
A CONDITIONAL-HETEROSKEDASTICITY-ROBUST CONFIDENCE 
INTERVAL FOR THE AUTOREGRESSIVE PARAMETER 

 
 
 
 
 

BY 
 

Donald Andrews and Patrik Guggenberger 
 
 
 
 
 

COWLES FOUNDATION PAPER NO. 1453 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
2015 

 
 http://cowles.econ.yale.edu/  

http://cowles.econ.yale.edu/


NOTE

A CONDITIONAL-HETEROSKEDASTICITY-ROBUST CONFIDENCE INTERVAL
FOR THE AUTOREGRESSIVE PARAMETER

Donald W. K. Andrews and Patrik Guggenberger*

Abstract—This paper introduces a new confidence interval (CI) for the
autoregressive parameter (AR) in an AR(1) model that allows for condi-
tional heteroskedasticity of a general form and AR parameters that are less
than or equal to unity. The CI is a modification of Mikusheva’s (2007a)
modification of Stock’s (1991) CI that employs the least squares estima-
tor and a heteroskedasticity-robust variance estimator. The CI is shown to
have correct asymptotic size and to be asymptotically similar (in a uniform
sense). It does not require any tuning parameters. No existing procedures
have these properties. Monte Carlo simulations show that the CI performs
well in finite samples in terms of coverage probability and average length,
for innovations with and without conditional heteroskedasticity.

I. Introduction

WE consider confidence intervals (CIs) for the autoregressive
parameter (AR) ρ in a conditionally heteroskedastic AR(1)

model in which ρ may be close to or equal to 1. The observed time
series {Yi : i = 0, . . . , n} is based on a latent no-intercept AR(1) time
series {Y∗

i : i = 0, . . . , n}:

Yi = μ + Y∗
i ,

Y∗
i = ρY∗

i−1 + Ui for i = 1, . . . , n, (1)

where ρ ∈ [−1 + ε, 1] for some 0 < ε < 2, {Ui : i = . . . , 0, 1, . . .}
are stationary and ergodic under the distribution F, with conditional
mean 0 given a σ-field Gi−1 for which Uj ∈ Gi for all j ≤ i, conditional
variance σ2

i = EF(U2
i |Gi−1), and unconditional variance σ2

U ∈ (0, ∞).
The distribution of Y∗

0 is the distribution that yields strict stationarity
for {Y∗

i : i ≤ n} when ρ < 1; that is, Y∗
0 = ∑∞

j=0 ρ jU−j when ρ < 1,
and when ρ = 1, Y∗

0 is arbitrary.
Models of this sort are applicable to exchange rate and commodity

and stock prices (see Kim & Schmidt, 1993). Simulations in Mikusheva
(2007b, table II) show that CIs that are not designed to handle con-
ditional heteroskedasticity may perform poorly in terms of coverage
probabilities when conditional heteroskedasticity is present. In fact,
most have an incorrect asymptotic size in this case.1

For the case of conditional homoskedasticity, several CIs with cor-
rect asymptotic size have been introduced, including those in Stock
(1991), Andrews (1993), Andrews and Chen (1994), Nankervis and
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1 Throughout this paper, we use the term asymptotic size to mean the limit
as n → ∞ of the finite-sample size. Uniformity in the asymptotics is built
into this definition because finite-sample size is a uniform concept. By the
definition of asymptotic size, the infimum of the coverage probability over
different values of ρ and different innovation distributions is taken before
the limit as n → ∞ is taken.

Savin (1996), Hansen (1999), Elliot and Stock (2001), Romano and
Wolf (2001), Chen and Deo (2007), and Mikusheva (2007a).2 Of these
CIs, the only one that has correct asymptotic size in the presence of
conditional heteroskedasticity is the symmetric two-sided subsampling
CI of Romano and Wolf (2001).3 The latter CI has the disadvan-
tages that it is not asymptotically similar, requires a tuning parameter
(the subsample size), and is far from being equal-tailed when ρ

is near 1.4

The first CIs that were shown to have correct asymptotic size under
conditional heteroskedasticity and an AR parameter that may be close
to, or equal to, unity were introduced in Andrews and Guggenberger
(2009, hereafter referred to as AG09).5 These CIs are based on inverting
a t-statistic constructed using a feasible quasi-generalized least squares
(FQGLS) estimator of ρ. AG09 shows that equal-tailed and symmet-
ric two-sided CI’s based on hybrid (fixed/subsampling) critical values
have correct asymptotic size.6 These CIs are robust to misspecifica-
tion of the form of the conditional heteroskedasticity. However, they
are not asymptotically similar and require the specification of a tuning
parameter—the subsample size.

The contribution of this paper is to introduce a CI that (a) has correct
asymptotic size for a parameter space that allows for general forms
of conditional heteroskedasticity and for an AR parameter close to, or
equal to, unity; (b) is asymptotically similar; and (c) does not require
any tuning parameters.

The CI is constructed by inverting tests constructed using a t-statistic
based on the LS estimator of ρ and a heteroskedasticity-consistent
(HC) variance matrix estimator. For the latter, we use a variant of the
HC3 version defined in MacKinnon and White (1985), which we call
HC5. It employs an adjustment that improves the finite-sample coverage
probabilities. This t-statistic is asymptotically nuisance-parameter-free
under the null hypothesis under drifting sequences of null parameters
ρ, whether or not these parameters are local to unity. In consequence,
critical values can be obtained by matching the given null value of ρ and
sample size n with a local-to-unity parameter h = n(1 − ρ). Then one

2 The CI of Stock (1991) needs to be modified as in Mikusheva (2007a)
to have correct asymptotic size.

3 The correct asymptotic size of this CI is established in the appendix.
The equal-tailed subsampling CI of Romano and Wolf (2001) does not
have correct asymptotic size under homoskedasticity or heteroskedasticity;
see Mikusheva (2007a) and Andrews and Guggenberger (2009).

4 Lack of asymptotic similarity implies that the CI overcovers asymptot-
ically for some sequences of ρ values. This may yield a longer CI than is
possible.

5 Gonçalves and Kilian (2004, 2007) also consider inference in autoregres-
sive models with conditional heteroskedasticity using bootstrap methods.
Their results do not allow for unit roots or roots near unity. Kuersteiner
(2001) provides some related results for stationary models with conditional
heteroskedasticity. Cavaliere and Taylor (2009) provide unit root tests in
models with conditional heteroskedasticity using a recursive wild bootstrap.
Inoue and Kilian (2002) consider bootstrap methods for autoregressions
with unit roots, but their results apply only to non-unit root parameters and
they do not allow for conditional heteroskedasticity.

6 AG09 also introduces several other CIs that have correct asymptotic
size under conditional heteroskedasticity using size-corrected fixed critical
values and size-corrected subsampling critical values (for equal-tailed CIs).
The performance of these CIs is not as good as that of the FQGLS-based
hybrid CI, so we do not discuss these further here.
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uses the quantile(s) from the corresponding local-to-unity asymptotic
distribution, which depends on h. This method is employed by Stock
(1991), Andrews and Chen (1994), and Mikusheva (2007a) in her mod-
ification of Stock’s CI.7 The resulting CI is the same as Mikusheva’s
(2007a) modification of Stock’s (1991) CI applied to the LS estimator
of ρ, except that we use the HC5 variance estimator in place of the
homoskedastic variance estimator and use a stationary initial condition
rather than a 0 initial condition.8 We refer to the new CI as the CHR CI
(which abbreviates “conditional-heteroskedasticity-robust”).

The use of the LS estimator, rather than the FQGLS estimator, is
important because the latter has an asymptotic distribution in the local-
to-unity case that is a convex combination of a random variable with a
unit-root distribution and an independent standard normal random vari-
able with coefficients that depend on the strength of the conditional
heteroskedasticity (see Seo, 1999; Guo & Phillips, 2001; Andrews
& Guggenberger, 2012). Hence, a nuisance parameter appears in the
asymptotic distribution of the FQGLS estimator that does not appear
with the LS estimator. This yields a trade-off when constructing a CI
between using a more efficient estimator (FQGLS) combined with criti-
cal values that do not lead to an asymptotically similar CI and using a less
efficient estimator (LS) with critical values that yield an asymptotically
similar CI.

The use of an HC variance matrix estimator with the new CHR
CI is important to obtain a (nuisance-parameter free) standard nor-
mal asymptotic distribution of the t-statistic when the sequence of
true ρ parameters converges to a value less than 1 as n → ∞ and
conditional heteroskedasticity is present. It is not needed to yield a nui-
sance parameter-free asymptotic distribution when ρ converges to unity
(either at a O(n−1) rate or more slowly).9 This follows from results in
Seo (1999; also see Guo & Phillips, 2001; Cavaliere & Taylor, 2009;
Andrews & Guggenberger, 2012).

Simulations indicate that the CHR CI has good finite-sample cov-
erage probabilities and shorter average lengths—often noticeably
shorter—than the hybrid CI of AG09 (based on the FQGLS estimator)
for a variety of GARCH(1, 1) processes whose parameterizations are
empirically relevant. When no conditional heterskedasticity is present,
the CHR CI performs very well in finite samples relative to CIs that
are designed for the i.i.d. innovation case. Hence, there is little cost to
achieving robustness to conditional heteroskedasticity.

The asymptotic size and similarity results for the new CI are obtained
by employing the asymptotic results of Andrews and Guggenberger
(2012) for FQGLS estimators under a drifting sequence of distribu-
tions, which include LS estimators as a special case, combined with
the generic uniformity results in Andrews, Cheng, and Guggenberger
(2009).

7 As in Mikusheva’s (2007a) modification of Stock’s CI, we invert the t
statistic that is designed for a given value of ρ, not the t statistic for testing
H0 : ρ = 1, which Stock (1991) employs. This is necessary to obtain correct
asymptotic coverage when ρ is not O(n−1) local to unity.

8 Mikusheva’s (2007a) results do not cover the new CI because she does
not consider innovations that have conditional heteroskedasticity and even
in the i.i.d. innovation case, the t statistic considered here does not lie in the
class of test statistics that she considers.

The use of a stationary initial condition when ρ < 1, rather than a zero
initial condition, is not crucial to obtaining robustness to conditional het-
eroskedasticity. Our results also apply to the case of a zero initial condition,
in which case the second command of I∗

h (r) in equation (2.5) below is
deleted.

9 That is, when ρ converges to unity, one obtains the same asymp-
totic distribution whether an HC or a homoskedastic variance estimator
is employed.

The CHR CI yields a unit root test that is robust to conditional
heteroskedasticity. One rejects a unit root if the CI does not include
unity. Seo (1999), Guo and Phillips (2001), and Cavaliere and Tay-
lor (2009) also provide unit root tests that are robust to conditional
heteroskedasticity.

The CHR CI for ρ can be extended to give a CI for the sum of the
AR coefficients in an AR(k) model when all but one root is bounded
away from the unit circle, as in Andrews and Chen (1994) and Miku-
sheva (2007a). In this case, the asymptotic distributions (and hence the
CHR critical values) are unchanged. (See the end of section II for more
details.) The CHR CI for ρ also can be extended to models with a lin-
ear time trend.10 In this case, the asymptotic distributions are given in
equation (7.7) of Andrews and Guggenberger (2009) with h2,7 = 1.
Extending the proof of theorem 1 below for these two cases requires
additional detailed analysis, as in Mikusheva (2007a). For brevity, we
do not provide such proofs here.

The paper is structured as follows. Section II defines the new CI and
establishes its large sample properties. Section III provides tables of
critical values. Section IV contains a Monte Carlo study. An appen-
dix (Andrews & Guggenberger, 2013) that is available on the Review of
Economics and Statistics website provides (a) the local asymptotic false
coverage probabilities of the CHR CI; (b) asymptotic and finite-sample
assessments of the price the CHR CI pays in the i.i.d. case for obtaining
robustness to conditional heteroskedasticity; (c) probabilities of obtain-
ing disconnected CHR CIs; (d) definitions, tables of critical values, and
simulation results for symmetric two-sided CHR CIs; (e) details con-
cerning the simulations; (f) description of a recursive residual-based
wild bootstrap version of the CHR CI; (g) proofs of the asymptotic
results for the CHR CI; and (h) a proof that the symmetric two-sided
subsampling CI of Romano and Wolf (2001) has correct asymptotic
size under conditional heteroskedasticity.

II. The CHR CI for the AR Parameter

For the exposition of the theory, we focus on equal-tailed two-sided
CIs for ρ.11 The CI is obtained by inverting a test of the null hypothesis
that the true value is ρ. The model, equation (1), can be rewritten as
Yi = μ̃+ ρYi−1 + Ui, where μ̃ = μ(1 − ρ) for i = 1, . . . , n. We use the
t-statistic

Tn(ρ) = n1/2 (̂ρn − ρ)

σ̂n
, (2)

where ρ̂n is the LS estimator from the regression of Yi on Yi−1 and
1 and σ̂2

n is the (1, 1) element of the HC5 heteroskedasticity-robust
variance estimator, defined below, for the LS estimator in the preceding
regression. More explicitly, let Y , U, X1, and X2 be n-vectors with ith
elements given by Yi, Ui, Yi−1, and 1, respectively. Let X = [X1 : X2],
PX = X(X ′X)−1X ′, and MX = In − PX . Let Ûi denote the ith element
of the residual vector MX Y . Let pii denote the ith diagonal element of
PX . Let p∗

ii = min{pii, n−1/2}. Let Δ be the diagonal n × n matrix with

10 Note that there is a one-to-one mapping between the sum of the AR
coefficients and the cumulative impulse response. Hence, a CI for the former
yields a CI for the latter. See Andrews and Chen (1994) for a discussion of
the advantages of the sum of the AR coefficients over the largest AR root
as a measure of the long-run dynamics of an AR(k) process.

11 Symmetric two-sided and one-sided CIs can be handled in a similar
fashion; see the appendix for details.

We prefer equal-tailed CIs over symmetric CIs in the AR(1) context
because the latter can have quite unequal coverage probabilities for missing
the true value above and below when ρ is near unity, which is a form of
biasedness, due to the lack of symmetry of the near-unit root distributions.
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ith diagonal element given by Ûi/(1 − p∗
ii).12 Then the LS estimator of

ρ and the HC5 estimator σ̂2
n are

ρ̂n = (
X ′

1MX2 X1
)−1

X ′
1MX2 Y , and (3)

σ̂2
n = (

n−1X ′
1MX2 X1

)−1 (
n−1X ′

1MX2Δ
2MX2 X1

) (
n−1X ′

1MX2 X1
)−1

.

Equivalently, σ̂2
n is the (1, 1) element of n(X ′X)−1X ′Δ2X(X ′X)−1.

The parameter space for (ρ, F) is given by:

Λ = {λ = (ρ, F) : ρ ∈ [−1 + ε, 1], {Ui : i = 0, ±1, ±2, . . .}
are stationary and strong mixing under F with

EF(Ui|Gi−1) = 0 a.s., EF(U2
i |Gi−1) = σ2

i a.s.,

where Gi is some nondecreasing sequence of σ-fields

for i = . . . , 1, 2, . . . for which Uj ∈ Gi for all j ≤ i,

the strong-mixing numbers {αF(m) : m ≥ 1} satisfy

αF(m) ≤ Cm−3ζ/(ζ−3) ∀m ≥ 1, sup
i,s,t,u,v,A

EF

∣∣∣∏
a∈A

a
∣∣∣ζ ≤ M,

where 0 ≤ i, s, t, u, v < ∞, and A is any nonempty subset of

{Ui−s, Ui−t , U2
i+1, U−u, U−v, U2

1 }, and EFU2
1 ≥ δ}, (4)

for some constants 0 < ε < 2, ζ > 3, C < ∞, and δ > 0.
Next, we define the critical values used in the construction of the CI.

They are based on the asymptotic distributions of the test statistic under
drifting sequences {λn = (ρn, Fn) : n ≥ 1} of AR parameters ρn and
distributions Fn, when n(1 − ρn) → h ∈ [0, ∞). When Fn depends on
n, {Ui : i ≤ n} for n ≥ 1 form a triangular array of random variables
and Ui = Un,i. To describe the asymptotic distribution, let W(·) be a
standard Brownian motion on [0, 1]. Let Z1 be a standard normal random
variable that is independent of W(·). Define

Ih(r) =
∫ r

0
exp(−(r − s)h)dW(s),

I∗
h (r) = Ih(r) + 1√

2h
exp(−hr)Z1 for h > 0,

I∗
h (r) = W(r) for h = 0, and

I∗
D,h(r) = I∗

h (r) −
∫ 1

0
I∗
h (s)ds. (5)

Andrews and Guggenberger (2012, theorem 1), with a minor adjust-
ment for the p∗

ii term in Δ, show that under any sequence λn = (ρn, Fn) ∈
Λ such that n(1 − ρn) → h ∈ [0, ∞],

Tn(ρn) →d Jh, (6)

where Jh is defined as follows. For h = ∞, Jh is the N(0, 1) distribution,
and for h ∈ [0, ∞), Jh is the distribution of

∫ 1

0
I∗
D,h(r)dW(r)/

(∫ 1

0
I∗
D,h(r)

2dr

)1/2

. (7)

12 The quantity p∗
ii used in HC5 is a finite-sample adjustment to the stan-

dard HC variance estimator. In contrast, the HC3 variance estimator uses
pii in the definition of Δ. The use of p∗

ii guarantees that the finite-sample
adjustment does not affect the asymptotics. When n(1 − ρn) → h < ∞,
it is straightforward to show that the use of pii is valid asymptotically. In
other cases, it is more difficult to do so. However, the finite-sample results
reported below are essentially the same whether p∗

ii or pii is used. Users may
find it more convenient to use the HC3 version because it is computable in
STATA using the linear regression option vce(hc3). Note that the asymp-
totic results given in the paper also hold if one sets p∗

ii = 0, which yields
the standard HC variance estimator.

For α ∈ (0, 1), let ch(1 − α) denote the (1 − α)-quantile of Jh.
The second command of I∗

h (r) in equation (5) is due to the station-
ary start-up of the AR(1) process when ρ < 1, as in Elliott (1999),
Elliott and Stock (2001), Müller and Elliott (2003), and Andrews and
Guggenberger (2009, 2012). Giraitis and Phillips (2006) and Phillips
and Magdalinos (2007) provide similar results for the LS estimator for
the case h = ∞ under assumptions that do not allow for conditional
heteroskedasticity.

The new nominal 1 − α equal-tailed two-sided CHR CI for ρ is

CICHR,n = {ρ ∈ [−1 + ε, 1] : ch(α/2) ≤ Tn(ρ)

≤ ch(1 − α/2) for h = n(1 − ρ)}. (8)

The CI CICHR,n can be calculated by taking a fine grid of values ρ ∈
[−1 + ε, 1] and comparing Tn(ρ) to ch(α/2) and ch(1 − α/2), where
h = n(1 − ρ). Tables of values of ch(α/2) and ch(1 − α/2) are given
in section III. Given these values, calculation of CICHR,n is simple and
fast.13

One could replace the asymptotic quantiles ch(α/2) and ch(1−α/2) in
equation (8) by recursive residual-based wild bootstrap quantiles and the
CI would still have correct asymptotic size. (For brevity, we do not prove
this claim.) The resulting CI is a grid bootstrap, as in Hansen (1999),
but it is designed to allow for conditional heteroskedasticity. Note that
the bootstrap needs to be defined carefully. (See the appendix for its
definition.14) The bootstrap version of the CI is much less convenient
computationally because one cannot use tables of critical values. Rather,
one has to compute bootstrap critical values for each value of ρ to
determine whether ρ is in the CI.

The main theoretical result of this paper shows that CICHR,n has correct
asymptotic size for the parameter space Λ and is asymptotically similar.
Let Pλ denote probability under λ = (ρ, F) ∈ Λ.

Theorem 1. Let α ∈ (0, 1). For the parameter space Λ, the nominal
1 − α confidence interval CICHR,n for the AR parameter ρ satisfies

AsySz ≡ lim inf
n→∞ inf

λ=(ρ,F)∈Λ
Pλ(ρ ∈ CICHR,n) = 1 − α.

Furthermore, CICHR,n is asymptotically similar, that is,

lim inf
n→∞ inf

λ=(ρ,F)∈Λ
Pλ(ρ ∈ CICHR,n)

= lim sup
n→∞

sup
λ=(ρ,F)∈Λ

Pλ(ρ ∈ CICHR,n).

Theorem 2 in the appendix establishes the local asymptotic false
coverage probabilities of the CHR CI, which are directly related to
their length.

As noted in section I, the CHR CI for ρ can be extended to give a CI
for the sum of the AR coefficients in an AR(k) model when all but one

13 Note that it is possible for CICHR,n to consist of two disconnected inter-
vals of the form [a, b]∪ [c, 1], where −1+ ε ≤ a < b < c ≤ 1. This occurs
with very low probability in most cases and low probability in all cases; see
the appendix for details.

14 For example, the fixed-design wild bootstrap and the pairs bootstrap
considered in Gonçalves and Kilian (2004, 2007) for stationary observations
are not suitable; see the appendix. A suitable bootstrap is similar to, but
different from, the recursive wild bootstrap considered by Cavaliere and
Taylor (2009), which is designed for unit root tests, and the recursive wild
bootstrap considered by Gonçalves and Kilian (2004), which is designed
for stationary observations; see the appendix.
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Table 1.—Values of the .025 and .975 Quantiles of Jh for Use with 95% Equal-Tailed Two-Sided Confidence Intervals

Values of ch(.025), the .025 Quantile of Jh, for Use with 95% Equal-Tailed Two-Sided Confidence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch(.025) −3.13 −3.09 −3.06 −3.03 −3.00 −2.98 −2.93 −2.89 −2.85 −2.83 −2.80 −2.77 −2.75
h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch(.025) −2.73 −2.71 −2.69 −2.65 −2.62 −2.59 −2.56 −2.54 −2.52 −2.50 −2.48 −2.47 −2.45
h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch(.025) −2.39 −2.35 −2.32 −2.28 −2.24 −2.23 −2.21 −2.19 −2.18 −2.17 −2.11 −2.08 −2.05

Values of ch(.975), the .975 Quantile of Jh, for Use with 95% Equal-Tailed Two-Sided Confidence Intervals
h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch(.975) .24 .31 .36 .41 .45 .50 .57 .64 .69 .74 .79 .84 .88
h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch(.975) .92 .95 .99 1.06 1.12 1.17 1.21 1.25 1.29 1.32 1.34 1.37 1.39
h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch(.975) 1.47 1.51 1.55 1.61 1.65 1.67 1.69 1.71 1.73 1.74 1.81 1.83 1.86

Table 2.—Values of the .05 and .95 Quantiles of Jh for use with 90% Equal-Tailed Two-Sided Confidence Intervals

Values of ch(.05), the .05 Quantile of Jh, for Use with 90% Equal-Tailed Two-Sided Confidence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch(.05) −2.87 −2.83 −2.79 −2.76 −2.73 −2.70 −2.65 −2.61 −2.57 −2.54 −2.51 −2.48 −2.46
h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch(.05) −2.44 −2.42 −2.39 −2.35 −2.32 −2.29 −2.26 −2.23 −2.21 −2.19 −2.18 −2.16 −2.14
h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch(.05) −2.09 −2.05 −2.01 −1.97 −1.93 −1.91 −1.89 −1.87 −1.86 −1.85 −1.79 −1.76 −1.74

Values of ch(.95), the .95 Quantile of Jh, for Use with 90% Equal-Tailed Two-Sided Confidence Intervals
h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch(.95) −.07 −.02 .04 .08 .13 .17 .25 .31 .37 .43 .48 .52 .57
h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch(.95) .61 .64 .68 .75 .81 .87 .91 .95 .98 1.01 1.03 1.05 1.08
h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch(.95) 1.15 1.20 1.24 1.30 1.34 1.36 1.39 1.40 1.42 1.43 1.49 1.52 1.55

root is bounded away from the unit circle. The AR(k) model written in
augmented Dickey-Fuller form is

Yi = μ + Y∗
i and Y∗

i = ρY∗
i−1 +

k−1∑
j=1

ψjδY∗
i−j + Ui for i = 1, . . . , n,

(9)

where δY∗
i−j = Y∗

i−j − Y∗
i−j−1. Here ρ equals the sum of the k AR coeffi-

cients. For this model, the estimator ρ̂n of ρ that we consider is the LS
estimator from the regression of Yi on Yi−1, δYi−1, . . . , δYi−k+1, and 1,
where δYi−j = Yi−j − Yi−j−1. The estimator σ̂2

n that we consider is the
(1, 1) element of n(X ′X)−1X ′Δ2X(X ′X)−1, where X = [X1 : X2 : · · · :
Xk+1], X1, X2, . . . , Xk , Xk+1 are the n-vectors with ith elements equal to
Yi−1, δYi−1, . . . , δYi−k+1, 1, respectively, and Δ is defined as in the para-
graph containing equation (2), but with X defined as immediately above
rather than as in the paragraph containing equation (2). The CHR CI
for ρ in equation (9) is defined exactly as the CHR CI for ρ in equation
(1) is defined, but with the definitions of ρ̂n and σ̂2

n given immediately
above rather than just below equation (2).

III. Tables of Critical Values

Table 1 reports the quantiles ch(.025) and ch(.975) (for a broad range
of values of h) used to calculate 95% equal-tailed CHR CIs. Table 2
reports analogous quantiles used to calculate 90% equal-tailed CHR
CIs. These tables also can be used for 97.5% and 95% lower and upper
one-sided CIs. (Section 9 in the appendix provides critical values for
symmetric two-sided CHR CIs.)

For given α, ch(α), the α-quantile of Jh in equation (4), is computed by
simulating the asymptotic distribution Jh. To do so, 300, 000 indepen-
dent AR(1) sequences are generated from the model in equation (1) with
innovations Ui ∼ iid N(0, 1), μ = 0, stationary start-up, n = 25, 000,
and ρh = 1 − h/n. For each sequence, the test statistic Tn(ρh), defined
in equation (2) but using the homoskedastic variance estimator, is cal-
culated. Then the simulated estimate of ch(α) is the α-quantile of the
empirical distribution of the 300, 000 realizations of the test statistic.

In table 1, the critical values do not reach the h = ∞ values of
−1.96 and 1.96 for h = 500. Larger values of h, which would be
needed only in very large samples, yield the following: c1,000(.025) =
−2.02, c5,000(.025) = −1.98, c10,000(.025) = −1.97, c1,000(.975) =
1.90, c5,000(.975) = 1.93, and c10,000(.975) = 1.94.

IV. Finite-Sample Simulation Results

Here we compare the finite-sample coverage probabilities (CPs) and
average lengths of the new CHR CI and the hybrid CI of AG09.15 For
brevity, we focus on nominal 95% equal-tailed two-sided CIs. Results
for symmetric CIs, including the symmetric subsampling CI of Romano
and Wolf (2001), are provided in the appendix.

We consider a wide range of ρ values: .99, .9, .5, .0, −.9. The inno-
vations are of the form Ui = σiεi, where {εi : i ≥ 1} are i.i.d. standard

15 See MacKinnon and White (1985) and Long and Ervin (2000) for simu-
lation results concerning the properties of the HC3 estimator in the standard
linear regression model with i.i.d. observations.

The hybrid CI is defined as in AG09 using the standard HC variance
estimator with p∗

ii = 0, not the HC5 estimator.
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Table 3.—Coverage Probabilities and (CP-Corrected) Average Lengths of Nominal 95% Equal-Tailed Two-Sided CIs: CHR and Hybrid

Average Lengths (×100)
Coverage Probabilities (×100) (CP-Corrected)

Innovations CI ρ: .99 .9 .5 .0 −.9 .99 .9 .5 .0 −.9

a. GARCH(1, 1)- CHR 94.2 94.7 94.8 94.5 94.4 8.5 19 33 37 17
(.05,.9;.001) Hyb 98.5 98.3 96.5 95.2 95.6 9.6 21 46 47 19

b. GARCH(1, 1)- CHR 94.2 94.6 94.7 94.1 94.2 8.8 20 37 43 18
(.15,.8;.2) Hyb 98.0 97.9 96.0 94.3 95.0 9.8 22 49 52 21

c. i.i.d. CHR 94.5 94.7 94.8 94.7 94.6 8.3 18 31 35 16
Hyb 97.7 97.6 95.7 94.2 94.8 9.6 21 45 48 19

d. GARCH(1, 1)- CHR 94.3 94.5 94.4 93.7 94.1 9.2 21 42 49 20
(.25,.7;.2) Hyb 98.4 98.3 95.9 94.8 95.1 9.5 22 51 54 21

e. ARCH(4)- CHR 94.5 94.3 93.9 93.2 94.0 9.6 23 48 56 22
(.3,.2,.2,.2;.2) Hyb 98.5 98.2 95.9 94.2 95.4 9.1 22 53 57 21

normal and σi is the multiplicative conditional heteroskedasticity. Let
GARCH-(ma, ar; ψ) denote a GARCH(1, 1) process with MA, AR,
and intercept parameters (ma, ar; ψ), and let ARCH-(ar1, . . . , ar4; ψ)
denote an ARCH(4) process with AR parameters (ar1, . . . , ar4) and
intercept ψ. We consider five specifications for the conditional het-
eroskedasticity of the innovations: (a) GARCH-(.05, .9; .001), (b)
GARCH-(.15, .8; .2), (c) i.i.d., (d) GARCH-(.25, .7; .2), and (e) ARCH-
(.3, .2, .2, .2; .2). The first three specifications are the most relevant ones
empirically.16 The last two specifications are included for purposes of
robustness. They exhibit stronger conditional heteroskedasticity than in
the first three cases. In the first four cases, the hybrid CI has an unfair
advantage over the CHR CI because it uses a GARCH(1, 1) model,
which is correctly specified in these cases. The results are invariant to
the choice of μ.

We consider a sample size of n = 130. The hybrid CI is based
on a GARCH(1, 1) specification.17 The hybrid critical values use
subsamples of size b = 12, as in AG09.

We report average lengths of CP-corrected CIs. A CP-corrected CI
equals the actual nominal 95% CI if its CP is at least .95 (for the given
data-generating process), but otherwise it equals the CI implemented
at a nominal CP that makes the finite-sample CP equal to .95.18 All
simulation results are based on 30, 000 simulation repetitions.

Table 3 reports the results. CHR denotes the CI in equation (8). Hyb
denotes the hybrid CI of AG09. The new CHR CI has very good finite-
sample coverage probabilities. Specifically, its CPs (×100) are in the
range [94.1, 94.8] for all values of ρ in cases a to d. For cases d and e,
the range is [93.2, 94.5]. The hybrid CI has CPs in the range [94.2, 98.5]
for cases a to c and [93.9, 98.5] for cases d and e. These CPs reflect the
fact that the hybrid CI is not asymptotically similar due to its reliance
on subsampling.

The average length results of table 3 (CP-corrected) show that the
CHR CI is shorter than the hybrid CI for all values of ρ in cases a to
d. The greatest length reductions are for ρ = .5, .0, where the CHR CI
is from .69 to .83 times the length of the hybrid CI in cases a to c. For
ρ = .99, .9, it is from .86 to .91 times the length of the hybrid CI in cases
a to c. In cases d and e, the CHR and hybrid CIs have similar lengths for

16 For example, see Bollerslev (1987), Engle, Ng, and Rothschild (1990),
and, for more references, Ma, Nelson, and Startz (2007).

17 See section 10 of the appendix for more details concerning the definition
and computation of the hybrid CI. Note that the hybrid CI has correct
asymptotic size whether or not the GARCH(1, 1) specification is correct.

18 When calculating the average length of a CI, we restrict the CI to the
interval [−1, 1]. The search to find the nominal significance level such that
the actual finite-sample CP (×100) equals 95.0 is done with step size .025.
In the case of a disconnected CI, the gap in the CI is not included in its
length.

ρ = .99, .9. In cases d and e, for ρ = .5, .0, the CHR CI is from .82 to
.98 times the length of the hybrid CI. In conclusion, in an overall sense,
the CHR CI outperforms the hybrid CI in terms of average length by a
noticeable margin in the cases considered.19

Simulations for the symmetric two-sided subsampling CI of Romano
and Wolf (2001) given in the appendix show that the latter CI undercov-
ers substantially in some cases (for example, its CPs (×100) are 88.9,
88.3, 86.7 for b = 8, 12, 16, where b is the subsample size in case b with
ρ = .0). It is longer than the symmetric and equal-tailed CHR CIs when
ρ = .99 in cases a to e and has similar average length (CP-corrected)
in other cases. Hence, the CHR CIs outperform the Romano and Wolf
(2001) CI in the finite-sample cases considered.

Results reported in the appendix compare the CHR CI in the i.i.d.
case with the analogous CI that employs the homoskedastic variance
estimator. The use of the HC5 variance matrix estimator20 increases the
deviations of the CPs (×100) from 95.0 compared to the homoskedas-
tic variance estimator somewhat, but even so, the deviations for the
equal-tailed CIs are only .3 on average over the five ρ values. It has
no impact on the average lengths except when ρ = .99, in which case,
the impact is very small: 8.3 for the equal-tailed CHR CI versus 8.1
for the equal-tailed homoskedastic variance CI. Hence, the CHR CI
pays a very small price in the i.i.d. case for its robustness to conditional
heteroskedasticity.

19 The CHR CI also outperforms the hybrid CI based on the infeasible
QGLS estimator; see the appendix. The CP (×100) results of table 3 using
pii rather than p∗

ii are the same in all cases except case a, ρ = .99; case d,
ρ = .5, .0; and case e, ρ = .99; where the differences are .1% (for example,
94.2% versus 94.3%), and case v, ρ = .5, .0, where the differences are .2%
and .3%, respectively. There are no differences in the average lengths. For
the symmetric two-sided CHR CI, the CP results and the average length
results compared to the hybrid CI are similar to those in table 3, although
slightly better in both dimensions; see the appendix.

20The latter CI is Mikusheva’s (2007a) modification of Stock’s (1991) CI
applied to the LS estimator of ρ, but with a stationary initial condition when
ρ < 1, rather than a zero initial condition.
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