
MAXIMUM LIKELIHOOD ESTIMATION 
AND UNIFORM INFERENCE 

WITH SPORADIC IDENTIFICATION FAILURE 
 
 
 
 

By 
 

Donald W.K. Andrews and Xu Cheng 
 
 
 
 
 

COWLES FOUNDATION PAPER NO. 1375 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
2013 

 
 http://cowles.econ.yale.edu/  



Journal of Econometrics 173 (2013) 36–56
Contents lists available at SciVerse ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Maximum likelihood estimation and uniform inference with sporadic
identification failure
Donald W.K. Andrews a,∗, Xu Cheng b

a Cowles Foundation, Yale University, United States
b Department of Economics, University of Pennsylvania, United States

a r t i c l e i n f o

Article history:
Received 17 October 2011
Received in revised form
20 September 2012
Accepted 9 October 2012
Available online 17 October 2012

JEL classification:
C12
C15

Keywords:
Asymptotic size
Binary choice
Confidence set
Estimator
Identification
Likelihood
Nonlinear models
Test
Smooth transition threshold autoregression
Weak identification

a b s t r a c t

This paper analyzes the properties of a class of estimators, tests, and confidence sets (CSs) when the
parameters are not identified in parts of the parameter space. Specifically, we consider estimator criterion
functions that are sample averages and are smooth functions of a parameter θ . This includes log likelihood,
quasi-log likelihood, and least squares criterion functions.

We determine the asymptotic distributions of estimators under lack of identification and under weak,
semi-strong, and strong identification.We determine the asymptotic size (in a uniform sense) of standard
t and quasi-likelihood ratio (QLR) tests and CSs. We provide methods of constructing QLR tests and CSs
that are robust to the strength of identification.

The results are applied to two examples: a nonlinear binary choice model and the smooth transition
threshold autoregressive (STAR) model.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

This paper provides a set of maximum likelihood (ML)
regularity conditions under which the asymptotic properties of
ML estimators and corresponding t and QLR tests and confidence
sets (CSs) are obtained. The novel feature of the conditions is
that they allow the information matrix to be singular in parts
of the parameter space. In consequence, the parameter vector is
unidentified and weakly identified in some parts of the parameter
space, while it is semi-strongly and strongly identified in other
parts. The conditions maintain the usual assumption that the log
likelihood satisfies a stochastic quadratic expansion. The results
also apply to quasi-log likelihood and nonlinear least squares
procedures.

Compared to standard asymptotic results in the literature for
ML estimators, tests, and CSs, the results given here cover both
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E-mail address: donald.andrews@yale.edu (D.W.K. Andrews).
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fixed and drifting sequences of true parameters. The latter are
necessary to treat cases of weak identification and semi-strong
identification. In particular, they are necessary to determine the
asymptotic sizes of tests and CSs (in a uniform sense).

This paper is a sequel to Andrews and Cheng (2012a) (AC1).
The method of establishing the results outlined above and in the
Abstract is to provide a set of sufficient conditions for the high-
level conditions of AC1 for estimators, tests, and CSs that are
based on smooth sample-average criterion functions. The high-
level conditions in AC1 involve the behavior of the estimator
criterion function under certain drifting sequences of distributions.
In contrast, the assumptions given here are much more primitive.
They only involve mixing, smoothness, and moment conditions,
plus conditions on the parameter space.

The paper considers models in which the parameter θ of
interest is of the form θ = (β, ζ , π), where π is identified if
and only if β ≠ 0, ζ is not related to the identification of π ,
and ψ = (β, ζ ) is always identified. For examples, the nonlinear
binary choice model is of the form Yi = 1 (Y ∗

i > 0) and Y ∗

i =

β · h(Xi, π)+ Z ′

i ζ −Ui, where (Yi, Xi, Zi) is observed and h(·, ·) is a
known function. The STARmodel is of the form Yt = ζ1 + ζ2Yt−1 +

http://dx.doi.org/10.1016/j.jeconom.2012.10.003
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:donald.andrews@yale.edu
http://dx.doi.org/10.1016/j.jeconom.2012.10.003
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β · m(Yt−1, π) + Ut , where Yt is observed and m(·, ·) is a known
function.

In general, the parameters β , ζ , andπ may be scalars or vectors.
We determine the asymptotic properties of ML estimators, tests,
and CSs under drifting sequences of parameters/distributions.
Suppose that the true value of the parameter is θn = (βn, ζn, πn)
for n ≥ 1, where n indexes the sample size. The behavior of ML
estimators and test statistics depends on the magnitude of ∥βn∥.
The asymptotic behavior of these statistics varies across three
categories of sequences {βn : n ≥ 1}. Category I(a):βn = 0∀n ≥ 1,
π is unidentified; Category I(b): βn ≠ 0 and n1/2βn → b ∈ Rdβ , π
is weakly identified. Category II: βn → 0 and n1/2

∥βn∥ → ∞, π is
semi-strongly identified. Category III: βn → β0 ≠ 0, π is strongly
identified.

For Category I sequences, we obtain the following results. The
estimator of π is inconsistent, the estimator of ψ = (β, ζ )
and the t and QLR test statistics have non-standard asymptotic
distributions, and the standard tests and CSs (that employ standard
normal or χ2 critical values) have asymptotic null rejection
probabilities and coverage probabilities that may or may not be
correct, depending on the model.1 (In many cases, they are not
correct.) For Category II sequences, estimators and standard tests
and CSs are found to have standard asymptotic properties, but
the rate of convergence of the estimator of π is less than n1/2.
Specifically, the estimators are asymptotically normal and the test
statistics have asymptotic chi-squared distributions. For Category
III sequences, the estimators and standard tests and CSs have
standard asymptotic properties and the estimators converge at
rate n1/2.

We also consider t and QLR tests and CSs that are robust to the
strength of identification. These procedures use different critical
values from the standard ones. First, we consider critical values
based on asymptotically least favorable sequences of distributions.
Next, we consider data-dependent critical values that employ
an identification-category selection procedure that determines
whether β is near the value 0 that yields lack of identification of
π , and if it is, the critical value is adjusted (in a smooth way) to
take account of the lack of identification orweak identification.We
show that the robust procedures have correct asymptotic size (in
a uniform sense). The data-dependent robust critical values yield
more powerful tests than the least favorable critical values.

In the numerical results for the STAR and nonlinear binary
choice models, π is taken to be a scalar to ease computation.
In the STAR model, the transition parameter is fixed, as in the
empirical work in Lundbergh and Teräsvirta (2006), and the
unknown parameter π is the threshold parameter. The numerical
results in both models are summarized as follows. The asymptotic
distributions of the estimators of β and π are far from the normal
distribution under weak identification and lack of identification.
The asymptotic distributions range from being strongly bimodal,
to being close to uniform, to being extremely peaked. The
asymptotics provide remarkably accurate approximations to the
finite-sample distributions.

In the STAR model, the standard t and QLR confidence intervals
(CIs) for β have substantial asymptotic size distortions with
asymptotic sizes equaling .56 and .72, respectively, for nominal
.95 CIs. This is also true for the t and QLR CIs for π , where the
asymptotic sizes are .40 and .84, respectively. Note that the size
distortions are noticeably larger for the standard t CI than for the
QLR CI. In the binary choice model, the standard t and QLR CIs
for β have incorrect asymptotic sizes: .68 versus .92, respectively,
for nominal .95 CIs. However, the standard t and QLR CIs for π

1 Here, by ‘‘correct’’ wemeanα or less for tests and 1−α or greater for CSs, where
α and 1 − α are the nominal sizes of the tests or CSs.
have small and no size distortion, respectively. In both models, the
asymptotic sizes provide very good approximations to the finite-
sample sizes for the cases considered.

In bothmodels, the robust CIs have correct asymptotic sizes and
finite-sample sizes that are quite close to the asymptotic size for
the QLR CIs and fairly close for the t CIs. (As mentioned above, for
the STAR model, these results are for the case of a fixed transition
parameter.)

In sum, the numerical results indicate that the asymptotic
results of the paper are quite useful in determining the finite-
sample behavior of estimators and standard tests and CIs under
weak identification and lack of identification. They are also quite
useful in designing robust tests and CIs whose finite-sample size is
close to their nominal size.

The results of this paper apply when the criterion function
satisfies a stochastic quadratic expansion in the parameter θ . This
rules out a number of interesting models that exhibit lack of
identification in parts of the parameter space, including regime-
switching models, mixture models, abrupt transition structural
change models, and abrupt transition threshold autoregressive
models, such as in Hansen (2000).2

Now, we briefly discuss the literature related to this paper. See
AC1 for a more detailed discussion. The following are companion
papers to this one: AC1, Andrews and Cheng (2012b) (AC1-SM),
and Andrews and Cheng (2011a) (AC3). These papers provide
related complementary results to the present paper. AC1 provides
results under high-level conditions and analyzes the ARMA(1,1)
model in detail. AC1-SM provides proofs for AC1 and related
results. AC3 provides results for estimators and tests based on
generalized method of moments (GMM) criterion functions. It
provides applications to an endogenous nonlinear regression
model and an endogenous binary choice model.

Cheng (2008) provides results for a nonlinear regression model
with multiple sources of weak identification, whereas the present
paper only considers a single source. However, the present paper
applies to a much broader range of models.

Tests of H0 : β = 0 versus H1 : β ≠ 0 are tests in which
a nuisance parameter π only appears under the alternative. Such
tests have been considered in the literature starting from Davies
(1977). The results of this paper cover tests of this sort, as well
as tests for a whole range of linear and nonlinear hypotheses that
involve (β, ζ , π) and corresponding CSs.

The weak instrument (IV) literature is closely related to this
paper. However, papers in that literature focus on criterion
functions that are indexedbyparameters that donot determine the
strength of identification. In contrast, in this paper, the parameter
β , which determines the strength of identification of π , appears
as one of parameters in the criterion function. Selected papers
from the weak IV literature include Nelson and Startz (1990),
Dufour (1997), Staiger and Stock (1997), Stock and Wright (2000),
Kleibergen (2002, 2005) and Moreira (2003).

Andrews and Mikusheva (2011) and Qu (2011) consider La-
grange multiplier (LM) tests in a maximum likelihood context
where identification may fail, with emphasis on dynamic stochas-
tic general equilibrium models. The results of the present paper
apply to t and QLR statistics, but not to LM statistics. The consider-
ation of LM statistics is in progress. Andrews andMikusheva (2012)
consider Anderson–Rubin-type tests based on minimum distance
statistics for models with weak identification.

Antoine and Renault (2009, 2010) and Caner (2010) consider
GMM estimation with IVs that lie in the semi-strong category,
using our terminology. Nelson and Startz (2007) and Ma and
Nelson (2008) analyze models like those considered in this paper.

2 See AC1 for other references concerning results for these models.
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However, they do not provide asymptotic results or robust tests
and CSs of the type given in this paper. Sargan (1983), Phillips
(1989), and Choi and Phillips (1992) provide finite-sample and
asymptotic results for linear simultaneous equationsmodels when
some parameters are not identified. Shi and Phillips (2012) provide
results for a nonlinear regression model with non-stationary
regressors in which identification may fail.

The remainder of the paper is organized as follows. Section 2
introduces the smooth sample average extremum estimators, cri-
terion functions, tests, CSs, and drifting sequences of distributions
considered in the paper. Section 3 states the assumptions em-
ployed. Section 4 provides the asymptotic results for the extremum
estimators. Section 5 establishes the asymptotic distributions of
QLR statistics, determines the asymptotic size of standard QLR CSs,
and introduces robust QLR tests and CSs, whose asymptotic size is
equal to their nominal size. Section 6 considers t-based CSs. The
nonlinear binary choice model is used as a running example in
the previous sections. Section 7 provides results for the smooth
transition threshold autoregressive model (STAR) model. Section 8
provides numerical results for the STAR and binary choice mod-
els. The appendix provides some additional material. Five Supple-
mental Appendices to this paper are given in Andrews and Cheng
(2011b). Supplemental Appendix A provides proofs of the results
given in the paper. Supplemental Appendix B provides some mis-
cellaneous results. Supplemental Appendix C provides additional
numerical results for the nonlinear binary choice and STARmodels.
Supplemental Appendices D and E verify the assumptions for the
nonlinear binary choice model and the STAR model, respectively.

All limits below are taken ‘‘as n → ∞’’. Let λmin(A) and λmax(A)
denote the smallest and largest eigenvalues, respectively, of a
matrix A. All vectors are column vectors. For notational simplicity,
we often write (a, b) instead of (a′, b′)′ for vectors a and b. Also,
for a function f (c) with c = (a, b) (=(a′, b′)′), we often write
f (a, b) instead of f (c). Let 0d denote a d-vector of zeros. Because
it arises frequently, we let 0 denote a dβ-vector of zeros, where
dβ is the dimension of a parameter β . Let R[±∞] = R ∪ {±∞}.
Let Rp

[±∞] = R[±∞] × · · · × R[±∞] with p copies. Let ⇒ denote
weak convergence of a sequence of stochastic processes indexed
by π ∈ Π for some spaceΠ .3

2. Estimator and criterion function

2.1. Smooth sample average estimators

We consider an extremum estimator θn that is defined by
minimizing a sample criterion function of the form

Qn(θ) = n−1
n

i=1

ρ (Wi, θ) , (2.1)

where {Wi : i ≤ n} are the observations and ρ(w, θ) is a known
function that is twice continuously differentiable in θ . This includes
ML and LS estimators. The observations {Wi : i ≤ n} may be i.i.d.
or strictly stationary. Formal assumptions are provided in Section 3
below.

The paper considers the case where θ is not identified (by the
criterion function Qn(θ)) at some points in the parameter space.
Lack of identification occurs when the Qn(θ) is flat with respect to
(wrt) some subvector of θ . To model this identification problem, θ
is partitioned into three subvectors:

θ = (β, ζ , π) = (ψ, π), where ψ = (β, ζ ). (2.2)

3 In the definition of weak convergence, we employ the uniform metric d on the
spaceEv ofRv-valued functions onΠ . See theOutline of the Supplemental Appendix
of AC1 for more details.
The parameterπ ∈ Rdπ is unidentifiedwhenβ = 0 (∈Rdβ ). The pa-
rameterψ = (β, ζ ) ∈ Rdψ is always identified. The parameter ζ ∈

Rdζ does not effect the identification of π . These conditions allow
for a wide range of cases, including cases in which reparameteriza-
tion is used to convert amodel into the framework consideredhere.

Example 1. This example is the nonlinear binary choice model

Yi = 1 (Y ∗

i > 0) and Y ∗

i = β · h(Xi, π)+ Z ′

i ζ − Ui, (2.3)

where h(Xi, π) ∈ R is known up to the finite-dimensional param-
eter π ∈ Rdπ . Suppose that h(x, π) is twice continuously differ-
entiable wrt π for any x in the support of Xi and the first- and
second-order partial derivatives are denoted by hπ (x, π) and
hππ (x, π), respectively.

The observed variables are {Wi = (Yi, Xi, Zi) : i = 1, . . . , n}.
The random variables {(Xi, Zi,Ui) : i = 1, . . . , n} are i.i.d. The dis-
tribution of (Xi, Zi) is φ, which is an infinite-dimensional nuisance
parameter. The parameter of interest is θ = (β, ζ , π). Conditional
on (Xi, Zi), the distribution function (df) of Ui is L(u). The df L(u)
is known and does not depend on (Xi, Zi). For example, L(u) is the
standard normal distribution df in a probit model and the logis-
tic df in a logit model. We assume that L(u) is twice continuously
differentiable, and its first- and second-order derivatives are de-
noted by L′(u) and L′′(u), respectively. Suppose that L′(u) > 0 and
0 < L(u) < 1 ∀u ∈ R.

In this model,

P(Yi = 1|Xi, Zi) = P(Ui < βh(Xi, π)+ Z ′

i ζ |Xi, Zi) = L(gi(θ)),

where

gi(θ) = βh(Xi, π)+ Z ′

i ζ . (2.4)

We estimate θ = (β, ζ , π) by the ML estimator. The sample crite-
rion function is

Qn(θ) = −n−1
n

i=1

[Yi log L(gi(θ))

+ (1 − Yi) log(1 − L(gi(θ)))], (2.5)

and the ML estimator minimizes Qn(θ) over θ ∈ Θ . (Here we use
the negative of the standard log likelihood function so that the es-
timator minimizes the sample criterion function as in the general
set-up of the paper.)

When β = 0, gi(θ) and Qn(θ) do not depend on π , and π is not
identified. �

The true distribution of the observations {Wi : i ≤ n} is denoted
Fγ for some parameter γ ∈ Γ . We let Pγ and Eγ denote probability
and expectation under Fγ . The parameter space Γ for the true
parameter, referred to as the ‘‘true parameter space’’, is compact,
and is of the form

Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ)}, (2.6)

where Θ∗ is a compact subset of Rdθ and Φ∗(θ) ⊂ Φ∗
∀θ ∈ Θ∗

for some compact metric space Φ∗ with a metric that induces
weak convergence of the bivariate distributions (Wi,Wi+m) for all
i,m ≥ 1.4 In unconditional likelihood scenarios, no parameter
φ appears. In conditional likelihood scenarios, with conditioning
variables {Xi : i ≥ 1}, φ indexes the distribution of {Xi : i ≥

1}. In nonlinear regression models estimated by least squares, θ
indexes the regression functions and possibly a finite-dimensional

4 Thus, the metric satisfies: if γ → γ0 , then (Wi,Wi+m) under γ converges in
distribution to (Wi,Wi+m) under γ0 . Note that Γ is a metric space with metric
dΓ (γ1, γ2) = ∥θ1 − θ2∥ + dΦ∗ (φ1, φ2), where γj = (θj, φj) ∈ Γ for j = 1, 2
and dΦ∗ is the metric onΦ∗ .
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feature of the distribution of the errors, such as its variance, and
φ indexes the remaining characteristics of the distribution of the
errors, which may be infinite dimensional.

By definition, the estimator θn (approximately) minimizes
Qn(θ) over an ‘‘optimization parameter space’’Θ5:θn ∈ Θ and Qn(θn) = inf

θ∈Θ
Qn(θ)+ o(n−1). (2.7)

Weassume that the interior ofΘ includes the true parameter space
Θ∗ (see Assumption B1 below). This ensures that the asymptotic
distribution ofθn is not affected by boundary constraints for any
sequence of true parameters in Θ∗. The focus of this paper is not
on boundary effects.

Without loss of generality (wlog), the optimization parameter
spaceΘ can be written as

Θ = {θ = (ψ, π) : ψ ∈ Ψ (π), π ∈ Π}, where
Π = {π : (ψ, π) ∈ Θ for some ψ} and

Ψ (π) = {ψ : (ψ, π) ∈ Θ} for π ∈ Π . (2.8)

We allow Ψ (π) to depend on π and, hence, Θ need not be a
product space between ψ and π . For example, this is needed in
the STAR model and in the ARMA(1,1) example in AC1.

Example 1 (Cont.). The true parameter space for θ is

Θ∗
= B∗

× Z∗
×Π∗, where B∗

= [−b∗

1, b
∗

2] ⊂ R, (2.9)

b∗

1 ≥ 0, b∗

2 ≥ 0, b∗

1 and b∗

2 are not both equal to 0, Z∗(⊂ Rdζ ) is
compact, andΠ∗(⊂ Rdπ ) is compact.

The ML estimator of θ minimizes Qn(θ) over θ ∈ Θ . The opti-
mization parameter spaceΘ is

Θ = B × Z ×Π, where B = [−b1, b2] ⊂ R, (2.10)

b1 > b∗

1 , b2 > b∗

2 , Z(⊂ Rdζ ) is compact, Π(⊂ Rdπ ) is compact,
Z∗

∈ int(Z), and B∗
∈ int(B).

2.2. Confidence sets and tests

We are interested in the effect of lack of identification or weak
identification on the extremum estimator θn, on CSs for various
functions r(θ) of θ , and on tests of null hypotheses of the form
H0 : r(θ) = v.

CSs are obtained by inverting tests. A nominal 1 − α CS for
r(θ) is

CSn = {v : Tn(v) ≤ cn,1−α(v)}, (2.11)

where Tn (v) is a test statistic, such as the QLR statistic, and
cn,1−α (v) is a critical value for testingH0 : r(θ) = v. Critical values
considered in this paper may depend on the null value v of r(θ) as
well as on the data. The coverage probability of a CS for r(θ) is

Pγ (r(θ) ∈ CSn) = Pγ (Tn(r(θ)) ≤ cn,1−α(r(θ))), (2.12)

where Pγ (·) denotes probability when γ is the true value.
We are interested in the finite-sample size of a CS, which is

the smallest finite-sample coverage probability of the CS over the
parameter space. It is approximated by the asymptotic size, which
is defined as follows:

AsySz = lim inf
n→∞

inf
γ∈Γ

Pγ (r(θ) ∈ CSn) = lim inf
n→∞

inf
γ∈Γ

Pγ (Tn(r(θ))

≤ cn,1−α(r(θ))). (2.13)

5 The o(n−1) term in (2.7), and in (4.1) and (4.2) below, is a fixed sequence of
constants that does not depend on the true parameter γ ∈ Γ and does not depend
on π in (4.1). The o(n−1) term allows for some numerical inaccuracy in practice and
circumvents the issue of the existence of parameter values that achieve the infima.
For a test, we are interested in the maximum null rejection
probability, which is the finite-sample size of the test. A test’s
asymptotic size is an approximation to the latter. The asymptotic
size of a test of H0 : r(θ) = v is
AsySz = lim sup

n→∞

sup
γ∈Γ :r(θ)=v

Pγ (Tn(v) > cn,1−α(v)). (2.14)

2.3. Drifting sequences of distributions

The uniformity over γ ∈ Γ for any given sample size n in
(2.13) and (2.14) is crucial for the asymptotic size to be a good
approximation to the finite-sample size. The value of γ at which
the finite-sample size of a CS or test is attained may vary with the
sample size. Thus, to determine the asymptotic size we need to
derive the asymptotic distribution of the test statistic Tn(vn) under
sequences of true parameters γn = (θn, φn) and vn = r(θn) that
may depend on n.

As shown in Andrews and Guggenberger (2010) and Andrews
et al. (2009), the asymptotic sizes of CSs and tests are determined
by certain drifting sequences of distributions. The following
sequences {γn} are key:

Γ (γ0) = {{γn ∈ Γ : n ≥ 1} : γn → γ0 ∈ Γ } , (2.15)

Γ (γ0, 0, b) =


{γn} ∈ Γ (γ0) : β0 = 0 and

n1/2βn → b ∈ R
dβ
[±∞]


, and

Γ (γ0,∞, ω0) =

{γn} ∈ Γ (γ0) : n1/2

∥βn∥ → ∞ and

βn/∥βn∥ → ω0 ∈ Rdβ

,

where γ0 = (β0, ζ0, π0, φ0) and γn = (βn, ζn, πn, φn).
The sequences in Γ (γ0, 0, b) are in Categories I and II and are

sequences for which {βn} is close to 0: βn → 0. When ∥b∥ < ∞,
{βn} is within O(n−1/2) of 0 and the sequence is in Category I. The
sequences inΓ (γ0,∞, ω0) are in Categories II and III and aremore
distant from β = 0: n1/2

∥βn∥ → ∞.
Throughout the paper we use the terminology ‘‘under {γn} ∈

Γ (γ0)’’ to mean ‘‘when the true parameters are {γn} ∈ Γ (γ0) for
any γ0 ∈ Γ ’’; ‘‘under {γn} ∈ Γ (γ0, 0, b) ’’ to mean ‘‘when the true
parameters are {γn} ∈ Γ (γ0, 0, b) for any γ0 ∈ Γ with β0 = 0 and
any b ∈ R

dβ
[±∞]

’’; and ‘‘under {γn} ∈ Γ (γ0,∞, ω0)’’ to mean ‘‘when
the true parameters are {γn} ∈ Γ (γ0,∞, ω0) for any γ0 ∈ Γ and
any ω0 ∈ Rdβ with ∥ω0∥ = 1’’.

3. Assumptions

3.1. Smooth sample average assumptions

This section provides primitive sufficient conditions for many
of the high-level assumptions given in AC1 for the class of
sample average criterion functions that are smooth in θ . Note
that the high-level assumptions in AC1 concern limit behavior
under drifting sequences of true distributions. In contrast, the
assumptions given here concern behavior under fixed true
distributions and do not involve the sample size n.6

In Assumptions S1–S4 below, the true distribution of {Wi : i ≥

1} is Fγ0 . The conditions in Assumptions S1–S4 are assumed to hold
for all γ0 = (β0, ζ0, π0, φ0) ∈ Γ . Let C be a generic finite positive
constant that does not necessarily take the same value when it
appears in two different places. None of the constants that appear
in Assumptions S1–S4 depend on γ0 ∈ Γ .

6 The sufficient conditions givenhere implyAssumptionsA, B3, C1–C8 andD1–D3
of AC1.
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3.1.1. Assumption S1
The first assumption is the following.

Assumption S1. Under any γ0 ∈ Γ , {Wi : i ≥ 1} is a strictly
stationary and strong mixing sequence with mixing coefficients
αm ≤ Cm−A for some A > dθq/(q − dθ ) and some q > dθ ≥ 2, or
{Wi : i ≥ 1} is an i.i.d. sequence and the constant q (that appears
in Assumption S3 below) equals 2 + δ for some δ > 0.

In Assumption S1, the decay rate of the strong mixing
coefficients is used to obtain the stochastic equicontinuity of
certain empirical processes using results in Hansen (1996). The
WLLN and CLT for strong mixing arrays also hold under this decay
rate; see Andrews (1988) and de Jong (1997). In the i.i.d. case, the
constant q is smaller than in the strong mixing case, which yields
weaker moment restrictions in Assumption S3 below.

Example 1 (Cont.). In this example, Assumption S1 holds with q =

2 + δ for some δ > 0 because {Wi : i ≥ 1} are i.i.d. for each
γ0 ∈ Γ . �

3.1.2. Assumption S2
The second assumption is as follows.

Assumption S2. (i) For some function ρ (w, θ) ∈ R, Qn(θ) =

n−1 n
i=1 ρ (Wi, θ), where ρ(w, θ) is twice continuously

differentiable in θ on an open set containingΘ∗
∀w ∈ W .

(ii) ρ (w, θ) does not depend on π when β = 0 ∀w ∈ W .
(iii) ∀γ0 ∈ Γ with β0 = 0, Eγ0ρ(Wi, ψ, π) is uniquely minimized

by ψ0 ∀π ∈ Π .
(iv) ∀γ0 ∈ Γ with β0 ≠ 0, Eγ0ρ(Wi, θ) is uniquely minimized by

θ0.
(v) Ψ (π) is compact ∀π ∈ Π , andΠ andΘ are compact.
(vi) ∀ε > 0, ∃δ > 0 such that dH (Ψ (π1) ,Ψ (π2)) < ε ∀π1, π2 ∈

Π with ∥π1 − π2∥ < δ, where dH (·) is the Hausdorff metric.

For i.i.d. observations with density f (w, θ), the ML estimator
is obtained by taking ρ (Wi, θ) = log f (Wi, θ). For a station-
ary pth-order Markov process {W ∗

i : −p + 1 ≤ i ≤ n}, we
let Wi = (W ∗

i , . . . ,W
∗

i−p). If the conditional density of W ∗

i given
(W ∗

i−1, . . . ,W
∗

i−p) is f (w∗
|W ∗

i−1, . . . ,W
∗

i−p; θ), then the ML esti-
mator is obtained by taking ρ (Wi, θ) = log f (W ∗

i |W ∗

i−1, . . . ,
W ∗

i−p; θ).

Example 1 (Cont.). Assumption S2(i) holds in this example with

ρ(Wi, θ) = Yi log L(gi(θ))+ (1 − Yi) log(1 − L(gi(θ))) (3.1)

by (2.5) and the smoothness conditions on h(Xi, π) and L(u).
Assumption S2(ii) holds because gi(θ) does not depend on h(Xi, π)
when β = 0. For brevity, Assumption S2(iii) and (iv) are verified in
Supplemental AppendixD. The argument for Assumption S2(iv) is a
standard argument for ML estimators in well-identified scenarios.
Assumption S2(v) holds because Ψ (π) = B × Z, which does not
depend on π ,Θ = B × Z ×Π , and B, Z, andΠ are all compact.
Assumption S2(vi) holds becauseΨ (π) does not depend onπ . �

A class of examples of ρ(w, θ) functions that satisfy Assump-
tion S2(ii) is functions of the form

ρ(w, θ) = ρ∗(w, a(x, β)h(x, π), ζ ),

where

a(x, 0) = 0, ∀w ∈ W, (3.2)

x is a subvector ofw, and a(x, β) and h(x, π) are known functions.
In (3.2), ρ(w, θ) does not depend on π when β = 0 because
a(x, β) = 0. Examples of a(x, β) include (i) a(x, β) = β ,
(ii) a(x, β) = exp(β) − 1, and (iii) a(x, β) = x′β . Example (i)
covers the nonlinear regression example, whereβ is the coefficient
of the nonlinear regressor. Example (ii) demonstrates that a(x, β)
can be nonlinear in β provided a(x, β) = 0 at β = 0. Example
(iii) covers the weak IV example and the case in which β enters the
model through a single index. The form in (3.2) does not require a
regression model and it allows for complicated structural models
by allowing different functional forms for a(x, β), h(x, π), and
ρ(w, θ).

Returning now to the general ρ(w, θ) case, Assumption S2(vi)
holds immediately in cases where Ψ (π) does not depend on π .
When Ψ (π) depends on π , the boundary of Ψ (π) is often a
continuous linear function of π , as in the STAR model and the
ARMA(1,1) model considered in AC1. In such cases, it is simple to
verify Assumption S2(vi).

3.1.3. Assumption S3
Let ρθ (w, θ) and ρθθ (w, θ) denote the first-order and second-

order partial derivatives of ρ(w, θ) wrt θ , respectively. Let
ρψ (w, θ) and ρψψ (w, θ) denote the first-order and second-order
partial derivatives of ρ(w, θ)wrt ψ .

We define a matrix B(β) that is used to normalize the second-
derivative matrix ρθθ (w, θ) so that its sample average has a non-
singular probability limit. Let

B(β) =


Idψ 0dψ×dπ

0dπ×dψ ι(β)Idπ


∈ Rdθ×dθ ,

where

ι(β) =


β if β is a scalar

∥β∥ if β is a vector. (3.3)

Weuse a different definition ofB(β) in the scalar and vectorβ cases
because in the scalar case the use of β , rather than ∥β∥, produces
noticeably simpler (but equivalent) formulae, but in the vector case
∥β∥ is required.

For β ≠ 0, let

B−1(β)ρθ (w, θ) = ρ
Ď
θ (w, θ) and

B−1(β)ρθθ (w, θ)B−1(β) = ρ
Ď
θθ (w, θ)+ ι−1(β)ε(w, θ), (3.4)

where ρ
Ď
θθ (w, θ) is symmetric and ρ

Ď
θ (w, θ), ρ

Ď
θθ (w, θ), and

ε(w, θ) satisfy Assumption S3 below. The rescaling matrix B−1(β)
in (3.4) is used to deal with the singularity issue that arises when
β = 0. In particular, the covariance matrix of ρθ (Wi, θ) is singular
when β = 0 and close to singular when β is close to 0. In contrast,
the rescaled quantity ρĎ

θ (Wi, θ) has a covariance matrix that is
not close to being singular even when β is close to 0. Similarly,
Eγ0ρθθ (Wi, θ) is singular when β = 0 and close to singular when
β is close to 0. Rescaling of ρθθ (Wi, θ) yields a quantity ρĎ

θθ (Wi, θ)
whose expectation is not close to singular even when β is close to
0 plus another term ε(Wi, θ) that is asymptotically negligible.

Below, we illustrate the form of ρĎ
θ (w, θ), ρ

Ď
θθ (w, θ), and

ε(w, θ) in Example 1 and for ρ(w, θ) functions as in (3.2); see
Appendix A.1 of the Appendix.

Next, define

V Ď(θ1, θ2; γ0) =

∞
m=−∞

Covγ0(ρ
Ď
θ (Wi, θ1), ρ

Ď
θ (Wi+m, θ2)), (3.5)

whichdoes not dependon ibecause the observations are stationary
under Assumption S1. Under Assumptions S1 and S3(iii) below,
V Ď(θ1, θ2; γ0) exists by a standard strong mixing inequality.

The form of Assumption S3 differs depending on whether β is a
scalar or vector. We state Assumption S3 for the scalar β case first
because it is simpler.
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Assumption S3 (Scalar β). (i) Eγ0ε(Wi, θ0) = 0 and |β0|
−1

∥Eγ0ε
(Wi, ψ0, π)∥ ≤ C∥π − π0∥ ∀γ0 ∈ Γ with 0 < |β0| < δ for some
δ > 0.

(ii) For all δ > 0 and some functions M1(w) : W → R+ and
M2(w) : W → R+, ∥ρψψ (w, θ1) − ρψψ (w, θ2)∥ + ∥ρ

Ď
θθ (w, θ1) −

ρ
Ď
θθ (w, θ2)∥ ≤ M1(w)δ and ∥ρ

Ď
θ (w, θ1)−ρ

Ď
θ (w, θ2)∥+∥ε(w, θ1)−

ε(w, θ2)∥ ≤ M2(w)δ, ∀θ1, θ2 ∈ Θ with ∥θ1 − θ2∥ ≤ δ, ∀w ∈ W .
(iii) Eγ0 supθ∈Θ{|ρ(Wi, θ)|

1+δ
+ ∥ρψψ (Wi, θ)∥

1+δ
+ ∥ρ

Ď
θθ

(Wi, θ)∥
1+δ

+M1(Wi)+∥ρ
Ď
θ (Wi, θ)∥

q
+∥ε(Wi, θ)∥

q
+M2(Wi)

q
} ≤

C for some δ > 0 ∀γ0 ∈ Γ , where q is as in Assumption S1.
(iv) λmin(Eγ0ρψψ (Wi, ψ0, π)) > 0 ∀π ∈ Π when β0 = 0 and

Eγ0ρ
Ď
θθ (Wi, θ0) is positive definite ∀γ0 ∈ Γ .

(v) V Ď(θ0, θ0; γ0) is positive definite ∀γ0 ∈ Γ .

In Assumption S3(iii), the last three terms have bounded qth
moments in order to establish the stochastic equicontinuity of
empirical processes based on ρĎ

θ (Wi, θ) and ε(Wi, θ) using Lemma
11.4 in Supplemental Appendix A.

In Assumptions S1–S3, S2(ii), (iii), S3(i), (iii), (iv) and (v) are
related to the weak identification problem. Assumption S2(ii)
implies that the sample criterion function is flat in π when β =

0, as in Assumption A of AC1. Assumption S2(iii) differs from
a standard condition in the sense that the population criterion
function is not uniquelyminimized by the true valuewhen β0 = 0.
The Lipschitz condition inAssumption S3(i) typically holds because
the partial derivative of Eγ0ε(Wi, ψ0, π) wrt π is approximately
proportional to ∥β0∥ when ∥β0∥ is close to 0. Because parts of
B−1(β) diverge as β converges to 0, the moment conditions for
ρ
Ď
θ (Wi, θ) and ρ

Ď
θθ (Wi, θ) in Assumption S3(iii) are stronger than

standard moment conditions on the first-order and second-order
derivatives. These conditions hold in typical examples, see below,
because the partial derivative of ρ(w, θ) wrt π is small when β
is close to 0 under Assumption S2(ii). Hence, the right-hand side
moments are uniformly bounded even after the scaling by B−1(β).
In Assumption S3(iv) and (v), Eγ0ρ

Ď
θθ (Wi, θ0) and V Ď(θ0, θ0; γ0)

typically are positive definite due to the rescaling in (3.4).
Under Assumptions S1–S3, the criterion function Qn(θ) has

probability limit Q (θ; γ ) = Eγ ρ(Wi, θ) under any sequence of
parameters γn → γ .

Example 1 (Cont.). In this example, ρĎ
θ (Wi, θ), ρ

Ď
θθ (Wi, θ), and

ε(w, θ) are defined as follows. For notational simplicity, let
Li(θ), L′

i(θ), and L′′(θ) abbreviate L(gi(θ)), L′(gi(θ)), and L′′(gi(θ)),
respectively. Let

dψ,i(π) = (h(Xi, π), Z ′

i )
′, di(π) = (h (Xi, π) , Z ′

i , hπ (Xi, π)
′)′,

and

Di(θ) =

 0 01×dζ hπ (Xi, π)
′

0dζ×1 0dζ×dζ 0dζ×dπ
hπ (Xi, π) 0dπ×dζ hππ (Xi, π)β

 . (3.6)

The first- and second-order partial derivatives of ρ(Wi, θ) wrt
to ψ and θ are

ρψ (Wi, θ) = w1,i(θ)(Yi − Li(θ))dψ,i(π),
ρθ (Wi, θ) = w1,i(θ)(Yi − Li(θ))B(β)di(π),

ρψψ (Wi, θ) = [w2
1,i(θ)(Yi − Li(θ))2

+w2,i(θ)(Yi − Li(θ))]dψ,i(π)dψ,i(π)′,

ρθθ (Wi, θ) = [w2
1,i(θ)(Yi − Li(θ))2

+w2,i(θ)(Yi − Li(θ))]B(β)di(π)di(π)′B(β)
+w1,i(θ)(Yi − Li(θ))Di(θ), where

w1,i(θ) =
−L′

i(θ)

Li(θ)(1 − Li(θ))
and

w2,i(θ) =
−L′′

i (θ)

Li(θ)(1 − Li(θ))
. (3.7)
See Section 14.11 in Supplemental Appendix D for the calculation
of these derivatives.

The rescaled partial derivatives in (3.4) take the form

ρ
Ď
θ (Wi, θ) = w1,i(θ)(Yi − Li(θ))di(π),

ρ
Ď
θθ (Wi, θ) = [w2

1,i(θ)(Yi − Li(θ))2

+w2,i(θ)(Yi − Li(θ))]di(π)di(π)′, and

ε(w, θ) = w1,i(θ)(Yi − Li(θ))

×

 0 01×dζ hπ (Xi, π)
′

0dζ×1 0dζ×dζ 0dζ×dπ
hπ (Xi, π) 0dπ×dζ hππ (Xi, π)

 . (3.8)

Assumption S3 is verified in Supplemental Appendix D for this
example. �

When β is a vector, i.e., dβ > 1, we reparameterize β as (∥β∥,

ω), where ω = β/∥β∥ if β ≠ 0 and by definition ω = 1dβ /∥1dβ∥

with 1dβ = (1, . . . , 1) ∈ Rdβ if β = 0. Correspondingly, θ is repa-
rameterized as θ+

= (∥β∥, ω, ζ , π). Let Θ+
= {θ+: θ+

= (∥β∥,

β/∥β∥, ζ , π), θ ∈ Θ}.
This newparameterization is neededwhenβ is a vector because

ρ
Ď
θ (w, θ), ρ

Ď
θθ (w, θ), and ε(w, θ) typically involve β/∥β∥ due to

the rescaling in (3.4) and β/∥β∥ is not continuous in β for θ ∈ Θ .
In consequence, the Lipschitz conditions in Assumption S3(ii) and
(iii) (scalar β) cannot be verified when β is a vector. The new
parameterization treats ∥β∥ andω = β/∥β∥ as separate variables.
In Assumption S3 (vector β) below, some Lipschitz conditions are
specified in terms of θ+

= (∥β∥, ω, ζ , π).
In Assumption S3 (vectorβ), both the original parameterization

with θ and the alternative parameterizationwith θ+ are employed
for convenience. Note that only conditions related to ρĎ

θ (w, θ),
ρ
Ď
θθ (w, θ), and ε(w, θ) require the alternative parameterization

with θ+.

Assumption S3 (Vector β). (i) Eγ0ε(Wi, θ0) = 0 and ∥β0∥
−1

∥Eγ0
ε(Wi, θ

+)∥ ≤ C(∥π − π0∥ + ∥ω − ω0∥) ∀θ+
= (∥β0∥, ω, ζ0, π)

and ∀γ0 ∈ Γ with 0 < ∥β0∥ < δ for some δ > 0.
(ii) For all δ > 0 and some functions M1(w) : W → R+ and

M2(w) : W → R+, ∥ρψψ (w, θ1)− ρψψ (w, θ2)∥ + ∥ρ
Ď
θθ (w, θ

+

1 )−

ρ
Ď
θθ (w, θ

+

2 )∥ ≤ M1(w)δ and ∥ρψ (w, θ1) − ρψ (w, θ2)∥ + ∥ρ
Ď
θ

(w, θ+

1 ) − ρ
Ď
θ (w, θ

+

2 )∥ + ∥ε(w, θ+

1 ) − ε(w, θ+

2 )∥ ≤ M2(w)δ,
∀θ1, θ2 ∈ Θ with ∥θ1−θ2∥ ≤ δ, ∀θ+

1 , θ
+

2 ∈ Θ+ with ∥θ+

1 −θ+

2 ∥ ≤

δ, ∀w ∈ W .
(iii) Assumption S3(iii)–(iv) (scalar β) hold with the definitions

ofM1(w) and M2(w) replaced by those given above.
Assumption S3(i) (vector β) typically holds because the partial

derivatives of Eγ0ε(Wi, θ+) wrt π and ω are approximately
proportional to ∥β0∥.

3.1.4. Assumption S4
Next, we state an assumption that controls how the mean

Eγ0ρψ,i(θ) changes as the true β0 changes, where γ0 = (β0,

ζ0, π0, φ0). Define the dψ × dβ-matrix of partial derivatives of the
average population moment function wrt the true β value, β0, to
be

K(θ; γ0) =
∂

∂β ′

0
Eγ0ρψ (Wi, θ). (3.9)

The domain of the function K(θ; γ0) is Θδ × Γ0, where Θδ
= {θ ∈ Θ : ∥β∥ < δ}and Γ0 = {γa = (aβ, ζ , π, φ) ∈ Γ :
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γ = (β, ζ , π, φ) ∈ Γ with ∥β∥ < δ and a ∈ [0, 1]} for some
δ > 0.7

Assumption S4. (i) K(θ; γ0) exists ∀(θ, γ0) ∈ Θδ × Γ0.
(ii) K(θ; γ ∗) is continuous in (θ, γ ∗) at (θ, γ ∗) = ((ψ0, π), γ0)

uniformly over π ∈ Π ∀γ0 ∈ Γ with β0 = 0, where ψ0 is a
subvector of γ0.

Assumption S4 is not restrictive in most applications.8

For simplicity, K (ψ0, π; γ0) is abbreviated as K (π; γ0).

Example 1 (Cont.). It is shown in Supplemental Appendix D that
Assumption S4 holds with

K(π; γ0) = K(ψ0, π; γ0)

= Eγ0
L′2
i (θ0)

Li(θ0)(1 − Li(θ0))
h(Xi, π0)dψ,i(π) (3.10)

for γ0 = (θ0, π0). �

3.2. Parameter space assumptions

Next, we specify conditions on the parameter spacesΘ and Γ .
Define Θ∗

δ = {θ ∈ Θ∗
: ∥β∥ < δ}, where Θ∗ is the true

parameter space for θ ; see (2.6). The optimization parameter space
Θ satisfies the following.

Assumption B1. (i) int(Θ) ⊃ Θ∗.
(ii) For some δ > 0,Θ ⊃ {β ∈ Rdβ : ∥β∥ < δ}×Z0

×Π ⊃ Θ∗

δ

for some non-empty open set Z0
⊂Rdζ andΠ as in (2.8).

(iii)Π is compact.
Because the optimization parameter space is user selected,

Assumption B1(ii)–(iii) can be made to hold by the choice ofΘ .

The true parameter space Γ satisfies the following.

Assumption B2. (i) Γ is compact and (2.6) holds.
(ii) ∀δ > 0, ∃γ = (β, ζ , π, φ) ∈ Γ with 0 < ∥β∥ < δ.
(iii) ∀γ = (β, ζ , π, φ) ∈ Γ with 0 < ∥β∥ < δ for some δ > 0,

γa = (aβ, ζ , π, φ) ∈ Γ ∀a ∈ [0, 1].

Assumption B2(ii) guarantees that Γ is not empty and that
there are elements γ of Γ whose β values are non-zero but are
arbitrarily close to 0, which is the region of the true parameter
space where near lack of identification occurs. Assumption B2(iii)
ensures that Γ is compatible with the existence of partial
derivatives of certain expectations wrt the true parameter β
around β = 0, which arise in (3.9) and Assumption S4.

Example 1 (Cont.). Let γ = (θ, φ), where φ is the distribution of
(Xi, Zi), and φ ∈ Φ∗, where Φ∗ is a compact metric space with
somemetric that induces weak convergence. The parameter space
for the true value of γ is

Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ)}, (3.11)

whereΦ∗(θ) ⊂ Φ∗
∀θ ∈ Θ∗.

The parameter space Φ∗(θ), which must be specified precisely
to obtain the uniform asymptotic results, is defined as follows.
For notational simplicity, let hi = supπ∈Π |h(Xi, π)|, hπ,i =

supπ∈Π ∥hπ (Xi, π)∥, hππ,i = supπ∈Π ∥hππ (Xi, π)∥,w1,i = supθ∈Θ

7 The constant δ > 0 is as in Assumption B2(iii) stated below. The set Γ0 is not
empty by Assumption B2(ii).
8 Assumptions S1 and S4 imply Assumption C5 of AC1. A set of primitive sufficient

conditions for Assumption C5 of AC1 is given in Appendix A of AC1-SM. These
conditions also are sufficient for Assumption S4.
|w1,i(θ)|, and w2,i = supθ∈Θ |w2,i(θ)|. Let q = 2 + δ for some
δ > 0.

For any θ0 ∈ Θ∗, the true parameter space for φ is

Φ∗(θ0) = {φ0 ∈Φ∗
: Eγ0 (h

4q
i + h

4q
π,i + h

4q
ππ,i + ∥Zi∥4q

+ w
4q
1,i + w2+δ

2,i ) ≤ C,

∥w1,i(θ1)−w1,i(θ2)∥ ≤M1(Wi)∥π1 − π2∥,

∥w2,i(θ1)− w2,i(θ2)∥ ≤M2(Wi)∥π1 − π2∥,

∥hππ (Xi, π1)− hππ (Xi, π2)∥ ≤Mh(Wi)∥π1 − π2∥,

∀π1, π2 ∈Π for some functionsM1(Wi),M2(Wi),Mh(Wi),

Eγ0 (M1(Wi)
4q/3

+ M2(Wi)
4/3

+ Mh(Wi)
4q/3)≤ C,

Eγ0 sup
θ∈Θ


| log Li(θ)|1+δ + | log(1 − Li(θ))|1+δ


≤ C,

Pγ0 (a
′(h(Xi, π1), h(Xi, π2), Zi) = 0)< 1, ∀π1, π2 ∈Π with π1 ≠π2,

∀a∈ Rdζ+2 with a ≠ 0, Eγ0di(π)di(π)
′ is positive definite ∀π ∈ Π}

(3.12)

for some C < ∞, where di(π) = (h(Xi, π), Z ′

i , hπ (Xi, π)
′)′.9 �

3.3. Key quantities

Now, we define some of the key quantities that arise in the
asymptotic distribution of the estimatorθn and the test statistics
considered. Let Sψ = [Idψ : 0dψ×dπ ] denote the dψ × dθ selector
matrix that selects ψ out of θ . Define

Ω(π1, π2; γ0) = SψV Ď((ψ0, π1), (ψ0, π2); γ0)S ′

ψ ,

H(π; γ0) = Eγ0ρψψ (Wi, ψ0, π),

J(γ0) = Eγ0ρ
Ď
θθ (Wi, θ0), and

V (γ0) = V Ď(θ0, θ0; γ0). (3.13)

Example 1 (Cont.). The key quantities that determine the asymp-
totic behavior of theML estimator in the binary choicemodel are as
follows. The probability limit of the criterion function Qn(θ)when
the true value is γ0 ∈ Γ is

Q (θ; γ0) = Eγ0ρ(Wi, θ) = Eγ0Eγ0(ρ(Wi, θ)|Xi, Zi)

= −Eγ0 [Li(θ0) log Li(θ)+ (1 − Li(θ0)) log(1 − Li(θ))]. (3.14)

By calculations given in Section 14.1 of Supplemental Appendix D,
we have

Ω(π1, π2; γ0) = Eγ0
L′2
i (θ0)

Li(θ0)(1 − Li(θ0))
dψ,i(π1)dψ,i(π2)

′,

H(π; γ0) = Eγ0
L′2
i (θ0)

Li(θ0)(1 − Li(θ0))
dψ,i(π)dψ,i(π)′, and

J(γ0) = V (γ0) = Eγ0
L′2
i (θ0)

Li(θ0)(1 − Li(θ0))
di(π0)di(π0)

′. � (3.15)

3.4. Quadratic approximations

Here, we specify certain quadratic approximations to Qn(θ)
and related results that hold under Assumptions S1–S4, B1 and
B2. These results help to explain the form of the asymptotic
distributions that arise in the results stated below.

(i) Under {γn} ∈ Γ (γ0, 0, b) (defined in (2.15) above), the
sample criterion function Qn(θ)(= Qn(ψ, π)) has a quadratic

9 In (3.12), the expectation Eγ0 (·) only depends on φ0 . Because θ0 shows up
in some other expectations, we use Eγ0 (·) throughout the example for notational
consistency.
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expansion in ψ around the point ψ0,n = (0, ζn) for given π for
the form

Qn(ψ, π) = Qn(ψ0,n, π)+ DψQn(ψ0,n, π)
′(ψ − ψ0,n)

+
1
2
(ψ − ψ0,n)

′DψψQn(ψ0,n, π)(ψ − ψ0,n)

+ Rn(ψ, π), (3.16)

where DψQn(ψ0,n, π) and DψψQn(ψ0,n, π) denote the vector and
matrix of first and second partial derivatives of Qn(ψ, π) with
respect to ψ , respectively, evaluated at ψ = ψ0,n, and Rn(ψ, π)
is a remainder term that is small uniformly in π ∈ Π for ψ close
to ψ0,n.10

(ii) Under {γn} ∈ Γ (γ0,∞, ω0), the sample criterion function
Qn(θ) has a quadratic expansion in θ around the true value θn of
the form

Qn(θ) = Qn(θn)+ DQn(θn)
′(θ − θn)

+
1
2
(θ − θn)D2Qn(θn)(θ − θn)+ R∗

n(θ), (3.17)

where DQn(θn) and D2Qn(θn) denote the vector and matrix of
first and second partial derivatives of Qn(θ) with respect to θ ,
respectively, evaluated at θ = θn, and R∗

n(θ) is a remainder term
that is small for θ close to θn.11

(iii) Under {γn} ∈ Γ (γ0, 0, b), the recentered and rescaled first
derivative of Qn (θ)wrt ψ satisfies an empirical process CLT:

Gn(·) ⇒ G(·; γ0), where

Gn(π) = n−1/2
n

i=1


ρψ,i(ψ0,n, π)− Eγnρψ,i(ψ0,n, π)


(3.18)

and G(·; γ0) is a mean-zero Gaussian process indexed by π ∈

Π with bounded continuous sample paths and covariance kernel
Ω(π1, π2; γ0) for π1, π2 ∈ Π .

(iv) Under {γn} ∈ Γ (γ0,∞, ω0), the rescaled first and second
derivatives of Qn (θ) satisfy

n1/2B−1(βn)DQn(θn)→d G∗(γ0) ∼ N(0dθ , V (γ0)) (3.19)

and

Jn = B−1(βn)D2Qn(θn)B−1(βn)→p J(γ0) ∈ Rdθ×dθ ∀γ0 ∈ Γ . (3.20)

3.5. Assumptions C6 and C7

In this section,we state assumptions that concern theminimum
of the limit of the normalized criterion function after ψ has been
concentrated out.12

Define a ‘‘weightednon-central chi-square’’ process {ξ(π; γ0, b)
: π ∈ Π} and a non-stochastic function {η(π; γ0, ω0) : π ∈ Π}

by

ξ(π; γ0, b) = −
1
2
(G(π; γ0)+ K(π; γ0)b)′H−1

× (π; γ0) (G(π; γ0)+ K(π; γ0)b) and

η(π; γ0, ω0) = −
1
2
ω′

0K(π; γ0)
′H−1(π; γ0)K(π; γ0)ω0. (3.21)

10 The precise conditions that the remainder Rn(ψ, π) satisfies are specified in
Assumption C1 of AC1. The quadratic approximation result (i) and results (ii)–(iv)
that follow are established in the proof of Theorem 4.1 given in Supplemental
Appendix A.
11 The precise conditions that the remainder R∗

n(θ) satisfies are specified in
Assumption D1 of AC1.
12 Assumptions C6 and C7 are the same as in AC1, which is why the numbering
starts at C6, rather than C1.
The process ξ(π; γ0, b) is the limit under {γn} ∈ Γ (γ0, 0, b) for
∥b∥ < ∞, defined in (2.15), and the function η(π; γ0, ω0) is the
limit under {γn} ∈ Γ (γ0, 0, b) for ∥b∥ = ∞. Under Assump-
tions S1–S4, {ξ(π; γ0, b) : π ∈ Π} has bounded continuous sam-
ple paths a.s.

To obtain the asymptotic distribution ofπn whenβn = O(n−1/2)
via the continuous mapping theorem, we use the following
assumption.

Assumption C6. Each sample path of the stochastic process {ξ(π;

γ0, b) : π ∈ Π} in some set A(γ0, b) with Pγ0(A(γ0, b)) = 1 is
minimized over Π at a unique point (which may depend on the
sample path), denoted π∗(γ0, b), ∀γ0 ∈ Γ with β0 = 0, ∀b with
∥b∥ < ∞.

In Assumption C6, π∗(γ0, b) is random.
Next,we give a primitive sufficient condition for Assumption C6

for the case where β is a scalar parameter. Let ρψ (w, θ) =

(ρβ(w, θ)
′, ρζ (w, θ)

′)′.Whenβ = 0,ρζ (w, θ) does not depend on
π by Assumption S2(ii) and is denoted by ρζ (w,ψ). When dβ = 1
and β0 = 0, define

ρ∗

ψ (Wi, ψ0, π1, π2) = (ρβ(Wi, ψ0, π1), ρβ(Wi, ψ0, π2),

ρζ (Wi, ψ0)
′)′ and

ΩG(π1, π2; γ0) =

∞
m=−∞

Covγ0(ρ
∗

ψ (Wi, ψ0, π1, π2),

ρ∗

ψ (Wi+m, ψ0, π1, π2)). (3.22)

Assumption C6Ď.
(i) dβ = 1 (i.e., β is a scalar).
(ii) ΩG(π1, π2; γ0) is positive definite ∀π1, π2 ∈ Π with π1 ≠ π2,

∀γ0 ∈ Γ with β0 = 0.

Lemma 3.1. Assumptions S1–S3 and C6Ď imply Assumption C6.

Example 1 (Cont.). For this example, Assumption C6Ď is verified
in Supplemental Appendix D with the covariance matrix in
Assumption C6Ď(ii) equal to

ΩG(π1, π2; γ0) = Eγ0
L′2(Z ′

i ζ0)

L(Z ′

i ζ0)(1 − L(Z ′

i ζ0))
hZ,i(π1, π2)hZ,i(π1, π2)

′,

where

hZ,i(π1, π2) = (h(Xi, π1), h(Xi, π2), Z ′

i )
′. � (3.23)

The following assumption is used in the proof of consistency ofπn for the case where the true parameter βn satisfies βn → 0 and
n1/2

∥βn∥ → ∞.

Assumption C7. The non-stochastic function η(π; γ0, ω0) is
uniquely minimized over π ∈ Π at π0 ∀γ0 ∈ Γ with β0 = 0.

In Assumption C7, π0 is non-random. Assumption C7 can be
verified using the Cauchy–Schwarz inequality or a matrix version
of it, see Tripathi (1999), when K (π; γ0) andH (π; γ0) take proper
forms, as in our examples.

Example 1 (Cont.). Assumption C7 is verified in this example as
follows. By (2.4) and (3.15), when β0 = 0,

H(π; γ0) = Eγ0
L′2(Z ′

i ζ0)

L(Z ′

i ζ0)(1 − L(Z ′

i ζ0))
dψ,i(π)dψ,i(π)′. (3.24)

By (2.4) and (3.10), when β0 = 0,

K(π; γ0) = Eγ0
L′2(Z ′

i ζ0)

L(Z ′

i ζ0)(1 − L(Z ′

i ζ0))
h(Xi, π0)dψ,i(π). (3.25)
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Hence, when β0 = 0,

K(π; γ0)
′H−1(π; γ0)K(π; γ0)

≤ Eγ0
L′2(Z ′

i ζ0)

L(Z ′

i ζ0)(1 − L(Z ′

i ζ0))
h2(Xi, π0) (3.26)

by the matrix Cauchy–Schwarz inequality in Tripathi (1999). The
‘‘≤’’ holds as an equality if and only if h(Xi, π0)a + dψ,i(π)′b = 0
with probability 1 for some a ∈ R and b ∈ Rdζ+1 with (a, b′) ≠ 0.
The ‘‘≤’’ holds as an equality uniquely at π = π0 because for any
π ≠ π0, Pγ0(c

′(h(Xi, π0), h(Xi, π), Z ′

i )
′
= 0) < 1 for any c ≠ 0 by

(3.12). �

4. Estimation results

This section provides the asymptotic results of the paper for
the extremum estimator θn. The results are given under the
drifting sequences of distributions defined in Section 2.3. Define a
concentrated extremum estimator ψn(π)(∈ Ψ (π)) of ψ for given
π ∈ Π by

Qn(ψn(π), π) = inf
ψ∈Ψ (π)

Qn(ψ, π)+ o(n−1). (4.1)

Let Q c
n (π) denote the concentrated sample criterion function

Qn(ψn(π), π). Define an extremum estimator πn(∈ Π) by

Q c
n (πn) = inf

π∈Π
Q c
n (π)+ o(n−1). (4.2)

We assume that the extremum estimator θn in (2.7) can be
written asθn = (ψn(πn),πn). Note that if (4.1) and (4.2) hold andθn = (ψn(πn),πn), then (2.7) automatically holds.

For γn = (βn, ζn, πn, φn) ∈ Γ , let Q0,n = Qn(ψ0,n, π), where
ψ0,n = (0, ζn). Note that Q0,n does not depend on π by Assump-
tion S2(ii).

Define the Gaussian process {τ(π; γ0, b) : π ∈ Π} by

τ(π; γ0, b) = −H−1(π; γ0)(G(π; γ0)

+ K(π; γ0)b)− (b, 0dζ ), (4.3)

where (b, 0dζ ) ∈ Rdψ . Note that, by (3.21) and (4.3), ξ(π; γ0, b) =

−(1/2)(τ (π; γ0, b)+(b, 0dζ ))
′H(π; γ0)(τ (π; γ0, b)+(b, 0dζ )). Let

π∗(γ0, b) = argmin
π∈Π

ξ(π; γ0, b). (4.4)

Theorem 4.1. Suppose that Assumptions S1–S4, B1, B2 and C6 hold.
Under {γn} ∈ Γ (γ0, 0, b)with ∥b∥ < ∞,

(a)

n1/2(ψn − ψn)πn


→d


τ(π∗(γ0, b); γ0, b)

π∗(γ0, b)


, and

(b) n

Qn(θn)− Q0,n


→d infπ∈Π ξ(π; γ0, b).

Comments. (1) The results of Theorems 4.1 and 4.2 below are
like those of Theorems 5.1 and 5.2 of AC1. However, Theorems
Theorem4.1 and Theorem4.2 are obtained under assumptions that
are much more primitive and easier to verify, though less general,
than the results in AC1. In particular, Assumptions S1–S4 impose
conditions for fixed parameters, not conditions on the behavior
of random variables under sequences of parameters. In addition,
explicit formulae for the components of the asymptotic results are
provided here based on the sample average form of Qn(θ) that is
considered.

(2) Define the Gaussian process {τβ(π; γ0, b) : π ∈ Π} by

τβ(π; γ0, b) = Sβτ(π; γ0, b)+ b, (4.5)

where Sβ = [Idβ : 0dβ×dζ ] is the dβ × dψ selector matrix that
selects β out of ψ . The asymptotic distribution of n1/2βn (without
centering at βn) under Γ (γ0, 0, b) with ∥b∥ < ∞ is given by
τβ(π

∗(γ0, b); γ0, b).
(3) Assumption C6 is not needed for Theorem 4.1(b).
Let

G∗(γ0) ∼ N(0dθ , V (γ0)). (4.6)

Theorem 4.2. Suppose that Assumptions S1–S3, B1, B2 and C7 hold.
Under {γn} ∈ Γ (γ0,∞, ω0),

(a) n1/2B(βn)(θn−θn)→d −J−1(γ0)G∗(γ0) ∼ N(0dθ , J
−1(γ0)V (γ0)

J−1(γ0)), and
(b) n(Qn(θn)− Qn(θn))→d −

1
2G

∗(γ0)
′J−1(γ0)G∗(γ0).

5. QLR confidence sets

In this section, we consider CSs based on the quasi-likelihood
ratio (QLR) statistic. We establish (i) the asymptotic distribution
of the QLR statistic under the drifting sequences of distributions
defined in Section 2.3, (ii) the asymptotic size of standard QLR CSs,
which often are size distorted, and (iii) the correct asymptotic size
of robust QLR CSs, which are designed to be robust to the strength
of identification. The proofs of the results given here rely on results
given in Supplemental Appendix A and AC1.

5.1. Definition of the QLR test statistic

We consider CSs for a function r(θ)(∈ Rdr ) of θ obtained by
inverting QLR tests. The function r(θ) is assumed to be smooth and
to be of the form

r(θ) =


r1(ψ)
r2(π)


, (5.1)

where r1(ψ) ∈ Rdr1 , dr1 ≥ 0 is the number of restrictions on ψ ,
r2(π) ∈ Rdr2 , dr2 ≥ 0 is the number of restrictions on π , and
dr = dr1 + dr2 .

For v ∈ r(Θ), we define a restricted estimatorθn(v) of θ subject
to the restriction that r(θ) = v. By definition,θn(v) ∈ Θ, r(θn(v)) = v, and

Qn(θn(v)) = inf
θ∈Θ:r(θ)=v

Qn(θ)+ o(n−1). (5.2)

The QLR test statistic for testing H0 : r(θ) = v is

QLRn(v) = 2n(Qn(θn(v))− Qn(θn))/sn, (5.3)

wheresn is a random real-valued scaling factor that is employed in
some cases to yield a QLR statistic that has an asymptotic χ2

dr null
distribution under strong identification. See Assumptions RQ2 and
RQ3 below.

Let cn,1−α(v) denote a nominal level 1 − α critical value to
be used with the QLR test statistic. It may be stochastic or non-
stochastic. The usual choice, based on the asymptotic distribution
of the QLR statistic under standard regularity conditions, is the
1−α quantile of the χ2

dr distribution, which we denote by χ2
dr ,1−α .

Given a critical value cn,1−α(v), the nominal level 1 − α QLR CS
for r(θ) is

CSQLRr,n = {v ∈ r(Θ) : QLRn(v) ≤ cn,1−α(v)}. (5.4)

5.2. QLR assumptions

If r(θ) includes restrictions on π , i.e., dr2 > 0, then not all
values π ∈ Π are consistent with the restriction r2(π) = v2. For
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v2 ∈ r2(Θ), the set of π values that are consistent with r2(π) = v2
is denoted by

Πr(v2) = {π ∈ Π : r2(π) = v2 for some θ = (ψ, π) ∈ Θ}. (5.5)

If dr2 = 0, then by definitionΠr(v2) = Π ∀v2 ∈ r2(Θ).
We assume that r(θ) satisfies the following.

Assumption RQ1. (i) r(θ) is continuously differentiable onΘ .
(ii) rθ (θ)(= (∂/∂θ ′)r(θ)) is full row rank dr ∀θ ∈ Θ .
(iii) r(θ) satisfies (5.1).
(iv) dH(Πr(v2),Πr(v0,2)) → 0 as v2 → v0,2 ∀v0,2 ∈ r2(Θ∗).
(v) Q (ψ, π; γ0) is continuous in ψ at ψ0 uniformly over π ∈ Π

(i.e., supπ∈Π |Q (ψ, π; γ0)− Q (ψ0, π; γ0)| → 0 as ψ → ψ0)
∀γ0 ∈ Γ with β0 = 0.

(vi) Q (θ; γ0) is continuous in θ at θ0 ∀γ0 ∈ Γ with β0 ≠ 0.

In Assumption RQ1(iv), dH denotes the Hausdorff distance. In
Assumption RQ1(iv) and (v), Q (θ; γ0) = Eγ0ρ(Wi, θ).

Assumption RQ1(i) and (ii) are standard and are not restrictive.
Assumption RQ1(iii) rules out the casewhere any single restriction
depends on both ψ and π . This is restrictive. But, in some
cases, a reparameterization can be used to obtain results for such
restrictions; see AC1 for details. Assumption RQ1(iv) is not very
restrictive and is easy to verify in most cases. Assumption RQ1(v)
and (vi) are not restrictive.

Even under strong identification, it is known that the QLR
statistic has an asymptotic χ2

dr null distribution only under
additional assumptions to those used for Wald and Lagrange
multiplier (LM) statistics. The following two assumptions are
needed.

Assumption RQ2. (i) V (γ0) = s(γ0)J(γ0) for some non-random
scalar constant s(γ0) ∀γ0 ∈ Γ , or (ii) V (γ0) and J(γ0) are block
diagonal (possibly after reordering their rows and columns), the
restrictions r(θ) only involve parameters that correspond to one
block of V (γ0) and J(γ0), call them V11(γ0) and J11(γ0), and for this
block V11(γ0) = s(γ0)J11(γ0) for some non-random scalar constant
s(γ0) ∀γ0 ∈ Γ .

Assumption RQ3. The scalar statistic sn satisfies sn →p s(γ0)
under {γn} ∈ Γ (γ0, 0, b) and under {γn} ∈ Γ (γ0,∞, ω0).

For example, Assumptions RQ2(i) and RQ3 hold with s(γ0) =sn = 1 for a correctly specified log likelihood criterion function. For
a homoskedastic nonlinear regression model, Assumptions RQ2(i)
and RQ3 holdwith s(γ0) equal to the error variance σ 2 andsn equal
to a consistent estimator of σ 2, such as the sample variance based
on the residuals.

Results for the QLR test without imposing Assumption RQ2
could be obtained fairly straightforwardly from the results given
below. Without Assumption RQ2, the asymptotic distribution of
the QLR statistic would not be χ2

dr under strong or semi-strong
identification. Rather, it would have a mixture of χ2 distributions
with weights that depend on unknown parameters. One could
simulate its distribution using estimates of theweights, rather than
using the χ2

dr , in those scenarios when the χ2
dr is employed below.

5.3. QLR asymptotic distributions

To obtain the asymptotic size of QLR CSs, we need to determine
the limits of the coverage probabilities of the QLR CSs under all
sequences {γn} ∈ Γ (γ0, 0, b) and {γn} ∈ Γ (γ0,∞, ω0) when the
null hypotheses are true. That is, we need to know these limits
when v = vn = r(θn) for γn = (θn, φn) ∀n ≥ 1. To obtain
these coverage probabilities, we first determine the asymptotic
null distributions of the QLR statistic under these sequences.
In the results below, we use the following notational simplifi-
cations:

QLRn = QLRn(vn) and θn = θn(vn),
where vn = r(θn) and γn = (θn, φn).

13 (5.6)

For notational simplicity, let Πr,0 = Πr(v0,2), where v0,2 =

r2(π0) and γ0 = (θ0, φ0) ∈ Γ . That is, Πr,0 is the set of values π
that are compatible with the restrictions on π when γ0 is the true
parameter value.

Next, we introduce the limit under {γn} ∈ Γ (γ0, 0, b) with
∥b∥ < ∞ of the restricted concentrated criterion function after
suitable normalization. Define the process {ξr(π; γ0, b) : π ∈ Π}

by

ξr(π; γ0, b) = ξ(π; γ0, b)+
1
2
τ(π; γ0, b)′Pψ (π; γ0)

′

×H(π; γ0)Pψ (π; γ0)τ (π; γ0, b), where

Pψ (π; γ0) = H−1(π; γ0)r1,ψ (ψ0)
′

×

r1,ψ (ψ0)H−1(π; γ0)r1,ψ (ψ0)

′
−1

r1,ψ (ψ0), (5.7)

r1,ψ (ψ) = (∂/∂ψ ′)r1(ψ) ∈ Rdr1×dψ , and τ(π; γ0, b) is defined in
(4.3). The dψ×dψ -matrix Pψ (π; γ0) is an oblique projectionmatrix
that projects onto the space spanned by the rows of r1,ψ (ψ0).

The following theoremshows that theQLR statistic converges in
distribution to λQLR(γ0)/s(γ0) under {γn} ∈ Γ (γ0,∞, ω0), where
λQLR(γ0) is defined by

λQLR(γ0) = G∗(γ0)
′J−1(γ0)Pθ (γ0)′J(γ0)Pθ (γ0)J−1(γ0)G∗(γ0),

Pθ (γ0) = J−1(γ0)rθ (θ0)′

rθ (θ0)J−1(γ0)rθ (θ0)′

−1
rθ (θ0), (5.8)

rθ (θ0) = (∂/∂θ ′)r(θ0), and J(γ0) and G∗(γ0) are defined in (3.13)
and (3.19), respectively. The dθ × dθ -matrix Pθ (γ0) is an oblique
projectionmatrix that projects onto the space spanned by the rows
of rθ (θ0).

Theorem 5.1. Suppose that Assumptions S1–S4, B1, B2, RQ1 and
RQ3 hold.

(a) Under {γn} ∈ Γ (γ0, 0, b) with ∥b∥ < ∞, QLRn →d 2(infπ∈Πr,0
ξr(π; γ0, b)− infπ∈Π ξ(π; γ0, b))/s(γ0).

(b) Under {γn} ∈ Γ (γ0,∞, ω0), QLRn →d λQLR(γ0)/s(γ0) provided
Assumption C7 also holds.

Comment. By Theorem 5.1(b) and some calculations, when
Assumption RQ2 also holds,

QLRn →d λQLR(γ0)/s(γ0) ∼ χ2
dr . (5.9)

5.4. Asymptotic size of standard QLR confidence sets

Here, we establish the asymptotic size of a standard nominal
1 − α CS for r(θ) ∈ Rdr obtained by inverting the QLR statistic,
defined in (5.4), using the χ2

dr critical value. The asymptotic size is
determined using Theorem 5.1 combined with Lemma 2.1 in AC1.

Let

h = (b, γ0),
H = {h = (b, γ0) : ∥b∥<∞, γ0 ∈Γ with β0 = 0}, and

QLR(h) = 2( inf
π∈Πr,0

ξr(π; γ0, b)− inf
π∈Π

ξ(π; γ0, b))/s(γ0) (5.10)

13 As a consequence of these definitions, the asymptotic results given below for
the statistics QLRn andθn under {γn} ∈ Γ (γ0, 0, b) and under {γn} ∈ Γ (γ0,∞, ω0)

are results that hold when the restrictions are true.
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for ∥b∥ < ∞. Note that QLR(h) is the asymptotic distribution of
QLRn under {γn} ∈ Γ (γ0, 0, b) for ∥b∥ < ∞ by Theorem 5.1(a). Let
cQLR,1−α(h) denote the 1 − α quantile of QLR(h) for h ∈ H .

The asymptotic size results given below use the following df
continuity assumption, which typically is not restrictive.

Assumption RQ4. The df of QLR(h) is continuous at (i) χ2
dr ,1−α and

(ii) suph∈H cQLR,1−α(h), ∀h ∈ H .

Theorem 5.2. Suppose that Assumptions S1–S4, B1, B2, C7 and
RQ1–RQ3 and RQ4(i) hold. Then, the asymptotic size of the standard
nominal 1 − α QLR CS is

AsySz = min{ inf
h∈H

P(QLR(h) ≤ χ2
dr ,1−α), 1 − α}.

Comment. Depending on the distribution of {QLR(h) : h ∈ H}, the
standard QLR CS has asymptotic size equal to 1 − α or less than
1 − α. Often, it is less than 1 − α and the standard QLR CS is size
distorted.

5.5. Robust QLR confidence sets

In this section, we construct two QLR CSs that have correct
asymptotic size. These CSs are robust to the strength of identifica-
tion. We construct CSs for r(θ) by inverting a robust QLR test that
combines the QLR test statistic with a robust critical value that dif-
fers from the standard strong-identification critical value, which
is a χ2

dr quantile. The first robust CS uses the least favorable (LF)
critical value. The second robust CS is introduced in AC1. It is more
sophisticated and uses a data-dependent critical value. It is called
a type 2 robust CS. It is smaller than the LF robust CS under strong
identification.

5.5.1. Least favorable critical value
The LF critical value is

cLFQLR,1−α = max{sup
h∈H

cQLR,1−α(h), χ2
dr ,1−α}. (5.11)

The LF critical value can be improved (i.e., made smaller) by
exploiting the knowledge of the null hypothesis value of r(θ). For
instance, if the null hypothesis specifies the value of π to be 3,
then the supremum in (5.11) does not need to be taken over all
h ∈ H , but only over the h values for which π = 3. We call
such a critical value a null-imposed (NI) LF critical value. Using an
NI-LF critical value increases the computational burden because
a different critical value is employed for each null hypothesis
value.14,15

When part of γ is unknown under H0 but can be consistently
estimated, then a plug-in LF (or plug-in NI-LF) critical value can be
used that has correct size asymptotically and is smaller than the LF
(orNI-LF) critical value. Theplug-in critical value replaces elements
of γ with consistent estimators in the formulae in (5.11) and the
supremum over H is reduced to a supremum over the resulting
subset ofH , denotedHn, forwhich the consistent estimators appear
in each vector γ .16

14 To be precise, let H(v) = {h = (b, γ0) ∈ H : ∥b∥ < ∞, r(θ0) = v},
where γ0 = (θ0, φ0). By definition, H(v) is the subset is H that is consistent with
the null hypothesis H0 : r(θ0) = v, where θ0 denotes the true value. The NI-
LF critical value, denoted cLFQLR,1−α(v), is defined by replacing H by H(v) in (5.11)
when the null hypothesis value is r(θ0) = v. Note that v takes values in the set
Vr = {v0 : r(θ0) = v0 for some h = (b, γ0) ∈ H}.
15 When r(θ) = β and the null hypothesis imposes that β = v, the parameter b
can be imposed to equal n1/2v. In this case, H(v) = Hn(v) = {h = (b, γ0) ∈ H :

b = n1/2v}. The asymptotic size results given below for NI-LF CIs and NI robust CIs
hold in this case.
16 For example, if ζ is consistently estimated byζn , then H is replaced by Hn =

{h = (b, γ ) ∈ H : γ = (β,ζn, π, φ)}. If a plug-in NI-LF critical value is employed,
5.5.2. Type 2 robust critical value
Next, we improve on the LF critical value by employing an

identification category selection (ICS) procedure that uses the data
to determine whether b is finite.17

By Theorem 4.2, the asymptotic covariance matrix ofθn under
strong identification is Σ(γ0) = J−1 (γ0)

′ V (γ0)J−1(γ0). Let Σn
= J−1

n (θn)Vn(θn)J−1
n (θn) denote an estimator of Σ(γ0), whereJn(θ) andVn(θ) are estimators with probability limits J(θ; γ0) and

V (θ; γ0), respectively, under γn → γ0 and J(γ0) = J(θ0; γ0)
and V (γ0) = V (θ0; γ0). For brevity, we state the formal consis-
tency Assumptions V1 and V2 concerningJn(θ) and Vn(θ) in Sup-
plemental Appendix B.

Example 1 (Cont.). In this example, we estimate J(γ0) = V (γ0) byJn(θn) = Vn(θn), where

Jn(θ) = Vn(θ) = n−1
n

i=1

L′2
i (θ)

Li(θ)(1 − Li(θ))
di(π)di(π)′. � (5.12)

The ICS procedure chooses between the identification cate-
gories IC0 : ∥b∥ < ∞ and IC1 : ∥b∥ = ∞. The statistic used
for identification-category selection is

An =


nβ ′

n
Σ−1
ββ,n

βn/dβ
1/2

, (5.13)

where Σββ,n is the upper left dβ × dβ block of Σn. We use An to
assess the strength of identification.

Now, we define the type 2 robust critical value, which provides
a continuous transition from a weak-identification critical value
to a strong-identification critical value using a transition function
s(x). Let s(x) be a continuous function on [0,∞) that satisfies
(i) 0 ≤ s(x) ≤ 1, (ii) s(x) is non-increasing in x, (iii) s(0) = 1, and
(iv) s(x) → 0 as x → ∞. Examples of transition functions include
(i) s(x) = exp(−c · x) for some c > 0 and (ii) s(x) = (1 + c · x)−1

for some c > 0.18 For example, in the binary choice example, we
use the function s(x) = exp(−x/2).

The type 2 robust critical value is

cQLR,1−α,n =


cB if An ≤ κ
cS + [cB − cS] · s(An − κ) if An > κ, where

cB = cLFQLR,1−α +∆1, cS = χ2
dr ,1−α +∆2, (5.14)

and∆1 ≥ 0 and∆2 ≥ 0 are asymptotic size-correction factors that
are defined below. Here, ‘‘B ’’ denotes Big, and ‘‘S ’’ denotes Small.
When An ≤ κ ,cQLR,1−α,n equals the LF critical value cLFQLR,1−α plus
a size-correction factor ∆1. When An > κ ,cQLR,1−α,n is a convex
combination of cLFQLR,1−α + ∆1 and χ2

dr ,1−α + ∆2, where ∆2 is an-
other size-correction factor and the weight given to the standard
critical value χ2

dr ,1−α increases with the strength of identification,
as measured by An − κ .

The ICS statistic An satisfies An →d A(h) under {γn} ∈

Γ (γ0, 0, b)with ∥b∥ < ∞, where A(h) is defined by

A(h) =


τβ(π

∗
; γ0, b)′Σ−1

ββ (π
∗
; γ0)τβ(π

∗
; γ0, b)/dβ

1/2
, (5.15)

H(v) is replaced by H(v)∩Hn , where H(v) is defined in a footnote 14. Note that the
parameter b is not consistently estimable, so it cannot be replaced by a consistent
estimator.
17 When the null hypothesis specifies the value of β , it is not necessary to use
an ICS procedure. Instead, we recommend using a (possibly plug-in) NI-LF critical
value; see the footnotes 14 and 16.
18 If cLFQLR,1−α = ∞, one should take s(x) to equal 0 for x sufficiently large anddefine
∞ × 0 in (5.14) to equal 0. Then, the critical valuecQLR,1−α,n is infinite if An is small
and is finite if An is sufficiently large.
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where π∗ abbreviates π∗(γ0, b), τβ(π; γ0, b) is defined in (4.5),
andΣββ(π; γ0) is the upper left (1,1) element ofΣ(ψ0, π; γ0) for
Σ(θ; γ0) = J−1(θ; γ0)V (θ; γ0)J−1(θ; γ0).19,20,21

Under γn ∈ Γ (γ0, 0, b) with ∥b∥ < ∞, the asymptotic null
rejection probability of a test based on the statistic QLRn and the
robust critical valuecQLR,1−α,n is equal to

NRP(∆1,∆2; h) = P(QLR(h)> cB & A(h)≤ κ)
+ P(QLR(h)> cA(h) & A(h)> κ)

= P(QLR(h)> cB)+ P(QLR(h)∈(cA(h), cB] & A(h)> κ),

where

cA(h) = cS + (cB − cS) · s(A(h)− κ). (5.16)

The constants ∆1 and ∆2 are chosen such that NRP(∆1,∆2; h)
≤ α ∀h ∈ H . In particular, we define ∆1 = suph∈H1

∆1(h), where
∆1(h)≥ 0 solves NRP(∆1(h), 0; h) = α (or ∆1(h) = 0 if NRP
(0, 0; h) < α), H1 = {(b, γ0) : (b, γ0) ∈ H & ∥b∥ ≤ ∥bmax∥ + D},
bmax is defined such that cQLR,1−α(h) is maximized over h ∈ H
at hmax = (bmax, γmax) ∈ H for some γmax ∈ Γ , and D is a
non-negative constant, such as 1. We define ∆2 = suph∈H ∆2(h),
where ∆2(h) solves NRP(∆1,∆2(h); h) = α (or ∆2(h) = 0 if
NRP(∆1, 0; h) < α).22,23 As defined, ∆1 and ∆2 can be computed
sequentially, which is computationally convenient.

Given the definitions of ∆1 and ∆2, the asymptotic rejection
probability is always less than or equal to the nominal level α and
it is close to α when h is close to hmax (due to the adjustment by
∆1) and when ∥b∥ is large (due to the adjustment by∆2).

The type 2 robust critical value can be improved by employing
NI and/or plug-in versions of it, denoted bycQLR,1−α,n(v). These are
defined by replacing cLFQLR,1−α in (5.14) by the NI-LF or plug-in NI-LF
critical value andmaking∆1 and∆2 dependon the null value v.We
recommend employing these versions whenever possible because
they lead to smaller CSs.

The asymptotic sizes of QLR CSs based on LF and type 2 robust
critical values (possiblywith NI and/or plug-in features) are always
1 − α or greater and are exactly 1 − α under some mild df
continuity conditions. For brevity, these results are stated formally
in Theorem 12.1 in Supplemental Appendix B.

For any given value of κ , the type 2 robust CS has correct
asymptotic size due to the choice of∆1 and∆2. In consequence, a
good choice of κ depends on the false coverage probabilities (FCPs)

19 The convergence in distribution follows from Theorem 4.1(a) and Assumption
V1.
20 In the vector β case, Σ−1

ββ (π
∗
; γ0) is replaced in (5.15) by a slightly different

expression; see footnote 51 of AC1. When the type 2 robust critical value is
considered in the vectorβ case,h is defined to includeω0 = limn→∞ βn/∥βn∥ ∈ Rdβ

as an element, i.e., h = (b, γ0, ω0) and H = {h = (b, γ0, ω0) : ∥b∥ < ∞, γ0 ∈

Γ with β0 = 0, ∥ω0∥ = 1} because the true value ω0 affects the asymptotic
distribution of An .
21 Alternatively to the ICS statistic An , one can use an NI-ICS statistic An(v), which
employs the restricted estimator βn(v) of β in place of βn and a different weight
matrix. See AC1 for details.
22 When NRP(0, 0; h) > α, a unique solution ∆1(h) typically exists because
NRP(∆1, 0; h) is always non-increasing in∆1 and is typically strictly decreasing and
continuous in∆1 . If no exact solution to NRP(∆1(h), 0; h) = α exists, then∆1(h) is
taken to be any value for which NRP(∆1(h), 0; h) ≤ α and∆1(h) ≥ 0 is as small as
possible. Analogous comments apply to the equation NRP(∆1,∆2(h); h) = α and
the definition of∆2(h).
23 When the LF critical value is achieved at ∥b∥ = ∞, i.e., χ2

dr ,1−α ≥ suph∈H

cQLR,1−α(h), the standard asymptotic critical value χ2
dr ,1−α yields a test or CI with

correct asymptotic size and constants ∆1 and ∆2 are not needed. Hence, here we
consider the case where ∥bmax∥ < ∞. If suph∈H cQLR,1−α(h) is not attained at
any point hmax , then bmax can be taken to be any point such that cQLR,1−α(hmax) is
arbitrarily close to suph∈H cQLR,1−α(h) for some hmax = (bmax, γmax) ∈ H.
of the robust CS. (An FCP of a CS for r(θ) is the probability that
the CS includes a value different from the true value r(θ).) The
numerical work in this paper and in AC1 shows that, if a reasonable
value of κ is chosen, such as κ = 1.5 or 2.0, the FCPs of type
2 robust CSs are not sensitive to deviations from this value of κ .
The reason is that the size-correction constants∆1 and∆2 have to
adjust as κ is changed in order tomaintain correct asymptotic size.
The adjustments of∆1 and∆2 offset the effect of changing κ .

One can select κ in a simple way, i.e., by taking κ = 1.5
or 2.0, or one can select κ in a more sophisticated way that
explicitly depends on FCPs. (See Supplemental Appendix B for a
description of themore sophisticatedmethod.) Bothmethods yield
quite similar results for the cases that we have considered.

6. t confidence intervals

In this section, we introduce confidence intervals (CIs) based
on t statistics. Theoretical results for the t CIs are obtained using
the asymptotic distributions of the unrestricted estimator θn in
Theorems 4.1 and 4.2. Details are given in AC1.24 In this section,
the number of restrictions, dr , equals one.

The t statistic takes the form

Tn(v) =
n1/2(r(θn)− v)

(rθ (θn)B−1(βn)ΣnB−1(βn)rθ (θn)′)1/2 , (6.1)

where rθ (θ) = (∂/∂θ ′)r(θ) ∈ Rdr×dθ and Σn is defined as
in Section 5.5. Although this definition of the t statistic involves
B−1(βn), it is the same as the standard definition used in practice;
see AC1.

For testing H0 : r(θ) = v against two-sided, upper-one-sided,
and lower-one-sided alternatives, the t statistic is |Tn(v)|, Tn(v),
and −Tn(v), respectively.

Let cn,1−α(v) denote a nominal level 1 − α critical value to be
usedwith the t test statistic. It may be stochastic or non-stochastic.
The usual choice, based on the asymptotic distribution of the t
statistic under standard regularity conditions, is the 1 − α/2 or
1−α quantile of theN(0, 1) distribution: z1−α/2 or z1−α depending
on whether a two-sided or one-sided CI is desired.

Critical values that deliver robust t CSs for r(θ) that have correct
asymptotic size can be constructed using the same approaches as
in Section 5.5.

Given a critical value cn,1−α(v), the two-sided nominal level
1 − αt CI for r(θ) is

CStr,n = {v ∈ r(Θ) : |Tn(v)| ≤ cn,1−α(v)}. (6.2)

For one-sided t CIs, |Tn(v)| is replaced by Tn(v) or −Tn(v)
depending on whether one desires an upper or lower CI,
respectively.

7. Smooth transition autoregressive (STAR) model

7.1. STAR model and criterion function

In this section, we apply the results above to the STAR model.
This model and its applications are considered in Luukkonen et al.
(1988), Teräsvirta and Anderson (1992), and Teräsvirta (1994),

24 See Theorems 4.1, 4.4(a), and 5.1(a) in Sections 4.1, 4.7, and 5, respectively, in
AC1. Lemma 11.1 of Supplemental Appendix A shows that Assumptions B1 and B2,
and Assumptions S1–S3 imply the high-level conditions B3, C1–C4, C8, and D1–D3
employed in the results just stated in AC1.
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among others. To fit the STARmodel into our identification set-up,
we write the model as

Yt = X ′

tζ + X ′

tβ · m(Zt , π)+ Ut , where

Xt = (1, Yt−1, . . . , Yt−p)
′, Zt = Yt−d, (7.1)

{Yt : t = 1, . . . , n} are observed random variables, {Ut : t =

1, . . . , n} are unobserved innovations,m(·, ·) is a known transition
function, andWt = (Yt , X ′

t , Z
′
t )

′.We assume that p and d are known
and 1 ≤ d ≤ p.

As in the literature, two different forms of the transition
function m(Zt , π) are considered. The first one is the logistic
function

m(Zt , π) = (1 + exp[−π1(Zt − π2)])
−1, (7.2)

and the second one is the exponential function

m(Zt , π) = 1 − exp[−π1(Zt − π2)
2
], (7.3)

where π = (π1, π2)
′

∈ R2, π1 > 0 measures the slope of the
transition, and π2 measures the location of the transition. For both
the logistic function and the exponential function, m(Zt , π) ∈

[0, 1].
We consider the LS estimator of θ = (β, ζ , π). The LS sample

criterion function is

Qn(θ) = n−1
n

t=1

U2
t (θ)/2,

where

Ut(θ) = Yt − X ′

tζ − X ′

tβ · m(Zt , π). (7.4)

The LS estimator of θ minimizes Qn(θ) over θ ∈ Θ . The optimiza-
tion parameter spaceΘ takes the form

Θ = {(β, ζ , π) : β ∈ B, ζ ∈ Z(β), π ∈ Π}. (7.5)

We show in Supplemental Appendix E that, under the
assumptions given below, Assumptions S1–S4, B1, B2, C6, and C7
hold and Assumptions V1 and V2 in Supplemental Appendix B also
hold. Hence, all of the asymptotic results given above apply to the
STAR model considered here.

The distribution of {Ut : t = . . . ,−1, 0, 1, . . .} is φ ∈ Φ , where
Φ is a compact metric space with some metric dΦ that induces
weak convergence of the bivariate distributions (Yt , Yt+m) for all
t,m ≥ 1.25 In this model, φ is an infinite-dimensional nuisance
parameter. The true value of γ = (θ, φ), denoted by γ0, belongs to
a compact set Γ . Let Ft denote some increasing set of sigma-fields
to which Ut and Yt are adapted. The data-generating process (DGP)
is assumed to satisfy Assumption STAR1 below.

Assumption STAR1. (i) Eγ0(Ut |Ft−1) = 0 a.s., Eγ0(U
2
t |Ft−1) = σ 2

a.s. with σ 2 > 0, and supt≥1 Eγ0 |Ut |
4+ε

≤ C < ∞ ∀γ0 ∈ Γ .
(ii) Under γ0, {Yt : t = 1, . . . , n} is a strictly stationary and

strong mixing sequence with mixing coefficients αm ≤ Cm−A for
some A > dθq/(q − dθ ) and q > dθ = 2p + 4, ∀γ0 ∈ Γ .

By Bhattacharya and Lee (1995), a set of sufficient conditions
for Assumption STAR1(ii) is (i) {Ut : t = . . . ,−1, 0, 1, . . .} is a
sequence of i.i.d. real-valued random variables, (ii) the distribution
of Ut is absolutely continuous wrt the Lebesgue measure and has a

25 For example, themetric dΦ can be defined as follows. Let {ut }1 and {ut }2 denote
two infinite {ut : t = . . . ,−1, 0, 1, . . .} sequences. The distribution of {ut }i is
denoted by L({ut }i) for i = 1, 2. Let Yt ({ut }i, θ) denote Yt generated with the
innovation sequence {ut }i and θ , for i = 1, 2. Let L(Yt ({ut }i, θ), Yt+m({ut }i, θ))

denote the bivariate distribution of (Yt ({ut }i, θ), Yt+m({ut }i, θ)) for i = 1, 2.
The metric dΦ can be defined as dΦ (L({ut }1),L({ut }2)) = supm≥1 supθ∈Θ∗

d2(L(Yt ({ut }1, θ), Yt+m({ut }1, θ)),L(Yt ({ut }2, θ), Yt+m({ut }2, θ))), where Θ∗ is
the true parameter space for θ and d2 is some metric on the space of bivariate
distributions that induces weak convergence.
density function that is positive almost everywhere, (iii) Eγ0 |Ut | <

∞, and (iv)
p

i=1(|ζi| + |βi|) < 1, where ζ = (ζint , ζ1, . . . , ζp),
β = (βint , β1, . . . , βp), and ζint and βint are the intercepts when
m (·, ·) = 0 and 1, respectively.

Let mπ (Zt , π) = (mπ,1(Zt , π),mπ,2(Zt , π))′ ∈ R2 and mππ

(Zt , π) ∈ R2×2 denote the first- and second-order partial
derivatives of m(Zt , π) wrt π . Suppose that ∥mππ (Zt , π1) −

mππ (Zt , π2)∥ ≤ Mππ (Zt)δ for any π1, π2 ∈ Π and ∥π1 − π2∥ ≤ δ
and Mππ (Zt) satisfies Assumption STAR2(iii) below. In Assump-
tion STAR2, the constants ε > 0 and 0 < C < ∞ do not depend
on γ0.

Assumption STAR2. (i) Pγ0([X
′
t , X

′
tm(Zt , π), X

′
tm(Zt , π)]a = 0) <

1 ∀a ≠ 0 ∈ R3dβ , ∀π, π ∈ Π with π ≠ π .
(ii) Pγ0([X

′
t , X

′
tm(Zt , π), X

′
tmπ,1(Zt , π), X ′

tmπ,2(Zt , π)]a = 0) <
1 ∀a ≠ 0 ∈ R4dβ and ∀π ∈ Π .

(iii) Eγ0 supπ∈Π (|Yt |
4q

+ ∥mπ (Zt , π)∥4q
+ ∥mππ (Zt , π)∥2q

+

∥Mππ (Zt)∥2q) ≤ C , where q is as in Assumption STAR1.

Let G(·; γ0) be a mean-zero Gaussian process indexed by π ∈

Π with bounded continuous sample paths and covariance kernel
Ω(π1, π2; γ0) for π1, π2 ∈ Π , where

Ω(π1, π2; γ0) = Eγ0U
2
t dψ,t(π1)dψ,t(π2)

′ and

dψ,t(π) = (X ′

tm(Zt , π), X
′

t )
′. (7.6)

Define a ‘‘weighted non-central chi-square’’ process {ξ(·; γ0, b) :

π ∈ Π} and a Gaussian process {τβ(·; γ0, b) : π ∈ Π} by

ξ(π; γ0, b) = −
1
2
(G(π; γ0)+ K(π; γ0)b)′H−1(π; γ0)

× (G(π; γ0)+ K(π; γ0)b) and

τβ(π; γ0, b) = −SβH−1(π; γ0) (G(π; γ0)
+ K(π; γ0)b) , where

K(π; γ0) = −Eγ0dψ,t(π)dψ,t(π0)
′
· S ′

β ,

Sβ = [Idβ : 0] ∈ Rdβ×dψ , and

H(π; γ0) = Eγ0dψ,t(π)dψ,t(π)
′. (7.7)

The quantities in (7.7) appear in Theorem 4.1.

Assumption STAR3. (i) Each sample path of the stochastic process
{ξ(π; γ0, b) : π ∈ Π} in some set A(γ0, b) with Pγ0(A(γ0, b)) = 1
is minimized overΠ at a unique point (which may depend on the
sample path), denoted π∗(γ0, b), ∀γ0 ∈ Γ with β0 = 0, ∀b with
∥b∥ < ∞.

(ii) Pγ0(τβ(π
∗(γ0, b); γ0, b) = 0) = 0 ∀γ0 ∈ Γ with β0 = 0

and ∀b with ∥b∥ < ∞.

Lemma 7.1. When Xt = Yt−k for some k ≥ 1 or Xt = 1,
Assumption STAR2(i) implies Assumption STAR3(i).

7.2. Parameter space

The true parameter space for θ = (β, ζ , π) is

Θ∗
= {(β, ζ , π) : β ∈ B∗, ζ ∈ Z∗(β), π ∈ Π∗

}. (7.8)

In (7.8), Θ∗ is not a product space. For any β ∈ B∗, ζ ∗ belongs to
Z∗(β) which is defined such that {Yt : 1 ≤ t ≤ n} is a strictly
stationary and strong mixing sequence as in Assumption STAR1.

For any θ0 ∈ Θ∗, let Φ(θ0) ⊂ Φ denote the true parameter
space for the nuisance parameter φ. The true parameter spacesΘ∗

andΦ(θ0) are assumed to satisfy Assumption STAR4.

Assumption STAR4. (i)Θ∗ is compact.
(ii) 0dθ ∈ int(B∗).
(iii)Π∗

= Π∗

1 ×Π∗

2 , where π1 ≥ ε for some ε > 0 ∀π1 ∈ Π∗

1 .
(iv) For some set Z∗

0 and some δ > 0, Z∗(β) = Z∗

0 ∀∥β∥ < δ.
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The parameter space Γ is defined to be such that, for any
θ0 ∈ Θ∗ and φ0 ∈ Φ(θ0), γ0 = (θ0, φ0) ∈ Γ satisfies Assump-
tions STAR1–STAR4. We also assume that Γ is compact.

Assumption STAR4(ii) guarantees that the region of non-
identification (β = 0) and near lack of identification (∥β∥ close
to 0) is in the true parameter space. Assumption STAR4(iii) bounds
the true parameter space ofπ1 away from 0 because our focus is on
theweak identification ofπ that occurs when β is close to 0, rather
than a different sort of weak identification that occurs when π1 is
close to 0. Assumption STAR4(iv) is employed in the verification of
Assumption B2(iii).

The optimization parameter spaceΘ defined in (7.5) is assumed
to satisfy Assumption STAR5 below. Let Ψ = {(β, ζ ) : β ∈ B and
ζ ∈ Z(β)}.

Assumption STAR5. (i) int(Θ) ⊃ Θ∗.
(ii)Θ,B,Π , andΨ are compact, andZ(β) is compact ∀β ∈ B.
(iii) For some set Z0 and some δ > 0, Z(β) = Z0 ∀∥β∥ < δ

and int(Z0) ⊃ Z∗

0 , where Z∗

0 is as in Assumption STAR4(iv).

For the STAR model, the quantities ρψ (Wi, θ), . . . , ρ
Ď
θ (Wi, θ),

and the variancematrix estimators are specified in the Appendix A.

8. Numerical results

In this section, we provide asymptotic and finite-sample
simulation results for the STARmodel and the binary choicemodel.

8.1. Numerical results for the STAR model

The STAR model considered is

Yt = ζ1 + ζ2Yt−1 + β · m(Yt−1, π)+ Ut , (8.1)

with m(x, π) = x(1 + exp(−10(x − π)))−1, {Ut : t = 1, . . . , n}
are i.i.d., and Ut ∼ N(0, 1). For illustrative purposes and to ease
the computational burden, we use the constant 10 in the transition
function, rather than introducing another parameter. Note that a
fixed value of the transition parameter is used in the empirical
work in Lundbergh and Teräsvirta (2006). Identification issues
are evident in the results given below even without a second
parameter in the transition function. The addition of another
parameterwill exacerbate the identification issues. The true values
of ζ1 and ζ2 are−1 and 0.5, respectively. The true parameter space
forπ is [−3.5,−1.5], and the optimization space forπ is [−4,−1].
The number of simulation repetitions is 20,000.26

Figs. 1 and 2 provide the asymptotic and finite-sample densities
of the ML estimators of β and π in the STAR model when the true
π value is π0 = −1.5. Each figure gives the densities for b = 0, 2,
4, and 10, where b indexes themagnitude of β . Specifically, for the
finite-sample results, b = n1/2β . In these figures, the finite-sample
size considered is n = 500. Figs. S-1 and S-2 in Supplemental
Appendix C provide analogous results for π0 = −3.0.

Fig. 1 shows that the ML estimator of β has a bimodal
distribution that is very far from a normal distribution in the
unidentified and weakly identified cases. Fig. 2 shows that there
is a build-up of mass at the boundaries of the optimization space
for the estimator of π in the unidentified and weakly identified
cases. Figs. 1 and 2 indicate that the asymptotic approximations
developed here work very well.

26 For the STAR model, the discrete values of b for which computations are made
run from 0 to 12, with a grid of 0.2 for b between 0 and 5, a grid of 0.5 for b between
5 and 8, and a grid of 1 for b between 8 and 12.
Figs. S-3–S-6 in Supplemental Appendix C provide the asymp-
totic and finite-sample (n = 500) densities of the t and QLR statis-
tics for β and π in the STARmodel when π0 = −1.5. These figures
show that in the case of weak identification the t and QLR statis-
tics are not well approximated by standard normal and χ2

1 distri-
butions. However, the asymptotic approximations developed here
work very well.

Fig. 3 provides graphs of the 0.95 asymptotic quantiles of the
|t| and QLR statistics concerning β and π in the STAR model as a
function of b for π0 = −1.5, −2.0, −3.0, and −3.5. For the |t|
statistic concerning β , for small to medium b values, the graphs
exceed the 0.95 quantiles under strong identification (given by the
horizontal black lines). This implies that tests and CIs that employ
the |t| statistic for β and the standard critical value (based on the
normal distribution) have incorrect size. The samepattern emerges
for the QLR statistic for β (although the quantile graphs are slightly
below the black line for a range of b around 4 when π0 = −3.0
and π0 = −3.5). The graphs in Fig. 3(b) imply that tests and CIs
that employ the QLR statistic for β and the standard critical value
(based on theχ2

1 distribution) have incorrect size due to the under-
coverage for b values around 0. Given the heights of the graphs in
Fig. 3(c) and (d), tests and CIs that employ the |t| and QLR statistic
forπ and the standard critical value also have incorrect asymptotic
size.

Fig. 4 reports the asymptotic and finite-sample CPs of nominal
0.95 standard |t| and QLR CIs for β and π in the STAR model
when π0 = −1.5. For example, the smallest asymptotic and
finite-sample CPs (over b) are around 0.67 for the |t| CI for β and
0.40 for the |t| CI for π . The corresponding values for the QLR CIs
are 0.72 for β and 0.84 for π . Hence, the size distortions for the
standard |t| and QLR CIs for β are similar. But, for the CIs for π , the
size distortion of the standard QLR CI (both asymptotic and finite
sample) is noticeably smaller than that of the standard |t| CI. Note
that the asymptotic CPs provide a very good approximation to the
finite-sample CPs. Figure S-7 in Supplemental Appendix C provides
analogous results for π0 = −3.0.

Next, we consider CIs that are robust to weak identification. For
the robust CI for β , we impose the null value of b = n1/2β0, where
β0 is the true value of β under the null. With the knowledge of
b under the null, no identification category selection procedure is
needed. Furthermore, the NI-LF critical value for the robust QLR
CI for β is as in (5.11), but with h and H replaced by π and
Π , respectively, resulting in a smaller LF critical value. The same
simplification applies to the NI-LF critical value for the robust |t| CI
for β .

As indicated in Fig. 3(a) and (b), the NI-LF critical values for both
|t| and QLR CIs for β are attained at π0 = −1.5 for all b values. In
consequence, the robust |t| and QLR CIs for β are asymptotically
similar whenπ0 = −1.5, as shown in Fig. 5(a) and (b). Fig. 5(a) and
(b) also report the finite-sample (n = 500) CPs of the robust |t| and
QLR CIs for β . For the former, the finite-sample CP is around 0.91
in the worst case, as opposed to 0.67 for the standard |t| CI. For the
latter, the finite-sample CP is around 0.95 for all b values, showing
that the robust QLR for β has excellent finite-sample performance.
Fig. S-8(a) and (b) in Supplemental Appendix C provide analogous
results for π0 = −3.0. The robust CIs for β are not asymptotically
similar when π0 = −3.0, but they have correct asymptotic size
and the asymptotic and finite-sample CPs are close for all b values.

The robust CIs for π are constructed with the null value π0
imposed. Because b is unknown, we apply the smooth transition
in (5.14)) to obtain critical values for the robust CIs for π . Fig. 5(c)
and (d) report the asymptotic and finite-sample CPs of the robust
|t| and QLR CIs for π in the STAR model when π0 = −1.5.
To construct these robust CIs, we employ the transition function
s(x) = exp(−x) and the constants κ = 2.5 and D = 1. The choices
of s(x) and D were determined via some experimentation to be
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Fig. 1. Asymptotic and finite-sample (n = 500) densities of the estimator of β in the STAR model when π0 = −1.5.
Fig. 2. Asymptotic and finite-sample (n = 500) densities of the estimator of π in the STAR model when π0 = −1.5.
good choices in terms of yielding CPs that are relatively close to
the nominal size 0.95 across different values of b. Given s(x) and D,
the choice of κ was determined based onminimizing average FCPs.
However, awide range ofκ values yield similar results (because the
constants∆1 and∆2 adjust to maintain correct asymptotic size as
κ is changed).

Fig. 5(c) and (d) show that the robust CIs for π have correct
asymptotic size and the finite-sample sizes are reasonably close to
0.95 for both the |t| and QLR CIs. Analogous results for the robust
CIs for π when π0 = −3.0 are reported in Fig. S-8(c) and (d) in
Supplemental Appendix C.

Besides b and π0, the construction of a robust CI also requires
the ζ value in order to obtain the LF (orNI-LF) critical value through
simulation. In the STAR model, ζ = (ζ1, ζ2)

′. Because ζ can be
consistently estimated, we recommend plugging in the estimatorζn in place of ζ0 in practice. To ease the computational burden
required to simulate the CPs, the finite-sample CPs of the robust
CIs reported in Figs. 5 and S-8 are constructed using the true value
ζ0, rather than the estimated value ζn.27 To see how much these

27 With a single sample, the computational burden is the same whether the true
value ζ0 or the estimated value ζn is employed. However, in a simulation study,
robust CIs may differ from their counterparts constructed withζn,
which iswhat onewould use in practice, Table S-1 in Supplemental
Appendix C compares their CPs in different identification scenarios
in a small-scale simulation. The comparison suggests that the
robust CIs obtained with ζ0 and those obtained withζn are fairly
close.28

8.2. Numerical results for the binary choice model

The binary choice model considered is

Yi = 1 (Y ∗

i > 0) and Y ∗

i = ζ0 + ζ1Z∗

i + β · h(Xi, π)− Ui, (8.2)

it is much faster to simulate the critical values for a range of true values of b
and π0 and the single true value of ζ0 one time and then use them in each of
the simulation repetitions, rather than to simulate a new critical value for each
simulation repetition, which is required ifζn is employed.
28 The comparison is made based on a simulation with 1000 samples of size 500
to obtain the finite-sample CPs and 5000 simulation repetitions to determine the
two LF critical values for each sample. The CIs considered are robust t and QLR CIs
for β . The estimatorζn employed is the null-imposed estimator. For CIs with nomial
CP .950, the differences in finite sample CPs for t CIs between using the true ζ and
usingζ are .003 or less in 12 of the 13 cases and .005 in the other case. For the QLR
CIs, differences are .004 or less in 9 of the 13 cases and .005, .008, .008, and .013 in
the other four cases.
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Fig. 3. Asymptotic 0.95 quantiles of the |t| and QLR statistics for tests concerning β and π in the STAR model.
Fig. 4. Coverage probabilities of standard |t| and QLR CIs for β and π in the STAR model when π0 = −1.5.
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Fig. 5. Coverage probabilities of robust |t| and QLR CIs for β and π in the STAR model when π0 = −1.5, κ = 2.5, D = 1, and s(x) = exp(−x).
with h(x, π) = (xπ − 1)/π , Z∗

i ∼ N(0, 1), Xi = |X∗

i | with
X∗

i ∼ N(3, 1), Corr(Z∗

i , X
∗

i ) = 0.5, and Ui ∼ N(0, 1). The true
values of ζ0 and ζ1 are −2 and 2, respectively. The true parameter
space for π is [1.5, 3.5] and the optimization space for π is [1, 4].
The number of simulation repetitions is 20,000.29

Figs. 6–10 provide results analogous to those in Figs. 1–5. Figs.
S-9–S-16 in Supplemental Appendix C report results analogous to
those in Figs. S-1–S-8.

The simulation results for the binary choice model are
summarized as follows. First, the LS estimators and the |t| and QLR
statistics for β and π do not display normal or χ2

1 distributions
under non-identification and weak identification. However, the
asymptotic approximations developed here work very well in
general, as indicated in Figs. 6, 7, 9 and 10.30

Second, tests and CIs that employ the |t| and QLR statistics for
β and the standard critical values have incorrect size, but the size
distortion is much smaller for the QLR tests and CIs. For example,
the standard |t| and QLR CIs for β have asymptotic CPs around 0.70
and 0.92, respectively, whenπ0 = 1.5.31 Tests and CIs that employ
the QLR statistic for π and the standard critical value have correct
asymptotic size and those employ the |t| statistic for π only have
small size distortions.

29 For the binary choice model, the discrete values of b for which computations
are made run from 0 to 30, with a grid of 0.2 for b between 0 and 6, a grid of 0.5 for
b between 6 and 12, and a grid of 1 for b between 12 and 30.
30 The largest discrepancies between the asymptotic and finite-sample results
occur when π0 = 2.0 and b = 20, see Figs. S-9 and S-10, in which case the shape of
the asymptotic approximation is good, but its scale is off.
31 The standard QLR CI for β only under-covers for β very close to zero, which
makes it difficult to detect in Figs. 8(b) and 9(b).
Third, the robust CIs have asymptotic CPs greater than or equal
to 0.95 for all b. The finite-sample CPs are greater than or equal to
0.95 in all cases except for the robust |t| CI for β , where the CPs are
slightly below 0.95 for a small range of b values and the lowest CP
is around 0.93. The finite-sample under-coverage of the robust CIs
is much smaller than that of the corresponding standard CIs.
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Appendix

This appendix provides the forms of ρĎ
θ (w, θ), ρ

Ď
θθ (w, θ), and

ε(w, θ)when ρ(w, θ) is as in (3.2) and for the STAR model.

A.1. Forms of ρĎ
θ (w, θ),ρ

Ď
θθ (w, θ), and ε(w, θ)

Here,we illustrate the formsofρĎ
θ (w, θ),ρ

Ď
θθ (w, θ), and ε(w, θ)

when ρ(w, θ) belongs to the class specified in (3.2) and show
that Assumption S3(i) holds in this case. For simplicity, we assume
that a(x, β) and h(x, π) are both scalars and that no parameter
ζ appears. Let ρ ′(·) and ρ ′′(·) abbreviate the first- and second-
order derivatives of ρ∗(w, a(x, β)h(x, π)) wrt a(x, β)h(x, π). Let
aβ(x, β), aββ(x, β), hπ (x, π), hππ (x, π) denote the first- and
second-order partial derivatives of a(x, β) and h(x, π) wrt β and
π . The first- and second-order partial derivatives of ρ(w, θ)wrt to
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Fig. 6. Asymptotic and finite-sample (n = 500) densities of the estimator of β in the binary choice model when π0 = 1.5.
Fig. 7. Asymptotic and finite-sample (n = 500) densities of the estimator of π in the binary choice model when π0 = 1.5.
β and π are
ρβ(w, θ) = ρ ′(·)aβ(x, β)h(x, π),
ρπ (w, θ) = ρ ′(·)a(x, β)hπ (x, π),

ρββ(w, θ) = ρ ′′(·)aβ(x, β)aβ(x, β)′h2(x, π)
+ ρ ′(·)aββ(x, β)h(x, π),

ρβπ (w, θ) = ρ ′′(·)a(x, β)h(x, π)aβ(x, β)hπ (x, π)′

+ ρ ′(·)aβ(x, β)hπ (x, π)′, and

ρππ (w, θ) = ρ ′′(·)a2(x, β)hπ (x, π)hπ (x, π)′

+ ρ ′(·)a(x, β)hππ (x, π). (A.1)
In this case, we have
ρ
Ď
θ (w, θ) = ρ ′(·)aĎ(x, θ),

ρ
Ď
θθ (w, θ) = ρ ′′(·)aĎ(x, θ)aĎ(x, θ)′,

where

aĎ(x, θ) = (aβ(x, β)′h(x, π),
a(x, β)
ι(β)

hπ (x, π)′)′ and

ε(w, θ) = ρ ′(·)

 aββ(x, β)h(x, π) aβ(x, β)hπ (x, π)′

hπ (x, π)aβ(x, β)′
a(x, β)
ι(β)

hππ (x, π)

 . (A.2)
Note that β−1a(x, β) is continuous at β = 0 in the scalar β case.
In particular, limβ→0 β

−1a(x, β) = aβ(x, 0) by a mean-value ex-
pansion because a(x, 0) = 0 and a(x, β) is continuously differen-
tiable in β . In the vector β case, limβ→0,β/∥β∥→ω0 ∥β∥

−1a(x, β) =

aβ(x, 0)ω0.
When ε(w, θ) takes the form in (A.2), Assumption S3∗ below

implies Assumption S3(i). In Assumption S3∗(i), Xi is a subvector of
Wi that takes the place of x inw.

Assumption S3∗. (i) Xi is a vector of weakly exogenous variables
such that Eγ0(ρ

′(Wi, a(Xi, β0)h(Xi, π0))|Xi) = 0 a.s. ∀γ0 ∈ Γ .
(ii) Eγ0 sup∥β∥<δ,π∈Π |ρ ′′(Wi, a(Xi, β)h(Xi, π))| · (∥h(Xi, π)∥ +

∥hπ (Xi, π)∥) · (|h(Xi, π)| + ∥hπ (Xi, π)∥ + ∥hππ (Xi, π)∥) ·

sup∥β∥<δ ∥aβ(Xi, β)∥ · (∥aβ(Xi, β)∥ + ∥aββ(Xi, β)∥) ≤ C for
some C < ∞ and δ > 0 ∀γ0 ∈ Γ .

Several of the derivatives in Assumption S3∗(ii) are constants
in many examples, which makes the moment condition in
Assumption S3∗(ii) less restrictive than itmay appear. For example,
when a(Xi, β) = β , aβ(Xi, β) = 1 and aββ(Xi, β) = 0.

Lemma A.1. Suppose that ρ(w, θ) belongs to the class in (3.2),
where a(x, β) ∈ R and h(x, π) ∈ R are twice differentiable wrt β
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Fig. 8. Asymptotic 0.95 quantiles of the |t| and QLR statistics for tests concerning β and π in the binary choice model.
Fig. 9. Coverage probabilities of standard |t| and QLR CIs for β and π in the binary choice model when π0 = 1.5.
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Fig. 10. Coverage probabilities of robust |t| and QLR CIs for β and π in the binary choice model when π0 = 1.5, κ = 1.5, D = 1, and s(x) = exp(−x/2).
and π , respectively, and no parameter ζ appears. Then, ε(w, θ) takes
the form in (A.2) and Assumption S3(i) is implied by AssumptionS3∗

in both the scalar and vector β cases.

Comment. When ρ(w, θ) belongs to the class in (3.2) and a
parameter ζ appears, the form of ε(w, θ) is the same as in (A.2)
but with zeros in the rows and columns that correspond to ζ .
In this case, Assumption S3(i) is still implied by Assumption S3∗

provided ρ ′(·) and ρ ′′(·) in Assumption S3∗ are adjusted to include
ζ , evaluated at ζ0. See Supplemental Appendix B for details.

A.2. STAR model quantities

For the STARmodel, the criterion function in (7.4) is of the form
Qn(θ) = n−1 n

t=1 ρ(Wt , θ) with ρ(Wt , θ) = (1/2)U2
t (θ). The

first- and second-order partial derivatives of ρ(Wt , θ)wrtψ and θ
are

ρψ (Wt , θ) = −Ut(θ)dψ,t(π), ρθ (Wt , θ) = −Ut(θ)dθ,t(θ),
ρψψ (Wt , θ) = dψ,t(π)dψ,t(π)′,
ρθθ (Wt , θ) = dθ,t(θ)dθ,t(θ)′ − Ut(θ)Dt(θ),

where

dψ,t(π) = (X ′

tm(Zt , π), X
′

t )
′,

dθ,t(θ) = (X ′

tm(Zt , π), X
′

t , β ′Xtmπ (Zt , π)′)′

and

Dt(θ) =

 0dβ×dβ 0dβ×dζ Xtmπ (Zt , π)′

0dζ×dβ 0dζ×dζ 0dζ×dπ
mπ (Zt , π)X ′

t 0dπ×dζ β ′Xt · mππ (Zt , π)

 . (A.3)

Define

dt(π, ω) = (X ′

tm(Zt , π), X
′

t , ω
′Xtmπ (Zt , π)′)′. (A.4)
The rescaled partial derivatives in (3.4) take the form

ρ
Ď
θ (Wt , θ

+) = −Ut(θ
+)dt(π, ω),

ρ
Ď
θθ (Wt , θ

+) = dt(π, ω)dt(π, ω)′, and

ε(Wt , θ
+) = −Ut(θ

+)

×

 0dβ×dβ 0dβ×dζ Xtmπ (Zt , π)′

0dζ×dβ 0dζ×dζ 0dζ×dπ
mπ (Zt , π)X ′

t 0dπ×dζ ω′Xt · mππ (Zt , π)

 , (A.5)

where

Ut(θ
+) = Yt − X ′

tζ − X ′

tω∥β∥ · m(Zt , π). (A.6)

Let
V Ď(θ+

0 , θ
+

0 ; γ0) = V (γ0)
= Eγ0U

2
t dt(π0, ω0)dt(π0, ω0)

′ and

J(γ0) = Eγ0dt(π0, ω0)dt(π0, ω0). (A.7)

The quantities in (A.3), (A.6), and (A.7) appear in Assumptions S1–
S4. The matrices J(γ0) and V (γ0) appear in Theorem 4.2.

t tests and CIs employ estimators of J(γ0) and V (γ0). We
estimate these matrices byJn =Jn(θ+

n ) and Vn = Vn(θ+

n ), where (A.8)

Jn(θ+) = n−1
n

i=1

dt(π, ω)dt(π, ω)′ and

Vn(θ
+) = n−1

n
i=1

U2
t (θ

+)dt(π, ω)dt(π, ω)′.

These variance matrix estimators also are used to construct the
identification-category selection statistic An.
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