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S1. INTRODUCTION

THIS IS A SUPPLEMENT to the paper by Andrews and Barwick. The latter paper
is referred to hereafter as AB1. The contents of this supplement are summa-
rized as follows.

Sections S2–S5 provide the asymptotic results upon which AB1 is based.
Section S2 specifies the model considered, which allows for both moment

inequalities and equalities (whereas AB1 considers only moment inequalities).
Section S3 defines the class of test statistics that are considered.
Section S4 defines in detail the class of refined moment selection (RMS) crit-

ical values that are introduced in AB1, gives the basic idea behind RMS critical
values, defines data-dependent tuning parameters κ̂ and data-dependent size-
correction factors η̂, and discusses plug-in asymptotic (PA) critical values.

Section S5 establishes that RMS CS’s have correct asymptotic size (defined
in a uniform sense), derives the asymptotic power of RMS tests against local
alternatives, discusses an asymptotic average power criterion for comparing
RMS tests, and discusses the unidimensional asymptotic power envelope.

Section S6 provides numerical results supplemental to those reported in
AB1. Section S6.1 contains additional results that assess the performance of
the data-dependent method for choosing κ̂ and η̂ for the AQLR/t-test/κauto
test. Section S6.2 discusses the determination of the recommended adjustment
constant ε = 	012 for the recommended AQLR test statistic. Section S6.3 con-
siders the case where the sample moments have a singular asymptotic correla-
tion matrix. It provides comparisons of several tests based on their asymptotic
average power, finite-sample maximum null rejection probabilities (MNRP’s),
and finite-sample average power. Section S6.4 provides a table of the κ val-
ues that maximize asymptotic average power (i.e., the best κ values), which
are used in the construction of Table II. Section S6.4 also provides a table
of the asymptotic MNRP’s (which are used for size-correction) of the RMS
tests that appear in Table II when no size-correction factor is employed (i.e.,
η = 0). Section S6.5 is similar to Section 4, which compares the asymptotic
power of various RMS tests, except that it considers 19 correlation matrices Ω
(rather than 3) but fewer tests. Section S6.6 compares several generalized mo-
ment selection (GMS) and RMS tests, where the GMS tests are based on non-
data-dependent tuning parameters κ and no size-correction factors η. Sec-
tion S6.7 gives asymptotic MNRP and power results for some tests that are
not considered in AB1. Section S6.8 discusses the relative computation times
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of the asymptotic normal and bootstrap versions of the AQLR/t-test/κauto and
MMM/t-test/κ = 2	35 tests. Section S6.9 provides information on the mag-
nitude of the (random) RMS critical values for the recommended AQLR/t-
test/κauto test.

Section S7 provides details concerning the numerical results reported in AB1
and in Section S6 herein. Section S7.1 provides the μ vectors used in AB1
(which define the alternatives over which asymptotic and finite-sample average
power is computed). Section S7.2 describes some details concerning the assess-
ment of the properties of the automatic method of choosing κ. Section S7.3 dis-
cusses the determination and computation of the asymptotic power envelope.
Section S7.4 discusses the computation of the κ values that maximize asymp-
totic average power that are reported in Table II. Sections S7.5 and S7.6 de-
scribe the numerical computation of η2(p), which is part of the recommended
size-correction function η(·). Section S7.6 also describes how the maximum
over μ vectors in the null is computed for the finite-sample results.

Section S8 describes the GAUSS computer programs that were used to com-
pute the numerical results.

Section S9 gives an alternative parametrization of the moment inequal-
ity/equality model to that given in AB1 (that is conducive to the calculation
of the uniform asymptotic properties of CS’s and tests) and provides proofs of
the results given in Section S5.

Throughout, we use the following notation. Let R+ = {x ∈ R :x ≥ 0}, R++ =
{x ∈ R :x > 0}, R+�∞ = R+ ∪ {+∞}, R[+∞] = R ∪ {+∞}, R[±∞] = R ∪ {±∞},
Kp = K × · · · × K (with p copies) for any set K, and ∞p = (+∞� 	 	 	 �+∞)′

(with p copies). All limits are as n → ∞ unless specified otherwise. Let d.f.
abbreviate distribution function, p.d. abbreviate positive definite, cl(Ψ) denote
the closure of a set Ψ , and 0v denote a v-vector of zeros.

S2. MOMENT INEQUALITY/EQUALITY MODEL

For brevity, the model considered in AB1 only allows for moment inequali-
ties. Here we consider a more general model that allows for both inequalities
and equalities. The moment inequality/equality model is as follows. The true
value θ0 (∈�⊂ Rd) is assumed to satisfy the moment conditions

EF0mj(Wi�θ0) ≥ 0 for j = 1� 	 	 	 �p(S2.1)

= 0 for j = p+ 1� 	 	 	 �p+ v�

where {mj(·� θ) : j = 1� 	 	 	 �k} are known real-valued moment functions, k =
p + v, and {Wi : i ≥ 1} are i.i.d. or stationary random vectors with joint distri-
bution F0. Either p or v may be zero. The observed sample is {Wi : i ≤ n}. The
true value θ0 is not necessarily point identified.

We are interested in tests and confidence sets (CS’s) for the true value θ0.
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Generic values of the parameters are denoted (θ�F). For the case of i.i.d.
observations, the parameter space F for (θ�F) is the set of all (θ�F) that sat-
isfy

(i) θ ∈ ��(S2.2)

(ii) EFmj(Wi�θ)≥ 0 for j = 1� 	 	 	 �p�

(iii) EFmj(Wi�θ)= 0 for j = p+ 1� 	 	 	 �k�

(iv) {Wi : i ≥ 1} are i.i.d. under F�

(v) σ2
F�j(θ) = VarF

(
mj(Wi�θ)

)
> 0�

(vi) CorrF
(
m(Wi�θ)

) ∈ Ψ�

(vii) EF

∣∣mj(Wi�θ)/σF�j(θ)
∣∣2+δ ≤M for j = 1� 	 	 	 �k�

where VarF(·) and CorrF(·) denote variance and correlation matrices, respec-
tively, when F is the true distribution, Ψ is the parameter space for k × k
correlation matrices specified at the end of Section S3, and M < ∞ and δ > 0
are constants.

The asymptotic results apply to the case of dependent observations. We spec-
ify F for dependent observations in Section S9. The asymptotic results also
apply when the moment functions in (S2.1) depend on a parameter τ, that
is, when they are of the form {mj(Wi�θ� τ) : j ≤ k}, and a preliminary consis-
tent and asymptotically normal estimator τ̂n(θ0) of τ exists (where θ0 is the
true value of θ). The existence of such an estimator requires that τ is point
identified given θ0. In this case, the sample moment functions take the form
mn�j(θ) = mn�j(θ� τ̂n(θ)) (= n−1

∑n

i=1 mj(Wi�θ� τ̂n(θ))). The asymptotic vari-
ance of n1/2mn�j(θ) typically is affected by the estimation of τ and is defined
accordingly. Nevertheless, all of the asymptotic results given below hold in this
case using the definition of F given in Section S9 below with the definitions of
mj(Wi�θ) and mn�j(θ) changed suitably, as described there.

We consider a confidence set obtained by inverting a test. The test is based
on a test statistic Tn(θ0) for testing H0 :θ = θ0. The nominal level 1 − α CS for
θ is

CSn = {
θ ∈ � :Tn(θ) ≤ cn(θ)

}
�(S2.3)

where cn(θ) is a data-dependent critical value.2 In other words, the confidence
set includes all parameter values θ for which one does not reject the null hy-
pothesis that θ is the true value.

2When θ is in the interior of the identified set, it may be the case that Tn(θ) = 0 and cn(θ) = 0.
In consequence, it is important that the inequality in the definition of CSn is ≤, not <.
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S3. TEST STATISTICS

In this section, we define the test statistics Tn(θ) that we consider. The statis-
tic Tn(θ) is of the form

Tn(θ) = S
(
n1/2mn(θ)� Σ̂n(θ)

)
� where(S3.1)

mn(θ) = (
mn�1(θ)� 	 	 	 �mn�k(θ)

)′
�

mn�j(θ) = n−1
n∑

i=1

mj(Wi�θ) for j ≤ k�

Σ̂n(θ) is a k × k variance matrix estimator defined below, S is a real function
on (R

p
[+∞] ×Rv)× Vk×k, and Vk×k is the space of k×k variance matrices. (The

set Rp
[+∞] ×Rv contains k-vectors whose first p elements are either real or +∞

and whose last v elements are real.)
The estimator Σ̂n(θ) is an estimator of the asymptotic variance matrix of the

sample moments n1/2mn(θ). When the observations are i.i.d. and no parameter
τ appears,

Σ̂n(θ) = n−1
n∑

i=1

(
m(Wi�θ)−mn(θ)

)(
m(Wi�θ)−mn(θ)

)′
� where(S3.2)

m(Wi�θ)= (
m1(Wi�θ)� 	 	 	 �mk(Wi�θ)

)′
	

The correlation matrix Ω̂n(θ) that corresponds to Σ̂n(θ) is defined by

Ω̂n(θ) = D̂−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ)� where D̂n(θ) = Diag

(
Σ̂n(θ)

)
(S3.3)

and Diag(Σ) denotes the diagonal matrix based on the matrix Σ	
With temporally dependent observations or when a preliminary estimator of

a parameter τ appears, a different definition of Σ̂n(θ) often is required; see
Section S9. For example, with dependent observations, a heteroskedasticity
and autocorrelation consistent (HAC) estimator may be required.

We now define the leading examples of the test statistic function S. The first
is the modified method of moments (MMM) test function S1 defined by

S1(m�Σ)=
p∑

j=1

[mj/σj]2
− +

p+v∑
j=p+1

(mj/σj)
2� where(S3.4)

[x]− =
{
x� if x < 0,
0� if x ≥ 0, m= (m1� 	 	 	 �mk)

′�
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and σ2
j is the jth diagonal element of Σ. AB1 lists papers in the literature that

consider this test statistic and the other subsequent test statistics.3
The second function S is the quasi-likelihood ratio (QLR) test function S2

defined by

S2(m�Σ)= inf
t=(t1�0v):t1∈Rp

+�∞
(m− t)′Σ−1(m− t)	(S3.5)

The origin of the QLR S function is as follows. Suppose one replaces m in
(S3.5) by a data vector X ∈ Rk that has a known k×k variance matrix Σ. Then
the resulting QLR statistic is the likelihood ratio statistic for the model with
X ∼ N(μ�Σ), μ = (μ′

1�μ
′
2)

′ ∈ Rp × Rv = Rk, the null hypothesis H∗
0 :μ1 ≥ 0p

and μ2 = 0v, and the alternative hypothesis H∗
1 :μ1 � 0p and/or μ2 �= 0v. The

QLR statistic has been considered in many papers on tests of inequality con-
straints; for example, see Kudo (1963) and Silvapulle and Sen (2005, Sec. 3.8).
In the moment inequality literature, it has been considered by Rosen (2008),
Andrews and Guggenberger (2009) (AG), and Andrews and Soares (2010)
(AS).

Note that under the null and local alternative hypotheses, GEL test statistics
behave asymptotically (to the first order) the same as the QLR statistic Tn(θ)
based on S2 (see Sections 8.1 and 10.3 in AG, Section 10.1 in AS, and Canay
(2010)). Although GEL statistics are not of the form given in (S3.1), the results
of the present paper (viz., Theorems 1 and 3 below) hold for such statistics un-
der the assumptions given in AG provided the class of moment condition cor-
relation matrices consists of matrices whose determinants are bounded away
from zero.

Next we consider an adjusted QLR (AQLR) test function denoted S2A,
which is the recommended S function in AB1. It has the property that its weight
matrix (whose inverse appears in the quadratic form) is nonsingular even if the
estimator of the asymptotic variance matrix of the moment conditions is singu-
lar. It is defined by

S2A(m�Σ)= inf
t=(t1�0v):t1∈Rp

+�∞
(m− t)′Σ̃−1

Σ (m− t)� where(S3.6)

Σ̃Σ = Σ+ max
{
ε− det(ΩΣ)�0

}
DΣ�

DΣ = Diag(Σ)� ΩΣ = D−1/2
Σ ΣD−1/2

Σ � and ε > 0	

Note that the adjustment to the matrix Σ is designed so that Σ̃Σ is equivariant
to scale changes in the moment functions. Based on the results in Section S6.3,
the recommended choice of ε for S2A is ε = 	012.

3Several papers in the literature use a variant of S1 that is not invariant to rescaling of the
moment functions (i.e., with σj = 1 for all j), which is not desirable in terms of the power of the
resulting test.
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The function S3 is a function that directs power against alternatives with p1

(<p) moment inequalities violated. The test function S3 is defined by

S3(m�Σ)=
p1∑
j=1

[m(j)/σ(j)]2
− +

p+v∑
j=p+1

(mj/σj)
2�(S3.7)

where [m(j)/σ(j)]2
− denotes the jth largest value among {[m�/σ�]2

− :�= 1� 	 	 	 �p}
and p1 <p is some specified integer.4�5

The asymptotic results given in Section S5 hold for all functions S that satisfy
the following assumption.

ASSUMPTION S: (a) S(m�Σ) = S(Dm�DΣD) for all m ∈ Rk, Σ ∈ Rk×k, and
p.d. diagonal D ∈Rk×k.

(b) S(m�Ω) ≥ 0 for all m ∈Rk and Ω ∈Ψ .
(c) S(m�Ω) is continuous at all m ∈ R

p
[+∞] ×Rv and Ω ∈ Ψ .6

(d) S(m�Ω) > 0 if and only if mj < 0 for some j = 1� 	 	 	 �p or mj �= 0 for some
j = p+ 1� 	 	 	 �k, where m = (m1� 	 	 	 �mk)

′ and Ω ∈Ψ .
(e) For all � ∈ R

p
[+∞] × Rv, all Ω ∈ Ψ� and Z ∼ N(0k�Ω), the d.f. of S(Z +

��Ω) at x is (i) continuous for x > 0 and (ii) unless v = 0 and � = ∞p, strictly
increasing for x > 0.

In Assumption S, the set Ψ is as in condition (vi) of (S2.2) when the obser-
vations are i.i.d. and no preliminary estimator of a parameter τ appears. Oth-
erwise, Ψ is the parameter space for the correlation matrix of the asymptotic
distribution of n1/2mn(θ) under (θ�F), denoted AsyCorrF(n

1/2mn(θ)).7
The functions S1, S2A, and S3 satisfy Assumption S for any choice of Ψ . The

function S2 satisfies Assumption S provided the determinants of the correlation
matrices in Ψ are bounded away from zero.8

4When constructing a CS, a natural choice for p1 is the dimension d of θ; see Section S5.3
below.

5With the functions S1, S2A, and S3, the parameter space Ψ for the correlation matrices in
Assumption S and in condition (vi) of (S2.2) can be any nonempty subset of the set Ψ1 of all
k × k correlation matrices. With the function S2, the asymptotic results below require that the
correlation matrices in Ψ have determinants bounded away from zero because Σ−1 appears in
the definition of S2.

6Let B ⊂ Rw . We say that a real function G on R
p
[+∞] × B is continuous at x ∈ R

p
[+∞] × B if

y → x for y ∈ R
p
[+∞] × B implies that G(y) → G(x). In Assumption S(c), S(m�Ω) is viewed as a

function with domain Ψ1.
7More specifically, for dependent observations or when a preliminary estimator of a parameter

τ appears, Ψ is as in condition (v) of (S9.2) in Section S9.
8For the functions S1–S3, see Lemma 1 of AG for a proof that Assumptions S(a)–(d) hold and

see AS for a proof that Assumption S(e) holds. The proof for S2A is the same as that for S2 with
Σ̃Σ in place of Σ. By construction, Σ̃Σ has a determinant that is bounded away from zero even if
the latter property fails for Σ.
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S4. REFINED MOMENT SELECTION

This section is concerned with critical values for use with the test statistics
introduced in Section S3. We proceed in four steps. First, we explain the idea
behind moment selection critical values and discuss a tuning parameter κ̂ that
determines the extent of the moment selection. Second, we introduce a func-
tion ϕ that helps one to select “relevant” moment inequalities. Third, we define
the RMS critical value. Last, we specify a size-correction factor η̂ that delivers
correct asymptotic size even when κ̂ does not diverge to infinity. Because the
CS’s defined in (S2.3) are obtained by inverting tests, we discuss both tests and
CS’s below.

S4.1. Basic Idea and Tuning Parameter κ̂

The idea behind generalized moment selection and refined moment selection
is to use the data to determine whether a given moment inequality is satisfied
and is far from being an equality. If so, one takes the critical value to be smaller
than it would be if all moment inequalities were binding—both under the null
and under the alternative.

Under a suitable sequence of null distributions {Fn :n ≥ 1}, the asymptotic
null distribution of Tn(θ) is the distribution of

S
(
Ω1/2

0 Z∗ + (h1�0v)�Ω0

)
� where Z∗ ∼N(0k� Ik)�(S4.1)

h1 ∈ R
p
+�∞, Ω0 is a k × k correlation matrix, and both h1 and Ω0 typically de-

pend on the true value of θ. The correlation matrix Ω0 can be consistently
estimated. But the 1/n1/2 local asymptotic mean parameter h1 cannot be (uni-
formly) consistently estimated.9

A moment selection critical value is the 1 − α quantile of a data-dependent
version of the asymptotic null distribution, S(Ω1/2

0 Z∗ + (h1�0v)�Ω0), that re-
places Ω0 with a consistent estimator and replaces h1 with a p-vector in R

p
+�∞

whose value depends on a measure of the slackness of the moment inequalities.
The measure of slackness is

ξn(θ) = κ̂−1n1/2D̂−1/2
n (θ)mn(θ) ∈ Rk�(S4.2)

where κ̂ is a tuning parameter (that may depend on θ). For a generalized
moment selection (GMS) critical value (as in AS), {̂κ = κn :n ≥ 1} is a se-
quence of constants that diverges to infinity as n → ∞, such as κn = (lnn)1/2

9The asymptotic distribution of the test statistic Tn(θ) is a discontinuous function of the ex-
pected values of the moment inequality functions. This is not a feature of its finite-sample dis-
tribution. For this reason, sequences of distributions {Fn :n ≥ 1} in which these expected values
may drift to zero—rather than a fixed distribution F—need to be considered. See Andrews and
Guggenberger (2009) for details.

The local parameter h1 cannot be estimated consistently because doing so requires an estima-
tor of the mean h1/n

1/2 that is consistent at rate op(n
−1/2), which is not possible.
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or κn = (2 ln lnn)1/2. In contrast, for an RMS critical value, κ̂ does not go to
infinity as n→ ∞ and is data-dependent.

Data dependence of κ̂ is obtained by taking κ̂ to depend on Ω̂n(θ),

κ̂= κ
(
Ω̂n(θ)

)
�(S4.3)

where κ(·) is a function from Ψ to R++. A suitable choice of function κ(·)
improves the power properties of the RMS procedure because the asymptotic
power of the test depends on the probability limit of κ̂ through Ω(θ).

We assume that κ(Ω) satisfies the following assumption.

ASSUMPTION κ: (a) κ(Ω) is continuous at all Ω ∈ Ψ . (b) κ(Ω) > 0 for all
Ω ∈ Ψ .10

S4.2. Moment Selection Function ϕ

Next, we discuss the moment selection function ϕ that determines how non-
binding moment inequalities are detected. Let ξn�j(θ), h1�j , and [Ω1/2

0 Z∗]j de-
note the jth elements of ξn(θ), h1, and Ω1/2

0 Z∗, respectively, for j = 1� 	 	 	 �p.
When ξn�j(θ) is zero or close to zero, this indicates that h1�j is zero or fairly
close to zero and the desired replacement of h1�j in S(Ω1/2

0 Z∗ + (h1�0v)�Ω0)
is 0. On the other hand, when ξn�j(θ) is large, this indicates h1�j is large and
the desired replacement of h1�j in S(Ω1/2

0 Z∗ + (h1�0v)�Ω0) is ∞ or some large
value.

We replace h1�j in S(Ω1/2
0 Z∗ + (h1�0v)�Ω0) by ϕj(ξn(θ)� Ω̂n(θ)) for j =

1� 	 	 	 �p, where ϕj : (Rp
[+∞] ×Rv

[±∞])×Ψ →R[±∞] is a function that is chosen to
deliver the properties described above. The leading choices for the function ϕj

are

ϕ(1)
j (ξ�Ω) =

{
0� if ξj ≤ 1,
∞� if ξj > 1, ϕ(2)

j (ξ�Ω) = [
κ(Ω)(ξj − 1)

]
+�(S4.4)

ϕ(3)
j (ξ�Ω) = [ξj]+� ϕ(4)

j (ξ�Ω) =
{

0� if ξj ≤ 1,
κ(Ω)ξj� if ξj > 1, and

ϕ(0)
j (ξ�Ω) = 0

for j = 1� 	 	 	 �p, where [x]+ = max{x�0}, and κ(Ω) in ϕ(2)
j and ϕ(4)

j is the
same tuning parameter function that appears in (S4.3). Let ϕ(r)(ξ�Ω) =

10For simplicity, the recommended function κ(Ω) = κ(δ(Ω)) given in AB1 is constant on in-
tervals of δ(Ω) values and has jumps from one interval to the next. Hence, it does not satisfy
Assumption κ. However, the function κ(δ) in Table I can be replaced by a continuous linearly in-
terpolated function whose value at the left-hand point in each interval of δ equals the value given
in Table I. Such a function satisfies Assumption κ. Numerical calculations show that the grid
of δ values in Table I is sufficiently fine that the finite-sample and asymptotic properties of the
recommended RMS test are not sensitive to whether the κ(δ) function is linearly interpolated.
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(ϕ(r)
1 (ξ�Ω)� 	 	 	 �ϕ(r)

p (ξ�Ω)�0� 	 	 	 �0)′ ∈ R
p
[±∞] × {0}v for r = 1� 	 	 	 �4.

Chernozhukov, Hong, and Tamer (2007), AS, and Bugni (2010) consider the
function ϕ(1), Hansen (2005) and Canay (2010) consider ϕ(2), AS consider ϕ(3),
and Fan and Park (2007) consider ϕ(4).11

The function ϕ(1) generates a “moment selection t-test” procedure, which is
the recommended ϕ function in AB1. Note that ξn�j(θ0) ≤ 1 is equivalent to
the condition n1/2mn�j(θ)/σ̂n�j(θ) ≤ κ̂ in AB1.

The functions ϕ(2) −ϕ(4) exhibit less steep rates of increase than ϕ(1) as func-
tions of ξj for j = 1� 	 	 	 �p.

For the asymptotic results given below, the only condition needed on the ϕj

functions is that they are continuous on a set that has probability 1 under a
certain distribution.

ASSUMPTION ϕ: For all j = 1� 	 	 	 �p, all β ∈ R
p
[+∞] × Rv, and all Ω ∈ Ψ ,

ϕj(ξ�Ω) is continuous at (ξ�Ω) for all (ξ′�0′
v)

′ in a set Ξ(β�Ω) ⊂ R
p
[+∞] × Rv

for which P(κ−1(Ω)[Ω1/2Z∗ +β] ∈Ξ(β�Ω)) = 1, where Z∗ ∼N(0k� Ik)	

The functions ϕj in (S4.4) all satisfy Assumption ϕ.
The functions ϕ(r) for r = 1� 	 	 	 �4 all exhibit “element-by-element” de-

termination of which moments to “select” because ϕ(r)
j (ξ�Ω) depends only

on (ξ�Ω) through ξj	 This has significant computational advantages because
ϕ(r)

j (ξn(θ)� Ω̂n(θ)) is very easy to compute. On the other hand, when Ω̂n(θ)
is nondiagonal, the whole vector ξn(θ) contains information about the mag-
nitude of the population mean of mn(θ). The function ϕ(5) that is intro-
duced in AS and defined below exploits this information. It is related to the
information-criterion-based moment selection criteria (MSC) considered in
Andrews (1999) for a different moment selection problem. We refer to ϕ(5) as
the modified MSC (MMSC) ϕ function. It is computationally more expensive
than the functions ϕ(1)–ϕ(4) considered above.

Define c = (c1� 	 	 	 � ck)
′ to be a selection k-vector of 0’s and 1’s. If cj = 1,

the jth moment condition is selected; if cj = 0, it is not selected. The moment
equality functions are always selected, so cj = 1 for j = p+ 1� 	 	 	 �k. Let |c| =∑k

j=1 cj . For ξ ∈ R
p
[+∞] ×Rv

[±∞], define c · ξ = (c1ξ1� 	 	 	 � ckξk)
′ ∈ R

p
[+∞] ×Rv

[±∞],
where cjξj = 0 if cj = 0 and ξj = ∞. Let C denote the parameter space for
the selection vectors, for example, C = {0�1}p × {1}v. Let ζ(·) be a strictly in-
creasing real function on R+. Given (ξ�Ω) ∈ (R

p
[+∞] ×Rv

[±∞])×Ψ , the selection
vector c(ξ�Ω) ∈ C that is chosen is the vector in C that minimizes the MMSC
defined by

S(−c · ξ�Ω)− ζ
(|c|)	(S4.5)

11The function used by Fan and Park (2007) is not exactly equal to ϕ(4)
j . Let σ̂n�j(θ) denote

the (j� j) element of Σ̂n(θ). The function Fan and Park (2007) use is ϕ(4)
j (ξ�Ω) with “if ξj ≤ 1”

replaced by “if σ̂n�j(θ)ξj ≤ 1,” and likewise for > in place of <. This yields a non-scale-invariant
ϕj function, which is not desirable, so we define ϕ(4)

j as is.
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The minus sign that appears in the first argument of the S function ensures that
a large positive value of ξj yields a large value of S(−c · ξ�Ω) when cj = 1, as
desired. Since ζ(·) is increasing, −ζ(|c|) is a bonus term that rewards inclusion
of more moments. For j = 1� 	 	 	 �p, define

ϕ(5)
j (ξ�Ω) =

{
0� if cj(ξ�Ω) = 1,
∞� if cj(ξ�Ω) = 0.(S4.6)

The MMSC is analogous to the Bayesian information criterion (BIC) and the
Hannan–Quinn information criterion (HQIC) when ζ(x) = x, κn = (logn)1/2

for BIC, and κn = (Q ln lnn)1/2 for some Q ≥ 2 for HQIC; see AS. Some calcu-
lations show that when Ω̂n(θ) is diagonal, S = S1, S2, or S2A, and ζ(x) = x, the
function ϕ(5) reduces to ϕ(1).

S4.3. RMS Critical Value cn(θ)

The (asymptotic normal) RMS critical value is equal to the 1 − α quantile
of S(Ω1/2Z∗ + β�Ω) evaluated at β = ϕ(ξn(θ)� Ω̂n(θ)) and Ω = Ω̂n(θ) plus a
size-correction factor η̂. More specifically, given a choice of function

ϕ(ξ�Ω) = (
ϕ1(ξ�Ω)� 	 	 	 �ϕp(ξ�Ω)�0� 	 	 	 �0

)′ ∈R
p
[+∞] × {0}v�(S4.7)

the replacement for the k-vector (h1�0v) in S(Ω1/2
0 Z∗ + (h1�0v)�Ω0) is given

by

ϕ
(
ξn(θ)� Ω̂n(θ)

)
	(S4.8)

For Z∗ ∼ N(0k� Ik) (independent of {Wi : i ≥ 1}) and β ∈ Rk
[+∞], let qS(β�Ω)

denote the 1 − α quantile of

S
(
Ω1/2Z∗ +β�Ω

)
	(S4.9)

One can compute qS(β�Ω) by simulating R i.i.d. random variables {Z∗
r : r =

1� 	 	 	 �R} with Z∗
r ∼N(0k� Ik) and taking qS(β�Ω) to be the 1−α sample quan-

tile of {S(Ω1/2Z∗
r +β�Ω) : r = 1� 	 	 	 �R}, where R is large.

The nominal 1 − α (asymptotic normal) RMS critical value is

cn(θ) = qS

(
ϕ

(
ξn(θ)� Ω̂n(θ)

)
� Ω̂n(θ)

) +η
(
Ω̂n(θ)

)
�(S4.10)

where η̂ = η(Ω̂n(θ)) is a size-correction factor that is specified in Section S4.4.
The bootstrap RMS critical value is obtained by replacing qS(ϕ(ξn(θ)�

Ω̂n(θ))� Ω̂n(θ)) in (S4.10) by q∗
S(ϕ(ξn(θ)� Ω̂n(θ))), where q∗

S(β) is the 1 − α

quantile of S(D̂∗
n�r(θ)

−1/2m∗
n�r(θ) + β�Ω̂∗

n�r(θ)) for β ∈ Rk
[+∞], and m∗

n�r(θ),
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D̂∗
n�r(θ), and Ω̂∗

n�r(θ) are bootstrap quantities defined in AB1. The quantity
q∗
S(ϕ(ξn(θ)� Ω̂n(θ))) can be computed by taking the 1 − α sample quantile of

{S(D̂∗
n�r(θ)

−1/2m∗
n�r(θ)+ϕ(ξn(θ)� Ω̂n(θ))� Ω̂

∗
n�r(θ)) : r = 1� 	 	 	 �R}.

For the recommended RMS critical value defined in AB1, the asymptotic
normal critical value is of the form in (S4.10) with S = S2A, ϕ = ϕ(1), and
η(Ω) = η1(δ(Ω)) + η2(p). The bootstrap critical value uses q∗

S2A
(·) in place

of qS2A(·� Ω̂n(θ)).

S4.4. Size-Correction Factor η̂

We now discuss the size-correction factor η̂ = η(Ω̂n(θ)). Such a factor is
necessary to deliver correct asymptotic size under asymptotics in which κ̂ does
not diverge to infinity. This factor can be viewed as giving an asymptotic size
refinement to a GMS critical value.

As noted above, we show in the proofs (see Section S9) that under a suitable
sequence of true parameters and distributions {(θn�Fn) :n ≥ 1}, Tn(θn) →d

S(Ω1/2Z∗ + (h1�0v)�Ω) for some (h1�Ω) ∈ R
p
+�∞ × Ψ . Furthermore, we show

that under such a sequence, the asymptotic coverage probability (CP) of an
RMS CS based on a data-dependent tuning parameter κ̂ = κ(Ω̂n(θ)) and a
fixed size-correction constant η is

CP(h1�Ω�η) = P
[
S
(
Ω1/2Z∗ + (h1�0v)�Ω

)
(S4.11)

≤ qS

(
ϕ

(
κ−1(Ω)

[
Ω1/2Z∗ + (h1�0v)

]
�Ω

)
�Ω

) +η
]
�

where Z∗ ∼ N(0k� Ik). (Correspondingly, the null rejection probability of an
RMS test with fixed η for testing H0 :θ = θ0 is 1 − CP(h1�Ω�η).)

We let Δ (⊂ R
p
+�∞ × Ψ ) denote the set of all (h1�Ω) values that can arise

given the model specification F . More precisely, Δ is defined as follows. Let
the normalized mean vector and asymptotic correlation matrix of the sample
moment functions be denoted by

γ1(θ�F)= Diag−1/2(AsyVarF
(
n1/2mn(θ)

))
EFm(Wi�θ)≥ 0p�(S4.12)

Ω(θ�F) = AsyCorrF
(
n1/2mn(θ)

)
�

where AsyVarF(n
1/2mn(θ)) and AsyCorrF(n

1/2mn(θ)) denote the variance and
correlation matrices, respectively, of the asymptotic distribution of n1/2mn(θ)
when the true parameter is θ and the true distribution is F .12 Then Δ is defined

12For dependent observations and when a preliminary estimator of a parameter τ appears,
the parameter space F of (θ�F) is defined in Section S9.1 such that both AsyVarF(n

1/2mn(θ))
and AsyCorrF(n

1/2mn(θ)) exist. These limits equal VarF(m(Wi�θ)) and CorrF(m(Wi�θ)), respec-
tively, in the case of i.i.d. observations with no preliminary estimator of a parameter τ.
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by

Δ = {
(h1�Ω) ∈R

p
+�∞ × cl(Ψ) :∃ a subsequence {wn} of {n} and(S4.13)

a sequence
{
(θwn�Fwn) ∈ F :n≥ 1

}
with γ1(θwn�Fwn)≥ 0p and

Ω(θwn�Fwn) ∈ Ψ for which w1/2
n γ1(θwn�Fwn)→ h1�

Ω(θwn�Fwn)→ Ω� and θwn → θ∗ for some θ∗ in cl(�)
}
	

Our primary focus is on the standard case in which

Δ=R
p
+�∞ × cl(Ψ)	(S4.14)

This arises when there are no restrictions on the moment functions beyond the
inequality/equality restrictions, and h1 and Ω are variation-free. Our asymp-
totic results cover the general case in (S4.13) in which Δ may be restricted, as
well as the standard case in (S4.14).

To determine the asymptotic size of an RMS test or CS, it suffices to have
η̂ = η(Ω̂n(θ)) satisfy the following assumption

ASSUMPTION η1: η(Ω) is continuous at all Ω ∈ Ψ .13

However, for an RMS CS to have asymptotic size greater than or equal to
1 − α, η(·) must be chosen to satisfy the first condition that follows. If it also
satisfies the second, stronger, condition, then its asymptotic size equals 1 − α.
Let CP(h1�Ω�η(Ω)−) = limx↓0 CP(h1�Ω�η(Ω)− x)	

ASSUMPTION η2: inf(h1�Ω)∈Δ CP(h1�Ω�η(Ω)−) ≥ 1 − α	

ASSUMPTION η3: (a) inf(h1�Ω)∈Δ CP(h1�Ω�η(Ω)) = 1 − α.
(b) inf(h1�Ω)∈Δ CP(h1�Ω�η(Ω)−) = inf(h1�Ω)∈Δ CP(h1�Ω�η(Ω))	

Assumption η3(b) is a continuity condition that is not restrictive. The left-
hand side (l.h.s.) quantity inside the probability in (S4.11) has a d.f. that is
continuous and strictly increasing for positive values. The corresponding right-
hand side (r.h.s.) quantity is positive. These two quantities are quite different
nonlinear functions of the same underlying normal random vector. Hence, they
are equal with probability 0, which implies that Assumption η3(b) holds.

The function η(Ω) depends on S�ϕ, and the tuning parameter function
κ(Ω). For notational simplicity, we suppress this dependence. Functions η(·)
that satisfy Assumption η2 and/or η3 are not uniquely defined. The smallest

13An analogous comment to that in footnote 10 also applies to the recommended function η(·)
given in AB1 and Assumption η1.
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function that satisfies Assumption η3(a), denoted η∗(Ω), exists and is defined
as follows. For each Ω ∈ Ψ , define η∗(Ω) to be the smallest value14 η for which

inf
h1:(h1�Ω)∈Δ

CP(h1�Ω�η)= 1 − α	(S4.15)

When Δ satisfies (S4.14), the infimum is over h1 ∈ R
p
+�∞. For purposes of min-

imizing the probability of false coverage of the CS (or, equivalently, maximiz-
ing the power of the tests on which the CS is based), it is desirable to take
η(Ω) as close to η∗(Ω) as possible subject to η(Ω) ≥ η∗(Ω). For computa-
tional tractability and storability, however, it is convenient to use a function
η(·) that is simpler than η∗(Ω), for example, a function that depends on Ω
only through a scalar function of Ω, as with the recommended RMS critical
value described in AB1.15

S4.5. Plug-in Asymptotic Critical Values

We now discuss CS’s based on a plug-in asymptotic (PA) critical value. The
least favorable asymptotic null distributions of the statistic Tn(θ) are those for
which the moment inequalities hold as equalities. These distributions depend
on the correlation matrix Ω of the moment functions. PA critical values are de-
termined by the least favorable asymptotic null distribution for given Ω evalu-
ated at a consistent estimator of Ω. Such critical values have been considered
in the literature on multivariate one-sided tests; see Silvapulle and Sen (2005)
for references. AG and AS consider them in the context of the moment in-
equality literature. Rosen (2008) considers variations of PA critical values that
make adjustments in the case where it is known that if one moment inequality
holds as an equality, then another cannot.16

The PA critical value is

qS

(
0k� Ω̂n(θ)

)
	(S4.16)

The PA critical value can be viewed as a special case of an RMS critical value
with ϕj(ξ�Ω) = 0 for all j = 1� 	 	 	 �k and η(Ω̂n(θ)) = 0. This implies that the
asymptotic results stated below for RMS CS’s and tests also apply to PA CS’s
and tests.

S5. ASYMPTOTIC RESULTS

This section provides asymptotic results for RMS CS’s and tests. It estab-
lishes that RMS CS’s have correct asymptotic size (defined in a uniform sense),

14A smallest value exists because CP(h1�Ω�η) is right-continuous in η.
15Note that even if η(Ω) �= η∗(Ω), Assumption η3(a) still can hold.
16This method delivers corrrect asymptotic size in a uniform sense only if when one moment

inequality holds as an equality, then the other is strictly bounded away from zero.
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derives the asymptotic power of RMS tests against local alternatives, discusses
an asymptotic average power criterion for comparing RMS tests, and discusses
the unidimensional asymptotic power envelope.

S5.1. Asymptotic Size

The exact and asymptotic confidence sizes of an RMS CS are

ExCSn = inf
(θ�F)∈F

PF

(
Tn(θ) ≤ cn(θ)

)
and(S5.1)

AsyCS = lim inf
n→∞

ExCSn�

respectively. The definition of AsyCS takes the “inf” before the “lim.” This
builds uniformity over (θ�F) into the definition of AsyCS. Uniformity is re-
quired for the asymptotic size to give a good approximation to the finite-sample
size of a CS.

Theorems 1 and 3 below apply to i.i.d. observations, in which case F is de-
fined in (S2.2). They also apply to stationary temporally dependent observa-
tions and to cases in which the moment functions depend on a preliminary
consistent estimator of a parameter τ, in which cases F is defined in Section S9.

THEOREM 1: Suppose Assumptions S, κ, ϕ, and η1 hold, and 0 <α< 1. Then
the nominal level 1−α RMS CS based on S, ϕ, κ̂ = κ(Ω̂n(θ)), and η̂ = η(Ω̂n(θ))
satisfies the following statements:

(a) AsyCS ∈ [inf(h1�Ω)∈Δ CP(h1�Ω�η(Ω)−)� inf(h1�Ω)∈Δ CP(h1�Ω�η(Ω))].
(b) AsyCS ≥ 1 − α provided Assumption η2 holds.
(c) AsyCS = 1 − α provided Assumption η3 holds.

COMMENTS: (i) Theorem 1(b) shows that an RMS CS based on a size-
correction factor η̂ = η(Ω̂n(θ)) that satisfies Assumption η2 is asymptotically
valid in a uniform sense under asymptotics that do not require κ̂ → ∞ as
n → ∞. In contrast, the GMS CS introduced in AS requires κ̂ → ∞ as n → ∞.

(ii) Theorem 1 holds even if there are restrictions such that one moment
inequality cannot hold as an equality if another moment inequality does. Rosen
(2008) discussed models in which restrictions of this sort arise.

(iii) Theorem 1 applies to moment conditions based on weak instruments
(because the tests considered are of an Anderson–Rubin form).

(iv) Define the asymptotic size of an RMS test of H0 :θ = θ0 by

AsySz(θ0)= lim inf
n→∞

sup
(θ�F)∈F :θ=θ0

PF

(
Tn(θ0) > cn(θ0)

)
	(S5.2)

The proof of Theorem 1 shows that under the assumptions in Theorem 1,
(a) AsySz(θ0) ∈ [1 − inf(h1�Ω)∈Δ0 CP(h1�Ω�η(Ω)), 1 − inf(h1�Ω)∈Δ0 CP(h1�Ω�
η(Ω)−)], where Δ0 is defined as Δ is defined in (S4.14) or as in (S4.13) but with
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the sequence {θwn :n ≥ 1} replaced by the constant θ0, (b) AsySz(θ0) ≤ α pro-
vided Assumption η2 holds, and (c) AsySz(θ0) = α provided Assumption η3
holds, where Δ in Assumptions η2 and η3 is replaced by Δ0. The primary case
of interest is when Δ0 = R

p
+�∞ × cl(Ψ), which occurs when there are no restric-

tions on the moment functions beyond the inequality/equality restrictions, and
h1 and Ω are variation free.

(v) The proofs of Theorem 1 and all other results stated here are provided
in Section S9.

S5.2. Asymptotic Power

In this section, we compute the asymptotic power of RMS tests against 1/n1/2

local alternatives. These results have immediate consequences for the length
or volume of a CS based on these tests, because the power of a test for a point
that is not the true value is the probability that the CS does not include that
point. (See Pratt (1961) for an equation that links CS volume and probabilities
of false coverage.) We use these results to define tuning parameters κ = κ(Ω)
and size-correction factors η = η(Ω) that maximize average power for a se-
lected set of alternative parameter values. We also use the results to compare
different choices of test function S and moment selection function ϕ in terms
of asymptotic average power.

For given θ0, we consider tests of

H0 :EFmj(Wi�θ0) ≥ 0 for j = 1� 	 	 	 �p�(S5.3)

= 0 for j = p+ 1� 	 	 	 �k�

where F denotes the true distribution of the data. (More precisely, by this we
mean H0: the true (θ�F) ∈ F satisfies θ = θ0	) The alternative is H1 :H0 does
not hold.

Let

σ2
F�j(θ) = AsyVarF

(
n1/2mn�j(θ)

)
for j = 1� 	 	 	 �k�(S5.4)

D(θ�F) = Diag
{
σ2

F�1(θ)� 	 	 	 �σ
2
F�k(θ)

}
�

Ω(θ�F) = AsyCorrF
(
n1/2mn(θ)

)
	

Note that this definition of σ2
F�j(θ) reduces to that given in (S2.2) when the

observations are i.i.d. Let σ̂2
n�j(θ) denote the (j� j) element of Σ̂n(θ) for j =

1� 	 	 	 �k.
We now introduce the 1/n1/2 local alternatives. The first two assumptions are

the same as in AS. The third assumption is a high-level assumption that allows
for dependent observations and sample moment functions that may depend
on a preliminary estimator τ̂n(θ). It is shown to hold automatically with i.i.d.
observations when there is no preliminary estimator of a parameter τ	
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ASSUMPTION LA1: The true parameters {(θn�Fn) ∈ F :n ≥ 1} satisfy the fol-
lowing statements:

(a) θn = θ0 − λn−1/2(1 + o(1)) for some λ ∈ Rd and Fn → F0 for some
(θ0�F0) ∈ F .

(b) n1/2EFnmj(Wi�θn)/σFn�j(θn)→ h1�j for some h1�j ∈ R+�∞ for j = 1� 	 	 	 �p.
(c) supn≥1 EFn |mj(Wi�θ0)/σFn�j(θ0)|2+δ <∞ for j = 1� 	 	 	 �k for some δ > 0.

ASSUMPTION LA2: The k×d matrix Π(θ�F) = (∂/∂θ′)[D−1/2(θ�F)EFm(Wi�
θ)] exists and is continuous in (θ�F) for all (θ�F) in a neighborhood of (θ0�F0).17

ASSUMPTION LA3: The true parameters {(θn�Fn) ∈ F :n ≥ 1} satisfy the fol-
lowing statements:

(a) A0
n = (A0

n�1� 	 	 	 �A
0
n�k)

′ →d Z ∼ N(0k�Ω0) as n → ∞, where A0
n�j =

n1/2(mn�j(θ0)−EFnmj(Wi�θ0))/σFn�j(θ0).
(b) σ̂n�j(θ0)/σFn�j(θ0)→p 1 as n → ∞ for j = 1� 	 	 	 �k.
(c) D̂−1/2

n (θ0)Σ̂n(θ0)D̂
−1/2
n (θ0)→p Ω0 as n → ∞	

When the observations are i.i.d. for each (θ�Ω) ∈ F , Assumption LA3 holds
automatically as shown in the following lemma.

ASSUMPTION LA3*: (a) For each n ≥ 1, the observations {Wi : i ≤ n} are i.i.d.
under (θn�Fn) ∈ F , (b) Σ̂n(θ) is defined by (S3.2), and (c) no preliminary estima-
tor of a parameter τ appears in the sample moment functions.

LEMMA 2: Assumptions LA1 and LA3* imply Assumption LA3.

The asymptotic distribution of Tn(θ0) under local alternatives depends on
the limit of the normalized moment inequality functions when evaluated at the
null value θ0. Under Assumptions LA1 and LA2, it can be shown that

lim
n→∞

n1/2D−1/2(θ0�Fn)EFnm(Wi�θ0)(S5.5)

= μ= (h1�0v)+Π0λ ∈R
p
[+∞] ×Rv� where

h1 = (h1�1� 	 	 	 �h1�p)
′ and Π0 = Π(θ0�F0)	

By definition, if h1�j = ∞, then h1�j + x = ∞ for any x ∈ R. Let Π0�j denote
the jth row of Π0 written as a column d-vector for j = 1� 	 	 	 �k. Note that
(h1�0v)+Π0λ ∈ R

p
[+∞] ×Rv. Let μ = (μ1� 	 	 	 �μk)

′	 The true distribution Fn is

17When a preliminary estimator of a parameter τ appears in the sample moment functions,
then in Assumptions LA1 and LA2 and (S5.5), mj(Wi�θ) and m(Wi�θ) are defined to be
mj(Wi�θ� τ0) and m(Wi�θ� τ0), respectively, where τ0 denotes the true value of the parameter
τ under the true distribution F .
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in the alternative, not the null (for n large) when μj = h1�j +Π′
0�jλ < 0 for some

j = 1� 	 	 	 �p or Π′
0�jλ �= 0 for some j = p+ 1� 	 	 	 �k.

For constants κ > 0 and η ≥ 0, define

AsyPow(μ�Ω�S�ϕ�κ�η)(S5.6)

= P
(
S
(
Ω1/2Z∗ +μ�Ω

)
> qS

(
ϕ

(
κ−1

[
Ω1/2Z∗ +μ

]
�Ω

)
�Ω

) +η
)
�

AsyPow−(μ�Ω�S�ϕ�κ�η)= lim
x↓0

AsyPow(μ�Ω�S�ϕ�κ�η− x)�

where Z∗ ∼ N(0k� Ik), μ ∈ Rk, Ω ∈ Ψ , κ ∈ R++, and the functions S, ϕ, and qS

are as defined in Section S3, (S4.4) or (S4.6), and (S4.9), respectively.18 Typi-
cally, AsyPow(μ�Ω�S�ϕ�κ�η) = AsyPow−(μ�Ω�S�ϕ�κ�η) because the l.h.s.
quantity in the probability in (S5.6) is a nonlinear function of a normal ran-
dom vector that has a continuous and strictly increasing d.f. (unless v = 0 and
μ = ∞p, which cannot hold under the alternative hypothesis) and the r.h.s.
quantity in the probability in (S5.6) is a quite different nonlinear function of
the same normal random vector.

For a sequence of constants {ζn :n ≥ 1}, let ζn → [ζ1�∞� ζ2�∞] denote that
ζ1�∞ ≤ lim infn→∞ ζn ≤ lim supn→∞ ζn ≤ ζ2�∞.

THEOREM 3: Under Assumptions S, κ, ϕ, η1 and LA1–LA3, the RMS test
based on S�ϕ� κ̂= κ(Ω̂n(θ)), and η̂ = η(Ω̂n(θ)) satisfies

PFn

(
Tn(θ0) > cn(θ0)

)
→ [

AsyPow
(
μ�Ω0� S�ϕ�κ(Ω0)�η(Ω0)

)
�

AsyPow−(
μ�Ω0� S�ϕ�κ(Ω0)�η(Ω0)

)]
�

where μ= (h1�0v)+Π0λ.

COMMENTS 1: (i) Theorem 3 provides the 1/n1/2 local alternative power
function of RMS and PA tests. Typically, AsyPow(μ�Ω0� S�ϕ�κ(Ω0)�η(Ω0))=
AsyPow−(μ�Ω0� S�ϕ, κ(Ω0)�η(Ω0)) and the asymptotic local power function
is unique for any given (μ�Ω0).

(ii) The results of Theorem 3 hold under the null and alternative hypothe-
ses.

(iii) For moment conditions based on weak instruments, the results of The-
orem 3 still hold. But with weak instruments, RMS and PA tests have power
less than or equal to α against 1/n1/2 local alternatives because Π′

0�jλ = 0 for
all j = 1� 	 	 	 �k.

18For some functions ϕ, such as ϕ(1) and ϕ(4), κ = 0 is permissible because
limκ↓0 ϕ(κ

−1[Ω1/2Z + μ]�Ω) is well defined. For example, for ϕ(1) and x ∈ R, limκ↓0 ϕ(κ
−1x�

Ω)= 0 if x ≤ 0 and limκ↓0 ϕ(κ
−1x�Ω)= ∞ if x > 0.
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S5.3. Average Power

RMS tests depend on S, ϕ, κ(Ω), and η(Ω). We compare the power of RMS
tests by comparing their asymptotic average power for a chosen set Mk(Ω) of
alternative parameter vectors μ ∈ Rk for Ω ∈ Ψ .19 Let |Mk(Ω)| denote the
number of elements in Mk(Ω). The asymptotic average power of the RMS
test based on (S�ϕ�κ�η) for constants κ> 0 and η≥ 0 is

∣∣Mk(Ω)
∣∣−1 ∑

μ∈Mk(Ω)

AsyPow(μ�Ω�S�ϕ�κ�η)	(S5.7)

We are interested in comparing the (S�ϕ) functions defined in (S3.4)–(S3.7),
(S4.4), and (S4.6) in terms of asymptotic Mk(Ω) average power. To do so re-
quires choices of functions (κ(·)�η(·)) for each (S�ϕ). We use the tuning and
size-correction functions κ∗(Ω) and η∗(Ω) that are optimal in terms of asymp-
totic Mk(Ω) average power. They are defined as follows. Given Ω and κ > 0,
let η∗(Ω�κ) be defined as in (S4.15) with Δ = R

p
+�∞ × cl(Ω) and tuning pa-

rameter κ > 0	 The optimal tuning parameter κ∗(Ω) maximizes (S5.7) with η
replaced by η∗(Ω�κ) over κ > 0. The optimal size-correction factor then is
η∗(Ω) = η∗(Ω�κ∗(Ω)) and the test based on (κ∗(Ω)�η∗(Ω)) has asymptotic
size α. (Obviously, κ∗(·) and η∗(·) depend on (S�ϕ).)

Given η∗(Ω) and κ∗(Ω), we compare (S�ϕ) functions by comparing their
values of ∣∣Mk(Ω)

∣∣−1 ∑
μ∈Mk(Ω)

AsyPow
(
μ�Ω�S�ϕ�κ∗(Ω)�η∗(Ω)

)
�(S5.8)

which depend on Ω.
We are interested in constructing tests that yield CS’s that are as small as

possible. The boundary of a CS, like the boundary of the identified set, is de-
termined at any given point by the moment inequalities that are binding at that
point. The number of binding moment inequalities at a point depends on the
dimension, d, of the parameter θ. Typically, the boundary of a confidence set
is determined by d (or fewer) moment inequalities; that is, at most d moment
inequalities are binding and at least p − d are slack; see Figure 1. (Note that
the axes in Figure 1 are θ1 and θ2.) In consequence, we specify the sets Mk(Ω)
considered below to be ones for which most vectors μ have half or more ele-
ments positive (since positive elements correspond to nonbinding inequalities),
which is suitable for the typical case in which p≥ 2d.

19As indicated, we allow this set to depend on Ω. The reason is that the power of any test and
the asymptotic power envelope depend on Ω. Hence, it is natural to vary the magnitude of ‖μ‖
for μ ∈ Mk(Ω) as Ω varies.
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FIGURE 1.—Confidence set for a parameter θ ∈Rd for d = 2 based on p = 4 moment inequal-
ities.

S5.4. Asymptotic Power Envelope

To assess the power performance of RMS tests in an absolute sense, it is
of interest to compare their asymptotic power to the asymptotic power en-
velope. For details on the determination and computation of the latter, see
Section S7.3.

We note that the asymptotic power envelope is a “unidirectional” envelope.
One does not expect a test that is designed to perform well for multidirec-
tional alternatives to be on, or close to, the unidirectional envelope. This is
analogous to the fact that the power of a standard F -test for a p-dimensional
restriction with an unrestricted alternative hypothesis in a normal linear re-
gression model is not close to the unidimensional power envelope. For exam-
ple, for p = 2�4�10, when the asymptotic power envelope is 	75� 	80, and 	85,
respectively, the F test has power 	65� 	60, and 	49, respectively.20 Clearly, the
larger is p, the greater is the difference between the power of a test designed
for p-directional alternatives and the unidirectional power envelope.

S6. NUMERICAL RESULTS

This section gives supplemental numerical results to those given in AB1.

20These asymptotic power results are obtained by some simple calculations based on the distri-
bution function of the noncentral χ2 distribution with p = 1�2�4�10 degrees of freedom, where
the noncentral χ2 distribution with p = 1 degrees of freedom is used for the power envelope
calculations.



PARAMETERS DEFINED BY MOMENT INEQUALITIES 21

Section S6.1 describes how the approximately optimal κ(·) and η(·) func-
tions given in Table I are determined and provides numerical results concern-
ing their properties.21

Section S6.2 discusses the determination of the recommended adjustment
constant ε = 	012 for the recommended AQLR test statistic, which is based on
the S2A function.22

Section S6.3 considers the case where the sample moments have a singular
asymptotic correlation matrix. It provides comparisons of several tests based
on their asymptotic average power, finite-sample maximum null rejection prob-
abilities (MNRP’s), and finite-sample average power. It also defines the empir-
ical likelihood ratio (ELR) statistic, discusses its computation, and defines the
bootstrap employed with the ELR test.

Section S6.4 provides a table of the κ values that maximize asymptotic av-
erage power for various tests. These are the κ values that yield the asymptotic
power reported in Table II. Section S6.4 also provides a table that is analogous
to Table II but reports asymptotic MNRP’s rather than asymptotic power.

Section S6.5 provides results that supplement those of AB1 by comparing
(S�ϕ) functions for a larger number of Ω matrices. These are results based on
the best κ values in terms of asymptotic average power.

Section S6.6 provides asymptotic MNRP and power comparisons (based on
fixed κ asymptotics) of several GMS tests and the recommended RMS test,
which is the AQLR/t-test/κauto test.

Section S6.7 provides additional asymptotic MNRP and power results for
some GMS and RMS tests that are not considered explicitly in AB1.

Section S6.8 provides comparative computation times for tests based on the
AQLR and MMM test statistics, and the “asymptotic normal” and bootstrap
versions of the t-test (i.e., ϕ(1)) moment selection critical values.23

S6.1. Approximately Optimal κ(Ω) and η(Ω) Functions

S6.1.1. Definitions of κ(Ω) and η(Ω)

Here, we describe how the recommended κ(Ω) and η(Ω) functions defined
in AB1 are determined. These functions are for use with the recommended
AQLR/t-test test.

First, for p = 2 and given ρ ∈ (−1�1), where ρ denotes the correlation
that appears in Ω, we compute numerically the values of κ that maximize the

21These functions determine the data-dependent tuning parameter κ̂ and size-correction fac-
tor η̂.

22The constant ε > 0 ensures that the matrix Σ̃n(θ), whose inverse appears in the AQLR statis-
tic, is nonsingular even if the estimator Σ̂n(θ) of the asymptotic variance of the sample moment
conditions is singular.

23Note that Section S7.6 provides additional numerical results concerning the computation of
η2(p).
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asymptotic average (size-corrected) power of the nominal 	05 AQLR/t-test test
over a fine grid of 31 κ values. We do this for each ρ in a fine grid of 43 values.24

Because the power results are size-corrected, a by-product of determining the
best κ value for each ρ value is the size-correction value η that yields asymp-
totically correct size for each ρ.25

Second, by a combination of intuition and the analysis of numerical results,
we postulate that for p≥ 3, the optimal function κ∗(Ω) defined in Section S5.3
is well approximated by a function that depends on Ω only through the [−1�1]-
valued function δ(Ω) = smallest off-diagonal element of Ω.

The explanation for this is as follows: (i) Given Ω, the value κ∗(Ω) that
yields maximum asymptotic average power is such that the size-correction
value η∗(Ω) is not very large. (This is established numerically for a variety
of p and Ω.) The reason is that the larger is η∗(Ω), the closer is the test to the
PA test and the lower is the power of the test for μ vectors that have less than
p negative elements. (ii) The size-correction value η∗(Ω) is small if the rejec-
tion probability at the least favorable null vector μ is close to α when using
the size-correction factor η(Ω) = 0. (This is self-evident.) (iii) We postulate
that null vectors μ that have two elements equal to zero and the rest equal
to infinity are nearly least favorable null vectors. If true, then the size of the
AQLR/t-test test depends on the two-dimensional submatrices of Ω that are
the correlation matrices that correspond to the cases where only two moment
conditions appear. (iv) The size of a test for given κ and p = 2 is decreasing
in the correlation ρ. In consequence, the least favorable two-dimensional sub-
matrix of Ω is the one with the smallest correlation. Hence, the value of κ that
makes the size of the test equal to α for a small value of η is (approximately) a
function of Ω through δ(Ω). Note that this is just a heuristic explanation. It is
not intended to be a proof.

Next, because δ(Ω) corresponds to a particular 2 × 2 submatrix of Ω with
correlation δ (= δ(Ω)), we take κ(Ω) to be the value that maximizes asymp-
totic average power when p = 2 and ρ= δ, as specified in Table I and described
in the second paragraph of this section.26 We take η(Ω) to be the value deter-
mined by p= 2 and δ, that is, η1(δ) in Table I, but allow for an adjustment that

24The grid of 31 κ values is {0, .2, .4, .6, .8, 1.0, 1.1, 1.2, . . . , 2.9, 3.0, 3.2, . . . , 3.8, 4.2}. The grid
of 43 ρ values is {.99, .975, .95, .90, .85, . . . , −.90, −.95, −.975, −.99}. The results are based on
40,000 critical-value repetitions and 40,000 size and power repetitions. Size-corrrection is done
for the given value of ρ, not uniformly over ρ ∈ [−1�1], because ρ can be consistently estimated
and hence is known asymptotically.

25The asymptotic size of the QLR/t-test for given κ is found numerically to be decreasing in
ρ for ρ ∈ [−1�1]. Hence, for ρ ∈ [a1� a2), we take η to be the size-correction value that yields
correct asymptotic size for ρ = a1. See Section S7.5 for a discussion of how the maximum null
rejection probability over μ ≥ 0 is calculated.

26For ρ ∈ [−	8�1	0], we use the κ values that maximize average asymptotic power for p = 2 as
the automatic κ values. For ρ ∈ [−1	0�−	8), however, we use somewhat larger κ values than those
that maximize average power. The reason is that numerical results show that the best κ values
(in terms of power) for ρ ∈ [−1	0�−	85] (and p = 2) are somewhat smaller than for ρ = −	80.
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depends on p (viz., η2(p)) that is defined to guarantee that the test has correct
asymptotic significance level (up to numerical error).27 In particular, η1(δ) ∈ R
is defined to be such that

inf
h1∈R2+�∞

CP
(
h1�Ωδ�η1(δ)

) = 1 − α�(S6.1)

where Ωδ is the 2 × 2 correlation matrix with correlation δ (and κ(Ω) that
appears in the definition of CP(h1�Ω�η) in (S4.11) is as just defined). The
numerical calculation of η1(δ) is described above in the second paragraph of
this section. Next, η2(p) ∈ R is defined to be such that

inf
h1∈Rp

+�∞�Ω∈Ψ
CP

(
h1�Ω�η1

(
δ(Ω)

) +η2(p)
) = 1 − α�(S6.2)

where κ(Ω) and η1(δ(Ω)) are defined as described above. The numerical cal-
culation of η2(p) is described in Section S7.5.

S6.1.2. Automatic κ Power Assessment

We now discuss numerical evaluations of how well the proposed method
does in approximating the best κ, namely, κ∗(Ω). Three groups of results are
provided and each group considers p = 2�4�10. The first group consists of the
three Ω matrices considered in AB1 and the results are given by comparing
the rows of Table II labeled AQLR/t-test/κbest and AQLR/t-test/κauto. The
second group consists of a fixed set of 19 Ω matrices (defined in Section S7.2)
chosen such that δ(Ω) takes values on a grid in [−	99� 	99]. The third group
consists of 500 randomly generated Ω matrices for p = 2�4 and 250 randomly
generated Ω matrices for p= 10. See Section S7.2 for details concerning their
distributions.

For the second group of results, the asymptotic power results are size-
corrected and are based on (40,000, 40,000, 40,000) critical-value, size-
correction, and power simulation repetitions for p = 2 and 4. For p = 10,
they are based on (1000, 1000, 1000) repetitions. Average power is computed

Thus, there is a small deviation from the feature that the best κ value is monotone decreasing
in ρ. When using the κ values for p = 2 with p = 4�10, numerical results show that imposing
monotonicity of κ in ρ yields better results for p = 4 in the sense that a smaller value η2(p) is
needed for size correction (which leads to higher power over the entire range of δ values). For
this reason, we define κ(δ) in Table I to take values for δ ∈ [−1	0�−	80) that are slightly larger
than the power maximizing values. The resultant loss in power for p = 2 is small, being around
	01 for δ ∈ [−1	0�−	80).

27One could define η(Ω) to depend separately on δ(Ω) and p, say η(Ω) = η(δ(Ω)�p) for
some function η. This would yield a much more complicated function η(Ω) than the function
η(Ω) = η1(δ(Ω)) + η2(p) that we use. Numerical results indicate that more complicated func-
tions η are not needed. The simple function that we use works quite well.
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TABLE S-I

ASYMPTOTIC POWER DIFFERENCES BETWEEN AQLR/t-TEST/κAUTO AND AQLR/t-TEST/κBEST
TESTS FOR NOMINAL LEVEL .05 SIZE-CORRECTED TESTSa

δ

−.99 −.975 −.95 −.9 −.8 −.7 −.6 −.5 −.4 −.2

p= 2 .022 .017 .009 .002 .000 .000 .000 .001 .000 .000
p= 4 .011 .007 .007 .009 .001 .001 .002 .003 .003 .001
p= 10 .004 .006 .004 .006 .004 .006 .012 .009 .006 .007

.0 .2 .4 .6 .8 .9 .95 .975 .99

p= 2 .001 .000 .000 .000 .000 .000 .000 .000 .000
p= 4 .001 .001 .001 .000 .000 .000 .000 .000 .000
p= 10 .002 .008 .002 .000 .000 .000 .000 .000 .000

aκ = Auto denotes the data dependent-method of choosing κ described in (2.9)–(2.10) of AB1. κ = Best denotes
the κ value that maximizes asymptotic average power.

for μ vectors that consist of linear combinations of the μ vectors defined in
Section S7.1; see Section S7.2 for definitions of the linear combinations.

For all three groups, we assess the proposed method of selecting κ, referred
to as the κauto method, by comparing the asymptotic average power of the
κauto test with the corresponding κbest test, whose κ value is determined nu-
merically to maximize asymptotic average power.

The results for the 19 Ω matrices are given in Table S-I. These results show
that the κauto method works very well. There is very little difference be-
tween the asymptotic average power of the AQLR/t-test/κauto and AQLR/t-
test/κbest tests. Only in 3 cases out of 57 is a difference of 	010 or more de-
tected.

The results for the randomly generated Ω matrices are similarly good for the
κauto method. For p = 2, across the 500 Ω matrices, the average power dif-
ferences have average equal to 	0010, standard deviation equal to 	0032, and
range equal to [	000� 	022]. For p = 4, across the 500 Ω matrices, the aver-
age power difference is 	0012, the standard deviation is 	0016, and the range
is [	000� 	010]. For p = 10� across the 250 Ω matrices, the average power dif-
ferences have average equal to 	0183, standard deviation equal to 	0069, and
range equal to [	000� 	037].

In conclusion, the κauto method performs very well in terms of selecting κ
values that maximize the asymptotic average power.

S6.2. AQLR Statistic and Choice of ε

There exist moment inequality models of practical importance in which the
asymptotic variance matrix of the sample moment conditions is necessarily sin-
gular. For example, this occurs in the missing data example in Imbens and
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Manski (2004) when the probability p of observing a variable is 0 or 1. It also
occurs in simple entry models; for example, see Canay (2010).28

To handle models of this sort, AB1 introduces the AQLR statistic, which is
based on the S2A function. The AQLR statistic is designed so that the determi-
nant of the random k×k matrix Σ̃n(θ) that enters the quadratic form in S2A is
at least as large as ε. Hence, if ε > 0, there is no difficulty in inverting Σ̃n(θ),
Σ̃−1

n (θ) converges in probability to the inverse of the probability limit of Σ̃n(θ),
and the asymptotic results of this paper hold even if the asymptotic variance
matrix of the sample moment conditions is singular.

AB1 gives a recommended value of ε = 	012. It is determined as follows.
We simulate the asymptotic average power of the AQLR/t-test/κauto test as a
function of ε for certain singular correlation matrices for p = 2, 4, and 10. For
p = 2, Ω is singular only if the correlation ρ is +1 or −1. When ρ= +1 or close
to +1, we find that the performance of the AQLR/t-test/κauto test (under the
null and the alternative) is not sensitive to ε, provided ε is not too large. Even
taking ε = 0 and using the Moore–Penrose inverse, the performance of the
test is the same as when ε is positive. Similar results are obtained for p= 4�10
when the correlation is positive and close to or equal to 1.

In consequence, we focus on cases with perfect negative correlation. For
p= 2, we consider the correlation matrix ΩSg�Neg with correlation ρ = −1. For
p = 4, we consider the Toeplitz correlation matrix ΩSg�Neg with ρ= (−1�1�−1),
where ρ indexes the correlations on the diagonals of ΩSg�Neg (as one moves
away from the main diagonal). For p = 10, we consider the Toeplitz correlation
matrix ΩSg�Neg with ρ= (−1�1�−1� 	 	 	 �1�−1).

For each value of p, we find that there is a sharp discontinuity in the asymp-
totic average power of the AQLR/t-test/κauto test as a function of ε at the
point ε = 0 and no discontinuity in its asymptotic null rejection probabili-
ties. (When ε = 0, the AQLR test is defined using the Moore–Penrose in-
verse of ΩSg�Neg.) Also, for all values of ε > 0, the asymptotic average power
of the AQLR/t-test/κauto test is not very sensitive to the value of ε provided
ε > 0, but power decreases when ε is made large enough. Based on these ob-
servations, we take the recommended value of ε to be the largest value that
has asymptotic average power within 	001 of the maximum asymptotic average
power over ε ∈ [10−6�1] for p= 2. As shown in Table S-II, this value is ε = 	012.
Table S-II gives the asymptotic average power of the AQLR/t-test/κauto test as
a function of ε for p = 2�4�10. Asymptotic average power is computed for the
vectors μ in Mp(ΩNeg), which is defined in Section S7.1. Table S-II is based on
(40,000, 40,000, 40,000) critical-value, size-correction, and power simulation
repetitions, respectively. Table S-II shows that the choice ε = 	012 also works

28In the missing data model, even the variance submatrix consisting of the binding moment
inequalities is singular when p = 1. In the entry model, the variance submatrix consisting of the
binding moment inequalities is singular when the profit of one firm is not effected by the entry of
the other firm or vice versa or both, which are cases of practical interest.
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TABLE S-II

ASYMPTOTIC AVERAGE POWER OF THE AQLR/t-TEST/κAUTO TEST AS A FUNCTION OF THE
ADJUSTMENT CONSTANT ε FOR p= 2, 4, AND 10a

p= 2 & ΩSg�Neg

ε 	0 	000001 	00001 	0001 	001 	005 	010 	011
Avg Asy Power 	5616 	8752 	8752 	8752 	8751 	8749 	8745 	8744

ε 	0120 	0121 	0125 	013 	015 	02 	05
Avg Asy Power 	8744 	8742 	8701 	8676 	8603 	8486 	8265

p= 4 & ΩSg�Neg

ε 	0 	0001 	001 	005 	01 	012 	02
Avg Asy Power 	3905 	9401 	9400 	9398 	9396 	9395 	9392

p = 10 & ΩSg�Neg

ε 	0 	0001 	001 	005 	01 	012 	02
Avg Asy Power 	2903 	9718 	9718 	9717 	9715 	9715 	9713

aκ = Auto denotes the data dependent-method of choosing κ described in (2.9)–(2.10) of AB1.

well for p = 4�10. For p = 4, the choice of ε = 	012 yields asymptotic average
power that is within 	0006 of the maximum over different ε values. For p = 10,
it is within 	0003 of the maximum.

We note that the discontinuity at ε = 0 of the asymptotic average power of
the AQLR/t-test/κauto test also is found in finite samples when perfect nega-
tive correlation is present; see Table S-V below. However, somewhat surpris-
ingly, no discontinuity at ε = 0 is found for the null rejection probabilities,
either asymptotic or finite sample, of the AQLR/t-test/κauto test when per-
fect negative (or positive) correlation is present; see Table S-IV below. (The
AQLR/t-test/κauto test with ε = 0 equals the MP-QLR/t-test/κauto test.)

S6.3. Singular Variance Matrices

In this section, we present results that are similar to those in Tables II and III
except that they are based on singular matrices ΩSg�Neg and ΩSg�Pos, rather than
the nonsingular matrices ΩNeg, ΩZero, and ΩPos. As noted in Section S6.2, singu-
lar and near singular matrices arise in a number of moment inequality models
of practical importance.

The matrices ΩSg�Neg for p = 2�4�10 are the same matrices that are con-
sidered in Section S6.2. The matrices ΩSg�Pos for p = 2�4�10 are correlation
matrices with all elements equal to 1.

S6.3.1. Asymptotic Power Comparisons

Table S-III provides asymptotic average power comparisons of MMM, Max,
AQLR, and MP-QLR test statistics combined with PA, t-test/κbest, and t-
test/κauto critical values. Note that MP-QLR statistics are QLR statistics that
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TABLE S-III

ASYMPTOTIC POWER COMPARISONS (SIZE-CORRECTED) FOR SINGULAR VARIANCE MATRICESa

Critical
Value

Tuning
Param. κ

p = 10 p = 4 p= 2

Statistic ΩSg�Neg ΩSg�Pos ΩSg�Neg ΩSg�Pos ΩSg�Neg ΩSg�Pos

MMM PA — .03 .27 .17 .40 .48 .51
MMM t-test Best .15 .79 .31 .77 .52 .73

Max PA — .28 .81 .36 .78 .48 .73
Max t-test Best .28 .82 .38 .78 .52 .73

AQLR PA — .96 .81 .92 .78 .85 .73
AQLR t-test Best .98 .82 .95 .78 .89 .73
AQLR t-test Auto .97 .82 .94 .78 .87 .73

MP-QLR PA — .29 .81 .39 .78 .56 .73
MP-QLR t-test Best .29 .82 .39 .78 .56 .73
MP-QLR t-test Auto .29 .82 .39 .78 .56 .73

aκ = Auto denotes the data dependent-method of choosing κ described in (2.9)–(2.10) of AB1. κ = Best denotes
the κ value that maximizes asymptotic average power.

use the Moore–Penrose inverse of the singular matrix ΩSg�Neg or ΩSg�Pos as the
weight matrix of the quadratic form. The power results are size-corrected,
as in Table II. Average power is computed for the vectors μ in Mp(ΩNeg)
when Ω = ΩSg�Neg and for the μ vectors in Mp(ΩPos) when Ω = ΩSg�Pos, where
Mp(ΩNeg) and Mp(ΩPos) are defined in Section S7.1. The results in Table S-III
for p = 2, 4, and 10 are based on (40,000, 40,000, 40,000) critical-value, size-
correction, and power simulation repetitions, respectively.

Table S-III shows that the AQLR/t-test/κauto test dominates the tests based
on the MMM and Max statistics in terms of asymptotic average power. The
differences in power are quite large for ΩSg�Neg and small for ΩSg�Pos (at least
when the t-test/κbest critical values are used for the MMM and Max tests). In
fact, the superiority of the AQLR/t-test/κauto test over the MMM and Max
tests for ΩSg�Neg is larger than it is for ΩNeg; see Table II.

Table S-III shows that the AQLR/t-test/κauto test has vastly superior asymp-
totic average power compared to that of the MP-QLR/t-test/κauto test for
ΩSg�Neg and has the same power for ΩSg�Pos. Hence, it is clear that the adjust-
ment made to the QLR statistic is beneficial.

Table S-III also shows that the data-dependent method of choosing κ and
η works well with the singular matrices ΩSg�Neg and ΩSg�Pos. The difference
in asymptotic average power between the κbest and κauto versions of the
AQLR/t-test test is 	00 in three cases, 	01 in two cases, and 	02 in one case.

S6.3.2. Finite-Sample MNRP and Power Comparisons

Next we consider the finite-sample properties of the asymptotic normal and
bootstrap versions of the AQLR/t-test/κauto and MP-QLR/t-test/κauto tests
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TABLE S-IV

FINITE-SAMPLE MAXIMUM NULL REJECTION PROBABILITIES FOR SINGULAR VARIANCE
MATRICES FOR NOMINAL .05 TESTS

p = 10 p = 4 p = 2

Test Distrib. n ΩSg�Neg ΩSg�Pos ΩSg�Neg ΩSg�Pos ΩSg�Neg ΩSg�Pos

AQLR/Nm N(0�1) 100 .061 .038 .053 .045 .065 .053
AQLR/Bt .050 .045 .048 .045 .051 .052

MP-QLR/Nm N(0�1) 100 .044 .038 .050 .045 .049 .053
MP-QLR/Bt .036 .045 .043 .045 .052 .052

AQLR/Nm χ2
3 100 .071 .043 .052 .050 .060 .066

AQLR/Bt .045 .043 .048 .042 .050 .055

MP-QLR/Nm χ2
3 100 .071 .043 .050 .050 .045 .066

MP-QLR/Bt .044 .043 .042 .042 .051 .055

with the singular matrices ΩSg�Neg and ΩSg�Pos. The results are analogous to
those given in Table III but with different Ω matrices and fewer distributions
considered. We provide results for sample size n = 100. We consider the same
numbers of moment inequalities p= 2, 4, and 10. We take the mean zero vari-
ance Ip random vector Z† = Var−1/2(m(Wi�θ))(m(Wi�θ) − Em(Wi�θ)) to be
i.i.d. across elements and consider two distributions for the elements: standard
normal (i.e., N(0�1)) and chi-squared with 3 degrees of freedom, χ2

3. The latter
distribution is centered and scaled to have mean zero and variance 1. Average
power is computed for the vectors μ in Mp(ΩNeg) when Ω=ΩSg�Neg and for the
μ vectors in Mp(ΩPos) when Ω = ΩSg�Pos. The average power results are size-
corrected based on the true Ω matrix. We use (3000, 3000, 3000) critical-value,
size-correction, and rejection-probability repetitions for p = 2 and 4. We use
(1000, 1000, 1000) repetitions for results for p = 10.

Table S-IV gives the finite-sample maximum null rejection probabilities
(MNRP’s) of the tests. There is very little difference in the MNRP’s of the
AQLR and MP-QLR versions of the tests. For both versions, the bootstrap
and asymptotic normal implementation methods perform similarly and quite
well. The bootstrap is slightly better overall. For the bootstrap version of the
AQLR/t-test/κauto test, the MNRP’s lie in the range [	042� 	055]. An inter-
esting feature of the results is that there is no overrejection by the asymptotic
normal version of the AQLR/t-test/κauto test with ΩNeg, χ2

3 distribution, and
p= 4�10, whereas substantial overrejection is reported in Table III in the same
scenario except with ΩNeg in place of ΩSg�Neg.

We conclude that the bootstrap version of the AQLR/t-test/κauto test, which
is the recommended test, works very well in terms of MNRP’s with singular
variance matrices.

Table S-V reports the finite-sample average power results with the singular
matrices ΩSg�Neg and ΩSg�Pos. The AQLR-based tests all outperform the MP-
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TABLE S-V

FINITE-SAMPLE (SIZE-CORRECTED) AVERAGE POWER FOR SINGULAR VARIANCE MATRICES
FOR NOMINAL .05 TESTS

p = 10 p = 4 p= 2

Test Distrib. n ΩSg�Neg ΩSg�Pos ΩSg�Neg ΩSg�Pos ΩSg�Neg ΩSg�Pos

AQLR/PA N(0�1) 100 .97 .79 .92 .77 .85 .73
AQLR/Nm .96 .78 .93 .77 .85 .72
AQLR/Bt .97 .78 .93 .78 .86 .71

MP-QLR/PA N(0�1) 100 .31 .79 .40 .77 .54 .73
MP-QLR/Nm .29 .78 .39 .77 .55 .72
MP-QLR/Bt .29 .78 .39 .78 .54 .71

AQLR/PA χ2
3 100 .97 .78 .92 .75 .85 .72

AQLR/Nm .96 .78 .94 .74 .85 .66
AQLR/Bt .97 .78 .94 .74 .86 .65

MP-QLR/PA χ2
3 100 .31 .78 .41 .76 .56 .72

MP-QLR/Nm .29 .78 .40 .74 .57 .67
MP-QLR/Bt .29 .78 .39 .74 .56 .65

QLR-based tests by a wide margin for ΩSg�Neg and perform essentially the same
for ΩSg�Pos. For example, for p = 10, ΩSg�Neg, and the N(0�1) distribution, the
power difference is 	97 to 	29 for the recommended AQLR/t-test/κauto test
compared to the MP-QLR/t-test/κauto test for the bootstrap versions of these
tests.

For all tests considered, the bootstrap and asymptotic normal implementa-
tions of the tests perform quite similarly. This is consistent with the MNRP re-
sults in Table S-IV. For all tests, the results for the normal and χ2

3 distributions
are quite similar. This also is consistent with the MNRP results in Table S-IV,
but differs from the results in Table III.

Based on Table S-V, we conclude that the bootstrap version of the AQLR/t-
test/κauto test, which is the recommended test, works very well in terms of
finite-sample average power with singular variance matrices.

S6.3.3. ELR Test With Singular Correlation Matrix

In this section, we define the empirical likelihood ratio (ELR) statistic for
the case where no equality constraints appear (i.e., v = 0), describe the method
used to compute the ELR statistic, and compare the finite-sample properties
of the bootstrap versions of the ELR/t-test/κauto and AQLR/t-test/κauto tests
with the singular matrices ΩSg�Neg and ΩSg�Pos.

When v = 0, the ELR statistic can be written as

T ELR
n (θ) = max

λ=(λ1�			�λp)
′ :λ�≤0�∀�≤p

2
n∑

i=1

(
1 + λ′m(Wi�θ)

);(S6.3)
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see Canay (2010). This expression is easier to compute than an equivalent ex-
pression given in Canay (2010) and AG, so we use it in the numerical work.

The constrained optimization (CO) module of GAUSS was used to compute
the ELR statistic. We found that it was necessary to do a careful analysis of the
optimization algorithm used. Arbitrarily selecting a preprogrammed generic
optimization algorithm and presuming that it will give accurate and timely re-
sults is not a wise procedure whether the correlation matrix is nonsingular or
singular.

The CO module contains five algorithms: BFGS, DFP, NR, scaled BFGS,
and scaled DFP; four line search methods: step length = 1, cubic or quadratic
step, step halving, and Brent’s method; and two gradient/Hessian computation
methods: numerical and analytical. We investigated the properties of each of
these methods with nonsingular and singular correlation matrices in many dif-
ferent combinations before selecting one to use. For nonsingular correlation
matrices, scaled BFGS and scaled DFP had substantial convergence and ac-
curacy problems regardless of the line search method and gradient/Hessian
method employed. DFP often had similar convergence problems. BFGS and
NR worked well in terms of giving accurate results with line search method 1
and 2, and numerical derivatives. BFGS did not work well in terms of accuracy
with analytic gradient/Hessian. NR worked well in terms of accuracy and con-
vergence properties with line search methods 1 and 2, and with numerical and
analytic gradient/Hessian. NR was fastest with line search 1 and analytic gradi-
ent/Hessian, which is the method we employed to compute the results given in
Table III for nonsingular correlation matrices.

For singular variance matrices, all methods in CO had convergence problems
when p = 4 and p = 10. This is because with a singular correlation matrix, the
Hessian of the empirical likelihood objective function is singular almost surely.
For p = 2, NR with line search 1 and analytic gradient/Hessian worked well. In
consequence, we only report results for singular correlation matrices for p= 2.
We provide results for the matrices ΩSg�Neg and ΩSg�Pos defined above. We use
(5000, 5000) critical-value and rejection-probability repetitions under the null
and the alternative.

The bootstrap version of the ELR/t-test/κauto is based on bootstrap sam-
ples that are recentered by the average of the observations from the origi-
nal sample; that is, the original sample is {W1� 	 	 	 �Wn}, the bootstrap sample
{W ∗

1 � 	 	 	 �W
∗
n } is n i.i.d. draws from the empirical distribution of the original

sample, and the recentered bootstrap sample is {W ∗
1 − W n� 	 	 	 �W

∗
n − W n},

where W n = n−1
∑n

i=1 Wi ∈ Rp.
For p = 2, Table S-VI shows that the performance of the ELR/t-test/κauto/

Bt and AQLR/t-test/κauto/Bt tests is essentially the same in terms of MNRP’s
and average power. Hence, the most important distinction between the two
tests is the speed and reliability of their computation. The AQLR test has a
substantial advantage in these dimensions, especially when the correlation ma-
trix is singular.
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TABLE S-VI

FINITE-SAMPLE MAXIMUM NULL REJECTION PROBABILITIES AND (SIZE-CORRECTED)
AVERAGE POWER FOR SINGULAR VARIANCE MATRICES FOR NOMINAL .05 TESTS

p = 2

Test Distrib. H0/H1 ΩSg�Neg ΩSg�Pos

AQLR/Bt N(0�1) H0 .053 .051
ELR/Bt N(0�1) H0 .054 .051

AQLR/Bt t3 H0 .055 .055
ELR/Bt t3 H0 .048 .053

AQLR/Bt χ2
3 H0 .052 .052

ELR/Bt χ2
3 H0 .053 .052

AQLR/Bt N(0�1) H1 .86 .72
ELR/Bt N(0�1) H1 .86 .72

AQLR/Bt t3 H1 .86 .74
ELR/Bt t3 H1 .87 .73

AQLR/Bt χ2
3 H1 .86 .65

ELR/Bt χ2
3 H1 .86 .65

S6.4. κ Values That Maximize Asymptotic Average Power

The κ values that maximize asymptotic average power, that is, the best κ
values, which are used in the construction of Table II, are given in Table S-VII.

Table S-VIII gives the asymptotic maximum null rejection probabilities
(where the maximum is over all mean vectors in the null hypothesis for a fixed
correlation matrix Ω) of the RMS tests that appear in Table II and are based on
the κ = best tuning parameter and no size-correction factor (i.e., η = 0). The
results show that the κ value that maximizes asymptotic average power also
has quite good asymptotic size properties even with η= 0, with the exceptions
of the AQLR/ϕ(2), AQLR/ϕ(3), AQLR/ϕ(4), and AQLR/MMSC tests.

S6.5. Comparison of (S�ϕ) Functions: 19 Ω Matrices

Here we compare the MMM/t-test/κbest, AQLR/t-test/κbest, AQLR/t-
test/κauto, and AQLR/MMSC/κbest tests. This section is quite similar to Sec-
tion 4 of AB1 except that 19 Ω matrices are considered here, rather than 3,
and fewer tests are considered.29 The 19 Ω matrices are the same as those con-
sidered in Table S-I and are defined in Section S7.2.

The qualitative results reported in AB1 are found in Table S-IX to apply as
well to the broader range of Ω matrices that are considered.

29For the AQLR/MMSC/κbest test, we report only results for p = 2�4 because the results for
p = 10 are very time consuming.
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TABLE S-VII

κ VALUES THAT MAXIMIZE (SIZE-CORRECTED) ASYMPTOTIC AVERAGE POWERa

Critical
Value

p = 10 p = 4 p = 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-test 2	5 1	4 	4 2	5 1	4 	2 2	5 1	7 	6
Max t-test 2	4 1	4 	6 2	5 1	5 	8 2	5 1	8 	6
SumMax t-test 2	3 1	3 	4 2	5 1	6 	4 2	5 1	7 	6
AQLR t-test 2	5 1	4 	6 2	5 1	4 	8 2	6 1	7 	6
AQLR ϕ(2) 2	1b 	6b 	0b 2	4c 1	0d 	2d 2	0d 1	2d 	2d

AQLR ϕ(3) 12	5b 2	3b 1	1b 9	0c 2	8d 1	4d 10	0d 1	4d 1	2d

AQLR ϕ(4) 2	7b 1	4b 	2b 2	5c 1	4d 	4d 2	2d 1	9d 	2d

AQLR MMSC 5	3b 1	1b 	2b 5	7 1	4 	8 2	8 1	7 	6

aUnless otherwise noted, all cases are based on (40,000, 40,000, 40,000) critical-value, size-correction, and
rejection-probability repetitions.

bResults are based on (1000, 1000, 1000) repetitions.
cResults are based on (2000, 2000, 2000) repetitions.
dResults are based on (5000, 5000, 5000) repetitions.

S6.6. Comparison of RMS and GMS Procedures

In this section, we provide asymptotic MNRP and power comparisons (based
on fixed κ asymptotics) of several GMS tests and the recommended RMS test,
which is the AQLR/t-test/κauto test.

We consider GMS tests based on (S�ϕ) = (MMM� t-test), (AQLR� t-test),
and (AQLR�MMSC). The GMS tests depend on a tuning parameter κ (= κn)

TABLE S-VIII

COMPARISONS OF ASYMPTOTIC MAXIMUM NULL REJECTION PROBABILITIESa

Critical
Value

Tuning
Param. κ

p = 10 p = 4 p= 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-test Best 	059 	061 	054 	054 	058 	058 	054 	053 	051
Max t-test Best 	056 	057 	052 	053 	055 	052 	054 	052 	052
SumMax t-test Best 	060 	060 	054 	054 	055 	056 	054 	053 	051
AQLR ϕ(2) Best 	092b 	102b 	066b 	064c 	057d 	052d 	062d 	059d 	054d

AQLR ϕ(3) Best 	113b 	111b 	066b 	098c 	063d 	052d 	072d 	068d 	055d

AQLR ϕ(4) Best 	088b 	089b 	066b 	066c 	057d 	052d 	062d 	058d 	056d

AQLR t-test Best 	058 	061 	051 	053 	058 	051 	053 	053 	051
AQLR MMSC Best 	088b 	097b 	066b 	055 	058 	051 	052 	053 	051

aThese results use κ = Best and η = 0. Unless otherwise noted, results are based on (40,000, 40,000) critical-value
and rejection-probability repetitions.

bResults are based on (1000, 1000) repetitions.
cResults are based on (2000, 2000) repetitions.
dResults are based on (5000, 5000) repetitions.
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TABLE S-IX

ASYMPTOTIC POWER COMPARISONS (SIZE-CORRECTED) FOR 19 Ω MATRICESa

(a) p = 10

δ(Ω)

Statist. Crit. Val. κ −.99 −.975 −.95 −.9 −.8 −.7 −.6 −.5 −.4 −.2

MMM t-test κbest .16 .16 .17 .18 .20 .23 .28 .34 .42 .57
AQLR t-test κbest .96 .94 .76 .55 .47 .48 .50 .52 .55 .61
AQLR t-test κauto .96 .94 .76 .55 .47 .47 .49 .51 .54 .60
Power Envelope — .98 .98 .94 .85 .74 .73 .74 .75 .77 .81

0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM t-test κbest .67 .36 .50 .85 .82 .81 .80 .80 .79
AQLR t-test κbest .67 .37 .50 .85 .83 .83 .82 .82 .82
AQLR t-test κauto .67 .36 .50 .85 .83 .83 .82 .82 .82
Power Envelope — .85 .47 .59 .89 .85 .83 .82 .82 .82

(b) p = 4

δ(Ω)

Statist. Crit. Val. κ −.99 −.975 −.95 −.9 −.8 −.7 −.6 −.5 −.4 −.2

MMM t-test κbest .30 .30 .30 .31 .34 .37 .42 .48 .53 .62
AQLR t-test κbest .93 .87 .74 .60 .53 .53 .55 .57 .59 .64
AQLR t-test κauto .92 .87 .73 .59 .53 .53 .54 .56 .59 .64
AQLR MMSC κbest .93 .88 .75 .63 .55 .54 .55 .57 .60 .64
Power Envelope — .95 .94 .87 .80 .70 .70 .70 .72 .73 .77

0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM t-test κbest .69 .45 .58 .79 .79 .78 .77 .77 .77
AQLR t-test κbest .69 .46 .59 .80 .79 .78 .78 .78 .78
AQLR t-test κauto .69 .46 .59 .80 .79 .78 .78 .78 .78
AQLR MMSC κbest .69 .46 .59 .80 .79 .78 .78 .78 .78
Power Envelope — .80 .54 .66 .83 .81 .79 .79 .78 .78

(Continues)

that does not depend on Ω. We consider the values κ = 2	35 and κ = 1	87.
The former corresponds to the Bayesian information criterion (BIC) choice
κn = (lnn)1/2 for n = 250 and the latter corresponds to the law of the iter-
ated logarithm (LIL) choice κn = (2 ln lnn)1/2 for n = 300. Note that the BIC
choice yields κn ∈ [2	15�2	63] for n ∈ [100�1000] and the LIL choice yields
κn ∈ [1	75�1	97] for n ∈ [100�1000].

Tables S-X and S-XI provide the asymptotic MNRP and power results, re-
spectively, for p = 2�4�10 and Ω = ΩNeg�ΩZero�ΩPos. The critical values are



34 D. W. K. ANDREWS AND P. J. BARWICK

TABLE S-IX—Continued

(c) p = 2

δ(Ω)

Statist. Crit. Val. κ −.99 −.975 −.95 −.9 −.8 −.7 −.6 −.5 −.4 −.2

MMM t-test κbest .52 .52 .51 .51 .52 .54 .57 .59 .62 .66
AQLR t-test κbest .86 .83 .76 .65 .60 .59 .60 .61 .62 .66
AQLR t-test κauto .84 .81 .76 .65 .60 .59 .60 .61 .62 .66
AQLR MMSC κbest .86 .83 .76 .65 .60 .59 .60 .61 .62 .66
Power Envelope — .88 .86 .83 .75 .70 .69 .69 .70 .70 .73

0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM t-test κbest .69 .59 .66 .72 .73 .73 .73 .73 .73
AQLR t-test κbest .69 .59 .66 .73 .73 .73 .74 .73 .73
AQLR t-test κauto .69 .59 .66 .73 .73 .73 .74 .73 .73
AQLR MMSC κbest .69 .59 .66 .73 .73 .73 .74 .73 .73
Power Envelope — .75 .63 .70 .75 .74 .74 .74 .73 .73

aκ = best denotes the κ value that maximizes asymptotic average power. The results are based on (40,000, 40,000,
40,000) critical-value, size-correction, and rejection-probability repetitions for p = 2, 4, and 10.

obtained using 40,000 simulation repetitions, and both the MNRP and power
results are obtained using 40,000 repetitions, which yields a simulation stan-
dard error of 	0011.30 The power results are size-corrected.

TABLE S-X

ASYMPTOTIC MNRP COMPARISONS OF NOMINAL .05 GMS TESTS AND THE RECOMMENDED
RMS TEST

Critical
Value

Tuning
Param. κ

p = 10 p = 4 p = 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-test 2	35 	061 	054 	052 .056 .052 .052 .055 .051 .050
MMM t-test 1	87 	073 	056 	052 .070 .054 .052 .065 .052 .050

AQLR t-test 2	35 	060 	054 	050 .056 .052 .051 .056 .051 .050
AQLR t-test 1	87 	076 	056 	050 .073 .054 .051 .075 .052 .050

AQLR MMSC 2	35 	148a 	081a 	064a .111 .052 .051 .057 .051 .050
AQLR MMSC 1	87 	173a 	082a 	064a .119 .054 .051 .075 .052 .050

AQLR t-test Auto 	044 	046 	038 .047 .049 .047 .051 .051 .050

aThese results are based on (1000, 1000) critical-value and rejection-probability repetitions. All other results are
based on (40,000�40,000) repetitions.

30This is true except for the AQLR/MMSC tests with p = 10, which are based on (1000�1000)
critical-value and rejection-probability repetitions.
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TABLE S-XI

ASYMPTOTIC POWER COMPARISONS (SIZE-CORRECTED) FOR NOMINAL .05 GMS TESTS AND
THE RECOMMENDED RMS TEST

Critical
Value

Tuning
Param. κ

p = 10 p = 4 p = 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-test 2	35 	18 	64 	68 .31 .68 .67 .51 .68 .68
MMM t-test 1	87 	16 	66 	71 .28 .69 .70 .48 .69 .69

AQLR t-test 2	35 	55 	64 	79 .60 .68 .76 .64 .68 .70
AQLR t-test 1	87 	52 	66 	80 .56 .69 .77 .59 .69 .71

AQLR MMSC 2	35 	46a 	60a 	74a .56 .68 .75 .64 .68 .70
AQLR MMSC 1	87 	44a 	63a 	76a .54 .69 .76 .59 .69 .71

AQLR t-test Auto 	55 	67 	82 .59 .69 .78 .65 .69 .73

Power Envelope — 	85 	85 	85 .80 .80 .80 .75 .75 .75

aThese results are based on (1000�1000�1000) critical-value, size-correction, and rejection-probability repetitions.
All other results are based on (40,000�40,000�40,000) repetitions.

Table S-X shows that the GMS tests, AQLR/t-test, and MMM/t-test with
κ=1.87 have asymptotic MNRP that is close to 	050 for ΩPos, is slightly above
	050 for ΩZero, and is noticeably above 	050 for ΩNeg. For example, for ΩNeg, the
AQLR/t-test/κ= 1	87 test has MNRP 	075, 	073, and 	076 for p= 2�4, and 10,
respectively. These tests with κ= 2	35 have asymptotic MNRP that is closer to
	050 than when κ = 1	87. There is still some overrejection with ΩNeg, but it is
noticeably smaller. For example, for ΩNeg, the AQLR/t-test/κ = 2	35 test has
MNRP 	056, 	056, and 	060 for p = 2�4, and 10, respectively.

The AQLR/MMSC test shows substantial overrejection whenever p = 10
or Ω = ΩNeg for both κ = 1	87 and 2	35. For example, the MNRP for the
AQLR/MMSC/κ = 2	35 test is 	148 for ΩNeg.

The recommended RMS test has asymptotic MNRP that is close to its nom-
inal level 	050. For ΩNeg, it has MNRP 	051, 	047, and 	044 for p = 2�4, and 10,
respectively.

Based on Table S-X, we conclude that some GMS tests have moderate to
large problems of overrejection asymptotically under fixed κ asymptotics for
some Ω matrices. However, some GMS tests with κ = 2	35 perform fairly well
and overreject by a relatively small amount. The recommended RMS test per-
forms well. It shows no sign of overrejection.

Next, we discuss the asymptotic power results given in Table S-XI. Table S-XI
shows that the GMS tests given by MMM/t-test with κ = 2	35 and κ = 1	87
have quite low power compared to the recommended RMS test (i.e., the
AQLR/t-test/κauto test) for ΩNeg and noticeably lower power for ΩPos. For
ΩNeg, the powers of the MMM/t-test tests are decreasing in p rather quickly.

The GMS tests AQLR/t-test/κ= 2	35 and AQLR/t-test/κ= 1	87 have power
that is similar to that of the recommended RMS test, but lower on average. The
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GMS tests AQLR/MMSC/κ = 2	35 and AQLR/MMSC/κ = 1	87 have lower
power than the corresponding t-test versions, especially for p= 10.

We conclude that (i) the best GMS test in terms of asymptotic MNRP and
power is the AQLR/t-test/κ = 2	35, (ii) the recommended RMS test performs
similarly to this GMS test, but has slightly higher power on average and does
not overreject under the null hypothesis, and (iii) the recommended RMS test
outperforms the other GMS tests considered by a noticeable margin in terms
of asymptotic MNRP and/or power.

S6.7. Additional Asymptotic MNRP and Power Results

Table S-XII reports asymptotic MNRP results for some tests that are not
considered in AB1 or above. Table S-XIII does likewise for asymptotic power.

The critical values for the pure ELR test are based on a constant critical
value that does not depend on Ω (i.e., it is least favorable over Ω). It is approx-
imated by taking the maximum critical value for the AQLR/PA test over 43 Ω
matrices.31 (Each of these PA critical values is computed using all null mean
vectors μ that consist of 0’s and ∞’s.) The critical values are found to be 5	07,
7	99� and 16	2 for p= 2, 4, and 10, respectively.

S6.8. Comparative Computation Times

As reported in the paper, to compute the recommended bootstrap RMS
test (i.e., AQLR/t-test/κauto/Bt) using 10,000 bootstrap repetitions takes 	34,
	39, and 	86 seconds when p = 2, 4, and 10, respectively, and n = 250 using a
PC with a 3.2-GHz processor. For the asymptotic normal version of the rec-
ommended RMS test, i.e., AQLR/t-test/κauto/Nm, using 10,000 critical value
simulations, the times are 	08, 	09, and 	16, seconds, respectively.

In contrast, to compute the bootstrap version of the MMM/t-test/κ = 2	35
test using 10,000 bootstrap repetitions takes 	19, 	24, and 	60 seconds when
p = 2, 4, and 10, respectively, and n = 250. For the asymptotic normal version
of the MMM/t-test/κ = 2	35 test, the times are 	003, 	004, and 	009 seconds,
respectively. Note that the computation times are not affected by whether κ
is taken to be κauto or κ = 2	35. The difference between the results in the
previous paragraph and this paragraph is due to the different statistics used:
AQLR and MMM.

The results indicate that the bootstrap version of the MMM-based test is
between 1	4 and 1	8 times faster than the corresponding bootstrap version of
the AQLR-based test. On the other hand, the asymptotic normal version of the
MMM-based test is very much faster (from 17 to 30 times) than the asymptotic

31For any given value of δ = δ(Ω), these 43 matrices are defined just as the 19 Toeplitz ma-
trices are defined in Section S7.2. The δ(Ω) values considered are the 43 values specified by the
endpoints for δ in Table I, but including −	99 and excluding −1	0 and 1	0.
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TABLE S-XII

ASYMPTOTIC MNRP COMPARISONS OF NOMINAL .05 TESTS WITH η= 0a

Critical
Value

Tuning
Param. κ

p = 10 p = 4 p = 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM PA — 	052 	048 	046 	051 	050 	050 	053 	050 	049
AQLR PA — 	048 	048 	047 	050 	050 	051 	051 	050 	049
ELR Const. — 	021 	010 	000 	048 	025 	006 	047 	031 	025

MMM t-test Best 	059 	061 	054 	054 	058 	058 	054 	053 	051
MMM t-test 2	35 	061 	054 	052 	056 	052 	052 	055 	051 	050
MMM t-test 1	87 	073 	056 	052 	070 	054 	052 	065 	052 	050

Max PA — 	051 	049 	047 	051 	051 	051 	053 	050 	050
Max t-test Best 	056 	057 	052 	053 	055 	052 	054 	052 	052
Max t-test 2	35 	056 	053 	051 	054 	052 	052 	055 	051 	050
Max t-test 1	87 	066 	054 	051 	065 	053 	052 	065 	052 	050

SumMax PA — 	051 	047 	047 	051 	050 	051 	053 	050 	049
SumMax t-test Best 	060 	060 	054 	054 	055 	056 	054 	053 	051
SumMax t-test 2	35 	059 	054 	052 	056 	052 	052 	055 	051 	050
SumMax t-test 1	87 	071 	056 	052 	070 	053 	052 	065 	052 	050

AQLR ϕ(2) Best 	092b 	102b 	066b 	064c 	057d 	052d 	062d 	059d 	054d

AQLR ϕ(2) 2	35 	090b 	081b 	065b 	058c 	057d 	052d 	062d 	056d 	053d

AQLR ϕ(2) 1	87 	098b 	081b 	065b 	066c 	057d 	052d 	062d 	056d 	053d

AQLR ϕ(3) Best 	113b 	111b 	066b 	098c 	063d 	052d 	072d 	068d 	055d

AQLR ϕ(3) 2	35 	245b 	111b 	065b 	153c 	065d 	052d 	118d 	062d 	054d

AQLR ϕ(3) 1	87 	262b 	114b 	065b 	162c 	068d 	052d 	127d 	065d 	054d

AQLR ϕ(4) Best 	088b 	089b 	066b 	066c 	057d 	052d 	062d 	058d 	056d

AQLR ϕ(4) 2	35 	092b 	081b 	065b 	062c 	057d 	052d 	062d 	056d 	053d

AQLR ϕ(4) 1	87 	105b 	082b 	065b 	077c 	057d 	052d 	074d 	058d 	053d

AQLR t-test Best 	058 	061 	051 	053 	058 	051 	053 	053 	051
AQLR t-test 2	35 	060 	054 	050 	056 	052 	051 	056 	051 	050
AQLR t-test 1	87 	076 	056 	050 	073 	054 	051 	075 	052 	050
AQLR t-test Auto 	044 	046 	038 	047 	049 	047 	051 	051 	050

AQLR MMSC Best 	088b 	097b 	066b 	055 	058 	051 	052 	053 	051
AQLR MMSC 2	35 	148b 	081b 	064b 	111 	052 	051 	057 	051 	050
AQLR MMSC 1	87 	173b 	082b 	064b 	119 	054 	051 	075 	052 	050

aκ = Best denotes the κ value that maximizes asymptotic average power. Unless stated otherwise, results are based
on (40,000, 40,000) critical-value and rejection-probability repetitions.

bResults are based on (1000�1000) repetitions.
cResults are based on (2000�2000) repetitions.
dResults are based on (5000�5000) repetitions.

normal version of the AQLR-based test. (This is because generation of the
bootstrap samples dominates the computation time for the bootstrap version
of the MMM-based test.)

When constructing a CS, if the computation time is burdensome (because
one needs to carry out many tests with different values of θ as the null value),
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TABLE S-XIII

ASYMPTOTIC POWER COMPARISONS (SIZE-CORRECTED) OF NOMINAL .05 TESTSa

Critical
Value

Tuning
Param. κ

p = 10 p = 4 p = 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM PA — 	04 	36 	34 	20 	53 	45 	48 	62 	59
AQLR PA — 	35 	36 	69 	45 	53 	70 	58 	62 	65
ELR Const. — 	19 	17 	12 	44 	42 	39 	57 	55 	54

MMM t-test Best 	18 	67 	79 	31 	69 	76 	51 	69 	72
MMM t-test 2	35 	18 	64 	68 	31 	68 	67 	51 	68 	68
MMM t-test 1	87 	16 	66 	71 	28 	69 	70 	48 	69 	69

Max PA — 	19 	44 	70 	30 	57 	71 	48 	64 	66
Max t-test Best 	25 	58 	82 	35 	66 	78 	51 	69 	72
Max t-test 2	35 	24 	57 	80 	35 	65 	76 	51 	68 	71
Max t-test 1	87 	23 	58 	80 	33 	66 	77 	48 	69 	71

SumMax PA — 	10 	43 	62 	20 	55 	60 	48 	62 	59
SumMax t-test Best 	20 	65 	81 	31 	69 	77 	51 	69 	72
SumMax t-test 2	35 	20 	62 	76 	31 	68 	72 	51 	68 	68
SumMax t-test 1	87 	19 	64 	78 	28 	69 	73 	48 	69 	69

AQLR ϕ(2) Best 	51b 	65b 	81b 	60c 	69d 	78d 	66d 	69d 	72d

AQLR ϕ(2) 2	35 	50b 	58b 	77b 	60c 	65d 	75d 	64d 	68d 	70d

AQLR ϕ(2) 1	87 	50b 	60b 	78b 	60c 	66d 	76d 	64d 	68d 	70d

AQLR ϕ(3) Best 	43b 	63b 	81b 	55c 	68d 	78d 	61d 	69d 	72d

AQLR ϕ(3) 2	35 	36b 	63b 	80b 	52c 	68d 	77d 	59d 	68d 	72d

AQLR ϕ(3) 1	87 	36b 	63b 	81b 	52c 	68d 	77d 	59d 	69d 	72d

AQLR ϕ(4) Best 	51b 	65b 	81b 	60c 	70d 	78d 	66d 	69d 	72d

AQLR ϕ(4) 2	35 	51b 	60b 	78b 	60c 	66d 	75d 	66d 	69d 	70d

AQLR ϕ(4) 1	87 	51b 	63b 	79b 	58c 	68d 	76d 	61d 	69d 	71d

AQLR t-test Best 	55 	67 	82 	60 	69 	78 	65 	69 	73
AQLR t-test 2	35 	55 	64 	79 	60 	68 	76 	51 	68 	68
AQLR t-test 1	87 	52 	66 	80 	56 	69 	77 	48 	69 	69
AQLR t-test Auto 	55 	67 	82 	59 	69 	78 	65 	69 	73

AQLR MMSC Best 	56b 	66b 	81b 	63 	69 	78 	65 	69 	73
AQLR MMSC 2	35 	46b 	60b 	74b 	56 	68 	75 	64 	68 	70
AQLR MMSC 1	87 	44b 	63b 	76b 	54 	69 	76 	59 	69 	71

Power Envelope — 	85 	85 	85 	80 	80 	80 	75 	75 	75

aκ = Best denotes the κ value that is best in terms of asymptotic average power. Unless stated otherwise, results
are based on (40,000�40,000�40,000) critical-value, size-correction, and rejection-probability repetitions.

bResults are based on (1000�1000�1000) repetitions.
cResults are based on (2000�2000�2000) repetitions.
dResults are based on (5000�5000�5000) repetitions.

then the results above suggest that a useful approach is to map out the gen-
eral features of the CS using the asymptotic normal version of the MMM/t-
test/κ = 2	35 test, which is very fast to compute, and then switch to the boot-
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strap version of the AQLR/t-test/κauto test to find the boundaries of the CS
more precisely.

Computation of the ELR/t-test/κauto bootstrap test using 10,000 bootstrap
repetitions takes 3	1, 3	8, and 5	6 seconds when p = 2, 4, and 10, respectively,
and n = 250. This is slower than the AQLR/t-test/κauto bootstrap test by fac-
tors of 9	3, 9	8, and 6	6.

S6.9. Magnitude of RMS Critical Values

Table S-XIV provides information on the magnitude of the recommended
RMS critical value for the AQLR/t-test/κauto test when the size-correction
factor η̂ is not included. (Recall that the RMS critical value equals cn(θ� κ̂) +
η̂.) Specifically, Table S-XIV provides simulated values of the mean and stan-
dard deviation of the asymptotic distribution of the data-dependent quantile
cn(θ� κ̂) = qS2A(ϕ

(1)(ξn(θ)� Ω̂n(θ))� Ω̂n(θ)) in various scenarios. The mean val-
ues in Table S-XIV can be compared with the values of the components η1(δ)
and η2(p) (given in Table I) of the size-correction factor η̂ (= η1(δ̂n(θ)) +
η2(p)) to see how large the quantile cn(θ� κ̂) is (on average) compared to the
size-correction factor η̂.

The asymptotic distribution of cn(θ� κ̂) depends on h1 and Ω. Table S-XIV
considers the same three correlation matrices ΩNeg, ΩZero, and ΩPos as con-
sidered elsewhere in AB1 and above; see AB1 for their definitions. Table S-
XIV considers h1 vectors that consist of 0’s and ∞’s. (Other h1 vectors are
of interest, but for brevity we do not consider them here.) When an element
of h1 equals ∞, the corresponding moment inequality is far from binding

TABLE S-XIV

MEAN AND STANDARD DEVIATION (SD) OF THE ASYMPTOTIC DISTRIBUTION OF THE
DATA-DEPENDENT RMS CRITICAL VALUES EXCLUDING THE SIZE-CORRECTION FACTOR η̂a

ΩNeg ΩZero ΩPos

Number of Mean SD Mean SD Mean SD
Zero’s in h1 cn(θ� κ̂) cn(θ� κ̂) cn(θ� κ̂) cn(θ� κ̂) cn(θ� κ̂) cn(θ� κ̂)

1 2	7 .00 2	7 .00 2.7 .00
2 5	0 .13 4	1 .53 3.5 .55
3 6	2 .11 5	2 .52 4.1 .68
4 7	5 .11 6	2 .54 4.5 .76
5 8	7 .13 7	2 .57 5.0 .82
6 9	8 .14 8	1 .59 5.3 .86
7 10	9 .16 8	9 .57 5.6 .89
8 11	9 .16 9	7 .63 5.9 .90
9 12	9 .17 10	6 .66 6.1 .92

10 13	8 .17 11	4 .68 6.3 .94

aResults are based on 40,000 simulation repetitions.
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and the moment selection procedure detects this with probability 1 asymp-
totically and does not include this moment when computing cn(θ� κ̂). When
an element of h1 equals 0, the corresponding moment inequality is binding
and the moment selection procedure includes this moment with high proba-
bility but not with probability 1, even asymptotically. (It is for this reason that
cn(θ� κ̂) is random asymptotically.) In consequence, the asymptotic distribu-
tion depends on h1 through the number of zeros in h1 and through the sub-
matrix of Ω that corresponds to the zeros in h1. The matrices ΩNeg, ΩZero, and
ΩPos are defined such that for any value of p, the submatrix of Ω of dimen-
sion equal to the number of zeros in h1 is the same (provided p ≥ number
of zeros in h1). In consequence, the results of Table S-XIV hold for any value
of p. For example, if p = 20, Ω = ΩNeg, and the number of zeros in h1 is 5,
one obtains the same mean and standard deviation of the asymptotic distri-
bution of cn(θ� κ̂) as when p = 15, Ω = ΩNeg, and the number of zeros in h1

is 5.
The results of Table S-XIV, combined with the magnitudes of the size-

correction factors given in Table I, show that the size-correction factor η̂ =
η1(δ̂n(θ))+η2(p) typically is small compared to cn(θ� κ̂), but is not negligible.
For example, for p = 10, Ω = ΩZero = I10, and h1 = (0�0�0�0�0�∞�∞�∞�
∞�∞)′ (which corresponds to five moment inequalities being binding and five
being very far from binding), the mean and standard deviation of the asymp-
totic distribution of cn(θ� κ̂) are 7	2 and 	57, respectively, whereas the size-
correction factor is 	614.

S7. DETAILS CONCERNING THE NUMERICAL RESULTS

This section contains (i) the definition of the μ vectors used in AB1 (which
define the alternatives over which asymptotic and finite-sample average power
is computed), (ii) a description of some details concerning the assessment of
the properties of the automatic method of choosing κ, (iii) a discussion of the
determination and computation of the asymptotic power envelope, (iv) a dis-
cussion of the computation of the κ values that maximize asymptotic aver-
age power that are reported in Table II, (v) a description of the numerical
computation of η2(p), which is part of the recommended size-correction func-
tion η(·), and (vi) a brief description of the computation of the finite-sample
MNRP’s.

S7.1. μ Vectors

For p = 2, the μ vectors considered are

M2(I2)= {
(−2	309�0)� (−2	309�1)� (−2	309�2)� (−2	309�3)�(S7.1)

(−2	309�4)� (−2	309�7)� (−1	6263�−1	6263)
}
�
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M2(ΩNeg)= {
(−1	001�0)� (−1	804�1)� (−2	303�2)� (−2	309�3)�

(−2	309�4)� (−2	309�7)� (−0	5165�−0	5165)
}
�

M2(ΩPos) = M2(I2) except the last vector is (−2	0040�−2	0040)	

The power envelope at each of these μ vectors is 	750.
For p = 4, the μ vectors in M4(I4) are defined by

M4(Ω)(S7.2)

= {
(−μ1�−μ1�1�1)� (−μ2�−μ2�2�2)� (−μ3�−μ3�3�3)�

(−μ4�−μ4�4�4)� (−μ5�−μ5�7�7)� (−μ6�−μ6�1�7)�

(−μ7�−μ7�2�7)� (−μ8�−μ8�3�7)� (−μ9�−μ9�4�7)�

(−μ10�1�1�1)� (−μ11�2�2�2)� (−μ12�3�3�3)� (−μ13�4�4�4)�

(−μ14�7�7�7)� (−μ15�1�1�7)� (−μ16�2�2�7)� (−μ17�3�3�7)�

(−μ18�4�4�7)� (−μ19�−μ19�0�0)� (−μ20�0�0�0)�

(−μ21�25�25�25)� (−μ22�−μ22�25�25)� (−μ23�−μ23�−μ23�25)�

(−μ24�−μ24�−μ24�−μ24)
}
�

and μj = 1	7388 for j = 1� 	 	 	 �9�19�22, μj = 2	4705 for j = 10� 	 	 	 �18�20�21,
μ23 = 1	4242, and μ24 = 1	2350.

For p = 4, the μ vectors in M4(ΩNeg) are defined by (S7.2), and μ1 = 0	5505�
μj = 0	5526 for j = 2� 	 	 	 �5, μ6 = 0	5505, μj = 0	5526 for j = 7�8�9, μ10 =
1	8814, μ11 = 2	4283, μj = 2	4705 for j = 12�13�14�17�18�21, μ15 = 1	8814,
μ16 = 2	4283, μ19 = 0	3176, μ20 = 0	8624, μ22 = 0	5526, μ23 = 0	2607, and μ24 =
0	1756.

For p = 4, the μ vectors in M4(ΩPos) are defined by (S7.2), and μj = 2	4047
for j = 1� 	 	 	 �9�19�22, μj = 2	4705 for j = 10� 	 	 	 �18�20�21, μ23 = 2	2628,
and μ24 = 2	1293.

For p = 4, the power envelope at each of the μ vectors is 	800.
For p = k = 10, M10(Ω) includes 40 vectors:

M10(Ω)(S7.3)

= {
(−μ1�−μ1�1� 	 	 	 �1)� (−μ2�−μ2�2� 	 	 	 �2)�

(−μ3�−μ3�3� 	 	 	 �3)� (−μ4�−μ4�4� 	 	 	 �4)�

(−μ5�−μ5�7� 	 	 	 �7)� (−μ6�−μ6�1�1�1�7� 	 	 	 �7)�

(−μ7�−μ7�2�2�2�7� 	 	 	 �7)� (−μ8�−μ8�3�3�3�7� 	 	 	 �7)�

(−μ9�−μ9�4�4�4�7� 	 	 	 �7)�

(−μ10�−μ10�−μ10�−μ10�1� 	 	 	 �1)�
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(−μ11�−μ11�−μ11�−μ11�2� 	 	 	 �2)�

(−μ12�−μ12�−μ12�−μ12�3� 	 	 	 �3)�

(−μ13�−μ13�−μ13�−μ13�4� 	 	 	 �4)�

(−μ14�−μ14�−μ14�−μ14�7� 	 	 	 �7)�

(−μ15�−μ15�−μ15�−μ15�1�1�1�7�7�7)�

(−μ16�−μ16�−μ16�−μ16�2�2�2�7�7�7)�

(−μ17�−μ17�−μ17�−μ17�3�3�3�7�7�7)�

(−μ18�−μ18�−μ18�−μ18�4�4�4�7�7�7)�

(−μ19�1� 	 	 	 �1)� (−μ20�2� 	 	 	 �2)� (−μ21�3� 	 	 	 �3)�

(−μ22�4� 	 	 	 �4)� (−μ23�7� 	 	 	 �7)� (−μ24�1�1�1�7� 	 	 	 �7)�

(−μ25�2�2�2�7� 	 	 	 �7)� (−μ26�3�3�3�7� 	 	 	 �7)�

(−μ27�4�4�4�7� 	 	 	 �7)� (−μ28�−μ28�0� 	 	 	 �0)�

(−μ29�−μ29�−μ29�−μ29�0� 	 	 	 �0)� (−μ30�0� 	 	 	 �0)�

(−μ31�25� 	 	 	 �25)� (−μ32�−μ32�25� 	 	 	 �25)�

(−μ33�−μ33�−μ33�25� 	 	 	 �25)�

(−μ34�−μ34�−μ34�−μ34�25� 	 	 	 �25)�

(−μ35�−μ35�−μ35�−μ35�−μ35�25� 	 	 	 �25)�

(−μ36� 	 	 	 �−μ36�25�25�25�25)� (−μ37� 	 	 	 �−μ37�25�25�25)�

(−μ38� 	 	 	 �−μ38�25�25)� (−μ39� 	 	 	 �−μ39�25)�

(−μ40� 	 	 	 �−μ40)
}
	

For p = 10, the μ vectors in M10(I10) are defined by (S7.3), and μj = 1	8927
for j = 1� 	 	 	 �9�28�32, μj = 1	3360 for j = 10� 	 	 	 �18�29�34, μj = 2	6817 for
j = 19� 	 	 	 �27�30�31, μ33 = 1	5463, μ35 = 1	1963, μ36 = 1	0893, μ37 = 1	0099,
μ38 = 0	9465, μ39 = 0	8882, and μ40 = 0	8440.

For p = 10, the μ vectors in M10(ΩNeg) are defined by (S7.3), and μj =
0	6016 for j = 1� 	 	 	 �9, μj = 0	3475 for j = 10� 	 	 	 �18, μ19 = 1	9847, μ20 =
2	5835, μj = 2	6817 for j = 21�22�23�26�27�31, μ24 = 1	9847, μ25 = 2	5835,
μ28 = 0	5341, μ29 = 0	3322, μ30 = 1	1551, μ32 = 0	6016, μ33 = 0	4195, μ34 =
0	3475� μ35 = 0	2985, μ36 = 0	2674, μ37 = 0	2430, μ38 = 0	2254, μ39 = 0	2106,
and μ40 = 0	1993.

For p = 10, the μ vectors in M10(ΩPos) are defined by (S7.3), and μj =
2	6227 for j = 1� 	 	 	 �9, μj = 2	4676 for j = 10� 	 	 	 �18, μj = 2	6817 for j =
19� 	 	 	 �27, μ28 = 2	6227, μ29 = 2	4676, μ30 = 2	6817, μ31 = 2	6817, μ32 =
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2	6227, μ33 = 2	5401, μ34 = 2	4676� μ35 = 2	4005, μ36 = 2	3140, μ37 = 2	2846,
μ38 = 2	2565, μ39 = 2	2343, and μ40 = 2	2066.

For p = 10, the power envelope at each of the μ vectors is 	850.

S7.2. Automatic κ Power Assessment Details

The 19 matrices Ω that are considered in Table S-I in Section S6.1.2 are
Toeplitz matrices with elements on the diagonals given by the (p − 1) vec-
tors ρ defined as follows. For p = 2, ρ takes the values for δ specified in
Table S-I. For p = 4�10, if δ ≥ 0, ρ = (δ� 	 	 	 � δ). For p = 4, if δ = −	99,
ρ = (−	99� 	97�−	95); if δ = −	975, ρ = (−	975� 	94�−	90); if δ = −	95, ρ =
(−	95� 	9�−	8); and if −	9 ≤ δ < 0, ρ = (δ/(−	9)) × (−	9� 	7�−	5). For p =
10, if δ = −	99, ρ = (−	99� 	97�−	95� 	93�−	91� 	89�−	87, 	85�−	83); if δ =
−	975, ρ = (−	975� 	94�−	90� 	86�−	82� 	78�−	76� 	74�−	72); if δ = −	95, ρ =
(−	95� 	9�−	8� 	7�−	6� 	5�−	4� 	3�−	2); and if −	9 ≤ δ < 0, ρ = (δ/(−	9)) ×
(−	9� 	8�−	7� 	6, −	5� 	4�−	3� 	2�−	1).

The randomly generated Ω matrices discussed in AB1 (that are used
to assess the performance of the automatic κ method) have the follow-
ing distributions. For p = 2�4, and 10, the Ω matrices are i.i.d. with Ω =
Diag−1/2(BB′)BB′ Diag−1/2(BB′), where B is a p × p matrix with independent
N(2	5�4) elements. For p = 2�4, 500 Ω matrices are used. For p = 10, 250 Ω
matrices are used.

The set of alternative hypothesis mean vectors μ, denoted Mp(Ω) (used
when assessing the asymptotic average power properties of the automatic
κ method for Ω matrices that do not equal ΩNeg, ΩZero, or ΩPos) contain
linear combinations of μ vectors in Mp(ΩNeg), Mp(ΩZero), and Mp(ΩPos).
Specifically, for a given matrix Ω, Mp(Ω) is defined by (i) Mp(Ω) =
Mp(ΩNeg) if δ(Ω) ∈ [−1	0�−	90], (ii) if δ(Ω) ∈ [−	9�0], Mp(Ω) = {μ :μ =
(1 + δ/	9)μZero�j − (δ/	9)μNeg�j for j = 1� 	 	 	 � Jp}, where μZero�j denotes the
jth element of Mp(ΩZero) and analogously for Mp(ΩNeg) and Mp(ΩPos),
and Jp denotes the numbers of elements in Mp(ΩZero), (iii) if δ(Ω) ∈ [0� 	5],
Mp(Ω) = {μ :μ = (1 − δ/	5)μZero�j + (δ/	5)μPos�j for j = 1� 	 	 	 � Jp}, and (iv) if
δ(Ω) ∈ [0	5�1	0], Mp(Ω) = Mp(ΩPos).

S7.3. Asymptotic Power Envelope

We obtain an upper bound on the asymptotic power envelope by considering
the simple-versus-simple likelihood ratio (SSLR) test for the desired alterna-
tive distribution and some selected null distribution, with the critical value cho-
sen so that the test has the desired asymptotic null rejection rate α at the spec-
ified null distribution. This method of obtaining an upper bound on a power
envelope also has been exploited in different contexts by Andrews, Moreira,
and Stock (2008) and Müller and Watson (2008). If the specified null distri-
bution is such that the SSLR test has maximum rejection probability equal to
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α over all null distributions, then the specified null distribution is least favor-
able and the SSLR test actually provides the asymptotic power envelope at the
alternative distribution considered.

We assume that one observes (n1/2mn(θ0)�Σ) and the null hypothesis H0 is
defined as in (S5.3). The simple alternative is H1 :F = Fn, where Fn is a n1/2

local alternative with asymptotic mean vector μAlt. Asymptotically, the distri-
bution of n1/2mn(θ0) under the alternative is N(μAlt�Σ). We take the specified
asymptotic null distribution to be N(μNull�Σ), where μNull is defined to mini-
mize (μ−μAlt)

′Σ−1(μ−μAlt) over μ ∈R
p
[+∞]. In the numerical results reported

below, we find that this choice of null distribution is least favorable. Thus,
the upper bound on the asymptotic power envelope, up to numerical accuracy
(based on 40,000 simulation repetitions), is the asymptotic power envelope.

S7.4. Computation of the κ Values That Maximize Asymptotic Average Power

Here we discuss the computation of the κ values that maximize asymptotic
average power. These best κ values are used in the asymptotic power com-
parisons given in Table II. For all of the RMS tests in Table II, the best κ
values are determined by grid search to an accuracy of 	2. On a subset of
cases this is found to be sufficiently small that the asymptotic average power
is within 	01 of the maximum based on a finer grid. The grid of κ values used
for the t-test critical values and each test statistic considered are subsets of
{	0� 	2� 	 	 	 �3	6�3	8�4	2} with lower and upper bounds on the elements of each
subset being determined (by previous computations) to include the best κ
value. For all of the test statistics considered, the average power values are
well behaved as a function of κ, there is no difficulty in finding the best κ value,
and the best κ value is within the interior of the range considered. To ensure
the latter, for the AQLR/MMSC test, the following alternative grids are used
in special cases: for p = 4 and ΩNeg, {4	9�5	1� 	 	 	 �6	5}; for p = 10 and ΩNeg,
{4	1�4	4� 	 	 	 �6	5}. For the AQLR/ϕ(3) test, the following alternative grids are
used in special cases: for p = 2 and ΩNeg, {5	0�5	5� 	 	 	 �10	5}; for p = 4 and
ΩNeg, {3	5�4	0� 	 	 	 �10	5}; for p= 10 and ΩNeg, {11	5�12	0� 	 	 	 �14	0}.

S7.5. Numerical Computation of η2(p)

The size-correction factor η2(p) is determined as follows. Let p and Ω be
given. For given (h1�Ω), we compute the .95 sample quantile of{

S2A

(
Ω1/2Zr + (h1�0v)�Ω

)
(S7.4)

− qS2A

(
ϕ(1)

(
κ−1(Ω)

[
Ω1/2Zr + (h1�0v)

]
�Ω

)
�Ω

)
−η1

(
δ(Ω)

)
: r = 1� 	 	 	 �R

}
�
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where Zr ∼ i.i.d. N(0k� Ik) for r = 1� 	 	 	 �R, where R = 40,000. Call the sample
quantile ηh1�Ω. Up to simulation error, ηh1�Ω is the smallest value that satisfies

CP
(
h1�Ω�η1

(
δ(Ω)

) +ηh1�Ω

) = 1 − α	(S7.5)

The same simulated random variables {Zr : r = 1� 	 	 	 �R} are used for all
(h1�Ω) considered. The critical value qS2A(ϕ

(1)(κ−1(Ω)[Ω1/2Zr + (h1�0v)]�
Ω)�Ω) in (S7.4) is obtained by simulation for each r. (The number of simu-
lation repetitions employed is R here too and the same random numbers are
used for each r.)

Let E1 denote the set of all p vectors whose elements are 0’s and ∞’s. By
considering a variety of subcases, we find that size is (essentially) attained for
μ ∈ E1; see Section S7.6.32 Thus, to obtain good numerical approximations,
it suffices to restrict attention to maximization of ηh1�Ω over E1, rather than
over R

p
+�∞. In addition, we approximate the maximization of ηh1�Ω over the

parameter space Ψ for Ω to a maximization of a finite set Ψ ∗ ⊂ Ψ . Given this,
η2(p) ∈R is defined to be

sup
h1∈E1�Ω∈Ψ ∗

ηh1�Ω	(S7.6)

For p ≤ 10, the set Ψ ∗ is a set of correlation matrices that includes (i) 43
Toeplitz matrices Ω that are such that δ(Ω) takes values in a grid between
−	99 and 	99,33 and (ii) 500 randomly generated matrices Ω that are generated
by Ω = Corr(V ), where V = BB′ and B is a p×p matrix with i.i.d. N(0�1) el-
ements. As the number of randomly generated matrices Ω goes to infinity, the
maximum of ηh1�Ω over Ψ ∗ approaches the maximum of ηh1�Ω over Ψ . Since the
same underlying random variables {Zr : r = 1� 	 	 	 �R} are used for each (h1�Ω)
considered, an empirical process central limit theorem (CLT) guarantees that
as R and the number of random matrices Ω considered go to infinity, the cal-
culated critical values converge to the desired value η2(p) that satisfies

inf
h1∈E1�Ω∈Ψ

CP
(
h1�Ω�η1

(
δ(Ω)

) +η2(p)
) = 1 − α	(S7.7)

S7.6. Maximization Over μ Vectors in the Null Hypothesis

In this section, we report the results of calculations that assess the impact of
using the restricted set of null mean vectors E1, rather than all of Rp

+�∞ when

32In the numerical results, we use 25 in place of ∞, but there is no sensitivity to this choice.
Results for 15 and 35 give identical results because when the mean is sufficiently large, say 15,
25, or 35, the probability of observing a sample mean that is negative is so close to zero that the
precise value of the mean does not affect the rejection probabilities.

33For any given value of δ = δ(Ω), these 43 matrices are defined just as the 19 Toeplitz ma-
trices are defined in Section S7.2. The δ(Ω) values considered are the 43 values specified by the
endpoints for δ in Table I, but including −	99 and excluding −1	0 and 1	0.
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computing (i) η2(p), (ii) the asymptotic MNRP’s for tests that employ the
asymptotically best κ values (κ = best), and (iii) the finite-sample results of
AB1 and those reported above.

S7.6.1. Computation of η2(p)

Here we assess the impact of using E1, rather than all of Rp
+�∞ when comput-

ing η2(p). First, for the AQLR/t-test/κauto test, we compute the difference
between the asymptotic MNRP when the maximum is over μ vectors in E1 with
the asymptotic MNRP when the maximum is over several larger sets of μ vec-
tors. The larger sets include (i) three different grids of fixed μ vectors, which
are described in the following subsection, and (ii) 1000 randomly generated μ
vectors plus E1.34 These results are for the 43 fixed Toeplitz variance matrices
that are described in Section S7.5. The results are given in Table S-XV.

Second, for 260 randomly generated variance matrices, we compute the dif-
ferences in asymptotic MNRP when the maximum is over E1 and when the
maximum is over 1000 randomly generated μ vectors (with the same distri-
bution as in the previous paragraph) plus E1.35 These results are given in Ta-
ble S-XVI.

Third, we report results for the variance matrix, ΩLF1 , that is found to be least
favorable (LF) over the 43 fixed Toeplitz variance matrices used in the compu-

TABLE S-XV

MAXIMUM DIFFERENCES IN NOMINAL .05 ASYMPTOTIC MNRP’S DUE TO DIFFERENT SETS OF
MEAN VECTORS μ USED IN THE COMPUTATIONS WITH 43 TOEPLITZ VARIANCE MATRICESa

E1 versus E1 versus E1 versus E1 versus
Full Grid Large Partial Grid Small Partial Grid 1000 Random μ

p Plus E1 Plus E1 Plus E1 Plus E1

2 .0001 .0005 .0005 .0004
3 .0005 .0000 .0000 .0005
4 .0003 .0000 .0000 .0005
5 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000
9 — .0000 .0000 .0000

10 — .0000 .0000 .0000

aThe maximum is over the 43 Toeplitz variance matrices.

34 The random μ vectors have elements that are i.i.d. with probability 	5 of equalling 0 and
probability 	5 of being uniform on [0�8].

35The variance matrices are generated via V = BB′, where B is a p×p matrix with i.i.d. N(0�1)
elements.
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TABLE S-XVI

MAXIMUM DIFFERENCES IN NOMINAL .05
ASYMPTOTIC MNRP’S DUE TO DIFFERENT
SETS OF MEAN VECTORS μ USED IN THE

COMPUTATIONS WITH 260 RANDOM
VARIANCE MATRICESa

E1 versus
p 1000 Random μ Vectors Plus E1

3 .0000
4 .0000
5 .0000
6 .0000
7 .0000
8 .0025
9 .0026

10 .0024

aThe maximum is over the 260 variance matrices.

tation of η2(p) for p = 3� 	 	 	 �10.36 We also report results for the variance ma-
trix, ΩLF2 , that is found to be least favorable (LF) over the 500 randomly gen-
erated variance matrices used in the computation of η2(p) for p= 3� 	 	 	 �10.37

For these two variance matrices and p = 3� 	 	 	 �10, we report the differences
in asymptotic MNRP when the maximum is over E1 and when the maximum
is over 100,000 randomly generated μ vectors (with the same distribution as
above) plus E1. The results are given in Table S-XVII.

Fourth, in Table S-XVIII, we report the effect of potential inaccuracy in
η2(p) on the asymptotic MNRP’s of the AQLR/t-test/κauto test.

All results are based on 40,000 simulation repetitions for the critical-value
calculations and the rejection probabilities.

Definitions of the Grids of μ Vectors. The three sets of fixed grids of μ vec-
tors considered are (i) a full grid, (ii) a large partial grid, and (iii) a small partial
grid. The partial grids are considered because a finer mesh can be used with
these grids than with a full grid. A full grid is not computable for p= 9 and 10
because there are too many μ vectors. The grids are defined as follows.

• Full grid of μ vectors. This set of μ vectors consists of p vectors whose ele-
ments (i) all come from a vector, GridVec, of dimension #grid and (ii) contain

36That is, ΩLF1 is the matrix that yields the largest MNRP over the 43 matrices when the MNRP
is computed using all μ vectors with 0’s and ∞’s, and η2(p) is set equal to 0	 This matrix is found
to be Ip for seven of the eight values of p and within 	0001 of being LF for the other case. So, for
simplicity, we take ΩLF1 = Ip for p = 3� 	 	 	 �10.

37That is, ΩLF2 is the matrix that yields the largest MNRP over the 500 random matrices used
to compute η2(p) when the MNRP is computed using all μ vectors with 0’s and ∞’s and η2(p)
is set equal to 0.
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TABLE S-XVII

DIFFERENCES IN NOMINAL .05 ASYMPTOTIC MNRP’S
DUE TO DIFFERENT SETS OF MEAN VECTORS μ

USED IN THE COMPUTATIONS

E1 versus
100,000 Random μ Vectors Plus E1

Difference Difference
p for Ω = ΩLF1

for Ω = ΩLF2

3 .0000 .0000
4 .0000 .0000
5 .0000 .0000
6 .0000 .0000
7 .0000 .0000
8 .0000 .0000
9 .0000 .0000

10 .0000 .0000

at least one zero. The number of such vectors is (#grid)p − (#grid − 1)p,
where #grid is the number of elements in GridVec. The GridVec vectors
used with the full grid are, for p = 2�3, #grid = 24 and GridVec = {0�
	05� 	1� 	2� 	3� 	5� 	75�1�1	5�2�2	5�3�3	5�4�4	5�5�5	5�6�7�8�9�10�15�20}; for
p = 4, #grid = 18 and GridVec = {0� 	25� 	5� 	75�1�1	5�2�2	5�3�3	5�4�4	5�
5�6�7�8�9�10}; for p = 5, #grid = 8 and GridVec = {0� 	5�1�1	5�2�2	5�3�4};
for p = 6, #grid = 5 and GridVec = {0�1�2�3�4}; for p = 7, #grid = 4 and
GridVec = {0�1�2	5�4}; and for p = 8, #grid = 3 and GridVec = {0�2	5�3	5}.

• Large partial grid of μ vectors. This set of μ vectors consists of p vec-
tors whose elements (i) all come from a vector, GridVec, of dimension #grid,
(ii) are nondecreasing, and (iii) contain at least one zero. For example, if p = 4
and GridVec = {0�1�2�3�4}, then #grid = 5 and the μ vectors are of the form

TABLE S-XVIII

DIFFERENCES IN MNRP’S WHEN η2(p) IS INCREASED OR DECREASED BY 25% OR 50%

p Ω +25% −25% +50% −50%

3 ΩZero .0009 .0006 .0019 .0017
4 ΩNeg .0013 .0012 .0022 .0022
4 ΩZero .0011 .0011 .0014 .0026
4 ΩPos .0010 .0010 .0014 .0023
6 ΩZero .0012 .0016 .0025 .0036
8 ΩZero .0018 .0018 .0033 .0041

10 ΩNeg .0022 .0022 .0042 .0044
10 ΩZero .0020 .0030 .0039 .0052
10 ΩPos .0024 .0030 .0046 .0054
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(0�0�0�0)� 	 	 	 � (0�0�2�3), (0�0�2�4), (0�0�3�4)� 	 	 	 � (0�4�4�4). The number
of such vectors does not have a simple closed form expression.

The GridVec vectors used with the large partial grid are, for p= 2�3, and 4,
#grid = 24 and GridVec = {0� 	05� 	1� 	2� 	3� 	5� 	75�1�1	5�2�2	5�3�3	5�4�4	5�
5�5	5�6�7�8�9�10�15�20}; for p = 5, #grid = 11 and GridVec = {0� 	5�1�1	5�
2�2	5�3�4�5�6�7}; for p = 6, #grid = 8 and GridVec = {0�1�2�3�4�5�6�7};
for p = 7, #grid = 7 and GridVec = {0�1�2�3�4�5�6}; for p = 8, #grid =
6 and GridVec = {0�1�2�4�5�6}; for p = 9, #grid = 5 and GridVec =
{0�1�2�4�6}; and for p= 10, #grid = 4 and GridVec = {0�2�4�6}.

• Small partial grid of μ vectors. This set of μ vectors consists of p vec-
tors whose elements (i) all come from a vector, GridVec, of dimension #grid,
(ii) take only two different values, (iii) are nondecreasing, and (iv) contain at
least one zero (to guarantee that the vector is on the boundary of the null hy-
pothesis). For example, if p = 4 and GridVec = {0�1�2�3�4}, then #grid = 5
and the μ vectors are of the form (0�0�0�0)� (0�0�0�1)� 	 	 	 � (0�0�3�3)�
(0�0�4�4)� (0�1�1�1)� 	 	 	 � (0�4�4�4). The number of such vectors is (p− 1) ∗
(#grid − 1)+ 1.

The GridVec vector used with the small partial grid is ∀p = 2� 	 	 	 �10,
#grid = 24 and GridVec = {0� 	05� 	1� 	2� 	3� 	5� 	75�1�1	5�2�2	5�3�3	5�4�4	5�
5�5	5�6�7�8�9�10�15�20}.

MNRP Difference Results. Tables S-XV, S-XVI, and S-XVII provide the
results. Table S-XV shows that the differences in asymptotic MNRP’s of the
AQLR/t-test/κauto test from maximizing over E1 versus the full grid is 	0005
or less. The differences in MNRP’s from maximizing over E1 versus the large
and small partial grids are very small, being 	0000 in all cases with p ≥ 3 and
.0005 for p = 2. Table S-XVI shows that the difference in MNRP’s from max-
imizing over E1 versus 1000 random μ vectors and 260 random Ω matrices is
	0000 for p≤ 7 and always 	0026 or less.

For computation of the η2(p) values, what is most relevant is the difference
between the MNRP over E1 and R

p
+�∞ evaluated at the least favorable vari-

ance matrix. In consequence, Table S-XVII reports the differences for the two
LF matrices ΩLF1 and ΩLF2 defined above. These results are based on 100,000
randomly generated μ vectors. In all 16 cases considered, the differences are
	0000.38

In sum, extensive simulations fail to find a noticeable effect of restricting
the MNRP calculations for the AQLR/t-test/κauto test to μ vectors in E1 com-
pared to calculations based on broader sets of μ vectors in R

p
+�∞.

38One might wonder why the simulated differences are not small but positive, due to simulation
error, even if the true differences are zero. We believe the reason is due to the high positive
correlation between the two statistics whose difference is being computed. Given high positive
correlation, the simulation error is small.
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Potential Effects of Inaccuracy in η2(p). Next, we report the potential ef-
fects of inaccuracy in the calculation of η2(p). Table S-XVIII provides the dif-
ferences in MNRP’s when η2(p) is given by the value in Table I compared to
when it is increased or decreased by 25% or 50%. These results answer the
question, “How much would the asymptotic MNRP’s change if the η2(p) val-
ues in Table I are inaccurate by as much as 25% or 50%?” The results are based
on (40,000�40,000) critical-value and null rejection-probability repetitions.

Table S-XVIII shows that even relatively large percentage changes in η2(p)
have fairly small effects on the MNRP’s. With a change of ±50%, the differ-
ence in MNRP is .0054 or less in all cases.

S7.6.2. Computation of MNRP’s for Tests Based on Best κ Values

Table II reports asymptotic power comparisons for tests using (infeasible)
critical values that employ the asymptotically best κ values (κ = best). The
MNRP’s for these tests and the size correction that is based on the MNRP’s are
computed using all mean vectors μ in E1. In this section, we report numerical
results designed to see whether the restriction to E1, rather than R

p
+�∞, affects

the results. We compute asymptotic MNRP differences of the types reported in
Tables S-XV and S-XVI, but for tests other than the AQLR/t-test/κauto test.
We compute results for a subset of the cases considered in Tables S-XV and
S-XVI.39 (Unlike the results reported in these tables, only the three variance
matrices ΩNeg, ΩZero, and ΩPos that appear in Table II are considered here.)

We discuss the computationally fast and slow tests separately. The computa-
tionally fast tests are the MMM, Max, SumMax, and AQLR test statistics com-
bined with the t-test/κbest critical values. The slow tests are the AQLR test
statistic combined with the ϕ(2)/κbest, ϕ(3)/κbest, and ϕ(4)/κbest critical val-
ues. The AQLR statistic combined with the MMSC critical value is discussed
separately.

For the fast tests and the AQLR/MMSC/κbest test, we compute results for
all of the cases in Tables S-XV and S-XVI for p = 2, 4, and 10, and ΩNeg, ΩZero,
and ΩPos. For the slow tests, we compute results for the full grid for p = 2 and
4 and for 1000 random μ vectors for p= 10.

For the fast tests, the number of simulations used is (40,000�40,000�40,000)
for the critical values, size correction, and rejection probabilities, respec-
tively, in all cases considered. For the slow tests, (10,000�10,000�10,000)
repetitions are used for p = 2, (1000�1000�1000) are used for p = 4, and
(2000�2000�2000) repetitions are used for p = 10. (More repetitions are used
here for p = 10 than p = 4 because fewer μ vectors are considered.) For

39Even if it was the case that considering E1, rather than R
p
+�∞, affects the results for the κbest

tests, the comparisons in Table II are still meaningful because they provide an upper bound on the
size-corrected power of the κbest tests. Hence, comparisons between the recommended AQLR/t-
test/κauto test and the various infeasible κbest tests in Table II are still quite informative. In any
event, the numerical results given below indicate that there is not a significant effect.
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the AQLR/MMSC/κbest test, (40,000�40,000�40,000) repetitions are used for
p = 2 and 4 and (10,000�10,000�10,000) repetitions are used for p = 10.

The results are easy to state, so no table is provided. In all cases but 5
out of 192, the difference between the MNRP computed over E1 and over
the larger set is found to be 	0000. The five exceptions are the following.
For the AQLR/ϕ(j)/κbest for j = 2�3�4 with p = 4, ΩPos, and the full grid,
the differences obtained are 	0040, 	0030, and 	0030, respectively. For the
AQLR/MMSC/κbest test with p = 4 and ΩNeg using 1000 random μ and the
full grid, the differences are 	0034 and 	0037, respectively.

In conclusion, we do not find evidence that the restriction to the set E1, rather
than R

p
+�∞, has a significant effect on the MNRP results for the tests based

on κ = best critical values. The evidence against there being such an effect is
fairly strong for p = 2 and 4 because of the full grid results that are reported.
It is less strong for p = 10 because a full grid could not be considered due to
computational constraints.

S7.6.3. Computation of Finite-Sample MNRP’s

The finite-sample MNRP’s reported in Tables III and S-IV–S-VI are com-
puted for a given covariance matrix Ω by maximizing over the null mean vec-
tors μ ∈ E1, where E1 denotes the set of all p vectors whose elements are 0’s and
∞’s. MNRP-corrected critical values also are computed using E1. The first jus-
tification for using E1, rather than the larger set Rp

+�∞, is the small differences
found between E1 and larger sets of μ vectors in the asymptotic scenario; see
Sections S7.6.1 and S7.6.2. The second justification is a finite-sample analysis
that is analogous to that in Section S7.6.1 for the recommended tests AQLR/t-
test/κauto/Bt and AQLR/t-test/κauto/Nm. We report the results here.

Table S-XIX reports the differences in MNRP’s of these tests when they are
computed over E1 compared to when they are computed over a full grid of μ
vectors plus E1. The grid size (#grid) is 24 for p = 2 and 10 for p = 4. The
GridVec’s are {0� 	05� 	1� 	2� 	3� 	5� 	75�1�1	5�2�2	5�3�3	5�4�4	5�5�5	5�6�7�8�
9�10�15�20} for p= 2 and {0� 	25� 	5� 	75�1�1	5�2�3�4�6} for p= 4. The sam-
ple size is n = 250, as in AB1. The same three matrices ΩNeg, ΩZero, and ΩPos

are employed as in AB1. Results are reported for the same three distributions
N(0�1), t3, and χ2

3 (all rescaled to have mean 0 and variance 1) as considered in
AB1. For p = 2, the results use 5000 critical-value simulation repetitions and
5000 null rejection-probability simulations repetitions. For p = 4, 1000 and
1000 repetitions, respectively, are used.

Table S-XIX shows that in all of the 36 cases considered the difference in
MNRP’s is found to be 	0000. Hence, these results are consistent with the least
favorable null rejection vector being in E1 for the cases considered.

Next, Table S-XX reports MNRP difference results for p = 10. For p = 10, it
is not possible to compute results for a full grid of μ vectors. Instead, we report
results for the same large partial grid, small partial grid, and 1000 randomly
generated μ vectors as described in Section S7.6.1. We report results for the
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TABLE S-XIX

DIFFERENCES IN NOMINAL .05 FINITE-SAMPLE (n= 250) MNRP’S DUE TO DIFFERENT SETS OF
NULL MEAN VECTORS μ USED IN THE COMPUTATIONS

Variance E1 versus
p Test Distribution Matrix Full Grid Plus E1

2 AQLR/t-test/κauto/Bt N(0�1) ΩNeg .0000
ΩZero .0000
ΩPos .0000

t3 ΩNeg .0000
ΩZero .0000
ΩPos .0000

χ2
3 ΩNeg .0000

ΩZero .0000
ΩPos .0000

2 AQLR/t-test/κauto/Nm N(0�1) ΩNeg .0000
ΩZero .0000
ΩPos .0000

t3 ΩNeg .0000
ΩZero .0000
ΩPos .0000

χ2
3 ΩNeg .0000

ΩZero .0000
ΩPos .0000

4 AQLR/t-test/κauto/Bt N(0�1) ΩNeg .0000
ΩZero .0000
ΩPos .0000

t3 ΩNeg .0000
ΩZero .0000
ΩPos .0000

χ2
3 ΩNeg .0000

ΩZero .0000
ΩPos .0000

4 AQLR/t-test/κauto/Nm N(0�1) ΩNeg .0000
ΩZero .0000
ΩPos .0000

t3 ΩNeg .0000
ΩZero .0000
ΩPos .0000

χ2
3 ΩNeg .0000

ΩZero .0000
ΩPos .0000
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TABLE S-XX

DIFFERENCES IN NOMINAL .05 FINITE-SAMPLE (n= 250) MNRP’S DUE TO DIFFERENT SETS OF
NULL MEAN VECTORS μ USED IN THE COMPUTATIONS

E1 versus E1 versus E1 versus
Variance Large Partial Small Partial 1000 Random

p Test Distribution Matrix Grid Plus E1 Grid Plus E1 μ Plus E1

10 AQLR/t-test/ N(0�1) ΩNeg .0000 .0000 .0000
κauto/Bt ΩZero .0000 .0000 .0000

ΩPos .0000 .0000 .0000

t3 ΩNeg .0000 .0000 .0000
ΩZero .0000 .0000 .0000
ΩPos .0000 .0000 .0000

χ2
3 ΩNeg .0000 .0000 .0000

ΩZero .0000 .0000 .0000
ΩPos .0000 .0000 .0000

10 AQLR/t-test/ N(0�1) ΩNeg .0000 .0000 .0000
κauto/Nm ΩZero .0000 .0000 .0000

ΩPos .0000 .0000 .0000

t3 ΩNeg .0000 .0000 .0000
ΩZero .0000 .0000 .0000
ΩPos .0000 .0000 .0000

χ2
3 ΩNeg .0000 .0000 .0000

ΩZero .0000 .0000 .0000
ΩPos .0000 .0000 .0000

same sample size, variance matrices, and distributions as in Table S-XIX. The
results use 1000 critical-value simulation repetitions and 1000 null rejection-
probability simulation repetitions.

The results of Table S-XX for p = 10 are the same as those in Table S-XIX
for p = 2 and p = 4. In all cases, the difference in MNRP’s is 	0000. So, with
p = 10 too, the results are consistent with the least favorable null rejection
vector being in E1 for the cases considered.

S8. COMPUTER PROGRAMS

This section lists the GAUSS computer programs that were used to carry out
the numerical results reported in AB1 and above. These programs are available
as additional Supplemental Material on the Econometric Society website. Also
available on the Econometric Society website is the translation of some of these
programs into Matlab.

• rmsprg_final: This program is designed for users who want to carry out a
test using the recommended RMS test (or any of several related tests). It was
not used to compute any of the numerical results.
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• etaprg1_final: This program was used when computing the η2(p) values
based on 500 randomly generated variance matrices.

• etaprg2_final: This program was used when computing the η2(p) values
based on 43 fixed variance matrices.

• finsamp3_final: This programs was used to compute all of the finite-
sample results reported in Tables III, S-IV, S-V, and S-VI.

• kappaprg_final: This program was used for many purposes, including
(i) computation of the best ε value for use with the AQLR statistic, as re-
ported in Table S-II; (ii) assessment of how well the choice ε = 	012 based
on p = 2 performs for p = 4�10, as reported in Table S-II; (iii) determina-
tion of the best κ values and the corresponding η1(δ) values for the AQLR/t-
test/κauto test for p = 2, as reported in Table I; (iv) asymptotic MNRP and
power comparisons based on best κ values for a variety of test statistics and
the three main variance matrices ΩNeg, ΩZero, and ΩPos, as reported in Tables
II, S-XII, and S-XIII; (v) determination of the asymptotic MNRP’s and power
for a variety of tests when κ = 2	35 and κ = 1	87 (which are BIC and HQIC
values, respectively), as reported in Tables S-X, S-XI, S-XII, and S-XIII; (vi)
asymptotic power comparisons for a variety of tests and the power envelope
for 19 Ω matrices, as reported in Tables S-I and S-IX; (vii) asymptotic power
comparisons for a variety of tests for singular variance matrices, as reported
in Table S-III; (viii) determination of the pure/constant ELR critical values for
the ELR tests whose MNRP’s and power are reported in Tables S-XII and S-
XIII; (ix) determination of the asymptotic MNRP’s and power for the ELR
test with pure/constant critical values, as reported in Tables S-XII and S-XIII;
and (x) changes in asymptotic MNRP’s when η2(p) is increased or decreased
by 25% or 50%, as reported in Table S-XVIII.

• powprg_final: This program was used to compute the difference in aver-
age asymptotic power between the AQLR/t-test/κauto and AQLR/t-test/κbest
tests for 500 randomly generated Ω matrices, as reported in Table S-I and Sec-
tion S6.1.2.

• rmsprg_fs_short_final: This program was not used to compute any of the
results reported in AB1 or this Supplement. It is a shortened version of fin-
samp3_final that computes finite-sample results for the main tests of inter-
est: AQLR/t-test/κauto implemented using the asymptotic distribution or the
bootstrap and MMM/t-test/κ = 2	35.

• sizediffprg11_final: This program computes the differences in MNRP’s
for a variety of tests when the mean vectors μ considered are (i) all vectors
consisting of 0’s and ∞’s and (ii) these μ vectors plus randomly generated μ
vectors, as reported in Table S-XVI and Section S7.6.2.

• sizediffprg22_final: This program computes the differences in asymptotic
MNRP’s for a variety of tests when the mean vectors μ considered are (i) all
vectors consisting of 0’s and ∞’s, and (ii) these μ vectors plus a full grid of μ
vectors, or a large partial grid of μ vectors, or a small partial grid of μ vectors,
as reported in Table S-XV, the first column of results in Table S-XVII, and
Section S7.6.2.
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• sizediffprg22_LF_final: This program computes the same differences as
sizediffprg22_final but for the least favorable variance matrices that were de-
termined when calculating η2(p) using 500 random variance matrices for
p = 3� 	 	 	 �10. These results are reported in the last column of Table S-XVII.

• sizediffprg22_finsamp_final: This program computes the differences in
finite-sample MNRP’s for a variety of tests when the mean vectors μ consid-
ered are (i) all vectors consisting of 0’s and ∞’s, and (ii) these μ vectors plus a
full grid of μ vectors, or a large partial grid of μ vectors, or a small partial grid
of μ vectors, as reported in Tables S-XIX and S-XX.

S9. ALTERNATIVE PARAMETRIZATION AND PROOFS

This section provides proofs of the results given in Section S5. In addition,
the first subsection gives an alternative parametrization of the moment in-
equality/equality model to that given in (S2.1). This parametrization is con-
ducive to the calculation of the asymptotic properties of CS’s and tests. It was
first used in AG. The first subsection also specifies the parameter space for the
case of dependent observations and for the case where a preliminary estimator
of a parameter τ appears. The second subsection provides proofs of the results
stated in the paper.

S9.1. Alternative Parametrization

In this section, we specify a one-to-one mapping between the parameters
(θ�F) with parameter space F and a new parameter γ = (γ1�γ2�γ3) with cor-
responding parameter space Γ . The latter parametrization is amenable to es-
tablishing the asymptotic uniformity results of Theorem 1.

As stated above, the true value θ0 (∈ � ⊂ Rd) is assumed to satisfy the mo-
ment conditions in (S2.1). For the case where the sample moment functions
depend on a preliminary estimator τ̂n(θ) of an identified parameter vector
τ with true parameter τ0, we define mj(Wi�θ) = mj(Wi�θ� τ0), m(Wi�θ) =
(m1(Wi� θ� τ0)� 	 	 	 �mk(Wi�θ� τ0))

′, mn�j(θ) = n−1
∑n

i=1 mj(Wi�θ� τ̂n(θ)), and
mn(θ) = (mn�1(θ)� 	 	 	 �mn�k(θ))

′. (Hence, in this case, mn(θ) �= n−1 ×∑n

i=1 m(Wi�θ).)
We define γ1 = (γ1�1� 	 	 	 � γ1�p)

′ ∈ R
p
+ by writing the moment inequalities in

(S2.1) as moment equalities

σ−1
F�j(θ)EFmj(Wi�θ)− γ1�j = 0 for j = 1� 	 	 	 �p�(S9.1)

where σ2
F�j(θ) is the variance of the asymptotic distribution of n1/2mn�j(θ) un-

der (θ�F). Also, let Ω = Ω(θ�F) = AsyCorrF(n
1/2mn(θ)) denote the correla-

tion matrix of the asymptotic distribution of n1/2mn(θ) under (θ�F). When no
preliminary estimator of a parameter τ appears, σ2

F�j(θ) = limn→∞ VarF(n1/2 ×
mn�j(θ)) and Ω(θ�F) = limn→∞ CorrF(n1/2mn(θ)), where VarF(n1/2mn�j(θ))



56 D. W. K. ANDREWS AND P. J. BARWICK

and CorrF(n1/2mn(θ)) denote the finite-sample variance of n1/2mn�j(θ) and cor-
relation matrix of n1/2mn(θ) under (θ�F), respectively. Let γ2 = (γ2�1�γ2�2) =
(θ� vech∗(Ω(θ�F))) ∈ Rq, where vech∗(Ω) denotes the vector of elements of Ω
that lie below the main diagonal, q = d + k(k− 1)/2, and γ3 = F .

For i.i.d. observations and no preliminary estimator of a parameter τ, the
parameter space for γ is defined by Γ = {γ = (γ1�γ2�γ3): for some (θ�F) ∈ F ,
where F is defined in (S2.2), γ1 satisfies (S9.1), γ2 = (θ� vech∗(Ω(θ�F))), and
γ3 = F}.

For dependent observations and for sample moment functions that de-
pend on a preliminary estimator τ̂n(θ), we specify the parameter space Γ
for the moment inequality model using a set of high-level conditions. To ver-
ify the high-level conditions using primitive conditions, one has to specify
an estimator Σ̂n(θ) of the asymptotic variance matrix Σ(θ) of n1/2mn(θ).
For brevity, we do not do so here. Since there is a one-to-one mapping
from γ to (θ�F), Γ also defines the parameter space F of (θ�F). Let Ψ
be a specified set of k × k correlation matrices. The parameter space Γ
is defined to include parameters γ = (γ1�γ2�γ3) = (γ1� (θ�γ2�2)�F) that sat-
isfy

(i) θ ∈ ��(S9.2)

(ii) σ−1
F�j(θ)EFmj(Wi�θ)− γ1�j = 0 for j = 1� 	 	 	 �p�

(iii) EFmj(Wi�θ)= 0 for j = p+ 1� 	 	 	 �k�

(iv) σ2
F�j(θ) = AsyVarF

(
n1/2mn�j(θ)

)
exists and lies in (0�∞)

for j = 1� 	 	 	 �k�

(v) AsyCorrF
(
n1/2mn(θ)

)
exists and equals Ωγ2�2 ∈ Ψ�

(vi) {Wi : i ≥ 1} are stationary under F�

where γ1 = (γ1�1� 	 	 	 � γ1�p)
′ and Ωγ2�2 is the k×k correlation matrix determined

by γ2�2.40 Furthermore, Γ must be restricted by enough additional conditions
such that under any sequence {γn�h = (γn�h�1� (θn�h� vech∗(Ωn�h)), Fn�h) :n ≥ 1}
of parameters in Γ that satisfies n1/2γn�h�1 → h1 and (θn�h� vech∗(Ωn�h))→ h2 =
(h2�1�h2�2) for some h= (h1�h2) ∈ R

p
+�∞ ×R

q
[±∞], we have

(vii) An = (An�1� 	 	 	 �An�k)
′ →d Zh2�2 ∼ N(0k�Ωh2�2)(S9.3)

as n → ∞� where

An�j = n1/2
(
mn�j(θn�h)−EFn�hmj(Wi� θn�h)

)
/σFn�h�j(θn�h)�

40In Andrews and Guggenberger (2009), a strong mixing condition is imposed in condition (vi)
of (S9.2). This condition is used to verify Assumption E0 in that paper and is not needed with
RMS critical values.
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(viii) σ̂n�j(θn�h)/σFn�h�j(θn�h)→p 1

as n → ∞ for j = 1� 	 	 	 �k�

(ix) D̂−1/2
n (θn�h)Σ̂n(θn�h)D̂

−1/2
n (θn�h)→p Ωh2�2 as n → ∞�

(x) conditions (vii)–(ix) hold for all subsequences {wn}
in place of {n}�

where Ωh2�2 is the k × k correlation matrix for which vech∗(Ωh2�2) = h2�2,
σ̂2

n�j(θ) = [Σ̂n(θ)]jj for 1 ≤ j ≤ k, and D̂n(θ) = Diag{σ̂2
n�1(θ)� 	 	 	 � σ̂

2
n�k(θ)} (=

Diag(Σ̂n(θ))).41�42

For example, for i.i.d. observations, conditions (i)–(vi) in (S2.2) imply con-
ditions (i)–(vi) in (S9.2). Furthermore, conditions (i)–(vi) in (S2.2) plus the
definition of Σ̂n(θ) in (S3.2) and the additional condition (vii) in (S2.2) imply
conditions (vii)–(x) in (S9.3). For a proof, see Lemma 2 of AG.

For dependent observations or when a preliminary estimator of a parameter
τ appears, one needs to specify a particular variance estimator Σ̂n(θ) before
one can specify primitive “additional conditions” beyond conditions (i)–(vi) in
(S9.2) that ensure that Γ is such that any sequences {γwn�h :n ≥ 1} in Γ satisfy
(S9.3). For brevity, we do not do so here.

We now specify the set Δ, defined in (S4.13), in the parametrization intro-
duced above. Define

H = {
h ∈ R

p
[±∞] ×R

q
[±∞] :∃ subsequence {wn} of {n} and sequence(S9.4)

{γwn�h ∈ Γ :n≥ 1} for which w1/2
n γwn�h�1 → h1 and γwn�h�2 → h2

}
	

Then Δ can be written equivalently as

Δ = {
(h1�Ωh2�2) ∈ R

p
+�∞ × cl(Ψ) :h= (h1�h2�1�h2�2) ∈ H(S9.5)

for some h2�1 ∈ cl(�)� where h2�2 = vech∗(Ωh2�2)
}
	

In words, Δ is the set of “slackness” parameters h1 and correlation matrices Ω
that correspond to some limit point h in H	

41When a preliminary estimator τ̂n(θ) appears, An�j can be written equivalently as
n1/2(n−1 ∑n

i=1 mj(Wi�θn�h� τ̂n(θn�h))−EFn�hmj(Wi�θn�h� τ0))/σFn�h�j(θn�h), which typically is asymp-
totically normal with an asymptotic variance matrix Ωh2�2 that reflects the fact that τ0 has been
estimated. When a preliminary estimator τ̂n(θ) appears, Σ̂n(θ) needs to be defined to take ac-
count of the fact that τ0 has been estimated. When no preliminary estimator τ̂n(θ) appears, An�j

can be written equivalently as n1/2(mn�j(θn�h)−EFn�hmn�j(θn�h))/σFn�h�j(θn�h).
42Condition (x) of (S9.3) requires that conditions (vii)–(ix) must hold under any sequence of

parameters {γwn�h :n ≥ 1} that satisfies the conditions preceding (S9.3) with n replaced by wn.
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S9.2. Proofs

The proof of Theorem 1 uses the following lemmas. Let

CPn(γ)= Pγ

(
Tn(θ) ≤ cn(θ)

)
	(S9.6)

As above, for a sequence of constants {ζn :n ≥ 1}, ζn → [ζ1�∞� ζ2�∞] denotes
that ζ1�∞ ≤ lim infn→∞ ζn ≤ lim supn→∞ ζn ≤ ζ2�∞.

LEMMA 4: Suppose Assumptions S, ϕ, κ, and η1 hold. Let {γn�h = (γn�h�1,
γn�h�2�γn�h�3) :n ≥ 1} be a sequence of points in Γ that satisfies (i) n1/2γn�h�1 → h1

for some h1 ∈ R
p
+�∞ and (ii) γn�h�2 → h2 for some h2 = (h2�1�h2�2) ∈ R

q
[±∞]. Let

h= (h1�h2) and let Ωh2�2 be the correlation matrix that corresponds to h2�2.
(a) Then, CPn(γn�h)→ [CP(h1�Ωh2�2�η(Ωh2�2)−)�CP(h1�Ωh2�2�η(Ωh2�2))].
(b) Also, for any subsequence {wn :n ≥ 1} of {n}, the result of part (a) holds

with wn in place of n provided conditions (i) and (ii) above hold with wn in place
of n.

LEMMA 5: Suppose Assumptions S(b)–(e) hold. Then qS(β�Ω) is continuous
on (R

p
[+∞] ×Rv)×Ψ .

PROOF OF THEOREM 1: First, we prove part (a). Let {γ∗
n = (γ∗

n�1�
γ∗
n�2�γ

∗
n�3) ∈ Γ :n ≥ 1} be a sequence such that lim infn→∞ CPn(γ

∗
n) =

lim infn→∞ infγ∈Γ CPn(γ) (= AsyCS). Such a sequence always exists. Let {un :n≥
1} be a subsequence of {n} such that limn→∞ CPun(γ

∗
un
) exists and equals

lim infn→∞ CPn(γ
∗
n) = AsyCS. Such a subsequence always exists.

Let γ∗
n�1�j denote the jth component of γ∗

n�1 for j = 1� 	 	 	 �p. Either
(i) lim supn→∞ u1/2

n γ∗
un�1�j < ∞ or (ii) lim supn→∞ u1/2

n γ∗
un�1�j = ∞. If (i) holds,

then for some subsequence {wn} of {un},
w1/2

n γ∗
wn�1�j → h∗

1�j for some h∗
1�j ∈R+	(S9.7)

If (ii) holds, then for some subsequence {wn} of {un},
w1/2

n γ∗
wn�1�j → h∗

1�j� where h∗
1�j = ∞	(S9.8)

In addition, for some subsequence {wn} of {un},
γ∗
wn�2 → h∗

2 for some h∗
2 ∈ cl(Γ2)	(S9.9)

By taking successive subsequences over the p components of γ∗
un�1 and γ∗

un�2,
we find that there exists a subsequence {wn} of {un} such that for each j =
1� 	 	 	 �p, either (S9.7) or (S9.8) applies and (S9.9) holds. In consequence,
(i) w1/2

n γwn�h�1 → h∗
1 for some h∗

1 ∈ R
p
+�∞, (ii) γwn�h�2 → h∗

2 for some h∗
2 ∈ R

q
[±∞],
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(iii) h∗ = (h∗
1�h

∗
2) ∈ H (for H defined in (S9.4)), and (iv) limn→∞ CPwn(γ

∗
wn
) =

AsyCS. Hence, by Lemma 4(b),

AsyCS = lim
n→∞

CPwn

(
γ∗
wn

) ≥ CP
(
h∗

1�Ωh∗
2�2
�η(Ωh∗

2�2
)−)

(S9.10)

≥ inf
(h1�Ω)∈Δ

CP
(
h1�Ω�η(Ω)−)

�

where the second inequality holds because (h∗
1�Ωh∗

2�2
) ∈ Δ by the definition of

Δ in (S9.5).
Next, by the definition of Δ in (S9.5), for each (h1�Ωh2�2) ∈ Δ, there ex-

ists a subsequence {tn :n ≥ 1} of {n} and a sequence of points {γtn�h = (γtn�h�1,
γtn�h�2�γtn�h�3) ∈ Γ :n≥ 1} such that conditions (i) and (ii) of Lemma 4 hold with
tn in place of n. Hence,

AsyCS = lim inf
n→∞

inf
(θ�F)∈F

PF

(
Tn(θ) ≤ cn(θ)

)
(S9.11)

≤ lim inf
n→∞

CPtn(γtn�h) ≤ CP
(
h1�Ωh2�2�η(Ωh2�2)

)
�

where the second inequality holds by Lemma 4(b). Since (S9.11) holds for all
(h1�Ωh2�2) ∈ Δ, we have

AsyCS ≤ inf
(h1�Ω)∈Δ

CP
(
h1�Ω�η(Ω)

)
	(S9.12)

Combining (S9.10) and (S9.12) establishes part (a) of the theorem.
Part (b) of the theorem follows from part (a) and Assumption η2. Part (c)

of the theorem follows from part (a) and Assumption η3. Q.E.D.

PROOF OF LEMMA 4: For notational simplicity, let Ω0 denote Ωh2�2 . To es-
tablish part (a), we show below that(

Tn(θn�h)
cn(θn�h)

)
→d

(
S
(
Z + (h1�0v)�Ω0

)
qS

(
ϕ

(
κ−1(Ω0)

[
Z + (h1�0v)

]
�Ω0

)
�Ω0

) +η(Ω0)

)
(S9.13)

as n → ∞
under {γn�h :n ≥ 1}, where Z ∼ N(0k�Ω0). Hence, by the definition of conver-
gence in distribution, for every continuity point x of the asymptotic distribution
of Tn(θn�h)− cn(θn�h), we have

Pγn�h

(
Tn(θn�h)≤ cn(θn�h)+ x

)
(S9.14)

→ P
[
S
(
Z + (h1�0v)�Ω0

)
≤ qS

(
ϕ

(
κ−1(Ω0)

[
Z + (h1�0v)

]
�Ω0

)
�Ω0

) +η(Ω0)+ x
]

= CP
(
h1�Ω0�η(Ω0)+ x

)
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There exist continuity points x > 0 and x < 0 arbitrarily close to zero. Hence,
we have

lim sup
n→∞

Pγn�h

(
Tn(θn�h)≤ cn(θn�h)

)
(S9.15)

≤ lim
x↓0

lim sup
n→∞

Pγn�h

(
Tn(θn�h)≤ cn(θn�h)+ x

)
= lim

x↓0
CP

(
h1�Ω0�η(Ω0)+ x

) = CP
(
h1�Ω0�η(Ω0)

)
�

where the first equality holds by (S9.14) and the second equality holds because
CP(h1�Ω0, η(Ω0)+ x) is a d.f. and hence is right-continuous. Analogously,

lim inf
n→∞

Pγn�h

(
Tn(θn�h)≤ cn(θn�h)

) ≥ lim
x↓0

CP
(
h1�Ω0�η(Ω0)− x

)
(S9.16)

= CP
(
h1�Ω0�η(Ω0)−

)
�

where the equality holds by definition. Equations (S9.15) and (S9.16) combine
to establish part (a).

Next, we prove (S9.13). Using Assumption S(a), we have

Tn(θ) = S
(
D̂−1/2

n (θ)n1/2mn(θ)� D̂
−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ)

)
	(S9.17)

For i.i.d. or dependent observations with or without preliminary estima-
tors of identified parameters, (S9.3) holds (using the fact that γ ∈ Γ if and
only if (θ�F) ∈ F and using Lemma 2 of AG to show that (S9.3) holds
for i.i.d. observations). By (S9.3), the jth element of D̂−1/2

n (θn�h)n
1/2mn(θn�h)

equals (1 + op(1))(An�j + n1/2γn�h�1�j), where γn�h�1 = (γn�h�1�1, 	 	 	 � γn�h�1�p)
′ and,

by definition, γn�h�1�j = 0 for j = p + 1� 	 	 	 �k. If h1�j = ∞ and j ≤ p, where
h1 = (h1�1� 	 	 	 �h1�p)

′, then An�j + n1/2γn�h�1�j →p ∞ under {γn�h :n ≥ 1} by con-
dition (vii) of (S9.3) and the definition of {γn�h :n ≥ 1}. Hence, if any element
of h1 equals ∞, D̂−1/2

n (θn�h)n
1/2mn(θn�h) does not converge in distribution (to a

proper finite random vector) and the continuous mapping theorem cannot be
applied to obtain the asymptotic distribution of the right-hand side of (S9.17)
or of the RMS critical value, which is defined by

cn(θ) = qS

(
ϕ

(
ξn(θ)� Ω̂n(θ)

)
� Ω̂n(θ)

) +η
(
Ω̂n(θ)

)
	(S9.18)

To circumvent these problems, we consider k-vector-valued functions of
D̂−1/2

n (θn�h)n
1/2mn(θn�h) and ξn(θn�h) that converge in distribution whether or

not some elements of h1 equal ∞. Then we write the right-hand sides of (S9.17)
and (S9.18) as continuous functions of these k-vectors and apply the continu-
ous mapping theorem. Let G(·) be a strictly increasing continuous d.f. on R,
such as the standard normal d.f.
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For j ≤ k, we have

Gκ�n�j = G
(
ξn�j(θn�h)

)
(S9.19)

= G
(
κ−1

(
Ω̂n(θn�h)

)
σ̂−1

n�j (θn�h)n
1/2mn�j(θn�h)

)
= G

(
κ−1

(
Ω̂n(θn�h)

)
σ̂−1

n�j (θn�h)σFn�h�j(θn�h)
[
An�j + n1/2γn�h�1�j

])
�

where An�j is defined in (S9.3) and, by definition, γn�h�1�j = 0 for j = p +
1� 	 	 	 �k.

Let Z = (Z1� 	 	 	 �Zk)
′ ∼ N(0k�Ω0). Define h1�j = 0 for j = p + 1� 	 	 	 �k. If

j ≤ p and h1�j < ∞ or if j = p+ 1� 	 	 	 �k, then

Gκ�n�j →d G
(
κ−1(Ω0)[Zj + h1�j]

)
(S9.20)

using (S9.19), conditions (vii) and (viii) of (S9.3) (which yield An�j +
n1/2γn�h�1�j →d Zj + h1�j), Assumption κ and condition (ix) of (S9.3) (which
yield κ−1(Ω̂n(θn�h))→p κ

−1(Ω0)), and the continuous mapping theorem.
If j ≤ p and h1�j = ∞, then

Gκ�n�j →p 1(S9.21)

using (S9.19), An�j = Op(1), κ−1(Ω̂n(θn�h)) →p κ
−1(Ω0) > 0, and G(x) → 1 as

x→ ∞. The results in (S9.20) and (S9.21) hold jointly and combine to give

Gκ�n = (Gκ�n�1� 	 	 	 �Gκ�n�k)
′ →d Gκ�∞� where(S9.22)

Gκ�∞ = (
G

(
κ−1(Ω0)[Z1 + h1�1]

)
� 	 	 	 �G

(
κ−1(Ω0)[Zk + h1�k]

))′

and G(Zh2�2�j + h1�j) denotes G(∞)= 1 when h1�j = ∞.
Let G−1 denote the inverse of G. For x = (x1� 	 	 	 � xk)

′ ∈ R
p
[+∞] × Rv,

let G(k)(x) = (G(x1)� 	 	 	 �G(xk))
′ ∈ (0�1]p × (0�1)v. For z = (z1� 	 	 	 � zk)

′ ∈
(0�1]p × (0�1)v, let G−1

(k)(z) = (G−1(z1)� 	 	 	 �G
−1(zk))

′ ∈ R
p
[+∞] × Rv. Define

q̃S(z�Ω) as

q̃S�ϕ(z�Ω) = qS

(
ϕ

(
G−1

(k)(z)�Ω
)
�Ω

)
(S9.23)

for z ∈ (0�1]p × (0�1)v and Ω ∈ Ψ .
Assumption ϕ and Lemma 5 imply that q̃S�ϕ(z�Ω) is continuous at (z�Ω) for

all z ∈ Z((h1�0v)�Ω0) and Ω=Ω0, where

Z
(
(h1�0v)�Ω0

) = {
z ∈ (0�1]p × (0�1)v :G−1

(k)(z) ∈Ξ
(
(h1�0v)�Ω

)}
�(S9.24)

P
(
Gκ�∞ ∈ Z

(
(h1�0v)�Ω0

))
= P

(
κ−1(Ω0)

[
Z + (h1�0v)

] ∈ Ξ
(
(h1�0v)�Ω0

))
= 1�
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and Ξ(β�Ω) is defined in Assumption ϕ.
We now have

cn(θn�h) = qS

(
ϕ

(
ξn(θn�h)� Ω̂n(θn�h)

)
� Ω̂n(θn�h)

) +η
(
Ω̂n(θn�h)

)
(S9.25)

= qS

(
ϕ

(
G−1

(k)(Gκ�n)� Ω̂n(θn�h)
)
� Ω̂n(θn�h)

) +η
(
Ω̂n(θn�h)

)
= q̃S�ϕ

(
Gκ�n� Ω̂n(θn�h)

) +η
(
Ω̂n(θn�h)

)
→d q̃S�ϕ(Gκ�∞�Ω0)+η(Ω0)

= qS

(
ϕ

(
G−1

(k)(Gκ�∞)�Ω0

)
�Ω0

) +η(Ω0)

= qS

(
ϕ

(
κ−1(Ω0)

[
Z + (h1�0v)

]
�Ω0

)
�Ω0

) +η(Ω0)�

where the first equality holds by the definition of cn(θn�h), the second equality
holds by the definitions of Gκ�n and G−1

(k)(·), the third and fourth equalities hold
by the definition of q̃S�ϕ(·� ·), the convergence holds by (S9.22), condition (ix)
of (S9.3), Assumption η1, and the continuous mapping theorem using (S9.24),
and the last equality holds by the definitions of Gκ�∞ and G−1

(k)(·) and the defini-
tion that if h1�j = ∞, then the corresponding element of Z+ (h1�0v) equals ∞.

We now use an analogous argument to that in (S9.19)–(S9.25) to show that

Tn(θn�h)→d S
(
Z + (h1�0v)�Ω0

)
	(S9.26)

The argument only differs from that given above in that (i) κ(·) is replaced
by 1 throughout, (ii) the function qS(ϕ(m�Ω)�Ω) is replaced by S(m�Ω),
(iii) the function q̃S�ϕ(z�Ω) = qS(ϕ(G

−1
(k)(z)�Ω)�Ω) is replaced by S̃(z�Ω) =

S(G−1
(k)(z)�Ω), and (iv) the continuity argument in the paragraph containing

(S9.24) is replaced by the assertion that S̃(z�Ω) is continuous at all (z�Ω) ∈
((0�1]p × (0�1)v)×Ψ by Assumption S(c).

The convergence in (S9.25) and (S9.26) is joint because the two results can
be obtained by a single application of the continuous mapping theorem. Hence,
the verification of (S9.13) is complete and part (a) is proved.

Next, we prove part (b). By the same argument as above but using condition
(x) of (S9.3) in place of conditions (vii)–(ix), the results of (S9.25) and (S9.26)
hold with {wn} in place of {n} for any subsequence {wn}. Hence, (S9.13) and
(S9.14) hold with the same changes, which implies that part (b) holds. Q.E.D.

PROOF OF LEMMA 5: Given (β0�Ω0) ∈ (R
p
[+∞] ×Rv)×Ψ , we consider three

cases: (i) qS(β0�Ω0) > 0, (ii) qS(β0�Ω0)= 0 and either v > 0 or both v = 0 and
β0 �= ∞p, and (iii) qS(β0�Ω0)= 0, v = 0, and β0 = ∞p.

In case (i), given ε > 0, we want to show that if (β�Ω) is sufficiently close
to (β0�Ω0), then |qS(β�Ω) − qS(β0�Ω0)| < ε. Let Z∗ ∼ N(0k� Ik). By As-
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sumption S(e), the d.f. of S(Ω1/2
0 Z∗ + β0�Ω0) is strictly increasing at x =

qS(β0�Ω0) > 0. Hence, for some εU > 0,

P
(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) ≤ qS(β0�Ω0)+ ε
) = 1 − α+ εU	(S9.27)

The d.f. of S(Ω1/2Z∗ +β�Ω) at x > 0 is continuous in (β�Ω) at (β0�Ω0) by
the bounded convergence theorem because

(a) S
(
Ω1/2Z∗ +β�Ω

) → S
(
Ω1/2

0 Z∗ +β0�Ω0

)
a.s.,(S9.28)

(b) 1
(
S
(
Ω1/2Z∗ +β�Ω

) ≤ x
) → 1

(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) ≤ x
)

a.s.

except if S
(
Ω1/2

0 Z∗ +β0�Ω0

) = x�

(c) P
(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) = x
) = 0�

(d) the indicator function is bounded,

where (a) holds by Assumption S(c), (b) holds by (a), and (c) holds because
the d.f. of S(Ω1/2

0 Z∗ +β0�Ω0) is continuous at all x > 0 by Assumption S(e).
In consequence, for all (β�Ω) sufficiently close to (β0�Ω0), we have∣∣P(

S
(
Ω1/2Z∗ +β�Ω

) ≤ qS(β0�Ω0)+ ε
)

(S9.29)

− P
(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) ≤ qS(β0�Ω0)+ ε
)∣∣< εU/2	

Equations (S9.27) and (S9.29) imply that

P
(
S
(
Ω1/2Z∗ +β�Ω

) ≤ qS(β0�Ω0)+ ε
) ≥ 1 − α+ εU/2	(S9.30)

The definition of a quantile and (S9.30) imply that

qS(β�Ω) ≤ qS(β0�Ω0)+ ε	(S9.31)

By a completely analogous argument, for (β�Ω) sufficiently close to
(β0�Ω0), qS(β�Ω) ≥ qS(β0�Ω0) − ε. Hence, |qS(β�Ω) − qS(β0�Ω0)| < ε and
the proof is complete for case (i).

In case (ii), P(S(Ω1/2
0 Z∗ +β0�Ω0)≤ 0)≥ 1−α because qS(β0�Ω0) = 0. Also,

in case (ii), S(Ω1/2
0 Z∗ + β0�Ω0) has a strictly increasing d.f. for x > 0 by As-

sumption S(e) (because v = 0 and β0 = ∞p does not hold in case (ii)). These
results imply that given ε > 0, there exists ε1 > 0 such that

P
(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) ≤ ε
) = 1 − α+ ε1	(S9.32)

Because the d.f. of S(Ω1/2Z∗ +β�Ω) at ε > 0 is continuous in (β�Ω) by (S9.28),
for all (β�Ω) sufficiently close to (β0�Ω0), we have∣∣P(

S
(
Ω1/2Z∗ +β�Ω

) ≤ ε
) − P

(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) ≤ ε
)∣∣< ε1/2	(S9.33)
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Equations (S9.32) and (S9.33) imply

P
(
S
(
Ω1/2Z∗ +β�Ω

) ≤ ε
) ≥ 1 − α	(S9.34)

This and the definition of a quantile imply that qS(β�Ω) ≤ ε. Since
qS(β�Ω) ≥ 0 for all (β�Ω) by Assumption S(b), the proof for case (ii) is com-
plete.

In case (iii), S(Ω1/2
0 Z∗ + β0�Ω0) = S(∞p�Ω0) = 0 a.s. by Assumption S(b)

and (d). This and the continuity in (β�Ω) at (β0�Ω0) of the d.f. of S(Ω1/2Z∗ +
β�Ω) at x > 0, which holds by (S9.28), give, for all x > 0,

lim
(β�Ω)→(β0�Ω0)

P
(
S
(
Ω1/2Z∗ +β�Ω

) ≤ x
)

(S9.35)

= P
(
S
(
Ω1/2

0 Z∗ +β0�Ω0

) ≤ x
) = 1	

Equation (S9.35) implies that given any x > 0 for all (β�Ω) sufficiently close to
(β0�Ω0), the d.f. of S(Ω1/2Z∗ +β�Ω) at x > 0 is greater than 1 − α and hence
qS(β�Ω) ≤ x. Since qS(β�Ω) ≥ 0 for all (β�Ω) and x > 0 is arbitrary, the proof
for case (iii) is complete. Q.E.D.

PROOF OF LEMMA 2: Assumption LA3(a) holds by the Liapounov triangu-
lar array CLT for rowwise i.i.d. random variables with mean zero and variance
1 using Assumptions LA1(a) and (c), and LA3* and the Cramér–Wold device.
Assumption LA3(b) and (c) hold by standard arguments using a weak law of
large numbers for rowwise i.i.d. random variables with variance 1 using As-
sumptions LA1(a) and (c), and LA3*. Note that Assumption LA3 does not
follow from (S9.3) because in Assumption LA3 the functions are evaluated
at θ0, which is not the true value (unless λ= 0). Q.E.D.

PROOF OF THEOREM 3: The proof follows a similar line of argument to that
of Lemma 4(a). We start by showing that under the given assumptions, (S9.13)
holds with (h1�0v) replaced by (h1�0v) + Π0λ. By element-by-element mean-
value expansions about θ = θn and Assumptions LA1 and LA2, we obtain

D−1/2(θ0�Fn)EFnm(Wi�θ0)=D−1/2(θn�Fn)EFnm(Wi�θn)(S9.36)

+Π
(
θ∗
n�Fn

)
(θ0 − θn)�

n1/2D−1/2(θ0�Fn)EFnm(Wi�θ0)→ (h1�0v)+Π0λ�

where D(θ�F) = Diag{σ2
F�1(θ)� 	 	 	 �σ

2
F�k(θ)}, θ∗

n may differ across rows of
Π(θ∗

n�Fn), θ∗
n lies between θ0 and θn, θ∗

n → θ0, and Π(θ∗
n�Fn)→ Π0.

For the same reason as described above following (S9.17), to obtain the
asymptotic distribution of Tn(θ0) we use the same type of argument as in
the proof of Lemma 4(a). Let G(·) be a strictly increasing continuous d.f.
on R, such as the standard normal d.f. Using (S9.36), Assumption LA3, and
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κ−1(Ω̂n(θ0)) →p κ−1(Ω(θ0)) (which holds by Assumptions κ and LA3), for
j = 1� 	 	 	 �k, we have

G0
κ�n�j =G

(
κ−1

(
Ω̂n(θ0)

)
σ̂−1

n�j (θ0)n
1/2mn�j(θ0)

)
(S9.37)

=G
(
κ−1

(
Ω̂n(θ0)

)
σ̂−1

n�j (θ0)σFn�j(θ0)

× [
A0

n�j + n1/2σ−1
Fn�j

(θ0)EFnmj(Wi� θ0)
])
�

G0
κ�n�j →p 1 if j ≤ p and h1�j = ∞�

G0
κ�n�j →d G

(
κ−1

(
Ω(θ0)

)[
Zj + h1�j +Π′

0�jλ
])

if j ≤ p and h1�j <∞�

G0
κ�n�j →d G

(
κ−1

(
Ω(θ0)

)[
Zj +Π′

0�jλ
])

if j = p+ 1� 	 	 	 �k�

G0
κ�n = (

G0
κ�n�1� 	 	 	 �G

0
κ�n�k

) →d G
0
κ�∞

= (
G

(
κ−1

(
Ω(θ0)

)[
Z1 + h1�1 +Π′

0�1λ
])
� 	 	 	 �

G
(
κ−1

(
Ω(θ0)

)[
Zk +Π′

0�kλ
]))′

�

where Z = (Z1� 	 	 	 �Zk)
′ and Zj + h1�j + Π′

0�jλ = ∞ by definition if h1�j = ∞.
Now, the same argument as in (S9.23)–(S9.25) of the proof of Lemma 4(a)
gives

cn(θ0)→d qS

(
ϕ

(
κ−1(Ω0)

[
Z + (h1�0v)+Π0λ

]
�Ω0

)
�Ω0

) +η(Ω0)	(S9.38)

The only difference in the proof is that Z((h1�0v)�Ω0) and Ξ((h1�0v)�Ω) are
replaced by Z((h1�0v)+Π0λ�Ω0) and Ξ((h1�0v)+Π0λ�Ω), respectively.

Next, by the same argument as in (S9.26) in the proof of Lemma 4(a), we
obtain

Tn(θ0)→d S
([
Z + (h1�0v)+Π0λ

]
�Ω0

)
	(S9.39)

Furthermore, the convergence in (S9.38) and (S9.39) is joint, which establishes
that (S9.13) holds with (h1�0) replaced by (h1�0v)+Π0λ. Finally, given the lat-
ter result, the result of the theorem holds by the same argument as in (S9.14)–
(S9.16) in the proof of Lemma 4(a) with (h1�0v) replaced by (h1�0v)+Π0λ and
CP(h1�Ω0�η(Ω0)) replaced by AsyPow(μ�Ω0� S�ϕ�κ(Ω0)�η(Ω0)). Q.E.D.
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