-
tural parameter π. We consider a type 2 robust QLR test that uses an NI-
ICS statistic and one that uses an unrestricted ICS statistic. We compare them
to the CLR test, as well as the LM test of Kleibergen (2002) and Moreira

62Using the notation of this paper, in which β determines the strength of identification of π�
the parameters (β�π) in (5.9) are reversed from the usual notation used in the IV regression
literature.

63For simplicity, we consider a model without exogenous variables Xi in either equation be-
cause they do not affect the asymptotic power comparisons. As is well known, such variables can
be projected out and the results given here apply with Zi being viewed as the projection residual;
for example, see Section 2 of Andrews, Moreira, and Stock (2006) with a population projection in
place of a sample projection. Provided Xi includes an intercept, this yields Zi to have mean zero.
Also for simplicity and because they do not affect the power comparisons, we assume the errors
are normally distributed. The results can be extended to nonnormal finite variance errors, pro-
vided (u∗

i � v
∗
i ) is symmetrically distributed or the instruments have mean zero. By the discussion

above, the latter is not restrictive.
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FIGURE 8.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter π in the linear IV model: k = 5� ρ = 0�95� 0�5� λ = 5�20� The ICS statistic for the
robust QLR test is the null-imposed Wald statistic.

(2009) and the well known Anderson–Rubin (AR) test. We report results
for the same parameter configurations as in Andrews, Moreira, and Stock
(2006). The asymptotic power of the tests just depends on λ = b′b, where
b = limn→∞ n1/2βn ∈ Rk indexes the strength of the IV’s, the number of IV’s
k� the correlation between the reduced-form errors ρ� and π − πH0� where π
denotes the true value of π and πH0 is the null value of π� which we set to 0
w.l.o.g. The significance level of the tests is 5%� All results are based on 50,000
simulation repetitions. See Supplemental Appendix F for further details con-
cerning the numerical work.

Figure 8 provides results for λ = 5�20� k = 5� ρ = 0�95� 0�5� and πλ1/2 ∈
[−6�6]� Figure 8 shows that the power of the robust QLR test that uses the
NI-ICS statistic is essentially the same as that of the CLR test.

Figures in Supplemental Appendix D show a number of related results. First,
the conclusion based on Figure 8 for k= 5 also holds for k= 2�10� Second, the
robust QLR test with NI-ICS statistic is close to being asymptotically similar.
Third, the robust QLR test with unrestricted ICS statistic has power below
that of the CLR test, more so when ρ = 0�95 than when ρ = 0�5� Fourth, the
standard QLR CI for π exhibits substantial size distortions. For nominal level
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95%� its asymptotic size varies between 0�6 and 0�9, depending on the param-
eter configurations.

6. ARMA EXAMPLE

In this section, we provide asymptotic results for the ARMA(1�1) model
specified in (1.1). It has been known for many years that common MA and AR
roots lead to identification failure in the ARMA(1�1) model in the important
scenario where the series is white noise; see Ansley and Newbold (1980). Re-
sults for testing the null hypothesis of white noise in an ARMA(1�1) model
are provided by Hannan (1982) and Andrews and Ploberger (1996). However,
no papers provide an asymptotic analysis of standard estimators, CI’s, or tests
for any other null hypothesis (such as tests concerning the MA or AR param-
eter) that deal with the identification issue. We do so here. We also provide
identification-robust CI’s.64

6.1. Key Quantities

We now specify the key quantities that arise in the ARMA model. More
specifically, these quantities arise in Assumptions B1–B3, C1–C8, D1–D3, V1,
and V2 and in the form of the asymptotic distributions. For brevity, these as-
sumptions are verified in Supplemental Appendix C.

The (conditional) log-likelihood function Qn(θ) is specified in (1.2). The
conditioning value ε0 is asymptotically negligible, so for simplicity (and w.l.o.g.
for the asymptotic results), we set ε0 = Y0 in the log likelihood. See Supple-
mental Appendix C for details regarding the calculation of Qn(θ)� Let φ0 de-
note the distribution of ζ−1/2

0 εt� For notational simplicity, we sometimes write
the true and generic AR parameters as ρ0 = π0 + β0 and ρ = π + β� respec-
tively.

The optimization and true parameter spaces are

Θ= {θ= (β�ζ�π)′ :β ∈ [ρL −π�ρU −π]�(6.1)

ζ ∈ [ζL� ζU ]�π ∈Π = [πL�πU ]}�
Θ∗ = {θ= (β�ζ�π)′ :β ∈ [ρ∗

L −π�ρ∗
U −π]�

ζ ∈ [ζ∗
L� ζ

∗
U ]�π ∈ [π∗

L�π
∗
U ]}�

64The results for this example can be extended to the case where the mean of the strictly
stationary time series Yt is μ0� In this case, (1.1) holds with Yt and Yt−1 replaced with Yt − μ0

and Yt−1 − μ0� respectively. The mean μ0 can be estimated by ML, in which case Yt is replaced
by Yt −μ in the criterion function and the criterion function is minimized w.r.t. μ as well as the
other parameters, or μ0 can be estimated by Yn = n−1∑n

t=1Yt� in which case Yt is replaced with
Yt − Yn in the criterion function. In either case, the asymptotic results concerning (β�ζ�π) are
the same whether or not μ0 is estimated, due to the block diagonality of the information matrix
between μ and (β�ζ�π)�
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where −1< ρL < πL < πU < ρU < 1� 0< ζL < ζU <∞� πL < π
∗
L < π

∗
U < πU�

ρL < ρ
∗
L < π

∗
L < π

∗
U < ρ

∗
U < ρU� and ζL < ζ∗

L < ζ
∗
U < ζU� By the definition of Θ,

the autoregressive parameter ρ= π +β lies in [ρL�ρU ]�65

Let ξt denote the normalized innovation ζ−1/2εt� which has mean 0 and vari-
ance 1. The true parameter space for γ = (θ�φ) is

Γ = {γ = (θ�φ) :θ ∈Θ∗�φ ∈Φ∗}�(6.2)

where Φ∗ is some compact subset of Φ w.r.t. the metric dΦ and

Φ= {φ :Eφξt = 0�Eφξ2
t = 1�Eφ(ξ2

t − 1)2 ≥ δ1�Eφ|ξt |4+δ2 ≤K
}

for some constants δ1� δ2 > 0 and 0 < K < ∞� where dΦ is some metric on
the space of distributions on R that induces weak convergence. With these
definitions of Θ� Θ∗� and Γ� Assumptions B1 and B2 hold; see Supplemental
Appendix C.

In the ARMA example, the function Q(θ;γ0) in Assumption B3(i) is

Q(θ;γ0)=Eγ0ρt(θ)� where(6.3)

ρt(θ)= 1
2

logζ + 1
2ζ

(
Yt −β

∞∑
j=0

πjYt−j−1

)2

�

The generalized derivatives of Qn(θ) w.r.t. ψ� which appear in Assump-
tion C1, are the ordinary first and second partial derivatives of the approxi-
mation Q∞

n (θ) to Qn(θ)� Here, Q∞
n (θ) is defined by

Q∞
n (θ)= 1

2
logζ + 1

2ζ
n−1

n∑
t=1

(
Yt −β

∞∑
j=0

πjYt−j−1

)2

�(6.4)

where the sum over j runs to ∞� rather than to t − 1�
Assumption C1 is verified with

DψQn(θ)= n−1
n∑
t=1

ρψ�t(θ)=
(
ρβ�t(θ)
ρζ�t(θ)

)
� where(6.5)

ρβ�t(θ)= −ζ−1

(
Yt −β

∞∑
j=0

πjYt−j−1

) ∞∑
k=0

πkYt−k−1�

ρζ�t(θ)= −1
2
ζ−2

((
Yt −β

∞∑
j=0

πjYt−j−1

)2

− ζ

)
�

65The conditions ρL < πL and πU < ρU imply that β can take values in a neighborhood of zero
for any value of π ∈Π.
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Assumption C2(i) holds in this example with m(Wi�θ) = ρψ�t(θ)� Assump-
tion C2(ii) holds because, for all γ∗ ∈ Γ with β∗ = 0� Eγ∗ρβ�t(ψ

∗�π) =
−ζ∗−1Eγ∗εt

∑∞
j=0π

jYt−j−1 = 0 andEγ∗ρζ�t(ψ
∗�π)= −(1/2)ζ∗−2(Eγ∗ε2

t −ζ∗)= 0
using (6.2) and the definitions of ρβ�t(θ) and ρζ�t(θ) in (6.5).

The empirical process {Gn(π) :π ∈Π} in Assumption C3 is

Gn(π)= n−1/2
n∑
t=1

⎛⎜⎝−ζ−1
n Yt

∞∑
k=0

πkYt−k−1

−(1/2)ζ−2
n (Y

2
t − ζn)

⎞⎟⎠(6.6)

−
⎛⎜⎝−Eγnζ−1

n Yt

∞∑
k=0

πkYt−k−1

−Eγn(1/2)ζ−2
n (Y

2
t − ζn)

⎞⎟⎠ �
The limit process {G(π;γ0) :π ∈Π} in Assumption C3 is the Gaussian process

G(π;γ0)=
⎛⎜⎝

∞∑
j=0

πjZj

(1/2)ζ−2
0

(
Eγ0(ε

2
t − ζ0)

2
)1/2
Z

⎞⎟⎠ �(6.7)

where Z, Z0, Z1� � � � are independent standard normal random variables. The
mean ofG(π;γ0) is zero. The covariance kernel ofG(π;γ0) isΩ(π1�π2;γ0)=
Diag{(1−π1π2)

−1� (1/4)ζ−4
0 Eγ0(ε

2
t −ζ0)

2} ∈R2×2� The convergence in Assump-
tion C3 is established using the method in Andrews and Ploberger (1996).

The matrices DψψQn(ψ0�n�π) and H(π;γ0) in Assumption C4 are, for γ0 ∈
Γ with β0 = 0�

DψψQn(ψ0�n�π)= n−1
n∑
t=1

[
ρββ�t(ψ0�n�π) ρβζ�t(ψ0�n�π)

ρβζ�t(ψ0�n�π) ρζζ�t(ψ0�n�π)

]
� where(6.8)

ρββ�t(ψ0�n�π)= ζ−1
n

( ∞∑
j=0

πjYt−j−1

)2

�

ρβζ�t(ψ0�n�π)= ζ−2
n Yt

∞∑
k=0

πkYt−k−1�

ρζζ�t(ψ0�n�π)= −(1/2)ζ−2
n + ζ−3

n Y
2
t �

H(π;γ0)=Eγ0ρψψ�t(ψ0�π)=
[
(1 −π2)−1 0

0 (2ζ2
0)

−1

]
�

The matrix H(π;γ0) satisfies Assumption C4(ii) because infπ∈Π(1 − π2)−1 =
(1 − max2{|πL|� |πU |})−1 > 0�



ESTIMATION AND INFERENCE 2203

The matrix Kn(θ;γ0)� which appears in Assumption C5(i), is complicated
and, hence, for brevity, is given in (10.34), (10.36), and (10.38) in Supplemental
Appendix C. Its limit, K(π;γ0)� which appears in Assumption C5, is much
simpler and is given by

K(π;γ0)=
(−(1 −π0π)

−1

0

)
�(6.9)

Combining (6.7)–(6.9), the stochastic process ξ(π;γ0� b) is

ξ(π;γ0� b)= −1
2

(
G(π;γ0)+

(−b/(1 −π0π)
0

))′ [
1 −π2 0

0 2ζ2
0

]
(6.10)

×
(
G(π;γ0)+

(−b/(1 −π0π)
0

))
�

Assumption C6 is verified in this example using Assumption C6∗∗ and
Lemma 8.5 given in Supplemental Appendix A.

In the ARMA example, the function η(π;γ0�ω0) in Assumption C7 is

η(π;γ0�ω0)= − 1 −π2

2(1 −π0π)2
�(6.11)

It is uniquely minimized at π = π0� as required by Assumption C7, because its
derivative w.r.t. π is (π − π0)/(1 − π0π)

3� which is zero for π = π0� strictly
negative for π <π0� and strictly positive for π >π0�

For brevity, the quantity (∂/∂ψ′)EγnDψQn(ψ�πn)|ψ=ψn in Assumption C8 and
the verification of Assumption C8 is given in Supplemental Appendix C.

The matrix B(β) for the ARMA example is B(β) = Diag{1�1�β} ∈ R3×3�
The generalized derivatives of Qn(θ) w.r.t. θ that appear in Assumption D1
are the ordinary first and second partial derivatives of Q∞

n (θ)� defined in (6.4).
The first derivatives are

DQn(θ)= n−1
n∑
t=1

ρθ�t(θ)(6.12)

= n−1
n∑
t=1

(ρβ�t(θ)�ρζ�t(θ)�ρπ�t(θ))
′� where

ρπ�t(θ)= −ζ−1

(
Yt −β

∞∑
j=0

πjYt−j−1

)
β

∞∑
k=0

kπk−1Yt−k−1�

and ρβ�t(θ) and ρζ�t(θ) are given in (6.5). For brevity, the second derivatives
are given in (10.11)–(10.13) of Supplemental Appendix C.
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Assumption D2 holds in this example with

J(γ0)= Diag

{
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

)2

� (2ζ2
0)

−1�(6.13)

ζ−1
0 Eγ0

( ∞∑
j=0

jπ
j−1
0 Yt−j−1

)2}

+
(
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

) ∞∑
k=0

kπk−1
0 Yt−k−1

)
×
[0 0 1

0 0 0
1 0 0

]
�

To verify Assumption D3(i) in this example, we have

n1/2B−1(βn)DQn(θn) = −n−1/2
n∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝
ζ−1
n εt

∞∑
k=0

πk
nYt−k−1

(1/2)ζ−2
n (ε

2
t − ζn)

ζ−1
n εt

∞∑
k=0

kπk−1
n Yt−k−1

⎞⎟⎟⎟⎟⎟⎟⎠(6.14)

→d N(0� V (γ0))�

where the equality holds by the definitions in (6.5) and (6.12), and the conver-
gence in distribution holds by a triangular array martingale difference CLT.

The matrix

V (γ0)= Diag

{
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

)2

�
Eγ0(ε

2
t − ζ0)

2

4ζ4
0

�(6.15)

ζ−1
0 Eγ0

( ∞∑
j=0

jπ
j−1
0 Yt−j−1

)2}

+
(
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

) ∞∑
k=0

kπk−1
0 Yt−k−1

)
×
[0 0 1

0 0 0
1 0 0

]
�

Note that J(γ0) = V (γ0) if (2ζ2
0)

−1 = (4ζ4
0)

−1Eγ0(ε
2
t − ζ0)

2� which holds when
εt has a normal distribution.66

66The verification of the conditions needed for the CLT, the derivation of the form of V (γ0)�
and the verification of Assumption D3(ii) are given in Supplemental Appendix C.
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In this example, τβ(π;γ0� b) of (3.10) equals −(1 − π2)(
∑∞

j=0π
jZj − (1 −

π0π)
−1b)�

We estimate J(γ0) and V (γ0) by Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n)� respectively,
where67

Ĵn(θ)= Diag

{
ζ−1n−1

n∑
t=1

(
t−1∑
j=0

πjYt−j−1

)2

� (2ζ2)−1�(6.16)

ζ−1n−1
n∑
t=1

(
t−1∑
j=0

jπj−1Yt−j−1

)2}

+
(
ζ−1n−1

n∑
t=1

(
t−1∑
j=0

πjYt−j−1

)
t−1∑
k=0

kπk−1Yt−k−1

)

×
[0 0 1

0 0 0
1 0 0

]

and V̂n(θ)= Ĵn(θ) but with its (2�2) element, (2ζ2)−1� replaced by

(4ζ2)−1n−1
n∑
t=1

((
Yt −β

t−1∑
j=0

πjYt−j−1

)2

− ζ

)2

�(6.17)

For brevity, the quantities J(θ;γ0) and V (θ;γ0) in Assumption V1 (scalar
β) are given in (10.57) and (10.58) of Supplemental Appendix C.

The asymptotic null distribution of the t statistic for tests concerning the MA
parameter π is determined by Theorem 4.1(b). Under {γn} ∈ Γ (γ0�0� b) with
|b|<∞� it is the distribution of

Tπ(π
∗;γ0� b)=

∣∣∣∣∣
∞∑
j=0

(π∗)jZj − (1 −π0π
∗)−1b

∣∣∣∣∣(1 − (π∗)2)(π∗ −π0)

(Σππ(π
∗)22)

1/2 �(6.18)

67For hypotheses and CI’s that involve only β and/or π� the (2�2) elements of Ĵn and V̂n are
not needed. In such cases, the matrices Ĵn and V̂n with their second rows and columns deleted are
the same. For Assumptions V1 and V2 to hold for the quantity in (6.17), more moments need
to be assumed on εt � Specifically, in Φ (defined in (6.2)), the condition Eφ|ξt |4+δ2 ≤ K needs
to be replaced by Eφ|ξt |8+δ2 ≤ K for the proof to go through. This condition is only needed for
hypotheses and CI’s that involve the innovation variance ζ.
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where π∗ abbreviates π∗(γ0� b)� {Zj : j ≥ 0} are i.i.d. N(0�1) random variables,

π∗(γ0� b)= arg min
π∈Π

−1
2

( ∞∑
j=0

πjZj − (1 −π0π)
−1b

)2

(1 −π2)�(6.19)

Σππ(π)=

⎡⎢⎢⎢⎢⎣
∞∑
j=0

π2j
∞∑
j=0

jπ2j−1

∞∑
j=0

jπ2j−1
∞∑
j=0

j2π2j−2

⎤⎥⎥⎥⎥⎦
−1

�

and Σππ(π)22 denotes the (2�2) element of Σππ(π).68 The limit distribution
in (6.18) only depends on b and π0� Under {γn} ∈ Γ (γ0�∞�ω0)� the t statistic
for the MA parameter π has a N(0�1) asymptotic null distribution by Theo-
rem 4.1(c).

We consider QLR tests and CS’s involving functions of (β�π)� not ζ. In con-
sequence, the key Assumption RQ2(ii) for the QLR statistic holds.69 It holds
because V (γ0) and J(γ0) are block diagonal (after reordering their rows and
columns) between the (β�π) and ζ parameters, and the blocks of V (γ0) and
J(γ0) that correspond to the (β�π) parameters are equal; see (6.13) and (6.15).
In consequence, ŝn = 1 in this example and the standard critical value is χ2

dr �1−α�
By Theorem 4.2, for a test concerning the MA parameter π� the asymptotic

null distribution of the QLR statistic under {γn} ∈ Γ (γ0�0� b) with |b| <∞ is
the distribution of

2
(
ξ(π0;γ0� b)− inf

π∈Π
ξ(π;γ0� b)

)
(6.20)

= −
( ∞∑

j=0

π
j
0Zj − (1 −π2

0)
−1b

)2

(1 −π2
0)

+ inf
π∈Π

( ∞∑
j=0

πjZj − (1 −π0π)
−1b

)2

(1 −π2)�

This limit distribution only depends on b and π0.70 Under {γn} ∈ Γ (γ0�∞�ω0)�
the QLR statistic has a χ2

1 asymptotic null distribution by Theorem 4.3
and (4.15).

68The first equality in (6.19) holds using the expression for ξ(π;γ0� b) in this example given in
(6.10) plus simplifications based on (6.7)–(6.9).

69This assumption is needed for the QLR statistic to have a χ2
dr

asymptotic null distribution
under strong identification.

70The equality in (6.20) uses the simplifications in (6.19).
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6.2. AR Parameter

The estimator ρ̂n = π̂n + β̂n of the AR parameter has the same asymptotic
distribution as the estimator for the MA estimator π̂n under {γn} ∈ Γ (γ0�0� b)�
This holds because ρ̂n = π̂n + op(1) when ‖b‖ < ∞ and ‖βn‖−1(ρ̂n − ρn) =
‖βn‖−1(π̂n − πn) + op(1) when ‖b‖ = ∞. In consequence, the t statistics for
ρ and π have the same asymptotic null distribution under {γn} ∈ Γ (γ0�0� b)�
Furthermore, they have the same N(0�1) asymptotic null distribution under
{γn} ∈ Γ (γ0�∞�ω0)� For tests concerning the AR parameter ρ� the QLR
statistic has the same asymptotic null distribution as given above for tests con-
cerning the MA parameter π. This holds by Comment (iv) to Theorem 4.2 and
Section 9.4.4 of Supplemental Appendix B. Hence, the asymptotic size proper-
ties of each test and CI considered here is the same for both ρ and π.

6.3. Numerical Results

Figures 1–7 above provide a variety of asymptotic and finite-sample numer-
ical results for the ARMA(1�1) model. Additional numerical results are re-
ported in Supplemental Appendix D. These include (i) analogous figures to
the figures given above but for π0 = 0�0 and 0�7� rather than π0 = 0�4, (ii) anal-
ogous figures to those above but for the AR parameter ρ = π + β� rather
than the MA parameter π� (iii) tables of asymptotic and finite-sample cov-
erage probabilities for |t| and QLR CI’s for π and ρ� and (iv) tables giving
FCP results for NI-LF and type 2 robust CI’s for π and ρ. Generally speak-
ing, the results for (i) and (ii) are similar to the results reported above. For
brevity, details concerning the numerical results are provided in Supplemental
Appendix D. Table S-I in Supplemental Appendix D provides the cLF

T �1−α(v),
Δ1(v)� and Δ2(v) values necessary to compute the type 2 NI robust critical val-
ues for the |t| and QLR test statistics for computing CI’s for the MA and AR
parameters.
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