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INFERENCE BASED ON CONDITIONAL MOMENT INEQUALITIES

BY DONALD W. K. ANDREWS AND XIAOXIA SHI1

In this paper, we propose an instrumental variable approach to constructing confi-
dence sets (CS’s) for the true parameter in models defined by conditional moment in-
equalities/equalities. We show that by properly choosing instrument functions, one can
transform conditional moment inequalities/equalities into unconditional ones without
losing identification power. Based on the unconditional moment inequalities/equalities,
we construct CS’s by inverting Cramér–von Mises-type or Kolmogorov–Smirnov-type
tests. Critical values are obtained using generalized moment selection (GMS) proce-
dures.

We show that the proposed CS’s have correct uniform asymptotic coverage prob-
abilities. New methods are required to establish these results because an infinite-
dimensional nuisance parameter affects the asymptotic distributions. We show that the
tests considered are consistent against all fixed alternatives and typically have power
against n−1/2-local alternatives to some, but not all, sequences of distributions in the
null hypothesis. Monte Carlo simulations for five different models show that the meth-
ods perform well in finite samples.

KEYWORDS: Asymptotic size, asymptotic power, conditional moment inequali-
ties, confidence set, Cramér–von Mises, generalized moment selection, Kolmogorov–
Smirnov, moment inequalities.

1. INTRODUCTION

THIS PAPER CONSIDERS inference for parameters whose true values are re-
stricted by conditional moment inequalities and/or equalities. The parameters
need not be identified. Much of the literature on partially identified parame-
ters concerns unconditional moment inequalities; see the references given be-
low. However, in many moment inequality models, the inequalities that arise
are conditional moments given a vector of covariates Xi. In this case, the con-
struction of a fixed number of unconditional moments requires an arbitrary
selection of a finite number of functions of Xi. In addition, the selection of
such functions leads to information loss that can be substantial. Specifically,
the “identified set” based on a chosen set of unconditional moments can be
noticeably larger than the identified set based on the conditional moments.2,3

1Andrews gratefully acknowledges the research support of the National Science Foundation
via Grants SES-0751517 and SES-1058376. The authors thank the co-editor, four referees, An-
drés Aradillas-López, Kees Jan van Garderen, Hidehiko Ichimura, and Konrad Menzel for help-
ful comments.

2The “identified set” is the set of parameter values that are consistent with the population
moment inequalities/equalities, either unconditional or conditional, given the true distribution of
the data.

3There is a potential first-order loss in information when moving from conditional to uncondi-
tional moments with moment inequalities because of partial identification. That is, the size of the
identified set typically increases. In contrast, if point identification holds, as with most moment

© 2013 The Econometric Society DOI: 10.3982/ECTA9370
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This paper provides methods to construct CS’s for the true value of the pa-
rameter θ by converting conditional moment inequalities into an infinite num-
ber of unconditional moment inequalities. This is done using weighting func-
tions g(Xi). We show how to construct a class G of such functions such that
there is no loss in information. We construct Cramér–von Mises-type (CvM)
and Kolmogorov–Smirnov-type (KS) test statistics using a function S of the
weighted sample moments, which depend on g ∈ G . For example, the function
S can be of the Sum, quasi-likelihood ratio (QLR), or Max form. The KS statis-
tic is given by a supremum over g ∈ G . The CvM statistic is given by an integral
with respect to a probability measure Q on the space G of g functions. Compu-
tation of the CvM test statistics can be carried out by truncation of an infinite
sum or simulation of an integral. Asymptotic results are established for both
exact and truncated/simulated versions of the test statistic.

The choice of critical values is important for all moment inequality tests.
Here we consider critical values based on generalized moment selection
(GMS), as in Andrews and Soares (2010).4 The GMS critical values can be
implemented using the asymptotic Gaussian distribution or the bootstrap.

Our results apply to multiple moment inequalities and/or equalities and
vector-valued parameters θ with minimal regularity conditions on the condi-
tional moment functions and the distribution of Xi. For example, no smooth-
ness conditions or even continuity conditions are made on the conditional mo-
ment functions as functions of Xi and no conditions are imposed on the dis-
tribution of Xi (beyond the boundedness of 2 + δ moments of the moment
functions). In consequence, the range of moment inequality models for which
the methods are applicable is very broad.

The main technical contribution of this paper is to introduce a new method
of proving uniformity results that applies to cases in which an infinite-
dimensional nuisance parameter appears in the problem. The method is to
establish an approximation to the sample size n distribution of the test statistic
by a function of a Gaussian distribution, where the function depends on the
true slackness functions for the given sample size n and the approximation is
uniform over all possible true slackness functions.5 Then, one shows that the

equality models, there is only a second-order loss in information when moving from conditional
to unconditional moments—one increases the variance of an estimator and decreases the non-
centrality parameter of a test.

4For comparative purposes, we also provide results for subsampling critical values and “plug-
in asymptotic” (PA) critical values. However, for reasons of accuracy of size and magnitude of
power, we recommend GMS critical values over both subsampling and PA critical values.

5Uniformity is obtained without any regularity conditions in terms of smoothness, uniform
continuity, or even continuity of the conditional moment functions as functions of Xi . This is
important because the slackness functions are normalized by an increasing function of n which
typically would cause violation of uniform continuity or uniform bounds on the derivatives of
smooth functions even if the underlying conditional moment inequality functions were smooth in
Xi .
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data-dependent critical value (the GMS critical value in the present case) is
greater than or equal to the 1 − α quantile of the given function of the Gaus-
sian process with probability that goes to 1 uniformly over all potential true
distributions (with equality for some true distributions). See Section 5.1 for
reasons why uniform asymptotic results are crucial for conditional moment
inequality models.

Compared to Andrews and Soares (2010), the present paper treats an infi-
nite number of unconditional moments, rather than a finite number. In con-
sequence, the form of the test statistics considered here is somewhat different
and the method of establishing uniform asymptotic results is quite different.

The results of the paper are summarized as follows. The paper (i) devel-
ops critical values that take account of the issue of moment inequality slack-
ness that arises in finite samples and uniform asymptotics, (ii) proves that the
confidence sizes of the CS’s are correct asymptotically in a uniform sense,
(iii) proves that the proposed CS’s yield no information loss (i.e., that the cov-
erage probability for any point outside the identified set converges to zero as
n → ∞), (iv) establishes asymptotic local power results for a particular class
of n−1/2-local alternatives, (v) extends the results to allow for the preliminary
estimation of parameters that are identified given knowledge of the parameter
of interest θ, as occurs in some game theory examples, and (vi) extends the
results to allow for time series observations.6

The paper and Supplemental Material (Andrews and Shi (2013)) provide
simulation results for a quantile selection model, a binary entry game model
with multiple equilibria, an intersection bound model, a mean selection model,
and an interval-outcome linear regression model. In the entry game model, an
important feature of our approach is that nuisance parameters that are iden-
tified given the null value of the parameter of interest are concentrated out,
which reduces the dimensionality of the problem. No other approach in the
literature does this.

Across the five models, the simulation results show that the CvM-based CS’s
outperform the KS-based CS’s in terms of false coverage probabilities (FCP’s)
in almost all cases. The Sum, QLR, and Max versions of the test statistics per-
form equally well in terms of FCP’s in four of the models, while the Max ver-
sion performs best in the entry game model. The GMS critical values outper-
form the plug-in asymptotic and subsampling critical values in terms of FCP’s
in almost all cases considered. The asymptotic and bootstrap versions of the

6In a model in which it is assumed that the matrix of partial derivatives of the conditional
moment functions, viewed as a function of the conditioning vector, say x, is bounded away from
zero (at its minimum point given the null value θ0), the tests may not have power against any
n−1/2-local alternatives. However, we are not aware of any models in the literature where one
could justify such an assumption. For example, in a parametric model for a game with multiple
equilibria, it amounts to requiring that all conditioning variables enter the equilibrium conditions
or the equilibrium selection rule with coefficients that are bounded away from zero. This does
not seem to be a reasonable assumption to impose a priori.



612 D. W. K. ANDREWS AND X. SHI

GMS critical values perform similarly in all cases considered.7 Variations on
the base case show a relatively low degree of sensitivity of the coverage proba-
bilities and FCP’s in most cases.

In sum, in the five models considered, the CvM/Max statistic coupled with
the GMS/Asy critical value perform quite well in an absolute sense and
best among the CS’s considered. Computation of a test based on this statis-
tic/critical value takes �20 seconds in the base case configuration of the quan-
tile selection model using GAUSS9.0 on a PC with 3�12 GHz processor. For
the entry game model it takes �55 seconds.

In the quantile selection model, we compare the finite-sample performance
of the CI based on the CvM/Max statistic and GMS/Asy critical value with the
series and local linear-based CI’s proposed in Chernozhukov, Lee, and Rosen
(2013) (CLR) and the integrated nonparametric kernel-based CI proposed in
Lee, Song, and Whang (2012) (LSW). We consider three different parameter
bound functions: flat, kinked, and peaked, and three sample sizes n= 100, 250,
and 500. For the quantile selection model, the CI proposed in this paper (de-
noted AS) and the LSW CI have good CP performances in all cases (i.e., ≥�95
for a nominal 95% CI). The CLR-series CI under-covers for n = 100 (i.e., its
minimal CP over the three bound cases considered is �889), but has good CP’s
for n = 250 and 500. The CLR-local linear CI under-covers somewhat for all
sample sizes. Its minimal CP’s over the three bound cases are �855, �916, and
�927 for n = 100, 250, and 500, respectively. The AS CI has the best FCP per-
formance in the flat bound case and the kinked bound case for n = 250 and 500.
The CLR CI’s have the best FCP performance in the peaked bound case and
the kinked bound case with n = 100. The LSW CI has worse (higher) FCP’s
than those of the AS CI in all nine cases considered. Analogous comparisons
are made for the mean selection model and the results are roughly similar; see
Supplemental Appendix F for details.

In the intersection bound model, the CP’s of the AS CI’s and the LSW CI are
found to be robust to bound functions that have very steep slopes. In contrast,
the CLR-series CI exhibits severe under-coverage for all sample sizes consid-
ered (viz., n = 100, 250, 500, and 1000) and the CLR-local linear CI exhibits
substantial under-coverage for sample sizes n = 100 and n = 250 but reason-
able coverage for larger sample sizes.

We expect the tests introduced in this paper to exhibit a curse of dimen-
sionality (with respect to the dimension, dX , of the conditioning variable Xi)
in terms of their power for local alternatives for which the test does not have
n−1/2-local power. In addition, computation becomes more burdensome when
the number of functions g considered increases. In such cases, one needs to
be less ambitious when specifying the functions g. We provide some practical
recommendations for doing so in Section 9.

7The bootstrap critical values are not computed in the entry game model because they are
computationally expensive in this model.
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In addition to reporting a CS or test, it often is useful to report an estimated
set. A CS accompanied by an estimated set reveals how much of the volume of
the CS is due to randomness and how much is due to a large identified set. It is
well known that typical set estimators suffer from an inward-bias problem; for
example, see Haile and Tamer (2003) and CLR. The reason is that an estimated
boundary often behaves like the minimum or maximum of multiple random
variables.

A simple solution to the inward-bias problem is to exploit the method of con-
structing median-unbiased estimators from confidence bounds with confidence
level 1/2; for example, see Lehmann (1959, Sec. 3.5). The CS’s in this paper
applied with confidence level 1/2 are asymptotically half-median-unbiased es-
timated sets. That is, the limit infimum of the probability of including a point or
any sequence of points in the identified set is greater than or equal to 1/2. This
property follows immediately from the uniform asymptotic coverage probabil-
ity results for the CS’s. The level 1/2 CS, however, is not necessarily asymp-
totically median-unbiased in two directions.8 Nevertheless, this set is guaran-
teed not to be asymptotically inward-median biased. CLR also provided bias-
reduction methods for set estimators.

The literature related to this paper includes numerous papers dealing with
unconditional moment inequality models, such as Andrews, Berry, and Jia
(2004), Imbens and Manski (2004), Moon and Schorfheide (2006, 2012), Otsu
(2006), Pakes, Porter, Ho, and Ishii (2006), Woutersen (2006), Canay (2010),
Chernozhukov, Hong, and Tamer (2007), Beresteanu and Molinari (2008),
Chiburis (2008), Guggenberger, Hahn, and Kim (2008), Romano and Shaikh
(2008, 2010), Rosen (2008), Andrews and Guggenberger (2009), Andrews and
Han (2009), Stoye (2009), Andrews and Soares (2010), Bugni (2010), Canay
(2010), Andrews and Barwick (2012), and Bontemps, Magnac, and Maurin
(2012).

The literature on conditional moment inequalities is smaller and more re-
cent. The present paper and the following papers have been written over more
or less the same time period: CLR, Fan (2008), Kim (2008), and Menzel (2008).
An earlier paper by Khan and Tamer (2009) considered moment inequalities
in a point-identified model. An earlier paper by Galichon and Henry (2009)
considered a related testing problem with an infinite number of unconditional
moment inequalities of a particular type. The test statistic considered by Kim
(2008) is the closest to that considered here. He considered subsampling criti-
cal values. The test statistics considered by CLR are akin to Härdle and Mam-
men (1993)-type model specification statistics, which are based on nonpara-
metric regression estimators. In contrast, the test statistics considered here
are akin to Bierens (1982)-type statistics used for consistent model specifica-
tion tests. These approaches have different strengths and weaknesses. Menzel

8That is, the limit supremum of the probability of including a point or a sequence of points on
the boundary of the identified set is not necessarily less than or equal to 1/2.
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(2008) investigated tests based on a finite number of moment inequalities in
which the number of inequalities increases with the sample size. None of the
papers above that treat conditional moment inequalities provide contributions
(ii) and (iv)–(vi) listed above. Pakes (2010) discussed models that generate con-
ditional moment inequalities.

More recent contributions to the literature on conditional moment inequali-
ties include Beresteanu, Molchanov, and Molinari (2011), who provided sharp
identification regions for a class of game theory models and corresponding
CS’s using their support function approach combined with the methods intro-
duced in this paper; Aradillas-López, Gandhi, and Quint (2013), who provided
CI’s for parameters in an auction model; LSW, who constructed CS’s based on
Lp integrated nonparametric kernel estimators; Ponomareva (2010), who used
nonparametric kernel estimators; Armstrong (2011a, 2011b), who provided
rate of convergence results for estimators based on weighted and nonweighted
KS-based tests and associated inference methods; Chetverikov (2011), who
considered statistics based on kernel estimators with many values of the band-
width parameter, and Hsu (2011), who provided tests for conditional treatment
effects using the methods introduced in this paper. For point-identified models,
papers that convert conditional moments into an infinite number of uncondi-
tional moments include Bierens (1982), Bierens and Ploberger (1997), Chen
and Fan (1999), Domínguez and Lobato (2004), and Khan and Tamer (2009),
among others.

The CS’s constructed in the paper provide model specification tests of the
conditional moment inequality model. One rejects the model if a nominal 1−α
CS is empty. The results of the paper for CS’s imply that this test has asymp-
totic size less than or equal to α (with the inequality possibly being strict); for
example, see Andrews and Guggenberger (2009) for details of the argument.

A companion paper, Andrews and Shi (2010), generalizes the CS’s and ex-
tends the asymptotic results to allow for an infinite number of conditional or
unconditional moment inequalities, which makes the results applicable to tests
of stochastic dominance, conditional stochastic dominance, and conditional
treatment effects; see Lee and Whang (2009). Andrews and Shi (2011) ex-
tended the results to allow for nonparametric parameters of interest, such as
the value of a function at a point.

The remainder of the paper is organized as follows. Section 2 introduces the
moment inequality/equality model. Section 3 specifies the class of test statis-
tics that is considered. Section 4 defines GMS CS’s. Section 5 establishes the
uniform asymptotic coverage properties of GMS and PA CS’s. Section 6 estab-
lishes the consistency of GMS and PA tests against all fixed alternatives. Sec-
tion 7 shows that GMS and PA tests have power against some n−1/2-local alter-
natives. Section 8 considers models in which preliminary consistent estimators
of identified parameters are plugged into the moment inequalities/equalities.
It also considers time series observations. Section 9 gives a step-by-step de-
scription of how to calculate the tests. Section 10 provides the Monte Carlo
simulation results.
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The Supplemental Material (Andrews and Shi (2013)) contains Supplemen-
tal Appendices A–F. Supplemental Appendix A provides proofs of the uniform
asymptotic coverage probability results for GMS and PA CS’s. Supplemental
Appendix B provides (i) results for KS tests and CS’s, (ii) the extension of the
results of the paper to truncated/simulated CvM tests and CS’s, (iii) an illustra-
tion of the verification of the assumptions used for the local alternative results,
(iv) an illustration of uniformity problems that arise with the Kolmogorov–
Smirnov test unless the critical value is chosen carefully, (v) an illustration
of problems with pointwise asymptotics, and (vi) asymptotic coverage prob-
ability results for subsampling CS’s under drifting sequences of distributions.
Supplemental Appendix C gives proofs of the results stated in the paper, but
not given in Supplemental Appendix A. Supplemental Appendix D provides
proofs of the results stated in Supplemental Appendix B. Supplemental Ap-
pendix E provides a proof of some empirical process results that are used in
Supplemental Appendices A, C, and D. Supplemental Appendix F provides
the simulation results for the mean selection and interval-outcome regression
models and some additional material concerning the Monte Carlo simulation
results of Section 10.

2. CONDITIONAL MOMENT INEQUALITIES/EQUALITIES

2.1. Model

The conditional moment inequality/equality model is defined as follows. We
suppose there exists a true parameter θ0 ∈ Θ ⊂ Rdθ that satisfies the moment
conditions

EF0

(
mj(Wi�θ0)|Xi

) ≥ 0 a.s. [FX�0] for j = 1� � � � �p and(2.1)

EF0

(
mj(Wi�θ0)|Xi

) = 0 a.s. [FX�0] for j = p+ 1� � � � �p+ v�

where mj(·� θ), j = 1� � � � �p + v are (known) real-valued moment functions,
{Wi = (Y ′

i �X
′
i)

′ : i ≤ n} are observed independent and identically distributed
(i.i.d.) random vectors with distribution F0, FX�0 is the marginal distribution of
Xi, Xi ∈ Rdx , Yi ∈Rdy , and Wi ∈Rdw (=Rdy+dx).

We are interested in constructing CS’s for the true parameter θ0. However,
we do not assume that θ0 is point identified. Knowledge of EF0(mj(Wi�θ)|Xi)
for all θ ∈ Θ does not necessarily identify θ0. Even knowledge of F0 does not
necessarily point identify θ0�

9 The model, however, restricts the true param-

9It makes sense to speak of a “true” parameter θ0 in the present context because (i) there may
exist restrictions not included in the moment inequalities/equalities in (2.1) that point identify θ0,
but for some reason are not available or are not utilized, and/or (ii) there may exist additional
variables not included in Wi which, if observed, would lead to point identification of θ0. Given
such restrictions and/or variables, the true parameter θ0 is uniquely defined even if it is not point
identified by (2.1).
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eter value to a set called the identified set (which could be a singleton). The
identified set is

ΘF0 = {
θ ∈ Θ : (2.1) holds with θ in place of θ0

}
�(2.2)

Let (θ�F) denote generic values of the parameter and distribution. Let F
denote the parameter space for (θ0�F0). By definition, F is a collection of
(θ�F) such that

(i) θ ∈ Θ�(2.3)

(ii) {Wi : i ≥ 1} are i.i.d. under F�

(iii) EF

(
mj(Wi�θ)|Xi

) ≥ 0 a.s. [FX] for j = 1� � � � �p�

(iv) EF

(
mj(Wi�θ)|Xi

) = 0 a.s. [FX] for j = p+ 1� � � � �p+ v�

(v) 0 < VarF
(
mj(Wi�θ)

)
< ∞ for j = 1� � � � �p+ v� and

(vi) EF

∣∣mj(Wi�θ)/σF�j(θ)
∣∣2+δ ≤ B for j = 1� � � � �p+ v�

for some B < ∞ and δ > 0, where FX is the marginal distribution of Xi under
F and σ2

F�j(θ) = VarF(mj(Wi�θ))�
10 Let k = p + v. The k-vector of moment

functions is denoted

m(Wi�θ)= (
m1(Wi�θ)� � � � �mk(Wi�θ)

)′
�(2.4)

2.2. Confidence Sets

We are interested in CS’s that cover the true value θ0 with probability greater
than or equal to 1 − α for α ∈ (0�1). As is standard, we construct such CS’s by
inverting tests of the null hypothesis that θ is the true value for each θ ∈ Θ. Let
Tn(θ) be a test statistic and cn�1−α(θ) be a corresponding critical value for a test
with nominal significance level α. Then, a nominal level 1 − α CS for the true
value θ0 is

CSn = {
θ ∈ Θ :Tn(θ) ≤ cn�1−α(θ)

}
�(2.5)

3. TEST STATISTICS

3.1. General Form of the Test Statistic

Here we define the test statistic Tn(θ) that is used to construct a CS. We
transform the conditional moment inequalities/equalities into equivalent un-
conditional moment inequalities/equalities by choosing appropriate weighting

10Additional restrictions can be placed on F and the results of the paper still hold. For example,
one could specify that the support of Xi is the same for all F for which (θ�F) ∈ F .
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functions, that is, instruments. Then, we construct a test statistic based on the
unconditional moment conditions.

The unconditional moment conditions are of the form

EF0mj(Wi�θ0)gj(Xi)≥ 0 for j = 1� � � � �p and(3.1)

EF0mj(Wi�θ0)gj(Xi)= 0 for j = p+ 1� � � � �k�

for all g = (g1� � � � � gk)
′ ∈ G�

where g = (g1� � � � � gk)
′ are instruments that depend on the conditioning vari-

ables Xi and G is a collection of instruments. Typically G contains an infinite
number of elements.

The identified set ΘF0(G) of the model defined by (3.1) is

ΘF0(G)= {
θ ∈Θ : (3.1) holds with θ in place of θ0

}
�(3.2)

The set G is chosen so that ΘF0(G)= ΘF0 , defined in (2.2). Section 3.3 provides
conditions for this equality and gives examples of instrument sets G that satisfy
the conditions.

We construct test statistics based on (3.1). The sample moment functions
are

m̄n(θ�g) = n−1
n∑

i=1

m(Wi�θ�g) for g ∈ G� where(3.3)

m(Wi�θ�g) =

⎛⎜⎜⎜⎝
m1(Wi� θ)g1(Xi)

m2(Wi� θ)g2(Xi)
���

mk(Wi�θ)gk(Xi)

⎞⎟⎟⎟⎠
for g ∈ G . The sample variance–covariance matrix of n1/2m̄n(θ�g) is

Σ̂n(θ�g) = n−1
n∑

i=1

(
m(Wi�θ�g)− m̄n(θ�g)

)(
m(Wi�θ�g)− m̄n(θ�g)

)′
�(3.4)

The matrix Σ̂n(θ�g) may be singular or near singular with nonnegligible
probability for some g ∈ G . This is undesirable because the inverse of
Σ̂n(θ�g) needs to be consistent for its population counterpart uniformly
over g ∈ G for the test statistics considered below. In consequence, we em-
ploy a modification of Σ̂n(θ�g), denoted Σ̄n(θ�g), such that det(Σ̄n(θ�g)) is
bounded away from zero. Different choices of Σ̄n(θ�g) are possible. Here
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we use

Σ̄n(θ�g) = Σ̂n(θ�g)+ ε · Diag
(
Σ̂n(θ�1k)

)
for g ∈ G(3.5)

for some fixed ε > 0. See Section 9 for suitable choices of ε and other tuning
parameters given below. By design, Σ̄n(θ�g) is a linear combination of two
scale equivariant functions and thus is scale equivariant. (That is, multiplying
the moment functions m(Wi�θ) by a diagonal matrix, D, changes Σ̄n(θ�g) into
DΣ̄n(θ�g)D.) This yields a test statistic that is invariant to rescaling of the
moment functions m(Wi�θ).

The test statistic Tn(θ) is either a Cramér–von Mises-type (CvM) or
Kolmogorov–Smirnov-type (KS) statistic. The CvM statistic is

Tn(θ) =
∫

S
(
n1/2m̄n(θ�g)� Σ̄n(θ�g)

)
dQ(g)�(3.6)

where S is a nonnegative function, Q is a weight function (i.e., probability mea-
sure) on G , and the integral is over G . The functions S and Q are discussed in
Sections 3.2 and 3.4 below, respectively.

The Kolmogorov–Smirnov-type (KS) statistic is

Tn(θ) = sup
g∈G

S
(
n1/2m̄n(θ�g)� Σ̄n(θ�g)

)
�(3.7)

For brevity, in the text of the paper, the discussion and results focus on CvM
statistics. Supplemental Appendix B gives detailed results for KS statistics.

3.2. Function S

To permit comparisons, we establish results in this paper for a broad family
of functions S that satisfy certain conditions stated below. We now introduce
three functions that satisfy these conditions. The first is the modified method
of moments (MMM) or Sum function:

S1(m�Σ)=
p∑

j=1

[mj/σj]2
− +

p+v∑
j=p+1

[mj/σj]2�(3.8)

where mj is the jth element of the vector m, σ2
j is the jth diagonal element of

the matrix Σ, and [x]− = −x if x < 0 and [x]− = 0 if x ≥ 0.
The second function S is the quasi-likelihood ratio (QLR) function:

S2(m�Σ)= inf
t=(t′1�0

′
v)

′:t1∈[0�∞]p
(m− t)′Σ−1(m− t)�(3.9)
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The third function S is a “maximum” (Max) function. Used in conjunction
with the KS form of the test statistic, this S function yields a pure KS-type test
statistic:

S3(m�Σ) = max
{[m1/σ1]2

−� � � � � [mp/σp]2
−�(3.10)

(mp+1/σp+1)
2� � � � � (mp+v/σp+v)

2
}
�

The function S2 is more costly to compute than S1 and S3.
Let mI = (m1� � � � �mp)

′ and mII = (mp+1� � � � �mk)
′. Let Δ be the set of k×k

positive-definite diagonal matrices. Let W be the set of k×k positive-definite
matrices. Let S = {(m�Σ) :m ∈ (−∞�∞]p ×Rv�Σ ∈ W }.

We consider functions S that satisfy the following conditions.

ASSUMPTION S1: ∀(m�Σ) ∈ S ,
(a) S(Dm�DΣD) = S(m�Σ) ∀D ∈ Δ,
(b) S(mI�mII�Σ) is non-increasing in each element of mI,
(c) S(m�Σ) ≥ 0,
(d) S is continuous, and
(e) S(m�Σ+Σ1)≤ S(m�Σ) for all k× k positive-semidefinite matrices Σ1.

It is worth pointing out that Assumption S1(d) requires S to be continuous
in m at all points m in the extended vector space R

p
[+∞] ×Rv, not only for points

in Rp+v.

ASSUMPTION S2: S(m�Σ) is uniformly continuous in the sense that, for all
m0 ∈ Rk and all Σ0 ∈ W , supμ∈[0�∞)p×{0}v |S(m + μ�Σ) − S(m0 + μ�Σ0)| → 0 as
(m�Σ)→ (m0�Σ0).11

The following two assumptions are used only to establish the power proper-
ties of tests.

ASSUMPTION S3: S(m�Σ) > 0 if and only if mj < 0 for some j = 1� � � � �p or
mj 
= 0 for some j = p+ 1� � � � �k, where m = (m1� � � � �mk)

′ and Σ ∈ W .

ASSUMPTION S4: For some χ > 0, S(am�Σ) = aχS(m�Σ) for all scalars a >
0, m ∈Rk, and Σ ∈ W .

Assumptions S1–S4 allow for natural choices like S1� S2, and S3.

LEMMA 1: The functions S1, S2, and S3 satisfy Assumptions S1–S4.

11It is important that the supremum is only over μ vectors with nonnegative elements μj for
j ≤ p. Without this restriction on the μ vectors, Assumption S2 would not hold for typical S
functions of interest.
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3.3. Instruments

When considering consistent specification tests based on conditional mo-
ment equalities (see Bierens (1982), Bierens and Ploberger (1997)), a wide
variety of different types of functions g can be employed without loss of in-
formation; see Stinchcombe and White (1998). With conditional moment in-
equalities, however, it is much more difficult to distill the information in the
moments because of the one-sided feature of the inequalities. Here we show
how this can be done and provide proofs that it can be done without loss of
information.

The collection of instruments G needs to satisfy the following condition in
order for the unconditional moments {EFm(Wi�θ�g) :g ∈ G} to incorporate
the same information as the conditional moments {EF(m(Wi�θ)|Xi = x) :x ∈
Rdx}.

For any θ ∈ Θ and any distribution F with EF‖m(Wi�θ)‖ <∞, let

XF(θ) = {
x ∈Rdx :EF

(
mj(Wi�θ)|Xi = x

)
< 0 for some j ≤ p or(3.11)

EF

(
mj(Wi�θ)|Xi = x

) 
= 0 for some j = p+ 1� � � � �k
}
�

ASSUMPTION CI: For any θ ∈ Θ and distribution F for which EF‖m(Wi�θ)‖ <
∞ and PF(Xi ∈ XF(θ)) > 0, there exists some g ∈ G such that

EFmj(Wi�θ)gj(Xi) < 0 for some j ≤ p or

EFmj(Wi�θ)gj(Xi) 
= 0 for some j = p+ 1� � � � �k�

Note that CI abbreviates “conditionally identified.” The following simple
lemma indicates the importance of Assumption CI.

LEMMA 2: Assumption CI implies ΘF(G) = ΘF ∀F with supθ∈Θ EF‖m(Wi�
θ)‖ <∞.

Collections G that satisfy Assumption CI contain nonnegative functions
whose supports are cubes, boxes, or bounded sets with other shapes whose
supports are arbitrarily small; see below. Below we construct tests that use the
unconditional moments based on G and that incorporate all of the information
in the conditional moments. To do so, we need to make sure that the tests do
not ignore some of the functions in G . Assumption Q, introduced below, plays
this role. Assumption Q ensures that, for every θ /∈ΘF , there is a positive mea-
sure set of functions g ∈ G for which EFm(Wi�θ)g(Wi) < 0, so that the tests
incorporate all of the information based on the conditional moments.

Next, we state a “manageability” condition that regulates the complexity
of G . It ensures that {n1/2(m̄n(θ�g)−EFnm̄n(θ�g)) :g ∈ G} satisfies a functional
central limit theorem under drifting sequences of distributions {Fn :n≥ 1}. The
latter is used in the proof of the uniform coverage probability results for the
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CS’s. The manageability condition is from Pollard (1990). It is defined in Sup-
plemental Appendix E.

ASSUMPTION M: (a) 0 ≤ gj(x) ≤ G(x) ∀x ∈ Rdx�∀j ≤ k�∀g ∈ G , for some
envelope function G(x),

(b) EFG
δ1(Xi) ≤ C for all F such that (θ�F) ∈ F for some θ ∈ Θ, for some

C < ∞, and for some δ1 > 4/δ + 2, where Wi = (Y ′
i �X

′
i)

′ ∼ F and δ is as in the
definition of F in (2.3), and

(c) the processes {gj(Xn�i) :g ∈ G , i ≤ n�n ≥ 1} are manageable with respect
to the envelope function G(Xn�i) for j = 1� � � � �k, where {Xn�i : i ≤ n�n ≥ 1} is a
row-wise i.i.d. triangular array with Xn�i ∼ FX�n and FX�n is the distribution of Xn�i

under Fn for some (θn�Fn) ∈ F for n ≥ 1.12

Now we give two examples of collections of functions G that satisfy Assump-
tions CI and M. Supplemental Appendix B gives three additional examples.

EXAMPLE 1—Countable Hypercubes: Suppose Xi is transformed via a one-
to-one mapping so that each of its elements lies in [0�1]. There is no loss in
information in doing so. Section 9 and Supplemental Appendix B provide ex-
amples of how this can be done.

Consider the class of indicator functions of cubes with side lengths (2r)−1

that partition [0�1]dx for each r for all large positive integers r. This class is
countable:

Gc-cube = {
g(x) :g(x) = 1(x ∈ C) · 1k for C ∈ Cc-cube

}
� where(3.12)

Cc-cube =
{
Ca�r =

dx×
u=1

((au − 1)/(2r)� au/(2r)] ∈ [0�1]dx :

a= (a1� � � � � adx)
′� au ∈ {1�2� � � � �2r}

for u= 1� � � � � dx and r = r0� r0 + 1� � � �

}

for some positive integer r0.13 The terminology “c-cube” abbreviates countable
cubes. Note that Ca�r is a hypercube in [0�1]dx with smallest vertex indexed by
a and side lengths equal to (2r)−1.

The class of countable cubes Gc-cube leads to a test statistic Tn(θ) for which
the integral over G reduces to a sum.

12The asymptotic results given below hold with Assumption M replaced by any alternative
assumption that is sufficient to obtain the requisite empirical process results; see Assumption EP
in Section 8.

13When au = 1, the left endpoint of the interval (0�1/(2r)] is included in the interval.
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EXAMPLE 2—Boxes: Let

Gbox = {
g :g(x) = 1(x ∈C) · 1k for C ∈ Cbox

}
� where(3.13)

Cbox =
{
Cx�r =

dx×
u=1

(xu − ru�xu + ru] ∈Rdx :

xu ∈ R� ru ∈ (0� r̄) ∀u ≤ dx

}
�

x = (x1� � � � � xdx)
′, r = (r1� � � � � rdx)

′, r̄ ∈ (0�∞], and 1k is a k-vector of ones.
The set Cbox contains boxes (i.e., hyper-rectangles or orthotopes) in Rdx with
centers at x ∈ Rdx and side lengths less than 2r̄.

When the support of Xi, denoted Supp(Xi), is a known subset of Rdx , one
can replace xu ∈ R ∀u ≤ dx in (3.13) by x ∈ conv(Supp(Xi)), where conv(A)
denotes the convex hull of A. Sometimes, it is convenient to transform the
elements of Xi into [0�1] via strictly increasing transformations as in Example 1
above. If the Xi’s are transformed in this way, then R in (3.13) is replaced by
[0�1].

Both of the sets G discussed above can be used with continuous and/or dis-
crete regressors.

The following result establishes Assumptions CI and M for Gc-cube and Gbox.

LEMMA 3: For any moment function m(Wi�θ), Assumptions CI and M hold
with G = Gc-cube and with G = Gbox.

Moment Equalities

The sets G introduced above use the same functions for the moment inequal-
ities and equalities; that is, g is of the form g∗ · 1k, where g∗ is a real-valued
function. It is possible to use different functions for the moment equalities
than for the inequalities. One can take g = (g(1)′� g(2)′)′ ∈ G(1) × G(2), where g(1)

is an Rp-valued function in some set G(1) and g(2) is an Rv-valued function in
some set G(2). Any “generically comprehensively revealing” class of functions
G(2) (see Stinchcombe and White (1998)) leads to a set G that satisfies As-
sumption CI, provided one uses a suitable class of functions G(1) (such as any
of those defined above, with 1k replaced by 1p). For brevity, we do not provide
further details.

3.4. Weight Function Q

The weight function Q can be any probability measure on G whose support
is G . This support condition is needed to ensure that no functions g ∈ G , which
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might have set-identifying power, are “ignored” by the test statistic Tn(θ).
Without such a condition, a CS based on Tn(θ) would not necessarily shrink
to the identified set as n→ ∞. Section 6 introduces the support condition for-
mally and shows that the probability measures Q considered here satisfy it.

We now specify two examples of weight functions Q. Three others are spec-
ified in Supplemental Appendix B.

Weight Function Q for Gc-cube

There is a one-to-one mapping Πc-cube : Gc-cube → AR = {(a� r) :a ∈ {1� � � � �
2r}dx and r = r0� r0 + 1� � � �}. Let QAR be a probability measure on AR. One
can take Q = Π−1

c-cubeQAR. A natural choice of measure QAR is uniform on a ∈
{1� � � � �2r}dx conditional on r combined with a distribution for r that has some
probability mass function {w(r) : r = r0� r0 + 1� � � �}. This yields the test statistic
to be

Tn(θ) =
∞∑

r=r0

w(r)
∑

a∈{1�����2r}dx
(2r)−dxS

(
n1/2m̄n(θ�ga�r)� Σ̄n(θ�ga�r)

)
�(3.14)

where ga�r(x)= 1(x ∈Ca�r) · 1k for Ca�r ∈ Cc-cube.

Weight Function Q for Gbox

There is a one-to-one mapping Πbox : Gbox → XR = {(x� r) ∈ Rdx × (0� r̄)dx}.
Let QXR be a probability measure on XR. Then, Π−1

boxQXR is a probability
measure on Gbox. One can take Q = Π−1

boxQXR. Any probability measure on
Rdx × (0� r̄)dx with full support is a valid candidate for QXR. If Supp(Xi) is
known, Rdx can be replaced by the convex hull of Supp(Xi). One choice is to
transform each regressor to lie in [0�1] and to take QXR to be the uniform dis-
tribution on [0�1]dx × (0� r̄)dx , that is, Unif([0�1]dx × (0� r̄)dx). In this case, the
test statistic becomes

Tn(θ) =
∫

[0�1]dx

∫
(0�r̄)dx

S
(
n1/2m̄n(θ�gx�r)� Σ̄n(θ�gx�r)

)
r̄−dx dr dx�(3.15)

where gx�r(y)= 1(y ∈ Cx�r) · 1k and Cx�r denotes the box centered at x ∈ [0�1]dx
with side lengths 2r ∈ (0�2r̄)dx .

3.5. Computation of Sums, Integrals, and Suprema

The test statistics Tn(θ) given in (3.14) and (3.15) involve an infinite sum and
an integral with respect to Q. Analogous infinite sums and integrals appear
in the definitions of the critical values given below. These infinite sums and
integrals can be approximated by truncation, simulation, or quasi-Monte Carlo
methods. If G is countable, let {g1� � � � � gsn} denote the first sn functions g that
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appear in the infinite sum that defines Tn(θ). Alternatively, let {g1� � � � � gsn}
be sn i.i.d. functions drawn from G according to the distribution Q. Or, let
{g1� � � � � gsn} be the first sn terms in a quasi-Monte Carlo approximation of the
integral w.r.t. Q. Then, an approximate test statistic obtained by truncation,
simulation, or quasi-Monte Carlo methods is

T̄n�sn(θ) =
sn∑
�=1

wQ�n(�)S
(
n1/2m̄n(θ�g�)� Σ̄n(θ�g�)

)
�(3.16)

where wQ�n(�)=Q({g�}) when an infinite sum is truncated, wQ�n(�)= s−1
n when

{g1� � � � � gsn} are i.i.d. draws from G according to Q, and wQ�n(�) is a suitable
weight when a quasi-Monte Carlo method is used. For example, in (3.14),
the outer sum can be truncated at r1�n, in which case, sn = ∑r1�n

r=r0
(2r)dX and

wQ�n(�) = w(r)(2r)−dx for � such that g� corresponds to ga�r for some a. In
(3.15), the integral over (x� r) can be replaced by an average over �= 1� � � � � sn,
the uniform density r̄−dx deleted, and gx�r replaced by gx��r� , where {(x�� r�) :�=
1� � � � � sn} are i.i.d. with a Unif([0�1]dx × (0� r̄)dx) distribution.

In Supplemental Appendix B, we show that truncation at sn, simulation
based on sn simulation repetitions, or quasi-Monte Carlo approximation based
on sn terms, where sn → ∞ as n → ∞, is sufficient to maintain the asymp-
totic validity of the CvM tests and CS’s as well as the asymptotic power results
under fixed alternatives and most of the results under n−1/2-local alternatives.
Truncation may affect the local power of CvM tests against non-n−1/2-local al-
ternatives. (Because we do not consider such alternatives in this paper, we do
not give a definiteness statement regarding this.)

The KS form of the test statistic requires the computation of a supremum
over g ∈ G . For computational ease, this can be replaced by a supremum over
g ∈ Gn, where Gn ↑ G as n → ∞, in the test statistic and in the definition of
the critical value (defined below). The asymptotic results for KS tests given in
Supplemental Appendix B show that the use of Gn in place of G does not affect
the asymptotic properties of the test reported there.

4. GMS CONFIDENCE SETS

4.1. GMS Critical Values

In this section, we define GMS critical values and CS’s. It is shown in Sec-
tion 5 below that when θ is in the identified set, the “uniform asymptotic distri-
bution” of Tn(θ) is the distribution of T(hn), where hn = (h1�n�h2), h1�n(·) is a
function from G to [0�∞]p ×{0}v that depends on the slackness of the moment
inequalities and on n, and h2(·� ·) is a k × k-matrix-valued covariance kernel
on G × G . For h= (h1�h2), define

T(h) =
∫

S
(
νh2(g)+ h1(g)�h2(g�g)+ εIk

)
dQ(g)�(4.1)
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where {
νh2(g) :g ∈ G

}
(4.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(·� ·) on
G × G , h1(·) is a function from G to [0�∞]p×{0}v, and ε is as in the definition of
Σ̄n(θ�g) in (3.5).14 The definition of T(h) in (4.1) applies to CvM test statistics.
For the KS test statistic, one replaces

∫ · · · dQ(g) by supg∈G · · · .
We are interested in tests of nominal level α and CS’s of nominal level 1 −α.

Let

c0(h�1 − α)(4.3)

denote the 1 − α quantile of T(h). For notational simplicity, we often write
c0(h�1−α) as c0(h1�h2�1−α) when h= (h1�h2). If hn = (h1�n�h2) was known,
we would use c0(hn�1 − α) as the critical value for the test statistic Tn(θ).
However, hn is unknown and h1�n cannot be consistently estimated. In conse-
quence, we replace h2 in c0(h1�n�h2�1 −α) by a uniformly consistent estimator
ĥ2�n(θ) (= ĥ2�n(θ� ·� ·)) of the covariance kernel h2 and we replace h1�n by a
data-dependent GMS function ϕn(θ) (= ϕn(θ� ·)) on G that is constructed to
be less than or equal to h1�n(g) for all g ∈ G with probability that goes to 1 as
n → ∞. Because S(m�Σ) is non-increasing in mI by Assumption S1(b), where
m = (m′

I�m
′
II)

′, the latter property yields a test whose asymptotic level is less
than or equal to the nominal level α. (It is arbitrarily close to α for certain
(θ�F) ∈ F .) The quantities ĥ2�n(θ) and ϕn(θ) are defined below.

The nominal 1 − α GMS critical value is defined to be

c
(
ϕn(θ)� ĥ2�n(θ)�1 − α

) = c0

(
ϕn(θ)� ĥ2�n(θ)�1 − α+η

) +η�(4.4)

where η> 0 is an arbitrarily small positive constant, for example, 10−6. A nom-
inal 1 − α GMS CS is given by (2.5) with the critical value cn�1−α(θ) equal to
c(ϕn(θ)� ĥ2�n(θ)�1 − α).

The constant η is an infinitesimal uniformity factor that is employed to cir-
cumvent problems that arise due to the presence of the infinite-dimensional
nuisance parameter h1�n that affects the distribution of the test statistic in both
small and large samples. The constant η obviates the need for complicated and
difficult-to-verify uniform continuity and strictly-increasing conditions on the
large sample distribution functions of the test statistic.

14The sample paths of νh2(·) are concentrated on the set Uk
ρ (G) of bounded uniformly ρ-

continuous Rk-valued functions on G , where ρ is defined in Supplemental Appendix A.
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The sample covariance kernel ĥ2�n(θ) (= ĥ2�n(θ� ·� ·)) is defined by

ĥ2�n

(
θ�g�g∗) = D̂−1/2

n (θ)Σ̂n

(
θ�g�g∗)D̂−1/2

n (θ)� where(4.5)

Σ̂n

(
θ�g�g∗) = n−1

n∑
i=1

(
m(Wi�θ�g)− m̄n(θ�g)

)
× (

m
(
Wi�θ�g

∗) − m̄n

(
θ�g∗))′

and

D̂n(θ) = Diag
(
Σ̂n(θ�1k�1k)

)
�

Note that Σ̂n(θ�g), defined in (3.4), equals Σ̂n(θ�g�g) and D̂n(θ) is the sample
variance–covariance matrix of n−1/2

∑n

i=1 m(Wi�θ).
The quantity ϕn(θ) is defined in Section 4.4 below.

4.2. GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated in-
tegral, or quasi-Monte Carlo quantity, as discussed in Section 3.5, the statistic
T(h) in Section 4.1 is replaced by

T̄sn(h)=
sn∑
�=1

wQ�n(�)S
(
νh2(g�)+ h1(g�)�h2(g�� g�)+ εIk

)
�(4.6)

where {g� :�= 1� � � � � sn} are the same functions {g1� � � � � gsn} that appear in the
approximate statistic T̄n�sn(θ). We call the critical value obtained using T̄sn(h)
an approximate GMS (A-GMS) critical value.

Let c0�sn(h�1 − α) denote the 1 − α quantile of T̄sn(h) for fixed {g1� � � � � gsn}.
The A-GMS critical value is defined to be

csn
(
ϕn(θ)� ĥ2�n(θ)�1 − α

) = c0�sn

(
ϕn(θ)� ĥ2�n(θ)�1 − α+η

) +η�(4.7)

This critical value is a quantile that can be computed by simulation as fol-
lows. Let {T̄sn�τ(h) :τ = 1� � � � � τreps} be τreps i.i.d. random variables each with
the same distribution as T̄sn(h) and each with the same functions {g1� � � � � gsn},
where h = (h1�h2) is evaluated at (ϕn(θ)� ĥ2�n(θ)). Then, the A-GMS crit-
ical value, csn(ϕn(θ)� ĥ2�n(θ)�1 − α), is the 1 − α + η sample quantile of
{T̄sn�τ(ϕn(θ)� ĥ2�n(θ)) :τ = 1� � � � � τreps} plus η for very small η > 0 and large
τreps.

When constructing a CS, one carries out multiple tests with a different θ
value specified in the null hypothesis for each test. When doing so, we rec-
ommend using the same {g1� � � � � gsn} functions for each θ value considered
(although this is not necessary for the asymptotic results to hold).
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4.3. Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (4.4) and the A-GMS critical
value in (4.7) can be employed. The bootstrap GMS critical value is

c∗(ϕn(θ)� ĥ
∗
2�n(θ)�1 − α

) = c∗
0

(
ϕn(θ)� ĥ

∗
2�n(θ)�1 − α+η

) +η�(4.8)

where c∗
0(h�1 − α) is the 1 − α quantile of T ∗(h) and T ∗(h) is defined as

in (4.1) but with {νh2(g) :g ∈ G} and h2 replaced by the bootstrap empirical
process {ν∗

n(g) :g ∈ G} and the bootstrap covariance kernel ĥ∗
2�n(θ), respec-

tively. By definition, (i) ν∗
n(g) = D̂n(θ)

−1/2n−1/2
∑n

i=1(m(W ∗
i � θ� g) − m̄n(θ�g)),

where {W ∗
i : i ≤ n} is an i.i.d. bootstrap sample drawn from the empirical dis-

tribution of {Wi : i ≤ n}, (ii) Σ̂∗
n(θ�g�g

∗) are defined as in (4.5) with W ∗
i in

place of Wi, and (iii) ĥ∗
2�n(θ�g�g

∗) = D̂n(θ)
−1/2Σ̂∗

n(θ�g�g
∗)D̂n(θ)

−1/2. Note that
ĥ∗

2�n(θ�g�g
∗) only enters c∗(ϕn(θ)� ĥ

∗
2�n(θ)�1−α) via functions (g�g∗) such that

g = g∗.
When the test statistic, T̄n�sn(θ), is a truncated sum, simulated integral, or

quasi-Monte Carlo quantity, a bootstrap A-GMS critical value can be em-
ployed. It is defined analogously to the bootstrap GMS critical value but with
T ∗(h) replaced by T ∗

sn
(h), where T ∗

sn
(h) has the same definition as T ∗(h) ex-

cept that a truncated sum, simulated integral, or quasi-Monte Carlo quantity
appears in place of the integral with respect to Q, as in Section 4.2. The same
functions {g1� � � � � gsn} are used in all bootstrap critical value calculations as in
the test statistic T̄n�sn(θ).

4.4. Definition of ϕn(θ)

As discussed above, ϕn(θ) is constructed such that ϕn(θ�g) ≤ h1�n(g) ∀g ∈ G
with probability that goes to 1 as n → ∞ uniformly over (θ�F) ∈ F . Let

ξn(θ�g) = κ−1
n n1/2D̄−1/2

n (θ�g)m̄n(θ�g)� where(4.9)

D̄n(θ�g) = Diag
(
Σ̄n(θ�g)

)
�

Σ̄n(θ�g) is defined in (3.5), and {κn :n ≥ 1} is a sequence of constants that
diverges to infinity as n → ∞. The jth element of ξn(θ�g), denoted ξn�j(θ�g),
measures the slackness of the moment inequality EFmj(Wi�θ�g) ≥ 0 for j =
1� � � � �p.

Define ϕn(θ�g) = (ϕn�1(θ�g)� � � � �ϕn�p(θ�g)�0� � � � �0)′ ∈ Rk by

ϕn�j(θ�g) = Bn1
(
ξn�j(θ�g) > 1

)
for j ≤ p�(4.10)

ASSUMPTION GMS1: (a) ϕn(θ�g) satisfies (4.10) and {Bn :n ≥ 1} is a non-
decreasing sequence of positive constants, and

(b) κn → ∞ and Bn/κn → 0 as n → ∞.
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The constants {Bn :n ≥ 1} in Assumption GMS1 need not diverge to infinity
for the GMS CS to have asymptotic size greater than or equal to 1 − α. How-
ever, for the GMS CS not to be asymptotically conservative, Bn must diverge
to ∞; see Assumption GMS2(b) below. See Section 9 for specific choices of κn

and Bn that satisfy Assumption GMS1.

4.5. “Plug-in Asymptotic” Confidence Sets

Next, for comparative purposes, we define plug-in asymptotic (PA) critical
values. Subsampling critical values are defined and analyzed in Supplemental
Appendix B. We strongly recommend GMS critical values over PA and subsam-
pling critical values because (i) GMS tests are shown to be more powerful than
PA tests asymptotically; see Comment (ii) to Theorem 4 below, (ii) it should
be possible to show that GMS tests have higher power than subsampling tests
asymptotically and smaller errors in null rejection probabilities asymptotically
by using arguments similar to those in Andrews and Soares (2010) and Bugni
(2010), respectively, and (iii) the finite-sample simulations in Section 10 show
better performance by GMS critical values than PA and subsampling critical
values.

PA critical values are obtained from the asymptotic null distribution that
arises when all conditional moment inequalities hold as equalities a.s. The PA
critical value is

c
(
0G� ĥ2�n(θ)�1 − α

) = c0

(
0G� ĥ2�n(θ)�1 − α+η

) +η�(4.11)

where η is an arbitrarily small positive constant, 0G denotes the Rk-valued
function on G that is identically (0� � � � �0)′ ∈ Rk, and ĥ2�n(θ) is defined in (4.5).
The nominal 1−α PA CS is given by (2.5) with the critical value cn�1−α(θ) equal
to c(0G� ĥ2�n(θ)�1 − α).

Bootstrap PA, A-PA, and bootstrap A-PA critical values are defined analo-
gously to their GMS counterparts in Sections 4.2 and 4.3.

5. UNIFORM ASYMPTOTIC COVERAGE PROBABILITIES

In this section, we show that GMS and PA CS’s have correct uniform asymp-
totic coverage probabilities. The results of this section and those in Sections 6–
8 below are for CvM statistics based on integrals with respect to Q. Exten-
sions of these results to approximate CvM statistics and critical values, defined
in Section 3.5, are provided in Supplemental Appendix B. Supplemental Ap-
pendix B also gives results for KS tests.

5.1. Motivation for Uniform Asymptotics

The choice of critical values is important for moment inequality tests be-
cause the null distribution of a test statistic depends greatly on the slackness,
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or lack thereof, of the different moment inequalities. The slackness represents
a nuisance parameter that appears under the null hypothesis; for example,
see Andrews and Soares (2010, Sections 1 and 4.1). With conditional moment
inequalities, slackness comes in the form of a function, which is an infinite-
dimensional parameter, whereas with unconditional moment inequalities it is
a finite-dimensional parameter.

Potential slackness in the moment inequalities causes a discontinuity in the
pointwise asymptotic distribution of typical test statistics. With conditional mo-
ment inequalities, one obtains an extreme form of discontinuity of the point-
wise asymptotic distribution because two moment inequalities can be arbitrar-
ily close to one another but pointwise asymptotics say that one inequality is
irrelevant—because it is infinitesimally slack, but the other is not—because
it is binding. In finite samples, there is no discontinuity in the distribution of
the test statistic. Hence, pointwise asymptotics do not provide good approxi-
mations to the finite-sample properties of test statistics in moment inequality
models, especially conditional models. Uniform asymptotics are required.

Methods for establishing uniform asymptotics given in Andrews and
Guggenberger (2009, 2010) only apply to finite-dimensional nuisance parame-
ters, and hence, are not applicable to conditional moment inequality models.
The same is true of the method in Mikusheva (2007). Linton, Song, and Whang
(2010) established uniform asymptotic results in a model where the nuisance
parameter is infinite dimensional. However, their results rely on a complicated
condition that is hard to verify. For issues concerning uniformity of asymptotics
in other econometric models, see Kabaila (1995), Leeb and Pötscher (2005),
Mikusheva (2007), and Andrews and Guggenberger (2010).

5.2. Notation

To establish uniform asymptotic coverage probability results, we now intro-
duce notation for the population analogues of the sample quantities in (4.5).
Define

h2�F

(
θ�g�g∗) = D−1/2

F (θ)ΣF

(
θ�g�g∗)D−1/2

F (θ)(5.1)

= CovF

(
D−1/2

F (θ)m(Wi�θ�g)�D
−1/2
F (θ)m

(
Wi�θ�g

∗))�
ΣF

(
θ�g�g∗) = CovF

(
m(Wi�θ�g)�m

(
Wi�θ�g

∗))�
DF(θ) = Diag

(
ΣF(θ�1k�1k)

)(= Diag
(
VarF

(
m(Wi�θ)

)))
�

To determine the asymptotic distribution of Tn(θ), we write Tn(θ) as a function
of the following quantities:

h1�n�F(θ�g) = n1/2D−1/2
F (θ)EFm(Wi�θ�g)�(5.2)

hn�F

(
θ�g�g∗) = (

h1�n�F(θ�g)�h2�F

(
θ�g�g∗))�
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ĥ2�n�F

(
θ�g�g∗) =D−1/2

F (θ)Σ̂n

(
θ�g�g∗)D−1/2

F (θ)�

h̄2�n�F(θ�g) = ĥ2�n�F(θ�g�g)+ εĥ2�n�F(θ�1k�1k)(= D−1/2
F (θ)Σ̄n(θ�g)D

−1/2
F (θ)

)
�

νn�F(θ�g) = n−1/2
n∑

i=1

D−1/2
F (θ)

[
m(Wi�θ�g)−EFm(Wi�θ�g)

]
�

As defined, (i) h1�n�F(θ�g) is a k-vector of normalized means of the moment
functions m(Wi�θ�g) for g ∈ G , which measure the slackness of the popula-
tion moment conditions under (θ�F), (ii) hn�F(θ�g�g

∗) contains the normal-
ized means of D−1/2

F (θ)m(Wi�θ�g) and the covariances of D−1/2
F (θ)m(Wi�θ�g)

and D−1/2
F (θ)m(Wi�θ�g

∗), (iii) ĥ2�n�F(θ�g�g
∗) and h̄2�n�F(θ�g) are hybrid

quantities—part population, part sample—based on Σ̂n(θ�g�g
∗) and Σ̄n(θ�g),

respectively, and (iv) νn�F(θ�g) is the sample average of D−1/2
F (θ)m(Wi�θ�g)

normalized to have mean zero and variance that does not depend on n.
Note that νn�F(θ� ·) is an empirical process indexed by g ∈ G with covariance

kernel given by h2�F(θ�g�g
∗).

The normalized sample moments n1/2m̄n(θ�g) can be written as

n1/2m̄n(θ�g) =D1/2
F (θ)

(
νn�F(θ�g)+ h1�n�F(θ�g)

)
�(5.3)

The test statistic Tn(θ), defined in (3.6), can be written as

Tn(θ) =
∫

S
(
νn�F(θ�g)+ h1�n�F(θ�g)� h̄2�n�F(θ�g)

)
dQ(g)�(5.4)

Note the close resemblance between Tn(θ) and T(h) (defined in (4.1)).
Let H1 denote the set of all functions from G to [0�∞]p × {0}v. Let

H2 = {
h2�F(θ� ·� ·) : (θ�F) ∈ F

}
and H = H1 × H2�(5.5)

On the space of k × k-matrix-valued covariance kernels on G × G , which is a
superset of H2, we use the metric d defined by

d
(
h(1)

2 �h(2)
2

) = sup
g�g∗∈G

∥∥h(1)
2

(
g�g∗) − h(2)

2

(
g�g∗)∥∥�(5.6)

For notational simplicity, for any function of the form bF(θ�g) for g ∈ G , let
bF(θ) denote the function bF(θ� ·) on G . Correspondingly, for any function of
the form bF(θ�g�g

∗) for g�g∗ ∈ G , let bF(θ) denote the function bF(θ� ·� ·) on
G 2.
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5.3. Uniform Asymptotic Distribution of the Test Statistic

The following theorem provides a uniform asymptotic distributional result
for the test statistic Tn(θ). It is used to establish uniform asymptotic coverage
probability results for GMS and PA CS’s.

THEOREM 1: Suppose Assumptions M, S1, and S2 hold. Then, for every com-
pact subset H2�cpt of H2, all constants xhn�F (θ) ∈ R that may depend on (θ�F) and
n through hn�F(θ), and all δ > 0, we have

(a) lim sup
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

[
PF

(
Tn(θ) > xhn�F (θ)

)
− P

(
T

(
hn�F(θ)

) + δ > xhn�F (θ)

)] ≤ 0�

(b) lim inf
n→∞

inf
(θ�F)∈F :

h2�F (θ)∈H2�cpt

[
PF

(
Tn(θ) > xhn�F (θ)

)
− P

(
T

(
hn�F(θ)

) − δ > xhn�F (θ)

)] ≥ 0�

where T(h) = ∫
S(νh2(g)+h1(g)�h2(g)+εIk)dQ(g) and νh2(·) is the Gaussian

process defined in (4.2).

COMMENTS: (i) Theorem 1 gives a uniform asymptotic approximation to the
distribution function of Tn(θ). Uniformity holds without any restrictions on the
normalized mean (i.e., moment inequality slackness) functions {h1�n�Fn(θn) :n≥
1}. In particular, Theorem 1 does not require {h1�n�Fn(θn) :n ≥ 1} to converge
as n → ∞ or to belong to a compact set. The theorem does not require that
Tn(θ) has an asymptotic distribution under any sequence {(θn�Fn) ∈ F :n≥ 1}.
These are novel features of Theorem 1.

(ii) The supremum and infimum in Theorem 1 are over compact sets of co-
variance kernels H2�cpt, rather than the parameter space H2. This is not partic-
ularly problematic because the potential asymptotic size problems that arise in
moment inequality models are due to the pointwise discontinuity of the asymp-
totic distribution of the test statistic as a function of the means of the moment
inequality functions, not as a function of the covariances between different
moment inequalities.

(iii) Theorem 1 is proved using an almost sure representation argument and
the bounded convergence theorem. The continuous mapping theorem does
not apply because (i) Tn(θ) does not converge in distribution uniformly over
(θ�F) ∈ F , and (ii) h1�n�F(θ�g) typically does not converge uniformly over g ∈
G even in cases where it has a pointwise limit for all g ∈ G .

5.4. Uniform Asymptotic Coverage Probability Results

The theorem below gives uniform asymptotic coverage probability results
for GMS and PA CS’s.
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The following assumption is not needed for GMS CS’s to have uni-
form asymptotic coverage probability greater than or equal to 1 − α. It
is used, however, to show that GMS CS’s are not asymptotically conser-
vative. Note that typically GMS and PA CS’s are asymptotically nonsimi-
lar.15 For (θ�F) ∈ F and j = 1� � � � �k, define h1�∞�F(θ) to have jth element
equal to ∞ if EFmj(Wi�θ�g) > 0 and j ≤ p and 0 otherwise. Let h∞�F(θ) =
(h1�∞�F(θ)�h2�F(θ)).

ASSUMPTION GMS2: (a) For some (θc�Fc) ∈ F , the distribution function of
T(h∞�Fc (θc)) is continuous and strictly increasing at its 1 − α quantile plus δ,
namely, c0(h∞�Fc (θc)�1 − α)+ δ, for all δ > 0 sufficiently small and δ= 0,

(b) Bn → ∞ as n → ∞, and
(c) n1/2/κn → ∞ as n → ∞.

Assumption GMS2(a) is not restrictive. For example, we verify that it holds
when S is the Sum or Max function, Q({g ∈ G :h1�∞�Fc (θc� g) = 0}) > 0, and
α < 1/2; see Section 13.3 in Supplemental Appendix B. (We conjecture that it
also holds when S is the QLR function under these conditions, but we do not
have a proof.) Assumption GMS2(c) is satisfied by typical choices of κn, such
as κn = (0�3 lnn)1/2.

THEOREM 2: Suppose Assumptions M, S1, and S2 hold and Assump-
tion GMS1 also holds when considering GMS CS’s. Then, for every compact
subset H2�cpt of H2, GMS and PA confidence sets CSn satisfy

(a) lim infn→∞ inf(θ�F)∈F :h2�F (θ)∈H2�cpt PF(θ ∈ CSn)≥ 1 − α and
(b) if Assumption GMS2 also holds and h2�Fc (θc) ∈ H2�cpt (for (θc�Fc) ∈ F as

in Assumption GMS2), then the GMS confidence set satisfies

lim
η→0

lim inf
n→∞

inf
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF(θ ∈ CSn)= 1 − α�

where η is as in the definition of c(h�1 − α).

COMMENTS: (i) Theorem 2(a) shows that GMS and PA CS’s have correct
uniform asymptotic size over compact sets of covariance kernels. Theorem 2(b)
shows that GMS CS’s are at most infinitesimally conservative asymptotically.
The uniformity results hold whether the moment conditions involve “weak” or
“strong” instrumental variables.

15Andrews (2011) showed that even in the simple case of a finite number of unconditional
moment conditions, tests that are asymptotically similar (in a uniform sense) exist but have very
poor power. Hence, asymptotic similarity of tests and CS’s in moment inequality models is not a
desirable property. See Lehmann (1952) and Hirano and Porter (2012) for related results.
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(ii) An analogue of Theorem 2(b) holds for PA CS’s if Assumption GMS2(a)
holds and EFc(mj(Wi� θc)|Xi)= 0 a.s. for j ≤ p (i.e., if the conditional moment
inequalities hold as equalities a.s.) under some (θc�Fc) ∈ F .16 However, the
latter condition is restrictive—it fails in many applications.

(iii) Theorem 2 applies to CvM tests based on integrals with respect to a
probability measure Q. Extensions to approximate CvM and KS tests are given
in Supplemental Appendix B.

(iv) Theorem 2 is stated for the case where the parameter of interest, θ,
is finite-dimensional. However, Theorem 2 and all of the results below, ex-
cept the local power results, also hold for infinite-dimensional parameters θ.
However, computation of a CS is noticeably more difficult in the infinite-
dimensional case.

(v) Comments (i) and (ii) to Theorem 1 also apply to Theorem 2.

6. POWER AGAINST FIXED ALTERNATIVES

We now show that the power of GMS and PA tests converges to 1 as n → ∞
for all fixed alternatives (for which the moment functions have 2 + δ moments
finite). Thus, both tests are consistent tests. This implies that, for any fixed
distribution F0 and any parameter value θ∗ not in the identified set ΘF0 , the
GMS and PA CS’s do not include θ∗ with probability approaching 1. In this
sense, GMS and PA CS’s based on Tn(θ) fully exploit the conditional moment
inequalities and equalities. CS’s based on a finite number of unconditional mo-
ment inequalities and equalities do not have this property.

The null hypothesis is

H0 : EF0

(
mj(Wi�θ∗)|Xi

) ≥ 0 a.s. [FX�0] for j = 1� � � � �p and(6.1)

EF0

(
mj(Wi�θ∗)|Xi

) = 0 a.s. [FX�0] for j = p+ 1� � � � �k�

where θ∗ denotes the null parameter value and F0 denotes the fixed true dis-
tribution of the data. The alternative is H1 :H0 does not hold. The following
assumption specifies the properties of fixed alternatives (FA).

ASSUMPTION FA: The value θ∗ ∈ Θ and the true distribution F0 satisfy:
(a) PF0(Xi ∈ XF0(θ∗)) > 0, where XF0(θ∗) is defined in (3.11), (b) {Wi : i ≥ 1}
are i.i.d. under F0, (c) VarF0(mj(Wi�θ∗)) > 0 for j = 1� � � � �k, (d) EF0‖m(Wi�
θ∗)‖2+δ < ∞ for some δ > 0, and (e) Assumption M holds with F0 in place of F
and Fn in Assumptions M(b) and M(c), respectively.

16The proof follows easily from results given in the proof of Theorem 2(b).
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Assumption FA(a) states that violations of the conditional moment inequal-
ities or equalities occur for the null parameter θ∗ for Xi values in some set
with positive probability under F0. Thus, under Assumption FA(a), the mo-
ment conditions specified in (6.1) do not hold. Assumptions FA(b)–(d) are
standard i.i.d. and moment assumptions. Assumption FA(e) holds for Gc-cube

and Gbox because Cc-cube and Cbox are Vapnik–Cervonenkis classes of sets.
For g ∈ G , define

m∗
j (g) =EF0mj(Wi�θ∗)gj(Xi)/σF0�j(θ∗) and(6.2)

β(g) = max
{−m∗

1(g)� � � � �−m∗
p(g)�

∣∣m∗
p+1(g)

∣∣� � � � � ∣∣m∗
k(g)

∣∣}�
Under Assumptions FA(a) and CI, β(g0) > 0 for some g0 ∈ G .

For a test based on Tn(θ) to have power against all fixed alternatives, the
weighting function Q cannot “ignore” any elements g ∈ G , because such ele-
ments may have identifying power for the identified set. This requirement is
captured in the following assumption, which is shown in Lemma 4 to hold for
the two probability measures Q considered in Section 3.4.

Let FX�0 denote the distribution of Xi under F0. Define the pseudo-metric
ρX on G by

ρX

(
g�g∗) = (

EFX�0

∥∥g(Xi)− g∗(Xi)
∥∥2)1/2

for g�g∗ ∈ G�(6.3)

Let BρX (g�δ) denote an open ρX -ball in G centered at g with radius δ.

ASSUMPTION Q: The support of Q under the pseudo-metric ρX is G . That is,
for all δ > 0, Q(BρX (g�δ)) > 0 for all g ∈ G .

The next result establishes Assumption Q for the probability measures Q
on Gc-cube and Gbox discussed in Section 3.4 above. Supplemental Appendix B
provides analogous results for three other choices of Q and G .

LEMMA 4: Assumption Q holds for the weight functions:
(a) Qa = Π−1

c-cubeQAR on Gc-cube, where QAR is uniform on a ∈ {1� � � � �2r}dx con-
ditional on r and r has some probability mass function {w(r) : r = r0� r0 + 1� � � �}
with w(r) > 0 for all r, and

(b) Qb = Π−1
box Unif([0�1]dx × (0� r̄)dx) on Gbox with the centers of the boxes in

[0�1]dx .

COMMENT: The uniform distribution that appears in both specifications of
Q in the lemma could be replaced by another distribution and the results of
the lemma still hold provided the other distribution has the same support.
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The following theorem shows that GMS and PA tests are consistent against
all fixed alternatives.

THEOREM 3: Under Assumptions FA, CI, Q, S1, S3, and S4,
(a) limn→∞ PF0(Tn(θ∗) > c(ϕn(θ∗)� ĥ2�n(θ∗)�1 − α))= 1 and
(b) limn→∞ PF0(Tn(θ∗) > c(0G� ĥ2�n(θ∗)�1 − α))= 1.

COMMENT: Theorem 3 implies the following for GMS and PA CS’s: Suppose
(θ0�F0) ∈ F for some θ0 ∈ Θ, θ∗ (∈ Θ) is not in the identified set ΘF0 (defined
in (2.2)), and Assumptions FA(c), FA(d), CI, M, S1, S3, and S4 hold; then for
GMS and PA CS’s, we have17

lim
n→∞

PF0(θ∗ ∈ CSn)= 0�(6.4)

7. POWER AGAINST SOME n−1/2-LOCAL ALTERNATIVES

In this section, we show that GMS and PA tests have power against certain,
but not all, n−1/2-local alternatives. This holds even though these tests fully
exploit the information in the conditional moment restrictions, which is of an
infinite-dimensional nature.

We show that a GMS test has asymptotic power that is greater than or equal
to that of a PA test (based on the same test statistic) under all alternatives with
strict inequality in certain scenarios. Although we do not do so here, arguments
analogous to those in Andrews and Soares (2010) could be used to show that
a GMS test’s power is greater than or equal to that of a subsampling test with
strictly greater power in certain scenarios.

For given θn�∗ ∈Θ for n≥ 1, we consider tests of

H0 : EFnmj(Wi�θn�∗)≥ 0 for j = 1� � � � �p�(7.1)

EFnmj(Wi�θn�∗)= 0 for j = p+ 1� � � � �k�

and (θn�∗�Fn) ∈ F , where Fn denotes the true distribution of the data. The null
values θn�∗ are allowed to drift with n or be fixed for all n. Drifting θn�∗ values
are of interest because they allow one to consider the case of a fixed identified
set, say Θ0, and to derive the asymptotic probability that parameter values θn�∗
that are not in the identified set, but drift toward it at rate n−1/2, are excluded
from a GMS or PA CS. In this scenario, the sequence of true distributions are
ones that yield Θ0 to be the identified set, that is, Fn ∈ F0 = {F :ΘF = Θ0}.

The true parameters and distributions are denoted (θn�Fn). We consider the
Kolmogorov–Smirnov metric on the space of distributions F .

The n−1/2-local alternatives are defined as follows.

17This holds because θ∗ /∈ ΘF0 implies Assumption FA(a) holds, (θ0�F0) ∈ F implies Assump-
tion FA(b) holds, and Assumption M with F = Fn = F0 implies Assumption FA(e) holds.
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ASSUMPTION LA1: The true parameters and distributions {(θn�Fn) ∈ F :n ≥
1} and the null parameters {θn�∗ :n≥ 1} satisfy:

(a) θn�∗ = θn + λn−1/2(1 + o(1)) for some λ ∈ Rdθ , θn�∗ ∈ Θ, θn�∗ → θ0, and
Fn → F0 for some (θ0�F0) ∈ F ,

(b) n1/2EFnmj(Wi�θn� g)/σFn�j(θn)→ h1�j(g) for some h1�j(g) ∈ [0�∞] for j =
1� � � � �p and all g ∈ G ,

(c) d(h2�Fn(θn)�h2�F0(θ0)) → 0 and d(h2�Fn(θn�∗)�h2�F0(θ0)) → 0 as n → ∞
(where d is defined in (5.6)),

(d) VarFn(mj(Wi�θn�∗)) > 0 for j = 1� � � � �k, for n≥ 1, and
(e) supn≥1 EFn |mj(Wi�θn�∗)/σFn�j(θn�∗)|2+δ < ∞ for j = 1� � � � �k, for some

δ > 0.

ASSUMPTION LA2: The k × d matrix ΠF(θ�g) = (∂/∂θ′)[D−1/2
F (θ)EFm(Wi�

θ�g)] exists and is continuous in (θ�F) for all (θ�F) in a neighborhood of (θ0�F0)
for all g ∈ G .

For notational simplicity, we let h2 abbreviate h2�F0(θ0) throughout this sec-
tion. Assumption LA1(a) states that the true values {θn :n ≥ 1} are n−1/2-
local to the null values {θn�∗ :n ≥ 1}. Assumption LA1(b) specifies the asymp-
totic behavior of the (normalized) moment inequality functions when evalu-
ated at the true values {θn :n ≥ 1}. Under the true values, these (normalized)
moment inequality functions are nonnegative. Assumption LA1(c) specifies
the asymptotic behavior of the covariance kernels {h2�Fn(θn� ·� ·) :n ≥ 1} and
{h2�Fn(θn�∗� ·� ·) :n ≥ 1}. Assumptions LA1(d) and LA1(e) are standard. As-
sumption LA2 is a smoothness condition on the normalized expected moment
functions. Given the smoothing properties of the expectation operator, this
condition is not restrictive.

Under Assumptions LA1 and LA2, we show that the moment inequality
functions evaluated at the null values {θn�∗ :n≥ 1} satisfy

lim
n→∞

n1/2D−1/2
Fn

(θn�∗)EFnm(Wi�θn�∗� g)(7.2)

= h1(g)+Π0(g)λ ∈ Rk� where

h1(g) = (
h1�1(g)� � � � �h1�p(g)�0� � � � �0

)′ ∈Rk and

Π0(g)=ΠF0(θ0� g)�

If h1�j(g) = ∞, then, by definition, h1�j(g) + y = ∞ for any y ∈ R. We have
h1(g) + Π0(g)λ ∈ (−∞�∞]p × Rv. Let Π0�j(g) denote the jth row of Π0(g)
written as a column dθ-vector for j = 1� � � � �k.

The null hypothesis, defined in (7.1), does not hold (at least for n large) when
the following assumption holds.

ASSUMPTION LA3: For some g ∈ G , h1�j(g) + Π0�j(g)
′λ < 0 for some j =

1� � � � �p or Π0�j(g)
′λ 
= 0 for some j = p+ 1� � � � �k.
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Under the following assumption, if λ = βλ0 for some β > 0 and some
λ0 ∈ Rdθ , then the power of GMS and PA tests against the perturbation λ is
arbitrarily close to 1 for β arbitrarily large.

ASSUMPTION LA3′: Q({g ∈ G :h1�j(g) < ∞ and Π0�j(g)
′λ0 < 0 for some j =

1� � � � �p or Π0�j(g)
′λ0 
= 0 for some j = p+ 1� � � � �k}) > 0.

Assumption LA3′ requires that either (i) the moment equalities detect vio-
lations of the null hypothesis for g functions in a set with positive Q measure
or (ii) the moment inequalities are not too far from being binding, that is,
h1�j(g) < ∞, and the perturbation λ0 occurs in a direction that yields moment
inequality violations for g functions in a set with positive Q measure.

Assumption LA3 is employed with the KS test. It is weaker than Assump-
tion LA3′. It is shown in Supplemental Appendix B that if Assumption LA3
holds with λ= βλ0 (and some other assumptions), then the power of KS-GMS
and KS-PA tests against the perturbation λ is arbitrarily close to 1 for β arbi-
trarily large.

In Supplemental Appendix B, we illustrate the verification of Assump-
tions LA1–LA3 and LA3′ in a simple example. In this example, v = 0, h1�j(g) <
∞ ∀g ∈ G , and Π0�j(g) = −Eg(Xi) ∀g ∈ G , so Π0�j(g)

′λ0 < 0 in Assump-
tion LA3′ ∀g ∈ G with Eg(Xi) > 0 for all λ0 > 0.

Assumptions LA3 and LA3′ can fail to hold even when the null hypoth-
esis is violated. This typically happens if the true parameter/true distribu-
tion is fixed, that is, (θn�Fn) = (θ0�F0) ∈ F for all n in Assumption LA1(a),
the null hypothesis parameter θn�∗ drifts with n as in Assumption LA1(a),
and PF0(Xi ∈ Xzero) = 0, where Xzero = {x ∈ Rdx :EF0(m(Wi�θ0)|Xi = x) =
0}. In such cases, typically h1�j(g) = ∞ ∀g ∈ G (because the conditional
moment inequalities are nonbinding with probability 1), Assumptions LA3
and LA3′ fail, and Theorem 4 below shows that GMS and PA tests have triv-
ial asymptotic power against such n−1/2-local alternatives. For example, this
occurs in the example of Section 13.6 in Supplemental Appendix B when
PF0(Xi ∈ Xzero)= 0.

As discussed in Section 13.6, asymptotic results based on a fixed true distri-
bution provide poor approximations when PF0(Xi ∈ Xzero)= 0. Hence, one can
argue that it makes sense to consider local alternatives for sequences of true
distributions {Fn :n≥ 1} for which h1�j(g) <∞ for a nonnegligible set of g ∈ G ,
as in Assumption LA3′, because such sequences are the ones for which the
asymptotics provide good finite-sample approximations. For such sequences,
GMS and PA tests have nontrivial power against n−1/2-local alternatives, as
shown in Theorem 4 below.

Nevertheless, local-alternative power results can be used for multiple pur-
poses and for some purposes, one may want to consider local-alternatives other
than those that satisfy Assumptions LA3 and LA3′.
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The asymptotic distribution of Tn(θn�∗) under n−1/2-local alternatives is
shown to be Jh�λ. By definition, Jh�λ is the distribution of

T(h1 +Π0λ�h2)=
∫

S
(
νh2(g)+h1(g)+Π0(g)λ�h2(g)+εIk

)
dQ(g)�(7.3)

where h = (h1�h2), Π0 denotes Π0(·), and νh2(·) is a mean zero Gaussian pro-
cess with covariance kernel h2 = h2�F0(θ0). For notational simplicity, the de-
pendence of Jh�λ on Π0 is suppressed.

Next, we introduce two assumptions, namely, Assumptions LA4 and LA5,
that are used only for GMS tests in the context of local alternatives. The pop-
ulation analogues of Σ̄n(θ�g) and its diagonal matrix are

Σ̄F(θ�g) = ΣF(θ�g�g)+ εΣF(θ�1k�1k) and(7.4)

D̄F(θ�g) = Diag
(
Σ̄F(θ�g)

)
�

where ΣF(θ�g�g) is defined in (5.1). Let σ̄F�j(θ�g) denote the square root of
the (j� j) element of Σ̄F(θ�g).

ASSUMPTION LA4: κ−1
n n1/2EFnmj(Wi�θn� g)/σ̄Fn�j(θn� g) → π1�j(g) for some

π1�j(g) ∈ [0�∞] for j = 1� � � � �p and g ∈ G .

In Assumption LA4, the functions are evaluated at the true value θn, not at
the null value θn�∗, and (θn�Fn) ∈ F . In consequence, the moment functions
in Assumption LA4 satisfy the moment inequalities and π1�j(g) ≥ 0 for all j =
1� � � � �p and g ∈ G . Note that 0 ≤ π1�j(g) ≤ h1�j(g) for all j = 1� � � � �p and all
g ∈ G (by Assumption LA1(b) and κn → ∞).

Let π1(g) = (π1�1(g)� � � � �π1�p(g)�0� � � � �0)′ ∈ [0�∞]p × {0}v. Let c0(ϕ(π1)�
h2�1 − α) denote the 1 − α quantile of

T
(
ϕ(π1)�h2

) =
∫

S
(
νh2(g)+ϕ

(
π1(g)

)
�h2(g)+ εIk

)
dQ(g)� where(7.5)

ϕ
(
π1(g)

) = (
ϕ

(
π1�1(g)

)
� � � � �ϕ

(
π1�p(g)

)
�0� � � � �0

)′ ∈ Rk and

ϕ(x) = 0 if x≤ 1 and ϕ(x) = ∞ if x > 1�

Let ϕ(π1) denote ϕ(π1(·)). The probability limit of the GMS critical value
c(ϕn(θ)� ĥ2�n(θ)�1 − α) is shown below to be c(ϕ(π1)�h2�1 − α) = c0(ϕ(π1)�
h2�1 − α+η)+η.

ASSUMPTION LA5: (a) Q(Gϕ) = 1, where Gϕ = {g ∈ G :π1�j(g) 
= 1 for j =
1� � � � �p}, and

(b) the distribution function of T(ϕ(π1)�h2) is continuous and strictly increas-
ing at x = c(ϕ(π1), h2�1 − α), where h2 = h2�F0(θ0).
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The value 1 that appears in Gϕ in Assumption LA5(a) is the discontinuity
point of ϕ. Assumption LA5(a) implies that the n−1/2-local power formulae
given below do not apply to certain “discontinuity vectors” π1(·), but this is
not particularly restrictive.18 Assumption LA5(b) typically holds because of
the absolute continuity of the Gaussian random variables νh2(g) that enter
T(ϕ(π1)�h2).19

The following assumption is used only for PA tests.

ASSUMPTION LA6: The distribution function of T(0G�h2) is continuous and
strictly increasing at x = c(0G�h2�1 − α), where h2 = h2�F0(θ0).

The probability limit of the PA critical value is shown to be c(0G�h2�1−α)=
c0(0G�h2�1 −α+η)+η, where c0(0G�h2�1 −α) denotes the 1 −α quantile of
J(0G �h2)�0dθ

.

THEOREM 4: Under Assumptions M, S1, S2, and LA1–LA2,
(a) limn→∞ PFn(Tn(θn�∗) > c(ϕn(θn�∗)� ĥ2�n(θn�∗)�1 − α)) = 1 − Jh�λ(c(ϕ(π1),

h2�1 − α)) provided Assumptions GMS1, LA4, and LA5 also hold,
(b) limn→∞ PFn(Tn(θn�∗) > c(0G� ĥ2�n(θn�∗)�1−α))= 1−Jh�λ(c(0G�h2�1−α))

provided Assumption LA6 also holds, and
(c) limβ→∞[1 − Jh�βλ0(c(ϕ(π1)�h2�1 −α))] = limβ→∞[1 − Jh�βλ0(c(0G�h2�1 −

α))] = 1 provided Assumptions LA3′, S3, and S4 hold.

COMMENTS: (i) Theorem 4(a) and 4(b) provide the n−1/2-local alternative
power function of the GMS and PA tests, respectively. Theorem 4(c) shows
that the asymptotic power of GMS and PA tests is arbitrarily close to 1 if the
n−1/2-local alternative parameter λ = βλ0 is sufficiently large in the sense that
its scale β is large.

(ii) We have c(ϕ(π1)�h2�1 −α)≤ c(0G�h2�1 −α) because ϕ(π1(g)) ≥ 0 for
all g ∈ G and S(m�Σ) is non-increasing in mI by Assumption S1(b), where
m = (m′

I�m
′
II)

′. Hence, the asymptotic local power of a GMS test is greater
than or equal to that of a PA test. Strict inequality holds whenever π1(·) is
such that Q({g ∈ G :ϕ(π1(g)) > 0}) > 0. The latter typically occurs whenever

18Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can
obtain lower and upper bounds on the local asymptotic power of GMS tests by replacing
c(ϕ(π1)�h2�1 − α) by c(ϕ(π1−)�h2�1 − α) and c(ϕ(π1+)�h2�1 − α), respectively, in Theo-
rem 4(a). By definition, ϕ(π1−)= ϕ(π1(·)−) and ϕ(π1(g)−) is the limit from the left of ϕ(x) at
x = π1(g). Likewise, ϕ(π1+) = ϕ(π1(·)+) and ϕ(π1(g)+) is the limit from the right of ϕ(x) at
x= π1(g).

19If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic
power of GMS tests by replacing Jh�λ(c(ϕ(π1), h2�1 − α)) by Jh�λ(c(ϕ(π1), h2�1 − α)+) and
Jh�λ(c(ϕ(π1), h2�1−α)−), respectively, in Theorem 4(a), where the latter are the limits from the
left and right, respectively, of Jh�λ(x) at x= c(ϕ(π1)�h2�1 − α).
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the conditional moment inequality EFn(mj(Wi�θn�∗)|Xi) for some j = 1� � � � �p
is bounded away from zero as n→ ∞ with positive Xi probability.

(iii) The results of Theorem 4 hold under the null hypothesis as well as under
the alternative. The results under the null quantify the degree of asymptotic
nonsimilarity of the GMS and PA tests.

(iv) Suppose the assumptions of Theorem 4 hold and each distribution Fn

generates the same identified set, call it Θ0 = ΘFn ∀n ≥ 1. Then, Theorem 4(a)
implies that the asymptotic probability that a GMS CS includes θn�∗, which lies
within O(n−1/2) of the identified set, is Jh�λ(c(ϕ(π1), h2�1 − α)). If λ = βλ0

and Assumptions LA3′, S3, and S4 also hold, then θn�∗ is not in Θ0 (at least
for β large) and the asymptotic probability that a GMS or PA CS includes θn�∗
is arbitrarily close to zero for β arbitrarily large, by Theorem 4(c). Analogous
results hold for PA CS’s.

8. PRELIMINARY CONSISTENT ESTIMATION OF IDENTIFIED PARAMETERS AND
TIME SERIES

In this section, we consider the case in which the moment functions in (2.4)
depend on a parameter τ as well as θ and a preliminary consistent estimator,
τ̂n(θ), of τ is available when θ is the true value. (This requires that τ is identi-
fied given the true value θ.) For example, this situation often arises with game
theory models, as in the third model considered in Section 10 below. The pa-
rameter τ may be finite dimensional or infinite dimensional. As pointed out to
us by A. Aradillas-López, infinite-dimensional parameters arise as expectation
functions in some game theory models. Later in the section, we also consider
the case where {Wi : i ≤ n} are time series observations.

Suppose the moment functions are of the form mj(Wi�θ� τ) and the model
specifies that (2.1) holds with mj(Wi�θ� τF(θ)) in place of mj(Wi�θ) for j ≤ k
for some τF(θ) that may depend on θ and F .

The normalized sample moment functions are of the form

n1/2m̄n(θ�g) = n−1/2
n∑

i=1

m
(
Wi�θ� τ̂n(θ)�g

)
�(8.1)

In the infinite-dimensional case, m(Wi�θ� τ̂n(θ)�g) can be of the form m∗(Wi�
θ� τ̂n(Wi� θ)�g), where τ̂n(Wi� θ) :Rdw ×Θ →Rdτ for some dτ <∞.

Given (8.1), the quantity ΣF(θ�g�g
∗) in (5.1) denotes the asymptotic covari-

ance of n1/2m̄n(θ� τ̂n(θ)�g) and n1/2m̄n(θ� τ̂n(θ)�g
∗) under (θ�F), rather than

CovF(m(Wi�θ�g)�m(Wi�θ�g
∗)). Correspondingly, Σ̂n(θ�g�g

∗) is not defined
by (4.5) but is taken to be an estimator of ΣF(θ�g�g

∗) that is consistent under
(θ�F). With these adjusted definitions of m̄n(θ�g) and Σ̂n(θ�g�g

∗), the test
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statistic Tn(θ) and GMS or PA critical value cn�1−α(θ) are defined in the same
way as above.20

For example, when τ is finite dimensional, the preliminary estimator τ̂n(θ)
is chosen to satisfy

n1/2
(̂
τn(θ)− τF(θ)

) →d ZF as n → ∞ under (θ�F) ∈ F�(8.2)

for some normally distributed random vector ZF with mean zero.
The normalized sample moments can be written as

n1/2m̄n(θ�g) =D1/2
F (θ)

(
νn�F(θ�g)+ h1�n�F(θ�g)

)
� where(8.3)

νn�F(θ�g) = n−1/2
n∑

i=1

D−1/2
F (θ)

[
m

(
Wi�θ� τ̂n(θ)�g

)
−EFm

(
Wi�θ� τF(θ)�g

)]
�

h1�n�F(θ�g) = n1/2D−1/2
F (θ)EFm

(
Wi�θ� τF(θ)�g

)
�

In place of Assumption M, we use the following empirical process (EP) as-
sumption. Let ⇒ denote weak convergence. Let {an :n ≥ 1} denote a subse-
quence of {n}.

ASSUMPTION EP: (a) For some specification of the parameter space F that
imposes the conditional moment inequalities and equalities and all (θ�F) ∈ F ,
νn�F(θ� ·) ⇒ νh2�F (θ)(·) as n → ∞ under (θ�F), for some mean zero Gaussian
process νh2�F (θ)(·) on G with covariance kernel h2�F(θ) on G × G and bounded
uniformly ρ-continuous sample paths a.s. for some pseudo-metric ρ on G .

(b) For any subsequence {(θan�Fan) ∈ F :n≥ 1} for which

lim
n→∞

sup
g�g∗∈G

∥∥h2�Fan (θan� g�g
∗)− h2(g�g

∗)
∥∥ = 0

for some k × k matrix-valued covariance kernel h2 on G × G , we have
(i) νan�Fan (θan� ·)⇒ νh2(·), and (ii) supg�g∗∈G ‖ĥ2�an�Fan (θan� g�g

∗)−h2(g�g
∗)‖ →p

0 as n → ∞.

The quantity ĥ2�an�Fan (θan� g�g
∗) is defined as in previous sections but with

Σ̂n(θ�g�g
∗) and ΣF(θ�g�g

∗) defined as in this section.
With Assumption EP in place of Assumption M, the results of Theorem 2

hold when the GMS or PA CS depends on a preliminary estimator τ̂n(θ).21

20When computing bootstrap critical values, one needs to bootstrap the estimator τ̂n(θ) as well
as the observations {Wi : i ≤ n}.

21Equation (8.2) is only needed for this result to verify Assumption EP(a) in the finite-
dimensional τ case.
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(The proof is the same as that given for Theorem 2 in Supplemental Appen-
dices A and C, with Assumption EP replacing the results of Lemma A1.)

Next, we consider time series observations {Wi : i ≤ n}. Let the moment
conditions and sample moments be defined as in (2.3) and (3.3), but do not
impose the definitions of F and Σ̂n(θ�g) in (2.3) and (3.4). Instead, define
Σ̂n(θ�g) in a way that is suitable for the temporal dependence properties of
{m(Wi�θ�g) : i ≤ n}. For example, Σ̂n(θ�g) might need to be defined to be
a heteroskedasticity and autocorrelation consistent (HAC) variance estima-
tor. Or, if {m(Wi�θ) : i ≤ n} have zero autocorrelations under (θ�F), define
Σ̂n(θ�g) as in (3.4). Given these definitions of m̄n(θ�g) and Σ̂n(θ�g), define
the test statistic Tn(θ) and GMS or PA critical value cn�1−α(θ) as in previous
sections.22

Define νn�F(θ�g) as in (5.2). Now, with Assumption EP in place of Assump-
tion M, the results of Theorem 2 hold with time series observations. Note that
Assumption EP also can be used when the observations are independent but
not identically distributed.

9. COMPUTATION

In this section, we describe how the tests introduced in this paper are com-
puted. For specificity, we focus on tests based on countable cubes and approx-
imate GMS critical values in an i.i.d. context. We describe both the asymptotic
distribution and bootstrap implementations of the critical values.

Step 1. Compute the test statistic:
(a) Transform each regressor to lie in [0�1]. Let X†

i ∈ RdX denote the
untransformed regressor vector. In the simulations reported below, we
transform X†

i via a shift and rotation and then an application of the
standard normal distribution function. Specifically, first compute Σ̂X�n =
n−1

∑n

i=1(X
†
i − X̄†

n)(X
†
i − X̄†

n)
′, where X̄†

n = n−1
∑n

i=1 X
†
i . Then, let Xi =

�(Σ̂−1/2
X�n (X

†
i − X̄†

n)), where �(x) = (�(x1)� � � � ��(xdX ))
′ for x = (x1� � � � �

xdX )
′ ∈ RdX and �(xj) is the standard normal distribution function at xj for

xj ∈ R.
(b) Specify the functions g. For countable cubes, the functions are ga�r(x) =

1(x ∈ Ca�r)1k for Ca�r ∈ Cc-cube, where Ca�r and Cc-cube are defined in (3.12).
(c) Specify the weight function QAR. In the simulations, we take it to be

uniform on a ∈ {1� � � � �2r}dx given r, combined with w(r) = (r2 + 100)−1 for
r = 1� � � � � r1�n. (See below regarding the choice of r1�n.)

22With bootstrap critical values, the bootstrap employed needs to take account of the time
series structure of the observations. For example, a block bootstrap does so.
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(d) Compute the CvM test statistic, which is defined by

T̄n�r1�n(θ) =
r1�n∑
r=1

(
r2 + 100

)−1
(9.1)

×
∑

a∈{1�����2r}dX
(2r)−dxS

(
n1/2m̄n(θ�ga�r)� Σ̄n(θ�ga�r)

)
�

where S = S1� S2, or S3, as defined in (3.8)–(3.10), and m̄n(θ�ga�r) and
Σ̄n(θ�ga�r) are defined in (3.3)–(3.5) with ε = �05. Alternatively, compute the
KS statistic, which is supga�r∈Gc-cube

S(n1/2m̄n(θ�ga�r)� Σ̄n(θ�ga�r)).
Step 2. Compute the GMS critical value based on the asymptotic distribution:
(a) Compute ϕn(θ�ga�r), as defined in (4.10), for (a� r) ∈ AR. We recommend

taking κn = (0�3 ln(n))1/2 and Bn = (0�4 ln(n)/ ln ln(n))1/2.
(b) Simulate a (kNg)× τreps matrix Z of standard normal random variables,

where k is the dimension of m(Wi�θ), Ng = ∑r1�n
r=1(2r)

dX is the number of g
functions employed in Step 1(d), and τreps is the number of simulation repeti-
tions used to simulate the asymptotic Gaussian process.

(c) Compute the (kNg) × (kNg) covariance matrix ĥ2�n�mat(θ) whose el-
ements are the covariances ĥ2�n(θ�ga�r� g

∗
a�r) defined in (4.5) for functions

ga�r� g
∗
a�r as in Step 1(b), where a ∈ {1� � � � �2r}dX and r = 1� � � � � r1�n.

(d) Compute the (kNg) × τreps matrix ν̂n(θ) = ĥ1/2
2�n�mat(θ)Z. Let ν̂n�j(θ�ga�r)

denote the k dimensional subvector of the matrix ν̂n that corresponds to the k
rows indexed by ga�r and column j for j = 1� � � � � τreps.

(e) For j = 1� � � � � τreps, compute the test statistic T̄n�r1�n�j(θ) just as T̄n�r1�n(θ)

is computed in Step 1(d) but with n1/2m̄n(θ�ga�r) replaced by ν̂n�j(θ�ga�r) +
ϕn(θ�ga�r).

(f) Take the critical value to be the 1−α+η sample quantile of the simulated
test statistics {T̄n�r1�n�j(θ) : j = 1� � � � � τreps} plus η, where η is a very small positive
constant, such as 10−6. In the simulations, we obtain the same results with η= 0
as with 10−6.

For the bootstrap version of the critical value, Steps 2(b)–2(e) are replaced
by the following steps:

Step 2boot. (b) Generate B bootstrap samples {W ∗
i�b : i = 1� � � � � n} for b =

1� � � � �B using the standard nonparametric i.i.d. bootstrap. That is, draw W ∗
i�b

from the empirical distribution of {W� :� = 1� � � � � n} independently across i
and b.

(c) For each bootstrap sample, transform the regressors as in Step 1(a) and
compute m̄∗

n�b(θ�ga�r) and Σ̄∗
n�b(θ�ga�r) just as m̄n(θ�ga�r) and Σ̄n(θ�ga�r) are

computed, but with the bootstrap sample in place of the original sample.
(d) For each bootstrap sample, compute the bootstrap test statistic T̄ ∗

n�r1�n�b
(θ)

as T̄n�r1�n(θ) is computed in Step 1(d) but with n1/2m̄n(θ�ga�r) replaced by
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D̂n(θ)
−1/2n1/2(m̄∗

n�b(θ�ga�r) − m̄n(θ�ga�r)) + ϕn(θ�ga�r) and with Σ̄n(θ�ga�r) re-
placed by D̂n(θ)

−1/2Σ̄∗
n�b(θ�ga�r)D̂n(θ)

−1/2, where D̂n(θ) = Diag(Σ̂n(θ�1k�1k)).
(e) Take the critical value to be the 1−α+η sample quantile of the bootstrap

test statistics {T̄ ∗
n�r1�n�b

(θ) :b = 1� � � � �B} plus η, where η is a very small positive
constant, such as 10−6. In the simulations, we obtain the same results with η= 0
as with 10−6.

The choices of ε, κn, and Bn above are based on some experimentation.23

Smaller values of ε, such as ε = �01, do not perform as well if the expected
number of observations per cube (for some cubes) is small, say 15 or less.

For the quantile selection and interval-outcome models, in which Xi is a
scalar, we take r1�n = 7 when n = 250 and obtain quite similar results for r1�n =
5, 9, and 11. For the entry game model, in which bivariate regressor indices
appear, we take r1�n = 3 when n = 500 and obtain similar results for r1�n = 2
and 4. Based on the simulation results, we recommend taking r1�n so that the
expected number of observations in the smallest cubes is between 10 and 20
(when ε = �05). For example, with (n�dX� r1�n) = (250�1�7), (500�2�3), and
(1000�3�2), the expected number of observations in the smallest cells is 17�9,
13�9, and 15�6, respectively.

Note that the number of cubes with side-edge length indexed by r is (2r)dX ,
where dX denotes the dimension of the covariate Xi. The computation time is
approximately linear in the number of cubes. Hence, it is linear in

∑r1�n
r=1(2r)

dX .
In Step 1(a), when there are discrete variables in Xi, the sets Ca�r can be

formed by taking interactions of each value of the discrete variable(s) with
cubes based on the other variable(s).24

When the dimension, dX , of Xi is greater than 3 (or equal to 3 with n small,
say less than 750), the number of cubes is too large to be practical and the
expected number of observations per cube is too small, even if r1�n is small. In
such cases, we suggest replacing the sets Ca�r above with sets that are rectangles
with subintervals of [0�1] in 2 dimensions (equal to the two-dimensional cubes
in Cc-cube when dX = 2) and [0�1] in the other dimensions, and constructing
such sets using all possible combinations of 2 dimensions out of dX dimen-
sions. For example, if dX = 6, then there are 6!/(4!2!) = 15 combinations of
2 dimensions out of 6. For each choice of 2 dimensions, there are 20 cubes if
(r0� r1�n)= (1�2) and 56 cubes if (r0� r1�n)= (1�3), which yields totals of 300 and
840 cubes, respectively, when dX = 6.25 If the dimension 2 above is increased
to 3, 4� � � � as n → ∞, then there is no loss in information asymptotically.

23These values are the base case values used in the simulations reported below.
24See Example 5 in the second subsection of Supplemental Appendix B for details.
25For example, with n= 500 and r1�n = 2, the expected number of observations per cube is 125

or 31�3 depending on the cube. With n = 1000 and r1�n = 3, the expected number of observations
per cube is 250, 62�5, or 15�6. These expected numbers hold for any value of dX . Computation
time is proportional to (dX !/(dX !2!)) · ∑r1�n

r=1(2r)
dX .
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10. MONTE CARLO SIMULATIONS

This section provides simulation evidence concerning the finite-sample
properties of the CI’s introduced in the paper. We consider five models: a
quantile selection model, an intersection bound model, an entry game model
with multiple equilibria, a mean selection model, and an interval-outcome lin-
ear regression model. For brevity, the results for the fourth and fifth models are
reported in Supplemental Appendix F. The results for the fifth model are re-
markably similar to those for the “flat bound” version of the quantile selection
model, in spite of the substantial differences between the models. The results
for the fourth model are similar to those for the quantile selection model.

In all models, we compare different versions of the CI’s introduced in the
paper. In the quantile selection, intersection bound, and mean selection mod-
els, we compare one of the CI’s introduced in the paper with CI’s introduced
in CLR and LSW.

10.1. Tests Considered in the Simulations

In the simulation results reported below, we compare different test statistics
and critical values in terms of their coverage probabilities (CP’s) for points
in the identified set and their false coverage probabilities (FCP’s) for points
outside the identified set. Obviously, one wants FCP’s to be as small as possible.

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR,
(iii) CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max, as defined in Sec-
tion 9. Both asymptotic normal and bootstrap versions of these tests are com-
puted.

In all models, we consider the PA/Asy and GMS/Asy critical values. We also
consider the PA/Bt, GMS/Bt, and Sub critical values in the quantile selection
model and interval-outcome regression model. The critical values are simu-
lated using 5001 repetitions (for each original sample repetition).26 The “base
case” values of κn, Bn, and ε for the GMS critical values are specified in Sec-
tion 9 and are used in all four models. Additional results are reported for vari-
ations of these values. The subsample size is 20 when the sample size is 250.
Results are reported for nominal 95% CS’s. The number of simulation rep-
etitions used to compute CP’s and FCP’s is 5000 for all cases. This yields a
simulation standard error of �0031.

26The Sum, QLR, and Max statistics use the functions S1, S2, and S3, respectively. The PA/Asy
and PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and
likewise for the GMS/Asy and GMS/Bt critical values. The quantity η is set to 0 because its value,
provided it is sufficiently small, has no effect in these models. Sub denotes a (non-recentered)
subsampling critical value. It is the �95 sample quantile of the subsample statistics, each of which
is defined exactly as the full sample statistic is defined but using the subsample in place of the
full sample. The number of subsamples considered is 5001. They are drawn randomly without
replacement.
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We also report results for the CLR-series, CLR-local linear, and LSW CI’s.
These CI’s are computed as described in CLR and LSW.27,28 We use the L1

version of the LSW test with the inverse standard deviation weight function,
and bandwidth parameter ch = 2�0.29 Section 17.3 of Supplemental Appendix
F provides details. The critical values and CP/FCP’s are simulated using 5001
and 5000 repetitions, respectively, except when stated otherwise.30

The reported FCP’s are “CP-corrected” by employing a critical value that
yields a CP equal to �95 at the closest point of the identified set (for the same
data generating process and the same sample size as used when computing the
FCP) if the CP at the closest point is less than �95�31 If the CP at the closest
point is greater than �95, then no CP correction is carried out. The reason for
this “asymmetric” CP correction is that CS’s may have CP’s greater than �95
for points in the identified set, even asymptotically, in the present context and
one does not want to reward over-coverage of points in the identified set by CP
correcting the critical values when making comparisons of FCP’s.

10.2. Quantile Selection Model

10.2.1. Description of the Model

In this model we are interested in the conditional τ-quantile of a treatment
response given the value of a covariate Xi. The results also apply to conditional
quantiles of arbitrary responses that are subject to selection. Selection yields
the conditional quantile to be unidentified. We use a quantile monotone instru-
mental variable (QMIV) condition that is a variant of Manski and Pepper’s

27For the CLR and LSW CI’s, we use the code graciously provided by CLR and LSW. In
the quantile selection model, the two-sided CLR CI’s are constructed following the method in
Example C of the 2011 version of CLR. The CLR CI’s use estimated contact sets.

28The CLR-series CI uses cross-validation to determine the number of series terms. We take
the upper bound on the number of series terms considered by the cross-validation procedure
to be 30. The code provided to us by CLR sets the upper bound to be 9. However, an upper
bound of 9 yields very poor performance in terms of CP’s in the cases reported in Table V in
Section 10.3; see Section 17.3 of Supplemental Appendix F for details. In private communication,
Simon Lee recommended using an upper bound that is small enough that computation is not
overly burdensome, but large enough that the bound is not binding typically in applications. (The
upper bound being binding is the cause of the poor CP performance of the CLR-series CI when
using an upper bound of 9 in the cases considered in Table V.) The choice of 30 meets both
criteria. This value also was recommended by a referee. The lower bound on the number of
series terms considered by the cross-validation procedure is 5, as in CLR.

29The inverse standard deviation weight function is defined on pp. 9 and 16 of LSW. We use
this weight function, rather than the uniform weight function, because the LSW CI based on the
latter weight function performs very poorly in terms of FCP’s in the cases considered in Table V
below. Specifically, its FCP is 1�0 in 14 of the 16 cases considered.

30The LSW critical value is not simulated. It uses a standard normal critical value.
31Note that FCP’s are determined using the same data generating process as CP’s. The only

difference is the null value θ being considered is not in the identified set with FCP’s, whereas it
is with CP’s.
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(2000) Monotone Instrumental Variable (MIV) condition to obtain bounds on
the conditional quantile. (The MIV condition applies when the parameter of
interest is a conditional mean of a treatment response.) A nice feature of the
QMIV condition is that nontrivial bounds are obtained without assuming that
the support of the response variable is bounded, which is restrictive in some
applications. The nontrivial bounds result from the fact that the distribution
functions that define the quantiles are naturally bounded between 0 and 1.

Other papers that bound quantiles using the natural bounds of distribu-
tion functions include Manski (1994), Lee and Melenberg (1998), Blundell,
Gosling, Ichimura, and Meghir (2007), and Giustinelli (2010). The QMIV con-
dition differs from the conditions in these papers, except Giustinelli (2010),
although it is closely related to them.32 Giustinelli (2010) derived bounds on
unconditional quantiles with a finite-support IV, whereas we consider bounds
on conditional quantiles with a continuous (or discrete) IV.

The model setup is quite similar to that in Manski and Pepper (2000). The
observations are i.i.d. for i = 1� � � � � n. Let yi(t) ∈ Y be individual i’s “conjec-
tured” response variable given treatment t ∈ T . Let Ti be the realization of
the treatment for individual i. The observed outcome variable is Yi = yi(Ti).
Let Xi be a covariate whose support contains an ordered set X . We observe
Wi = (Yi�Xi�Ti). The parameter of interest, θ, is the conditional τ-quantile
of yi(t) given Xi = x0 for some t ∈ T and some x0 ∈ X , which is denoted
Qyi(t)|Xi

(τ|x0). We assume the conditional distribution of yi(t) given Xi = x is
absolutely continuous at its τ-quantile for all x ∈ X .

For examples, one could have: (i) yi(t) is conjectured wages of individual i
for t years of schooling, Ti is realized years of schooling, and Xi is measured
ability or wealth, (ii) yi(t) is conjectured wages when individual i is employed,
say t = 1, Xi is measured ability or wealth, and selection occurs due to elas-
tic labor supply, (iii) yi(t) is consumer durable expenditures when a durable
purchase is conjectured, Xi is income or nondurable expenditures, and selec-
tion occurs because an individual may decide not to purchase a durable, and
(iv) yi(t) is some health response of individual i given treatment t, Ti is the
realized treatment, which may be nonrandomized or randomized but subject
to imperfect compliance, and Xi is some characteristic of individual i, such as
weight, blood pressure, etc.

The quantile monotone IV assumption is as follows:

32Manski (1994, pp. 149–153) established the worst case quantile bounds, which do not impose
any restrictions. Lee and Melenberg (1998, p. 30) and Blundell, Gosling, Ichimura, and Meghir
(2007, pp. 330–331) provided quantile bounds based on the assumption of monotonicity in the se-
lection variable Ti (which is binary in their contexts), which is a quantile analogue of Manski and
Pepper’s (2000) monotone treatment selection condition, as well as bounds based on exclusion
restrictions. In addition, Blundell et al. (2007, pp. 332–333) employed a monotonicity assumption
that is close to the QMIV assumption, but their assumption was imposed on the whole condi-
tional distribution of yi(t) given Xi , rather than on a single conditional quantile, and they did not
explicitly bound quantiles.
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ASSUMPTION QMIV: The covariate Xi satisfies: for some t ∈ T and all
(x1�x2) ∈ X 2 such that x1 ≤ x2, Qyi(t)|Xi

(τ|x1) ≤ Qyi(t)|Xi
(τ|x2), where τ ∈ (0�1),

X is some ordered subset of the support of Xi, and Qyi(t)|Xi
(τ|x) is the quantile

function of yi(t) conditional on Xi = x.33

This assumption may be suitable in the applications mentioned above.
Given Assumption QMIV, we have: for (x�x0) ∈ X 2 with x ≤ x0,

τ = P
(
yi(t)≤Qyi(t)|Xi

(τ|x)|Xi = x
) ≤ P

(
yi(t)≤ θ|Xi = x

)
(10.1)

= P
(
yi(t)≤ θ & Ti = t|Xi = x

) + P
(
yi(t)≤ θ & Ti 
= t|Xi = x

)
≤ P(Yi ≤ θ & Ti = t|Xi = x)+ P(Ti 
= t|Xi = x)�

where the first equality holds by the definition of the τ-quantile Qyi(t)|Xi
(τ|x),

the first inequality holds by Assumption QMIV, and the second inequality
holds because Yi = yi(Ti) and P(A∩B)≤ P(B).

Analogously, for (x�x0) ∈ X 2 with x ≥ x0,

τ = P
(
yi(t)≤Qyi(t)|Xi

(τ|x)|Xi = x
) ≥ P

(
yi(t)≤ θ|Xi = x

)
(10.2)

= P
(
yi(t)≤ θ & Ti = t|Xi = x

) + P
(
yi(t)≤ θ & Ti 
= t|Xi = x

)
≥ P(Yi ≤ θ & Ti = t|Xi = x)�

where the first and second inequalities hold by Assumption QMIV and
P(A) ≥ 0.

The inequalities in (10.1) and (10.2) impose sharp bounds on θ. They can be
rewritten as conditional moment inequalities:

E
(
1(Xi ≤ x0)

[
1(Yi ≤ θ�Ti = t)+ 1(Ti 
= t)− τ

]|Xi

) ≥ 0 a.s. and(10.3)

E
(
1(Xi ≥ x0)

[
τ − 1(Yi ≤ θ�Ti = t)

]|Xi

) ≥ 0 a.s.

For the simulations, we consider the following data generating process
(DGP):

yi(1)= μ(Xi)+ σ(Xi)ui� where ∂μ(x)/∂x ≥ 0 and σ(x) ≥ 0�(10.4)

Ti = 1
{
L(Xi)+ εi ≥ 0

}
� where ∂L(x)/∂x ≥ 0� Xi ∼ Unif[0�2]�

(εi�ui) ∼N(0� I2)� Xi ⊥ (εi�ui)� Yi = yi(Ti)� and t = 1�

33The “τ-quantile monotone IV” terminology follows that of Manski and Pepper (2000). Al-
ternatively, it could be called a “τ-quantile monotone covariate.”

Assumption QMIV can be extended to the case where additional (non-monotone) covariates
arise, say Zi . In this case, the QMIV condition becomes Qyi(t)|Zi�Xi

(τ|z�x1) ≤ Qyi(t)|Zi�Xi
(τ|z�x2)

when x1 ≤ x2 for all z in some subset Z of the support of Zi . Also, as in Manski and Pepper
(2000), the Assumption QMIV is applicable if X is only a partially ordered set.
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The variable yi(0) is irrelevant (because Yi enters the moment inequalities in
(10.3) only through 1(Yi ≤ θ�Ti = t)) and, hence, is left undefined. With this
DGP, Xi satisfies the QMIV assumption for any τ ∈ (0�1). We consider the
median: τ = 0�5. We focus on the conditional median of yi(1) given Xi = 1�5,
that is, θ =Qyi(1)|Xi

(0�5|1�5) and x0 = 1�5.
Some algebra shows that the conditional moment inequalities in (10.3) imply

θ ≥ ¯θ(x) := μ(x)+ σ(x)�−1
(
1 − [

2�
(
L(x)

)]−1)
(10.5)

for x≤ 1�5 and

θ ≤ θ̄(x) := μ(x)+ σ(x)�−1
([

2�
(
L(x)

)]−1)
for x ≥ 1�5�

We call ¯θ(x) and θ̄(x) the lower and upper bound functions on θ, respectively.
The identified set for the quantile selection model is [supx≤x0 ¯θ(x)� infx≥x0 θ̄(x)].
The shape of the lower and upper bound functions depends on the μ, σ ,
and L functions. We consider three specifications, one that yields flat bound
functions, another that yields kinked bound functions, and a third that yields
peaked bound functions.34

The CP or FCP performance of a CI at a particular value θ depends on the
shape of the conditional moment functions, as functions of x, evaluated at θ.
In the present model, the conditional moment functions are

β(x�θ)=

⎧⎪⎨⎪⎩
E

(
1(Yi ≤ θ�Ti = 1)+ 1(Ti 
= 1)− 0�5|Xi = x

)
�

if x < 1�5�
E

(
τ − 1(Yi ≤ θ�Ti = 1)|Xi = x

)
�

if x≥ 1�5�

(10.6)

Figure 1 shows the bound functions and conditional moment functions for
the flat, kinked, and peaked cases. The bound functions are given in the upper
row. Note that ¯θ(x) is defined only for x ∈ [0�1�5] and θ̄(x) only for x ∈ [1�5�1].
The conditional moment functions are given in the lower row. The latter are
evaluated at the value of θ that yields the lower endpoint of the identified
interval.35

We consider a base case sample size of n = 250. We also report a few results
for n= 100, 500, and 1000.

34For the flat bound DGP, μ(x) = 2, σ(x) = 1, and L(x) = 1 for x ∈ [0�2]. In this case, ¯θ(x) =
2 + �−1(1 − [2�(1)]−1) for x ≤ 1�5 and θ̄(x) = 2 + �−1([2�(1)]−1) for x > 1�5. For the kinked
bound DGP, μ(x) = 2(x∧1), σ(x) = x, L(x) = x∧1, ¯θ(x) = 2(x∧1)+x ·�−1(1−[2�(x∧1)]−1)
for x≤ 1�5, and θ̄(x) = 2(x∧1)+x ·�−1([2�(x∧1)]−1) for x > 1�5. The kinked μ and L functions
are the same as in the simulation example in the 2008 version of CLR. For the peaked bound
function, μ(x) = 2(x∧ 1), σ(x) = x5, L(x) = x∧ 1, ¯θ(x) = 2(x∧ 1)+ x5�−1(1 − [2�(x∧ 1)]−1)
for x≤ 1�5, and θ̄(x) = 2(x∧ 1)+ x5�−1([2�(x∧ 1)]−1) for x > 1�5.

35See Supplemental Appendix F for conditional-moment-function figures with θ evaluated at
the point at which the FCP’s are computed.
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FIGURE 1.—Three bound functions on θ and three corresponding conditional moment func-
tions for the quantile selection model.

10.2.2. g Functions

The g functions employed by the test statistics are indicator functions of
hypercubes in [0�1], which are subintervals of [0�1]. It is not assumed that the
researcher knows that Xi ∼ U[0�2]. The regressor Xi is transformed via the
method described in Section 9 to lie in (0�1)�36 The hypercubes have side-edge
lengths (2r)−1 for r = r0� � � � � r1, where r0 = 1 and the base case value of r1 is 7�37

The base case number of hypercubes is 56. We also report results for r1 = 5, 9,
and 11, which yield 30, 90, and 132 hypercubes, respectively. With n = 250 and
r1 = 7, the expected number of observations per cube is 125, 62�5� � � � �20�8, or
17�9 depending on the cube. With n = 250 and r1 = 11, the expected number
also can equal 12�5 or 11�4. With n = 100 and r1 = 7, the expected number is
50, 25� � � � �8�3, or 7�3.

36This method takes the transformed regressor to be �((Xi − X̄n)/σX�n), where X̄n and σX�n

are the sample mean and standard deviations of Xi and �(·) is the standard normal distribution
function.

37For simplicity, we let r1 denote r1�n here and below.
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10.2.3. Simulation Results: Confidence Intervals Proposed in This Paper

Tables I–III report CP’s and CP-corrected FCP’s for a variety of test statistics
and critical values proposed in this paper for a range of cases. All CI’s consid-
ered are two-sided CI’s for the true value. The CP’s are for the lower endpoint
of the identified interval in Tables I–III for the flat, kinked, and peaked bound
functions.38 FCP’s are for points below the lower endpoint.39

Table I provides comparisons of different test statistics when each statistic is
coupled with PA/Asy and GMS/Asy critical values. Table II provides compar-
isons of the PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the
CvM/Max and KS/Max test statistics. Table III provides robustness results for
the CvM/Max and KS/Max statistics coupled with GMS/Asy critical values. The
results in Table III show the degree of sensitivity of the results to (i) the sample
size, n, (ii) the number of cubes employed, as indexed by r1, (iii) the choice of
(κn�Bn) for the GMS/Asy critical values, and (iv) the value of ε, upon which

TABLE I

QUANTILE SELECTION MODEL: BASE CASE TEST STATISTIC COMPARISONS
(n= 250, r1 = 7, ε = 5/100)

Statistic

DGP Crit Val CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(a) Coverage Probabilities
Flat Bound PA/Asy �979 �979 �976 �972 �972 �970

GMS/Asy �953 �953 �951 �963 �963 �960

Kinked Bound PA/Asy �999 �999 �999 �994 �994 �994
GMS/Asy �983 �983 �983 �985 �985 �984

Peaked Bound PA/Asy 1�000 1�000 1�000 �997 �997 �997
GMS/Asy �997 �997 �997 �991 �991 �990

(b) False Coverage Probabilities (coverage probability corrected)
Flat Bound PA/Asy �51 �50 �48 �68 �67 �66

GMS/Asy �37 �37 �37 �60 �60 �59

Kinked Bound PA/Asy �65 �65 �62 �68 �68 �67
GMS/Asy �35 �35 �34 �53 �53 �52

Peaked Bound PA/Asy �70 �71 �68 �48 �48 �47
GMS/Asy �43 �43 �41 �39 �39 �38

38Supplemental Appendix F provides additional results for the upper endpoints. The results
are similar in many respects.

39Note that the DGP is the same for FCP’s as for CP’s; just the value θ that is to be covered
is different. For the lower endpoint of the identified set, FCP’s are computed for θ equal to

¯θ(1) − c × sqrt(250/n), where c = �25, �58, and �61 in the flat, kinked, and peaked bound cases,
respectively. These points are chosen to yield similar values for the FCP’s across the different
cases considered.
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TABLE II

QUANTILE SELECTION MODEL: BASE CASE CRITICAL VALUE COMPARISONS
(n= 250, r1 = 7, ε= 5/100)

Critical Value

DGP Statistic PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

(a) Coverage Probabilities
Flat Bound CvM/Max �976 �977 �951 �950 �983

KS/Max �970 �973 �960 �959 �942

Kinked Bound CvM/Max �999 �999 �983 �982 �993
KS/Max �994 1�000 �984 �982 �950

Peaked Bound CvM/Max 1�000 1�000 �997 �997 �999
KS/Max �997 �998 �990 �990 �965

(b) False Coverage Probabilities (coverage probability corrected)
Flat Bound CvM/Max �48 �49 �37 �36 �57

KS/Max �66 �69 �59 �57 �69

Kinked Bound CvM/Max �62 �64 �34 �33 �47
KS/Max �67 �72 �52 �50 �47

Peaked Bound CvM/Max �68 �69 �41 �40 �48
KS/Max �47 �51 �38 �36 �28

the variance estimator Σ̄n(θ�g) depends. Table III also reports results for con-
fidence intervals with nominal level �5, which yield asymptotically half-median
unbiased estimates of the lower endpoint.

TABLE III

QUANTILE SELECTION MODEL WITH FLAT BOUND: VARIATIONS ON THE BASE CASE

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max
Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 250, r1 = 7, ε= 5/100) �951 �960 �37 �59
n= 100 �957 �968 �40 �64
n= 500 �954 �955 �36 �58
n= 1000 �948 �948 �34 �57
r1 = 5 �949 �954 �36 �56
r1 = 9 �951 �963 �37 �61
r1 = 11 �951 �966 �37 �63
(κn�Bn)= 1/2(κn�bc�Bn�bc) �948 �954 �38 �58
(κn�Bn)= 2(κn�bc�Bn�bc) �967 �968 �38 �63
ε= 1/100 �949 �957 �37 �64

α= �5 �518 �539 �03 �08
α= �5 & n= 500 �513 �531 �03 �07
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Table I shows that all CI’s have CP’s greater than or equal to �95 with flat,
kinked, and peaked bound DGP’s. The PA/Asy critical values lead to notice-
ably larger over-coverage than the GMS/Asy critical values with flat and kinked
bound DGP’s. The GMS/Asy critical values lead to CP’s that are close to �95
with the flat bound DGP and larger than �95 with the kinked and peaked bound
DGP. The CP results are not sensitive to the choice of test statistic function:
Sum, QLR, or Max. They are only marginally sensitive to the choice of test
statistic form: CvM or KS.

The FCP results of Table I show (i) a clear advantage of GMS/Asy critical
values over PA/Asy critical values, (ii) a clear advantage of CvM-based CI’s
over KS-based CI’s in an overall sense when the GMS/Asy critical values are
employed, and (iii) little difference between the test statistic functions: Sum,
QLR, and Max.

Table II compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy,
and Sub. The results show little differences in terms of CP’s and FCP’s be-
tween the Asy and Bt versions of the PA and GMS critical values in most
cases. The GMS critical values noticeably outperform the PA critical values
in terms of FCP’s. When using the GMS/Asy or GMS/Bt critical values, the
CvM/Max statistic yields lower FCP’s than the KS/Max statistic except in the
peaked bound case, in which case the difference is relatively small. For the
CvM/Max statistic, the GMS critical values also noticeably outperform the Sub
critical values in terms of FCP’s. However, in the peaked design case, the low-
est FCP’s are obtained by the KS/Max statistic with the Sub critical value.

Table III provides results for the CvM/Max and KS/Max statistics coupled
with the GMS/Asy critical values for several variations of the base case. Ta-
ble III shows that these CI’s perform quite similarly for different sample sizes,
different numbers of cubes, and a smaller constant ε.40 There is some sensitiv-
ity to the magnitude of the GMS tuning parameters, (κn�Bn)—doubling their
values increases CP’s, but halving their values does not decrease their CP’s be-
low .95. Across the range of cases considered, the CvM-based CI’s outperform
the KS-based CI’s in terms of FCP’s and are comparable in terms of CP’s.

The last two rows of Table III show that a CI based on α = �5 provides a
good choice for an estimator of the identified set. For example, the lower end-
point estimator based on the CvM/Max-GMS/Asy CI with α = �5 is close to
being median-unbiased. It is less than the lower bound with probability �518
and exceeds it with probability �482 when n= 250.

In conclusion, we find that the CI based on the CvM/Max statistic with the
GMS/Asy critical value performs best overall in the quantile selection mod-
els considered. Equally good are the CI’s that use the Sum or QLR statistic

40The θ value at which the FCP’s are computed differs from the lower endpoint of the identi-
fied set by a distance that depends on n−1/2. Hence, Table III suggests that the “local alternatives”
that give equal FCP’s decline with n at a rate that is slightly faster than n−1/2 over the range
n= 100 to 1000.
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in place of the Max statistic and the GMS/Bt critical value in place of the
GMS/Asy critical value. The CP’s and FCP’s of the CvM/Max-GMS/Asy CI
are quite good over a range of sample sizes.

10.2.4. Simulation Results: Comparisons With CLR and LSW Confidence
Intervals

Table IV provides comparisons of the CvM/Max/GMS/Asy CI (denoted in
this section by AS) with the CLR-series, CLR-local linear, and LSW CI’s. Re-
sults are reported for the flat, kinked, and peaked bound functions, for the base
case sample size 250, and for sample sizes 100 and 500.

Table IV shows that the CP performances of the nominal 95% AS and LSW
CI’s are good (i.e., greater than or equal to �95) for all bound functions and
all sample sizes.41 The CLR-series CI has good CP performance for n = 500,
somewhat less good CP performance for n = 250, and not very good CP perfor-
mance for n = 100 (in which case its CP is �854 in the flat bound design, which
implies that its finite-sample size is less than or equal to �854). The CLR-local
linear CI has CP’s that are low in the flat bound case when n = 250 or 500
(being �916 and �927, respectively), but fine in the kinked and peaked cases.

TABLE IV

QUANTILE SELECTION MODEL: COMPARISONS OF CONFIDENCE INTERVALS PROPOSED IN THIS
PAPER WITH THOSE PROPOSED IN CLR AND LSW

CP (95%) FCP (corrected) CP (50%)

CI flat kink peak flat kink peak flat kink peak

n= 100
CvM/Max/GMS/Asy �957 �981 �989 �40 �34 �47 �52 �69 �73
CLR-series �854 �894 �862 �80 �78 �79 �51 �67 �64
CLR-local linear �855 �949 �961 �66 �31 �16 �43 �73 �77
LSW �977 1�000 1�000 �51 �67 �47 �70 �96 �97

n= 250
CvM/Max/GMS/Asy �951 �983 �997 �37 �34 �41 �52 �72 �82
CLR-series �918 �951 �937 �70 �37 �24 �55 �76 �73
CLR-local linear �916 �973 �987 �58 �41 �21 �47 �79 �85
LSW �978 1�000 1�000 �52 �82 �72 �73 �98 �99

n= 500
CvM/Max/GMS/Asy �954 �984 �998 �36 �39 �72 �51 �74 �88
CLR-series �937 �975 �978 �70 �45 �49 �57 �80 �81
CLR-local linear �927 �985 �996 �62 �49 �47 �50 �80 �91
LSW �985 1�000 1�000 �53 �91 �95 �75 �99 1�00

41Note that a CP that exceeds �95 is, in and of itself, good. It is only bad if it causes higher
FCP’s. The latter shows up in the discussion of FCP’s, not CP’s.
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The CLR-local linear CI has poor finite-sample size for n = 100 (since its CP
equals �855 in the flat bound case).

The AS CI has the best (lowest) FCP performance in the flat bound cases
for all three sample sizes. The CLR-local linear CI has the best FCP’s in the
peaked bound case for all three sample sizes. The AS FCP’s are slightly better
(lower) than those of the CLR CI’s overall in the kinked bound case, with AS
performing best with n = 250 and n = 500 and CLR-local linear performing
best with n = 100. The LSW FCP’s are noticeably worse (higher) than the AS
and CLR FCP’s in the kinked bound case.42,43 The LSW CI has worse FCP’s
than those of the AS CI in all nine cases considered. This is probably due to its
choice of critical value, which is essentially a least favorable critical value.

The 50% AS, CLR-series, and LSW CI’s are half-median-unbiased in all of
the scenarios considered. The 50% CLR-local linear CI’s are “inward biased”
in the flat bound case for sample sizes n = 100 and 250 with CP’s of �43 and
�47, respectively (rather than CP’s that are greater than or equal to �50). In
the flat bound case, the AS CI’s are fairly close to being median-unbiased with
coverage probabilities of �52, �52, and �51 for the three sample sizes. For the
kinked and peaked bound cases, all of the CI’s have CP’s that exceed �50 by
a substantial margin. For all bound functions, the LSW CI’s are the farthest
from being median unbiased.44

In the quantile selection model, the LSW CI’s are the quickest CI’s to com-
pute, followed by the CLR-series and AS CI’s, which are followed by the CLR-
local linear CI when n = 250 and n = 500 and are equalled by it for n = 100.

42The CP correction used in the FCP results in Table IV and elsewhere does not provide com-
plete size correction because it corrects the CP only based on the data generating process (DGP)
considered for the particular FCP calculation. More complete finite-sample size correction can
be obtained by applying the size correction constants computed for the least favorable DGP con-
sidered when computing the FCP’s for the flat, kinked, and peaked bound cases.

For the CLR-series CI with n= 100, more complete finite-sample size correction for the three
DGP’s considered (flat, kinked, peaked) yields size-corrected FCP’s for the flat, kinked, and
peaked cases of �92, �88, and �79, respectively. For n= 250, the corresponding values are �50, �51,
and �27. For n= 500, the values are �70, �50, and �54. For the CLR-local linear CI and n = 100, the
more completely corrected FCP’s are �66, �57, and �38 for the flat, kinked, and peaked cases. For
n = 250, they are �58, �51, and �29. For n = 500, they are �62, �57, and �54. With more complete
size-correction, the AS CI out-performs the CLR-series and CLR-local linear CI’s in terms of
FCP’s in the kinked case for all three sample sizes.

43A referee suggested using a hybrid version of the CI method proposed here and that pro-
posed in CLR. Such an approach is possible, but it is beyond the scope of this paper.

44The FCP performances of one-sided AS, CLR, and LSW CI’s in a mean selection model are
roughly similar to those of the two-sided CI’s in the quantile selection model (with n = 250), see
Supplemental Appendix F. In the mean selection model, the minimal CP over the three bound
functions is �947 for AS, �893 for CLR-series, �930 for CLR-local linear, and �939 for LSW. The
FCP’s of the AS and LSW CI’s are best in the flat bound case by a large amount over the CLR
CI’s (�37 for AS versus �68 for CLR-linear). The FCP’s of the CLR CI’s are better than those of
the AS CI by a smaller amount in the kinked and peaked cases (�35 and �38 for AS, �38 and �35 for
CLR-series, �30 and �30 for CLR-local linear, and �86 and �90 for LSW in the kinked and peaked
bound cases, respectively).
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Specifically, to compute 5000 tests using 5001 critical value repetitions, the
times in minutes (using a 3�33 GHz processor running GAUSS 6.0) for n = 100,
250, and 500 are: �1, �3, �5 for LSW; 13, 13, 13 for AS; 20, 24, 40 for CLR-series;
and 12, 28, 62 for CLR-local linear.

10.3. Intersection Bound Example

Next, we carry out some simulations to assess the CP robustness of the AS,
CLR, and LSW CI’s to bound functions with steep slopes. We consider the
same intersection bound model as in the 2011 version of CLR but with two
different bound functions. We consider the single moment inequality E(θ −
Y |X)≥ 0 a.s. The DGP with the first bound function is

Y = Lφ
(
X10

) + u�(10.7)

where X ∼ Unif[−2�2], u = min{3�max{−3�σ2v}}, and v ∼ N(0�1). The
function φ(X10) yields a near plateau-shaped bound function similar to a
smoothed version of φ(0)1(X ∈ [−1�1]). The second DGP replaces φ(X10)
by max{φ((X − 1�5)10)�φ((X + 1�5)10)}, which results in a near double-
plateau-shaped bound function similar for X ∈ [−2�2] to a smoothed ver-
sion of φ(0)1(X ∈ [−2�−0�5] ∪ [0�5�2]). For both DGP’s, the identified set
is [Lφ(0)�∞). We consider one-sided CI’s for θ of the form [l̂bn�∞). We
compute CP’s at θ = Lφ(0) and FCP’s at θ = Lφ(0) − 0�02.45 We consider
(L�σ)= (1�0�1) and (5�0�1)�46 We report results for the CvM/Max/GMS/Asy,
KS/Max/GMS/Asy CI’s, CLR-series, CLR-local linear, and LSW CI’s.47

The results use 5000 CP/FCP simulation repetitions and 5001 critical value
repetitions for each CP/FCP simulation repetition. The results are reported
in Table V. In Table V, DGP1 and DGP2 denote the single-plateau DGP
with (L�σ) = (1�0�1) and (5�0�1), respectively. DGP3 and DGP4 denote the
double-plateau DGP with (L�σ)= (1�0�1) and (5�0�1), respectively.

Table V shows that the CLR-series CI has substantial under-coverage, espe-
cially for n ≤ 500, under both the single- and double-plateau DGP’s (between
�394 and �854). The CLR-local linear CI has substantial under-coverage for
n ≤ 250 (between �655 and �893), noticeable under-coverage for n = 500 (be-
tween �890 and �925), but less under-coverage for n = 1000 (between �918 and
�935). On the other hand, both versions of the AS CI’s and the LSW CI never
under-cover.

45The FCP’s are CP-corrected if there is under-coverage, as in the quantile selection model.
46These are the same values as in CLR, but for brevity we do not report results for (L�σ) =

(0�0�1), which yields the same DGP as in CLR, and (L�σ) = (5�0�01), which is a rather extreme
case.

47For the AS CI’s, the Sum, QLR, and Max test statistics coincide in this example because
k= 1. The CLR CI’s use estimated contact sets.
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TABLE V

COMPARISON OF NOMINAL 95% AS, CLR, AND LSW CI’S WITH PLATEAU BOUND FUNCTIONS

CP FCP (CP-corrected)

AS CLR AS CLR

n CvM KS series loc.lin LSW CvM KS series loc.lin LSW

DGP1 100 �986 �986 �707 �804 1�000 �84 �89 �88 �83 �98
250 �975 �973 �805 �893 1�000 �57 �67 �82 �69 �92
500 �975 �970 �872 �925 1�000 �25 �37 �72 �50 �70

1000 �971 �966 �909 �935 1�000 �03 �07 �57 �26 �25

DGP2 100 1�000 1�000 �394 �713 1�000 1�00 1�00 �91 �89 �99
250 1�000 1�000 �683 �856 1�000 1�00 1�00 �85 �73 �96
500 1�000 1�000 �833 �908 1�000 �97 �99 �77 �56 �82

1000 1�000 1�000 �900 �927 1�000 �70 �89 �61 �33 �40

DGP3 100 �970 �969 �620 �721 1�000 �70 �79 �89 �84 �90
250 �969 �964 �762 �854 1�000 �30 �46 �83 �66 �65
500 �963 �957 �854 �900 1�000 �06 �15 �70 �47 �26

1000 �969 �963 �901 �927 1�000 �00 �01 �55 �23 �02

DGP4 100 �998 �999 �321 �655 1�000 �95 �99 �91 �88 �95
250 �997 �998 �612 �826 1�000 �66 �83 �86 �70 �75
500 �994 �994 �808 �890 1�000 �23 �42 �74 �51 �36

1000 �994 �991 �893 �918 1�000 �01 �04 �59 �29 �04

In terms of (CP-corrected) FCP’s, the CvM AS CI is best in DGP3 for all
sample sizes and is best in DGP1 and DGP4 for all sample sizes except the
smallest, while the CLR-local linear CI is best in DGP2 for all sample sizes.
The CvM AS CI dominates the KS AS CI in terms of FCP’s, and the CLR-
local linear CI dominates the CLR-series CI. The CvM AS CI outperforms the
LSW CI in terms of FCP’s for DGP1, DGP3, and DGP4, but the opposite is
true for DGP2.

10.4. Entry Game Model

10.4.1. Description of the Model

This model is a complete information simultaneous game (entry model) with
two players and n i.i.d. plays of the game. We consider Nash equilibria in pure
strategies. Due to the possibility of multiple equilibria, the model is incom-
plete; see Tamer (2003). In consequence, two conditional moment inequalities
and two conditional moment equalities arise. Andrews, Berry, and Jia (2004),
Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), and
Galichon and Henry (2011) also considered moment inequalities and equali-
ties in models of this sort.

Following the approach in Section 8, eight noncompetitive effects param-
eters are estimated via a preliminary maximum likelihood estimator based
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on the number of entrants, similar to Bresnahan and Reiss (1991) and Berry
(1992). These estimators are plugged into a set of moment conditions that in-
cludes two moment inequalities and two moment equalities.

We consider the case where the two players’ utility/profits depend linearly
on vectors of covariates, Xi�1 and Xi�2, with corresponding parameters τ1 and
τ2. A scalar parameter θ1 indexes the competitive effect on player 1 of entry
by player 2. Correspondingly, θ2 indexes the competitive effect on player 2 of
entry by player 1.

Specifically, for player b= 1�2, player b’s utility/profits are given by

X ′
i�bτb +Ui�b if the other player does not enter and(10.8)

X ′
i�bτb − θb +Ui�b if the other player enters�

where Ui�b is an idiosyncratic error known to both players, but unobserved
by the econometrician. The random variables observed by the econometrician
are the covariates Xi�1 ∈ R4 and Xi�2 ∈ R4 and the outcome variables Yi�1 and
Yi�2, where Yi�b equals 1 if player b enters and 0 otherwise for b = 1�2. The
unknown parameters are θ = (θ1� θ2)

′ ∈ [0�∞)2, and τ = (τ′
1� τ

′
2)

′ ∈ R8. Let
Yi = (Yi�1�Yi�2) and Xi = (X ′

i�1�X
′
i�2)

′.
The covariate vector Xi�b equals (1�Xi�b�2�Xi�b�3�X

∗
i )

′ ∈ R4, where Xi�b�2 has
a Bern(p) distribution with p = 1/2, Xi�b�3 has a N(0�1) distribution, X∗

i has
a N(0�1) distribution and is the same for b = 1�2. The idiosyncratic error Ui�b

has a N(0�1) distribution. All random variables are independent of each other.
Except when specified otherwise, the equilibrium selection rule (ESR) used to
generate the data is a maximum profit ESR (which is unknown to the econo-
metrician and not used by the CI’s). That is, if Yi could be either (1�0) or
(0�1) in equilibrium, then it is (1�0) if player 1’s monopoly profit exceeds that
of player 2 and is (0�1) otherwise. We also provide some results when the data
are generated by a “player 1 first” ESR in which Yi = (1�0) whenever Yi could
be either (1�0) or (0�1) in equilibrium.

The moment inequality functions are

m1(Wi� θ� τ)(10.9)

= P
(
X ′

i�1τ1 +Ui�1 ≥ 0�X ′
i�2τ2 − θ2 +Ui�2 ≤ 0|Xi

) − 1
(
Yi = (1�0)

)
=�

(
X ′

i�1τ1

)
�

(−X ′
i�2τ2 + θ2

) − 1
(
Yi = (1�0)

)
� and

m2(Wi� θ� τ)

= P
(
X ′

i�1τ1 − θ1 +Ui�1 ≤ 0�X ′
i�2τ2 +Ui�2 ≥ 0|Xi

) − 1
(
Yi = (0�1)

)
�

=�
(−X ′

i�1τ1 + θ1

)
�

(
X ′

i�2τ2

) − 1
(
Yi = (0�1)

)
�

We have E(m1(Wi� θ0� τ0)|Xi)≥ 0 a.s., where θ0 and τ0 denote the true values,
because, given Xi, a necessary condition for Yi = (1�0) is X ′

i�1τ1 +Ui�1 ≥ 0 and
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X ′
i�2τ2 − θ2 + Ui�2 ≤ 0. However, this condition is not sufficient for Yi = (1�0)

because some sample realizations with Yi = (0�1) also may satisfy this condi-
tion. An analogous argument leads to E(m2(Wi� θ0� τ0)|Xi)≥ 0 a.s.

The two moment equality functions are

m3(Wi� θ� τ)= 1
(
Yi = (1�1)

)
(10.10)

− P
(
X ′

i�1τ1 − θ1 +Ui�1 ≥ 0�X ′
i�2τ2 − θ2 +Ui�2 ≥ 0|Xi

)
= 1

(
Yi = (1�1)

) −�
(
X ′

i�1τ1 − θ1

)
�

(
X ′

i�2τ2 − θ2

)
� and

m4(Wi� θ� τ)

= 1
(
Yi = (0�0)

) − P
(
X ′

i�1τ1 +Ui�1 ≤ 0�X ′
i�2τ2 +Ui�2 ≤ 0|Xi

)
= 1

(
Yi = (0�0)

) −�
(−X ′

i�1τ1

)
�

(−X ′
i�2τ2

)
�

We employ a preliminary estimator of τ given θ, as in Section 8. In particular,
we use the probit ML estimator τ̂n(θ) = (̂τn�1(θ)

′� τ̂n�2(θ)′)′ of τ = (τ′
1� τ

′
2)

′ given
θ based on the observations {(1(Yi = (0�0))�1(Yi = (1�1))�Xi�1�Xi�2) : i ≤ n}.48

The model described above is point identified under suitable conditions be-
cause τ is identified by the second conditional moment equality m4(Wi� θ� τ)
and θ is identified by the first moment equality m3(Wi� θ� τ) given that τ is
identified. See Tamer (2003) for some sufficient conditions for point identi-
fication.49 Although the model is point identified, considerable additional in-
formation about θ and τ is provided by the moment inequalities in (10.9), as
pointed out by Tamer (2003). We exploit this information using the methods
employed here.

We show that the gains from exploiting the moment inequalities are substan-
tial by comparing the finite-sample FCP’s of the tests introduced in this paper
with those of Wald, Lagrange multiplier, and likelihood ratio CI’s based on the
ML estimator which groups the outcomes (0�1) and (1�0), as in Bresnahan
and Reiss (1991) and Berry (1992).

We consider a base case sample size of n = 500, as well as n = 250 and 1000.

10.4.2. g Functions

We take the functions g to be hypercubes in R2. They are functions of the
2-vector X†

i = (X†′
i�1�X

†′
i�2)

′ = (X ′
i�1τ̂n�1(θ)�X

′
i�2τ̂n�2(θ))

′. The vector X†
i is trans-

formed first to have sample mean equal to zero and sample variance matrix

48See Supplemental Appendix F for the specification of the log likelihood function and its
gradient.

49Tamer (2003) used a large support condition on one regressor in each index X ′
i�1τ1 and X ′

i�2τ2

to obtain point identification. However, this is just a sufficient condition. It seems that identifica-
tion is likely to hold in many cases under much less stringent conditions on the distribution of the
regressors. See Supplemental Appendix F for further discussion.
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equal to I2 (by multiplication by the inverse of the upper-triangular Cholesky
decomposition of the sample covariance matrix of X†

i ). Then, it is transformed
to lie in [0�1]2 by applying the standard normal distribution function �(·) ele-
ment by element.

The hypercubes have side-edge lengths (2r)−1 for r = r0� � � � � r1, where r0 = 1
and the base case value of r1 is 3. The base case number of hypercubes is 56.
We also report results for r1 = 2 and 4, which yield 20 and 120 hypercubes,
respectively. With n = 500 and r1 = 3, the expected number of observations
per cube is 125, 31�3, or 13�9 depending on the cube. With n = 500 and r1 = 4,
the expected number also can equal 7�8. With n = 250 and r1 = 3, the expected
number is 25, 15�6, or 6�9.

10.4.3. Entry Game Simulation Results I

Tables VI and VII provide results for the entry game model. Results are
provided for GMS/Asy critical values only because (i) PA/Asy critical values
are found to provide similar results, and (ii) bootstrap and subsampling critical
values are computationally quite costly because they require computation of
the bootstrap or subsample ML estimator for each repetition of the critical
value calculations.

TABLE VI

ENTRY GAME MODEL: TEST STATISTIC COMPARISONS FOR DIFFERENT COMPETITIVE EFFECTS
PARAMETERS (θ1� θ2) (n= 500, r1 = 3, ε= 5/100)

Statistic

Case CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(a) Coverage Probabilities
(θ1� θ2) = (0�0) �979 �972 �980 �977 �975 �985
(θ1� θ2) = (1�0) �961 �980 �965 �959 �983 �972
(θ1� θ2) = (1�1) �961 �985 �961 �955 �985 �962
(θ1� θ2) = (2�0) �935 �982 �935 �944 �984 �952
(θ1� θ2) = (2�1) �943 �974 �940 �953 �987 �947
(θ1� θ2) = (3�0) �921 �975 �915 �938 �935 �984
(θ1� θ2) = (2�2) �928 �942 �913 �943 �972 �922
(θ1� θ2) = (3�1) �928 �950 �918 �949 �973 �932

(b) False Coverage Probabilities (coverage probability corrected)
(θ1� θ2) = (0�0) �76 �99 �59 �91 �99 �83
(θ1� θ2) = (1�0) �60 �99 �42 �83 �66 �99
(θ1� θ2) = (1�1) �62 �96 �41 �82 �99 �58
(θ1� θ2) = (2�0) �51 �83 �35 �66 �96 �47
(θ1� θ2) = (2�1) �57 �57 �38 �69 �82 �44
(θ1� θ2) = (3�0) �49 �41 �36 �61 �43 �64
(θ1� θ2) = (2�2) �59 �34 �39 �65 �42 �49
(θ1� θ2) = (3�1) �57 �27 �39 �65 �47 �44
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TABLE VII

ENTRY GAME MODEL: VARIATIONS ON THE BASE CASE (θ1� θ2)= (1�1)

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max
Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 500, r1 = 3, ε= 5/100) .961 .962 .41 .58
n= 250 .948 .963 .39 .56
n= 1000 .979 .968 .52 .65
r1 = 2 (20 cubes) .962 .956 .41 .55
r1 = 4 (120 cubes) .962 .964 .42 .59
(κn�Bn)= 1/2(κn�bc�Bn�bc) .954 .959 .39 .57
(κn�Bn)= 2(κn�bc�Bn�bc) .967 .962 .42 .58
ε= 1/100 .926 .873 .32 .66

Reg’r Variances = 2 .964 .968 .54 .71
Reg’r Variances = 1/2 .963 .966 .29 .43
Player 1 First Eq Sel Rule .955 .957 .39 .57

α= �5 .610 .620 .05 .13
α= �5 & n= 1000 .695 .650 .06 .16

Table VI provides CP’s and FCP’s for competitive effect θ values ranging
from (0�0) to (3�1).50 Table VI shows that the CP’s for all CI’s vary as θ varies
with values ranging from �913 to �987. The QLR-based CI’s tend to have higher
CP’s than the Sum- and Max-based CI’s. The CvM/Max statistic dominates
all other statistics except the CvM/QLR statistic in terms of FCP’s. In addi-
tion, CvM/Max dominates CvM/QLR—in most cases by a substantial margin—
except for θ = (2�2) or (3�1). Hence, CvM/Max is clearly the best statistic in
terms of FCP’s. The CP’s of the CvM/Max CI are good for many θ values, but
they are low for relatively large θ values. For θ = (3�0), (2�2), and (3�1), its
CP’s are �915, �913, and �918, respectively. This is a “small” sample effect—for
n = 1000, this CI has CP’s for these three cases equal to �934, �951, and �952,
respectively.

Table VII provides results for variations on the base case θ value of (1�1) for
the CvM/Max and KS/Max statistics combined with GMS/Asy critical values.
The CP’s and FCP’s of the CvM/Max CI increase with n. They are not sensitive
to the number of hypercubes. There is some sensitivity to the magnitude of
(κn�Bn), but it is relatively small. There is noticeable sensitivity of the CP of
the KS/Max CI to ε, but less so for the CvM/Max CI. There is relatively little
sensitivity of CP’s to changes in the DGP via changes in the regressor variances
(of Xi�b�2 and Xi�b�3 for b = 1�2) or a change in the equilibrium selection rule
to player 1 first.

50The θ values for which FCP’s are computed are given by θ1 − �1 × sqrt(500/n) and θ2 − �1 ×
sqrt(500/n), where (θ1� θ2) is the true parameter vector.
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The last two rows of Table VII provide results for estimators of the identi-
fied set based on CI’s with α = �5. The two CI’s considered are half-median
unbiased. For example, the CvM/Max-GMS/Asy CI with α= �5 covers the true
value with probability �610, which exceeds �5, when n = 500.

In conclusion, in the entry game model, we prefer the CvM/Max-GMS/Asy
CI over other CI’s considered because of its clear superiority in terms of FCP’s,
even though it under-covers somewhat for large values of the competitive ef-
fects vector θ.

10.4.4. Entry Game Simulation Results II

Next, we compare the finite-sample (CP-corrected) FCP’s of two CI’s in-
troduced in this paper with the FCP’s of three CI’s that do not exploit the
moment inequalities. Figure 2 graphs the FCP’s of the CvM/Max and KS/Max
CI’s using the GMS/Asy critical values (with the base case values of the tun-
ing parameters). It also graphs the FCP’s of the Wald, Lagrange multiplier,
and likelihood ratio CI’s based on the ML estimator that groups the outcomes
(1�0) and (0�1) (which ignore the moment inequalities). The sample size is
n = 500 and the true values of (θ1� θ2) are (1�1). The horizontal axis in Fig-
ure 2 gives the distance between the true value of θ1, which is θ1�0 = 1, and the
null value of θ1, which is θ1�null. The distance for the corresponding values of θ2

is taken to be the same.51

As θ1�0 − θ1�null increases, the FCP’s decrease for all CI’s, as expected. Fig-
ure 2 shows that the CI’s that exploit the moment inequalities have far better
(lower) FCP’s. Specifically, to obtain a FCP equal to p for any p in [0�75�0�0],

FIGURE 2.—False coverage probabilities of several nominal 95% confidence sets in the entry
game model.

51Hence, the Euclidean distance between points outside the identified set and points on the
boundary of the identified set are proportional to the distances on the horizontal axis in Figure 2.
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the distance of a parameter from the identified set needs to be three times
as far or farther when using the Wald, LM, or LR CI as compared to the
CvM/Max or KS/Max CI. Thus, we conclude that the CI’s introduced here,
which exploit the moment inequalities and equalities, are noticeably superior
to those that just employ the moment equalities.
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