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a b s t r a c t

This paper develops methods of inference for nonparametric and semiparametric parameters defined by
conditionalmoment inequalities and/or equalities. The parameters need not be identified. Confidence sets
and tests are introduced. The correct uniform asymptotic size of these procedures is established. The false
coverage probabilities and power of the CS’s and tests are established for fixed alternatives and some local
alternatives. Finite-sample simulation results are given for a nonparametric conditional quantile model
with censoring and a nonparametric conditional treatment effect model. The recommended CS/test uses
a Cramér–von-Mises-type test statistic and employs a generalized moment selection critical value.
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1. Introduction

This paper considers inference for nonparametric and semi-
parametric parameters defined by conditional moment inequali-
ties and/or equalities. The moments are conditional on Xi a.s. and
Zi = z0 for some random vectors Xi and Zi. The parameters need
not be identified. Due to the conditioning on Zi at a single point
z0, the parameter considered is a nonparametric or semiparamet-
ric parameter (which varies with z0). Due to the conditioning on Xi
a.s., themoment conditions are typical conditionalmomentswhich
involve an infinite number of restrictions.

Examples covered by the results of this paper include: a non-
parametric conditional distribution with selection, a nonpara-
metric conditional quantile with selection, an interval-outcome
partially-linear regression, an interval-outcome nonparametric re-
gression, a semiparametric discrete-choice model with multiple
equilibria, a nonparametric revealed preference model, tests of a
variety of functional inequalities, including nonparametric average
treatment effects for certain sub-populations, and nonparametric
binary Roy models, as in Henry and Mourifié (2012).

As far aswe are aware, the only other paper in the literature that
covers the examples described above is Chernozhukov et al. (2013)
(CLR). In this paper, we employ statistics that are akin to Bierens
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(1982)-typemodel specification test statistics. In contrast, CLR em-
ploy statistics that are akin to Härdle and Mammen (1993)-type
model specification statistics, which are based on nonparametric
regression estimators. These approaches have different strengths
and weaknesses. Specifically, the tests proposed in this paper have
higher power against conditional moment functions that are rela-
tively flat (but not necessarily completely flat) as a function of x,
whereas the CLR tests have higher power against conditional mo-
ment functions that are more curved. This is shown by the finite-
sample simulations reported here and the asymptotic local power
results reported in the Appendix, see Andrews and Shi (2013a).

For example, flat conditional moment functions arise in mod-
els with moment equalities, as well as inequalities, such as entry
games with complete information and pure strategy equilibrium
(which is Example 4 in Section 2.2). In addition, relatively flat
bounds arise in models with censoring (see Example 1 in Sec-
tion 2.2) when the censoring effect is small for large values of the
conditioning variable Xi. In this case, for a continuumof values of Xi
at the top end of its distribution, both inequalities are close to bind-
ing and the bounds are relatively flat. Such a data structure is what
the ‘‘identification at infinity’’ strategy for censoring models re-
lies upon, e.g., see Lewbel (2007). Lastly, relatively flat conditional
moment functions arise in any model with weak instrumental/
conditioning variables Xi (in the sense that Xi has low correla-
tionwith the stochastic moment functions). Weak instruments are
known to arise in a variety of economic models.

http://dx.doi.org/10.1016/j.jeconom.2013.10.005
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2013.10.005&domain=pdf
mailto:donald.andrews@yale.edu
http://dx.doi.org/10.1016/j.jeconom.2013.10.005
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We provide confidence sets (CS’s) and tests concerning the true
parameter. The class of test statistics used in this paper are like
those used in Andrews and Guggenberger (2009), which are ex-
tended in Andrews and Shi (2013b,c) (AS1, AS2) to handlemoment
conditions that are conditional on Xi a.s. Here the test statistics are
extended further to cover moment conditions that are conditional
on Zi = z0 as well. The latter conditioning is accomplished using
kernel smoothing. The critical values considered here are general-
ized moment selection (GMS) and plug-in asymptotic (PA) critical
values, as in Andrews and Soares (2010), which are extended to
cover conditional moment inequalities, as in AS1 and AS2.

The results of the paper are analogous to those in AS1 and AS2.
In particular, we establish the correct uniform asymptotic size of
the CS’s and tests. We also determine the asymptotic behavior of
the CS’s and tests under fixed alternatives and some local alterna-
tives.

We provide finite-sample simulation results for two models:
a nonparametric conditional quantile model with selection and
a nonparametric conditional treatment effect model. The conclu-
sions from the finite-sample results are similar inmany respects to
those from Andrews and Soares (2010) and Andrews and Barwick
(2012), AS1, and AS2. Cramér–von-Mises (CvM) versions of the CS’s
and tests out-performKolmogorov–Smirnov (KS) versions in terms
of false-coverage probabilities (FCP’s) and power and have simi-
lar size properties. Likewise, GMS critical values out-perform PA
critical values according to the same criteria. The ‘‘Gaussian asymp-
totic’’ versions of the critical values perform similarly to the boot-
strap versions in terms of size, FCP’s, and power. The finite-sample
sizes of the CvM/GMS CS’s and tests are close to their nominal
size. The CS’s and tests show some sensitivity to the nonparametric
smoothing parameter employed, but not much sensitivity to other
tuning parameters.

In the simulation results for these twomodels, the CI’s and tests
proposed in this paper are found to have more robust size proper-
ties than the series and local linear CLR procedures. The CI’s and
tests proposed in this paper are found to have higher power (and
lower FCP’s) for flat bound functions and lower power (and higher
FCP’s) for peaked bound functions compared to the CLR proce-
dures.

We note that the results given here also apply to nonparametric
models based on moments that are unconditional on Xi but condi-
tional on Zi = z0. The results also cover the case where different
moment functions depend on different sub-vectors of Xi, e.g., as
occurs in some panel models.1 In addition, the results can be ex-
tended to the case of an infinite number ofmoment functions along
the lines of Andrews and Shi (2010).

The technical results in this paper differ from those in AS1
and AS2 because (i) the conditional moment inequalities (when
evaluated at the true parameter) do not necessarily hold for values
Zi that are in a neighborhood of z0, but do not equal z0, and (ii) the
samplemoments do not satisfy a functional CLTwith n1/2-norming
due to local smoothing, and, hence, need to be normalized using
their standard deviations which are o(1) as n → ∞.

Now, we discuss the related literature. The literature on infer-
ence based on unconditional moment inequalities for parameters
that are partially identified is now quite large. For brevity, we do
not give references here. See Andrews and Soares (2010) for ref-
erences. The literature on inference for partially-identified models
based on conditional moment inequalities includes AS1, AS2, CLR,
Fan (2008), Kim (2008), Ponomareva (2010), Armstrong (2011a,b),
Beresteanu et al. (2011), Chetverikov (2011), Fan and Park (2011),

1 This holds because the functions g1(x), . . . , gk(x), which multiply the moment
functions indexed by 1, . . . , k, need not be the same, see (3.1) of Andrews and Shi
(2013b).
Hsu (2011), Lee et al. (2013), Aradillas-López et al. (2013), and
Armstrong and Chan (2013). Khan and Tamer (2009) considers
conditional moment inequalities in a point-identified model. Gali-
chon and Henry (2009) considers a testing problem with an infi-
nite number of unconditional moment inequalities of a particular
type. Menzel (2009) investigates tests based on a finite number of
moment inequalities inwhich the number of inequalities increases
with the sample size.

Of these papers, the only one that allows for conditioning on
Zi = z0, which is the key feature of the present paper, is CLR. As
noted above, the forms of the tests considered here and in CLR dif-
fer. Other differences are as follows. The assumptions given here
are primitive, whereas those in CLR are high-level. The present pa-
per provides uniform asymptotic size results, whereas CLR does
not.

The remainder of the paper is organized as follows. Section 2
describes the nonparametric model and discusses six examples
covered by the model. Section 3 introduces the test statistics and
critical values, establishes the correct asymptotic size (in uniform
sense) of the CS’s, and establishes the power of the tests against
fixed alternatives. Section 4 provides Monte Carlo simulation re-
sults for two models.

An Appendix provides proofs of all of the results stated in
the paper. For brevity, the Appendix is given in Andrews and Shi
(2013a). The results in the Appendix allow for a much broader
range of test statistics than is considered in the paper. Specifically,
the results cover a wide variety of kernel functions K , test statistic
functions S, instrumental functions g ∈ G, and weight measures
Q . The Appendix provides two sets of results for local alterna-
tives. The first set considers (nbdz)−1/2-local alternatives, forwhich
the bound functions are asymptotically flat near their minimum,
where b denotes a bandwidth parameter and dz denotes the di-
mension of Zi. The tests proposed in this paper have non-trivial
power against such alternatives, whereas the tests of CLR do not.
The second set considers an-local alternatives, for which the bound
functions are asymptotically non-flat near their minimum. Here,
an → 0 as n → ∞ at a rate slower than (nbdz)−1/2. For such alter-
natives, if the functions are sufficiently curved then the CLR tests
have higher asymptotic local power than the tests considered here.
On the other hand, if the functions are less curved, then the tests
proposed here have higher asymptotic power than the CLR tests.
The Appendix also gives some additional simulation results for the
two models considered in the paper.

2. Nonparametric conditional moment inequalities and equal-
ities

2.1. Model

The nonparametric conditional moment inequality/equality
model is defined as follows.We suppose there exists a true param-
eter θ0 ∈ Θ ⊂ Rdθ that satisfies the moment conditions:
EF0


mj (Wi, θ0) |Xi, Zi = z0


≥ 0

a.s. [FX,0] for j = 1, . . . , p and

EF0

mj (Wi, θ0) |Xi, Zi = z0


= 0

a.s. [FX,0] for j = p + 1, . . . , p + v, (2.1)
where mj(·, θ) for j = 1, . . . , p + v are (known) real-valued mo-
ment functions, {Wi = (Y ′

i , X
′

i , Z
′

i )
′
: i ≤ n} are observed i.i.d. ran-

dom vectors with distribution F0, FX,0 is the marginal distribution
of Xi ∈ Rdx , Zi ∈ Rdz , Yi ∈ Rdy , andWi ∈ Rdw (=Rdy+dx+dz ).

The object of interest is a CS for the true parameter θ0. We do
not assume that θ0 is point identified. However, themodel restricts
the true parameter value to the identified set (which could be a
singleton) that is defined as follows:
ΘF0 = {θ ∈ Θ : (2.1) holds with θ in place of θ0}. (2.2)

We are interested in CS’s that cover the true value θ0 with prob-
ability greater than or equal to 1−α for α ∈ (0, 1). As is standard,
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we construct such CS’s by inverting tests of the null hypothesis that
θ is the true value for each θ ∈ Θ . Let Tn(θ) be a test statistic and
cn,1−α(θ) be a corresponding critical value for a test with nominal
significance level α. Then, a nominal level 1 − α CS for the true
value θ0 is
CSn = {θ ∈ Θ : Tn(θ) ≤ cn,1−α(θ)}. (2.3)

2.2. Examples

In this section, we provide several examples in which the non-
parametric conditional moment inequality/equality model arises.
Note that Examples 2 and 6, for a conditional quantile bound and a
conditional treatment effect, respectively, are used in a simulation
study in Section 4.

Example 1 (Conditional Distribution with Censoring). The first ex-
ample is a missing data example. The observations are i.i.d. Let Y ∗

i
be a variable that is subject to censoring: it is observed only for ob-
servations iwithDi = 1 and not for observationswithDi = 0. Let Zi
be a vector of covariates and Xi be a vector of excluded instruments
that are independent of Y ∗

i conditional on Zi. Then, the conditional
distribution of Y ∗

i given Zi, denoted FY∗|Z , satisfies: for fixed y0 ∈ R
and z0 ∈ Supp(Zi),

E(1{Y ∗

i ≤ y0,Di = 1} + 1{Di = 0}
− FY∗

1 |Z1(y0|z0)|Xi, Zi = z0) ≥ 0

E(FY∗|Z (y0|z0)− 1{Y ∗

i ≤ y0,Di = 1}|Xi, Zi = z0) ≥ 0. (2.4)

This model fits into the general model (2.1) with θ0 = FY∗|Z (y0|z0),
m1(Wi, θ0) = 1{Y ∗

i ≤ y0,Di = 1}+1{Di = 0}−θ0 andm2(Wi, θ0)
= θ0 − 1{Y ∗

i ≤ y0,Di = 1}.
A model similar to this one is used in Blundell et al. (2007) to

study the distribution of female wages. In their study, Y ∗

i is the
potential wage of woman i,Di is the dummy for employment sta-
tus, Zi are demographic variables, and Xi is non-wage income. Para-
metric and nonparametric versions of this example are discussed
in CLR. Notice that the parametric version can be estimated using
AS1. �

Example 2 (Conditional Quantile with Censoring). In some cases, it
is more useful to bound the conditional quantiles of Y ∗

i , rather than
its conditional distribution. Again, suppose the observations are
i.i.d. Let qY∗|Z (τ |z0) denote the τ quantile of Y ∗

i given Zi = z0. Then
under the conditional quantile independence assumption: qY∗|Z,X
(τ |z0, x) = qY∗|Z (τ |z0) for all x ∈ Supp(X). The quantile satisfies:
for fixed τ ∈ (0, 1) and z0 ∈ Supp(Z),

E(1{Y ∗

i ≤ qY∗|Z (τ |z0),Di = 1}
+ 1{Di = 0} − τ |Xi, Zi = z0) ≥ 0

E(τ − 1{Y ∗

i ≤ qY∗|Z (τ |z0),Di = 1}|Xi, Zi = z0) ≥ 0. (2.5)

This model fits into the general model (2.1) with θ0 = qY∗|Z (τ |z0),
m1(Wi, θ0) = 1{Y ∗

i ≤ θ0,Di = 1} + 1{Di = 0} − τ andm2(Wi, θ0)
= τ − 1{Y ∗

i ≤ θ0,Di = 1}.
If the conditional quantile independence assumption is re-

placed with the quantile monotone instrumental variable (QMIV)
assumption in AS1, then Example 2 becomes a nonparametric ver-
sion of the quantile selection example considered in AS1. �

Example 3 (Interval-Outcome Partially-Linear Regression). This
example is a partially-linear interval-outcome regression model.
Let Y ∗

i be a latent dependent variable and Y ∗

i = X ′

iβ0 +ψ0(Zi)+ ε,
E(ε|Xi, Zi) = 0 a.s., where (Xi, Zi) are exogenous regressors some
of which may be excluded from the regression. The latent variable
Y ∗

i is known to lie in the observed interval [Y l
i , Y

u
i ]. Then, the fol-

lowing moment inequalities hold for fixed z0 ∈ Supp(Z1):

E(Y u
i − X ′

iβ0 − ψ0(z0)|Xi, Zi = z0) ≥ 0 and

E(X ′

iβ0 + ψ0(z0)− Y l
i |Xi, Zi = z0) ≥ 0. (2.6)
Thismodel fits into the generalmodel (2.1)with θ0 = (β0, ψ0(z0)),
Wi = (Y u

i , Y
l
i , Xi, Zi), m1(Wi, θ0) = Y u

i − X ′

iβ0 − ψ0(z0), and
m2(Wi, θ0) = X ′

iβ0 + ψ0(z0)− Y l
i .

Example 3 is a partially-linear version of the interval-outcome
regression model considered in Manski and Tamer (2002) and
widely discussed in the moment inequality literature (e.g., see
Chernozhukov et al., 2007, Beresteanu and Molinari, 2008, Pono-
mareva and Tamer, 2011, and AS2). Allowing some of the regres-
sors to enter the regression function nonparametrically makes the
model less prone to misspecification.

If the linear term X ′

iβ0 does not appear in the model, then the
model is an interval-outcome nonparametric regression model.
The results of this paper apply to this model as well. However, a
linear term X ′

iβ0 often is used in practice to reduce the curse of di-
mensionality (e.g., see Tamer, 2008). �

Example 4 (Semiparametric Discrete Choice Model with Multiple
Equilibria). Consider an entry game with two potential entrants,
j = 1, 2, and possible multiple equilibria. For notational simplic-
ity,we suppress the observation index i for i = 1, . . . , n. The payoff
from not entering the market is normalized to zero for both play-
ers. The payoff fromentering is assumed to beπj = βj0X+ψj0(Z)−
δj0D−j−εj, whereD−j is a dummy that equals one if the other player
enters the market, δj0 > 0 is the competition effect, εj is the part
of the payoff that is observable to both players but unobservable to
the econometrician, and (X, Z) is a vector of firm or market char-
acteristics. Let F(ε1, ε2;α0) be the joint distribution function of
(ε1, ε2), which is knownup to the finite-dimensional parameterα0.
Let F1 and F2 denote themarginal distributions of ε1 and ε2 respec-
tively. Let Dj be the dummy that equals one if player j enters the
market. Suppose that it is a simultaneous-move static game. Then,
following Andrews et al. (2004) and Ciliberto and Tamer (2009),
we can summarize the game by moment inequalities/equalities:

E(P00(X, θ0)− (1 − D1)(1 − D2)|X, Z = z0) = 0,
E(P11(X, θ0)− D1D2|X, Z = z0) = 0,
E(P10(X, θ0)− D1(1 − D2)|X, Z = z0) ≥ 0, and
E(P01(X, θ0)− D2(1 − D1)|X, Z = z0) ≥ 0, (2.7)

where θ0 = (ψ10(z0), ψ20(z0), β10, β20, α0, δ10, δ20) and

P00(X, θ) = 1 − F1(β1X + ψ1(z))− F2(β2X + ψ2(z))
+ F(β1X + ψ1(z0), β2X + ψ2(z0)),

P11(X, θ) = F(β1X + ψ1(z0)− δ1, β2X + ψ2(z0)− δ2),

P10(X, θ) = F1(β1X + ψ1(z0))− F(β1X + ψ1(z0),
β2X + ψ2(z0)− δ2), and

P01(X, θ) = F2(β2X + ψ2(z0))− F(β1X + ψ1(z0)
− δ1, β2X + ψ2(z0)). (2.8)

In Andrews et al. (2004) and Ciliberto and Tamer (2009), ψj0
for j = 1, 2 are assumed to be linear functions of z0. The linear
functional form may be restrictive in many applications. It can be
shown that the linear form is not essential for the identification of
the model (e.g., see Bajari et al. (2010). Our method enables one to
carry out inference about the parameters while allowing for non-
parametric ψj0 for j = 1, 2. �

Example 5 (Revealed Preference Model). Consider a multiple-agent
discrete choice model with J players, where each player j has a
choice set Aj. Again, for notational simplicity, we suppress the i
subscript. Let π(aj, a−j,W ) be the payoff of agent j that depends
on his own action aj, his opponents action a−j, and his own and op-
ponents’ characteristics W . Let Ij be the information set of player
j at the time of his decision. Rationality of the agents implies the
following basic rule of action:

sup
aj∈Aj

E(π(aj, a−j,W )|Ij) ≤ E(π(a∗

j , a−j,W )|Ij) (2.9)
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for j = 1, . . . , J , where a∗

j is the observed action taken by j. For sim-
plicity assume that the players move simultaneously so that the
players do not respond to changes in other players’ actions. Sup-
pose that the econometrician models the payoff by r(aj, a−j,W )
and

r(aj, a−j,W ) = E(π(aj, a−j,W )|Ij)+ v1(aj)+ v2(aj), (2.10)

where the error v1(aj) is unobservable to both the agents and the
econometrician, while v2(aj) is observable to the agents but not
to the econometrician. Pakes (2010) proposes several assumptions
on v1 and v2 that guarantee that (2.9) implies a moment inequality
model of the following form:

E(r(a∗

j , a−j,W )− r(aj, a−j,W )|W ) ≥ 0 ∀aj ∈ Aj. (2.11)

The model falls into our framework if we parametrize r as follows:

r(a∗

j , a−j,W )− r(aj, a−j,W )

= G(a∗

j , aj, a−j, β0, X, ψ0(Z)), (2.12)

where X and Z are subvectors ofW and G is a known function. �

In this paper, we construct confidence sets by inverting tests of
the null hypothesis that θ is the true value for different θ ∈ Θ . The
basis of the method is the test for the null hypothesis that the con-
ditional moment inequalities/equalities (evaluated at θ ) are valid.
Clearly, such a test can be used directly to evaluate the validity of
certain conditional moment inequalities/equalities as described in
Example 6, which follows.

Example 6 (Functional Inequalities). Tests constructed in this
paper are suitable for testing functional inequalities of the form:

H0 : uj(x, z0) ≥ 0 for z0 ∈ Z and all

(x, j) ∈ X × {1, . . . , p}, where

uj(x, z) = E(mj(Wi)|Xi = x, Zi = z) (2.13)

and the observations {Wi = (Yi, Xi, Zi) : i ≤ n} are from a station-
ary process. When the Zi variable is not present, themodel reduces
to that considered in Lee et al. (2013).2 The current model allows
one to specify the inequality hypotheses for a subpopulation with
characteristic Zi = z0. Each of Lee, Song, and Whang’s (2013) ex-
amples extend straightforwardly to our framework. An illustration
of the extension is now given for the conditional treatment effect
example.

Consider a controlled experiment,where treatment is randomly
assigned to a group of subjects. Each subject is assigned the
treatment with known probability π(Xi, Zi), where (Xi, Zi) are the
observed characteristics of the subject.3 The researcher observes
the treatment status Di ∈ {1, 0} and the outcomes yi(1) if treated
and yi(0) if not treated. That is, the researcher observesDi and Yi =

Diyi(1)+(1−Di)yi(0). The treatment effect for the ith individual is
the difference between yi(1) and yi(0). The researcher is interested
in testing if the average treatment effect given Xi = x is positive for
all x ∈ X for the subpopulation with characteristic Zi = z0. Then,
our test for the hypotheses in (2.13) can be applied with p = 1 and

m(Wi) =
DiYi

π(Xi, Zi)
−

(1 − Di)Yi

1 − π(Xi, Zi)
, (2.14)

where Wi = (Yi,Di, Xi, Zi) and no parameter θ appears in the
problem. �

2 Note that the model is also covered by AS1 when Zi is not present.
3 The function p(x, z) can be a constant. In this case, the assignment does not

depend on observed or unobserved characteristics.
2.3. Parameter space

Let (θ, F) denote generic values of the parameter and distribu-
tion. Let F denote the parameter space for (θ0, F0). To specify F
we need to introduce some notation.

Let FY |x,z denote the conditional distribution of Yi given Xi = x
and Zi = z under (θ, F). Let FX |z denote the conditional distribution
of Xi given Zi = z under (θ, F). Let FZ and FX denote the marginal
distributions of Zi and Xi, respectively, under (θ, F).

LetµX andµY denote somemeasures on Rdx and Rdy (that do not
depend on (θ, F)), with supports Y and X, respectively. Let Z0 de-
note some neighborhood of z0. Let µLeb denote Lebesgue measure
on Z0 ⊂ Rdz .

Define

mF (θ, x, z) = EF (m(Wi, θ)|Xi = x, Zi = z)f (z|x),
ΣF (θ, x, z) = EF (m(Wi, θ)m(Wi, θ)

′
|Xi = x, Zi = z)f (z|x),

σ 2
F ,j(θ, z) = EF (m2

j (Wi, θ)|Zi = z)f (z) for j ≤ k, (2.15)

where k = p + v, f (z|x) is the conditional density with respect to
Lebesguemeasure of Zi given Xi = x and f (z) is the density of Zi wrt
Lebesgue measure µLeb on Z0, defined in Assumption PS2 below.

The parameter space F is defined to be the collection of (θ, F)
that satisfy the following parameter space (PS) assumptions,which
define the model precisely.

Assumption PS1. (a) θ ∈ Θ ,
(b) {Wi : i ≥ 1} are i.i.d. under F ,
(c) EF (mj (Wi, θ) |Xi, Zi = z0) ≥ 0 a.s. [FX ] for j = 1, . . . , p, and
(d) EF (mj (Wi, θ) |Xi, Zi = z0) = 0 a.s. [FX ] for j = p + 1, . . . , k,

where k = p + v.

Assumption PS2. (a) FZ restricted to z ∈ Z0 is absolutely contin-
uous wrt µLeb with density f (z) ∀z ∈ Z0,

(b) FX is absolutely continuous wrt µX with density f (x) ∀x ∈ X,
(c) FY |x,z is absolutely continuous wrt µY with density f (y|x, z)

∀(y, x, z) ∈ Y × X × Z0,
(d) FZ |x is absolutely continuous wrtµLeb onZ0 with density f (z|x)

∀(z, x) ∈ Z0 × X, and
(e) FX |z is absolutely continuous wrt µX on Rdx with density

f (x|z) ∀(x, z) ∈ X × Z0.

Let {Cℓ : ℓ ≤ 4} be some finite constants and {δj : j ≤ k} be
some positive constants that do not depend on (θ, F).

Assumption PS3. (a) σ 2
F ,j(θ, z0) ≥ δj,

(b) mF (θ, x, z) is twice continuously differentiable in z on Z0 ∀x ∈

X with

Lm(x)f (x)dµX (x) ≤ C1, where Lm(x) = supz∈Z0(∂2/∂z∂z ′)mF (θ, x, z)

,
(c) supz∈Z0


∥mF (θ, x, z)∥f (x, z)dµX (x) ≤ C2,

(d) ΣF (θ, x, z) is Lipschitz continuous in z at z0 on Z0 ∀x ∈ X,
i.e., ∥ΣF (θ, x, z) − ΣF (θ, x, z0)∥ ≤ LΣ (x)∥z∥, and


LΣ (x)f (x)

dµX (x) ≤ C3, and
(e) EF

mj(Wi, θ)
4 |Zi = z


f (z) ≤ C4 ∀z ∈ Z0 ∀j ≤ k.

Assumption PS1(c) and (d) are the key partial-identification
conditions of the model. Assumption PS2 specifies some absolute
continuity conditions. Assumption PS2(a) and (d) impose absolute
continuity wrt Lebesgue measure of FZ and FZ |x in a neighborhood
of z0. This is not restrictive because if FZ and FZ |x have point mass
at z0, then the results of AS1 cover the model. Assumption PS2(b),
(c), and (e) are not very restrictive because the absolute continu-
ity is wrt arbitrarymeasuresµX andµY , so the conditions allow for
continuous, discrete, andmixed randomvariables. Assumption PS3
bounds somevariances away fromzero and imposes some smooth-
ness and moment conditions. The smoothness conditions are on
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expectations, not on the underlying functions themselves, which
makes them relatively weak.

Let f (y, x, z) = f (y|x, z)f (x|z)f (z) and f (x, z) = f (x|z)f (z).
The k-vector of moment functions is denoted

m (Wi, θ) = (m1(Wi, θ), . . . ,mk(Wi, θ))
′. (2.16)

3. Tests and confidence sets

3.1. Test statistics

Here we define the test statistic Tn(θ) that is used to construct
a CS.We transform the conditional moment inequalities/equalities
given Xi and Zi = z0 into equivalent conditional moment inequali-
ties/equalities given only Zi = z0 by choosing appropriate weight-
ing functions of Xi, i.e., Xi-instruments. Then, we construct a test
statistic based on kernel averages of the instrumented moment
conditions over Zi values that lie in a neighborhood of z0.

The instrumented conditionalmoment conditions given Zi = z0
are of the form:

EF0

mj (Wi, θ0) gj (Xi) |Zi = z0


≥ 0 for j = 1, . . . , p and (3.1)

EF0

mj (Wi, θ0) gj (Xi) |Zi = z0


= 0

for j = p + 1, . . . , k, for g = (g1, . . . , gk)′ ∈ Gc-cube,

where g = (g1, . . . , gk)′ are instruments that depend on the con-
ditioning variables Xi and Gc-cube is a collection of instruments de-
fined in (3.6) below. The collection Gc-cube is chosen so that there is
no loss in information.

We construct test statistics based on (3.1). The sample moment
functions are

mn(θ, g) = n−1
n

i=1

m(Wi, θ, g, b) for g ∈ Gc-cube, where

m(Wi, θ, g, b) = b−dz/2Kb(Zi)m(Wi, θ, g),

Kb(Zi) = 0.75max{1 − ((Zi − z0)/b)2 , 0},

m(Wi, θ, g) =


m1(Wi, θ)g1(Xi)
m2(Wi, θ)g2(Xi)

...
mk(Wi, θ)gk(Xi)

 for g ∈ Gc-cube, (3.2)

and b > 0 is a scalar bandwidth parameter for which b = bn =

o(n−1/(4+dz )) and nbdz → ∞ as n → ∞.4 In the scalar Zi case, we
take b = b0n−2/7, where b0 = 4.68σ̂z and σ̂z is the estimated stan-
dard deviation of Zi.5,6 The kernel employed in (3.2) is the Epanech-
nikov kernel. For notational simplicity, we omit the dependence of
mn(θ, g) (and various other quantities below) on b.

Note that the normalization b−dz/2 that appears in m(Wi, θ, g,
b) yields m(Wi, θ, g, b) to have a variance matrix that is O(1), but
not o(1). In fact, under the conditions given below, VarF (m(Wi, θ,
g, b)) → VarF (m(Wi, θ, g)|Zi = z0)f (z0) as n → ∞ under
(θ, F) ∈ F .

4 The conditions on b are standard assumptions in the nonparametric density
and regression literature. When these conditions are applied to a nonparametric
regression or density estimator, the first condition implies that the bias of the esti-
mator goes to zero faster than the variance (and is the weakest condition for which
this holds) and the second condition implies that the estimator is asymptotically
normal (because it implies that b goes to zero sufficiently slowly that a Lindeberg
condition holds).
5 The bandwidth b is under-smoothed due to the factor n−2/7 , which is the same

as in Chernozhukov et al. (2013), rather than n−1/5 . It is somewhat arbitrary, but
seems to work well in practice.
6 The definition of mn(θ, g) in (3.2) is the same as the definition of mn(θ, g) in

AS1 except for the multiplicand b−dz /2Kb(Zi) inm(Wi, θ, g, b).
If the sample averagemn(θ, g) is divided by the scalar n−1 n
i=1

b−dz/2Kb(Zi) it becomes the Nadaraya–Watson nonparametric ker-
nel estimator of E(m(Wi, θ, g)|Zi = z0). We omit this divisor be-
cause doing so simplifies the statistic and has no effect on the test
defined below.7

The sample variance–covariance matrix of n1/2mn(θ, g) is

Σn(θ, g) = n−1
n

i=1

(m(Wi, θ, g, b)− mn(θ, g))

× (m(Wi, θ, g, b)− mn(θ, g))′ . (3.3)

The matrix Σn(θ, g)may be singular or nearly singular with non-
negligible probability for some g ∈ Gc-cube. This is undesirable
because the inverse of Σn(θ, g) needs to be consistent for its pop-
ulation counterpart uniformly over g ∈ Gc-cube for the test statis-
tics considered below. In consequence, we employ a modification
of Σn(θ, g), denotedΣn(θ, g), such that det(Σn(θ, g)) is bounded
away from zero:

Σn(θ, g) = Σn(θ, g)+ ε · Diag(Σn(θ, 1k))

for g ∈ Gc-cube for ε = 5/100. (3.4)

By design,Σn(θ, g) is a linear combination of two scale equivariant
functions and hence is scale equivariant.8 This yields a test statis-
tic that is invariant to rescaling of the moment functionsm(Wi, θ),
which is an important property.

The quantity ε in (3.4) is a tuning parameter that prevents
the variance estimator from being too close to singularity. For the
asymptotics considered here and in Andrews and Shi (2013b,c), ε is
taken to be fixed as n → ∞. Armstrong (2011b) provides asymp-
totics when ε goes to zero as n → ∞ (for themodel with no condi-
tioning on Zi = z0). Asymptotics with ε fixed are analogous to the
‘‘fixed b asymptotics’’ in Kiefer and Vogelsang (2002, 2005) for test
statistics based on heteroskedasticity and autocorrelation consis-
tent variance estimators. They also are analogous to the fixed band-
width asymptotics employed in Cattaneo et al. (2010, forthcom-
ing). In each of these two cases, the fixed bandwidth asymptotics
are found to provide better approximations to the finite-sample
behavior of the statistics being considered because the asymptotic
distribution depends on the tuning parameter, whereas it does not
under asymptotics in which the tuning parameter converges to
zero as n → ∞.

The functions g that we consider are hypercubes on [0, 1]dX .
Hence, we transform each element of Xi to lie in [0, 1]. (There is
no loss in information in doing so.) For notational convenience, we
suppose XĎ

i ∈ RdX denotes the untransformed IV vector and we let
Xi denote the transformed IV vector. We transform XĎ

i via a shift
and rotation and then an application of the standard normal distri-
bution functionΦ(x). Specifically, let

Xi = Φ(Σ−1/2
X,n (XĎ

i − X
Ď

n)),

whereΦ(x) = (Φ(x1), . . . ,Φ(xdX ))
′

for x = (x1, . . . , xdX )
′
∈ RdX ,ΣX,n = n−1Σn

i=1(X
Ď
i − X

Ď

n)(X
Ď
i − X

Ď

n)
′, and

X
Ď

n = n−1Σn
i=1X

Ď
i . (3.5)

We consider the class of indicator functions of cubes with side
lengths that are powers of (2r)−1 for all large positive integers r
and that partition [0, 1]dx for each r . This class is countable:

7 This holds because division by n−1 n
i=1 b

−dz /2Kb(Zi) rescales the test statistic
and critical value identically and in consequence the rescaling cancels out.
8 That is, multiplying the moment functions m(Wi, θ) by a diagonal matrix, D,

changesΣn(θ, g) into DΣn(θ, g)D.
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Gc-cube = {ga,r : ga,r(x) = 1(x ∈ Ca,r) · 1k
for Ca,r ∈ Cc-cube}, where

Cc-cube =


Ca,r =

dx
u=1

((au − 1)/(2r), au/(2r)]

∈ [0, 1]dx : a = (a1, . . . , adx)
′

au ∈ {1, 2, . . . , 2r} for u = 1, . . . , dx

and r = r0, r0 + 1, . . .


(3.6)

for somepositive integer r0.9 The terminology ‘‘c-cube’’ abbreviates
countable cubes. Note that Ca,r is a hypercube in [0, 1]dx with
smallest vertex indexed by a and side lengths equal to (2r)−1.

Note that the proofs of the asymptotic results in this paper given
in the Appendix, see Andrews and Shi (2013a), cover awide variety
of classes of functions g , not just the class Gc-cube.

The test statistic T n,r1,n(θ) is either a Cramér–von-Mises-type
(CvM) or Kolmogorov–Smirnov-type (KS) statistic. The CvM statis-
tic is

T n,r1,n(θ) =

r1,n
r=1

(r2 + 100)−1


a∈{1,...,2r}dX

(2r)−dx

× S(n1/2mn(θ, ga,r),Σn(θ, ga,r)), (3.7)

where S = S1, S2, or S3, as defined in (3.9) below, (r2 + 100)−1 is
a weight function, and r1,n is a truncation parameter. The asymp-
totic size and consistency results for the CS’s and tests based on
T n,r1,n(θ) allow for more general forms of the weight function and
hold whether r1,n = ∞ or r1,n < ∞ and r1,n → ∞ as n → ∞. (No
rate at which r1,n → ∞ is needed for these results.) For computa-
tional tractability, we typically take r1,n < ∞.

The Kolmogorov–Smirnov-type (KS) statistic is

T n,r1,n(θ) = sup
ga,r∈Gc-cube,r1,n

S(n1/2mn(θ, ga,r),Σn(θ, ga,r)), (3.8)

where Gc-cube,r1,n = {ga,r ∈ Gc-cube : r ≤ r1,n}. For brevity, the
discussion in this paper focusses on CvM statistics and all results
stated concern CvM statistics. Similar results hold for KS statis-
tics.10

The functions S1, S2, and S3 are defined by

S1 (m,Σ) =

p
j=1


mj/σj

2
−

+

p+v
j=p+1


mj/σj

2
,

S2 (m,Σ) = inf
t=(t ′1,0

′
v)

′:t1∈Rp
+,∞

(m − t)′Σ−1 (m − t) , and (3.9)

S3(m,Σ) = max{[m1/σ1]
2
−
, . . . , [mp/σp]

2
−
,

(mp+1/σp+1)
2, . . . , (mp+v/σp+v)

2
},

where mj is the jth element of the vector m, σ 2
j is the jth diagonal

element of the matrix Σ , and [x]− = −x if x < 0 and [x]− = 0 if
x ≥ 0, R+,∞ = {x ∈ R : x ≥ 0} ∪ {+∞}, and Rp

+,∞ = R+,∞ ×

· · · × R+,∞ with p copies. The functions S1, S2, and S3 are referred
to as the modified method of moments (MMM) or Sum function,
the quasi-likelihood ratio (QLR) function, and theMax function, re-
spectively.

9 When au = 1, the left endpoint of the interval (0, 1/(2r)] is included in the
interval.
10 Such results can be established by extending the results given in Section 13.1
of Appendix B of AS2 and proved in Section 15.1 of Appendix D of AS2.
3.2. Critical values

3.2.1. GMS critical values
In this section we define two GMS critical values. The first is

based on the asymptotic distribution. The second is a bootstrap
version of the first. Both require simulation.

We first describe how to compute the GMS critical value that is
based on the asymptotic null distribution of the test statistic.
Step 1. Compute ϕn(θ, ga,r) for ga,r ∈ Gc-cube,r1,n , where ϕn(θ, ga,r)
is defined as follows. For g = ga,r , let

ξn(θ, g) = κ−1
n n1/2D

−1/2
n (θ, g)mn(θ, g), where

Dn(θ, g) = Diag(Σn(θ, g)), κn = (0.3 ln(n))1/2, (3.10)
and Σn(θ, g) is defined in (3.4). The jth element of ξn(θ, g), de-
noted ξn,j(θ, g), measures the slackness of the moment inequality
EFmj(Wi, θ, g) ≥ 0 for j = 1, . . . , p. It is shrunk towards zero via
κ−1
n to ensure that one does not over-estimate the slackness.
Define ϕn(θ, g) = (ϕn,1(θ, g), . . . , ϕn,p(θ, g), 0, . . . , 0)′ ∈ Rk

via, for j ≤ p,

ϕn,j(θ, g) = Σ
1/2
n,j (θ, g)Bn1(ξn,j(θ, g) > 1) and

Bn = (0.4 ln(n)/ ln ln(n))1/2, (3.11)
where Σn,j(θ, g) and Σn,j(θ, g) denote the (j, j) elements ofΣn(θ, g) andΣn(θ, g), respectively.
Step 2. Simulate a (kNg)×τreps matrix Z of standard normal random
variables, where k is the dimension ofm(Wi, θ),Ng =

r1,n
r=1(2r)

dX

is the number of g functions employed in the test statistic, and
τreps is the number of simulation repetitions used to simulate the
asymptotic distribution.
Step 3. Compute the (kNg)× (kNg) covariance matrix Σn,mat(θ). Its
elements are the covariances Σn(θ, ga,r , g∗

a,r) for a ∈ {1, . . . , 2r}dX
and r = 1, . . . , r1,n, which are defined as follows. For g = ga,r and
g∗

= g∗
a,r , let

Σn(θ, g, g∗) = n−1
n

i=1

(m(Wi, θ, g, b)− mn(θ, g))

×

m(Wi, θ, g∗, b)− mn(θ, g∗)

′
. (3.12)

Note that Σn(θ, g), defined in (3.3), equals Σn(θ, g, g).

Step 4. Compute the (kNg) × τreps matrix νn(θ) = Σ1/2
n,mat(θ)Z .

Let νn,τ (θ, ga,r) denote the k dimensional sub-vector of νn that
corresponds to the k rows indexed by ga,r and column τ for τ =

1, . . . , τreps.
Step 5. For τ = 1, . . . , τreps, compute the simulated test statistic
T n,r1,n,τ (θ) just as T

CvM
n,r1,n(θ) or T

KS
n,r1,n(θ) is computed in (3.7) or (3.8)

but with n1/2mn(θ, ga,r) replaced by νn,j(θ, ga,r)+ ϕn(θ, ga,r).

Step 6. Take the critical value cGMS,Asy
n,1−α (θ) to be the 1−α+η sample

quantile of the simulated test statistics {T n,r1,n,τ (θ) : τ = 1, . . . ,
τreps} plus η, where η = 10−6.11

11 The description of the GMS critical values given here is a little different (and
simpler) than in AS1 and in the asymptotic results given in the Appendix. However,
their properties are the same. In AS1, ϕn,j(θ, g) is multiplied by Σ−1/2

n,j (θ, 1k) for

j ≤ p and Σn(θ, g, g∗) is replaced byD−1/2
n (θ)Σn(θ, g, g∗)D−1/2

n (θ), whereDn(θ) =

Diag(Σn(θ, 1k)). This has no effect on the distribution of T n,r1,n,τ (θ) (conditionally
on the sample or unconditionally) because (i) Sj(m,Σ) = Sj(Dm,DΣD) for
any pd diagonal k × k matrix D for j = 1, 2, 3 and (ii) Var|{Wi}(((1Ng×Ng ⊗D−1/2
n (θ))Σn,mat(θ)× (1Ng×Ng ⊗D−1/2

n (θ)))1/2Zτ ) = Var|{Wi}((1Ng×Ng ⊗D−1/2
n (θ))Σ1/2

n,mat(θ)Zτ ), where Var|{Wi}(·) denotes the conditional variance given the sample
{Wi : i ≤ n} and Zτ denotes the τ th column of Z .
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For the bootstrap version of the GMS critical value, Steps 2 and
4–6 are replaced by the following steps:
Step 2boot. Generate B bootstrap samples {W ∗

i,τ : i = 1, . . . , n} for
τ = 1, . . . , B using the standard nonparametric i.i.d. bootstrap.
That is, draw W ∗

i,τ from the empirical distribution of {Wℓ : ℓ =

1, . . . , n} independently across i and τ .
Step 4boot. For each bootstrap sample, transform the regressors as
in (3.5) (using thebootstrap sample in place of the original sample)
and compute m∗

n,τ (θ, ga,r) andΣ
∗

n,b(θ, ga,r) just as mn(θ, ga,r) and
Σn(θ, ga,r) are computed, but with the bootstrap sample in place
of the original sample.
Step 5boot. For each bootstrap sample, compute the bootstrap test
statistic T

∗

n,r1,n,τ (θ) as T
CvM
n,r1,n(θ) (or T

KS
n,r1,n(θ)) is computed in (3.7)

(or (3.8)) but with n1/2mn(θ, ga,r) replaced by n1/2(m∗

n,τ (θ, ga,r)−

mn(θ, ga,r)) + ϕn(θ, ga,r) and with Σn(θ, ga,r) replaced by Σ∗

n,τ
(θ, ga,r).

Step 6boot. Take the bootstrap GMS critical value cGMS,Bt
n,1−α (θ) to be

the 1 − α + η sample quantile of the bootstrap test statistics
{T

∗

n,r1,n,τ (θ) : τ = 1, . . . , B} plus η, where η = 10−6.

The CvM (or KS) GMS CS is defined in (2.3) with Tn(θ) =

T
CvM
n,r1,n(θ) (or T

KS
n,r1,n(θ)) and cn,1−α(θ) = cGMS,Asy

n,1−α (θ) (or cGMS,Bt
n,1−α (θ)).

The CvM GMS test of H0 : θ = θ∗ rejects H0 if T
CvM
n,r1,n(θ∗) > cGMS,Asy

n,1−α

(θ∗) (or cGMS,Bt
n,1−α (θ∗)). The KS GMS test is defined likewise using

T
KS
n,r1,n(θ∗) and the KS GMS critical value.
The choices of ε, κn, Bn, and η above are based on some ex-

perimentation (in the simulation results reported AS1 and AS2).
The asymptotic results reported in the Appendix allow for other
choices.

The number of cubes with side-edge length indexed by r is
(2r)dX , where dX denotes the dimension of the covariate Xi. The
computation time is approximately linear in the number of cubes.
Hence, it is linear in Ng =

r1,n
r=1(2r)

dX . The dimension of Zi does
not effect the computation time.

In terms of computation time, the tests in this paper are not
much different from those in Andrews and Shi (2013b). For details
on the computation times, see Section 10.2.4 of Andrews and Shi
(2013b) and Section 17.3 of Andrews and Shi (2013c). To give a
general idea, to implement the test or CI for one θ value, it takes
less than one second for each of the procedures (including the
CLR procedures) that we implement in the examples considered
in Section 4 below.

When there are discrete variables in Xi, the sets Ca,r can be
formed by taking interactions of each value of the discrete vari-
able(s) with cubes based on the other variable(s).

3.2.2. Plug-in asymptotic critical values
Next, for comparative purposes, we define plug-in asymptotic

(PA) critical values. Subsampling critical values also can be consid-
ered, see Appendix B of AS2 for details. We strongly recommend
GMS critical values over PA and subsampling critical values for the
same reasons as given in AS1 plus the fact that the finite-sample
simulations in Section 4 show better performance by GMS critical
values than PA and subsampling critical values.

PA critical values are based on the least-favorable asymptotic
null distribution with an estimator of its unknown covariance
kernel plugged-in. They are computed just as the GMS critical
values are computed but with ϕn(θ, ga,r) = 0k (∈ Rk).

The nominal 1−α PA CS is given by (2.3)with Tn(θ) = T
CvM
n,r1,n(θ)

(or T
KS
n,r1,n(θ)) and the critical value cn,1−α(θ) equal to the PA critical

value. The CvM (or KS) PA test ofH0 : θ = θ∗ rejectsH0 if T
CvM
n,r1,n(θ∗)
(or T
KS
n,r1,n(θ∗)) exceeds the CvM (or KS) PA critical value evaluated

at θ = θ∗.
PA critical values are greater than or equal to GMS critical val-

ues for all n (because ϕn,j(θ, g) ≥ 0 for all g ∈ Gc-cube for j ≤ p
and Sℓ(m,Σ) is non-increasing in mI ∈ Rp, where m = (m′

I ,m
′

II)
′,

for ℓ = 1, 2, 3). Hence, the asymptotic local power of a GMS test
is greater than or equal to that of a PA test for all local alternatives.
Strict inequality typically occurs whenever the conditional mo-
ment inequality EFn(mj(Wi, θn,∗)|Xi, Zi = z0) for some j = 1, . . . , p
is bounded away from zero as n → ∞with positive Xi probability.

3.3. Correct asymptotic size

In this section, we show that GMS and PA CS’s have correct
asymptotic size (in a uniform sense).

First, we introduce some notation. We define the asymptotic
covariance kernel, {h2,F (θ, g, g∗) : g, g∗

∈ Gc-cube}, of n1/2mn(θ, g)
after normalization via a diagonal matrix D−1/2

F (θ, z0). Define12

h2,F (θ, g, g∗) = D−1/2
F (θ, z0)ΣF (θ, g, g∗, z0)

×D−1/2
F (θ, z0), where

ΣF (θ, g, g∗, z) = EF (m(Wi, θ, g)
×m(Wi, θ, g∗)′|Zi = z)f (z) and (3.13)

DF (θ, z) = Diag(ΣF (θ, 1k, 1k, z))(= Diag(EF (m(Wi, θ)

×m(Wi, θ)
′
|Zi = z)f (z))).

For simplicity, let h2,F (θ) abbreviate {h2,F (θ, g, g∗) : g, g∗
∈

Gc-cube}.
Define

H2 = {h2,F (θ) : (θ, F) ∈ F }. (3.14)

On the space of k×k-matrix-valued covariance kernels onGc-cube×

Gc-cube, which is a superset of H2, we use the uniform metric d de-
fined by

d(h(1)2 , h
(2)
2 ) = sup

g,g∗∈Gc-cube

∥h(1)2 (g, g
∗)− h(2)2 (g, g

∗)∥. (3.15)

Correct asymptotic size is established in the following theorem.

Theorem N1. For every compact subset H2,cpt of H2, GMS and PA
confidence sets CSn satisfy

(a) lim infn→∞ inf (θ,F)∈F :

h2,F (θ)∈H2,cpt
PF (θ ∈ CSn) ≥ 1 − α and

(b) GMS confidence sets based on theMMMandMax functions, S1 and
S3, satisfy

lim
η→0

lim inf
n→∞

inf
(θ,F)∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn) = 1 − α,

where η is as in the definition of c(h, 1 − α).

Comments. 1. Theorem N1(a) shows that GMS and PA CS’s have
correct uniform asymptotic size over compact sets of covariance
kernels. Theorem N1(b) shows that GMS CS’s based on S1 and S3
are at most infinitesimally conservative asymptotically (i.e., their
asymptotic size is infinitesimally close to their nominal size). The
uniformity results hold whether the moment conditions involve

12 Note that DF (θ, z) = Diag(σ 2
F ,1(θ, z), . . . , σ

2
F ,k(θ, z)), where σ 2

F ,j(θ, z) is
defined in (2.15). Also note that the means, EFm(Wi, θ, g), EFm(Wi, θ, g∗), and
EFm(Wi, θ), are not subtracted off in the definitions ofΣF (θ, g, g∗, z) and DF (θ, z).
The reason is that the population means of the sample-size n quantities based on
m(Wi, θ, g, b) are smaller than the secondmoments by an order of magnitude and,
hence, are asymptotically negligible. See Lemmas AN6 and AN7 in the Appendix.
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‘‘weak’’ or ‘‘strong’’ instrumental variables Xi. That is, weak identi-
fication of the parameter θ due to a low correlation between Xi and
the functionsmj(Wi, θ) does not affect the uniformity results.

2. TheoremN1(b) also holds forGMSCS’s based on theQLR func-
tion S2 provided the asymptotic distribution function of the test
statistic under some fixed (θc, Fc) ∈ F with h2,Fc (θc) ∈ H2,cpt is
continuous and strictly increasing at its 1 − α quantile plus δ for
all δ > 0 sufficiently small and δ = 0.13 This condition likely holds
in most models, but it is hard to give primitive conditions under
which it holds.

3. As in AS1, an analogue of Theorem N1(b) holds for PA CS’s
if EFc (mj(Wi, θc)|Xi, Zi = z0) = 0 a.s. for j ≤ p (i.e., if the con-
ditional moment inequalities hold as equalities a.s.) under some
(θc, Fc) ∈ F . However, the latter condition is restrictive—it fails in
many applications.

4. The proofs in the Appendix cover asymptotic critical values,
but not bootstrap critical values. Extending the results to cover
bootstrap critical values just requires a suitable bootstrap empir-
ical process result. For brevity, we do not give such a result. The
proofs in the Appendix take the transformation of the IV’s to be
non-data dependent. One could extend the results to allow for
data-dependence by considering random hypercubes as in Pollard
(1979) and Andrews (1988). These results show that one obtains
the same asymptotic results with randomhypercubes aswith non-
random hypercubes that converge in probability to nonrandom
hypercubes (in an L2 sense). Again, for brevity, we do not do so.
Finally, the asymptotic results cover non-data dependent band-
widths, as is typical in the nonparametric and semiparametric lit-
erature.

3.4. Power against fixed alternatives

We now show that the power of GMS and PA tests converges
to one as n → ∞ for all fixed alternatives (for which the moment
functions have 4 + δ moments finite). Thus, both tests are consis-
tent tests. This implies that for any fixed distribution F0 and any pa-
rameter value θ∗ not in the identified setΘF0 , the GMS and PA CS’s
do not include θ∗ with probability approaching one. In this sense,
GMS and PA CS’s based on Tn(θ) fully exploit the conditional mo-
ment inequalities and equalities. CS’s based on a finite number of
unconditional moment inequalities and equalities do not have this
property.14

The null hypothesis is

H0 : EF0(mj(Wi, θ∗)|Xi, Zi = z0) ≥ 0
a.s. [FX,0] for j = 1, . . . , p and

EF0(mj(Wi, θ∗)|Xi, Zi = z0) = 0

a.s. [FX,0] for j = p + 1, . . . , k, (3.16)

where θ∗ denotes the null parameter value and F0 denotes the fixed
true distribution of the data. The alternative hypothesis is H1 : H0
does not hold. The following assumption specifies the properties
of fixed alternatives (FA).

Let F+ denote all (θ, F) that satisfy Assumptions PS1–PS3 that
defineF except Assumption PS1(c) and (d) (which impose the con-
ditionalmoment inequalities and equalities). As defined,F ⊂ F +.
Note that F+ includes (θ, F) pairs for which θ lies outside of the
identified setΘF as well as all values in the identified set.

13 This condition is Assumption GMS2(a) in Section 7.4 of the Appendix.
14 This holds because the identified set based on a finite number of moment
inequalities typically is larger than the identified set based on the conditional
moment inequalities. In consequence, CI’s based on a finite number of inequalities
include points in the difference between these two identified sets with probability
whose limit infimum as n → ∞ is 1−α or larger even though these points are not
in the identified set based on the conditional moment inequalities.
The set,XF (θ), of values x for which themoment inequalities or
equalities evaluated at θ are violated under F is defined as follows.
For any θ ∈ Θ and any distribution F with EF (∥m(Wi, θ)∥ |Zi =

z0) < ∞, let

XF (θ) = {x ∈ Rdx : EF (mj (Wi, θ) |Xi = x, Zi = z0) < 0
for some j ≤ p or EF (mj (Wi, θ) |Xi = x, Zi = z0) ≠ 0

for some j = p + 1, . . . , k}. (3.17)

The next assumption, Assumption NFA, states that violations
of the conditional moment inequalities or equalities occur for the
null parameter θ∗ for Xi values in a set with positive conditional
probability given Zi = z0 under F0. Thus, under Assumption NFA,
the moment conditions specified in (3.16) do not hold.

Assumption NFA. The null value θ∗ ∈ Θ and the true distribution
F0 satisfy: (a) PF0(Xi ∈ XF0(θ∗)|Zi = z0) > 0, where XF0(θ∗) is
defined in (3.17), and (b) (θ∗, F0) ∈ F+.

The following theorem shows that GMS and PA tests are consis-
tent against all fixed alternatives that satisfy Assumption NFA.

Theorem AN2. Suppose Assumption NFA holds. Then,

(a) limn→∞ PF0(Tn(θ∗) > c(ϕn(θ∗),h2,n(θ∗), 1 − α)) = 1 and
(b) limn→∞ PF0(Tn(θ∗) > c(0Gc-cube ,

h2,n(θ∗), 1 − α)) = 1, where
0Gc-cube denotes the zero function on 0Gc-cube .

Comment 4 to Theorem N1 applies also to Theorem AN2.

4. Monte Carlo simulations

This section provides simulation evidence concerning the
finite-sample properties of the confidence intervals (CI’s) and tests
introduced in the paper. We consider two models: a quantile se-
lection model and a conditional treatment effect model. In the
quantile selectionmodel, we compare different versions of the CI’s
introduced in the paper. In the conditional treatment effect model,
the tests are used directly (rather than to construct CI’s), and we
compare different versions of the tests. In both models, we pro-
vide comparisons of the proposed procedures with the series and
local linear procedures in CLR.

4.1. Confidence intervals and tests considered

To be specific, we compare different test statistics and critical
values in terms of their coverage probabilities (CP’s) for points in
the identified set and their false coverage probabilities (FCP’s) for
points outside the identified set in the quantile selection model.
We compare different test statistics and critical values in terms of
their rejection probabilities under the null (NRP’s) and under al-
ternatives (ARP’s) in the conditional treatment effect model. Obvi-
ously, one wants FCP’s (ARP’s) to be as small (large) as possible.
FCP’s are directly related to the power of the tests used to con-
structed the CI and are related to the length of the CI, see Pratt
(1961).

The following test statistics are considered: (i) CvM/Sum,
(ii) CvM/QLR, (iii) CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi)
KS/Max, as defined in Section 3. In the conditional treatment effect
model, different choices of the S function (Sum, QLR and Max)
coincide because there is only one conditional moment inequality.
We thus do not distinguish them in the results. Asymptotic
normal, bootstrap, and subsampling critical values are computed.
In particular, we consider PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and
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Sub critical values.15 The critical values are simulated using 5001
repetitions (for each original sample repetition). The base case
values of κn, Bn, and ε for the GMS critical values are specified as
follows and are used in both models: κn =

√
0.3 log(n), Bn =

√
0.4 log(n)/ log(log(n)), and ε = 5/100. Additional results are

reported for variations of these values. The base case sample size
is 250. Someadditional results are reported for n = 100 and 500.
The subsample size is 20 when the sample size is 250. Results
are reported for nominal 0.95 CI’s and 0.05 tests. The number of
simulation repetitions used to compute CP’s and FCP’s is 5000 for
all cases. This yields a simulation standard error of 0.0031.

In the first model, the reported FCP’s are ‘‘CP-corrected’’ by
employing a critical value that yields a CP equal to 0.95 at the
closest point of the identified set if the CP at the closest point is less
than 0.95. If the CP at the closest point is greater than 0.95, then no
CP correction is carried out. The reason for this ‘‘asymmetric’’ CP
correction is that CS’s may have CP’s greater than 0.95 for points
in the identified set, even asymptotically, in the present context
and one does not want to reward over-coverage of points in the
identified set by CP correcting the critical values when making
comparisons of FCP’s. In the second model, the ARP’s are ‘‘NRP-
corrected’’ analogously.

We use the Epanechnikov kernel and the bandwidth b =

b0n−2/7 described in the paragraph containing (3.2) for both sim-
ulation examples. For comparative purposes, some results are also
reported for b = 0.5b0n−2/7 and b = 2b0n−2/7.

We provide simulation comparisons of our CS’s and tests with
those of CLR. To implement the CLR tests, we follow Example C of
CLR. For the quantile selection model, for each θ , we use β(x, z, θ)
defined in (4.4) of CLR as the auxiliary bound function, use βl(z, θ)
= minx∈X β(x, z, θ) as the auxiliary parameter, and test H0 :

βl(z, θ) ≥ 0 against βl(z, θ) < 0. (The CLR CI’s are obtained by in-
verting theCLR tests.) For the treatment effectmodel, describedbe-
low,weuseβ(x, z) = E[YiDi/p−Yi(1−Di)/(1−p)|(Xi, Zi) = (x, z)]
as the auxiliary bound function, use βl(z) = minx∈X β(x, z) as the
auxiliary parameter, and test H0 : βl(z) ≥ 0 against βl(z) < 0.

We implement both the series and local linear versions of CLR’s
test. We use their GAUSS code and follow the implementation in-
structions in CLR whenever possible. The models considered here,
however, are more complicated than in CLR’s examples because
the nonparametric estimation of β(x, z, θ) involves two regressors
Xi and Zi. The latter poses new questions about the choices of knots
in the series approximation and the choices of bandwidths in the
local linear approximation. For the series version, we use tensor
product B-splines and allow different numbers of knots for Xi and
Zi. The number of knots is the (integer part of the) number chosen
by cross-validation multiplied by

√
n−1/5n2/7. The multiplicative

factor is used to obtain undersmoothing. For the local linear ver-
sion, we use the optimal bandwidth formula given for multivari-
ate local linear regression by Yang and Tschernig (1999) (Eq. (A.1)),
and use the same plug-in rule as CLR’s rule-of-thumb bandwidth to
plug in the estimated quantities. The resulting plug-in bandwidth
is then multiplied by

√
n−1/5n2/7 to obtain undersmoothing. The

CLR CS’s and tests employ an estimated contact set.

15 The Sum, QLR, and Max statistics use the functions S1, S2 , and S3 , respectively.
The PA/Asy and PA/Bt critical values are based on the asymptotic distribution and
bootstrap, respectively, and likewise for the GMS/Asy and GMS/Bt critical values.
The quantity η is set to 0 because its value, provided it is sufficiently small, has no
effect in these models. Sub denotes a (non-recentered) subsampling critical value.
It is the 0.95 sample quantile of the subsample statistics, each of which is defined
exactly as the full sample statistic is defined but using the subsample in place of
the full sample. The number of subsamples considered is 5001. They are drawn
randomly without replacement.
4.2. Nonparametric quantile selection

This model extends the quantile selectionmodel in AS1.We are
interested in the conditional τ -quantile of a treatment response
given the value of covariates Xi and Zi. The results also apply to
other types of response variables with selection. As in AS1, Xi is
assumed to satisfy the quantile monotone instrumental variable
(QMIV) assumption. In this paper, we add an additional covariate Zi
that does not necessarily satisfy the QMIV assumption. The results
of AS1 do not cover such a model.

The model setup is as follows. The observations are i.i.d. Let
yi(t) ∈ Y be individual i’s ‘‘conjectured’’ response variable given
treatment t ∈ T . Let Ti be the realization of the treatment for indi-
vidual i. The observed outcome variable is Yi = yi(Ti). Let Xi be a co-
variate whose support contains an ordered set X. Let Zi be another
covariate. We observe Wi = (Yi, Xi, Zi, Ti). The parameter of inter-
est, θ , is the conditional τ -quantile of yi(t) given (Xi, Zi) = (x0, z0)
for some t ∈ T , some x0 ∈ X, and some z0 ∈ Z, which is denoted
Qyi(t)|Xi,Zi(τ |x0, z0). We assume the conditional distribution of yi(t)
given (Xi, Zi) = (x, z0) is absolutely continuous at its τ -quantile for
all x ∈ X. We assume that Xi satisfies the QMIV assumption given
Zi = z0, i.e., Qyi(t)|Xi,Zi(τ |x1, z0) ≤ Qyi(t)|Xi,Zi(τ |x2, z0) for all x1 ≤ x2.

AS1 describes four empirical problems that fit in their quan-
tile selection model. All of those problems fit in the nonparametric
quantile selection model considered here if one or more of the co-
variates is not a QMIV.

The model setup above implies the following conditional mo-
ment inequalities:

E (1(Xi ≤ x0)[1(Yi ≤ θ, Ti = t)
+1(Ti ≠ t)− τ ]|Xi, Zi = z0) ≥ 0 a.s. and

E (1(Xi ≥ x0)[τ − 1(Yi ≤ θ, Ti = t)]|Xi, Zi = z0) ≥ 0 a.s. (4.1)

For the simulations, we consider the following data generating
process (DGP):

yi(1) = µ(Xi, Zi)+ σ (Xi, Zi) ui,

where ∂µ (x, z) /∂x ≥ 0 and σ (x, z) ≥ 0,
Ti = 1{L (Xi, Zi)+ εi ≥ 0}, where ∂L (x, z) /∂x ≥ 0,
Xi, Zi ∼ Unif[0, 2], (εi, ui) ∼ N(0, I2),
(Xi, Zi) ⊥ (εi, ui), Xi ⊥ Zi,

Yi = yi(Ti), and t = 1. (4.2)

The variable yi(0) is irrelevant (because Yi enters the moment
inequalities in (4.1) only through 1(Yi ≤ θ, Ti = t)) and, hence,
is left undefined. With this DGP, Xi satisfies the QMIV assumption
for any τ ∈ (0, 1) and Zi might not. We consider the median: τ =

0.5. We focus on the conditional median of yi(1) given (Xi, Zi) =

(1.5, 1.0), i.e., θ = Qyi(1)|Xi,Zi(0.5|x0, z0)with (x0, z0) = (1.5, 1.0).
Some algebra shows that the conditional moment inequalities

in (4.1) imply:

θ ≥ θ(x, z0) := µ(x, z0)+ σ (x, z0)
×Φ−1 

1 − [2Φ (L (x, z0))]−1 for x ≤ 1.5 and

θ ≤ θ̄ (x, z0) := µ(x, z0)+ σ (x, z0)
×Φ−1 

[2Φ (L (x, z0))]−1 for x ≥ 1.5. (4.3)

We call θ(x, z0) and θ̄ (x, z0) the lower and upper bound functions
on θ , respectively. The identified set for the quantile selection
model is


supx≤x0 θ(x, z0), infx≥x0 θ̄ (x, z0)


. The shape of the lower

and upper bound functions depends on the µ, σ , and L functions.
We consider three specifications, one that yields flat bound

functions, another that yields kinked bound functions, and a third
that yields peaked bound functions. For the flat bound DGP,
µ(x, z) = 2, σ (x, z) = 1, and L (x, z) = 1 for x, z ∈ [0, 2]. In this
case, θ(x, z) = 2+Φ−1


1 − [2Φ (1)]−1 for x ≤ 1.5 and θ̄ (x, z) =
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Fig. 1. Nonparametric quantile selection model: conditional moment functions, as functions of x and z. These functions are for the lower end of the identified set for θ . First
column: flat bound function; second column: kinked bound function; third column: peaked bound function.
2 + Φ−1

[2Φ (1)]−1 for x > 1.5. For the kinked bound DGP,

µ(x, z) = (x ∧ 1) + (z ∧ 1), σ (x, z) = (x + z) /2, L (x, z) = x ∧

1, θ(x, z) = (x∧1)+(z∧1)+(x + z)·Φ−1

1 − [2Φ (x ∧ 1)]−1 /2

for x ≤ 1.5, and θ̄ (x, z) = (x ∧ 1) + (z ∧ 1) + (x + z) · Φ−1
[2Φ (x ∧ 1)]−1 /2 for x > 1.5. For the peaked bound function,
µ(x, z) = (x∧1)+(z∧1), σ (x, z) =


x5 + z5


/2, L (x, z) = x∧1,

θ(x, z) = (x∧1)+(z∧1)+

x5 + z5


Φ−1


1 − [2Φ (x ∧ 1)]−1


/2

for x ≤ 1.5, and θ̄ (x, z) = (x ∧ 1) + (z ∧ 1) +

x5 + z5


Φ−1

[2Φ (x ∧ 1)]−1

/2 for x > 1.5.

TheCPor FCPperformance of a CI at a particular value θ depends
on the shape of the conditional moment functions, as functions of
x and z and evaluated at θ . In the present model, the conditional
moment functions are

β(x, z, θ) =


E (1(Yi ≤ θ, Ti = 1)+ 1(Ti ≠ 1)

− 0.5| (Xi, Zi) = (x, z)) if x < 1.5
E (0.5 − 1(Yi ≤ θ, Ti = 1)|
(Xi, Zi) = (x, z)) if x ≥ 1.5.

(4.4)

The conditional moment functions as functions of x at z = z0 are
flat, kinked and peaked under the three specifications of µ, σ , and
L functions, respectively. The functions as a function of z at each x
also possess those three shapes at the point z = z0 depending on
the specification. See Fig. 1.

4.2.1. g functions
The g functions employed by the test statistics are indicator

functions of hypercubes in [0, 1], i.e., intervals, as in AS1. The re-
gressor Xi is transformed via the method described in (3.5) to lie
in (0, 1). The hypercubes have side-edge lengths (2r)−1 for r =

r0, . . . , r1, where r0 = 1 and the base case value of r1 is 3.16 The
base case number of hypercubes is 12. We also report results for
r1 = 2, 4, which yield 6, and 20 hypercubes, respectively.

Note that we use a smaller value of r1 as the base-case value in
this paper than in AS1. This is because the test statistic for a non-
parametric parameter of interest depends only on observations lo-
cal to Zi = z0, which is a fraction of the full sample. For example,

16 For simplicity, we let r1 denote r1,n here and below.
the Epanechnikov kernel gives positiveweight only to observations
within distance b to z0. When n = 250 and Z ∼ Unif[0, 2], obser-
vations that receive positive weight lie in an interval centered at
z0 of length about 2b = 9.36σZn−2/7

≈ 0.64, which is 32% of the
support of Zi. This interval on average contains 80 effective obser-
vations when n = 250. Thus, the finest cube when r1 = 3 contains
80/6 ≈ 13 effective observations. On the other hand, the finest
cube when r1 = 7 contains only 80/14 ≈ 5.7 effective observa-
tions. For this reason, a value of r1 that is smaller than that used
in AS1 leads to better CP and FCP performance of the CS’s in the
nonparametric model.

4.2.2. Simulation results: confidence intervals proposed in this paper
Tables 1–3 report CP’s and CP-corrected FCP’s for a variety of

test statistics and critical values proposed in this paper for a range
of cases. The CP’s are for the lower endpoint of the identified
interval in Tables 1–3 and for the flat, kinked, and peaked bound
functions. FCP’s are for points below the lower endpoint.17

Table 1 provides comparisons of different test statistics when
each statistic is coupled with PA/Asy and GMS/Asy critical values.
Table 2 provides comparisons of the PA/Asy, PA/Bt, GMS/Asy,
GMS/Bt, and Sub critical values for the CvM/Max and KS/Max test
statistics. Table 3 provides robustness results for the CvM/Max and
KS/Max statistics coupledwith GMS/Asy critical values. The results
in Table 3 show the degree of sensitivity of the results to (i) the
sample size, n, (ii) the number of cubes employed, as indexed by r1,
(iii) the choice of (κn, Bn) for the GMS/Asy critical values, (iv) the
value of ε, upon which the variance estimator Σn(θ, g) depends,
and (v) the bandwidth choice. Table 3 also reports results for CI’s
with nominal level 0.5, which yield asymptotically half-median
unbiased estimates of the lower endpoint.

Table 1 shows that all of the CI’s have coverage probabili-
ties greater than or equal to 0.95 for all three specifications of

17 Note that the DGP is the same for FCP’s as for CP’s, just the value θ that is to be
covered is different. For the lower endpoint of the identified set, FCP’s are computed
for θ equal to supx≤1.5 θ(x, 1) − c × (250/n)5/14 , where c = 0.34, 0.78, and 1.1 in
the flat, kinked, and peaked bound cases, respectively. These points are chosen to
yield similar values for the FCP’s across the different cases considered.
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Table 1
Nonparametric quantile selection model: base-case test statistic comparisons.

(a) Coverage probabilities (nominal 95%)

DGP Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max
Crit val

Flat bound PA/Asy 0.974 0.974 0.971 0.968 0.968 0.963
GMS/Asy 0.953 0.953 0.951 0.955 0.955 0.953

Kinked bound PA/Asy 0.998 0.998 0.997 0.995 0.995 0.995
GMS/Asy 0.990 0.990 0.989 0.989 0.989 0.987

Peaked bound PA/Asy 0.998 0.998 0.997 0.995 0.995 0.996
GMS/Asy 0.992 0.992 0.991 0.991 0.991 0.991

(b) False coverage probabilities (coverage probability corrected)

Flat bound PA/Asy 0.57 0.57 0.54 0.67 0.67 0.64
GMS/Asy 0.45 0.45 0.45 0.61 0.61 0.60

Kinked bound PA/Asy 0.67 0.67 0.65 0.67 0.67 0.64
GMS/Asy 0.49 0.49 0.49 0.57 0.57 0.57

Peaked bound PA/Asy 0.57 0.57 0.55 0.60 0.60 0.56
GMS/Asy 0.50 0.50 0.49 0.55 0.55 0.53
Table 2
Nonparametric quantile selection model: base-case critical value comparisons.

(a) Coverage probabilities (nominal 95%)

DGP Critical value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub
Statistic

Flat bound CvM/Max 0.971 0.971 0.951 0.948 0.963
KS/Max 0.963 0.963 0.953 0.948 0.909

Kinked bound CvM/Max 0.997 0.998 0.989 0.988 0.990
KS/Max 0.995 0.996 0.987 0.986 0.959

Peaked bound CvM/Max 0.997 0.997 0.991 0.990 0.991
KS/Max 0.996 0.996 0.991 0.990 0.968

(b) False coverage probabilities (coverage probability corrected)

Flat bound CvM/Max 0.54 0.55 0.45 0.44 0.53
KS/Max 0.64 0.66 0.60 0.57 0.66

Kinked bound CvM/Max 0.65 0.66 0.49 0.47 0.51
KS/Max 0.64 0.67 0.57 0.53 0.40

Peaked bound CvM/Max 0.55 0.54 0.49 0.47 0.51
KS/Max 0.56 0.55 0.53 0.49 0.39

the bound functions. The PA/Asy CI’s have noticeably larger over-
coverage than the GMS/Asy CI’s in all cases. The GMS/Asy CI’s have
CP’s close to 0.95with the flat boundDGP and larger than 0.95with
the other two DGP’s. The CP’s are not sensitive to the choice of the
test statistics.

The FCP results in Table 1 show (i) a clear advantage of the GMS-
based CI’s over the PA-based ones, (ii) a clear advantage of the CvM-
basedCI’s over theKS-based ones, and (iii) little difference between
the test statistic functions: Sum, QLR orMax. The comparison holds
for all three types of DGP’s.

Table 2 compares the critical values PA/Asy, PA/Bt, GMS/Asy,
GMS/Bt, and Sub. The results show little difference in CP’s and FCP’s
between the Asy and Bt versions of the CI’s regardless of the DGP
specification or the test statistic choice (CvM or KS).18

The GMS critical values noticeably outperform the PA counter-
parts in terms of FCP’s. The CvM/Max test statistic coupled with
the GMS/Asy or GMS/Bt critical values outperforms all other com-
binations in terms of FCP’s in all cases. The KS/Max/Sub test under-
covers noticeably in the flat bound case in Table 2, but not in the
kinked and peaked bound cases. We believe this is due to two ef-
fects that cancel each other in the latter two cases, but not in the flat

18 Hall (1993) shows that undersmoothing or bias correction is necessary for
consistency of the bootstrap. Undersmoothing is employed in this paper. Hall (1993)
also shows that in the context of nonparametric curve estimation, the bootstrap
has advantages over the Gaussian approximation in providing a uniform confidence
band for the curve. This result does not shed light on the relative performance of Asy
and Bt-based tests in this paper because (i) the test statistics are not asymptotically
pivotal in the present context, whereas they are in the situation consider in Hall
(1993), and (ii) we consider inference at just one point (Z = z0) of the curve.
Table 3
Nonparametric quantile selection model with flat-bound: variations on the base
case.

Case (a) Coverage
probabilities

(b) False cov probs
(CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max
Crit val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base case: (n = 250, r1 =

3, ε = 0.05, b = b0n−2/7)

0.951 0.953 0.45 0.60

n = 100 0.950 0.956 0.46 0.61
n = 500 0.950 0.953 0.44 0.59
r1 = 2 0.951 0.950 0.44 0.56
r1 = 4 0.952 0.961 0.45 0.63
(κn, Bn) = 1/2(κn,bc , Bn,bc) 0.948 0.947 0.46 0.61
(κn, Bn) = 2(κn,bc , Bn,bc) 0.967 0.961 0.48 0.62
ε = 1/100 0.949 0.953 0.45 0.63
b = 0.5b0n−2/7 0.960 0.963 0.68 0.77
b = 2b0n−2/7 0.950 0.948 0.19 0.34
α = 0.5 0.525 0.516 0.045 0.072
α = 0.5 & n = 500 0.517 0.519 0.042 0.070

bound case because one of the effects is missing in the flat bound
case. The first effect is a tendency of this test to under-cover due
to finite sample effects (because the subsampling error in cover-
age has order that depends on 1/b, not 1/n, where b ≪ n). The
second effect is the over-coverage of subsampling tests asymptot-
ically when there are slack moment inequalities, see Andrews and
Guggenberger (2009). The second effect applies in the kinked and
peaked bound cases, but not the flat bound case. Table 2 indicates
that the CvM/Max/Sub test does not have the same tendency to
under-cover due to finite-sample effects as the KS/Max/Sub test
does in the quantile selection model.

Table 3 provides results for the CvM/Max and KS/Max statistics
coupled with the GMS/Asy critical values for several variations of
the base case. The table shows that the CI’s perform similarly at
different sample sizes, with different choices of cells and with a
smaller ε.19 There is some sensitivity to the magnitude of the GMS
tuning parameters (κn, Bn)—doubling their values increases both
the CP’s and the FCP’s, but halving their values does not decrease
the CP’s much below 0.95. There is more sensitivity to the kernel
bandwidth—a larger bandwidth reduces the FCP drastically while
keeping the CP at around 0.95 and a smaller bandwidth does the
opposite. This result is closely related to the flatness of the bound.
The bound is completely flat on the support of Zi. It ismore efficient

19 The θ values at which the FCP’s are computed differs from the lower endpoint
of the identified set by a distance that depends on (nb)−1/2 . Table 3 suggests that
the ‘‘local alternatives’’ that give equal FCP’s converge to the null hypothesis at a
rate that is slightly faster than (nb)−1/2 for sample sizes n in the range 100–500.
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Table 4
Nonparametric quantile selection model: CP and FCP comparisons of AS and CLR
confidence intervals.

DGP: CP (nominal 95%) FCP (CP-corrected)
AS CLR AS CLR
CvM KS Series Loc lin CvM KS Series Loc lin

Flat 0.951 0.953 0.895 0.860 0.45 0.60 0.78 0.75
Kinked 0.989 0.987 0.967 0.964 0.49 0.57 0.56 0.51
Peaked 0.991 0.991 0.963 0.956 0.55 0.53 0.44 0.30

to use more of the data information by using a larger bandwidth.
This phenomenon does not occur with the kinked bound and the
peaked bound as shown in Tables A1 and A2 in the Appendix, see
Andrews and Shi (2013a).

The last two rows of Table 3 show that a CI based on α = 0.5
provides a good choice for an estimator of the identified set. For
example, the lower endpoint estimator based on the CvM/Max-
GMS/Asy CS with α = 0.5 is close to being median-unbiased. It
is less than the lower bound with probability 0.525 and exceeds it
with probability 0.475 when n = 250.

The FCP’s reported in Tables 1–3 are computed at different θ
values (outside the identified set) with the three different bound
functions. This is done to ensure that the FCP’s lie in a meaningful
range. However, it is also of interest to consider the same θ value
for all three bounds and, hence, to see how the shape of the bound
function affects FCP’s. For the CvM/Max/GMS/Asy CI, the FCP’s
computed for θ = 0.78 are 0.02, 0.49, and 0.81 for the flat, kinked,
and peaked bound functions, respectively. Thus, the FCP’s are best
(lowest) for the flat bound and highest (worst) for the peaked
bound function.

In summary, we find that the CI’s based on the CvM/Max statis-
tic with the GMS/Asy critical value perform the best of those pro-
posed in this paper in the quantile selection example considered.
Equally good are the CI’s that use the Sum or QLR statistic in place
of the Max statistic and the GMS/Bt critical value in place of the
GMS/Asy critical value. The CP’s and FCP’s of the CvM/Max-GMS/
Asy CI’s are quite good over a range of sample sizes. The findings
echo those in AS1 in the parametric quantile selection example.

4.2.3. Simulation results: comparisons with CLR confidence intervals
Table 4 reports comparisons of CP’s and FCP’s of the CI’s pro-

posed in this paper, denoted by AS, with the series and local lin-
ear versions of the CI’s proposed in CLR. The AS CI’s use the Max S
function and GMS/Asy critical values. The CLR CI’s are described in
Section 4.1. The data generating processes considered are the same
as in Table 1.

Table 4 shows that the nominal 95% AS CI’s have good finite
sample CP’s, being 0.951 or greater in all cases. In contrast, the se-
ries and local linear CLR CI’s under cover in the flat bound casewith
CP’s being 0.895 and 0.860, respectively. The FCP’s of the AS CI’s
are noticeably less than those of the CLR CI’s in the flat bound case.
The opposite is true in the peaked bound case. In the kinked bound
case, the AS and CLR CI’s have similar FCP’s. This is consistent with
the theoretical asymptotic power comparisons in Section 11 of the
Appendix, see Andrews and Shi (2013a).20

In sum, the CvM/Max-GMS/Asy CI has more robust null rejec-
tion probabilities than the CLR CI’s. Its FCP’s are better (i.e., lower)
for the flat bound function and worse (i.e., higher) for the peaked
bound function.

20 In Table 4, the uncorrected FCP’s for the CLR CI’s are 0.62 and 0.46 in the first line
and the same as reported in Table 4 in the other lines. Note that without correction
the FCP numbers are not comparable across different CI’s.
4.3. Conditional treatment effects

In this example, we illustrate how the proposed method can be
used to test functional inequality hypotheses.

We are interested in the effect of a randomly assigned binary
treatment (Di) conditional on covariates Xi and Zi. The outcome
variable of interest, Yi is a mixture of two potential outcomes yi(1)
and yi(0) : Yi = Diyi(1)+ (1−Di)yi(0). The difference yi(1)−y(0)
is the effect of treatment on individual i. The treatment effect for
every individual cannot be identified (even partially) because yi(1)
and yi(0) are never observed simultaneously. Thus, one often fo-
cuses on the average treatment effect of a chosen group of indi-
viduals with certain observed characteristics. The chosen group of
individuals that we consider here is individuals with Zi = z0 ∈ Z
and Xi ∈ X, where Z and X are the supports of Zi and Xi, respec-
tively. We test the hypothesis:

E[yi(1)− yi(0)|(Xi, Zi) = (x, z0)] ≥ 0 for all x ∈ X. (4.5)

The framework canbe extended to treatmentswith any finite num-
ber of treatment values. If the Xi variable is not present, the prob-
lem is a trivial case of (2.1) where X is a singleton. If the Zi variable
is not present, the problem fits in the framework of AS1 and Lee
et al. (2013). The nonparametric method proposed in this paper al-
lows us to focus on a particular value of Zi.

Examples of the above hypothesis include: (i) whether a certain
drug reduces blood pressure for people of all ages and genders
(Xi = (age, gender)) whose body mass index (Zi) is at certain level
(z0); (ii) whether students of a certain IQ score (Zi = z0) do better
in smaller classes than in bigger classes regardless of their parents’
income (Xi); and (iii) whether group liability discourages default
better than individual liability in a micro-loan program for villages
of all sizes (Xi) and certain average income level (Zi = z0).

The model setup is as follows. We assume that Di is randomly
assigned and Pr(Di = 1) = π ∈ (0, 1).21 Then,

E[yi(1)− yi(0)|(Xi, Zi) = (x, z0)]

= E

YiDi

π
−

Yi(1 − Di)

1 − π
|(Xi, Zi) = (x, z0)


. (4.6)

In consequence, the hypothesis (4.5) is equivalent to testing if θ =

0 is in the identified set of the followingmoment inequalitymodel:

E

YiDi

π
−

Yi(1 − Di)

1 − π
− θ |(Xi, Zi) = (x, z0)


≥ 0

for all x ∈ X. (4.7)

For the simulations, we consider the following data generating
process (DGP):

yi(0) = 0, yi(1) = µ(Xi, Zi)+ ui, Di = 1{εi ≥ 0},

Xi ∼ Unif[0, 2], Zi ∼ Unif[−1, 1], (εi, ui) ∼ N(0, I2),

(Xi, Zi) ⊥ (εi, ui), and Xi ⊥ Zi. (4.8)

The functionµ(x, z) is the conditional treatment effect function at
(Xi, Zi) = (x, z). We focus on z0 = 0.

Three different µ(x, z) functions are considered, which are
flat, kinked, and tilted as a function of z, respectively. They are:
µ1(x, z) = −a, µ2(x, z) = |x|+|z|−a, andµ3(x, z) = log(z+1)−
a, where a is a constant. The hypothesis (4.5) holds if a = 0 and is
violated if a > 0. The functions µ1 and µ2 do not change sign in
a neighborhood around z0, whereas the tilted function µ3 changes

21 It is easy to allow for ‘‘selection on observables,’’ i.e., to allow Di to depend on
Xi and Zi , if π(x, z) = Pr(Di = 1|Xi = x, Zi = z) is known, e.g., see Imbens (2004).
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Fig. 2. Nonparametric treatment effects model: conditional moment functions, as functions of x and z. These functions are for the lower end of the identified set for θ . First
column: flat bound function; second column: kinked bound function; third column: tilted bound function.
Table 5
Nonparametric conditional treatment effects model: base-case comparisons.

(a) Null rejection probabilities (nominal 5%)

DGP Critical value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub
Statistic

Flat bound CvM 0.040 0.054 0.044 0.063 0.106
KS 0.028 0.039 0.031 0.046 0.231

Kinked bound CvM 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.002

Tilted bound CvM 0.066 0.085 0.072 0.094 0.148
KS 0.044 0.057 0.047 0.064 0.280

(b) Rejection probabilities under H1 (null rejection probability
corrected)

Flat bound CvM 0.50 0.57 0.51 0.54 0.52
KS 0.30 0.42 0.30 0.42 0.35

Kinked bound CvM 0.32 0.24 0.52 0.59 0.63
KS 0.37 0.19 0.49 0.53 0.79

Tilted bound CvM 0.53 0.54 0.53 0.53 0.52
KS 0.36 0.46 0.36 0.44 0.35

sign in any neighborhood of z0 if a = 0. The conditional moment
functions that correspond to µ1, µ2, and µ3 are graphed in Fig. 2.

Notice that there is only one conditional moment inequality in
this model (i.e., p = 1 and v = 0). In consequence, the different
S-functions, i.e. Sum, Max and QLR, are identical to each other and
we do not distinguish them in the results reported below.

4.3.1. g functions
The g functions employed by the test statistics are indicator

functions of hypercubes in [0, 1], i.e., intervals, as in the example
above. The regressor Xi is transformed to lie in (0, 1) by the same
method as in the example above. The hypercubes have side-edge
lengths (2r)−1 for r = r0, . . . , r1, where r0 = 1 and the base case
value of r1 is 3. The base case number of hypercubes is 12. We also
report results for r1 = 2 and 4, which yield 6 and 20 hypercubes,
respectively.

4.3.2. Simulation results: tests proposed in this paper
Tables 5 and 6 report NRP’s and ARP’s, respectively, for a vari-

ety of test statistics and critical values proposed in this paper for
Table 6
Nonparametric conditional treatment effects model with flat bound: variations on
the base case.

Case (a) Null rejection (b) Rej. probs.
under H1

Probabilities
(nominal 5%)

(NRP-corrected)

Statistic: CvM KS CvM KS
Crit val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base case: (n = 250, r1 =

3, ε = 0.05, b = b0n−2/7)

0.044 0.031 0.51 0.30

n = 100 0.047 0.026 0.50 0.26
n = 500 0.048 0.037 0.53 0.34
r1 = 2 0.047 0.040 0.51 0.36
r1 = 4 0.044 0.024 0.50 0.26
(κn, Bn) = 1/2(κn,bc , Bn,bc) 0.052 0.037 0.51 0.31
(κn, Bn) = 2(κn,bc , Bn,bc) 0.040 0.028 0.50 0.30
ε = 1/100 0.046 0.027 0.51 0.25
b = 0.5b0n−2/7 0.041 0.020 0.28 0.14
b = 2b0n−2/7 0.049 0.043 0.78 0.57

a range of cases. The NRP’s are for a = 0 and the ARP’s are for
a > 0.22

Table 5 provides comparisons of the PA/Asy, PA/Bt, GMS/Asy,
GMS/Bt, and Sub critical values for the CvM and KS test statistics.
Table 6 provides robustness results for the CvM and KS test statis-
tics in the flat bound case. Table 6 shows the degree of sensitivity
of the results to (i) the sample size, n, (ii) the number of cubes em-
ployed, as indexed by r1, (iii) the choice of (κn, Bn) for the GMS/Asy
critical values, (iv) the value of ε, upon which the variance estima-
torΣn(θ, g) depends, and (v) the bandwidth b.

Table 5 shows that testswith theAsy versions of both the PA and
GMS critical values have NRP’s less than or equal to the nominal
level 0.05 with the flat bound and kinked bound DGP’s. The tilted
bound DGP is a difficult case for NRP control because the condi-
tional mean function changes sign at z = z0 and the integral of

22 Note that, contrary to the previous simulation example, the DGP is different for
the NRP’s and for the ARP’s. The null hypothesis stays the same. ARP’s are computed
for a equal to c × (250/n)5/14 , where c = 0.25, 1.05, and 0.25 in the flat, kinked,
and tilted bound cases, respectively. These points are chosen to yield similar values
for the ARP’s across the different cases considered.
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the mean function over any symmetric neighborhood around z0
is negative under the DGP with a = 0. With this difficult DGP,
tests with Asy critical values using the KS statistic have NRP’s less
than or equal to 0.05 and tests using the CvM statistic have NRP’s
slightly above 0.05. The tests using Bt critical values have notice-
ably greater over-rejection compared to their counterparts using
Asy critical values. The tests using subsampling critical values with
either the CvMor KS test statistic appear unreliable: their NRP’s ex-
ceed 0.05 by a substantial amount with not only the tilted bound
DGP but also the flat bound DGP. Note that all tests under-reject
substantially in the kinked bound case in Table 5. This is because
the conditional moment inequality is slack at all points x except
one, but is not sufficiently slack that the moment selection crite-
rion is able to ignore the moment conditions for many values of x
when the GMS critical values are computed.

The ARP comparison in Table 5 shows (i) a clear advantage
of CvM-based tests over KS-based tests, and (ii) clearly better
performance of GMS-based tests compared to PA-based ones with
the kinked bound DGP and similar performance of GMS and PA
critical values with the flat and the tilted bound DGP’s.

Table 6 provides results for the CvM and KS statistics coupled
with the GMS/Asy critical values for several variations of the base
case with the flat bound function. Analogous results for the kinked
and tilted bound functions are given in Tables A3 and A4 in the Ap-
pendix, see Andrews and Shi (2013a). The results in Table 6 show
little sensitivity to the sample size and a smaller ε for the CvM-
based test. The ARP performance of the KS-based test improves
noticeably with the sample size, but stays much worse than that
of the CvM-based test at all three sample sizes considered. There is
some sensitivity to the number of cubes and the magnitude of the
GMS tuning parameters (κn, Bn). Increasing the number of cubes or
increasing (κn, Bn) reduces both the NRP’s and the ARP’s. As in the
quantile selection example, there is some sensitivity to the band-
width. A larger bandwidth leads to higher ARP’s but still keeps the
NRP’s below 0.05. As discussed in the quantile selection example,
this is closely related to the flatness of the bound and the same
phenomenon does not occur with the other types of bounds, see
Tables A3 and A4 in the Appendix, see Andrews and Shi (2013a).

The ARP results reported in Tables 5 and 6 are computed un-
der DGP’s with different a values (a > 0) with the three different
bound functions. For the CvM/Max/GMS/Asy test, the ARP’s com-
puted for the same value a = 0.25 for all three bound functions
are 0.51, 0.00, and 0.53 for the flat, kinked, and peaked bound func-
tions, respectively. Thus, the power is highest for the flat and tilted
bound functions and worst for the kinked bound function.

In conclusion, the comparison between test statistics and criti-
cal values is largely consistentwith the quantile selection example,
with the CvM–GMS/Asy couple performing the best both in terms
of NRP’s and ARP’s. The CvM–GMS/Bt couple has somewhat worse
NRP than CvM–GMS/Asy. The performance of CvM–GMS/Asy is
quite good over a range of sample sizes.

4.3.3. Simulation results: comparisons with CLR tests
Next, we compare NRP’s and ARP’s of the tests proposed in this

paperwith those of the series and local linear tests in CLR. The sam-
ple size is n = 250. The parameter values at which the NRP’s and
ARP’s are calculated are the same as in Table 5. The tests proposed
in this paper, denoted AS, use the GMS/Asy critical values.

The results are reported in Table 7. The nominal 5% CvM AS
test over-rejects somewhat in the tilted bound case with a NRP
of 0.072. Its NRP in the flat and kinked bounded cases is less than
0.05. Both CLR tests over reject the null considerably in the flat and
tilted bound cases. Specifically, the NRP’s of the series CLR test are
0.103 and 0.104, respectively, while those of the local linear CLR
test are 0.177 and 0.185, respectively. The power of the CvMAS test
is substantially higher than that of the two CLR tests in the flat and
Table 7
Nonparametric conditional treatment effects model: NRP and ARP comparisons of
AS and CLR tests.

DGP: NRP (nominal 5%) ARP (NRP-corrected)
AS CLR AS CLR
CvM KS Series Loc lin CvM KS Series Loc lin

Flat 0.044 0.031 0.103 0.177 0.51 0.30 0.17 0.18
Kinked 0.000 0.000 0.011 0.025 0.52 0.49 0.37 0.61
Tilted 0.072 0.047 0.104 0.185 0.53 0.36 0.16 0.16

tilted bound cases (being 0.51 versus 0.17 and0.18 in the flat bound
case and 0.53 versus 0.16 and 0.16 in the tilted bound case). In the
kinkedbound case, the power of the CvMAS test exceeds that of the
series CLR test, but is lower than that of the local linear CLR test.23
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