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8. Outline

This Supplement includes �ve Supplemental Appendices (denoted A-E) to the paper

�GMM Estimation and Uniform Subvector Inference with Possible Identi�cation Fail-

ure,�denoted hereafter by AC3. Supplemental Appendix A veri�es the assumptions of

AC3 for the probit model with endogeneity. Supplemental Appendix B provides proofs

of the GMM estimation results given in Section 4 of AC3. It also provides some results

for minimum distance estimators. Supplemental Appendix C provides proofs of the

Wald test and CS results given in Section 5 of AC3. Supplemental Appendix D gives

some results that are used in the veri�cation of the assumptions for the two examples of

AC3. Supplemental Appendix E provides additional numerical results to those provided

in AC3 for the nonlinear regression model with endogeneity.

9 . Supplemental Appendix A: Probit Model with

Endogeneity: Veri�cation of Assumptions

In this Supplemental Appendix, we verify Assumptions GMM1-GMM5 and V1-V2

for the probit model with endogeneity and possibly weak instruments. Assumptions B1

and B2 hold immediately in this model given the de�nitions of �; ��; and ��(�) in

Section 2.3 of AC3.

9.1. Veri�cation of Assumption GMM1

Assumption GMM1(i) holds by (2.19) and (2.20) because Z 0i�� does not depend on

� when � = 0:

The quantity g0(�; ) that appears in Assumptions GMM1(ii)-(v) is

g0(�; 0) = E0ei(�)
 Zi = E0e0;i(�)
 Zi; where

e0;i(�) =

�
w1;i(�)(Li(�0)� Li(�))

Z 0i(�0 � �)�X 0
i(�2;0 � �2)

�
2 R2: (9.1)

The �rst uniform convergence condition in Assumption GMM1(ii) follows from the

ULLN given in Lemma 12.1 in Supplemental Appendix D because E0(yijXi; Zi) =

Li(�0) when the true value is 0 = (�0; �0):
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When Wn(�) is the identity matrix, W(�; 0) in Assumption GMM1(ii) also is the
identity matrix. WhenWn(�) is the optimal weight matrix de�ned in (2.20), Assumption

GMM1(ii) holds with

W(�; 0) = E0 (ei(�)ei(�)
0)
 (ZiZ

0
i) = E0(We;i(�; 0)
 (ZiZ

0
i); where

We;i(�; 0) = E0
�
ei(�)ei(�)

0jZi

�
=

 
W11;i(�) W12;i(�)

W12;i(�) W22;i(�)

!
(9.2)

and W11;i(�);W12;i(�); and W22;i(�) are de�ned in (9.4)-(9.5) below.31 The convergence

condition in Assumption GMM1(ii) holds for the optimal weight matrix Wn(�) by the

ULLN given in Lemma 12.1 in Supplemental Appendix C.

Now we derive the elements of We;i(�; 0) in (9.2). Note that

P0(yi = 1jZi) = Li(�0) and P0(yi = 0jZi) = 1� Li(�0): (9.3)

The upper left element of We;i(�; 0) is

W11;i(�) = E0(w1;i(�)
2(yi�Li(�))2jZi) = w1;i(�)

2(Li(�0)�2Li(�0)Li(�)+Li(�)2): (9.4)

The lower-right element of We;i(�; 0) is

W22;i(�) = E0((Yi � Z 0i� �X 0
i�2)

2jZi) = �2v + (Z
0
i(�0 � �) +X 0

i(�2;0 � �2))
2: (9.5)

To calculate the o¤-diagonal term of We;i(�; 0); note that

E0(VijZi; yi = 1) = E0(VijZi; Ui > �(Z 0i�0�0 +X 0
i�1;0)) = �v�

L0i(�0)

Li(�0)
and

E0(VijZi; yi = 0) = E0(VijZi;�Ui > Z 0i�0�0 +X 0
i�1;0) = ��v�

L0i(�0)

1� Li(�0)
. (9.6)

31Note that W11;i(�);W12;i(�); and W22;i(�) all depend on 0: We omit 0 from these terms for
notational simplicity.
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The o¤-diagonal term of We;i(�; 0) is

W12;i(�)

= E0(w1;i(�)(yi � Li(�))(Yi � Z 0i� �X 0
i�2)jZi)

= w1;i(�)
X
k=0;1

(k � Li(�))
�
E0(VijZi; yi = k) + Z 0i(�0 � �) +X 0

i(�2;0 � �2)
�

�P0(yi = kjZi)

= w1;i(�)

�
(1� Li(�))�v�

L0i(�0)

Li(�0)
Li(�0) + Li(�)�v�

L0i(�0)

1� Li(�0)
(1� Li(�0)

�
+

w1;i(�) [(1� Li(�))Li(�0)� Li(�)(1� Li(�0))]
�
Z 0i(�0 � �) +X 0

i(�2;0 � �2)
�

= w1;i(�)
�
�v�L

0
i(�0) + (Li(�0)� Li(�))

�
Z 0i(�0 � �) +X 0

i(�2;0 � �2)
��
: (9.7)

Now we verify Assumptions GMM1(iii) and GMM1(iv). We write g0(�; 0) =

(g1;0(�; 0)
0; g2;0(�; 0)

0)0 for gj;0(�; 0) 2 RdX+dZ for j = 1; 2: We have

g2;0(�; 0)� = �0E0ZiZ
0
i� > 0 for � = ((�0 � �)0; (�2;0 � �2))

0;

where the inequality holds because E0ZiZ
0
i is positive de�nite since P�0(Z

0
ic = 0) < 1

for any c 6= 0 by (2.21). Hence, g2;0(�; 0) = 0 if and only if � = �0 and �2 = �2;0: Now,

for � with � = �0 and �2 = �2;0;

g1;0(�; 0) = E0w1;i(�)(Li(�0)� Li(�))Zi and Li(�) = L(Z 0i�0� +X 0
i�1): (9.8)

If �0 6= 0; the conditions g1;0(�; 0) = 0 are more restrictive than the populations �rst-
order conditions for the standard probit ML estimator for a probit model with regression

function Z 0i�0�+X
0
i�1 (because the latter has the multiplicative factor (Z

0
i�0; X

0
i)
0; rather

than Zi). The latter have a unique solution at the true parameter vector because, as is

well known, the population log likelihood function of the probit model is strictly concave.

Hence, g1;0(�; 0) = 0 only if � = �0 and �1 = �1;0 and Assumption GMM1(iv) holds.

If �0 = 0; then the same argument holds but with the regression function being X
0
i�1;

rather than Z 0i�0� +X
0
i�1: In this case, g1;0(�; 0) = 0 only if �1 = �1;0 and Assumption

GMM1(iii) holds.

The partial derivatives g (�; 0) and g�(�; 0) in Assumptions GMM1(v) and GMM1
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(viii) are

g (�; 0) = E�0

�
Ziai(�)d1 ;i(�)

0

Zid02 ;i

�
and g�(�; 0) = E�0

�
Ziai(�)d1;i(�)

0

Zid02;i

�
; where

d1 ;i(�) = (�Zi; Xi; 0dX ) 2 RdZ+2dX ; d2 ;i = (Zi; 0dX ; Xi) 2 RdZ+2dX ;

d1;i(�) = (d1 ;i(�); Z
0
i�) 2 RdZ+2dX+1; d2;i = (d2 ;i; 0) 2 RdZ+2dX+1; and (9.9)

ai(�) =
L0i(�)

2 + L00i (�)(Li(�)� Li(�0))

Li(�)(1� Li(�))
� L0i(�)

2(Li(�)� Li(�0))(1� 2Li(�))
Li(�)2(1� Li(�))2

:

Assumptions GMM1(v) and GMM1(vi) hold by the continuity of w1;i(�) and Li(�) in �

and the moment conditions in (2.21).

Next, we verify Assumption GMM1(vii). To show �min(W( 0; �; 0)) > 0; 8� 2 �;
80 2 �; we show that for any c = (c01; c

0
2)
0 with jjcjj > 0; c0W( 0; �; 0)c > 0; where

cj 2 RdX+dZ for j = 1; 2: Let

U�i (�) = w1;i(�)(Ui + Li(�0)� Li(�)): (9.10)

For � 2 ( 0; �); we have

c0W( 0; �; 0)c = c0

"
E0

 
U�i (�)

Vi

! 
U�i (�)

Vi

!0

 ZiZ

0
i

#
c

= E0E0((U
�
i (�)c

0
1Zi + Vic

0
2Zi)

2jZi)

� E0E0((Uiw1;i(�)c
0
1Zi + Vic

0
2Zi)

2jZi); (9.11)

where the inequality holds because E0(w1;i(�)(Li(�0) � Li(�))c
0
1ZiVic

0
2ZijZi) = 0 a.s.

since E0(VijZi) = 0 a.s. and E0((w1;i(�)(Li(�0)� Li(�))c
0
1Zi)

2jZi) � 0 a.s. The rhs of
(9.11) equals zero only if E0((Uiw1;i(�)c

0
1Zi + Vic

0
2Zi)

2jZi) = 0 a.s. But,

E0((Uiw1;i(�)c
0
1Zi + Vic

0
2Zi)

2jZi) > 0 (9.12)

for all Zi for which c0jZi 6= 0 for j = 1 and j = 2 because w1;i(�) > 0 a.s., (Ui; Vi) is

independent of Zi; and jCov(Ui; Vi)j = j�j < 1: By (2.21), P0(c
0
jZi 6= 0 for j = 1 and

j = 2) > 0: Hence, we conclude that c0W( 0; �; 0)c > 0:
In addition, �max(W( 0; �; 0)) < 1 because jjW( 0; �; 0)jj = jjE�0 [We;i(�; 0) 


(ZiZ
0
i)]jj <1 using (9.4)-(9.5) and E�0(jjZijj4+"+w4+"1;i ) <1 for some " > 0 by (2.21),

where jj � jj denotes the Frobenious norm. Thus, Assumption GMM1(vii) holds.
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Assumption GMM1(viii) holds because W( 0; �; 0) is non-singular 8� 2 � and

g ( 0; �; 0) has full column rank because P�0(Z
0
ic = 0) < 1 for all c 6= 0:

Assumption GMM1(ix) holds automatically by the Assumptions on the parameter

space.

Assumption GMM1(x) holds because 	(�) does not depend on � in this example.

9.2. Veri�cation of Assumption GMM2

We verify Assumption GMM2 using the su¢ cient condition Assumption GMM2�:

Assumption GMM2�(i) holds because ei(�) is continuously di¤erentiable in �: Assump-

tion GMM2�(ii) holds by the ULLN given in Lemma 12.1 in Supplemental Appendix C.

Assumption GMM2�(iii) holds by the uniform LLN given in Lemma 12.1 in Supplemen-

tal Appendix D using jj�jj=jj�njj = 1+ o(1) for � 2 �n(�n) and jj�njj 6= 0 for n large for
fng 2 �(0;1; !0):

9.3. Veri�cation of Assumption GMM3

Assumption GMM3(i) holds with

g(Wi; �) = ei(�)
 Zi: (9.13)

Assumption GMM3(ii) holds because E�g(Wi;  
�; �) = E�e0;i( 

�; �) 
 Zi = 0 when

�� = 0:

Assumption GMM3(iii) hold by the CLT for triangular arrays of row-wise i.i.d. ran-

dom variables given in Lemma 12.3 of Supplemental Appendix D. The variance matrix

is


g(0) = E0 (ei(�0)ei(�0)
0)
 (ZiZ

0
i) =W(�0; 0)

= E0

 
w1;i(�0)L

0
i(�0) w1;i(�0)L

0
i(�0)��v

w1;i(�0)L
0
i(�0)��v �2v

!


�
ZiZ

0
i

�
; (9.14)

where the second and third equalities follow from (9.2) and (9.4)-(9.5) with � = �0 and

w1;i(�0)(Li(�0)�Li(�0)2) = L0i(�0):

5



To verify Assumption GMM3(iv), �rst note that

E�g(Wi; �) = E�

�
w1;i(�)(Li(�

�)� Li(�))

Z 0i(�
� � �)�X 0

i(�
�
2 � �2)

�

 Zi: (9.15)

The derivative of E�g(Wi; �) wrt �
� is

Kn;g(�; 
�) = E��

 
w1;i(�)L

0
i(�

�)��ZiZ
0
i

ZiZ
0
i

!
(9.16)

8(�; �) 2 �� � �0 and 8n � 1: This veri�es Assumption GMM3(iv)(a). Assumptions

GMM3(iv)(b) and (c) hold with Kg(�; 0) = Kn;g(�; 0):

To verify Assumption GMM3(v), note that ai( 0; �) = w1;i(�0)L
0
i(�0) when �0 = 0:

Using (9.9) and (9.16), this yields

g ( 0; �; 0) = E�0Mi(�0)

 
d1 ;i(�)

0

d02 ;i

!
; Kg( 0; �; 0) = E�0Mi(�0)

 
�0Z

0
i

Z 0i

!
; where

Mi(�0) =

 
w1;i(�0)L

0
i(�0)Zi 0dZ

0dZ Zi

!
: (9.17)

Assumption GMM3(v) holds because (i) Mi(�0) has full rank a.s., (ii) d2 ;iS = Z 0i

for S = (S1; S2; S3) 2 RdZ�dX�dX if and only if S1 = 1dZ and S3 = 0dX ; and (iii)

d1 ;i(�)S = �0Zi for S = (1dZ ; S2; 0dX ) if and only if S2 = 0dX and � = �0:

Assumption GMM3(vi) holds by (9.15), (9.17), an exchange of �E� and �@;� the

moment conditions in (2.21), and some calculations. The left-hand side does not depend

on an average over n because the observations are identically distributed.

9.4. Veri�cation of Assumption GMM4

When dZ > 1; we do not have a proof that Assumption GMM4 holds. In this case, we

just assume that it does. However, when dZ = 1; Assumption GMM4 can be veri�ed by

verifying Assumption GMM4�: In this case, Assumption GMM4�(i) holds automatically.

Using (9.17), we obtain

g� ( 0; �1; �2; 0) = E�0Mi(�0)

 
�1Z

0
i; �2Z

0
i; X

0
i; 0

0
dX

Z 0i; Z
0
i; 0

0
dX
; X 0

i

!
; (9.18)
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whereMi(�0) is of full column rank a.s. Assumption GMM4�(ii) holds because P�0(Z
0
ic =

0) < 1 for c 6= 0 and �1 6= �2: Assumption GMM4�(iii) holds with 
g(0) =W(�0; 0) by
(9.2) and (9.14) because W(�0; 0) is positive de�nite by the veri�cation of Assumption
GMM1(vii) in (9.10)-(9.12).

9.5. Veri�cation of Assumption GMM5

The veri�cation of Assumption GMM5(i) is analogous to that of Assumption GMM3

(iii). The variance matrix Vg(0) is equal to 
g(0) de�ned in (9.14).

Assumption GMM5(ii) holds with g�(�; 0) in (9.9) using jj�jj=jj�njj = 1 + o(1) for

� 2 �n(�n); jj�njj 6= 0 for n large for fng 2 �(0;1; !0); and the moment conditions

in (2.21).

Assumption GMM5(iii) holds with

Jg(0) = E�0Mi(�0)

�
�0Z

0
i; X

0
i; 0

0
dX
; Z 0i!0

Z 0i; 0
0
dX
; X 0

i; 0

�
(9.19)

using (9.9) and (9.17) and �n=jj�njj ! !0: The matrix Jg(0) has full column rank

because P�(Z
0
ic = 0) < 1 for c 6= 0:

9.6. Veri�cation of Assumptions V1 and V2 (Vector �)

Here we verify Assumptions V1(i)-V1(iii) (vector �) and V2. We do not verify

Assumption V1(iv) (vector �). However, it should hold because ��(�; 0; b) is a Gaussian

process.

We estimate J(0) and V (0) by bJn = bJn(b�+n ) and bVn = bVn(b�+n ); respectively, where
bJn(�+) = bJg;n(�+)0Wn

bJg;n(�+); bVn(�+) = bJg;n(�+)0Wn
bVg;n(�+)Wn

bJg;n(�+);bJg;n(�+) = n�1
nX
i=1

Mi(�)

�
�Z 0i; X

0
i; 0

0
dX
; Z 0i!

Z 0i; 0
0
dX
; X 0

i; 0

�
and

bVg;n(�+) = n�1
nX
i=1

(ei(�)ei(�)
0)


�
ZiZ

0
i

�
: (9.20)
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Assumption V1(i) (vector �) holds with

J(�+; 0) = Jg(�
+; 0)

0W(�0; 0)Jg(�+; 0) and
V (�+; 0) = Jg(�

+; 0)
0W(�0; 0)Vg(�+; 0)W(�0; 0)Jg(�+; 0); (9.21)

where Jg(�
+; 0) and Vg(�

+; 0) are de�ned analogously to bJg(�+) and bVg(�+); respec-
tively, but with n�1

Pn
i=1 replaced by E0 : The uniform convergence conditions of As-

sumption V1(i) for bJn(�+) and bVn(�+) follow from the uniform convergence of bJg;n(�+)
and bVg;n(�+) and Wn !p W(�0; 0): The former holds by the ULLN given in Lemma
12.1 in Supplemental Appendix C. WhenWn is the identity matrix, the latter holds au-

tomatically. When Wn is the optimal weight matrix that involves a �rst step estimator

�n and �n is based on the identity weight matrix, the convergence in probability of Wn

holds by Lemma 3.1. The assumptions of Lemma 3.1 follow from Theorems 4.1(a) and

4.2(a).

Assumption V1(ii) (vector �) holds by the continuity ofMi(�) and ei(�) in � and the

moment conditions in (2.21).

Assumption V1(iii) (vector �) holds provided that J(�+; 0) and V (�
+; 0) are both

�nite and non-singular when �0 = 0: To this end, we need that Jg(�
+; 0); Vg(�

+; 0);

andW(�; 0) are all �nite and non-singular. This holds using the forms of these matrices
and P�(Z

0
ic = 0) < 1 for c 6= 0 by the arguments used in the veri�cations of Assumptions

GMM5(iii), GMM5(i), and GMM1(vii), respectively.

Assumption V2 follows from (i) the uniform convergence of bJg;n(�+) and bVg;n(�+),
which holds by the ULLN given in Lemma 12.1 in Supplemental Appendix C, (ii) b�+n !p

�+0 under fng 2 �(0;1; !0); which holds by Theorem 4.2(a) and b�n=jjb�njj ! !0 (see

Lemma 9.4(b) of Appendix B of AC1-SM), and (iii) Wn !p W(�0; 0); which holds by
Lemma 3.1.
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10. Supplemental Appendix B: Proofs of GMM

Estimation Results

10.1. Lemmas

This Supplemental Appendix proves the results in Theorems 4.1 and 4.2 of AC3.

The method of proof is to show that Assumptions B1, B2, and GMM1-GMM5 imply

the high-level assumptions in AC1, viz., Assumptions A, B3, C1-C8, and D1-D3 of AC1.

Given this, Theorems 3.1 and 3.2 of AC1 imply Theorems 4.1 and 4.2 because the results

of these theorems are the same, just the assumptions di¤er.

Lemma 10.1. Suppose Assumption GMM1 holds. Then,
(a) Assumption A of AC1 holds and

(b) Assumption B3 of AC1 holds with Q(�; 0) = g0(�; 0)
0W(�; 0)g0(�; 0):

Under Assumptions GMM1 and GMM2, Assumption GMM3 is used to show that the

"C" assumptions of AC1 hold for the GMM estimator. As above,W( 0; 0) abbreviates
W( 0; �; 0) when �0 = 0:

Lemma 10.2. Suppose Assumptions GMM1-GMM3 hold. Then, the following are true.
(a) Assumption C1 of AC1 holds with D Qn(�) = g ( 0; �; 0)

0W( 0; 0)gn(�) and
D  Qn(�) = g ( 0; �; 0)

0W( 0; 0)g ( 0; �; 0):
(b) Assumption C2 of AC1 holds with m(Wi; �) = g ( 0; �; 0)

0W( 0; 0)g(Wi; �):

(c) Assumption C3 of AC1 holds with 
(�1; �2; 0) = g ( 0; �1; 0)
0W( 0; 0)
g(0)

�W( 0; 0)g ( 0; �2; 0):
(d) Assumption C4 of AC1 holds with H(�; 0) = g ( 0; �; 0)

0W( 0; 0)g ( 0; �; 0) =
D  Qn(�):

(e) Assumption C5 of AC1 holds with Kn(�; 
�) = g ( 0; �; 0)

0W( 0; 0)Kn;g(�; 
�) 2

Rd �d� ; and K( 0; �; 0) = g ( 0; �; 0)
0W( 0; 0)Kg( 0; �; 0):

(f) Assumption C7 of AC1 holds.

(g) Assumption C8 of AC1 holds.

Comments. 1. To obtain Lemma 10.2(a), Assumption GMM3 is su¢ cient but not
necessary. When gn(�) is not a sample average, as occurs with the MD estimator,

Assumption MD can be used in conjunction with Assumptions GMM1 and GMM2 to

9



obtain Lemma 10.2(a). In this case, Assumptions C2-C5 of AC1 can be veri�ed directly

without using Assumption GMM3.

2. Lemma 10.2(c)-(e) provide the quantities that appear in Assumption C6 of AC1,
which is the same as Assumption GMM4.

Lemma 10.3. Suppose Assumptions GMM1, GMM2, and GMM5 hold.
(a) Assumption D1 of AC1 holds with DQn(�) = g�(�0; 0)

0W(�0; 0)gn(�) and
D2Qn(�) = g�(�0; 0)

0W(�0; 0)g�(�0; 0):
(b) Assumption D2 of AC1 holds with J(0) = Jg(0)

0W(�0; 0)Jg (0) :
(c) Assumption D3 of AC1 holds with V (0) = Jg(0)

0W(�0; 0)Vg (0)W(�0; 0)Jg (0) :

10.2. Minimum Distance Estimators

For the MD estimator, Assumption MD can be used in place of Assumption GMM3

to obtain Assumption C1 of AC1.

Corollary 10.1. Assumptions GMM1, GMM2, and MD imply that Assumption C1 of
AC1 holds with D Qn(�) and D  Qn(�) de�ned as in Lemma 10.2(a).

In addition to the result of Corollary 10.1, Lemmas 10.1 and 10.3 show that Assump-

tions A, B3, and D1-D3 of AC1 hold for the MD estimator under Assumptions GMM1,

GMM2, and GMM5. Hence, in order to obtain the results of Theorems 3.1 and 3.2

of AC1 for MD estimators and other results concerning CS�s, one just needs to verify

Assumptions C2-C8 of AC1.

10.3. Proofs of Lemmas

Proof of Lemma 10.1. Assumption A of AC1 is implied by Assumption GMM1(i).
Assumption GMM1(ii) implies that Assumption B3(i) of AC1 holds with Q(�; 0) =

g0(�; 0)
0W(�; 0)g0(�; 0):

Now we verify Assumptions B3(ii) and B3(iii) of AC1 by using Lemma 8.1 in Ap-

pendix A of AC1-SM, which shows that Assumption B3� of AC1-SM is su¢ cient for

Assumptions B3(ii) and B3(iii) of AC1. Assumption B3�(i) of AC1-SM holds by Assump-

tions GMM1(v) and GMM1(vi). Assumption B3�(ii) of AC1-SM holds by Assumptions

GMM1(iii) and GMM1(vii). Assumption B3�(iii) of AC1-SM holds by Assumptions

GMM1(iv) and GMM1(vii). Hence, Assumption B3 of AC1 holds. �
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We prove Lemma 10.3 �rst and then prove Corollary 10.1 and Lemma 10.2.

Proof of Lemma 10.3. We start with the proof of part (a). For notational simplicity,
in this proof g0(�; 0); g�(�; 0); g (�; 0); and W(�; 0) are abbreviated to g0(�); g�(�);
g (�); and W(�); respectively.
We start with the case in which Wn(�) = Ik: When DQn (�n) and D2Qn (�n) take

the form in Lemma 10.3(a), the remainder term in Assumption D1 becomes

R�n(�) = kgn(�)k
2 =2�kgn(�n)k

2 =2�gn(�n)0g�(�0)(���n)�kg�(�0)(� � �n)k2 =2: (10.1)

We approximate R�n(�) by replacing g�(�0)(� � �n) by g0(�)� g0(�n) and get

Ryn(�) = kgn(�)k
2 =2� kgn(�n)k

2 =2� gn(�n)
0 (g0(�)� g0(�n))� kg0(�)� g0(�n)k2 =2:

(10.2)

Let a; c; and d be k�vectors for which a = c+ d: By the Cauchy-Schwarz inequality,

��kak2 � kck2�� = ��kdk2 + 2c0d�� � kdk2 + 2 kck kdk : (10.3)

Let a = g0(�)� g0(�n) and c = g�(�0)(� � �n); then

d = a� c = g0(�)� g0(�n)� g�(�0)(� � �n)

= [(g�(�
y
n)� g�(�0))B

�1(�n)]B(�n)(� � �n) = o(kB(�n) (� � �n)k); (10.4)

where the �rst two equalities hold by de�nition, the third equality follows from element-

by-element mean-value expansions, where �yn is between � and �n (and �
y
n may depend

on the row); and the last equality follows from Assumption GMM5(ii). By Assumptions

GMM5(ii) and GMM5(iii),

c = g� (�0) (� � �n) =
�
g� (�0)B

�1 (�n)
�
B (�n) (� � �n) = O (kB (�n) (� � �n)k) :

(10.5)
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Hence,

sup
�2�n(�n)

njRyn(�)�R�n(�)j
(1 + n1=2jjB(�n)(� � �n)jj)2

=
1

2
sup

�2�n(�n)

n
��2gn(�n)0d+ kg0(�)� g0(�n)k2 � kg�(�0)(� � �n)k2

��
(1 + n1=2jjB(�n)(� � �n)jj)2

(10.6)

� 1

2
sup

�2�n(�n)
n
�
2 kgn(�n)k kdk+kdk

2+2 kck kdk
�
=(1 + n1=2jjB(�n)(� � �n)jj)2 = op (1) ;

where the �rst equality follows from (10.1) and (10.2), the inequality holds by (10.3),

and the second equality uses (10.4), (10.5), and gn (�n) = Op(n
�1=2), where the latter

holds by Assumption GMM5(i). Thus, it su¢ ces to show that Assumption D1(ii) holds

with R�n(�) replaced by R
y
n(�):

Note that

Ryn(�) = kgn(�)k
2 =2� kgn (�n) + g0 (�)� g0 (�n)k2 =2

= kegn(�)� egn(�n)k2 =2 + (g0(�)� g0(�n) + gn(�n))
0 (egn(�)� egn(�n)); (10.7)

where the �rst equality follows from (10.2) and the second equality uses kak2 � kck2 =
ka� ck2+2c0(a�c) with a = gn (�) ; c = gn(�n)+g0(�)�g0(�n); and a�c = egn(�)�egn(�n):
We have

�n = sup
�2�n(�n)

n1=2 kegn(�)� egn(�n)k
1 + n1=2 kB(�n)(� � �n)k

= op (1) ; (10.8)

where the op (1) term holds by Assumption GMM2(ii): By (10.7), (10.8), and the triangle

inequality,

sup
�2�n(�n)

2njRyn(�)j
(1 + n1=2 kB(�n)(� � �n)k)2

� �2n + 2 sup
�2�n(�n)

n1=2 kg0(�)� g0(�n)k+ n1=2jjgn(�n)jj
1 + n1=2 kB(�n)(� � �n)k

�n

= �2n +Op(1)�n = op(1); (10.9)

where the �rst equality holds because gn (�n) = Op(n
�1=2) and kg0 (�)� g0 (�n)k =

O(jjB(�n)(� � �n)jj) uniformly on �n (�n) : To see that the latter holds, element-by-
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element mean-value expansions give

g0 (�)� g0 (�n) = (g�(�
y
n)B

�1(�n))B (�n) (� � �n) = (Jg(0) + o (1))B (�n) (� � �n) ;

(10.10)

where �yn lies between � and �n and the last equality follows from Assumptions GMM5(ii)

and GMM5(iii). This completes the proof of Lemma 10.3(a) for the case in which

Wn (�) = Ik:

Next, Lemma 10.3(a) is established for the case where Wn(�) is as in Assumption

GMM1. By Assumptions GMM1(ii) and GMM1(vii), we know thatWn(�) is symmetric

and positive de�nite in a neighborhood of �0: Hence, bothW(�) andWn(�) have square

roots, denoted by W1=2(�) and W1=2
n (�); respectively: The idea is to use the same proof

as above, but with gn(�); g0(�); and g�(�0) replaced by W
1=2
n (�)gn(�); W1=2(�0)g0(�);

and W1=2(�0)g�(�0): With these changes, R�n(�) in (10.1) becomes

R��n (�) = jjW1=2
n (�)gn(�)jj2=2� jjW1=2

n (�n)gn(�n)jj2=2� (10.11)

gn(�n)
0W1=2

n (�n)
0W1=2(�0)g�(�0)(� � �n)� jjW1=2 (�0) g�(�0)(� � �n)jj2=2:

To show the condition in Assumption D1(ii) holds for R��n (�) ; the method used for the

case Wn (�) = Ik works provided that Assumptions GMM2(ii) and GMM5, which are

used in the foregoing proof, hold with the same changes. Assumption GMM5 obviously

does with Vg (0) and Jg (0) adjusted toW1=2 (�0)Vg (0)W1=2 (�0) andW1=2 (�0) Jg (0) ;

respectively.

We now show Assumption GMM2(ii) also holds with the changes above. For � 2
�n(�n);

jjW1=2
n (�) gn (�)�W1=2 (�0) g0 (�)�W1=2

n (�n) gn (�n) +W1=2 (�0) g0 (�n) jj
� jjW1=2 (�0) jj kegn(�)� egn(�n)k+ jjW1=2

n (�)�W1=2 (�0) jj kgn (�)� gn (�n)k+
jjW1=2

n (�)�W1=2
n (�n) jj kgn (�n)k

� O (1) kegn(�)� egn(�n)k+ op (1) (kegn(�)� egn(�n)k+ kg0 (�)� g0 (�n)k) +
op (1) kgn (�n)k (10.12)

= op(n
�1=2 sup

�2�n(�n)
(1 + n1=2jjB(�n)(� � �n)jj)) +O (k(B (�n) (� � �n))k) = op(1);

where the �rst inequality follows from adding and subtracting W1=2 (�0) gn (�) ;
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W1=2 (�0) gn (�n) ; and W
1=2
n (�) gn (�n) and invoking the triangle inequality, the second

inequality holds by Assumptions GMM1(ii), GMM1(vi), and GMM1(vii), the �rst equal-

ity holds by Assumption GMM2(ii), (10.10), and gn (�n) = Op(n
�1=2); and the second

equality holds by the de�nition of �n(�n) and B(�n). By (10.12), the condition in

Assumption D1(ii) holds with R�n(�) changed to R
��
n (�):

When the random derivative matrices take the form in Lemma 10.3(a), the remainder

term in Assumption D1(i) is

R�n(�) = jjW1=2
n (�) gn(�)jj2=2� jjW1=2

n (�n) gn(�n)jj2=2� gn(�n)
0W (�0) g�(�0)

0(� � �n)�
jjW1=2 (�0) g�(�0)(� � �n)jj2=2: (10.13)

We now show the di¤erence between R�n (�) and R
��
n (�) in (10.11) is small enough so

that the condition in Assumption D1(ii) holds for R�n (�) provided it holds for R
��
n (�) :

For � 2 �n(�n);

jR�n (�)�R��n (�) j = jgn(�n)0(W1=2
n (�n)�W1=2 (�0))

0W1=2 (�0) g�(�0)(� � �n)j
� kgn (�n)k � jjW1=2

n (�n)�W1=2 (�0) jj � jjW1=2 (�0) jj �
g�(�0)B�1 (�n)

 �
kB (�n) (� � �n)k

= op(n
�1=2 kB (�n) (� � �n)k) = op(1); (10.14)

where the second last equality holds by Assumptions GMM1 and GMM5. This completes

the proof of part (a).

Part (b) follows from part (a) and Assumptions GMM5(ii) and GMM5(iii).

Part (c) follows from part (a) and Assumptions GMM5(i)-(iii). �

We now prove Corollary 10.1 and then use Corollary 10.1 to prove Lemma 10.2.

Proof of Corollary 10.1. The proof is analogous to the proof of Lemma 10.3(a)

with (i) DQn (�n) and D2Qn (�n) in Lemma 10.3(a) changed to D Qn

�
 0;n; �

�
and

D  Qn

�
 0;n; �

�
in Lemma 10.2(a); (ii) R�n(�) changed to Rn( ; �); (iii) �n and � � �n

changed to ( 0;n; �) and  �  0;n; (iv) g� (�) changed to g (�); where as above g�(�) and
g (�) abbreviate g�(�; 0) and g (�; 0); respectively; (v) B(�n) and B�1(�n) deleted

throughout, (vi) �yn changed to ( 
y
0;n(�); �) with  y0;n(�) between  and  0;n; (vii)

� 2 �n (�n) changed to  2 	(�) and
 �  0;n

 � �n; and (viii) Op (1) and op (1)

changed to Op�(1) and op�(1); where the uniformity over � usually holds using the com-
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pactness of �; and (ix)W (�0) changed toW( 0; 0): Note that Assumptions GMM3(iii)
and MD hold with �n replaced by � 8� 2 � under Assumption GMM1(i). The assump-
tions that are referenced in the proof also are changed accordingly. Speci�cally, the

proof goes through with Assumption GMM2(ii) changed to Assumption GMM2(i), As-

sumption GMM5(i) changed to Assumption MD, Assumption GMM5(ii) changed to the

continuity of g (�; �) uniformly over �; which is implied by Assumption GMM1(vii) and

the compactness of �; and Assumption GMM5(iii) changed to the continuity of g (�):

(The assumption that Jg(0) has full column rank is not used in the proof of Lemma

10.3(a).)

Assumption C1(iii) follows from the form of D Qn(�) and D  Qn(�) in Lemma 10.2

and Assumption GMM1(i). �

Proof of Lemma 10.2. First we prove part (a). Under Assumption GMM3, we can
show Assumption MD holds using a proof that is similar to the proof of Lemma 9.1 in

Appendix B of AC1-SM with (i) D Qn

�
 0;n; �

�
changed to gn( 0;n; �); (ii) m (Wi; �)

changed to g (Wi; �) ; (iii) Assumptions C2, C3, and C5 of AC1 changed to the corre-

sponding conditions in Assumptions GMM3. By Corollary 10.1, Lemma 10.2(a) holds

under Assumptions GMM1-GMM3.

Part (b) follows from part (a) and Assumptions GMM3(i) and GMM3(ii).

Part (c) follows from part (b) and Assumptions GMM1(i) and GMM3(iii).

Part (d) follows from part (a), H(�; 0) = D  Qn( 0;n; �); and Assumption GMM1

(viii).

Part (e) follows from part (a) and Assumption GMM3(iv).

Now we verify part (f). Note that when �0 = 0 as in Assumption C7, Kg( 0; �; 0)

does not depend on � by Assumptions GMM1(i) and GMM3(i). Given the form of

H(�; 0) and K(�; 0) in parts (d) and (e), for any � 2 �;

!00K(�; 0)
0H�1(�; 0)K(�; 0)!0 = Y 0X(�)(X(�)0X(�))�1X(�)0Y � Y 0Y; where

X(�) =W1=2( 0; 0)g ( 0; �; 0), Y =W1=2( 0; 0)Kg( 0; �; 0)!0; (10.15)

and Y does not depend on �: The inequality in (10.15) holds becauseX(�)(X(�)0X(�))�1

X(�)0 is a projection matrix. The inequality holds as an equality when W1=2( 0; 0)

�Kg( 0; �; 0)!0 = W1=2( 0; 0)g ( 0; �; 0)S for some S 2 Rd : By Assumptions

GMM1(vii) and GMM3(v), the inequality in (10.15) holds as an equality i¤ � = �0:

This completes the veri�cation of Assumption C7.
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To verify Assumption C8 as in part (g), we have

@

@ 0
EnD Qn( n; �n) = g ( 0; �n; 0)

0W( 0; 0)
@

@ 0
Engn(�n)

= g ( 0; �n; 0)
0W( 0; 0)

 
n�1

nX
i=1

@

@ 0
Eng(Wi; �n)

!
! g (�0; 0)

0W( 0; 0)g (�0; 0) = H(�0; 0); (10.16)

where the �rst equality holds by Lemma 10.2(a), the second equality holds by Assump-

tion GMM3(i), the convergence holds by Assumption GMM3(vi) and the continuity of

g (�; 0) in � in Assumption GMM1(v), and the third equality holds by Lemma 10.2(d).

�

10.4. Proofs of Section 3 Lemmas

Proof of Lemma 3.1. By the triangle inequality,

Wn(�n)�W(�0; 0)
 � Wn(�n)�W(�n; 0)

+ W(�n; 0)�W(�0; 0) ; (10.17)
where the �rst term on the rhs is op(1) because Wn(�) converges to W(�; 0) uniformly
over �: When �0 6= 0; the second term on the rhs of (10.17) is op(1) because W(�; 0)
is continuous in � and �n !p �0: When �0 = 0; to show the second term on the rhs of

(10.17) is op(1), we haveW(�n; 0)�W(�0; 0)
�
W( n; �n; ; 0)�W( 0; �n; 0)+ jjW( 0; �n; 0)�W( 0; �0; 0)jj

� sup
�2�

W( n; �; ; 0)�W( 0; �; 0) ; (10.18)

where the �rst inequality holds by the triangle inequality, and the second inequality

holds because W( 0; �; 0) does not depend on � when �0 = 0; which in turn holds

by Assumptions GMM1(i) and GMM1(ii): The third line of (10.18) is op(1) because

 n !p  0 and W( ; �; ; 0) is continuous in  uniformly over � 2 �; where the latter
holds because W(�; 0) is continuous in � and � is compact. This completes the proof.
�

Proof of Lemma 3.2. First we show that Assumption GMM2(ii) holds under As-
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sumption GMM2�. For � 2 �n(�n);

egn(�; 0)� egn(�n; 0) = @

@�0
egn(�yn; 0)(� � �n)

=

�
[
@

@�0
gn(�

y
n; 0)� g�(�

y
n; 0)]B

�1(�n)

�
B(�n)(� � �n)

= op(jjB(�n)(� � �n)jj); (10.19)

where the �rst equality holds by element-by-element mean-value expansions with �yn

between � and �n (and �
y
n may depend on the row); the second equality holds by the de-

�nition of egn(�; 0); and the last equality holds uniformly over � 2 �n(�n) by Assumption
GMM2�(iii). Assumption GMM2(ii) follows from (10.19) using the "jjB(�n)(� � �n)jj"
part of the denominator in Assumption GMM2(ii).

The proof for Assumption GMM2(i) is analogous to the proof of Assumption

GMM2(ii). For  2 	(�) : jj �  0;njj � �n;

egn( ; �; 0)� egn( 0;n; �; 0) = � @

@ 0
gn( 

y
0;n(�); �; 0)� g ( 

y
0;n(�); �; 0)

�
( �  0;n)

= op�(jj �  0;njj); (10.20)

where the �rst equality holds by element-by-element mean-value expansions with  y0;n(�)

between  and  0;n (and  
y
0;n(�) may depend on the row), and the second equality holds

uniformly over  2 	(�) : jj �  0;njj � �n by Assumption GMM2�(ii). Assumption

GMM2(i) follows from (10.20) using the "jj �  0;njj" part of the denominator in As-
sumption GMM2(i). �

Proof of Lemma 3.3. Assumption GMM4 is the same as Assumption C6 of AC1.
Hence, it su¢ ces to verify the latter. We verify Assumption C6 of AC1 by verifying the

su¢ cient condition Assumption C6�� given in Lemma 8.5 in Appendix A of AC1-SM.

Because � is a scalar, it remains to show Assumption C6��(ii) of AC1 holds. By Lemma

10.2(c), the covariance matrix 
G(�1; �2; 0) in Assumption C6
��(ii) is


G(�1; �2; 0) = g� ( 0; �1; �2; 0)
0e
g(0)g� ( 0; �1; �2; 0)0; wheree
g(0) = W( 0; 0)
g(0)W( 0; 0) (10.21)

and e
g(0) does not depend on �1 and �2 by Assumptions GMM1(i) and GMM3(i).
Because g� ( 0; �1; �2; 0) 2 Rk�(d�+2) and k � d� � d� + 2; Assumption C6��(ii) is
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implied by Assumptions GMM1�(vii), GMM4�(ii), and GMM4�(iii). �

11. Supplemental Appendix C: Proofs forWald Tests

11.1. Proofs of Asymptotic Distributions

Most of the results in Section 5 of AC3 are stated to hold under some combina-

tion of Assumptions GMM1-GMM5 or under certain assumptions from AC1 (plus some

other assumptions). We prove the results of this section using the stated assumptions

from AC1. Lemmas 10.1-10.3 in Supplemental Appendix B show that the appropriate

combination of Assumptions GMM1-GMM5 imply the corresponding assumptions from

AC1.

Proof of Lemma 5.1. (i) When d�� = dr; �n(
b�n) = 0 by de�nition in (5.10).

(ii) When dr = 1; d�� = 0 or d
�
� = 1 by Assumption R1(iii). If d

�
� = 1; �n(

b�n) = 0
by de�nition in (5.10). If d�� = 0; r�(�) = 0 for � 2 �� by Assumption R1(iii). By the
mean-value expansion, we have

r( n; b�n)� r( n; �n) = r�( n; e�n)(b�n � �n); (11.1)

where e�n is between b�n and �n: For n large enough that jj�njj < �; ( n; e�n) 2 �� and
r�( n; e�n) = 0; which implies �n(b�n) = op(1):

(iii) From (11.1), we have

�(b�n) = n1=2A1(b�n)r�( n; e�n)(b�n � �n): (11.2)

Under Assumption R2�(iii), A1(b�n)r�( n; e�n) !p 0 because the column space of r�(�)

is the same for all � 2 ��; by de�nition the rows of A1(�) are in the null space of r�(�)0

8� 2 ��; and b�n 2 �� holds with probability that goes to one by Lemma 3.1(a) of AC1
using Assumptions A and B3(i)-(ii) of AC1. This gives the desired result. �

Proof of Lemma 5.2. Under Assumption RL, r�(�) = R 8� 2 � and R has full row

rank. Assumption R1 is satis�ed directly. Moreover, under Assumption RL, r�(�) does

not depend on �: This implies Assumption R2�(iii), which is a su¢ cient condition of

Assumption R2 by Lemma 5.1. �

The proof of Theorem 5.1 below uses the following Lemma. De�ne b!n = b�n=jjb�njj:
18



Lemma 11.1. Suppose Assumption V1 (vector �) holds. In addition, suppose Assump-
tions GMM1-GMM4 hold (or Assumptions A, B1-B3, and C1-C8 of AC1 hold).

(a) Under fng 2 �(0; 0; b) with jjbjj <1; b!n !d !
�(��(0; b); 0; b):

(b) Under fng 2 �(0;1; !0); b!n !p !0:

Proof of Lemma 11.1. To prove Lemma 11.1(a), we have

b!n = n1=2b�n=jjn1=2b�njj !d
��(�

�(0; b); 0; b)

jj��(��(0; b); 0; b)jj
= !�(��(0; b); 0; b) (11.3)

by the continuous mapping theorem, because n1=2b�n !d ��(�
�(0; b); 0; b) by Theorem

4.1(a) and Comment 2 to Theorem 4.1(a) and P (��(��; 0; b) = 0) = 0 by Assumption

V1(iv) (vector �).

Next, we prove that Lemma 11.1(b) holds when �0 = 0: By Lemma 3.4 in AC1,

jj�njj�1(b�n � �n) = op(1): This implies that b�n = �n + jj�njjop(1) and jjb�njj=jj�njj =
1 + op(1): Hence,

b!n = b�n
jjb�njj =

b�n � �n
jj�njj

jj�njj
jjb�njj + �n

jj�njj
jj�njj
jjb�njj !p !0: (11.4)

Under fng 2 �(0;1; !0) with �0 6= 0; b!n ! !0 by the continuous mapping

theorem given that b�n !p �0 by Lemma 3.3(b) in AC1. �

Proof of Theorem 5.1. Under the null hypothesis H0 : r(�n) = vn; the Wald statistic

de�ned in (5.2) with v = vn becomes

Wn = n(r(b�n)� r(�n))
0(r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0)�1(r(b�n)� r(�n)): (11.5)

Before proving the speci�c results in parts (a) and (b), we analyze the Wald statistic

under fng 2 �(0; 0; b): With the rotation represented by A(b�n); the Wald statistic in
(11.5) can be written as

Wn = n(r(b�n)� r(�n))
0A(b�n)0(rA� (b�n)B�1(b�n)b�nB�1(b�n)rA� (b�n)0)�1A(b�n)(r(b�n)� r(�n)):

(11.6)

To deal with the normalizing matrix B�1(b�n); part of which diverges as n ! 1 and
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�n ! 0; we de�ne a dr � dr matrix

B�(b�n) =
"
I(dr�d��) 0

0 �(b�n)Id��
#

(11.7)

where �(�) = � when � is a scalar and �(�) = jj�jj when � is a scalar . We write the
Wald statistic in (11.6) as

Wn = %(b�n)0(r�(b�n)b�nr�(b�n)0)�1%(b�n); where (11.8)

%(b�n) = n1=2B�(b�n)A(b�n)(r(b�n)� r(�n)) and r�(b�n) = B�(b�n)rA� (b�n)B�1(b�n):
Note that

r�(b�n) = " r� (
b�n) 0

�(b�n)r0 (b�n) r��(
b�n)

#
= r��(

b�n) + " 0 0

�(b�n)r0 (b�n) 0

#
= r��(

b�n) + op(1);

(11.9)

where the op (1) term holds because �(b�n) = op (1) under fng 2 �(0; 0; b) and r0 (b�n) =
Op(1) under Assumption R1(i).

The next step is to derive the asymptotic distribution of %(b�n) under fng 2 �(0; 0; b):
Note that

r(b�n)� r(�n) = r(b n; b�n)� r( n; b�n) + r( n; b�n)� r( n; �n)

= r (b�n)(b n �  n) + (r( n; b�n)� r( n; �n)) + op(n
�1=2); (11.10)

where the �rst equality is trivial and the second equality holds by a mean-value expan-

sion, b n �  n = Op(n
�1=2); and Assumption R1(i). From (11.7) and A(�) = [A01(�) :

A02(�)]
0; we have

%(b�n) =  n1=2A1(b�n)(r(b�n)� r(�n))

n1=2�(b�n)A2(b�n)(r(b�n)� r(�n))

!
= %1(

b�n) + %2(
b�n) + op (1) ; where

%1(
b�n) =  n1=2A1(b�n)r (b�n)(b n �  n)

n1=2�(b�n)A2(b�n)(r( n; b�n)� r( n; �n))

!
;

%2(b�n) =
 

�n(b�n)
n1=2�(b�n)A2(b�n)r (b�n)(b n �  n)

!
=

 
�n(b�n)
op (1)

!
; (11.11)
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the second equality in %(b�n) uses (11.10), and the op (1) term associated with %2(b�n)
holds by n1=2(b n �  n) = Op(1) and �(b�n) = op(1) under fng 2 �(0; 0; b): Under

Assumption R2, �n(b�n) = op (1) ; and, hence, %2(b�n) = op (1) :

In part (a), in which case fng 2 �(0; 0; b) and jjbjj <1; we have

%1(
b�n) = Bn(b�n)�An (b�n); where

�An (�) =

 
r� (
b n(�); �)n1=2(b n(�)�  n)

A2(b n(�); �)(r( n; �)� r( n; �n))

!
and

Bn(�) =

"
I(dr�d��) 0

0 �(n1=2b�n(�))Id��
#
: (11.12)

Using Assumption R1(i), Lemma 3.1(a) of AC1, Lemma 9.2(b) in Appendix B of AC1-

SM, and �n(�) = n1=2(b n(�)�  n)) �(�; 0; b) in (9.21) of AC1-SM, we have 
�An (�)
Bn(�)

!
)
 
�A(�; 0; b)
B(�; 0; b)

!
(11.13)

under fng 2 �(0; 0; b) with jjbjj <1: From (11.8), (11.9), (11.11), and (11.12), in the

case of a scalar �; we have

Wn = �An (b�n)0Bn(b�n)(r��(b�n)b�nr��(b�n)0)�1Bn(b�n)�An (b�n) + op (1)

= �n(b�n) + op(1)!d �(�
�(0; b); 0; b); (11.14)

where �n(�) is de�ned implicitly, b�n = b�n(b�n) = bJn(b�n)�1bVn(b�n) bJn(b�n)�1 by Assump-
tion V1 (scalar �), and the convergence follows from the joint convergence (�n(�); b�n))
(�(�; 0; b); ��(0; b)) and the continuous mapping theorem. The latter joint convergence
holds by (11.13), Assumptions V1 (scalar �) and R1, Theorem 4.1(a), the uniform con-

sistency of b n(�) over � 2 �; and the fact that �An (�); Bn(�); and b�n are continuous
functions of the empirical process Gn(�) with probability one.
In the case of a vector �; (11.14) holds with b�n(b�n) replaced by b�n(b�+n ) = bJ�1n (b�+n )bVn(b�+n ) bJ�1n (b�+n ) using Assumption V1 (vector �) and with �n(b�n) replaced by �n(b�n; b!n);

which is de�ned implicitly. In this case, the convergence in (11.14) follows from the joint

convergence (�n(�); b�n; b!n) ) (�(�; 0; b); ��(0; b); !�(��(0; b); 0; b); which holds by
the same argument as above plus Lemma 11.1(a) and Assumption V1 (vector �). This

completes the proof of part (a).
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The proof of part (b) is the same for the scalar and vector � cases because it relies on

Assumption V2 which applies in both cases. To prove part (b), we �rst analyze the case

where fng 2 �(0;1; !0) and �0 = 0: In this case, fng 2 �(0; 0; b) with b =2 Rd� ; so

(11.6)-(11.11) apply. As in (5.1), �(0) = J�1(0)V (0)J
�1(0): We have

%1(
b�n) =  

n1=2r� (
b�n)(b n �  n)

n1=2�(b�n)A2(b�n)(r�(b�n) + op (1))(b�n � �n)

!

=

 
n1=2r� (

b�n)(b n �  n)

n1=2�(�n)A2(
b�n)r�(b�n)(b�n � �n) + op (1)

!
= r��(

b�n)n1=2B(�n)(b�n � �n) + op(1)

!d N(0; r
�
�(�0)�(0)r

�
�(�0)); (11.15)

where the �rst equality holds by a mean-value expansion, the fact that b�n is consistent
under fng 2 �(0;1; !0), and the continuity of r�(�) which holds by Assumption R1,

the second equality holds by n1=2(b�n � �n) = Op(1) and jj�njjn1=2(b�n � �n) = Op(1)

under fng 2 �(0;1; !0); the third equality holds by the de�nitions of B(�) and

r��(�); and the convergence in distribution holds by Theorem 4.2(a). The result of part

(b) follows from (11.8), (11.9), (11.11), (11.15), and Assumptions D2 and D3(ii) of AC1

and Assumption V2.

Under fng 2 �(0;1; !0) and �0 6= 0;

n1=2(r(b�n)� r(�n))!d N(0; r�(�0)B
�1(�0)�(0)B

�1(�0)r�(�0)
0) (11.16)

by Theorem 4.2(a) and the delta method. By Assumptions R1(i) and V2,

r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0 !p r�(�0)B
�1(�0)� (0)B

�1(�0)r�(�0)
0: (11.17)

The desired result follows from (11.5), (11.16), and (11.17). �

Proof of Corollary 5.1. By Lemma 5.2, Assumption R2 is satis�ed. Based on

Theorem 5.1, it su¢ ces to show that the stochastic process f�(�; 0; b) : � 2 �g can be
written as f�L(�; 0; b) : � 2 �g under Assumption RL. Under Assumption RL, r�(�);
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A(�); and r��(�) do not depend on �; and, hence,

�A(�; 0; b) =

 
r� �(�; 0; b)

A2r� � (� � �0)

!
=

 
r� �(�; 0; b)

r�� � (� � �0)

!
= R��(�; 0; b): (11.18)

The desired result follows from (11.18) and r��(�) = R� 8� 2 �: �

Proof of Theorem 5.2. From the proof of Theorem 5.1, we know that %1(b�n) = Op(1)

under fng 2 �(0; 0; b): Therefore, when jj�n(b�n)jj !p 1; it follows from (11.11) that

jj%(b�n)jj !p 1: This result, together with (11.8), (11.9), and Assumptions R1 and V1,

completes the proof. �

11.2. Proofs of Asymptotic Size Results

Proof of Theorem 5.3. The proof is the same as the proof of Theorem 4.4 of AC1,

which is given in Appendix B of AC1-SM, but with jTnj; jT (h)j; and z1��=2 replaced by
Wn; W (h); and �2dr;1��; respectively; with Theorem 4.1 of AC1 replaced by Theorem

5.1; and with Assumption V3 of AC1 replaced by Assumption V4. �

Proof of Corollary 5.2. By Theorem 5.2, Pn(Wn � �2dr;1��) !p 0 under fng 2
�(0; 0; b) for which jj�n(b�n)jj !p 1: As a result, the nominal 1 � � Wald CS has

AsySz = 0 by the de�nition of asymptotic size. �

Proof of Theorem 5.4. The proof of Theorem 5.4 is the same as the proof of Theorem
5.1 of AC1, which is given in Appendix B of AC1-SM, but with jTnj; jT (h)j; and z1��=2
replaced by Wn; W (h); and �2dr;1��; respectively; with c

LF
jtj;1��; cjtj;1��(h); ::: replaced by

cLFW;1��; cW;1��(h); ::: throughout; with Theorem 4.1 of AC1 replaced by Theorem 5.1;

and with Assumption V3 of AC1 replaced by Assumption V4. �

12. Supplemental Appendix D: Uniform LLN

and CLT

In this Supplemental Appendix, we state a uniform convergence result, a uniform

LLN, and a CLT that are used in the veri�cation of Assumptions GMM1-GMM5 in the

two examples considered in the paper. Speci�cally, Lemma 12.1 is a uniform convergence

result for non-stochastic functions, Lemma 12.2 is a uniform LLN, and Lemma 12.3 is a
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CLT. The latter two results are for strong mixing triangular arrays. These are standard

sorts of results. The proofs of these Lemmas are given in Appendix A of Andrews and

Cheng (2011).

Lemma 12.1. Let fqn(�) : n � 1g be non-stochastic functions on �: Suppose (i)
qn(�)! 0 8� 2 �; (ii) jjqn(�1)� qn(�2)jj � C� 8�1; �2 2 � with jj�1 � �2jj � �; 8n � 1;
for some C <1 and all � > 0; and (iii) � is compact. Then, sup�2� jjqn(�)jj ! 0:

Assumption S1. Under any 0 2 �; fWi : i � 1g is a strictly stationary and strong
mixing sequence with mixing coe¢ cients �m � Cm�A for some A > d�q=(q � d�) and

some q > d� � 2; or fWi : i � 1g is an i.i.d. sequence and the constant q equals 2 + �

for some � > 0:

Lemma 12.2. Suppose (i) Assumption S1 holds, (ii) for some function M1(w) :W !
R+ and all � > 0; jjs(w; �1) � s(w; �2)jj � M1(w)�; 8�1; �2 2 � with jj�1 � �2jj � �;

8w 2 W ; (iii) E sup�2� jjs(Wi; �)jj1+" + EM1(Wi) � C 8 2 � for some C < 1 and

" > 0; and (iv) � is compact. Then, sup�2� jjn�1
Pn

i=1 s(Wi; �) � E0s(Wi; �)jj !p 0

under fng 2 �(0) and E0s(Wi; �) is uniformly continuous on � 80 2 �:

Comment. Note that the centering term in Lemma 12.2 is E0s(Wi; �); rather than

Ens(Wi; �):

Lemma 12.3. Suppose (i) Assumption S1 holds, (ii) s(w) 2 R and Ejs(Wi)jq � C

8 2 � for some C < 1 and q as in Assumption S1: Then, n�1=2
Pn

i=1(s(Wi) �
Ens(Wi)) !d N(0; Vs(0)) under fng 2 �(0) 80 2 �; where Vs(0) =

P1
m=�1

Cov0(s(Wi); s(Wi+m)):

13. Supplemental Appendix E: Numerical Results

Here we report some additional numerical results for the nonlinear regression model

with endogeneity.

Figures S-1 and S-2 report asymptotic and �nite-sample (n = 500) densities of the

estimators for � and � when �0 = 3:0: Figures S-3 to S-6 report asymptotic and �nite-

sample (n = 500) densities of the t and QLR statistics for � and � when �0 = 1:5:

Figures S-7 and S-8 report CP�s of nominal 0:95 standard and robust jtj and QLR CI�s
for � and � when �0 = 3:0:
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Figure S-1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the Nonlinear Regression Model with Endogeneity when �0 = 3:0:
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Figure S-2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the Nonlinear Regression Model with Endogeneity when �0 = 3:0:
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Figure S-3. Asymptotic and Finite-Sample (n = 500) Densities of the t Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the Standard
Normal Density (Black Line).
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Figure S-4. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the �21 Density
(Black Line).
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Figure S-5. Asymptotic and Finite-Sample (n = 500) Densities of the t Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the Standard
Normal Density (Black Line).
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Figure S-6. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the �21 Density
(Black Line).
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Figure S-7. Coverage Probabilities of Standard jtj and QLR CI�s for � and � in the
Nonlinear Regression Model with Endogeneity when �0 = 3:0:
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Figure S-8. Coverage Probabilities of Robust jtj and QLR CI�s for � and � in the
Nonlinear Regression Model with Endogeneity when �0 = 3:0; � = 1:5; D = 1; and
s(x) = exp(�2x):
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