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This paper determines the properties of standard generalized method of moments
(GMM) estimators, tests, and confidence sets (CSs) in moment condition models in
which some parameters are unidentified or weakly identified in part of the parameter
space. The asymptotic distributions of GMM estimators are established under a full
range of drifting sequences of true parameters and distributions. The asymptotic
sizes (in a uniform sense) of standard GMM tests and CSs are established.

The paper also establishes the correct asymptotic sizes of “robust” GMM-based
Wald, t, and quasi-likelihood ratio tests and CSs whose critical values are designed
to yield robustness to identification problems.

The results of the paper are applied to a nonlinear regression model with en-
dogeneity and a probit model with endogeneity and possibly weak instrumental
variables.

1. INTRODUCTION

This paper gives a set of generalized method of moments (GMM) regularity
conditions that are akin to the classic conditions in Hansen (1982) and Pakes
and Pollard (1989). But, they allow for singularity of the GMM estimator’s
variance matrix due to the lack of identification of some parameters in part of the
parameter space.1 This paper is a sequel to Andrews and Cheng (2012a) (AC1).
The latter paper provides results for general extremum estimators, t tests, and
quasi-likelihood ratio (QLR) tests in the presence of possible weak identification
under high-level assumptions. Here we provide more primitive conditions for
GMM-based statistics by verifying the high-level assumptions of AC1. This
paper provides results for Wald tests and confidence sets (CSs) that apply not
only to GMM estimators but also to other extremum estimators covered by AC1.
This paper also provides some results for minimum distance (MD) estimators,
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tests, and CSs. Lastly, the paper analyzes two specific models that are not
considered in AC1.

Under the conditions given, the asymptotic distributions of GMM estimators
and Wald and QLR test statistics are established. The asymptotic sizes of standard
GMM tests and CSs are established. In many cases, their asymptotic sizes are
not correct. We show that Wald and QLR statistics combined with “identification
robust” critical values have correct asymptotic sizes (in a uniform sense).

In contrast to standard GMM results in the literature, the results given here
cover a full range of drifting sequences of true parameters and distributions. Such
results are needed to establish the (uniform) asymptotic size properties of tests and
CSs and to give good approximations to the finite-sample properties of estimators,
tests, and CSs under weak identification. Nonsmooth sample moment conditions
are allowed, as in Pakes and Pollard (1989) and Andrews (2002).

We consider moment condition models where the parameter θ is of the form
θ = (β,ζ,π), where π is identified if and only if β �= 0, ζ is not related to the
identification of π, and ψ = (β,ζ ) is always identified. The parameters β, ζ, and
π may be scalars or vectors. For example, this framework applies to the nonlinear
regression model Yi = β · h

(
X1,i ,π

)+ X ′
2,iζ + Ui with endogenous variables

X1,i or X2,i and instrumental variables (IVs) Zi . Here lack of identification of
π when β = 0 occurs because of nonlinearity. This framework also applies to
the probit model with endogeneity: y∗

i = Yiπ + X ′
iζ

∗
1 +U∗

i , where one observes
yi = 1(y∗

i > 0), the endogenous variable Yi , and the exogenous regressor vector
Xi and the reduced form for Yi is Yi = Z ′

iβ + X ′
iζ2 + Vi . In this case, lack of

identification of π occurs when β = 0 because the IVs are irrelevant.
We determine the asymptotic properties of GMM estimators and tests under

drifting sequences of true parameters θn = (βn,ζn,πn) for n ≥ 1, where n in-
dexes the sample size. The behavior of GMM estimators and tests depends on
the magnitude of ||βn||. The asymptotic behavior of these statistics varies across
three categories of sequences {βn : n ≥ 1}: Category I(a) βn = 0 ∀n ≥ 1, π is
unidentified; Category I(b) βn �= 0 and n1/2βn → b ∈ Rdβ , π is weakly identi-
fied; Category II βn → 0 and n1/2||βn|| → ∞, π is semistrongly identified; and
Category III βn → β0 �= 0, π is strongly identified.

For Category I sequences, GMM estimators, tests, and CSs are shown to have
nonstandard asymptotic properties. For Category II and III sequences, they are
shown to have standard asymptotic properties such as normal and chi-squared dis-
tributions (under suitable assumptions). However, for Category II sequences, the
rates of convergence of estimators of π are slower than n1/2, and tests concerning
π do not have power against n−1/2-local alternatives. Furthermore, for Category
II sequences, it is shown that Wald tests of certain (rather unusual) nonlinear hy-
potheses can have asymptotic null rejection probabilities equal to 1.0, rather than
the desired nominal size α ∈ (0,1), due to the different rates of convergence of
β̂n and π̂n . This can occur even though β̂n and π̂n are consistent and asymptoti-
cally normal. Conditions are provided under which the asymptotic null rejection
probabilities of Wald tests equal their nominal size for Category II sequences.
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See Armstrong, Hong, and Nekipelov (2012) for some related, but different,
results.

Numerical results for the nonlinear regression model with endogeneity show
that the GMM estimators of both β and π have highly nonnormal asymptotic and
finite-sample (n = 500) distributions when π is unidentified or weakly identified.
The asymptotics provide excellent approximations to the finite-sample distribu-
tions. Nominal 95% standard t confidence intervals (CIs) for β are found to have
asymptotic size equal to 68% and finite-sample size of 72%. In contrast, nomi-
nal 95% standard QLR CIs for β have asymptotic and finite-sample size of 93%.
There are no asymptotic size distortions for the standard t and QLR CIs for π, and
the finite-sample sizes are close to the asymptotic values. However, the CIs for π
are far from being similar asymptotically or in finite samples. The robust CIs for
β have correct asymptotic size. Their finite-sample sizes are 91.5% for t CIs and
95% for QLR CIs for nominal 95% CIs.

To conclude, the numerical results show that (i) weak identification can have
substantial effects on the properties of estimators and standard tests and CSs;
(ii) the asymptotic results of the paper provide useful approximations to the finite-
sample distributions of estimators and test statistics under weak identification and
identification failure; and (iii) the robust tests and CSs improve the size properties
of tests and CSs in finite-samples noticeably compared to standard tests and CSs.

Like the results in Hansen (1982), Pakes and Pollard (1989), and Andrews
(2002), the present paper applies when the GMM criterion function has a stochas-
tic quadratic approximation as a function of θ. This rules out a number of models
of interest in which identification failure may appear, including regime switching
models, mixture models, abrupt transition structural change models, and abrupt
transition threshold autoregressive models.2 This paper applies when the GMM
criterion function does not depend on β when π = 0. This also rules out some
models of interest, such as nonlinear regression models with endogeneity and
(potentially) weak instruments.

Now, we discuss the literature related to this paper. The following papers
are companions to this one: AC1, Andrews and Cheng (2012b) (AC1-SM), and
Andrews and Cheng (2013a) (AC2). These papers provide related, complemen-
tary results to the present paper. AC1 provides results under high-level conditions
and analyzes the ARMA(1,1) model in detail. AC1-SM provides proofs for AC1
and related results. AC2 provides primitive conditions and results for estimators
and tests based on log likelihood criterion functions. It provides applications to a
smooth transition threshold autoregressive (STAR) model and a nonlinear binary
choice model.

Cheng (2008) establishes results for a nonlinear regression model with multiple
sources of weak identification, whereas the present paper only considers a single
source. However, the present paper applies to a much broader range of models.

Tests of H0 : β = 0 versus H1 : β �= 0 are tests in which a nuisance parameter π
only appears under the alternative. Such tests have been considered in the lit-
erature since Davies (1977). The results of this paper cover tests of this sort,
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in addition to tests for a whole range of linear and nonlinear hypotheses that in-
volve (β,ζ,π) and corresponding CSs.

The weak instrument literature is closely related to this paper. This is true
especially of Stock and Wright (2000), Kleibergen (2005), and Guggenberger,
Kleibergen, Mavroeidis, and Chen (2012). In comparison to Stock and Wright
(2000), the present paper differs because it focuses on criterion functions that are
indexed by a parameter β that determines the strength of identification. It also dif-
fers in that it considers subvector analysis. In contrast to Kleibergen (2005) and
Guggenberger et al. (2012), the present paper does not focus on Lagrange multi-
plier statistics. Rather, it investigates the behavior of standard estimators and tests,
in addition to robust tests based on Wald and QLR statistics. Other related papers
from the weak IV literature include Nelson and Startz (1990), Dufour (1997),
Staiger and Stock (1997), Kleibergen (2002), and Moreira (2003).

Antoine and Renault (2009, 2010) and Caner (2010) consider GMM estima-
tion with IVs that lie in the semistrong category, using our terminology. Nelson
and Startz (2007) and Ma and Nelson (2008) analyze models like those consid-
ered in this paper. They do not provide asymptotic results or robust tests and CSs
of the sort given in this paper. Andrews and Mikusheva (2011) and Qu (2011)
consider Lagrange multiplier tests in a maximum likelihood (ML) context where
identification may fail, with emphasis on dynamic stochastic general equilibrium
models. Andrews and Mikusheva (2012) consider subvector inference based on
Anderson-Rubin-type MD statistics.

In likelihood scenarios, Lee and Chesher (1986) consider Lagrange multiplier
tests and Rotnitzky, Cox, Bottai, and Robins (2000) consider ML estimators and
likelihood ratio tests, when the model is identified at all parameter values but the
information matrix is singular at some parameter values, such as those in the null
hypothesis. This is a different situation than considered here for two reasons. First,
the present paper considers situations where identification fails at some parameter
values in the parameter space (and this causes the GMM variance matrix to be
singular at these parameter values). Second, this paper considers GMM-based
statistics rather than likelihood-based statistics.

Sargan (1983), Phillips (1989), and Choi and Phillips (1992) establish finite-
sample and asymptotic results for linear simultaneous equations models when
some parameters are not identified. Shi and Phillips (2011) provide results for a
nonlinear regression model with nonstationary regressors in which identification
may fail.

The remainder of the paper is organized as follows. Section 2 defines the GMM
estimators, criterion functions, tests, and confidence sets considered in the paper
and specifies the drifting sequences of distributions that are considered. It also
introduces the two examples that are considered in the paper. Section 3 states the
assumptions employed. Section 4 provides the asymptotic results for the GMM
estimators. Section 5 establishes the asymptotic distributions of Wald statistics
under the null and under alternatives, determines the asymptotic size of standard
Wald CSs, and introduces robust Wald tests and CSs, whose asymptotic size is
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equal to their nominal size. Section 6 considers QLR CSs based on the GMM cri-
terion function. Section 7 provides numerical results for the nonlinear regression
model with endogeneity.

Andrews and Cheng (2013b) provides five supplemental appendixes to this
paper. Supplemental Appendix A verifies the assumptions of the paper for the
probit model with endogeneity. Supplemental Appendix B provides proofs of the
GMM estimation results given in Section 4. It also provides some results for MD
estimators. Supplemental Appendix C provides proofs of the Wald test and CS re-
sults given in Section 5. Supplemental Appendix D provides some results used in
the verification of the assumptions for the two examples. Supplemental Appendix
E provides some additional numerical results for the nonlinear regression model
with endogeneity.

All limits that follow are taken as n → ∞. We let λmin(A) and λmax(A) denote
the smallest and largest eigenvalues, respectively, of a matrix A. All vectors are
column vectors. For notational simplicity, we often write (a,b) instead of (a′,b′)′
for vectors a and b. Also, for a function f (c) with c = (a,b) (= (a′,b′)′), we
often write f (a,b) instead of f (c). Let 0d denote a d-vector of zeros. Because it
arises frequently, we let 0 denote a dβ -vector of zeros, where dβ is the dimension
of a parameter β.

We let Xn(π) = opπ (1) mean that supπ∈	 ||Xn(π)|| = op(1), where ||·|| de-
notes the Euclidean norm. We let ⇒ denote weak convergence of a sequence of
stochastic processes indexed by π ∈ 	 for some space 	. We employ the uni-
form metric d on the space Ev of Rv -valued functions on 	. See AC1-SM for
more details regarding this.

2. ESTIMATOR, CRITERION FUNCTION, AND EXAMPLES

2.1. GMM Estimators

The GMM sample criterion function is

Qn(θ) = gn(θ)′Wn(θ)gn(θ)/2, (2.1)

where gn(θ) : 
 → Rk is a vector of sample moment conditions and Wn(θ) :

 → Rk×k is a symmetric random weight matrix.

The paper considers inference when θ is not identified (by the criterion function
Qn(θ)) at some points in the parameter space. Lack of identification occurs when
Qn(θ) is flat with respect to some subvector of θ. To model this identification
problem, θ is partitioned into three subvectors:

θ = (β,ζ,π) = (ψ,π), where ψ = (β,ζ ). (2.2)

The parameter π ∈ Rdπ is unidentified when β = 0 (∈ Rdβ ). The parameter
ψ = (β,ζ ) ∈ Rdψ is always identified. The parameter ζ ∈ Rdζ does not affect the
identification of π. These conditions allow for a broad range of cases, including
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cases where reparametrization is used to transform a model into the framework
considered here.

The true distribution of the observations {Wi : i ≥ 1} is denoted Fγ for some
parameter γ ∈ �. We let Pγ and Eγ denote probability and expectation under Fγ .
The parameter space � for the true parameter, referred to as the “true parameter
space,” is compact and is of the form

� = {γ = (θ,φ) : θ ∈ 
∗,φ ∈ �∗(θ)
}

, (2.3)

where 
∗ is a compact subset of Rdθ and �∗(θ) ⊂ �∗ ∀θ ∈ 
∗ for some compact
metric space �∗ with a metric that induces weak convergence of the bivariate dis-
tributions (Wi ,Wi+m) for all i,m ≥ 1.3 In the case of a moment condition model,
the parameter φ indexes the part of the distribution of the observations that is not
determined by the moment conditions, which typically is infinite dimensional.

By definition, the GMM estimator θ̂n (approximately) minimizes Qn(θ) over
an “optimization parameter space” 
:4

θ̂n ∈ 
 and Qn(θ̂n) = inf
θ∈


Qn(θ)+o(n−1). (2.4)

We assume that the interior of 
 includes the true parameter space 
∗ (see
Assumption B1 in Section 3.7). This ensures that the asymptotic distribution of
θ̂n is not affected by boundary restrictions for any sequence of true parameters
in 
∗. The focus of this paper is not on the effects of boundary restrictions.

Without loss of generality, the optimization parameter space 
 can be written
as


 = {θ = (ψ,π) : ψ ∈ �(π),π ∈ 	}, where

	 = {π : (ψ,π) ∈ 
 for some ψ} and

�(π) = {ψ : (ψ,π) ∈ 
} for π ∈ 	. (2.5)

We allow �(π) to depend on π , and hence 
 need not be a product space between
ψ and π.

The main focus of this paper is on GMM estimators, but the results also apply
to MD estimators. However, the assumptions employed with MD estimators are
not as primitive. The MD sample criterion function is defined exactly as the GMM
criterion function is defined in (2.1) except that gn(θ) is not a vector of moment
conditions but rather is the difference between an unrestricted estimator ξ̂n of a
parameter ξ0 and a vector of restrictions h(θ) on ξ0. That is,

gn(θ) = ξ̂n −h(θ), where ξ0 = h(θ0). (2.6)

See Schorfheide (2011) for a discussion of MD estimation of dynamic stochas-
tic general equilibrium models and weak identification problems in these
models.
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2.2. Example 1: Nonlinear Regression with Endogeneity

The first example is a nonlinear regression model with endogenous regressors
estimated using IVs. The IVs are assumed to be strong. Potential identification
failure in this model arises because of the nonlinearity in the regression function.
Let h(x,π) ∈ R be a function of x that is known up to the finite-dimensional
parameter π ∈ Rdπ . The model is

Yi = β ·h
(

X1,i ,π
)+ X ′

2,iζ +Ui and EUi Zi = 0 (2.7)

for i = 1, ...,n, where Xi = (X1,i , X2,i ) ∈ RdX , X2,i ∈ RdX2 , Zi ∈ Rk, and
k ≥ dX2 + dπ +1. The regressors Xi may be endogenous or exogenous. The func-
tion h(x,π) is assumed to be twice continuously differentiable with respect to π.
Let hπ (x,π) and hππ (x,π) denote the first- and second-order partial derivatives
of h(x,π) with respect to π. For example, Areosa, McAleer, and Medeiros (2011)
consider GMM estimation of smooth transition models with endogeneity (which
are nonlinear regression models). In their case h(x,π) involves the logistic func-
tion. They provide an empirical application of this model to inflation rate targeting
in Brazil.

The GMM sample criterion function is

Qn(θ) = gn(θ)′Wngn(θ)/2, where gn(θ) = n−1
n

∑
i=1

Ui (θ)Zi ,

Ui (θ) = Yi −βh
(

X1,i ,π
)− X ′

2,iζ, and Wn =
(

n−1
n

∑
i=1

Zi Z ′
i

)−1

. (2.8)

For simplicity, we use the optimal weight matrix under homoskedasticity.
Alternatively, one can employ the optimal weight matrix under heteroskedasticity
using a preliminary estimator θn . Provided Wn(θ) and θn satisfy the assump-
tions in Lemma 3.1 in Section 3.1, all results hold for this two-step estimator
also. For example, the preliminary estimator θn can be the estimator obtained un-
der homoskedasticity, which is shown subsequently to satisfy the assumptions in
Lemma 3.1.

When β = 0, Ui (θ) does not depend on π. In consequence, Qn(θ) does not
depend on π when β = 0.

Suppose the random variables {(Xi , Zi ,Ui ) : i = 1, ...,n} are independent and
identically distributed (i.i.d.) with distribution φ ∈ �∗, where �∗ is a compact
metric space with a metric d� that induces weak convergence of (Xi , Zi ,Ui ).
In this example, the parameter of interest is θ = (β,ζ,π) and the nuisance param-
eter is φ, which is infinite dimensional.

The true parameter space for θ is


∗ = B∗ ×Z∗ ×	∗, where B∗ = [−b∗
1,b∗

2

]⊂ R, (2.9)

b∗
1 ≥ 0, b∗

2 ≥ 0, b∗
1 and b∗

2 are not both equal to 0, Z∗ ⊂ Rdζ is compact, and
	∗ ⊂ Rdπ is compact.
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Suppose ||hππ (x,π1) − hππ (x,π2)|| ≤ Mππ (x)δ ∀π1,π2 ∈ 	 with
||π1 − π2|| ≤ δ for some nonstochastic function Mππ (x) : X → R+ that
satisfies the conditions in (2.11) later in this section, where δ is some positive
constant and X denotes the union of the supports of X1,i over all φ ∈ �∗. Define

di (π) = (h (X1,i ,π
)
, X2,i ,hπ

(
X1,i ,π

)) ∈ RdX2+dπ+1 and

d∗
ψ,i (π1,π2) = (h

(
X1,i ,π1

)
,h
(

X1,i ,π2
)
, X2,i ) ∈ RdX2+2. (2.10)

Let Eφ denote expectation under φ. For any θ∗ ∈ 
∗, the true parameter space for
φ is

�∗(θ∗) =
{

φ ∈ �∗ : EφUi Zi = 0, Eφ(U 2
i |Xi , Zi ) = σ 2(Xi , Zi ) > 0 a.s., Eφ |Ui |4+ε ≤ C,

Eφ sup
π∈	

(
||h (X1,i ,π

) ||2+ε +||hπ

(
X1,i ,π

) ||2+ε +||hππ

(
X1,i ,π

) ||1+ε
)

≤C,

Eφ(
∥∥X2,i

∥∥2+ε +||Zi ||2+ε + Mππ (X1,i )) ≤ C, λmin(Eφ Zi Z ′
i ) ≥ ε,

Eφ Zi d
∗
ψ,i (π1,π2)

′ ∈ Rk×(dX2 +2) has full column rank ∀π1,π2 ∈ 	 with π1 �= π2,

Eφ Zi di (π) ∈ Rk×(dX2 +dπ +1) has full column rank ∀π ∈ 	
}

, (2.11)

for some constants C < ∞ and ε > 0. Note that in this example �∗(θ∗) does not
depend on θ∗.

2.3. Example 2: Probit Model with Endogeneity and Possibly Weak
Instruments

The second example is a probit model with endogeneity and IVs that may be
weak or irrelevant, which causes identification issues. Consider the following two-
equation model with endogeneity of Yi in the first equation:

y∗
i = Yiπ + X ′

iζ
∗
1 +U∗

i and

Yi = Z ′
iβ + X ′

iζ2 + Vi , (2.12)

where y∗
i ,Yi ,U∗

i ,Vi ∈ R, Xi ∈ RdX , Zi ∈ RdZ , and {(Xi , Zi ,Ui ,Vi ) : i = 1, ...,n}
are i.i.d. The outcome variable y∗

i of the first equation is not observed. Only the
binary indicator yi = 1(y∗

i > 0) is observed, along with Yi , Xi , and Zi . That
is, we observe {Wi = (yi ,Yi , Xi , Zi ) : i = 1, ...,n}. Similar models with binary,
truncated, or censored endogenous variables are considered in Amemiya (1974),
Heckman (1978), Nelson and Olson (1978), Lee (1981), Smith and Blundell
(1986), and Rivers and Vuong (1988), among others.

The reduced-form equations of the model are

y∗
i = Z ′

iβπ + X ′
iζ1 +Ui and

Yi = Z ′
iβ + X ′

iζ2 + Vi , where

ζ1 = ζ ∗
1 +πζ2 and Ui = U∗

i +πVi . (2.13)
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The variables (Xi , Zi ) are independent of the errors (Ui ,Vi ), and the errors
(Ui ,Vi ) have a joint normal distribution with mean zero and covariance matrix
�uv , where

�uv =
(

1 ρσv

ρσv σ 2
v

)
. (2.14)

The parameter of interest is θ = (β,ζ,π), where ζ = (ζ1,ζ2).
In this model, weak identification of π occurs when β is close to 0. We analyze

a GMM estimator of θ, and corresponding tests concerning functions of θ, in the
presence of weak identification or lack of identification.

Let L(·) denote the distribution function of the standard normal distribution.
Let L ′(x) and L ′′(x) denote the first- and second-order derivatives of L(x) with
respect to x . We use the abbreviations

Li (θ) = L(Z ′
iβπ + X ′

iζ1), L ′
i (θ) = L ′(Z ′

iβπ + X ′
iζ1), and

L ′′
i (θ) = L ′′(Z ′

iβπ + X ′
iζ1). (2.15)

Now we specify the moment conditions for the GMM estimator. The log-
likelihood function based on the first reduced-form equation in (2.13) and yi =
1(y∗

i > 0) is

�(θ) =
n

∑
i=1

[
yi log(Li (θ))+ (1− yi ) log(1− Li (θ))

]
. (2.16)

Let a = βπ and a0 = β0π0. The log-likelihood function �(θ) depends on θ only
through a and ζ1. The expectation of the score function with respect to (a,ζ1)
yields the first set of moment conditions

Eγ0w1,i (θ0)(yi − Li (θ0))Zi = 0, where

w1,i (θ) = L ′
i (θ)

Li (θ)(1− Li (θ))
and

Zi = (Xi , Zi ) ∈ RdX +dZ . (2.17)

The second reduced-form equation in (2.13) implies

Eγ0 Vi (θ0)Zi = 0, where Vi (θ) = Yi − Z ′
iβ − X ′

iζ2. (2.18)

We consider a two-step GMM estimator of θ based on the moment conditions
in (2.17) and (2.18). The resulting estimator has not appeared in the literature
previously, but it is close to estimators in the papers referenced earlier; e.g., see
Rivers and Vuong (1988). The GMM sample criterion function is

Qn(θ) = gn(θ)′Wngn(θ)/2, where

gn(θ) = n−1
n

∑
i=1

ei (θ)⊗ Zi ∈ R2(dX +dZ ) and ei (θ) =
(

w1,i (θ)(yi − Li (θ))

Yi − Z ′
iβ − X ′

iζ2

)
.

(2.19)
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In the first step, the weight matrixWn is the identity matrix, yielding an estimator
θn . In the second step,Wn is the optimal weight matrix that takes the form

Wn =Wn(θn), whereWn(θ) = n−1
n

∑
i=1

(
ei (θ)ei (θ)′

)⊗ (Zi Z
′
i ). (2.20)

The optimization and true parameter spaces 
 and 
∗ are 
 =
Xk

j=1[−bL , j ,bH, j ] ×Z × 	 and 
∗ = Xk
j=1[−b∗

L , j ,b∗
H, j ] ×Z∗ × 	∗, where

bL , j ,bH, j ,b∗
L , j ,b∗

H, j ∈ R, 0 ≤ b∗
L , j < bL , j , 0 ≤ b∗

H, j < bH, j , b∗
L , j ,b∗

H, j are not

both 0, for j = 1, ...,k,Z∗ ⊂ int (Z) ⊂ R2dX , 	∗ ⊂ int (	) ⊂ R,Z∗,Z,	∗, and
	 are compact.5

Define w1,i = supθ∈
 |w1,i (θ)| and w2,i = supθ∈
 |w2,i (θ)|, where w2,i (θ) =
L ′′

i (θ)/(Li (θ)(1− Li (θ))).
The nuisance parameter φ is defined by φ = (ρ,σv , F) ∈ �∗, where F is the

distribution of (Xi , Zi ) and �∗ is a compact metric space with a metric d� that
induces weak convergence of (Xi , Zi ). We use Pφ and Eφ to denote probability
and expectation under φ, respectively, for random quantities that depend only on
(Xi , Zi ). For any θ∗ ∈ 
∗, the true parameter space for φ is

�(θ∗) =
{
φ = (ρ,σv , F) ∈ � : |ρ| < 1,σv ≥ ε, Pφ(Z

′
i c = 0) < 1 for any c �= 0,

Eφ

(
||Zi ||4+ε + w4+ ε

1,i +w2+ε
2,i

)
≤ C
}

, (2.21)

for some C < ∞ and ε > 0. Note that in this example, �(θ∗) does not depend
on θ∗.

The verification of the assumptions of this paper for this example is given in
Supplemental Appendix A.

2.4. Confidence Sets and Tests

We return now to the general framework. We are interested in the effect of lack
of identification or weak identification on the GMM estimator θ̂n . Also, we are
interested in its effects on CSs for various functions r(θ) of θ and on tests of null
hypotheses of the form H0 : r(θ) = v.

A CS is obtained by inverting a test. A nominal 1−α CS for r(θ) is

C Sn = {v : Tn(v) ≤ cn,1−α(v)}, (2.22)

where Tn (v) is a test statistic, such as a t, Wald, or QLR statistic, and cn,1−α (v)
is a critical value for testing H0 : r(θ) = v. The critical values considered in this
paper may depend on the null value v of r(θ) and also on the data. The coverage
probability of a CS for r(θ) is

Pγ (r(θ) ∈ C Sn) = Pγ (Tn(r(θ)) ≤ cn,1−α(r(θ))), (2.23)

where Pγ (·) denotes probability when γ is the true value.
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We are interested in the finite-sample size of the CS, which is the smallest
finite-sample coverage probability of the CS over the parameter space. It is ap-
proximated by the asymptotic size, which is defined to be

AsySz = liminf
n→∞ inf

γ∈�
Pγ (r(θ) ∈ C Sn). (2.24)

For a test, we are interested in its null rejection probabilities and in particular its
maximum null rejection probability, which is the size of the test. A test’s asymp-
totic size is an approximation to the latter. The null rejection probabilities and
asymptotic size of a test are given by

Pγ (Tn(v) > cn,1−α(v)) for γ = (θ,φ) ∈ � with r(θ) = v and

AsySz = limsup
n→∞

sup
γ∈�:r(θ)=v

Pγ (Tn(v) > cn,1−α(v)). (2.25)

2.5. Drifting Sequences of Distributions

To determine the asymptotic size of a CS or test, we need to derive the asymp-
totic distribution of the test statistic Tn(vn) under sequences of true parameters
γn = (θn,φn) and vn = r(θn) that may depend on n. The reason is that the value
of γ at which the finite-sample size of a CS or test is attained may vary with
the sample size. Similarly, to investigate the finite-sample behavior of the GMM
estimator under weak identification, we need to consider its asymptotic behavior
under drifting sequences of true distributions—as in Stock and Wright (2000).

Results in Andrews and Guggenberger (2009, 2010) and Andrews, Cheng, and
Guggenberger (2009) show that the asymptotic sizes of CSs and tests are deter-
mined by certain drifting sequences of distributions. In this paper, the following
sequences {γn} are key:

�(γ0) = {{γn ∈ � : n ≥ 1} : γn → γ0 ∈ �} ,
� (γ0,0,b) =

{
{γn} ∈ �(γ0) : β0 = 0 and n1/2βn → b ∈ (R ∪{±∞})dβ

}
, and

�(γ0,∞,ω0) =
{
{γn} ∈ �(γ0) : n1/2||βn || → ∞ and βn/||βn || → ω0 ∈ Rdβ

}
,

(2.26)

where γ0 = (β0,ζ0,π0,φ0) and γn = (βn,ζn,πn,φn).
The sequences in �(γ0,0,b) are in Categories I and II and are sequences for

which {βn} is close to 0: βn → 0. When ||b|| < ∞, {βn} is within O(n−1/2)
of 0, and the sequence is in Category I. The sequences in �(γ0,∞,ω0) are in
Categories II and III and are more distant from β = 0: n1/2||βn|| → ∞. The
sets �(γ0,0,b) and �(γ0,∞,ω0) are not disjoint. Both contain sequences in
Category II.

Throughout the paper we use the following terminology: “under {γn} ∈ �(γ0)”
means “when the true parameters are {γn} ∈ �(γ0) for any γ0 ∈ �”; “under {γn} ∈
�(γ0,0,b)” means “when the true parameters are {γn} ∈ �(γ0,0,b) for any γ0 ∈ �
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with β0 = 0 and any b ∈ (R ∪{±∞})dβ ”; and “under {γn} ∈ �(γ0,∞,ω0)” means
“when the true parameters are {γn} ∈ �(γ0,∞,ω0) for any γ0 ∈ � and any ω0 ∈
Rdβ with ||ω0|| = 1.”

3. ASSUMPTIONS

This section provides relatively primitive sufficient conditions for GMM
estimators.

3.1. Assumption GMM1

The first assumption specifies the basic identification problem. It also provides
conditions that are used to determine the probability limit of the GMM estimator,
when it exists, under all categories of drifting sequences of distributions.

Assumption GMM1.

(i) If β = 0, gn(θ) andWn(θ) do not depend on π, ∀θ ∈ 
, ∀n ≥ 1, for any
true parameter γ ∗ ∈ �.

(ii) Under {γn} ∈ �(γ0), supθ∈
 ||gn(θ) − g0(θ ; γ0)|| →p 0 and
supθ∈
 ||Wn(θ) −W(θ ; γ0)|| →p 0 for some nonrandom functions
g0(θ ; γ0) : 
×� → Rk andW(θ ; γ0) : 
×� → Rk×k .

(iii) When β0 = 0, g0(ψ,π ; γ0) = 0 if and only if ψ = ψ0, ∀π ∈ 	, ∀γ0 ∈ �.

(iv) When β0 �= 0, g0(θ ; γ0) = 0 if and only if θ = θ0, ∀γ0 ∈ �.

(v) g0(θ ; γ0) is continuously differentiable in θ on 
, with its partial
derivatives with respect to θ and ψ denoted by gθ (θ ; γ0) ∈ Rk×dθ and
gψ(θ ; γ0) ∈ Rk×dψ , respectively.

(vi) W(θ ; γ0) is continuous in θ on 
 ∀γ0 ∈ �.

(vii) 0 < λmin(W(ψ0,π ; γ0)) ≤ λmax(W(ψ0,π ; γ0)) < ∞, ∀π ∈ 	, ∀γ0 ∈ �.

(viii) λmin(gψ(ψ0,π ; γ0)
′W(ψ0,π ; γ0)gψ(ψ0,π ; γ0)) > 0, ∀π ∈ 	, ∀γ0 ∈ �

with β0 = 0.

(ix) �(π) is compact ∀π ∈ 	, and 	 and 
 are compact.

(x) ∀ε > 0, ∃δ > 0 such that dH (� (π1) ,� (π2)) < ε ∀π1,π2 ∈ 	 with
‖π1 −π2‖ < δ, where dH (·) is the Hausdorff metric.

Assumption GMM1(i) is the key condition that concerns the lack of identifi-
cation (by the moment functions) when β = 0. Assumptions GMM1(ii)–(x) are
mostly fairly standard GMM regularity conditions, but with some adjustments due
to the lack of identification of π when β = 0, e.g., see Assumption GMM1(iii).
Note that Assumption GMM1(viii) involves the derivative matrix of g0(θ ; γ0)
with respect to ψ only, not θ = (ψ,π). In consequence, this assumption is not
restrictive.

The weight matrix Wn(θ) depends on θ only when a continuous updating
GMM estimator is considered. For a two-step estimator, Wn(θ) depends on a
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preliminary estimator θn but does not depend on θ. Let Wn(θn) be the weight
matrix for a two-step estimator. (This is a slight abuse of notation because in (2.1)
Wn(θ) and gn(θ) are indexed by the same θ, whereas here they are different.)

For the weight matrix of a two-step estimator to satisfy Assumption GMM1(ii),
we need

Wn
(
θn
)→pW (θ0; γ0) (3.1)

for some nonrandom matrix W(θ0; γ0) under {γn} ∈ �(γ0). This is not an in-
nocuous assumption in the weak identification scenario because the preliminary
estimator θn may be inconsistent. Lemma 3.1 shows that (3.1) holds despite the
inconsistency of πn that occurs under {γn} ∈ �(γ0,0,b) with ||b|| < ∞, where
θn = (ψn,πn).

LEMMA 3.1. Suppose θn = (ψn,πn) is an estimator of θ such that

(a) θn →p θ0 under {γn} ∈ �(γ0), ∀γ0 ∈ � with β0 �= 0,

(b) ψn →p ψ0 under {γn} ∈ �(γ0), ∀γ0 ∈ � with β0 = 0,

(c) Wn(θ) satisfies Assumptions GMM1(i), GMM1(ii), and GMM1(vi), and

(d) 	 is compact.
Then,Wn(θn) →pW(θ0; γ0) under {γn} ∈ �(γ0) ∀γ0 ∈ �.

Remarks.

1. Lemma 3.1 allows for inconsistency of πn, i.e., πn − πn �= op(1), under
{γn} ∈ �(γ0) with β0 = 0. Inconsistency occurs under {γn} ∈ �(γ0,0,b) with
||b|| < ∞; see Theorem 4.1(a) in Section 4.

2. Typically, the preliminary estimator θn is obtained by minimizing Qn(θ) in
(2.1) with a weight matrixWn(θ) that does not depend on θ or any estimator
of θ. In such cases, the properties of θn assumed in Lemma 3.1 hold provided
Assumption GMM1 holds with the specified weight matrix.6

Example 1 (cont.)
For this example, the key quantities in Assumption GMM1 are

g0(θ ; γ0) = Eφ0(β0h(X1,i ,π0)−βh(X1,i ,π)+ X ′
2,i (ζ0 − ζ ))Zi ,

W(θ ; γ0) =W(γ0) = (Eφ0 Zi Z ′
i

)−1
,

gψ(θ ; γ0) = −Eφ0 Zi dψ,i (π)′, and gθ (θ ; γ0) = −Eφ0 Zi dθ,i (π)′, where

dψ,i (π) = (h(X1,i ,π), X2,i ) ∈ RdX2+1 and

dθ,i (π) = (h(X1,i ,π), X2,i ,βhπ (X1,i ,π)) ∈ RdX2+dπ+1. (3.2)

Assumption GMM1(i) holds by the form of gn(θ) andWn in (2.8) and the fact
that Ui (θ) does not depend on π when β = 0. Assumption GMM1(ii) holds by
the uniform law of large numbers (LLN) given in Lemma 12.1 in Supplemental
Appendix D under the conditions in (2.11).
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To verify Assumption GMM1(iii), we write

g0(ψ,π ; γ0)− g0(ψ0,π ; γ0) = Eφ0(−βh(X1,i ,π)+ X ′
2,i (ζ0 − ζ ))Zi

= [Eφ0 Zi dψ,i (π)′
]
�, (3.3)

where � = (−β,ζ0 − ζ ) ∈ RdX2+1. We need to show that when β0 = 0 the quan-
tity in (3.3) does not equal zero ∀ψ �= ψ0 and ∀π ∈ 	. This holds because
dψ,i (π) is a subvector of d∗

ψ,i (π1,π2) and Eφ Zi d∗
ψ,i (π1,π2)

′ has full column rank
∀π1,π2 ∈ 	 with π1 �= π2 by (2.11).

To verify Assumption GMM1(iv), we write

g0(θ ; γ0)− g0(θ0; γ0) = Eφ0(β0h(X1,i ,π0)−βh(X1,i ,π)+ X ′
2,i (ζ0 − ζ ))Zi

=
[
Eφ0 Zi d

∗
ψ,i (π0,π)′

]
c, (3.4)

where c = (β0,−β,ζ0 −ζ ) ∈ RdX2+2. We need to show that when β0 �= 0 the quan-
tity in (3.4) does not equal zero when θ �= θ0. This holds when π �= π0 because
Eφ0 Zi d∗

ψ,i (π0,π)′ has full column rank for π �= π0 by (2.11). When π = π0,

g0(θ ; γ0)− g0(θ0; γ0) = g0(ψ,π0; γ0)− g0(ψ0,π0; γ0) = [Eφ0 Zi dψ,i (π0)
′]�1,

(3.5)

where �1 = (β0 −β,ζ0 − ζ ) ∈ RdX2+1. The quantity in (3.5) does not equal zero
for ψ �= ψ0 because Eφ0 Zi dψ,i (π0)

′ has full column rank. This completes the
verification of Assumption GMM1(iv).

Assumption GMM1(v) holds by the assumption that h(x,π) is twice con-
tinuously differentiable with respect to π and the moment conditions in (2.11).
Assumption GMM1(vi) holds automatically because W(θ ; γ0) = (Eφ0 Zi Z ′

i )
−1

does not depend on θ. Assumption GMM1(vii) holds because Eφ0 Zi Z ′
i ∈ Rk×k

is positive definite ∀γ0 ∈ �. Assumption GMM1(viii) holds because
W(ψ0,π ; γ0) = Eφ0 Zi Z ′

i is positive definite and gψ(ψ0,π ; γ0) has full rank by
the conditions in (2.11). Assumption GMM1(ix) holds because 
 = B×Z ×
	, and B, Z, 	, and � = B×Z are all compact. Assumption GMM1(x) holds
automatically because � does not depend on π.

For brevity, the verifications of Assumptions GMM1 and GMM2–GMM5,
which follow, for the probit model with endogeneity are given in Supplemental
Appendix A.

3.2. Assumption GMM2

The next assumption, Assumption GMM2, is used when verifying that the GMM
criterion function satisfies a quadratic approximation with respect to ψ when
{γn} ∈ �(γ0,0,b) and with respect to θ when {γn} ∈ �(γ0,∞,ω0). In the former
case, the expansion is around the value

ψ0,n = (0,ζn), (3.6)
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rather than around the true value ψn = (βn,ζn). The reason for expanding around
ψ0,n is that the first term in the expansion of Qn(ψ,π) does not depend on π
when ψ = ψ0,n by Assumption GMM1(i).

Under {γn} ∈ �(γ0), define the centered sample moment conditions by

g̃n (θ ; γ0) = gn (θ)− g0 (θ ; γ0) . (3.7)

We define a matrix B(β) that is used to normalize the (generalized) first-
derivative matrix of the sample moments gn(θ) so that it is full rank asymptot-
ically. Let B(β) be the dθ ×dθ diagonal matrix defined by

B(β) = Diag
{

1′
dψ

, ι(β)1′
dπ

}
, (3.8)

where ι(β) = β if β is a scalar and ι(β) = ||β|| if β is a vector.7

Assumption GMM2.

(i) Under {γn} ∈ �(γ0,0,b),
supψ∈�(π):||ψ−ψ0,n ||≤δn

||g̃n(ψ,π ; γ0) − g̃n(ψ0,n,π ; γ0)||/(n−1/2 + ||ψ −
ψ0,n||) = opπ (1) for all constants δn → 0.

(ii) Under {γn} ∈ �(γ0,∞,ω0), supθ∈
n(δn) ||g̃n(θ ; γ0) − g̃n(θn ; γ0)||/
(n−1/2 + ||B(βn)(θ − θn)||) = op(1) for all constants δn → 0, where

n (δn) = {θ ∈ 
 : ‖ψ −ψn‖ ≤ δn ‖βn‖ and ‖π −πn‖ ≤ δn}.

When gn (θ) is continuously differentiable in θ, Assumption GMM2 is easy
to verify. In this case, Assumption GMM2∗, which follows, is a set of sufficient
conditions for Assumption GMM2.

Assumption GMM2 allows for nonsmooth sample moment conditions. It is
analogous to Assumption GMM2(iv) of Andrews (2002), which in turn is shown
to be equivalent to condition (iii) of Theorem 3.3 of Pakes and Pollard (1989).
In contrast to these conditions in the literature, Assumption GMM2 applies under
drifting sequences of true parameters and provides conditions that allow for weak
identification. Nevertheless, Assumption GMM2 can be verified by methods used
in Pakes and Pollard (1989) and Andrews (2002).

Assumption GMM2∗.

(i) gn(θ) is continuously differentiable in θ on 
 ∀n ≥ 1.

(ii) Under {γn} ∈ �(γ0,0,b), supθ∈
:||ψ−ψ0,n ||≤δn

∥∥(∂/∂ψ ′)gn(θ)− gψ

(θ ; γ0)‖ = op(1) for all constants δn → 0.

(iii) Under {γn} ∈ �(γ0,∞,ω0), supθ∈
n(δn)

∥∥((∂/∂θ ′)gn(θ)− gθ (θ ; γ0)
)

B−1(βn)
∥∥= op(1) for all constants δn → 0.

When gn(θ) takes the form of a sample average, Assumption GMM2∗ can
be verified by a uniform LLN and the switch of E and ∂ under some regularity
conditions.
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LEMMA 3.2. Assumption GMM2∗ implies Assumption GMM2.

Example 1 (cont.)
We verify Assumption GMM2 in this example using the sufficient condition
Assumption GMM2∗. The key quantities in Assumption GMM2∗ are

∂

∂ψ ′ gn(θ) = n−1
n

∑
i=1

Zi dψ,i (π)′ and
∂

∂θ ′ gn(θ) = n−1
n

∑
i=1

Zi dθ,i (π)′. (3.9)

Assumption GMM2∗(i) holds with the partial derivatives given in (3.9).
Assumption GMM2∗(ii) holds by the uniform LLN given in Lemma 12.1 in Sup-
plemental Appendix D under the conditions in (2.11). Assumption GMM2∗(iii)
holds by this uniform LLN and β/βn = 1+o(1) for θ ∈ 
n(δn). �

3.3. Assumption GMM3

Under Assumptions GMM1 and GMM2, Assumption GMM3 which follows, is
used when establishing the asymptotic distribution of the GMM estimator under
weak and semistrong identification, i.e., when {γn} ∈ �(γ0,0,b).

Define the k × dβ matrix of partial derivatives of the average population
moment function with respect to the true β value, β∗, to be

Kn,g(θ ; γ ∗) = n−1
n

∑
i=1

∂

∂β∗′Eγ ∗ g(Wi ,θ), (3.10)

where γ ∗ = (β∗,ζ ∗,π∗,φ∗). The domain of the function Kn,g(θ ; γ ∗) is 
δ ×
�0, where 
δ = {θ ∈ 
 : ||β|| < δ} and �0 = {γa = (aβ,ζ,π,φ) ∈ � : γ =
(β,ζ,π,φ) ∈ � with ||β|| < δ and a ∈ [0,1]} for some δ > 0.8

Assumption GMM3.

(i) gn (θ) takes the form gn(θ) = n−1 ∑n
i=1 g(Wi ,θ) for some function

g (Wi ,θ) ∈ Rk ∀θ ∈ 
.

(ii) Eγ ∗ g(Wi ,ψ
∗,π) = 0 ∀π ∈ 	, ∀i ≥ 1 when the true parameter is γ ∗

∀γ ∗ = (ψ∗,π∗,φ∗) ∈ � with β∗ = 0.

(iii) Under {γn} ∈ �(γ0,0,b), n−1/2 ∑n
i=1(g(Wi ,ψ0,n,πn) −

Eγn g(Wi ,ψ0,n,πn)) →d N (0,�g(γ0)) for some k by k matrix �g(γ0).

(iv) (a) Kn,g(θ ; γ ∗) exists ∀(θ,γ ∗) ∈ 
δ × �0, ∀n ≥ 1. (b) For some
nonstochastic k × dβ matrix-valued function Kg(ψ0,π ; γ0), Kn,g(ψn,π ;
γ̃n) → Kg(ψ0,π ; γ0) uniformly over π ∈ 	 for all nonstochastic
sequences {ψn} and {γ̃n} such that γ̃n ∈ �, γ̃n → γ0 = (0,ζ0,π0,φ0) for
some γ0 ∈ �, (ψn,π) ∈ 
, and ψn → ψ0 = (0,ζ0). (c) Kg(ψ0,π ; γ0) is
continuous on 	 ∀γ0 ∈ � with β0 = 0.

(v) ∀ω0 ∈ Rdβ with ||ω0|| = 1, Kg(ψ0,π ; γ0)ω0 = gψ(ψ0,π ; γ0)S for some
S ∈ Rdψ if and only if π = π0.
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(vi) Under {γn} ∈ �(γ0,0,b), n−1 ∑n
i=1(∂/∂ψ ′)Eγn g(Wi ,ψ,π)|(ψ,π)=θn

→ gψ(θ0; γ0).

Assumption GMM3(iii) can be verified using a triangular array central limit
theorem (CLT). Although Assumption GMM3(iv) is somewhat complicated, it
is not restrictive; see the verification of it in the two examples. A set of primi-
tive sufficient conditions for Assumption GMM3(iv) is given in Appendix A of
AC1-SM.9

In Assumption GMM3(v), the equality holds for π = π0 with S =
−[Idβ :0dβ×dζ ]′ω0 by Lemma 9.3 in AC1-SM under the assumptions therein. For
any π �= π0, Assumption GMM3(v) requires that any linear combination of the
columns of Kg(ψ0,π ; γ0) cannot be in the column space of gψ(ψ0,π ; γ0).

With identically distributed observations, Assumption GMM3(vi) can be veri-
fied by the exchange of E and ∂ under suitable regularity conditions.

Example 1 (cont.)
For this example, the key quantities in Assumption GMM3 are

g(Wi ,θ) = (Yi −βh(X1,i ,π)− X ′
2,iζ )Zi ,

�g(γ0) = Eφ0U 2
i Zi Z ′

i , and

Kg,n(θ,γ ∗) = Kg(θ,γ ∗) = Eφ∗h(X1,i ,π
∗)Zi . (3.11)

Assumption GMM3(i) holds with g(Wi ,θ) in (3.11). To verify Assumption
GMM3(ii), we have

Eφ∗ g(Wi ,θ) = Eφ∗
(
Ui +β∗h(X1,i ,π

∗)−βh(X1,i ,π)+ X ′
2,i (ζ

∗ − ζ )
)

Zi .

(3.12)

When β = β∗ = 0 and ζ = ζ ∗, Eφ∗ g(Wi ,θ) = 0 ∀π ∈ 	.
Next, we show that Assumption GMM3(iii) holds with �g(γ0) in (3.11). Define

Gg,n(πn) = n−1/2
n

∑
i=1

(
g(Wi ,ψ0,n,πn)−Eφn g(Wi ,ψ0,n,πn)

)
= n−1/2

n

∑
i=1

Ui Zi +βn

[
n−1/2

n

∑
i=1

(
h(Xi ,πn)Zi −Eφn h(Xi ,πn)Zi

)]
.

(3.13)

By the CLT for triangular arrays of rowwise i.i.d. random variables given in
Lemma 12.3 in Supplemental Appendix C, n−1/2 ∑n

i=1 Ui Zi →d N (0,�g(γ0)).
The second term on the right-hand side of the second equality in (3.13) is op(1)
because βn → 0 and n−1/2 ∑n

i=1(h(Xi ,πn)Zi − Eφn h(Xi ,πn)Zi ) = Op(1) by
the CLT in Lemma 12.3 in Supplemental Appendix C. Hence, Gg,n(πn) →d

N (0,�g(γ0)).
Next, we show that Assumption GMM3(iv) holds with Kg,n(θ,γ ∗) and

Kg(θ,γ ∗) in (3.11). Assumption GMM3(iv)(a) is implied by (3.12) and the
moment conditions in (2.11). The convergence in Assumption GMM3(iv)(b)
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holds because φn → φ0 induces weak convergence of (Xi , Zi ) by the defi-
nition of the metric on �∗ and Eφ supπ∈	 ||h(X1,i ,π)Zi ||1+δ ≤ C for some
δ > 0 and C < ∞ by the conditions in (2.11). The convergence holds uni-
formly over π ∈ 	 by Lemma 12.1 in Supplemental Appendix D because 	 is
compact and Eφ∗ supπ∈	 ||hπ (X1,i ,π)|| · ||Zi || ≤ C for some C < ∞. Assump-
tion GMM3(iv)(c) holds because 	 is compact, h(x,π) is continuous in π, and
Eφ∗ supπ∈	 ||h(X1,i ,π)|| · ||Zi || ≤ C for some C < ∞ by the conditions in (2.11).
This completes the verification of Assumption GMM3(iv).

To verify Assumption GMM3(v), note that for S ∈ RdX2+1 we have

Kg(ψ0,π ; γ0)ω0 − gψ(ψ0,π ; γ0)S

= Eφ0 Zi h(X1,i ,π0)ω0 +Eφ0 Zi dψ,i (π)′S

= Eφ0 Zi d
∗
ψ,i (π0,π)′�2, where �2 = (ω0, S) �= 0dζ +2. (3.14)

Because Eφ0 Zi d∗
ψ,i (π0,π)′ has full column rank for all π �= π0 by (2.11),

Kg(ψ0,π ; γ0)ω0 �= gψ(ψ0,π ; γ0)S for any π �= π0. When π = π0,
Kg(ψ0,π ; γ0)ω0 = gψ(ψ0,π ; γ0)S if S = (−ω0,0dζ ) (∈ Rdζ +1). This completes
the verification of Assumption GMM3 for this example.

3.4. Assumption GMM4

To obtain the asymptotic distribution of π̂n when βn = O(n−1/2) via the continu-
ous mapping theorem, we use Assumption GMM4 stated subsequently.

Under Assumptions GMM1(i) and GMM1(ii),W(ψ0,π ; γ0) does not depend
on π when β0 = 0. For simplicity, letW(ψ0; γ0) abbreviateW(ψ0,π ; γ0) when
β0 = 0.

The following quantities arise in the asymptotic distributions of θ̂n and various
test statistics when {γn} ∈ �(γ0,0,b) and ||b|| < ∞. Define

�(π1,π2; γ0) = gψ(ψ0,π1; γ0)
′W(ψ0; γ0)�g(γ0)W(ψ0; γ0)gψ(ψ0,π2; γ0),

H(π ; γ0) = gψ(ψ0,π ; γ0)
′W(ψ0; γ0)gψ(ψ0,π ; γ0), and

K (ψ0,π ; γ0) = gψ(ψ0,π ; γ0)
′W(ψ0; γ0)Kg(ψ0,π ; γ0). (3.15)

Let G(·; γ0) denote a mean zero Gaussian process indexed by π ∈ 	 with bounded
continuous sample paths and covariance kernel �(π1,π2; γ0) for π1,π2 ∈ 	.

Next, we define a “weighted noncentral chi-square” process {ξ(π ; γ0,b) :
π ∈ 	} that arises in the asymptotic distributions. Let

ξ(π ; γ0,b) = −1

2
(G(π ; γ0)+ K (π ; γ0)b)′H−1(π ; γ0)(G(π ; γ0)+ K (π ; γ0)b) .

(3.16)

Under Assumptions GMM1–GMM3, {ξ(π ; γ0,b) : π ∈ 	} has bounded continu-
ous sample paths almost surely (a.s.).
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Assumption GMM4. Each sample path of the stochastic process {ξ(π ; γ0,b) :
π ∈ 	} in some set A(γ0,b) with Pγ0(A(γ0,b)) = 1 is minimized over 	 at a
unique point (which may depend on the sample path), denoted π∗(γ0,b), ∀γ0 ∈ �
with β0 = 0, ∀b with ||b|| < ∞.

In Assumption GMM4, π∗(γ0,b) is random.
Next, we provide a sufficient condition for Assumption GMM4. We partition

gψ(θ ; γ0) ∈ Rk×dψ as

gψ(θ ; γ0) = [gβ(θ ; γ0) : gζ (θ ; γ0)
]
, (3.17)

where gβ(θ ; γ0) ∈ Rk×dβ and gζ (θ ; γ0) ∈ Rk×dζ . When β0 = 0, gζ (ψ0,π ; γ0)
does not depend on π by Assumptions GMM1(i) and GMM3(ii) and is denoted
by gζ (ψ0; γ0) for simplicity. When dβ = 1 and β0 = 0, define

g∗
ψ(ψ0,π1,π2; γ0) = [gβ(ψ0,π1; γ0) : gβ(ψ0,π2; γ0) : gζ (ψ0; γ0)] ∈ Rk×(dζ +2).

(3.18)

Assumption GMM4∗.

(i) dβ = 1 (e.g., β is a scalar).

(ii) g∗
ψ(ψ0,π1,π2; γ0) has full column rank, ∀π1,π2 ∈ 	 with π1 �= π2,

∀γ0 ∈ � with β0 = 0.

(iii) �g(γ0) is positive definite, ∀γ0 ∈ � with β0 = 0.

LEMMA 3.3. Assumptions GMM1–GMM3 and GMM4∗ imply Assumption
GMM4.

Example 1 (cont.)
We verify Assumption GMM4 in this example using the sufficient condition
Assumption GMM4∗. The key quantity in Assumption GMM4∗ is

g∗
ψ(ψ0,π1,π2; γ0) = −Eφ0 Zi (h(X1,i ,π1),h(X1,i ,π2), X ′

2,i )

= −Eφ0 Zi d
∗
ψ,i (π1,π2). (3.19)

Assumption GMM4∗(i) holds automatically. Assumption GMM4∗(ii) holds
because Eφ0 Zi d∗

ψ,i (π1,π2) has full column rank ∀π1,π2 ∈ 	 with π1 �= π2

by (2.11). Assumption GMM4∗(iii) holds with �g(γ0) = Eφ0U 2
i Zi Z ′

i because
Eφ0 Zi Z ′

i is positive definite and E(U 2
i |Zi ) > 0 a.s. This completes the verifica-

tion of Assumption GMM4.

3.5. Assumption GMM5

Under Assumptions GMM1 and GMM2, Assumption GMM5 is used in what
follows to establish the asymptotic distribution of the GMM estimator under
semistrong and strong identification, i.e., when {γn} ∈ �(γ0,∞,ω0).
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Assumption GMM5. Under {γn} ∈ �(γ0,∞,ω0),

(i) n1/2gn(θn) →d N (0,Vg(γ0)) for some symmetric and positive definite
dθ ×dθ matrix Vg(γ0),

(ii) for all constants δn → 0, supθ∈
n(δn) ||(gθ (θ ; γ0) −
gθ (θn ; γ0))B−1(βn)|| = o(1), and

(iii) gθ (θn ; γ0)B−1(βn) → Jg(γ0) for some matrix Jg(γ0) ∈ Rk×dθ with full
column rank.10

Now, we define two key quantities that arise in the asymptotic distribution of
the estimator θ̂n when {γn} ∈ �(γ0,∞,ω0). Let

V (γ0) = Jg(γ0)
′W(θ0; γ0)Vg (γ0)W(θ0; γ0)Jg (γ0) and

J (γ0) = Jg(γ0)
′W(θ0; γ0)Jg (γ0) . (3.20)

Let G∗(γ0) ∼ N (0dθ ,V (γ0)) for γ0 ∈ �.

Example 1 (cont.)
The key quantities in Assumption GMM5 for this example are

Vg(γ0) = Eφ0U 2
i Zi Z ′

i and Jg(γ0) = −Eφ0 Zi di (π0)
′. (3.21)

Assumption GMM5(i) holds by the CLT for triangular arrays of rowwise i.i.d.
random variables given in Lemma 12.3 in Supplemental Appendix C. Assumption
GMM5(ii) holds with gθ (θ ; γ0) defined as in (3.2) because βn/β = 1 + o(1) for
θ ∈ 
n(δn) and gθ (θ ; γ0)B−1(β) = −Eφ0 Zi di (π)′ is continuous in π uniformly
over π ∈ 	, which in turn holds by the moment conditions in (2.11) and the
compactness of 	.

Assumption GMM5(iii) holds because

gθ (θn ; γn)B−1(βn) = −Eφn Zi di (πn)
′ → −Eφ0 Zi di (π0)

′, (3.22)

where the convergence holds because (i) Eφn Zi di (π)′ → Eφ0 Zi di (π) uniformly
over π ∈ 	 by arguments analogous to those used in the verification of Assump-
tion GMM3(iv)(b) and (ii) πn → π0. The matrix Jg(γ0) has full column rank by
(2.11). This completes the verification of Assumption GMM5.

3.6. Minimum Distance Estimators

Assumptions GMM1, GMM2, GMM4, and GMM5 apply equally well to the MD
estimator as to the GMM estimator. Only Assumption GMM3 does not apply to
the MD estimator. In place of part of Assumption GMM3, we employ the follow-
ing assumption for MD estimators.

Assumption MD. Under {γn} ∈ �(γ0,0,b), n1/2gn(ψ0,n,πn) = Op(1).

3.7. Parameter Space Assumptions

Next, we specify conditions on the parameter spaces 
 and �.
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Define 
∗
δ = {θ ∈ 
∗ : ||β|| < δ}, where 
∗ is the true parameter space for θ ;

see (2.3). The optimization parameter space 
 satisfies the following conditions.

Assumption B1.

(i) int (
) ⊃ 
∗.
(ii) For some δ > 0, 
 ⊃ {β ∈ Rdβ : ||β|| < δ} ×Z0 × 	 ⊃ 
∗

δ for some
nonempty open set Z0⊂Rdζ and 	 as in (2.5).

(iii) 	 is compact.

Because the optimization parameter space is user selected, Assumption B1 can
be made to hold by the choice of 
.

The true parameter space � satisfies the following conditions.

Assumption B2.

(i) � is compact and (2.3) holds.

(ii) ∀δ > 0, ∃γ = (β,ζ,π,φ) ∈ � with 0 < ||β|| < δ.

(iii) ∀γ = (β,ζ,π,φ) ∈ � with 0 < ||β|| < δ for some δ > 0,
γa = (aβ,ζ,π,φ) ∈ � ∀a ∈ [0,1].

Assumption B2(ii) guarantees that � is not empty and that there are elements γ
of � whose β values are nonzero but are arbitrarily close to 0, which is the region
of the true parameter space where near lack of identification occurs. Assumption
B2(iii) ensures that � is compatible with the existence of the partial derivatives
that arise in (3.10) and Assumption GMM3.

Example 1 (cont.)
Given the definitions in (2.9)–(2.11), the true parameter space � is of the form in
(2.3). Thus, Assumption B2(i) holds. Assumption B2(ii) follows from the form of
B∗ given in (2.9). Assumption B2(iii) follows from the form of B∗ and the fact
that 
∗ is a product space and �∗(θ∗) does not depend on β∗. Hence, the true
parameter space � satisfies Assumption B2.

The optimization parameter space 
 takes the form


 = B×Z×	, where B = [−b1,b2] ⊂ R, (3.23)

b1 > b∗
1, b2 > b∗

2, Z ⊂ Rdζ is compact, 	 ⊂ Rdπ is compact, Z∗ ⊂ int (Z), and
B∗ ⊂ int (B). Given these conditions, Assumptions B1(i) and B1(iii) follow im-
mediately. Assumption B1(ii) holds by taking δ < min{b∗

1,b∗
2} and Z0 = int (Z).

4. GMM ESTIMATION RESULTS

This section provides the asymptotic results of the paper for the GMM estimator
θ̂n . Define a concentrated GMM estimator ψ̂n(π) (∈ �(π)) of ψ for given π ∈
	 by

Qn(ψ̂n(π),π) = inf
ψ∈�(π)

Qn(ψ,π)+o(n−1). (4.1)
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Let Qc
n(π) denote the concentrated GMM criterion function Qn(ψ̂n(π),π).

Define an extremum estimator π̂n (∈ 	) by

Qc
n(π̂n) = inf

π∈	
Qc

n(π)+o(n−1). (4.2)

We assume that the GMM estimator θ̂n in (2.4) can be written as θ̂n =
(ψ̂n(π̂n), π̂n). Note that if (4.1) and (4.2) hold and θ̂n = (ψ̂n(π̂n), π̂n), then (2.4)
automatically holds.

For γn = (βn,ζn,πn,φn) ∈ �, let Q0,n = Qn(ψ0,n,π), where ψ0,n = (0,ζn).
Note that Q0,n does not depend on π by Assumption GMM1(i).

Define the Gaussian process {τ(π ; γ0,b) : π ∈ 	} by

τ(π ; γ0,b) = −H−1(π ; γ0)(G(π ; γ0)+ K (π ; γ0)b)− (b,0dζ ), (4.3)

where (b,0dζ ) ∈ Rdψ . Note that, by (3.16) and (4.3), ξ(π ; γ0,b) = −1/2
(τ (π ; γ0,b)+ (b,0dζ ))

′ H(π ; γ0)(τ (π ; γ0,b)+ (b,0dζ )). Let

π∗(γ0,b) = argmin
π∈	

ξ(π ; γ0,b). (4.4)

THEOREM 4.1. Suppose Assumptions GMM1–GMM4, B1, and B2 hold. Un-
der {γn} ∈ �(γ0,0,b) with ||b|| < ∞,

(a)

(
n1/2(ψ̂n −ψn)

π̂n

)
→d

(
τ(π∗(γ0,b); γ0,b)

π∗(γ0,b)

)
, and

(b) n
(

Qn(θ̂n)− Q0,n

)
→d infπ∈	 ξ(π ; γ0,b).

Remarks.

1. The results of Theorem 4.1 and Theorem 4.2 which following are the same
as those in Theorems 3.1 and 3.2 of AC1, but they are obtained under more
primitive conditions, which are designed for GMM estimators.

2. Define the Gaussian process {τβ(π ; γ0,b) : π ∈ 	} by

τβ(π ; γ0,b) = Sβτ(π ; γ0,b)+b, (4.5)

where Sβ = [Idβ : 0dβ×dζ ] is the dβ × dψ selector matrix that selects β out

of ψ. The asymptotic distribution of n1/2β̂n (without centering at βn) under
�(γ0,0,b) with ||b|| < ∞ is given by τβ(π∗(γ0,b); γ0,b). This quantity
appears in the asymptotic distributions of the Wald and t statistics later in
this paper.

3. Assumption GMM4 is not needed for Theorem 4.1(b).

THEOREM 4.2. Suppose Assumptions GMM1–GMM5, B1, and B2 hold. Un-
der {γn} ∈ �(γ0,∞,ω0),

(a) n1/2 B(βn)(θ̂n − θn) →d −J−1(γ0)G∗(γ0) ∼ N (0dθ , J−1(γ0)V (γ0)
J−1(γ0)), and

(b) n(Qn(θ̂n)− Qn(θn)) →d − 1
2 G∗(γ0)

′ J−1(γ0)G∗(γ0).
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Remark. The results of Theorems 4.1 and 4.2 hold for MD estimators under
the assumptions listed in Supplemental Appendix B.

5. WALD CONFIDENCE SETS AND TESTS

In this section, we consider a CS for a function r(θ) of θ by inverting a Wald
test of the hypotheses H0 : r(θ) = v for v ∈ r(
). We also consider Wald tests
of H0. We establish the asymptotic distributions of the Wald statistic under drift-
ing sequences of null and alternative distributions that cover the entire range of
strengths of identification. We determine the asymptotic size of standard Wald
CSs. We introduce robust Wald CSs whose asymptotic size is guaranteed to equal
their nominal size. The results in this section apply not just to Wald statistics based
on GMM estimators but to Wald tests based on any of the estimators considered
in AC1 and AC2 also.

5.1. Wald Statistics

The Wald statistics are defined as follows. Let

�(γ0) = J−1 (γ0)
′ V (γ0)J−1(γ0) and �̂n = Ĵ−1

n V̂n Ĵ−1
n , (5.1)

where Ĵn and V̂n are estimators of J (γ0) and V (γ0). The Wald statistic takes the
form

Wn(v) = n(r(θ̂n)− v)′(rθ (θ̂n)B−1(β̂n)�̂n B−1(β̂n)rθ (θ̂n)
′)−1(r(θ̂n)− v), (5.2)

where rθ (θ) = (∂/∂θ ′)r(θ) ∈ Rdr ×dθ .
When dr = 1, the t statistic takes the form

Tn(v) = n1/2(r(θ̂n)− v)

(rθ (θ̂n)B−1(β̂n)�̂n B−1(β̂n)rθ (θ̂n)′)1/2
. (5.3)

Although these definitions of the Wald and t statistics involve B−1(β̂n), they
are the same as the standard definitions used in practice. By Theorem 4.2(a),
when β0 �= 0, B−1(β0)�(γ0)B−1(β0) is the asymptotic covariance matrix of
θ̂n . In the Wald statistics, the asymptotic covariance is replaced by the estima-
tor B−1(β̂n)�̂n B−1(β̂n). The same form of the Wald statistics is used under all
sequences of true parameters γn ∈ �(γ0).

In the results that follow (except in Section 5.6), we consider the behavior of
the Wald statistics when the null hypothesis holds. Thus, under a sequence {γn},
we consider the sequence of null hypotheses H0 : r(θ) = vn, where vn equals
r(θn) and γn = (θn,φn). We employ the following notational simplification:

Wn = Wn(vn), where vn = r(θn). (5.4)
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5.2. Rotation

To obtain the asymptotic distribution of the Wald statistic we consider a rotation of
r(θ̂n) and rθ (θ̂n) by a matrix A(θ̂n). The rotation is designed to separate the effects
of the randomness in ψ̂n and π̂n, which have different rates of convergence for
some sequences {γn}. Similar rotations are carried out in the analysis of partially
identified models in Sargan (1983) and Phillips (1989), in the nonstationary time
series literature (e.g., see Park and Phillips, 1988), and in the GMM analysis in
Antoine and Renault (2009, 2010).

We partition rθ (θ) conformably with θ = (ψ,π):

rθ (θ) = [rψ(θ) : rπ (θ)]. (5.5)

Suppose rank (rπ (θ)) = d∗
π (≤ min(dr ,dπ )) ∀θ ∈ 
δ for some δ > 0. (This is

Assumption R1(iii) in Section 5.3). For θ ∈ 
δ, let A(θ) = [A1(θ)′ : A2(θ)′]′ ∈
O(dr ), where the rows of A1(θ) ∈ R(dr −d∗

π )×dr span the null space of rπ (θ)′, the
rows of A2(θ) ∈ Rd∗

π×dr span the column space of rπ (θ), and O(dr ) stands for
the orthogonal group of degree dr over the real space. Hence,

A(θ)rπ (θ) =
[

A1(θ)rπ (θ)
A2(θ)rπ (θ)

]
=
[

0(dr−d∗
π )×dπ

r∗
π (θ)

]
, (5.6)

where r∗
π (θ) ∈ Rd∗

π×dπ has full row rank d∗
π . For simplicity, hereafter we write the

0 matrix as 0 when there is no confusion about its dimension.
With the A(θ) rotation, the derivative matrix rθ (θ) becomes

r A
θ (θ) = A(θ)rθ (θ) =

[
r∗
ψ(θ) 0

r0
ψ(θ) r∗

π (θ)

]
, (5.7)

where the (dr − d∗
π ) × dψ matrix r∗

ψ(θ) has full row rank dr − d∗
π . When d∗

π =
dr , A1(θ) and [r∗

ψ(θ) : 0] disappear. When d∗
π = 0, A2(θ) and [r0

ψ(θ) : r∗
π (θ)]

disappear.
The effect of randomness in π̂n on r(θ̂n) is concentrated in the full rank matrix

r∗
π (θ̂n) because the upper right corner of r A

θ (θ̂n) is 0. The effect of randomness in
ψ̂n on r(θ̂n) is incorporated in both r∗

ψ(θ̂n) and r0
ψ(θ̂n).

Using the rotation by A(θ̂n), the Wald statistic in (5.2) can be written as

Wn = n(r(θ̂n)−v)′ A(θ̂n)′(r A
θ (θ̂n)B−1(β̂n)�̂n B−1(β̂n)r A

θ (θ̂n)′)−1 A(θ̂n)(r(θ̂n)−v),

(5.8)

where the first dr −d∗
π rows of A(θ̂n)r(θ̂n) only depend on the randomness in ψ̂n,

not π̂n, asymptotically by the choice of A(θ̂n).
Define a dr ×dθ matrix

r∗
θ (θ) =

[
r∗
ψ(θ) 0

0 r∗
π (θ)

]
. (5.9)
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The matrix r∗
θ (θ), rather than r A

θ (θ), appears in the asymptotic distribution in
Section 5.5. The reason is as follows. Because ψ̂n converges faster than π̂n under
{γn} ∈ �(γ0,0,b), as shown in Theorems 4.1 and 4.2, the effect of randomness
in π̂n is an order of magnitude larger than that in ψ̂n . As a result, the limit of
r0
ψ(θ̂n) in (5.7) does not show up in the asymptotic distributions of the Wald and

t statistics. On the other hand, the limit of r∗
ψ(θ̂n) does appear in the asymptotic

distribution because it is the effect of randomness in ψ̂n separated from that in π̂n .
When rπ (θ) has full row rank, i.e., d∗

π = dr , for all θ ∈ 
δ, we have A(θ) = Idr ,
r A
θ (θ) = rθ (θ), and r∗

θ (θ) = [0 : rπ (θ)]. In this case, rotation is not needed to
concentrate the randomness in π̂n . Also, when dr = 1, we have A(θ) = 1, and so
no rotation is employed.

Define

ηn(θ) =
{

n1/2 A1(θ)(r(ψn,π)− r(ψn,πn)) if d∗
π < dr

0 if d∗
π = dr .

(5.10)

5.3. Function r(θ) of Interest

The function of interest, r(θ), satisfies the following assumptions.

Assumption R1.

(i) r(θ) is continuously differentiable on 
.

(ii) rθ (θ) is full row rank dr ∀θ ∈ 
.

(iii) rank(rπ (θ)) = d∗
π for some constant d∗

π ≤ min(dr ,dπ ) ∀θ ∈ 
δ = {θ ∈ 
 :
||β|| < δ} for some δ > 0.

Assumption R2. ηn(θ̂n) →p 0 under {γn} ∈ �(γ0,0,b) ∀b ∈ (R ∪{±∞})dβ .

Three different sufficient conditions for the high-level Assumption R2 are given
by Assumptions R2∗(i)–(iii), which follow. Any one of them is sufficient for As-
sumption R2 (under the conditions in Lemma 5.1 later in this section).

Assumption R2*.

(i) d∗
π = dr .

(ii) dr = 1.

(iii) The column space of rπ (θ) is the same ∀θ ∈ 
δ for some δ > 0.

Assumption R2∗(i) requires that the restrictions only involve π. Alternatively,
Assumption R2∗(ii) requires that only one restriction appears. Alternatively,
Assumption R2∗(iii) is satisfied when rπ (θ) = a(θ)Rπ , where a(θ) : 
δ → R,
a(θ) �= 0, and Rπ ∈ Rdr ×dπ . A special case is when rπ (θ) is constant because of
the restrictions being linear.

Assumption RL. r(θ) = Rθ, where R ∈ Rdr ×dθ has full row rank dr .

Assumption RL is a sufficient condition for Assumptions R1 and R2.
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LEMMA 5.1. Assumptions R2∗(i) and R2∗(ii) each (separately) implies As-
sumption R2. Assumption R2∗(iii) combined with Assumption GMM1 (or Assump-
tions A and B3(i)–(ii) of AC1) implies Assumption R2.

LEMMA 5.2. Assumption RL implies Assumptions R1 and R2.

5.4. Variance Matrix Estimators

The estimators of the components of the asymptotic variance matrix are assumed
to satisfy the following assumptions. Two forms are given for Assumption V1,
which follows. The first applies when β is a scalar, and the second applies when
β is a vector. The reason for the difference is that the normalizing matrix B(β) is
different in these two cases.

When β is a scalar, let J (θ ; γ0) and V (θ ; γ0) for θ ∈ 
 be some nonstochas-
tic dθ × dθ matrix-valued functions such that J (θ0; γ0) = J (γ0) and V (θ0; γ0) =
V (γ0), where J (γ0) and V (γ0) are as in (3.20) (or as in Assumptions D2 and D3
of AC1). Let

�(θ ; γ0) = J−1(θ ; γ0)V (θ ; γ0)J−1(θ ; γ0) and �(π ; γ0) = �(ψ0,π ; γ0).

(5.11)

Let �ββ(π ; γ0) denote the upper left (1,1) element of �(π ; γ0).
Assumption V1 applies when β is a scalar.

Assumption V1 (Scalarβ).

(i) Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n) for some (stochastic) dθ × dθ matrix-
valued functions Ĵn(θ) and V̂n(θ) on 
 that satisfy supθ∈
 || Ĵn(θ) −
J (θ ; γ0)|| →p 0 and supθ∈
 ||V̂n(θ) − V (θ ; γ0)|| →p 0 under {γn} ∈
�(γ0,0,b) with |b| < ∞.

(ii) J (θ ; γ0) and V (θ ; γ0) are continuous in θ on 
 ∀γ0 ∈ � with β0 = 0.

(iii) λmin(�(π ; γ0)) > 0 and λmax(�(π ; γ0)) < ∞ ∀π ∈ 	, ∀γ0 ∈ � with
β0 = 0.

When β is a vector, i.e., dβ > 1, we reparameterize β as (||β||,ω), where ω =
β/||β|| if β �= 0 and by definition ω = 1dβ /||1dβ || with 1dβ = (1, ...,1) ∈ Rdβ if
β = 0. Correspondingly, θ is reparameterized as θ+ = (||β||,ω,ζ,π). Let 
+ =
{θ+ : θ+ = (||β||,β/||β||,ζ,π), θ ∈ 
}. Let θ̂+

n and θ+
0 be the counterparts of θ̂n

and θ0 after reparametrization.
When β is a vector, let J (θ+; γ0) and V (θ+; γ0) denote some nonstochastic

dθ × dθ matrix-valued functions such that J (θ+
0 ; γ0) = J (γ0) and V (θ+

0 ; γ0) =
V (γ0). Let

�(θ+; γ0) = J−1(θ+; γ0)V (θ+; γ0)J−1(θ+; γ0) and

�(π,ω; γ0) = �(||β0||,ω,ζ0,π ; γ0). (5.12)

Let �ββ(π,ω; γ0) denote the upper left dβ ×dβ submatrix of �(π,ω; γ0).
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Assumption V1, which follows, applies when β is a vector.

Assumption V1 (Vector β).

(i) Ĵn = Ĵn(θ̂+
n ) and V̂n = V̂n(θ̂+

n ) for some (stochastic) dθ × dθ

matrix-valued functions Ĵn(θ+) and V̂n(θ+) on 
+ that satisfy
supθ+∈
+ || Ĵn(θ+) − J (θ+; γ0)|| →p 0 and supθ+∈
+ ||V̂n(θ+) −
V (θ+; γ0)|| →p 0 under {γn} ∈ �(γ0,0,b) with ||b|| < ∞.11

(ii) J (θ+; γ0) and V (θ+; γ0) are continuous in θ+ on 
+ ∀γ0 ∈ � with β0 = 0.

(iii) λmin(�(π,ω; γ0)) > 0 and λmax(�(π,ω; γ0)) < ∞ ∀π ∈ 	, ∀ω ∈ Rdβ

with ||ω|| = 1, ∀γ0 ∈ � with β0 = 0.

(iv) P(τβ(π∗(γ0,b),γ0,b) = 0) = 0 ∀γ0 ∈ � with β0 = 0 and ∀b with
||b||<∞.

The following assumption applies with both scalar and vector β.

Assumption V2. Under �(0,∞,ω0), Ĵn →p J (γ0) and V̂n →p V (γ0).

Example 1 (cont.)
In this example, β is a scalar. The estimators of J (γ0) and V (γ0) are

Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n), (5.13)

respectively, where

Ĵn(θ) = Ĵg,n(θ)′Wn Ĵg,n (θ) ,

V̂n(θ) = Ĵg,n(θ)′Wn V̂g,n (θ)Wn Ĵg,n (θ) ,

Ĵg,n(θ)′ = n−1
n

∑
i=1

Zi di (π)′, and V̂g,n (θ) = n−1
n

∑
i=1

U 2
i (θ)Zi Z ′

i . (5.14)

The key quantities in Assumption V1 (scalar β) are

J (θ ; γ0) = Jg(θ ; γ0)
′W(γ0)Jg(θ ; γ0) and

V (θ ; γ0) = Jg(θ ; γ0)
′W(γ0)Vg(θ ; γ0)W(γ0)Jg(θ ; γ0), where

Jg(θ ; γ0) = −Eφ0 Zi di (π)′, W(γ0) = (Eφ0 Zi Z ′
i )

−1, and (5.15)

Vg(θ ; γ0) = Eφ0U 2
i Zi Z ′

i +2Eφ0 [β0h(X1,i ,π0)−βh(X1,i ,π)+ X2,i (ζ0 − ζ )]Zi Z ′
i

+Eφ0 [β0h(X1,i ,π0)−βh(X1,i ,π)+ X ′
2,i (ζ0 − ζ )]2 Zi Z ′

i .

Assumption V1(i) holds by the uniform LLN given in Lemma 12.1 in Sup-
plemental Appendix D using the moment conditions in (2.11), Assumption
GMM1(ii), and the continuous mapping theorem. Assumption V1(ii) holds by
the continuity of h(x,π) and hπ (x,π) in π and the conditions in (2.11).

To verify Assumption V1(iii), note that

�(π ; γ0) = J−1(ψ0,π ; γ0)V (ψ0,π ; γ0)J−1(ψ0,π ; γ0), where

Jg(ψ0,π ; γ0) = −Eφ0 Zi di (π)′ and Vg(ψ0,π ; γ0) = Eφ0U 2
i Zi Z ′

i (5.16)
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when β0 = 0. We have the following results: �(π ; γ0) is positive definite (pd) and
finite ∀π ∈ 	 because both J (ψ0,π ; γ0) and V (ψ0,π ; γ0) are pd and finite, which
in turn holds because (a) W(γ0) is pd and finite by Assumption GMM1(vii),
(b) Jg(ψ0,π ; γ0) ∈ Rk×dθ has full rank by (2.11), and (c) Vg(ψ0,π ; γ0) is pd
and finite by (2.11). This completes the verification of Assumption V1.

Assumptions V1(i) and V1(ii) hold not only under {γn} ∈ �(γ0,0,b) but also
under {γn} ∈ �(γ0,∞,ω0) in this example. This and θ̂n →p θ0 under {γn} ∈
�(γ0,∞,ω0), which holds by Theorem 4.2 (because Assumptions GMM1–
GMM5, B1, and B2 have been verified previously), imply that Assumption V2
holds. This completes the verification of Assumption V2.

5.5. Asymptotic Null Distribution of the Wald Statistic

The asymptotic null distribution of the Wald statistic under H0 depends on
the following quantities. The limit distribution of ω̂n(π) = β̂n(π)/||β̂n(π)|| under
�(γ0,0,b) with ||b|| < ∞ is given by

ω∗(π ; γ0,b) = τβ(π ; γ0,b)

||τβ(π ; γ0,b)|| for π ∈ 	, (5.17)

where τβ(π ; γ0,b) is defined in (4.5). Let B(π ; γ0,b) be a dr ×dr matrix-valued
function of τβ(π ; γ0,b) defined as

B(π ; γ0,b) =
[

I(dr −d∗
π ) 0

0 ι(τβ(π ; γ0,b))Id∗
π

]
, (5.18)

where ι(β) = β when β is a scalar and ι(β) = ||β|| when β is a vector.
Let

r∗
θ (π) = r∗

θ (ψ0,π), r∗
ψ(π) = r∗

ψ(ψ0,π) and

�(π ; γ0,b) =
{

�(π ; γ0) if β is a scalar
�(π,ω∗(π ; γ0,b); γ0) if β is a vector,

(5.19)

where �(π ; γ0) and �(π,ω; γ0) are defined in (5.11) and (5.12), respectively.
Define a stochastic process {λ(π ; γ0,b) : π ∈ 	} by

λ(π ; γ0,b) = τ A(π ; γ0,b)′ B(π ; γ0,b)(r∗
θ (π)�(π ; γ0,b)r∗

θ (π)′)−1

×B(π ; γ0,b)τ A(π ; γ0,b), where

τ A(π ; γ0,b) =
(

r∗
ψ(π)τ(π ; γ0,b)

A2(ψ0,π)(r(ψ0,π)− r(ψ0,π0))

)
∈ Rdr . (5.20)

With linear restrictions, the stochastic process λ(π ; γ0,b) can be simplified.
Under Assumption RL, rθ (θ) = R does not depend on θ, and hence A(θ) and
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r∗
θ (θ) do not depend on θ. Define R∗ = r∗

θ (θ) under Assumption RL. Specifically,

R A = AR =
[

R∗
ψ 0

R0
ψ R∗

π

]
and R∗ =

[
R∗

ψ 0
0 R∗

π

]
, (5.21)

where R∗
ψ ∈ R(dr −d∗

π )×dψ and R∗
π ∈ Rd∗

π×dπ .
Define a stochastic process {λL(π ; γ0,b) : π ∈ 	} by

λL(π ; γ0,b) = τ(π ; γ0,b)′ R∗′ B(π ; γ0,b)(R∗�(π ; γ0,b)R∗′)−1

× B(π ; γ0,b)R∗τ(π ; γ0,b), where

τ(π ; γ0,b) = (τ (π ; γ0,b)′, (π −π0)
′)′ ∈ Rdθ . (5.22)

Under the linear restriction of Assumption RL, λL(π ; γ0,b) = λ(π ; γ0,b) and
the asymptotic distribution of the Wald statistic can be simplified by replacing
the stochastic process {λ(π ; γ0,b) : π ∈ 	} with {λL(π ; γ0,b) : π ∈ 	} in the
asymptotic results that follow.

The following theorem establishes the asymptotic null distribution of the Wald
statistic for nonlinear restrictions that satisfy Assumption R2. (The null holds by
the definition Wn = Wn(vn) in (5.4).)

THEOREM 5.1. Suppose Assumptions B1–B2, R1–R2, and V1–V2 hold. In ad-
dition, suppose Assumptions GMM1–GMM5 hold (or Assumptions A, B3, C1–C8,
and D1–D3 of AC1 hold).

(a) Under {γn} ∈ �(γ0,0,b) with ||b|| < ∞, Wn →d λ(π∗(γ0,b); γ0,b).

(b) Under {γn} ∈ �(γ0,∞,ω0), Wn →d χ2
dr

.

A special case of Theorem 5.1 is the following result for linear restrictions.

COROLLARY 5.1. Suppose Assumptions B1–B2, RL , and V1–V2 hold. In
addition, suppose Assumptions GMM1–GMM5 hold (or Assumptions A, B1–B3,
C1–C8, and D1–D3 of AC1 hold).

(a) Under {γn} ∈ �(γ0,0,b) with ||b|| < ∞, Wn →d λL(π∗(γ0,b); γ0,b).

(b) Under {γn} ∈ �(γ0,∞,ω0), Wn →d χ2
dr

.

Specific forms of the stochastic process λ(π ; γ0,b) are provided in the follow-
ing examples. In Examples r1–r4, r(θ) is linear in θ and Corollary 5.1 applies. In
Example r5, r(θ) is nonlinear in θ and Assumption R2 is verified.

Example r1
When r(θ) = ψ, R = R∗ = [Idψ : 0], and λL(π ; γ0,b) = τ(π ; γ0,b)′�−1

ψψ(π ;
γ0,b)τ (π ; γ0,b), where �ψψ(π ; γ0,b) is the upper left dψ × dψ block of
�(π ; γ0,b).
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Example r2
When r(θ) = π, R = R∗ = [0 : Idπ ], and λL(π ; γ0,b) = ||τβ(π ; γ0,b)||2(π −π0)

′

�
−1
ππ (π ; γ0,b)(π −π0), where �ππ(π ; γ0,b) is the lower right dπ ×dπ block of

�(π ; γ0,b).

Example r3
When dψ = dπ and r(θ) = ψ + π, R = [Idψ : Idπ ], R∗ = [0dψ : Idπ ],

and λL(π ; γ0,b) = ||τβ(π ; γ0,b)||2(π − π0)
′�−1

ππ (π ; γ0,b)(π − π0). Note that
λL(π ; γ0,b) is the same in this example as in Example r2. This occurs be-
cause d∗

π = dr so that the randomness in ψ̂n is completely dominated by that
in π̂n . Although R is different in Examples r2 and r3, R∗ is the same in both
examples.

Example r4
When r(θ) = θ, R = R∗ = Idθ , and λL(π ; γ0,b) = τ(π ; γ0,b)′B(π ; γ0,b)

�
−1

(π ; γ0,b)B(π ; γ0,b)τ (π ; γ0,b).

Example r5
When θ = (β,π)′, r(θ) = (β,π2)′, and β and π are scalars, we have

rθ (θ) = r∗
θ (θ) =

[
1 0
0 2π

]
and A(θ) = I2. (5.23)

Assumption R2∗(iii) holds because A2(θ) does not depend on θ. This implies
that Assumption R2 holds. The stochastic process {τ A(π ; γ0,b) : π ∈ 	} can be
simplified to τ A(π ; γ0,b) = (τ (π ; γ0,b),π2 −π2

0 ).

Next we show that Assumption R2 is not superfluous. In certain cases, the Wald
statistic diverges to infinity in probability under H0.

THEOREM 5.2. Suppose Assumptions B1–B2, R1, and V1 hold. In addition,
suppose Assumptions GMM1–GMM4 hold (or Assumptions A, B1–B3, and C1–
C8 of AC1 hold). Under {γn} ∈ �(γ0,0,b), Wn →p ∞ if ||ηn(θ̂n)|| →p ∞.

Remark. This theorem provides a high-level condition under which the Wald
statistic diverges to infinity in probability under the null. This result holds for se-
quences {γn} in both the weak and semistrong identification categories. The Wald
statistic, which uses rθ (θ̂n) in the covariance matrix estimation, is designed for the
standard case in which θ̂n converges to θn at rate n−1/2. When π̂n is inconsistent
or converges to πn more slowly than n−1/2, the estimator of the covariance matrix
does not necessarily provide a proper normalization for the Wald statistic to have
a nondegenerate limit.

Example r6
We now demonstrate that restrictions exist for which Assumption R2 fails to hold.
Suppose θ = (β,π)′, r(θ) = ((β +1)π,π2)′, and β and π are both scalars. Then,
we have
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rθ (θ) =
[
π β +1
0 2π

]
, A1(θ) = 1

||(−2π,β +1)|| (−2π,β +1), and

ηn(θ) = − n1/2

||(−2π,β +1)||
[
−2π(βn +1)(π −πn)+ (β +1)(π2 −π2

n )
]
. (5.24)

Consider a sequence {γn} ∈ �(γ0,0,b). Suppose Assumptions B1, B2, and
GMM1–GMM5 hold. If |b| < ∞, assume P(π∗(γ0,b) = 0) = 0 (which typically
holds when 	 contains a nondegenerate interval). Some calculations show that
under {γn}, we have ηn(θ̂n) = ||(−2π0,1)||−1[n1/2βn(π̂n −πn)]2(n1/4βn)

−2(1+
o(1)) + Op(1).12 In consequence, if n1/4βn → 0, then ηn(θ̂n) →p ∞ and
Theorem 5.2 applies.13

Sequences for which n1/2βn → ∞ and n1/4βn → 0 are in the semistrong iden-
tification category. Hence, this example shows that even for sequences in the
semistrong identification category, in which case both β̂n and π̂n are consistent
and asymptotically normal, the Wald test can diverge to infinity for nonlinear re-
strictions because of the different rates of convergence of β̂n and π̂n .

Stock and Yogo (2005) specify several tests for weak instruments in a linear
instrumental variables regression model. Wright (2003) specifies a test for lack
of identification in a GMM context. All of these tests reject the null hypothesis
of weak identification or no identification with probability that goes to one as
n → ∞ in Example r6 when n1/2βn → ∞ and n1/4βn → 0. (For the Stock and
Yogo (2005) test, this is true for any fixed finite choice of the critical value for the
test.) Hence, these tests are not able to detect situations where problems arise with
some Wald tests as in Example r6. (Note that the version of the Stock and Yogo
(2005) test that is designed to control the size of a Wald test applies to a Wald
test of the null hypothesis that completely specifies the value of the endogenous
variable vector. It is not designed for the null hypothesis specified in Example r6.)

Armstrong et al. (2012) provide results that are related to those in Theorem 5.2.
Their results apply to simple (and hence linear) null hypotheses in nonlinear mod-
els, whereas Theorem 5.2 applies to nonlinear hypotheses in linear or nonlinear
models. In both cases, it is shown that Wald tests can have incorrect asymptotic
size in semistrong identification scenarios.

5.6. Asymptotic Distribution of the Wald Statistic under the
Alternative

Next, we provide the asymptotic distributions of the Wald test under alternative
hypotheses, which yield power results for the Wald test and false coverage proba-
bilities for Wald CSs. Suppose the conditions of Theorem 5.1 hold. The following
results are obtained by altering of the proof of Theorem 5.1. Suppose the sequence
of null hypothesis values of r(θ) are {vnull

n,0 : n ≥ 1}.14 We consider the case where

the true parameters {γn} satisfy r(θn) �= vnull
n,0 .

First, consider the alternative hypothesis distributions {γn} ∈ �(γ0,0,b) with
b∈ Rdβ . Suppose the sequence of true values {θn} satisfies n1/2(r(θn)−vnull

n,0 )→d
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for some d ∈ Rdr . Then, the asymptotic distribution of Wn(v
null
n,0 ) is given by

the expression in Theorem 5.1(a), but with τ A(π ; γ0,b) in the definition of
λ(π ; γ0,b) replaced by τ A∗(π ; γ0,b) = τ A(π ; γ0,b)+ (A1(ψ0,π)d,0d∗

π
). Alter-

natively, suppose the sequence of true values satisfies r(θn)− vnull
n,0 → d0 ∈ Rdr

and d0 �= 0. When A1(θ) �= 0 ∀θ ∈ 
, Wn(vnull
n,0 ) →p ∞. When A1(θ) = 0

∀θ ∈ 
, the asymptotic distribution of Wn(v
null
n,0 ) is given by the expression in

Theorem 5.1(a), but with τ A(π ; γ0,b) in the definition of λ(π ; γ0,b) replaced by
τ A∗∗(π ; γ0,b) = τ A(π ; γ0,b)+ (0dr −d∗

π
, A2(ψ0,π)d0).

Next, consider the alternative hypothesis distributions {γn} ∈ �(γ0,∞,ω0)
with β0 �= 0. When n1/2(r(θn) − vnull

n,0 ) → d for some d ∈ Rdr , Wn(v
null
n,0 ) con-

verges in distribution to a non-central χ2
dr

distribution with noncentrality pa-

rameter δ2 = d ′(rθ (θ0)B−1(β0)�(γ0)B−1(β0)rθ (θ0)
′)−1d. Alternatively, when

r(θn)− vnull
n,0 → d0 for some d0 ∈ Rdr with d0 �= 0, Wn →p ∞.

Lastly, consider the alternative hypothesis distributions {γn} ∈ �(γ0,∞,ω0)
with β0 = 0. Suppose the restrictions satisfy r(θ) = (r1(ψ),r2(θ)) for r2(θ) ∈
Rd∗

π with d∗
π ≥ 0 and the d∗

π × dπ matrix (∂/∂π ′)r2(θ) has full rank d∗
π .15 Let

vnull
n,0 = (vnull

n,0,1,v
null
n,0,2) for vnull

n,0,2 ∈ Rd∗
π . When

n1/2(r1(θn)−vnull
n,0,1) → d1 ∈ Rdr −d∗

π and n1/2ι(βn)(r2(θn)−vnull
n,0,2) → d2 ∈ Rd∗

π ,

(5.25)

the asymptotic distribution of Wn(vnull
n,0 ) is a noncentral χ2

dr
distribution with

noncentrality parameter δ2 = d ′(r∗
θ (θ0)�(γ0)r∗

θ (θ0)
′)−1d, where d = (d1,d2) ∈

Rdr . Note that the local alternatives in (5.25) are n−1/2-alternatives for the
r1(ψ) restrictions but are more distant n−1/2ι(βn)

−1-alternatives for the r2(θ)
restrictions because of the slower n1/2ι(βn)-rate of convergence of π̂n in the
present context. Alternatively, when r(θn)− vnull

n,0 → d0 for some d0 ∈ Rdr with
d0 �= 0, Wn →p ∞.

5.7. Asymptotic Size of Standard Wald Confidence Sets

Here, we determine the asymptotic size of a standard CS for r(θ) ∈ Rdr obtained
by inverting a Wald statistic, i.e.,

C SW,n = {v : Wn(v) ≤ χ2
dr ,1−α}, (5.26)

where the Wald statistic Wn(v) is as in (5.2), χ2
dr ,1−α is the 1 − α quantile of a

chi-square distribution with dr degree of freedom, and 1 −α is the nominal size
of the CS.

The asymptotic size of the preceding CS above is determined using the asymp-
totic distribution of Wn = Wn(r(θn)) under drifting sequences of true parameters,
as given in Theorems 5.1 and 5.2. For ||b|| < ∞, define

h = (b,γ0), H = {h = (b,γ0) : ||b|| < ∞,γ0 ∈ � with β0 = 0}, and

W (h) = λ(π∗(γ0,b); γ0,b). (5.27)
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As defined, W (h) is the asymptotic distribution of Wn under {γn} ∈ �(γ0,0,b)
for ||b|| < ∞ determined in Theorem 5.1(a).

Let cW,1−α(h) denote the 1−α quantile of W (h) for h ∈ H.
As in (2.24), AsySz denotes the asymptotic size of a CS of nominal level 1−α.

The asymptotic size results use the following distribution function (df) continuity
assumption, which typically is not restrictive.

Assumption V4. The df of W (h) is continuous at χ2
dr ,1−α and

suph∈H cW,1−α(h) ∀h ∈ H.

THEOREM 5.3. Suppose Assumptions B1–B2, R1–R2, V1–V2, and V4 hold. In
addition, suppose Assumptions GMM1–GMM5 hold (or Assumptions A, B1–B3,
C1–C8, and D1–D3 of AC1 hold). Then, the standard nominal 1 − α Wald CS
satisfies

AsySz = min{ inf
h∈H

P(W (h) ≤ χ2
dr ,1−α), 1−α}.

Remark. Under Assumption RL (i.e., linearity of r(θ)), Theorem 5.3
holds with W (h) replaced by the equivalent, but simpler, quantity WL(h) =
λL(π∗(γ0,b); γ0,b) for h = (b,γ0). This holds by Corollary 5.1(a).

Theorem 5.2 shows that the Wald statistic Wn diverges to infinity in some cir-
cumstances, e.g., see Example r6 in Section 5.5. In such cases, the standard Wald
CS has asymptotic size equal to 0.

COROLLARY 5.2. Suppose Assumptions B1–B2, R1, and V1 hold. In ad-
dition, suppose Assumptions GMM1–GMM5 hold (or Assumptions A, B1–B3,
C1–C8, and D1-D3 of AC1 hold). If ||ηn(θ̂n)|| →p ∞ under {γn} ∈ �(γ0,0,b) for
some γ0 ∈ � and ||b|| < ∞, the standard nominal 1−α Wald CS has AsySz = 0.

5.8. Robust Wald Confidence Sets

Next, we construct Wald CSs that have correct asymptotic size. These CSs
are robust to the strength of identification. The CSs for r(θ) are constructed by
inverting a robust Wald test that combines the Wald test statistic with a robust
critical value that differs from the usual χ2

dr
-quantile, which is designed for the

strong-identification case. The first robust CS uses the least favorable (LF) critical
value. The second robust CS, called a type 2 robust CS, is introduced in AC1. It
uses a data-dependent critical value. It is smaller than the LF robust CS under
strong identification and hence is preferable.

5.8.1. Least Favorable Critical Value. The LF critical value is

cLF
W,1−α = max

{
sup
h∈H

cW,1−α(h),χ2
dr ,1−α

}
. (5.28)

The LF critical value can be improved (i.e., made smaller) by exploiting the
knowledge of the null hypothesis value of r(θ). For instance, if the null hypothesis
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specifies the value of π to be 3, then the supremum in (5.28) does not need to be
taken over all h ∈ H, only over the h values for which π = 3. We call such a
critical value a null-imposed (NI) LF critical value. Using a NI-LF critical value
increases the computational burden because a different critical value is employed
for each null hypothesis value.16

When part of γ is unknown under H0 but can be consistently estimated, then
a plug-in LF (or plug-in NI-LF) critical value can be used that has correct size
asymptotically and is smaller than the LF (or NI-LF) critical value. The plug-in
critical value replaces elements of γ with consistent estimators in the formulas
in (5.28), and the supremum over H is reduced to a supremum over the resulting
subset of H, denoted Ĥn, for which the consistent estimators appear in each
vector γ.17

5.8.2. Type 2 Robust Critical Value. Next, we define the type 2 robust critical
value. It improves on the LF critical value. It employs an identification category
selection (ICS) procedure that uses the data to determine whether b is finite.18

The ICS procedure chooses between the identification categories IC0 : ||b|| < ∞
and IC1 : ||b|| = ∞. The ICS statistic is

An =
(

nβ̂ ′
n�̂−1

ββ,n β̂n/dβ

)1/2
, (5.29)

where �̂ββ,n is the upper left dβ ×dβ block of �̂n, which is defined in (5.1).
The type 2 robust critical value provides a continuous transition from a weak-

identification critical value to a strong-identification critical value using a transi-
tion function s(x). Let s(x) be a continuous function on [0,∞) that satisfies (i)
0 ≤ s(x) ≤ 1, (ii) s(x) is nonincreasing in x, (iii) s(0) = 1, and (iv) s(x) → 0 as
x → ∞. Examples of transition functions include (i) s(x) = exp(−c · x) for some
c > 0 and (ii) s(x) = (1+c · x)−1 for some c > 0.19 For example, in the nonlinear
regression model with endogeneity, we use the function s(x) = exp(−2x).

The type 2 robust critical value is

ĉW,1−α,n =
{

cB if An ≤ κ

cS + [cB − cS] · s(An −κ) if An > κ, where

cB = cL F
W,1−α +�1, cS = χ2

dr ,1−α +�2, (5.30)

and �1 ≥ 0 and �2 ≥ 0 are asymptotic size-correction factors that are de-
fined subsequently. Here, B denotes Big, and S denotes Small. When An ≤ κ,
ĉW,1−α,n equals the LF critical value cL F

W,1−α plus a size-correction factor �1.

When An > κ, ĉW,1−α,n is a linear combination of cL F
W,1−α +�1 and χ2

dr ,1−α +�2,
where �2 is another size-correction factor. The weight given to the standard crit-
ical value χ2

dr ,1−α increases with the strength of identification, as measured by
An −κ.
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The ICS statistic An satisfies An →d A(h) under {γn} ∈ �(γ0,0,b) with
||b|| < ∞, where A(h) is defined by

A(h) =
(
τβ(π∗; γ0,b)′�−1

ββ (π∗; γ0)τβ(π∗; γ0,b)/dβ

)1/2
, (5.31)

where π∗ abbreviates π∗(γ0,b), τβ(π ; γ0,b) is defined in (4.5), and
�ββ(π ; γ0) is the upper left (1,1) element of �(ψ0,π ; γ0) for �(θ ; γ0) =
J−1(θ ; γ0)V (θ ; γ0)J−1(θ ; γ0).

20

Under γn ∈ �(γ0,0,b) with ||b|| < ∞, the asymptotic null rejection probability
of a test based on the statistic Wn and the robust critical value ĉW,1−α,n is equal to

N R P(�1,�2; h) = P(W (h) > cB & A(h) ≤ κ)+ P(W (h) > cA(h) & A(h) > κ)

= P(W (h) > cB)+ P(W (h) ∈ (cA(h),cB ] & A(h) > κ), where

cA(h) = cS + (cB − cS) · s(A(h)−κ). (5.32)

The constants �1 and �2 are chosen such that N R P(�1,�2; h) ≤ α
∀h ∈ H. In particular, we define �1 = suph∈H1

�1(h), where �1(h) ≥ 0 solves
N R P(�1(h),0; h) = α (or �1(h) = 0 if N R P(0,0; h) < α), H1 = {(b,γ0) :
(b,γ0) ∈ H & ||b|| ≤ ||bmax|| + D}, bmax is defined such that cW,1−α(h) is
maximized over h ∈ H at hmax = (bmax,γmax) ∈ H for some γmax ∈ �, and
D is a nonnegative constant, such as 1. We define �2 = suph∈H �2(h), where
�2(h) solves N R P(�1,�2(h); h) = α (or �2(h) = 0 if N R P(�1,0; h) < α).21

As defined, �1 and �2 can be computed sequentially, which eases computation.
Given the definitions of �1 and �2, the asymptotic rejection probability is

always less than or equal to the nominal level α, and it is close to α when h is
close to hmax (because of the adjustment by �1) and when ||b|| is large (because
of the adjustment by �2).

The type 2 robust critical value can be improved by employing NI and/or plug-
in versions of it, denoted by ĉW,1−α,n(v). These are defined by replacing cLF

W,1−α
in (5.30) by the NI-LF or plug-in NI-LF critical value and making cB, �1, and �2
depend on the null value v, denoted cB(v), �1(v), and �2(v). We recommend
using these versions whenever possible because they lead to smaller CSs.

For any given value of κ, the type 2 robust CS has correct asymptotic size as a
result of the choice of �1 and �2. In consequence, a good choice of κ depends on
the false coverage probabilities (FCPs) of the robust CS. (A FCP of a CS for r(θ)
is the probability that the CS includes a value different from the true value r(θ).)
The numerical work in this paper and in AC1 and AC2 shows that if a reasonable
value of κ is chosen, such as κ = 1.5 or 2.0, the FCPs of type 2 robust CSs are
not sensitive to deviations from this value of κ. This is because the size-correction
constants �1 and �2 have to adjust as κ is changed to maintain correct asymptotic
size. The adjustments of �1 and �2 offset the effect of changing κ.

One can select κ in a simple way, i.e., by taking κ = 1.5 or 2.0, or one can select
κ in a more sophisticated way that explicitly depends on FCPs. Both methods
yield similar results for the cases that we have considered.
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The more sophisticated method of choosing κ is to minimize the average FCP
of the robust CS over a chosen set of κ values denoted by K. First, for given
h ∈ H, one chooses a null value vH0(h) that differs from the true value v0 = r(θ0)
(where h = (b,γ0) and γ0 = (θ0,φ0)). The null value vH0(h) is selected such that
the robust CS based on a reasonable choice of κ, such as κ = 1.5 or 2, has a
FCP that is in a range of interest, such as close to 0.50.22 Second, one computes
the FCP of the value vH0(h) for each robust CS with κ ∈ K. Third, one repeats
steps one and two for each h ∈ H, where H is a representative subset of H.23

The optimal choice of κ is the value that minimizes over K the average over
h ∈H of the FCP’s at vH0(h).

In summary, the steps used to construct a type 2 robust Wald (or t) test are as
follows: (1) Estimate the model using the standard GMM estimator, yielding β̂n

and the covariance matrix �̂ββ,n . (2) Compute the Wald statistic using the for-
mula in (5.2). (3) Construct the ICS statistic An defined in (5.29). (4) Simulate
the LF critical value cL F

W,1−α and the size correction factors �1 and �2 based on
the asymptotic formulas in (5.27), (5.31), and (5.32) and the description following
(5.32), for a given value of κ. (5) Compute the type 2 robust critical value ĉW,1−α,n

defined in (5.30), employing the NI and/or plug-in versions when applicable.
(6) Choose κ by minimizing the FCP of the type 2 robust CI. The last step can be
avoided when the type 2 robust CI constructed is not very sensitive to the choice
of κ, which is typically the case found in our simulation studies. For a type 2 ro-
bust CI for a particular parameter, one takes the CI to consist of all null values of
the parameter for which the type 2 robust test fails to reject the null hypothesis.
This can be computed by grid search or some more sophisticated method, such as
a multistep grid search where the fineness of the grid varies across the steps.

5.8.3. Asymptotic Size of Robust Wald CSs. In this section, we show that the
LF and data-dependent robust CSs defined earlier have correct asymptotic size.
The asymptotic size results rely on the following df continuity conditions, which
are not restrictive in most examples.

Assumption LF.

(i) The df of W (h) is continuous at cW,1−α(h) ∀h ∈ H.

(ii) If cL F
W,1−α > χ2

dr ,1−α, cL F
W,1−α is attained at some hmax ∈ H.

Assumption NI-LF.

(i) The df of W (h) is continuous at cW,1−α(h) ∀h ∈ H(v), ∀v ∈ Vr .

(ii) For some v ∈ Vr , cL F
W,1−α(v) = χ2

dr ,1−α or cL F
W,1−α(v) is attained at some

hmax ∈ H.

For h ∈ H, define

ĉW,1−α(h) =
{

cB if A(h) ≤ κ
cS + [cB − cS] · s(A(h)−κ) if A(h) > κ.

(5.33)
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As defined, ĉW,1−α(h) equals ĉW,1−α,n with A(h) in place of An . The asymptotic
distribution of ĉW,1−α,n under {γn} ∈ �(γ0,0,b) for ||b|| < ∞ is the distribution
of ĉW,1−α(h).

Define ĉW,1−α(h,v) analogously to ĉW,1−α(h), but with cL F
W,1−α, �1, and �2

replaced by cL F
W,1−α(v), �1(v), and �2(v), respectively, for v ∈ Vr . The asymp-

totic distribution of ĉW,1−α,n(v) under {γn} ∈ �(γ0,0,b) for ||b|| < ∞ is the dis-
tribution of ĉW,1−α(h,v).

Assumption Rob2.

(i) P(W (h) = ĉW,1−α(h)) = 0 ∀h ∈ H.

(ii) If �2 > 0, N R P(�1,�2; h∗) = α for some point h∗ ∈ H, where �1 and
�2 are defined following (5.32).

Assumption NI-Rob2.

(i) P(W (h) = ĉW,1−α(h,v)) = 0 ∀h ∈ H(v), ∀v ∈ Vr .

(ii) For some v ∈ Vr , �2(v) = 0 or N R P(�1(v),�2(v); h∗) = α for some
point h∗ ∈ H(v), where �1(v) and �2(v) are defined following (5.32).

THEOREM 5.4. Suppose Assumptions B1–B2, R1–R2, and V1–V2 hold. In
addition, suppose Assumptions GMM1–GMM5 hold (or Assumptions A, B1–B3,
C1–C8, and D1–D3 of AC1 hold). Then, the nominal 1 −α robust Wald CS has
AsySz = 1 − α when based on the following critical values: (i) LF, (ii) NI–LF,
(iii) type 2 robust, and (iv) type 2 NI robust, provided the following additional
assumptions hold, respectively: (i) LF, (ii) NI–LF, (iii) Rob2, and (iv) NI–Rob2.

Remarks.

1. Plug-in versions of the robust Wald CSs considered in Theorem 5.4 also
have asymptotically correct size under continuity assumptions on cW,1−α(h)
that typically are not restrictive. For brevity, we do not provide formal
results here.

2. If part (ii) of Assumption LF, NI-LF, Rob2, or NI-Rob2 does not hold, then
the corresponding part of Theorem 5.4 still holds but with AsySz ≥ 1−α.

3. A third type of robust critical value, referred to as type 1, is considered in
AC1. Critical values of this type can be employed with Wald statistics. The
resulting type 1 robust CSs outperform LF robust CSs in terms of FCPs but
are inferior to type 2 robust CSs. However, they are easier to compute than
type 2 robust CSs.

6. QUASI–LIKELIHOOD RATIO CONFIDENCE SETS AND TESTS

In this section, we introduce CSs based on the QLR statistic. For brevity,
theoretical results for the QLR procedures are given in AC1. However, we define
QLR procedures here because numerical results are reported for them in the
numerical results section.
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We consider CSs for a function r(θ) (∈ Rdr ) of θ obtained by inverting QLR
tests. The function r(θ) is assumed to be smooth and to be of the form

r(θ) =
[

r1(ψ)
r2(π)

]
, (6.1)

where r1(ψ) ∈ Rdr1 , dr1 ≥ 0 is the number of restrictions on ψ, r2(π) ∈ Rdr2 ,
dr2 ≥ 0 is the number of restrictions on π, and dr = dr1 +dr2 .

For v ∈ r(
), we define a restricted estimator θ̃n(v) of θ subject to the restric-
tion that r(θ) = v. By definition,

θ̃n(v) ∈ 
, r(θ̃n(v)) = v, and Qn(θ̃n(v)) = inf
θ∈
:r(θ)=v

Qn(θ)+o(n−1).

(6.2)

For testing H0 : r(θ) = v, the QLR test statistic is

QL Rn(v) = 2n(Qn(θ̃n(v))− Qn(θ̂n))/ŝn, (6.3)

where ŝn is a real-valued scaling factor that is employed in some cases to yield a
QLR statistic that has an asymptotic χ2

dr
null distribution under strong identifica-

tion. See AC1 for details.
Let cn,1−α(v) denote a nominal level 1 −α critical value to be used with the

QLR test statistic. It may be stochastic or nonstochastic. The usual choice, based
on the asymptotic distribution of the QLR statistic under standard regularity con-
ditions, is the 1−α quantile of the χ2

dr
distribution: cn,1−α(v) = χ2

dr ,1−α.
A critical value that delivers a robust QLR CS for r(θ) that has correct asymp-

totic size can be constructed using the same approach as in Section 5.8.3. Details
are in AC1.

Given a critical value cn,1−α(v), the nominal level 1−α QLR CS for r(θ) is

C SQL R
r,n = {v ∈ r(
) : QL Rn(v) ≤ cn,1−α(v)}. (6.4)

7. NUMERICAL RESULTS: NONLINEAR REGRESSION MODEL WITH
ENDOGENEITY

In this section, we provide asymptotic and finite-sample simulation results for the
nonlinear regression model with endogeneity.

The model we consider consists of a structural equation with two right-hand-
side endogenous variables X1 and X2, where X1 is a nonlinear regressor and X2
is a linear regressor, and two reduced-form equations for X1 and X2, respectively:

Yi = ζ1 +β ·h(X1,i ,π)+ ζ2 X2,i +Ui ,

X1,i = λ1 +λ2 Z1,i + V1,i ,

X2,i = λ3 +λ4 Z2,i +λ5 Z3,i + V2,i , (7.1)
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where Yi , X1,i , X2,i ∈ R are endogenous variables, Z1,i , Z2,i , Z3,i ∈ R
are excluded exogenous variables, h(x,π) = (|x |π − 1)/π , and θ =
(β,ζ1,ζ2,π)′ ∈ R4 is the unknown parameter.24 The data generating process
(DGP) satisfies (ζ1,ζ2) = (−2,2), (λ1,λ2) = (3,1), (λ3,λ4,λ5) = (0,1,1),
{(Z1,i , Z2,i , Z3,i ,Ui ,V1,i ,V2,i ) : i = 1, ...,n} are i.i.d., (Z1,i , Z2,i , Z3,i ) and
(Ui ,V1,i ,V2,i ) are independent, (Z1,i , Z2,i , Z3,i ) ∼ N (0, I3), Ui ∼ N (0,0.25),
Vk,i ∼ N (0,1) and Corr(Ui ,Vk,i ) = 0.5 for k = 1 and 2, and Corr(V1,i ,V2,i ) =
0.5.

The IVs for the GMM estimator of θ are Zi = (1, Z1,i , Z2
1,i , Z2,i , Z3,i )

′ ∈ R5.
Thus, five moment conditions are used to estimate four parameters.

The true parameter space for π is [1.5, 3.5] and the optimization space for
π is [1,4]. The finite-sample results are for n = 500. The number of simulation
repetitions is 20,000.25

Figures 1 and 2 provide the asymptotic and finite-sample densities of the GMM
estimators of β and π when the true π value is π0 = 1.5. Each figure gives the den-
sities for b = 0, 4, 10, and 30, where b indexes the magnitude of β. Specifically,
for the finite-sample results, b = n1/2β. Figures S-1 and S-2 in Supplemental
Appendix E provide analogous results for π0 = 3.0.

Figure 1 shows that the ML estimator of β has a distribution that is very
far from a normal distribution in the unidentified and weakly identified cases.
The figure shows a build-up of mass at 0 in the unidentified case and a bimodal
distribution in the weakly identified case. Figure 2 shows that there is a build-up
of mass at the boundaries of the optimization space for the estimator of π in the
unidentified and weakly identified cases. Figures 1 and 2 indicate that the asymp-
totic approximations developed here work very well.

Figures S-3 to S-6 in Supplemental Appendix E provide the asymptotic and
finite-sample (n = 500) densities of the t and QLR statistics for β and π when

FIGURE 1. Asymptotic and finite-sample (n = 500) densities of the estimator of β in the
nonlinear regression model with endogeneity when π0 = 1.5.
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FIGURE 2. Asymptotic and finite-sample (n = 500) densities of the estimator of π in the
nonlinear regression model with endogeneity when π0 = 1.5.

π0 = 1.5. These figures show that in the case of weak identification the t and
QLR statistics are not well approximated by standard normal and χ2

1 distributions.
However, the asymptotic approximations developed here work very well.

Figure 3 provides graphs of the 0.95 asymptotic quantiles of the |t | and QLR
statistics concerning β and π as a function of b for π0 = 1.5, 2.0, 3.0, and 3.5. For
the |t | statistic concerning β, for small to medium b values, the graphs exceed the
0.95 quantile under strong identification (given by the horizontal black line). This
implies that tests and CIs that employ the |t | statistic for β and the standard critical
value (based on the normal distribution) have incorrect size. For the QLR statis-
tic for β, the graphs slightly exceed the 0.95 quantile under strong identification
when b is 0 or almost 0 and fall below the 0.95 quantile under strong identification
for other small to medium b values. The graphs in Figure 3(b) imply that tests and
CIs that employ the QLR statistic for β and the standard critical value (based on
the χ2

1 distribution) have small size distortions as a result of the undercoverage
for b values close to 0. Given the heights of the graphs in Figures 3(c) and 3(d),
tests and CIs that employ the |t | statistic for π have correct asymptotic size when
π0 = 1.5 and 2.0 and have slight size distortion when π0 = 3.0 and 3.5, whereas
those that employ the QLR statistic for π always have correct asymptotic size.

Figure 4 reports the asymptotic and finite-sample coverage probabilities (CPs)
of nominal 0.95 standard |t | and QLR CIs for β and π when π0 = 1.5. For
example, the smallest asymptotic and finite-sample CPs (over b) are around 0.68
and 0.93 for the |t | and QLR CIs for β, respectively. There is no size distortion
for the |t | and QLR CIs for π. Note that the asymptotic CPs provide a good ap-
proximation to the finite-sample CPs. Figure S-7 in Supplemental Appendix E
provides analogous results for π0 = 3.0.

Next, we consider CIs that are robust to weak identification. For the robust CI
for β, we impose the null value of b = n1/2β0, where β0 is the true value of



INFERENCE WITH POSSIBLE IDENTIFICATION FAILURE 327

FIGURE 3. Asymptotic 0.95 quantiles of the |t | and QLR statistics for tests concerning β
and π in the nonlinear regression model with endogeneity.

β under the null. With the knowledge of b under the null, no ICS procedure is
needed. Imposing the null value of b also results in a smaller LF critical value.
As indicated in Figure 3(a), the NI-LF critical values for the |t | CI for β are
attained at π0 = 1.5 for all b values. In consequence, the robust |t | CI for β is
asymptotically similar when π0 = 1.5, as shown in Figure 5(a). Figure 5(a) also
reports the finite-sample (n = 500) CPs of the robust |t | CI for β. The smallest and
largest finite-sample CPs are around 0.91 and 0.97, as opposed to 0.68 and 1.00
for the standard |t | CI. Figure 5(b) shows that the robust QLR CI for β tends
to overcover for a range of small to medium b values, but the asymptotic size is
correct. Figures S-8(a) and S-8(b) in Supplemental Appendix E provide analogous
results for π0 = 3.0. The robust CIs for β are not asymptotically similar when
π0 = 3.0, but they have correct asymptotic size, and the asymptotic and finite-
sample CPs are close for all b values.
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FIGURE 4. Coverage probabilities of standard |t | and QLR CIs for β and π in the nonlinear
regression model with endogeneity when π0 = 1.5.

The robust CIs for π are constructed with the null value π0 imposed. When
π0 = 1.5, the robust |t | and QLR CIs are the same as the standard |t | and QLR CIs,
respectively, because the NI-LF critical values equal the standard critical values
in both cases. In consequence, Figures 5(c) and 5(d) are the same as Figures 4(c)
and 4(d), respectively. The robust |t | and QLR CIs for π when π0 = 3.0 are re-
ported in Figures S-8(c) and S-8(d) in Supplemental Appendix E. In this case, the
NI-LF critical value for the robust |t | CI for π is slightly larger than the standard
critical value, as shown in Figure 3(c). We apply the smooth transition in (5.33)
to obtain critical values for the robust |t | CI for π, where the transition func-
tion is s(x) = exp(−2x) and the constants are κ = 1.5 and D = 1. The choices
of s(x) and D were determined via some experimentation to be good choices in
terms of yielding CPs that are relatively close to the nominal size 0.95 across
different values of b. A wide range of κ values yield similar results (because the
constants �1 and �2 adjust to maintain correct asymptotic size as κ is changed).
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FIGURE 5. Coverage probabilities of robust |t | and QLR CIs for β and π in the
nonlinear regression model with endogeneity when π0 = 1.5. No smooth transition is
employed.

Figures S-7(c) and S-8(c) show that, when π0 = 3.0, the standard |t | CI for π
suffers from size distortion but the robust |t | CI for π has correct asymptotic size.
When π0 = 3.0, the robust QLR CI for π is the same the standard QLR CI for π,
as shown in Figures S-7(d) and S-8(d).

Besides b and π0, the construction of a robust CI also requires the ζ value
to obtain the LF (or NI-LF) critical value through simulation. In this model,
ζ = (ζ1,ζ2)

′. Because ζ can be consistently estimated, we recommend plugging
in the estimator ζ̂n in place of ζ0 in practice. To ease the computational burden
required to simulate the CPs, the finite-sample CPs of the robust CIs reported in
Figures 5 and S-8 are constructed using the true value ζ0, rather than the estimated
value ζ̂n .26 However, the difference between the robust CIs constructed with ζ̂n

and ζ0 typically is relatively minor. A comparison is reported in Table S-1 of AC2
in the context of a STAR model.
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NOTES

1. Throughout the paper, we use the term identification/lack of identification in the sense of iden-
tification by a GMM or MD criterion function Qn(θ). Lack of identification by Qn(θ) means that
Qn(θ) is flat in some directions in part of the parameter space. See Assumption GMM1(i) in Section
3.1 for a precise definition. Lack of identification by the criterion function Qn(θ) is not the same as
lack of identification in the usual or strict sense of the term, although there is often a close relationship.

2. For references concerning results for these models, see AC1.
3. That is, the metric satisfies the following condition: if γ → γ0, then (Wi ,Wi+m ) under γ con-

verges in distribution to (Wi ,Wi+m ) under γ0 for all i,m ≥ 1. For example, in an i.i.d. situation, the
metric on �∗ can be the uniform metric on the distribution of Wi . In a stationary time series context,
it can be the supremum over m ≥ 1 of the uniform metric on the space of distributions of the vectors
(Wi ,Wi+m ). Note that � is a metric space with metric d�(γ1,γ2) = ||θ1 −θ2||+d�∗ (φ1,φ2), where
γj = (θj ,φj ) ∈ � for j = 1,2 and d�∗ is the metric on �∗.

4. The o(n−1) term in (2.4), and in (4.1) and (4.2), is a fixed sequence of constants that does not
depend on the true parameter γ ∈ � and does not depend on π in (4.1).

5. Note that Z and Z∗ are not related to the support of Zi . Rather, they are the optimization and
true parameter spaces for ζ, which has dimension 2dX .

6. This follows from the combination of Lemma 10.1 in Supplemental Appendix A and Lemma
3.1 of AC1.

7. The matrix B(β) is defined differently in the scalar and vector β cases because in the scalar case
the use of β, rather than ||β||, produces noticeably simpler (but equivalent) formulas, but in the vector
case ||β|| is required.

8. The constant δ > 0 is as in Assumption B2(iii) stated in Section 3.7. The set �0 is not empty by
Assumption B2(ii).

9. The sufficient conditions are for Assumption C5 of AC1, which is the same as Assumption
GMM3(iv) but with m(Wi ,θ) of AC1 in place of g(Wi ,θ).

10. In the vector β case, Jg(γ0) may depend on ω0 in addition to γ0.

11. The functions J (θ+; γ0) and V (θ+; γ0) do not depend on ω0, only γ0.

12. This holds because ηn(θ) = −
(

n1/2

||(−2π,β+1)||
)

[−2π(βn + 1)(π −πn)+ (βn + 1)(π2 −π2
n )+

(β − βn)(π2 − π2
n )] =

(
n1/2

||(−2π,β+1)||
)

[(βn + 1)(π − πn)2 − (β − βn)(π2 − π2
n )]. Hence,

ηn(θ̂n)||(−2π̂n , β̂n + 1)|| = n1/2(π̂n − πn)2(1 + o(1)) − n1/2(β̂n − βn)(π̂2
n − π2

n ) =
[n1/2βn(π̂n − πn)]2(n1/4βn)−2(1 + o(1)) + Op(1) using Theorem 4.1(a) or 4.2(a). (The

Op(1) term is op(1) if |b| = ∞.) Because ||(−2π̂n , β̂n + 1)|| →p ||(−2π0,1)|| < ∞, the claim
follows.

13. When |b| = ∞, this holds because n1/2βn(π̂n − πn) has an asymptotic normal distribu-
tion by Theorem 4.2(a). When |b| < ∞, this holds because [n1/2βn(π̂n − πn)]2(n1/4βn)−2 =
n1/2(π̂n −πn)2, π̂n →d π∗(γ0,b) by Theorem 4.1(a), and P(π∗(γ0,b) = 0) = 0.

14. By allowing vnull
n,0 to depend on n, we obtain results for drifting null values. For example, if

r(θ) = β, this provides results when the null and local alternative values of β are n−1/2-local to zero.
This is useful for obtaining asymptotic false coverage probabilities of CSs for β when the true value
of β is close to zero. In this case, the relevant null values also are close to zero, in an n−1/2-local to
zero sense.

15. Under these conditions on r(θ), one can take A(θ) = Idr .

16. To be precise, let H(v) = {h = (b,γ0) ∈ H : ||b|| < ∞,r(θ0) = v}, where γ0 = (θ0,φ0). By
definition, H(v) is the subset of H that is consistent with the null hypothesis H0 : r(θ0) = v, where
θ0 denotes the true value. The NI-LF critical value, denoted cL F

W,1−α(v), is defined by replacing H by
H(v) in (5.28) when the null hypothesis value is r(θ0) = v. Note that v takes values in the set Vr =
{v0 : r(θ0) = v0 for some h = (b,γ0) ∈ H}. When r(θ) = β and the null hypothesis imposes that β = v,

the parameter b can be imposed to equal n1/2v. In this case, H(v) = Hn(v) = {h = (b,γ0) ∈ H : b =
n1/2v}. The asymptotic size results given in the text for NI-LF CSs and NI robust CSs hold in this case.
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17. For example, if ζ is consistently estimated by ζ̂n , then H is replaced by Ĥn = {h = (b,γ ) ∈
H : γ = (β, ζ̂n ,π,φ)}. If a plug-in NI-LF critical value is employed, H(v) is replaced by H(v)∩ Ĥn ,

where H(v) is defined in note 16. The parameter b is not consistently estimable, and so it cannot be
replaced by a consistent estimator.

18. When β is specified by the null hypothesis, it is not necesary to use an ICS procedure. Instead,
we recommend using a (possibly plug-in) NI-LF critical value, see note 17.

19. If cL F
W,1−α = ∞, s(x) should be taken to equal 0 for x sufficiently large, where ∞×0 equals 0 in

(5.30). Then, the critical value ĉW,1−α,n is infinite if An is small and is finite if An is sufficiently large.
20. The convergence in distribution follows from Theorem 4.1(a) and Assumption V1. In the vector

β case, �−1
ββ (π∗; γ0) is replaced in (5.31) by a slightly different expresssion; see note 51 of AC1.

When the type 2 robust critical value is considered in the vector β case, h is defined to include
ω0 = limn→∞ βn/||βn || ∈ Rdβ as an element, i.e., h = (b,γ0,ω0) and H = {h = (b,γ0,ω0) : ||b|| <

∞,γ0 ∈ � with β0 = 0, ||ω0|| = 1} because the true value ω0 affects the asymptotic distribution of
An . Alternatively to the ICS statistic An , one can use an NI-ICS statistic An(v), which employs the
restricted estimator β̃n(v) of β in place of β̂n and a different weight matrix. See AC1 for details.

21. When N R P(0,0; h) > α, a unique solution �1(h) typically exists because N R P(�1,0; h)

is always non-increasing in �1 and is typically strictly decreasing and continuous in �1. If no
exact solution to N R P(�1(h),0; h) = α exists, then �1(h) is taken to be any value for which
N R P(�1(h),0; h) ≤ α and �1(h) ≥ 0 is as small as possible. Analogous comments apply to the
equation N R P(�1,�2(h); h) = α and the definition of �2(h). When the LF critical value is achieved
at ||b|| = ∞, i.e., χ2

dr ,1−α ≥ suph∈H cQL R,1−α(h), the standard asymptotic critical value χ2
dr ,1−α

yields a test or CI with correct asymptotic size. and constants �1 and �2 are not needed. Hence,
here we consider the case where ||bmax|| < ∞. If suph∈H cQL R,1−α(h) is not attained at any point
hmax, then bmax can be taken to be any point such that cQL R,1−α(hmax) is arbitrarily close to
suph∈H cQL R,1−α(h) for some hmax = (bmax,γmax) ∈ H.

22. When b is close to 0, the FCP may be larger than 0.50 for all admissible v because of weak
identification. In such cases, vH0 (h) is taken to be the admissible value that minimizes the FCP for
the selected value of κ that is being used to obtain vH0 (h).

23. When r(θ) = π, we do not include h values inH for which b = 0 because when b = 0 there is
no information about π and it is not necessarily desirable to have a small FCP.

24. The absolute value of x is employed in h(x,π) to guarantee h(x,π) ∈ R when π is not an integer.
With the DGP specified in the text, X1,i is positive with probability close to 1. Hence, h(X1,i ,π) is
approximately the Box–Cox transformation of X1,i .

25. The discrete values of b for which computations are made run from 0 to 30, with a grid of 0.2
for b between 0 and 10, a grid of 1 for b between 10 and 20, and a grid of 2 for b between 20 and 30.

26. With a single sample, the computational burden is the same whether the true value ζ0 or the
estimated value ζ̂n is employed. However, in a simulation study, it is much faster to simulate the
critical values for a range of true values of b and π0 and the single true value of ζ0 one time and then
use them in each of the simulation repetitions, rather than to simulate a new critical value for each
simulation repetition, which is required if ζ̂n is employed.
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