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8. Outline

This Supplement includes five Supplemental Appendices (denoted A-E) to the paper
“GMM Estimation and Uniform Subvector Inference with Possible Identification Fail-
ure,” denoted hereafter by AC3. Supplemental Appendix A verifies the assumptions of
AC3 for the probit model with endogeneity. Supplemental Appendix B provides proofs
of the GMM estimation results given in Section [4] of AC3. It also provides some results
for minimum distance estimators. Supplemental Appendix C provides proofs of the
Wald test and CS results given in Section [5| of AC3. Supplemental Appendix D gives
some results that are used in the verification of the assumptions for the two examples of
AC3. Supplemental Appendix E provides additional numerical results to those provided

in AC3 for the nonlinear regression model with endogeneity.

9. Supplemental Appendix A: Probit Model with

Endogeneity: Verification of Assumptions

In this Supplemental Appendix, we verify Assumptions GMM1-GMM5 and V1-V2
for the probit model with endogeneity and possibly weak instruments. Assumptions B1
and B2 hold immediately in this model given the definitions of ©, ©*, and ®*() in
Section 2.3 of AC3.

9.1. Verification of Assumption GMM1

Assumption GMM1(i) holds by (2.19) and (2.20]) because Z/S7 does not depend on
7 when 5 = 0.
The quantity go(0;) that appears in Assumptions GMM1(ii)-(v) is

90(0;70) = E’yoei(e) ® Z; = Eyoeo,iw) ®Z, where

oy wy,;(0)(Li(0o) — Li(0)) 9
i) = (Zmo CB) — X!(Cay <2>) €I (1)

The first uniform convergence condition in Assumption GMM1(ii) follows from the

ULLN given in Lemma in Supplemental Appendix D because E, (y;|X;, Z;) =
L;(0p) when the true value is v, = (6o, ¢p)-



When W, (0) is the identity matrix, WW(0;7,) in Assumption GMMI1(ii) also is the
identity matrix. When W, (0) is the optimal weight matrix defined in (2.20]), Assumption
GMM1(ii) holds with

W(O; %) = By (e(0)ei(0)) @ (ZiZ;) = By (Weal0570) © (Z:Z;), where

Weslbit0) = B, (ex(O)es(6) 1) = ( e ) 9:2)

and Wiy ;(0), Wha,(0), and Was ;(0) are defined in — belowﬂ The convergence
condition in Assumption GMMI(ii) holds for the optimal weight matrix W, (#) by the
ULLN given in Lemma [12.] in Supplemental Appendix C.

Now we derive the elements of W, ;(6;7,) in (9.2)). Note that

P.

o (Wi = 1Z;) = Li(6o) and P, (y; = 0|1Z;) = 1 — Li(6y). (9.3)
The upper left element of W, ;(0;7,) is

Whi(0) = By (w1,4(0)* (yi— Li(0))*| Z:) = w1(0)*(Li(00) —2Li(00) Li(0) + Li(6)*). (9.4)
The lower-right element of W, ;(6;7,) is

Wasi(0) = E, (Y — Zi3 — X2 Z:) = 00+ (Z{(By — B) + Xi(Cop0 — (2))% (9.5)

To calculate the off-diagonal term of W, ;(#;,), note that

_ — L6
By (Vo0 = 1) = By (W20 Us > (28370 + Xi610) = o0 g0 and
= = / / Li(6o)
By, (VilZi,yi = 0) = By (Vi Z;, =U; > ZiBymo + X;(1 ) = O L (60) (9.6)

31Note that Wiy (0), Wi2,:(0), and Waa ;(0) all depend on 7,. We omit 7, from these terms for
notational simplicity.



The off-diagonal term of W, ;(6;~,) is

Wia,i(0)
(

— wna(0) {(1 _ Li(e))avpgggE;Liw@ N LZ-(G)JU,O%Q L0y +
wy,i(0) [(1 — Li(0)) Li(0) — Li(0)(1 — Li(00))] [Z{(By — B) + X[(Cap — Co)]
= wi,i(0) [oupLi(00) + (Li(6o) — Li(8)) (Zi(Boy — B) + X{((a0 — ¢a))] - (9.7)

Now we verify Assumptions GMMI(iii) and GMMI1(iv). We write go(6;7,) =
(91.0(0:70)", 920(6370)")' for gjo(057) € R for j = 1,2. We have

92,0(95 ’70)5 = f/E%?i?;é > 0 for { = ((50 - 5)/7 (§2,0 - Cz))I7

where the inequality holds because EA,OZZ-Z is positive definite since P, (726 =0) <1

for any ¢ # 0 by (2.21)). Hence, g2,0(6;7,) = 0 if and only if 3 = 3, and (5 = (5. Now,
for 0 with 8 = B, and (5 = (y,

910(0;70) = By w1,3(0)(Li(00) — Li(0))Z; and Li(0) = L(Z;Bym + X[¢,). (9.8)

If B, # 0, the conditions ¢y o(6;7,) = 0 are more restrictive than the populations first-
order conditions for the standard probit ML estimator for a probit model with regression
function Zf,m+ X/(; (because the latter has the multiplicative factor (Z.f3,, X!)', rather
than Z;). The latter have a unique solution at the true parameter vector because, as is
well known, the population log likelihood function of the probit model is strictly concave.
Hence, g10(0;vy) = 0 only if 7 = 7o and (; = ¢, and Assumption GMM1(iv) holds.
If 5, = 0, then the same argument holds but with the regression function being X/(;,
rather than Z3,m + X/(;. In this case, g10(6;7,) = 0 only if {; = (; ; and Assumption
GMM1(iii) holds.

The partial derivatives g, (6;7,) and go(6;v,) in Assumptions GMM1(v) and GMM1



(viii) are

7iai (G)dh/, Z(?T)/ ZZOJ@(e)dI 1(9)/
0; =K - ’ d go(0; =F — 7 h
gw( ;%) %( Zid'gw and gy (0; o) b ZidIQ’Z' , Where

dhﬂ,i(ﬂ') = (WZiaXi,OdX) c Rdz+2dx’ d21/),z’ _ (ZiaoanXi) c Rdz—f—ZdX7
di,i(0) = (diyi(m), ZiB) € Riz+2dx+1 do; = (day,i,0) € Rz+2dx+1 " and (9.9)
a:(0) = Li(0) + LY(O)(Li(6) — Li(6) _ Li(0)*(Li(6) — Li(6o))(1 — 2Li(6))
Z Li(@)(1 ~ Li(9)) L(0)2(1 — L(0))?

Assumptions GMM1(v) and GMM1(vi) hold by the continuity of w, ;(6) and L;(#) in 6
and the moment conditions in ([2.21)).

Next, we verify Assumption GMM1(vii). To show Apin(W(¢g, 757,)) > 0, Vr € 11,
Vv, € I, we show that for any ¢ = (¢}, &) with ||c|| > 0, W (g, m;7)c > 0, where
c; € R¥xTdz for j =1,2. Let
U; () = w1,:(0)(Ui + Li(6o) — Li(0)). (9.10)

7

For 6 € (¢, ), we have

: : vy \ (v \
W (g, T570)c = € E%( v ) ( v ® Z;4;| c
o By (UF(O)E Z; + Vidy Z,)?| Z5)
= VOE’YO((inl,i(‘g)Cllii + VichZ:)*| Zs), (9.11)

where the inequality holds because E, (w1 ;(0)(Li(0o) — Li(0))c\Z;VichZi|Z;) = 0 a.s.
since B, (V;|Z;) = 0 a.s. and E, ((w1,(0)(Li(00) — Li(0)), Z:)?|Z;) > 0 a.s. The rhs of

(9-11) equals zero only if E, ((Uyw:;(0)c,Z; + VichZ;)*Z;) = 0 a.s. But,
Eyo((inl,i(e)Cllii + ‘/10/271)2|71) >0 (912)

for all Z,; for which 03-71- # 0 for j = 1 and j = 2 because wy;(#) > 0 as., (U, V;) is
independent of Z;, and |Cov(U;, V;)| = |p| < 1. By , P, (¢;Z; # 0 for j = 1 and
j = 2) > 0. Hence, we conclude that ¢W (1, m;7,)c > 0.

In addition, Amax(W (g, ;7)) < o0 because |[|W (g, T:7)|| = [|Egy[We,i(0;70) @
(Z:Z))]|| < oo using - and By (|| Z;]|*"* +wit*) < oo for some € > 0 by (2.21)),
where || - || denotes the Frobenious norm. Thus, Assumption GMM1(vii) holds.
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Assumption GMM1(viii) holds because W(1),, 7;7,) is non-singular V& € II and
9y (g, T3 7Y) has full column rank because Py, (Zic=0) < 1 for all ¢ #0.

Assumption GMM1(ix) holds automatically by the Assumptions on the parameter
space.

Assumption GMM1(x) holds because ¥(7) does not depend on 7 in this example.

9.2. Verification of Assumption GMM2

We verify Assumption GMM2 using the sufficient condition Assumption GMM2*.
Assumption GMM2*(i) holds because ¢;(6) is continuously differentiable in 6. Assump-
tion GMM2*(ii) holds by the ULLN given in Lemma in Supplemental Appendix C.
Assumption GMM2*(iii) holds by the uniform LLN given in Lemma in Supplemen-
tal Appendix D using ||5]|/]|5,|| = 1+ o(1) for 6 € ©,,(0,,) and ||3,,|| # 0 for n large for

{7} € T(vg, 00, wp)-

9.3. Verification of Assumption GMM3

Assumption GMM3(i) holds with

Assumption GMM3(ii) holds because E.g(W;,1*, 1) = E,-eq;(¢*,m) ® Z; = 0 when
pg* =0.

Assumption GMM3(iii) hold by the CLT for triangular arrays of row-wise i.i.d. ran-
dom variables given in Lemma of Supplemental Appendix D. The variance matrix

Qy(10) = By, (es(00)ei(00)) @ (ZiZ;) = W(Bo; o)

. w1, (00)Li(00)  wi,i(60)Li(6o)po, ®<77> (9.14)
0\ wii(00) Li(00)po 72 B

where the second and third equalities follow from (9.2)) and (9.4))-(9.5) with 6 = 6, and
w,i(00)(Li(0o) —Li(00)?) = Li(6o)-



To verify Assumption GMM3(iv), first note that

_ w1 (0)(Li(07) — Li(0)) =
g = 8- (st ) o 19
The derivative of E,-g(W;,0) wrt 5 is
Ky g6377) = E-. ( O e ) (9.16)

V(0,7*) € ©5 x Iy and ¥Yn > 1. This verifies Assumption GMM3(iv)(a). Assumptions
GMM3(iv)(b) and (c) hold with K,(6;7,) = K, 4(8;70)-

To verify Assumption GMM3(v), note that a;(1q, 7) = wy;(00)L}(0y) when S, = 0.
Using and , this yields

diyi(m) T4,
gw(Tbo;W;%) = E¢0Mi(90) < 12, ( ) ) ) Kg(l/)mﬁ%) = EfboMz'(QO) ( OZ, > , where
21,1 7
(00)LN(0)Z; O
My(oo) = | VOO0 Zi Oay ) (9.17)
Od,, Z;

Assumption GMM3(v) holds because (i) M;(6y) has full rank a.s., (ii) doy;S = Z!
for S = (S1,9,,93) € Rizxdxxdx if and only if S} = 14, and S3 = 04, and (iii)
diyi(m)S = moZ; for S = (14,, 52,04, ) if and only if Sy = 04, and 7 = 7.

Assumption GMM3(vi) holds by (9.15), (9.17)), an exchange of “E” and “9,” the
moment conditions in (2.21)), and some calculations. The left-hand side does not depend

on an average over n because the observations are identically distributed.

9.4. Verification of Assumption GMM4

When dz > 1, we do not have a proof that Assumption GMM4 holds. In this case, we
just assume that it does. However, when d; = 1, Assumption GMM4 can be verified by

verifying Assumption GMM4*. In this case, Assumption GMM4*(i) holds automatically.

Using (9.17)), we obtain

7T1ZZ{,7TQZZ{,XZ(,OZI
A (9.18)

dX7

g;(1/}0,771,71'2;70) - E¢0Mi(90) <



where M;(0y) is of full column rank a.s. Assumption GMM4*(ii) holds because Py, (Zc =
0) < 1for ¢ # 0 and 7y # mo. Assumption GMM4*(iii) holds with Q4(7,) = W(6o;7v,) by
(9.2) and (9.14]) because W(y;~,) is positive definite by the verification of Assumption

GMM1(vil) in (@10)-(:12).

9.5. Verification of Assumption GMM5

The verification of Assumption GMM5(i) is analogous to that of Assumption GMM3
(iii). The variance matrix Vy(7,) is equal to Q,4(v,) defined in (9.14)).

Assumption GMMS5(ii) holds with gg(6;7,) in using [|5]]/118,]] = 1+ o(1) for
6 € 0,(0,), ||8,]] # 0 for n large for {,} € I'(v,, 00, wp), and the moment conditions
in ([2.21)).

Assumption GMM5(iii) holds with

dx’

7.0, . X0

dx’

7 X0, 7
T0Zi> iy Z“°> (9.19)

J(0) = E%Mz’(eo)(

using (9.9) and (9.17) and 5,/||5,]| — wo. The matrix Jy(7,) has full column rank
because P¢(7;c =0) <1 forc#0.

9.6. Verification of Assumptions V1 and V2 (Vector 3)

Here we verify Assumptions V1(i)-V1(iii) (vector g) and V2. We do not verify
Assumption V1(iv) (vector 3). However, it should hold because 73(7; 7, b) is a Gaussian

process.
We estimate J(v,) and V(y,) by J, = fn@: ) and V,, = ‘7”@:: ), respectively, where
Tn(0%) = Ton(0 Y Wadyn(0%), Va(0%) = Jyn(0 Y WaVyn(05) Wiy (607,

~ e nZl, X0, Zlw
T8 =7 077 ) e
i=1 77 x’ 77

Vpn(07) = 173 (ei(0)es(0)) @ (ZZ) . (9.20)

i=1



Assumption V1(i) (vector ) holds with

J(9+§’70) = Jg(9+3’70)lw(‘90570)J9(9+;70> and
V(0757) = Jo(07590) W(00;70) Ve (075 70) W (003 70) T4 (073 70), (9.21)

where J,(07;7,) and V,(67;~,) are defined analogously to jg(GJr) and ‘A/g(@Jr), respec-
tively, but with n~*>"" | replaced by E, . The uniform convergence conditions of As-
sumption V1(i) for J,(4") and V,,(6") follow from the uniform convergence of jg,n(HJ“)
and ‘/7g7n(9+) and W,, —, W(0o;7,). The former holds by the ULLN given in Lemma
in Supplemental Appendix C. When W, is the identity matrix, the latter holds au-
tomatically. When W, is the optimal weight matrix that involves a first step estimator
f,, and 6, is based on the identity weight matrix, the convergence in probability of W,
holds by Lemma The assumptions of Lemma follow from Theorems [4.1[(a) and
)

Assumption V1(ii) (vector §) holds by the continuity of M;(6) and e;(6) in 6 and the
moment conditions in ([2.21)).

Assumption V1(iii) (vector 3) holds provided that J(6%;~,) and V(6%;~,) are both
finite and non-singular when 3, = 0. To this end, we need that J,(0%;7,), V,(07;7,),
and W(0;,) are all finite and non-singular. This holds using the forms of these matrices
and P¢(7;c = 0) < 1 for ¢ # 0 by the arguments used in the verifications of Assumptions
GMMB5(iii), GMM5(i), and GMM1(vii), respectively.

Assumption V2 follows from (i) the uniform convergence of jgyn(HJr) and ‘/;:M(GJF),
which holds by the ULLN given in Lemma [12.1{in Supplemental Appendix C, (ii) 5: —p
04 under {v,,} € T'(7q, 00, wp), which holds by Theorem (a) and 3, /|18, || — wo (see
Lemma 9.4(b) of Appendix B of AC1-SM), and (iii) W,, —, W(6o;",), which holds by
Lemma [3.11




10. Supplemental Appendix B: Proofs of GMM

Estimation Results

10.1. Lemmas

This Supplemental Appendix proves the results in Theorems and of AC3.
The method of proof is to show that Assumptions B1, B2, and GMM1-GMM5 imply
the high-level assumptions in AC1, viz., Assumptions A, B3, C1-C8, and D1-D3 of AC1.
Given this, Theorems 3.1 and 3.2 of AC1 imply Theorems[4.1] and [4.2] because the results

of these theorems are the same, just the assumptions differ.

Lemma 10.1. Suppose Assumption GMM1 holds. Then,
(a) Assumption A of AC1 holds and
(b) Assumption B3 of AC1 holds with Q(6;v,) = 90(6;70)W(0;7)90(0;7)-

Under Assumptions GMM1 and GMM2, Assumption GMMS3 is used to show that the
"C" assumptions of AC1 hold for the GMM estimator. As above, W(v;7,) abbreviates
W(Wg, 5 79) When fy = 0.

Lemma 10.2. Suppose Assumptions GMM1-GMM3 hold. Then, the following are true.
(a) Assumption C1 of ACL holds with DyQn(0) = gy(¥g, T 70) W (%o;70)7,(0) and
waQn(Q) = 9w<¢07 ™ 70)/W<¢0§ ’Yo)gw(@%» ™, ”Yo)-

(b) Assumption C2 of AC1 holds with m(W;,0) = gy (g, T 70) W (¥0; 70)9(Wi, 0).

(c) Assumption C3 of AC1 holds with Q(m1,72;79) = gu(Vo, 15 70) W (W05 70) 24(70)

X W(%o: Y0)9v (Yo, 725 70)-

(d) Assumption C4 of AC1 holds with H(m 70) = gw(%, 5 %)'W(%; 70)9111(@/’0’ T, 70) =
Dy Qn(0).

(e) Assumption C5 of AC1 holds with K, (0;7*) = gy(¥g, 75 70) W (g 7o) Kn g(6;7) €
Rdedﬁa and K(@Z’o»W?’Yo) = gw(f/Jo’ ™, 70)/W(¢0§70)Kg(¢0a ™ ’70)-

(f) Assumption CT7 of AC1 holds.

(g) Assumption C8 of AC1 holds.

Comments. 1. To obtain Lemma [10.2(a), Assumption GMMS3 is sufficient but not
necessary. When g, (f) is not a sample average, as occurs with the MD estimator,
Assumption MD can be used in conjunction with Assumptions GMM1 and GMM2 to



obtain Lemma[10.2{(a). In this case, Assumptions C2-C5 of AC1 can be verified directly
without using Assumption GMMS3.

2. Lemma([10.2{(c)-(e) provide the quantities that appear in Assumption C6 of AC1,
which is the same as Assumption GMM4.

Lemma 10.3. Suppose Assumptions GMM1, GMM2, and GMM5 hold.

(a) Assumption D1 of AC1 holds with DQ,(0) = go(0o; o) W(00;7)7,(0) and
D?Qn(0) = 9o (005 70) W (003 70) g6 (003 o)-

(b) Assumption D2 of ACL holds with J(vq) = J4(7)W(00;70) Iy (7o) -

(c) Assumption D3 of AC1 holds with V () = J4(70)' W (80;70) Vy (o) W(80;70) Iy (70) -

10.2. Minimum Distance Estimators

For the MD estimator, Assumption MD can be used in place of Assumption GMM3
to obtain Assumption C1 of ACI.

Corollary 10.1. Assumptions GMM1, GMM2, and MD imply that Assumption C1 of
AC1 holds with DyQ,(0) and DyyQ,(0) defined as in Lemma [10.2{a).

In addition to the result of Corollary [10.1 Lemmas and show that Assump-
tions A, B3, and D1-D3 of AC1 hold for the MD estimator under Assumptions GMM1,
GMM2, and GMMS5. Hence, in order to obtain the results of Theorems 3.1 and 3.2
of AC1 for MD estimators and other results concerning CS’s, one just needs to verify
Assumptions C2-C8 of ACI.

10.3. Proofs of Lemmas

Proof of Lemma Assumption A of AC1 is implied by Assumption GMM1(i).

Assumption GMM1(ii) implies that Assumption B3(i) of AC1 holds with Q(6;~,) =
90(0;70) W(0;70)90(6; 7o)-

Now we verify Assumptions B3(ii) and B3(iii) of AC1 by using Lemma 8.1 in Ap-
pendix A of AC1-SM, which shows that Assumption B3* of AC1-SM is sufficient for
Assumptions B3(ii) and B3(iii) of AC1. Assumption B3*(i) of AC1-SM holds by Assump-
tions GMM1(v) and GMMI1(vi). Assumption B3*(ii) of AC1-SM holds by Assumptions
GMM1(iii) and GMM1(vii). Assumption B3*(iii) of AC1-SM holds by Assumptions
GMM1(iv) and GMM1(vii). Hence, Assumption B3 of AC1 holds. [

10



We prove Lemma first and then prove Corollary and Lemma [10.2]

Proof of Lemma We start with the proof of part (a). For notational simplicity,
in this proof go(6; 7o), 9605 70), 95(0; 7o), and W(0;7,) are abbreviated to go(6), go(0),
gy(6), and W(6), respectively.

We start with the case in which W,(0) = I;. When D@, (6,)) and D?Q, (,,) take

the form in Lemma [10.3(a), the remainder term in Assumption D1 becomes
B3, (0) = 19, (O)° /21190 (01" /2~ 7,,(02) 96(80) (0 —6,) | 90(60) (6 — 6,)[I” /2. (10.1)
We approximate R () by replacing go(0o)(0 — 0,,) by go(0) — go(6,,) and get

RY(0) = 19,01 /2 = 150 /2 = G(00) (90(0) — 90(0n)) = ll90(8) — go(0n)[I” /2.
(10.2)
Let a, ¢, and d be k—vectors for which a = ¢ + d. By the Cauchy-Schwarz inequality,

[llall® = llel*| = [dl* + 2¢d| < [|dlf* + 2le] 1] - (10.3)
Let a = go(0) — go(0,) and ¢ = gy(6o)(6 — 6,), then

d=a—c= 90(6) - gO(Qn) - 99(00)(0 - Qn)
= [(90(0%) — 90(60)) B~ (8,)]B(8,)(8 — 0,) = o(|| B(3,) (8 — 0,)|), ~ (10.4)
where the first two equalities hold by definition, the third equality follows from element-
by-element mean-value expansions, where 9; is between 6 and 6,, (and HIL may depend

on the row), and the last equality follows from Assumption GMM5(ii). By Assumptions
GMM5(ii) and GMM5(iii),

¢ = go (00) (0 —0,) = [g0 (00) B~ (8,)] B(8,) (0 —0,) = O (| B(8,) (0 —0)]])-
(10.5)

11



Hence,

p MIELO) — R 0)
seonton 1L+ 12 B(B,)(0 = 8]

. 12g,(01)'d + [lg0(8) — go(0) 1" = Ilga(Bo) (6 — 6:)|°] (10.6)
2 9c6.,(52) (L+ 02 B(B,)(0 — 6n)]])? '
1

S g, n (209 @)+ l1dl* + 2 el 1dl) /(1 + 02 B(8,)(0 = 6.)])* = 0, (1),

where the first equality follows from and , the inequality holds by ,
and the second equality uses , , and g, (0,) = O,(n"'/?), where the latter
holds by Assumption GMMS5(i). Thus, it suffices to show that Assumption D1(ii) holds
with R (6) replaced by R} (6).

Note that

RL(0) = 3.(0)" /2 = 113, (62) + 90 (8) — 90 (6:)]" /2
= [192(8) = 3u(0:)11” /2 + (90(8) = 90(8) + o (8))' (G(6) — Gu(62)), (10.7)

where the first equality follows from and the second equality uses ||a|® — ||c||* =
la — c||*+2¢ (a—c) with a = g,, (8) , ¢ = G,,(6n) +90(0)—g0(6,), and a—c = G,,(6) =G (6)-
We have s i~ B
I A ACA
" 00, (5,) 1 + n'/2(|B(B,)(0 — 6,)|l
where the o, (1) term holds by Assumption GMM2(ii). By (10.7), (10.8)), and the triangle

inequality,

—0,(1), (10.8)

2n|RT(9)|
sup
6e0n(n) (14 012 ||B(B,)(0 — 6,)])
12 [|go(8) — go(6) || + n72|[7, (6)]]
<212 sup n AL
T T2 ety s 1+n1/2 BBYO—0)
= 77% + Op<1)77n = Op(l)v (10‘9)

where the first equality holds because g, (6,) = O,(n"*/2) and |go (8) — go (0,)|| =
O(||B(B,,)(8 — 6,)||) uniformly on O, (0,). To see that the latter holds, element-by-

12



element mean-value expansions give

90 (0) = g0 (0) = (96(0}) B~ (8,)) B (B,,) (0 = 0n) = (Jy(9) +0(1)) B(5,) (0 = 0)
(10.10)
where 9; lies between 6 and 6,, and the last equality follows from Assumptions GMM5(ii)
and GMM5(iii). This completes the proof of Lemma [10.3(a) for the case in which
W, (0) = Ij.

Next, Lemma [10.3{(a) is established for the case where W, (0) is as in Assumption
GMM1. By Assumptions GMM1(ii) and GMM1(vii), we know that W, () is symmetric
and positive definite in a neighborhood of 6. Hence, both W(0) and W, () have square
roots, denoted by W'/2(6) and we/ 2(¢9), respectively. The idea is to use the same proof
as above, but with g,(6), go(6), and gs(6o) replaced by Wi'%(0)g.,(6), WY2(00)g0(0),
and W*'2(6,)ge(6y). With these changes, R*(6) in becomes

R (0) = [IW2(0)gn ()1 /2 = [IW,/2(02)7, (0)1 /2 — (10.11)
Tn(02) W,/?(0) W2(00)g0(00)(0 — 0) — VY2 (60) 96(00) (0 — 0.,)[* /2.

To show the condition in Assumption D1(ii) holds for R* (#), the method used for the
case W, (8) = I works provided that Assumptions GMM2(ii) and GMM5, which are
used in the foregoing proof, hold with the same changes. Assumption GMMS5 obviously
does with V, (v,) and J,, (7,) adjusted to W2 (0y) V,, (7o) WY2 (0y) and W2 () J, (7o)
respectively.

We now show Assumption GMM2(ii) also holds with the changes above. For 6 €
On(0n);

W72 (0) 7, (0) = W2 (86) g0 () = W,/ (0) G, (02) + W2 (60) go (0:) ||
< AV (00) 1110 (0) = 3a (@) | + IV (0) = W2 (00) || 1, (0) = G, (02)I] +
(

W72 (0) = Wo/? (0.) 1] 117, (0)
< O 1) [19(0) = gn(0n) ]| + 0p (1) (119n(0) = (0| + 1190 (6) — go (0)]]) +

0p (1) 117, (0n) (10.12)
= 0p(n~""? ee?;i%n)“ +n'2[[B(8,)(0 = 0.)I1) + O (II(B (B,) (0 0.))II) = 0p(1),

where the first inequality follows from adding and subtracting W2 (6,) g, (6),
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W2 (04) 3, (6,), and Wi/? (0) 7, (0,) and invoking the triangle inequality, the second
inequality holds by Assumptions GMM1(ii), GMM1(vi), and GMM1(vii), the first equal-
ity holds by Assumption GMM2(ii), (10.10), and g, (6,) = O,(n~/?), and the second
equality holds by the definition of ©,(d,) and B(8,). By (10.12), the condition in
Assumption D1(ii) holds with R*(#) changed to R:*(0).

When the random derivative matrices take the form in Lemmal[10.3|(a), the remainder

term in Assumption D1(i) is

Ry, (0) = [Wa"2(0) 3, (0)]12 /2 = [IW,/2(00) G (0u)I?/2 = G, (82) W (60) 90(60)' (6 — 6) —
[IW2 (6) go(60) (6 — 6,,)][/2. (10.13)

We now show the difference between R} (0) and R*(#) in (10.11)) is small enough so
that the condition in Assumption D1(ii) holds for R (f) provided it holds for R* (6).
For 0 € ©,,(6,),

[R5, (0) — Ry (0) | = [9,,(60) W,/ (6) = W2 (66)) W2 (60) g6 (60) (6 — 6,,)]
< [Go (0] - (VA2 (62) = W2 (60) || - [IW (6) || - || 90(B0) B (B,)]) -
1B (8,) (6 — 6.l
= 0p(n 2| B(B,) (6 = 0,)]) = 0,(1), (10.14)

where the second last equality holds by Assumptions GMM1 and GMM5. This completes
the proof of part (a).

Part (b) follows from part (a) and Assumptions GMM5(ii) and GMMB5(iii).

Part (c) follows from part (a) and Assumptions GMM5(i)-(iii). O

We now prove Corollary and then use Corollary to prove Lemma [10.2]

Proof of Corollary [10.1l The proof is analogous to the proof of Lemma [10.3(a)
with (i) DQ, (6,) and D?Q,, (6,,) in Lemma m(a) changed to DyQ, (¢, T) and
D@y (Yo, m) in Lemma [10.2(a), (ii) R;(6) changed to R, (¢, ), (iii) 6, and § — 6,
changed to (v, 7) and ¢ — ¥ ,, (iv) g (-) changed to g,(-), where as above gy(-) and
gy(+) abbreviate gg(+;7,) and g, (+;7,), respectively, (v) B(3,) and B~'(3,) deleted
throughout, (vi) 6 changed to (w&n(ﬂ),ﬂ) with wg,n(ﬂ) between ¢ and ), (vii)
0 € O, (d,) changed to ¢ € W (7) and |[¢) — 1y, || < 6, and (viii) O, (1) and o, (1)

changed to O,:(1) and 0,,(1), where the uniformity over II usually holds using the com-
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pactness of I1, and (ix) W (6p) changed to W(v; 7,). Note that Assumptions GMM3(iii)
and MD hold with 7, replaced by 7 V& € IT under Assumption GMM1(i). The assump-
tions that are referenced in the proof also are changed accordingly. Specifically, the
proof goes through with Assumption GMM2(ii) changed to Assumption GMM2(i), As-
sumption GMM5(i) changed to Assumption MD, Assumption GMM5(ii) changed to the
continuity of gy (0, 7) uniformly over II, which is implied by Assumption GMM1(vii) and
the compactness of II, and Assumption GMM5(iii) changed to the continuity of g, (f).
(The assumption that .J,(v,) has full column rank is not used in the proof of Lemma
10.3(a).)

Assumption C1(iii) follows from the form of Dy@Q,(0) and Dy;Q,(0) in Lemma [10.2]
and Assumption GMM1(i). O

Proof of Lemma First we prove part (a). Under Assumption GMM3, we can
show Assumption MD holds using a proof that is similar to the proof of Lemma 9.1 in
Appendix B of AC1-SM with (i) DyQ, (v, ) changed to g, (¢g,,7), (ii) m (W;,0)
changed to g (W;, 0), (iii) Assumptions C2, C3, and C5 of AC1 changed to the corre-
sponding conditions in Assumptions GMM3. By Corollary [10.1] Lemma [10.2{(a) holds
under Assumptions GMM1-GMMS3.

Part (b) follows from part (a) and Assumptions GMM3(i) and GMMa3(ii).

Part (c) follows from part (b) and Assumptions GMM1(i) and GMM3(iii).

Part (d) follows from part (a), H(m;7y) = Dyyp@n(¢g,,, 7), and Assumption GMM1
(viii).

Part (e) follows from part (a) and Assumption GMM3(iv).

Now we verify part (f). Note that when 5, = 0 as in Assumption C7, K (¢, 7;7,)
does not depend on 7 by Assumptions GMMI1(i) and GMM3(i). Given the form of
H(m;7,) and K(7;7,) in parts (d) and (e), for any 7 € II,

WK (7570) H (570 K (0570 )wo = Y/ X (m) (X (7)' X (7)) ' X (7)Y < Y'Y, where
X(m) = WI/QWJOQ Y0) 9y (Yo, ™5 70), ¥ = W1/2(¢0§%)Kg<¢07 ;%0 )Wo, (10.15)

and Y does not depend on 7. The inequality in holds because X (7)(X (7)' X (7)) ~*
X (7)" is a projection matrix. The inequality holds as an equality when W'2(1)y;7,)
X Ky(10, T3 70)wo = WY2(10;70) 9w (g, T3 79)S for some S € R¥. By Assumptions
GMM1(vii) and GMM3(v), the inequality in holds as an equality iff 7 = 7.

This completes the verification of Assumption C7.
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To verify Assumption C8 as in part (g), we have

0

a_ME’YnDTZ}Qn(l/}n’ 7Tn) = g?ﬁ (¢07 Tns VO)IW(I/)Oa ’70) E’yngn(en)

0
o’
"0
= 9y(¥o, Tn; 7o) W (%05 7o) (n_l Z a_q//Evng(Wi, en))
=1
— gy (005 70) W (W03 Y0) 9% (805 7o) = H (705 70), (10.16)

where the first equality holds by Lemma M(a), the second equality holds by Assump-
tion GMM3(i), the convergence holds by Assumption GMM3(vi) and the continuity of
9u(0;7) in 7 in Assumption GMM1(v), and the third equality holds by Lemmal[10.2{(d).
Il

10.4. Proofs of Section 3 Lemmas
Proof of Lemma By the triangle inequality,
HWn@n) - W(‘90570>H < HWn(gn> - W(gn?’)/O)H + HW(@L;%) - W(%?’YO)” , (10.17)

where the first term on the rhs is 0,(1) because W, (6) converges to W(#;~,) uniformly
over ©. When f, # 0, the second term on the rhs of (10.17)) is 0,(1) because W(6;,)

is continuous in # and 6, — 0p. When 3, = 0, to show the second term on the rhs of

(10.17)) is 0,(1), we have

W (05 70) = W(Bo; 7o)

S HW(EnJﬁnMVO) - W(¢07ﬁn7’70)|| + ||W(’¢07ﬁn770) - W(wmﬂ'o;%)”
< Slelg ”W(_m 5 %) — W(tbg, m; 70)“ ) (10.18)

where the first inequality holds by the triangle inequality, and the second inequality
holds because W(1),, 7;,) does not depend on m when (3, = 0, which in turn holds
by Assumptions GMM1(i) and GMM1(ii). The third line of is 0,(1) because
b, —p o and W(, m,;7,) is continuous in ¢ uniformly over m € II, where the latter

holds because W(6;,) is continuous in § and II is compact. This completes the proof.
0

Proof of Lemma First we show that Assumption GMM2(ii) holds under As-
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sumption GMM2*. For 6 € ©,(4,),

" " 0
Gn(0;70) — Gu(0n; 7o) = wgn(ﬁl; Vo) (0 — 0,,)

= (I (8h70) ~ (Ol B(5,)) B30 - 0,
= o,(11B(B,)(0 — 01, (1019)

where the first equality holds by element-by-element mean-value expansions with 6’2
between 6 and 6, (and ! may depend on the row), the second equality holds by the de-
finition of g,,(0,v,), and the last equality holds uniformly over 6 € 6,,(d,,) by Assumption
GMM2*(iii). Assumption GMM2(ii) follows from (10.19) using the "||B(3,)(0 — 6,,)|]"
part of the denominator in Assumption GMM2(ii).

The proof for Assumption GMM2(i) is analogous to the proof of Assumption
GMM2(ii). For o € ¥(nm) : || — || < 0,

N N 0
In(V,7570) = Gn(Vo 0, T570) = <a—wgn(w$,n(ﬂ), %) — G (Wb (1), ’Yo)) (¥ — g,

= Om(||¢—¢o,n|’)a (10.20)

where the first equality holds by element-by-element mean-value expansions with w&n(w)
between v and 1), (and ¢$n(ﬁ) may depend on the row), and the second equality holds
uniformly over ¢ € W(r) : [[¢p — y,,|| < 0, by Assumption GMM2*(ii). Assumption
GMM2(i) follows from using the "||1) — 1, ||" part of the denominator in As-
sumption GMM2(i). O

Proof of Lemma Assumption GMM4 is the same as Assumption C6 of ACI.
Hence, it suffices to verify the latter. We verify Assumption C6 of AC1 by verifying the
sufficient condition Assumption C6** given in Lemma 8.5 in Appendix A of AC1-SM.
Because [ is a scalar, it remains to show Assumption C6**(ii) of AC1 holds. By Lemma

10.2(c), the covariance matrix Qg (71, T2; o) in Assumption C6**(ii) is

Qa(m, m2570) = 922(1%77T177T2;%),Qg(70)922(¢07ﬂ177T2;%>,= where
Qy(70) = WI(W0; 70)24(70) W (%0 70) (10.21)

and ,(7,) does not depend on 7; and 7, by Assumptions GMM1(i) and GMM3(i).
Because g;, (1o, 71,725 7) € R¥*dc+2) and k > dy > d; + 2, Assumption C6**(ii) is
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implied by Assumptions GMM1*(vii), GMM4*(ii), and GMM4*(iii). O

11. Supplemental Appendix C: Proofs for Wald Tests

11.1. Proofs of Asymptotic Distributions

Most of the results in Section [l of AC3 are stated to hold under some combina-
tion of Assumptions GMM1-GMMS5 or under certain assumptions from AC1 (plus some
other assumptions). We prove the results of this section using the stated assumptions
from AC1. Lemmas in Supplemental Appendix B show that the appropriate
combination of Assumptions GMM1-GMMS5 imply the corresponding assumptions from
AC1.

Proof of Lemma (i) When df = d,, nn(/én) = 0 by definition in (5.10).
(ii) When d, = 1, df = 0 or d% = 1 by Assumption R1(iii). If df =1, nn(b\n) =0
by definition in (5.10). If df = 0, r,(0) = 0 for # € ©5 by Assumption R1(iii). By the

mean-value expansion, we have

TV Tn) = TV, ) = TPy, T) (T — T0), (11.1)

where 7, is between 7, and m,. For n large enough that ||3,|| < §, (¢,,,7,) € ©s and
Tx(¥,, Tn) = 0, which implies nn(gn) = 0,(1).

(iii) From (11.1)), we have

0(0,) = n'2A1(0,) 15 (1, Tn) T — 7). (11.2)

o~

Under Assumption R2*(iii), A;(6,)7(¢,,, T,) —, 0 because the column space of 7, (6)
is the same for all § € O, by definition the rows of A;(f) are in the null space of ()’
VO € Os, and 9, € ©; holds with probability that goes to one by Lemma 3.1(a) of AC1

using Assumptions A and B3(i)-(ii) of AC1. This gives the desired result. [J

Proof of Lemma Under Assumption Ry, 79(f) = R V0 € © and R has full row
rank. Assumption R1 is satisfied directly. Moreover, under Assumption Ry, r.(#) does
not depend on #. This implies Assumption R2*(iii), which is a sufficient condition of
Assumption R2 by Lemma [5.1] O

The proof of Theorem |5.1| below uses the following Lemma. Define &,, = En /| |Bn||
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Lemma 11.1. Suppose Assumption V1 (vector B) holds. In addition, suppose Assump-
tions GMM1-GMM4 hold (or Assumptions A, B1-B3, and C1-C8 of AC1 hold).

(a) Under {v,} € I'(7,,0,b) with ||b]| < 0o, &p —4 w*(7* (7, b); Vo, b)-

(b) Under {~,} € I'(7,,00,wp), Wy, —p wo.

Proof of Lemma [11.1} To prove Lemma [11.1](a), we have

oy (10, 70.b)
Gn = n'28, /||n*?B, || — 73(m" (0, 0); Yo, = w*(7*(79,0); Yo, 11.3
ol = e Gy — T D080 L9)

by the continuous mapping theorem, because n'/ QBn —a T3(T* (79, b); 79, b) by Theorem
[.1](a) and Comment 2 to Theorem [d.1a) and P(74(7*;7,,b) = 0) = 0 by Assumption
V1(iv) (vector ).

Next, we prove that Lemma [I1.1(b) holds when 3, = 0. By Lemma 3.4 in AC1,
1,11~ (B — B,) = 0,(1). This implies that 3, = 5, + [|8ulop(1) and [[B,]1/115,]] =
1+ 0,(1). Hence,

o Bu B BulBull B 1Bl

AT AT = : 11.4
SRR /% NI AT (11.4)

Under {7, } € I'(vy,00,wp) with 5, # 0, &, — wy by the continuous mapping
theorem given that 3, —p B¢ by Lemma 3.3(b) in AC1. O

Proof of Theorem Under the null hypothesis Hy : 7(6,,) = v,, the Wald statistic
defined in (5.2)) with v = v,, becomes

A~

W, = n(r(0,) — 7(0,)) (ro(0) B~ (8,) S, B~ (B,)re(0,)) " (r(0,) — 7(0,)).  (11.5)

Before proving the specific results in parts (a) and (b), we analyze the Wald statistic

under {7, } € I'(7,,0,b). With the rotation represented by A(#,), the Wald statistic in

(11.5) can be written as

~

Wi = n(r(6,) — 7(0,))A0,) (rs (0) B (B,) S0 B~ (B, ) (0.)) YA0,) (r(8,) — 7(6,))-
(11.6)

To deal with the normalizing matrix B‘l(gn), part of which diverges as n — oo and
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B, — 0, we define a d, x d, matrix

wa oy | Lde-d) 0
B*(B,) = [ 0 (Bl ] (11.7)

where () = [ when [ is a scalar and «(3) = ||5|| when [ is a scalar . We write the

Wald statistic in ((11.6)) as

W, = 0(0,) (70(0,) 5,70 (0,)) " 0(0,,), where (11.8)

0(0,) = n'/2B*(B,)A(0,)(r(0,) — r(8,)) and T4(8,) = B*(B,)r" (0.)B'(5,,).

Note that
_ & T*(én) 0 R 0 0
"o en - Aw N ~ :T; en ~ ~ = Op
R RCAETCS 7"??<9n>] SR IE AT o] 0] o)

—_

(11.
where the 0, (1) term holds because u(B,) = op (1) under {7, } € I'(7,0,b) and ry, 0(6,)
O,(1) under Assumption R1(i).

The next step is to derive the asymptotic distribution of Q(An) under {7,,} € I'(7,,0,0).
Note that

©
~~

T@ﬂ) —7(0n) = (¥, Tn) — 1V, Tn) + 1Yy, T0) — 7(10y, T0)
= T¢(‘9n)(¢n - ¢n) + (T<wn7 %n) - T(¢n7 7Tn)) + 01)(”_1/2)’ (1110)
where the first equality is trivial and the second equality holds by a mean-value expan-

sion, ¥, — 1, = O,(n~Y?), and Assumption R1(i). From (11.7) and A(9) = [AL(6) :
AL(9)], we have

~ 1/2141(9 (r (An) —7(0n)) _ ) 0 where
o(b) = nl/2 (ﬁ )Az(/@\ )(T@\n) —r(6,)) > 01(0n) + 05(0) + 0, (1), wh
) — nM2 s 0)r o (0.) (B — ) )
e nl/%(ﬁn)Az(@n)(?“(%ﬁn) - 7“(%, Wn)) ’
. 7, (0n) _( m.02)
%(f) = nl/%<Bn>Az<9nm<5n>@n—zm) < 0p (1) > R
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the second equality in Q(b\n) uses , and the o, (1) term associated with 92([9\”)
holds by n'/2(1h, — ¢,,) = O,(1) and (8,) = o0,(1) under {7,} € T'(y,,0,b). Under
Assumption R2, nn( n) = 0, (1), and, hence, QQ(/Q\n) =0, (1).

In part (a), in which case {v,,} € I'(74,0,b) and ||b|| < oo, we have

B, (7,)72(7,), where
TA(7T) = ( 12(& (), m)n 1/2< V() — ¥y,) > and
" A (Y (), ) (r (b, ) — (4, )

I —a) N . (11.12)
0 L(nl/25n<7'r))]d;

Using Assumption R1(i), Lemma 3.1(a) of AC1, Lemma 9.2(b) in Appendix B of AC1-

),
SM, and 7,(7) = n'2(¥, (1) — ) = 7(7;70,b) in (9.21) of AC1-SM, we have

(ﬂf(') ) N ( T (:70:0) ) (11.13)
B(+) B(-;70,b)

under {v,,} € I'(v,,0,b) with ||b|| < co. From (11.8)), (11.9)), (11.11)), and ((11.12)), in the

case of a scalar 3, we have

W = 72 Fa) Bu(7) (1 (0,) 25 (00)) " Bu(Fa) 70 (7) + 0, (1)
= )\n</ﬂ\-n) + Op(l) —d )‘(ﬂ-*<707 b)7 Yo> b)v (1114)

where \,(7) is defined implicitly, S, = 3,(6,) = J(60) "V, (6,) ] (6,,) ! by Assump-
tion V1 (scalar ), and the convergence follows from the joint convergence (A, (+), 7,) =
(A(+579,b), ™ (70, b)) and the continuous mapping theorem. The latter joint convergence
holds by (11.13)), Assumptions V1 (scalar 3) and R1, Theorem [4.1f(a), the uniform con-
sistency of @n(ﬂ) over 7 € II, and the fact that 72(-), B,(-), and 7, are continuous
functions of the empirical process G, (-) with probability one.

In the case of a vector 3, (11.14) holds with in(gn) replaced by in@:) =J- 1(/9\: )

v, (5: ), _1(52) using Assumption V1 (vector 3) and with A\, (7,,) replaced by A\, (7, @,,),

n

which is defined implicitly. In this case, the convergence in follows from the joint
convergence (A, (+), Tn,Wn) = (A(570:0), 7 (70, b), w*(7* (70, ); 70, b), which holds by
the same argument as above plus Lemma [I1.1|(a) and Assumption V1 (vector ). This
completes the proof of part (a).
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The proof of part (b) is the same for the scalar and vector 3 cases because it relies on
Assumption V2 which applies in both cases. To prove part (b), we first analyze the case
where {7,} € I'(v,,00,wp) and B, = 0. In this case, {v,} € I'(7,,0,b) with b ¢ R% so

(11.6)-(11.11) apply. As in (5.1), B(vg) = J " (70)V (70) 7 (7o) We have

5 0205 (00) (W — )
pith) = (n”%m As(0r)(r <@n>+op< 1) (@x —m)
_ ( 0213 00) (D~ ) )
n20(8,) Ao (07w (0) (R — m0) + 0 (1)
— r5(6,)n*B(8,) (0, — 0,) + 0,(1)
—a N (0,75(00)Z(7)r5(6o)). (11.15)

where the first equality holds by a mean-value expansion, the fact that 7, is consistent
under {v,,} € ['(vy, 00, wp), and the continuity of r,(f) which holds by Assumption R1,
the second equality holds by n'/2(3, — 3,) = O,(1) and ||8,|[n*/2(F, — m,) = O,(1)
under {~,} € T'(vy,,00,wp), the third equality holds by the definitions of B(f) and
r3(0), and the convergence in distribution holds by Theorem [4.2(a). The result of part
(b) follows from ((11.8)), (11.9)), (11.11]), (11.15)), and Assumptions D2 and D3(ii) of AC1
and Assumption V2.
Under {v,,} € (v, 00,wp) and B, # 0,

n!2(r(0) — 7(0,)) —a N(0,76(00) B (B0)S(70) B~ (By)r6(00)') (11.16)

by Theorem [£.2|(a) and the delta method. By Assumptions R1(i) and V2,

~

ro(0n) B~ (B,) S0 B (B,)r0(0n) —p 10(00) B~ (80) % (v9) B~ (Bo)ra(6o).  (11.17)

The desired result follows from ((11.5)), (11.16]), and (11.17). O

Proof of Corollary By Lemma [5.2] Assumption R2 is satisfied. Based on
Theorem [5.1}, it suffices to show that the stochastic process {\(m;7y,b) : 7 € II} can be
written as {Ar(m;70,b) : m € II} under Assumption Ry. Under Assumption Ry, 74(f),
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A(#), and r;(0) do not depend on 6, and, hence,

TA(7T;’70,b) — ( TZT(W;7076) ) — < TZT(W;70>6> ) _ R*?(ﬂ';’}/o,b). (11.18)

Aoty - (T — o) r¥ - (m—mo)
The desired result follows from (11.18) and rj(7) = R* Vr € 1. O

Proof of Theorem From the proof of Theorem , we know that o, (/6’\n) = 0,(1)
under {7,} € T'(v,,0,b). Therefore, when ||n, (6,)|] —, 00, it follows from ((11.11)) that

||Q(§n)|| —,, 00. This result, together with 1} , and Assumptions R1 and V1,
completes the proof. []

11.2. Proofs of Asymptotic Size Results

Proof of Theorem The proof is the same as the proof of Theorem 4.4 of ACI,
which is given in Appendix B of AC1-SM, but with |T},|, |T'(h)|, and z,_,/2 replaced by
W, W(h), and Xflhlfa, respectively; with Theorem 4.1 of AC1 replaced by Theorem
b.1} and with Assumption V3 of AC1 replaced by Assumption V4. OJ

Proof of Corollary By Theorem P, (Wy < X3 1-a) —p 0 under {v,} €

o~

I'(79,0,b) for which ||n, (6,)|| —, oo. As a result, the nominal 1 — o Wald CS has
AsySz = 0 by the definition of asymptotic size. [

Proof of Theorem The proof of Theorem [5.4]is the same as the proof of Theorem
5.1 of AC1, which is given in Appendix B of AC1-SM, but with |7}, |T'(h)|, and z1_4/2
replaced by W,,, W(h), and x3 ,_,, respectively; with C\Ltﬂ—a’ Cij1-alh), ... replaced by
1—a> cwi—a(h),... throughout; with Theorem 4.1 of AC1 replaced by Theorem
and with Assumption V3 of AC1 replaced by Assumption V4. [

12. Supplemental Appendix D: Uniform LLN
and CLT

In this Supplemental Appendix, we state a uniform convergence result, a uniform
LLN, and a CLT that are used in the verification of Assumptions GMM1-GMMS5 in the
two examples considered in the paper. Specifically, Lemma/12.1]is a uniform convergence

result for non-stochastic functions, Lemma is a uniform LLN, and Lemma is a
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CLT. The latter two results are for strong mixing triangular arrays. These are standard
sorts of results. The proofs of these Lemmas are given in Appendix A of Andrews and
Cheng (2011).

Lemma 12.1. Let {g,(0) : n > 1} be non-stochastic functions on ©. Suppose (i)
Qn(9> — 0Vl e @7 (H) an(91> - qn(92>H <9 v91792 € © with H91 - 92” < (57 Vn > 17
for some C' < 0o and all 6 > 0, and (iii) © is compact. Then, supgee ||2.(0)|| — 0.

Assumption S1. Under any v, € I', {W,; : i > 1} is a strictly stationary and strong
mixing sequence with mixing coefficients ., < Cm~4 for some A > dyq/(q — dy) and
some q > dy > 2, or {W; :i > 1} is an i.i.d. sequence and the constant ¢ equals 2 + ¢

for some § > 0.

Lemma 12.2. Suppose (i) Assumption S1 holds, (ii) for some function M;(w) : W —
R* and all § > 0, ||s(w,81) — s(w,0)|] < My(w)d, V01,05 € © with ||0; — O] < 6,
Yw e W, (iil) E, supgee ||s(Wi, 0)||* + E,M;(W;) < C Vy €T for some C' < oo and
e > 0, and (iv) © is compact. Then, supyeg ||n~' >0, s(W;,0) — E, s(W;,0)]] —, 0
under {7, } € I'(7q) and E, s(W;,0) is uniformly continuous on © Vv, € I.

Comment. Note that the centering term in Lemma is E, s(W;,0), rather than
EA/nS(WZ‘, 9)

Lemma 12.3. Suppose (i) Assumption S1 holds, (ii) s(w) € R and E,|s(W;)|? < C
Vy € T for some C < oo and q as in Assumption S1. Then, n=Y/23 "  (s(W;) —
E,, s(Wi)) —a N(0,Vi(v,)) under {v,} € T'(v,) Yy € T, where Vi(vo) = X0
Coty(s(W3). sWisn)).

13. Supplemental Appendix E: Numerical Results

Here we report some additional numerical results for the nonlinear regression model
with endogeneity.

Figures S-1 and S-2 report asymptotic and finite-sample (n = 500) densities of the
estimators for § and m when 7y = 3.0. Figures S-3 to S-6 report asymptotic and finite-
sample (n = 500) densities of the ¢ and QLR statistics for § and = when my = 1.5.
Figures S-7 and S-8 report CP’s of nominal 0.95 standard and robust |¢| and QLR CI’s

for # and 7 when m, = 3.0.
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Figure S-1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of 3 in
the Nonlinear Regression Model with Endogeneity when 7y = 3.0.
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Figure S-2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of 7 in
the Nonlinear Regression Model with Endogeneity when 7o = 3.0.
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Figure S-3. Asymptotic and Finite-Sample (n = 500) Densities of the ¢ Statistic for
in the Nonlinear Regression Model with Endogeneity when 7y = 1.5 and the Standard
Normal Density (Black Line).
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Figure S-4. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for (3

in the Nonlinear Regression Model with Endogeneity when 7y = 1.5 and the x? Density
(Black Line).
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Figure S-5. Asymptotic and Finite-Sample (n = 500) Densities of the ¢ Statistic for 7
in the Nonlinear Regression Model with Endogeneity when my = 1.5 and the Standard
Normal Density (Black Line).
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Figure S-6. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for 7
in the Nonlinear Regression Model with Endogeneity when 7y = 1.5 and the x? Density
(Black Line).
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Figure S-7. Coverage Probabilities of Standard |t| and QLR Cl's for 8 and 7 in the
Nonlinear Regression Model with Endogeneity when 7o = 3.0.
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Figure S-8. Coverage Probabilities of Robust |¢| and QLR Cl's for $ and 7 in the
Nonlinear Regression Model with Endogeneity when w9 = 3.0, k = 1.5, D =1, and
s(z) = exp(—2x).
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