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Abstract

We compare the powers of five tests of the coefficient on a single endogenous regressor in

instrumental variables regression. Following Moreira [2003, A conditional likelihood ratio test for

structural models. Econometrica 71, 1027–1048], all tests are implemented using critical values that

depend on a statistic which is sufficient under the null hypothesis for the (unknown) concentration

parameter, so these conditional tests are asymptotically valid under weak instrument asymptotics.

Four of the tests are based on k-class Wald statistics (two-stage least squares, LIML, Fuller’s [Some

properties of a modification of the limited information estimator. Econometrica 45, 939–953], and

bias-adjusted TSLS); the fifth is Moreira’s (2003) conditional likelihood ratio (CLR) test. The

heretofore unstudied conditional Wald (CW) tests are found to perform poorly, compared to the

CLR test: in many cases, the CW tests have almost no power against a wide range of alternatives.

Our analysis is facilitated by a new algorithm, presented here, for the computation of the asymptotic

conditional p-value of the CLR test.
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1. Introduction

There has been considerable recent attention to the problem of hypothesis testing in
instrumental variables (IV) regression when the instruments might be weak, that is, when
the partial correlation between the instruments and the included endogenous variables is
low. When instruments are weak, conventional test statistics, such as the usual t-ratio
constructed using the two-stage least squares (TSLS) estimator, have null distributions that
are poorly approximated by a standard normal (cf. Nelson and Startz, 1990a). The result is
that conventional IV tests can result in large size distortions if the instruments are weak,
even in large samples. For reviews of hypothesis testing in the presence of weak
instruments, see Stock et al. (2002) and Dufour (2003).

Recently, Moreira (2001, 2003) introduced the idea of implementing tests in IV
regression not using a single fixed critical value, but instead using a critical value that is
itself a function of a statistic chosen so that the resulting test has the correct size even if the
instruments are weak. More specifically, the distribution of a large class of IV test statistics
depends on a parameter l, which is the rescaled concentration parameter (a precise
definition of l is given below). By computing critical values conditional on a statistic that is
sufficient for l under the null hypothesis, the resulting test has the desired rejection rate for
all values of l, including the unidentified case l ¼ 0, and thus has the correct size. Moreira
(2003) suggested two specific test statistics, the limited information likelihood ratio (LR)
statistic and the TSLS Wald statistic, that can be used to construct conditional tests. The
power of the resulting conditional likelihood ratio (CLR) test has been examined in detail
in Andrews et al. (2006) (hereafter, AMS), however conditional Wald (CW) tests have not
been examined numerically. One practical difficulty with studying and using these statistics
is that their conditional distributions are not simple, so they require the numerical
evaluation of conditional critical values (or conditional p-values).

This paper has two objectives. The first is to compare the power of the (two-sided) CLR
test with four two-sided CW tests in the case that there is a single included endogenous
regressor. The first CW test is the usual TSLS Wald test statistic, evaluated using
conditional critical values. Other k-class estimators, however, have distributions that are
more tightly centered around the true coefficient than TSLS (e.g. Rothenberg, 1984). This
suggests that these estimators might produce CW tests that have better power than TSLS
when instruments are weak. In addition to the CW TSLS test, we therefore consider CW
tests based on three other k-class estimators: the limited information maximum likelihood
(LIML), a k-class estimator proposed by Fuller (1977), and the so-called bias-adjusted
TSLS estimator. While these three other k-class Wald statistics are not fully robust to weak
instruments, the size distortions arising from their use with conventional unconditional
normal critical values are much less than for the TSLS Wald statistic (Stock and Yogo,
2005); perhaps after conditioning, their performance could be substantially better than the
CW TSLS test.

All five of these conditional tests—the CLR test and the four CW tests—are
asymptotically equivalent under conventional strong instrument asymptotics. AMS show
that the CLR test is numerically approximately uniformly most powerful among the class
of locally unbiased invariant tests.1 Because the CW tests are invariant but not locally
1Locally unbiased refers to the power function being flat at b ¼ b0. The invariance referred to here is with

respect to full-rank orthogonal transformations of the instruments.
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unbiased, in theory it is possible for the CW tests to have higher power than the CLR test
against some local alternatives when instruments are weak. Absent theoretical results
comparing the CLR and CW tests with weak instruments, the power comparisons must be
numerical.
The second objective of the paper is to address a practical problem in the

implementation of conditional tests. Previous applications of conditional tests in IV
regression compute the conditional critical value by simulation, given a particular observed
value of the sufficient statistic for l. But this approach is cumbersome and, depending on
the number of Monte Carlo draws, either slow or inaccurate. Alternatively, if a lookup
table of critical values is used, the grid must be fine enough to avoid interpolation error,
and no such table has been published. We solve this practical problem by providing a new
algorithm for the computation of conditional p-values for a class of conditional tests. This
algorithm involves a single-dimensional numerical integration and is fast and accurate.
This p-value algorithm eliminates the need for an accurate lookup table of critical values
for conditional hypothesis testing.2

So that we may compare the performance of these five tests when instruments are weak,
yet provide results that do not hinge on specific distributional assumptions or the sample
size, we compare asymptotic power derived using the weak instrument asymptotics of
Staiger and Stock (1997). By deriving the limiting distribution of IV statistics along a
sequence that holds l constant, weak instrument asymptotics provide a good approxima-
tion to the distributions of the statistics even if the instruments are weak or, in the limit,
irrelevant.
We performed a comprehensive numerical analysis of the power of the CLR and CW

tests, for strengths of instruments ranging from very weak to strong, for the number of
instruments ranging from 2 to 20, and for different values of the correlation between the
reduced-form errors. Our main finding is that the CW tests have some very undesirable
power properties: they have very low power against a large range of alternative parameter
values and their power curves can be non-monotonic. The CW tests occasionally have
higher power than the CLR test, but when they do, the power gain is small. We therefore
recommend against the use of any of these four k-class CW tests in applied econometric
work, even as robustness checks. Because the performance of these tests is poor, we also
recommend against constructing confidence intervals by inverting these CW tests. AMS
summarize the results of a thorough comparison of the CLR tests and two other tests that
are valid under weak instruments, the Anderson-Rubin (1949) test and Kleibergen’s (2002)
LM test; the CLR test is found to have power that is typically better, and never worse, than
these two competitors. Taken together, the results here and in AMS indicate that the CLR
test has very good overall power properties, and we recommend its use in applied work.3

The paper is organized as follows. Section 2 presents the model and the test statistics.
The weak-instrument asymptotic distributions of these test statistics have been derived
elsewhere but are briefly stated in Section 3 for completeness. Section 4 presents the new
2Software implementing this algorithm for computing the CLR p-value is available at http://ksghome.harvard.

edu/�JStock/
3The tests in this paper apply for homoskedastic errors. Heteroskedasticity- and autocorrelation-robust

versions are available for all these tests; see AMS and Andrews and Stock (2005) for formulas and additional

references.

http://ksghome.harvard.edu/~JStock/
http://ksghome.harvard.edu/~JStock/
http://ksghome.harvard.edu/~JStock/
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method for numerical evaluation of the conditional p-value. The power comparisons are
summarized in Section 5.
2. Conditional tests and their weak-instrument asymptotic limits

This section begins by introducing the model and notation. We then summarize the
conditional testing approach in the IV regression model and present the specific
conditional test statistics of interest in this paper.
2.1. The model and notation

The structural equation and the reduced-form equation for the single included
endogenous variable are

y1 ¼ y2bþ Xg1 þ u, (1)

y2 ¼ Zpþ Xxþ v2, (2)

where y1 and y2 are n� 1 vectors of endogenous variables, X is an n� p matrix of
exogenous regressors, and Z is an n� k matrix of k IV. It is assumed that Z is constructed
so that Z0X ¼ 0. This orthogonality assumption entails no loss of generality: if ~Z denotes
an original n� k matrix of observed IV with ~Z

0
Xa0, then set Z ¼MX

~Z, where
MX ¼ I � X ðX 0X Þ21X 0.

Our interest is in two-sided tests of the null hypothesis

H0 : b ¼ b0 vs: H1 : bab0. (3)

The reduced form of (1) and (2) is

Y ¼ Zpa0 þ XZþ V , (4)

where Y ¼ [y1 y2], V ¼ [v1 v2], a ¼ [b 1]0, and Z ¼ [g x], where v1 ¼ uþ v2b and
g ¼ g1 þ xb. The reduced-form errors are assumed to be homoskedastic with covariance
matrix O:

EðViV
0
ijX i;ZiÞ ¼ O ¼

o11 o21

o12 o22

" #
; i ¼ 1; . . . ; n, (5)

where the subscript i refers to the ith observation. Let r denote the correlation between V1i

and V2i. Throughout, it is assumed that EðuijX i;ZiÞ ¼ 0. Additional distributional
assumptions are discussed below.

A key measure of the strength of the instruments is l, defined as

l ¼ p0Z0Zp. (6)

Upon dividing l by o22 to be unitless, l/o22 is the so-called concentration parameter
that governs the quality of the standard large-sample normal approximations to the
distribution of IV estimators (e.g. Rothenberg, 1984). The expected value of the first-stage
F statistic testing the hypothesis that p ¼ 0 in (2) is asymptotically 1þ l=ðo22kÞ under
weak instrument asymptotics. Small values of l=ðo22kÞ correspond to weak instruments.
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2.2. The conditional testing approach

The distribution of IV statistics commonly used to test H0, such as the TSLS Wald
statistic, depends on the nuisance parameter l. The idea of Moreira’s (2001, 2003)
conditional testing approach is to evaluate such test statistics conditional on a statistic that
is sufficient for l under the null hypothesis. Because the conditional distribution does not
depend on l, it is possible to control the size of the test regardless of the true value of l.

2.2.1. The Gaussian model with O known

To make this argument precise, suppose for the moment that Vi is i.i.d. Nð0;OÞ, that Z is
nonrandom, and that O is known. Define the statistic Q to be

Q �
QS QTS

QST QT

" #
¼

S0S T 0S

S0T T 0T

� �
, (7)

where

S ¼ ðZ0ZÞ�1=2Z0Yb0=ðb
0
0Ob0Þ

1=2, (8)

T ¼ ðZ0ZÞ�1=2Z0YO�1a0=ða
0
0O
�1a0Þ

1=2, (9)

where b0 ¼ ½1� b0�
0 and a0 ¼ [b0 1]0. Let PZ ¼ ZðZ0ZÞ21Z0. Note that Q and Y 0PZY are

related by4

Q ¼ J 00O
�1=2Y 0PZYO0�1=2J0, (10)

Y 0PZY ¼ O1=2J 0
�1
0 QJ�10 O01=2, (11)

where

J0 ¼
O01=2b0ffiffiffiffiffiffiffiffiffi

b00Ob0
p O�1=2a0ffiffiffiffiffiffiffiffiffiffiffiffi

a0
0
O�1a0

p
� �

. (12)

Note that J 00J0 ¼ I .
If the instruments are fixed and the errors are Gaussian, the statistics S and T are jointly

normally distributed and the distribution of S does not depend on l under the null
hypothesis. AMS show that, under these assumptions, Q is the maximal invariant for ðb; lÞ
under the group of full-rank orthogonal transformations of Z. Moreira (2003) shows that
QT is sufficient for l under the null hypothesis. Thus, any statistic that is a function of Q

can be used to construct a similar test by comparing its value to the 1�a critical value of
the conditional null distribution of the statistic, given QT ¼ qT; this procedure yields a test
with size 1� a.

2.2.2. Extension to O unknown

In practice, O is unknown so tests based on Q are infeasible. However, a feasible
counterpart of Q can be constructed by replacing O by an estimator. Specifically, let

Ô ¼ Y 0
?

MZY?=ðn� k � pÞ, (13)
4Throughout, we adopt the convention that A ¼ A1=2A0
1=2

and A�1 ¼ A0
�1=2

A�1=2 for a positive definite

matrix A.
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where MZ ¼ I � PZ and Y? ¼ y?1 y?2
� �

¼MX Y . Then O in the definition of Q can be
replaced by Ô, yielding Q̂, the feasible counterpart of Q:

Q̂ ¼ Ĵ
0

0Ô
�1=2

Y 0PZY Ô
0�1=2

Ĵ0, (14)

where

Ĵ0 ¼
Ô
01=2

b0ffiffiffiffiffiffiffiffiffi
b00Ôb0

p Ô
�1=2

a0ffiffiffiffiffiffiffiffiffiffiffiffi
a0
0
Ô
�1

a0

p" #
. (15)

2.3. Specific conditional tests

The family of test statistics that can be written as functions of (Q̂; Ô,) is large and
includes the tests commonly used in applied IV regression. All such tests can be made
robust to weak instruments by evaluating them using conditional critical values, given Q̂T.
Here, we provide explicit expressions for the tests examined in this study.

2.3.1. k-class Wald statistics

To avoid notational confusion with the number of IVs, k, we denote the k-class
parameter by k. The k-class estimator of b is

b̂ðkÞ ¼ y0
?

2 ðI � k MZÞy
?
2

h i�1
y0
?

2 ðI � k MZÞy
?
1

h i
. (16)

The Wald statistic based on (16) is

Ŵ ðkÞ ¼
½b̂ðkÞ � b0�

2

ŝ2uðkÞ=½y0
?
2 ðI � k MZÞy

?
2 �

, (17)

where ŝ2uðkÞ ¼ ûðk Þ0ûðkÞ=ðn� k � pÞ, where ûðkÞ ¼ y?1 � y?2 b̂ðkÞ.
We consider four specific k-class estimators: TSLS, the limited information maximum

likelihood estimator (LIML), a modified LIML estimator proposed by Fuller (1977), and
bias-adjusted TSLS (BTSLS; Nagar, 1959, Rothenberg, 1984). The values of k for these
estimators are (see Donald and Newey (2001)):

TSLS : k ¼ 1, (18)

LIML : k ¼ k̂LIML ¼ the smallest root of detðY 0
?

Y? � kY 0
?

MZY?Þ ¼ 0, (19)

Fuller : k ¼ k̂LIML � c=ðn� k � pÞ where c is a positive constant, (20)

BTSLS : k ¼ n=ðn� k þ 2Þ. (21)

In the numerical work, we examine the Fuller estimator with c ¼ 1, which is the best
unbiased estimator to second-order among estimators with k ¼ 1þ aðk̂LIML � 1Þ � c=ðn�
k � pÞ for some constants a and c (Rothenberg, 1984). For further discussion, see Donald
and Newey (2001), Stock et al. (2002, Section 6.1), and Hahn et al. (2004).

These statistics are functions of the data only through Q̂ and Ô. Specifically,

b̂ðkÞ ¼ ½y02PZy2 � kô22�
�1½y02PZy1 � kô12�, (22)



ARTICLE IN PRESS
D.W.K. Andrews et al. / Journal of Econometrics 139 (2007) 116–132122
Ŵ ðkÞ ¼
½b̂ðkÞ � b0�

2ðy02PZy2 � kô22Þ

b̂ðk Þ0½Ôþ Y 0PZY=ðn� k � pÞ�b̂ðkÞ
, (23)

where b̂ðkÞ ¼ ½1� b̂ðkÞ�0, k ¼ (n�k�p) ðk�1Þ and k̂LIML ¼ 1þ kLIML=ðn� k � pÞ, where
kLIML is the smallest root of det½Y 0PZY � kÔ� ¼ 0. It follows from (15), (23), and
Y 0PZY ¼ Ô

1=2
Ĵ
0�1

0 Q̂Ĵ
�1

0 Ô
01=2

that Ŵ ðkÞ is a function of the data only through Q̂ and Ô.
2.3.2. The LR statistic

The other test considered in this study is Moreira’s (2003) CLR test, which is based on
the statistic

dLR ¼ 1
2
fQ̂S � Q̂T þ ½ðQ̂S þ Q̂TÞ

2
� 4ðQ̂SQ̂T � Q̂

2

STÞ�
1=2g. (24)

Evidently, dLR depends on the data only through Q̂.
3. Weak instrument asymptotic distributions

In most applications, the instruments are not fixed and there is no reason to think that
the errors are normally distributed. However, the conditional testing strategy is
nonetheless valid in large samples, even if instruments are weak. The asymptotic
justification relies on weak instrument asymptotics. Specific assumptions under which
weak instrument asymptotics apply are available in the literature (see Staiger and Stock,
1997, and AMS), so we do not list them here, and instead only provide the results of the
calculations.
The weak-instrument asymptotic limits of Q̂ and Ô are

Q̂�!
d

Q1 and Ô�!
p

O, (25)

where Q1 has a noncentral Wishart distribution with noncentrality matrix lhbh0b, where
hb ¼ [cb db]

0, cb ¼ ðb� b0Þ=ðb
0
0Ob0Þ

1=2, db ¼ a0O�1=ða00O
�1a0Þ

1=2, and a ¼ [b 1]0 (see
AMS).
It follows from (25) and the continuous mapping theorem that the statistics in Section

2.3 have weak-instrument asymptotic distributions that can be characterized in terms of
the distribution of Q1. Let C ¼ cðQ̂; ÔÞ denote a test statistic that depends on the data
only through Q̂ and Ô. Then

Ĉ�!
d

C1 ¼ cðQ1;OÞ. (26)

The limiting representation of the k-class Wald statistic (see Stock and Yogo, 2005, for a
derivation using different notation) is

Ŵ ðkÞ �!
d

W1ðk1Þ ¼
½X1;12 � k1o12�

2

½X1;22 � k1o22�½b̂1ðk1Þ
0Ob̂1ðk1Þ�

, (27)

where X1 ¼ O1=2J 0
�1
0 Q1J�10 O01=2, b̂1ðkÞ ¼ ½1� b̂1ðkÞ�

0, b̂1ðkÞ ¼ ½X1;22 � ko22�
�1½X1;21�

ko21�, and k1 depends on which k-class estimator is used:

TSLS : k1 ¼ 1, (28)
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LIML : k1 ¼ kLIML;1 where kLIML;1 ¼ the smallest root of detðX1 � kOÞ ¼ 0,

(29)

Fuller : k1 ¼ kLIML;1 � c where c is the constant in ð20Þ, (30)

BTSLS : k1 ¼ k � 2 ðwhere k is the number of instrumentsÞ. (31)

The weak-instrument asymptotic representation of the dLR statistic follows from (24)
and (25):

dLR�!d LR1 ¼
1
2
fQ1;S �Q1;T þ ½ðQ1;S þQ1;TÞ

2
� 4ðQ1;SQ1;T �Q2

1;STÞ�
1=2g.

(32)

3.1. Asymptotic power functions

The asymptotic conditional critical value of the test statistic Ĉ, given Q̂T ¼ qT, is
cðqT; aÞ, which is the 1� a quantile of the conditional distribution of C1 given Q1;T ¼ qT.
The asymptotic power of the test against the alternative b is

asymptotic power ¼ Prb;l½C14cðQ1;T; aÞ�, (33)

where the probability is computed with respect to the distribution of Q1 when
the true parameter values are ðb; lÞ. Under H0, the probability in (33) equals a and
does not depend on l, but under the alternative the power in general depends on l
as well as b.

4. Numerical evaluation of asymptotic p-values of conditional tests

In this section, distributional results in AMS are used to provide a simple
algorithm, involving only one-dimensional integration, for the evaluation of
conditional p-values of IV test statistics that are monotone increasing in QS (or Q̂S).
Because the distribution of Q1 is the same as the distribution of Q under normal
errors and fixed instruments, the algorithm is presented using the expositional expedient
of the fixed instrument/Gaussian model. As a special case, we provide explicit expressions
for the conditional p-value of the CLR test. The section concludes by providing
the asymptotic interpretation of these p-values when the IVs are random and the errors
non-normal.

4.1. Exact p-values in the known-O Gaussian model

The task is to compute the probability under the null hypothesis that C ¼ cðQ;OÞ
exceeds a constant m, under the assumptions of the fixed IV/Gaussian model. Following
AMS, let S2 ¼ QST=ðQSQTÞ

1=2. Accordingly, we can write C as C ¼ gðQS;S2;QTÞ (the
mapping from Q to ðQS;S2;QTÞ is one-to-one, and the dependence on O is subsumed into
g). We consider statistics that are invertible functions of qS. Specifically, suppose there
exists the inverse function g�11 such that

gðg�11 ðm; s2; qTÞ; s2; qTÞ ¼ m and g�11 ðm; s2; qTÞ is monotone increasing in m. (34)
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Under the null hypothesis, the conditional probability that C exceeds a constant m,
given QT ¼ qT, is

pðm; qTÞ ¼ 1� Pr0½gðQS;S2;QTÞomjQT ¼ qT�

¼ 1�

Z 1

�1

Pr0½gðQS;S2;QTÞomjS2 ¼ s2;QT ¼ qT�f S2jQT
ðs2jQT ¼ qTÞds2,

ð35Þ

where f S2jQT
is the conditional distribution of S2 given QT under H0, Pr0[ � ] denotes the

probability evaluated under H0, and the limits of integration arise because jS2jp1. Note
that Pr0½gðQS;S2;QTÞomjQT ¼ qT� does not depend on l because QT is sufficient for l
under H0.
If the inverse function g�11 in (34) exists, then the final expression in (35) can be rewritten

as an inequality expressed in terms of QS:

pðm; qTÞ ¼ 1�

Z 1

�1

Pr0½QSog�11 ðm;S2;QTÞjS2 ¼ s2;QT ¼ qT�f S2jQT
ðs2jQT ¼ qTÞds2.

(36)

It is shown in AMS (Lemma 3) that, under H0, QS, S2, and QT are mutually
independent, QS has a w2 distribution with k degrees of freedom, and S2 has the density

f S2
ðs2Þ ¼ K4ð1� s22Þ

ðk�3Þ=2, (37)

where K4 ¼ Gðk=2Þ=½pi1=2Gððk21Þ=2Þ�, where pi ¼ 3.1416y and Gð�Þ is the gamma
function. Accordingly, (36) becomes

pðm; qTÞ ¼ 1� K4

Z 1

�1

Pr½w2kog�11 ðm; s2; qTÞ�ð1� s22Þ
ðk�3Þ=2 ds2. (38)

The conditional p-value is pðCobs; qTÞ, where Cobs is the observed value of the test
statistic in the data. Because statistical software packages include functions for the
cumulative w2 distribution, evaluation of pðm; qTÞ based on (38) requires only a single
numerical integration (over S2).

4.2. Specialization to the CLR test

The LR statistic, written in terms of Q, is

LR ¼ 1
2
fQS �QT þ ½ðQS þQTÞ

2
� 4ðQSQT �Q2

ST Þ�
1=2g

¼ 1
2
fQS �QT þ ½ðQS þQTÞ

2
� 4QSQTð1� S2

2Þ�
1=2g, ð39Þ

where the second line expresses the LR statistic as a function of QS, QT, and S2. Inspection
of (39) reveals that LR is monotone increasing in QS. For the LR statistic, the inverse
function g�11 is

g�11 ðm; s2; qTÞ ¼
qT þm

1þ qTs22=m
. (40)
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Substitution of (40) into (38) yields the following expression for the asymptotic p-value
for the CLR statistic:

pðm; qTÞ ¼ Pr0½LR4mjQT ¼ qT� ¼ 1

� 2K4

Z 1

0

Pr w2ko
qT þm

1þ qTs22=m

� �
ð1� s22Þ

ðk�3Þ=2 ds2, ð41Þ

where the limits of integration have been changed to exploit the symmetry of the LR
statistic in S2. The conditional p-value is pðLRobs; qTÞ, where LR

obs is the observed value of
the test statistic.

4.2.1. Numerical considerations

Our experience is that the details of how best to compute the integral in (41) depend on
k. For k ¼ 2, the integrand in (41) is unbounded at s2 ¼ 1 and direct numerical integration
is unreliable. However, in this case the integral can be handled by the change of variables,
u ¼ sin�1ðs2Þ, yielding

pðm; qTÞ ¼ 1� 2K4

Z p=2

0

Pr w2ko
qT þm

1þ qT sin
2
ðuÞ=m

" #
du, (42)

which can be integrated by standard methods, e.g. Simpson’s rule.
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Fig. 1. Asymptotic power functions of conditional LR and conditional Wald tests: k ¼ 2, r ¼ 0:95.
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For k ¼ 3, the exponent in the integrand is zero and the integral becomes

pðm; qTÞ ¼ 1� 2K4

Z 1

0

Pr w2ko
qT þm

1þ qTs22=m

� �
ds2, (43)

which is readily evaluated using Simpson’s rule.
For k ¼ 4, the term ð1� s22Þ

ðk�3Þ=2 is sufficiently nonlinear approaching s2 ¼ 1 that care
needs to be taken in performing the integration near this boundary to get acceptable
numerical accuracy. However, the term Pr w2koððqT þmÞ=ð1þ qTs22=mÞÞ

� �
is insensitive to

s2 in a small neighborhood of 1. Thus, for the region within e of 1, with k ¼ 4 the integral
in (41) can be approximated as

2K4

Z 1

1��
Pr w2ko

qT þm

1þ qTs22=m

� �
ð1� s22Þ

ðk�3Þ=2 ds2

ffi 2K4Pr w2ko
qT þm

1þ qTð1� �=2Þ
2=m

" #Z 1

1��

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s22

q
ds2

ffi 2K4Pr w2ko
qT þm

1þ qTð1� �=2Þ
2=m

" #
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Fig. 2. Asymptotic power functions of conditional LR and conditional Wald tests: k ¼ 5, r ¼ 0:95.
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sin�1ð1Þ � sin�1ð1� �Þ
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q	 

. ð44Þ

Standard numerical methods can be used for integration on the range ½0; 1� ��. Numerical
investigation found that setting � ¼ 0:02 yields good results.

For k44, the integral does not simplify but the integrand is bounded and
well-behaved and can be evaluated accurately using standard numerical methods, e.g.
Simpson’s rule.
4.3. Interpretation as asymptotic p-values

These p-values are asymptotic p-values under weak instrument asymptotics. Let Ĉ
denote the test statistic computed using Q̂ and Ô. The results of Section 3 and AMS imply
that

Pr0½Ĉ4mjQ̂T ¼ q̂T� � pðm; q̂TÞ �!
p

0. (45)

It follows that rejection using the asymptotic a-level conditional critical values is
equivalent to the asymptotic conditional p-value being less than a.
1.0

0.8

0.6

0.4

0.2

0.0

po
w

er

1.0

0.8

0.6

0.4

0.2

0.0

po
w

er

1.0

0.8

0.6

0.4

0.2

0.0

po
w

er

1.0

0.8

0.6

0.4

0.2

0.0

po
w

er

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

β√λ

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

β√λ

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

β√λ

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

β√λ

(c) (d)

(b)(a)

λ/k = 0.5 λ/k = 1

λ/k = 16λ/k = 4

CLR
CW−TSLS
CW−LIML
CW−Fuller
CW−BTSLS

Fig. 3. Asymptotic power functions of conditional LR and conditional Wald tests: k ¼ 10, r ¼ 0:95.



ARTICLE IN PRESS
D.W.K. Andrews et al. / Journal of Econometrics 139 (2007) 116–132128
5. Asymptotic power functions of the conditional Wald and CLR tests

We now turn to a comparison of the asymptotic powers of the CW and CLR tests. To
save space, a representative subset of the results are presented here; full results can be
viewed on the Web (see footnote 2).

5.1. Design

By taking linear transformations and suitably redefining Y, V, b, and p, the model (4)
can always be rewritten so that b0 ¼ 0 and o11 ¼ o22 ¼ 1. Therefore, without loss of
generality we set b0 ¼ 0 and

O ¼
1 r

r 1

" #
. (46)

With this standardization, the concentration parameter is l=o22 ¼ l, the expected value
of the first-stage F-statistic testing p ¼ 0 is 1þ l=k, and the weak-instrument asymptotic
powers of the CW and CLR tests depend only on b, l, r, and k.
Asymptotic power functions were computed for the CLR and TSLS, LIML, Fuller, and

BTSLS CW tests using the weak-instrument asymptotic representations (27)–(32). All tests
have significance level a ¼ 0:05. The CLR test was implemented by computing the
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Fig. 4. Asymptotic power functions of conditional LR and conditional Wald tests: k ¼ 20, r ¼ 0:95.
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conditional p-value using the algorithm in Section 4.2 and comparing it to a. The CW tests
were implemented by first computing a lookup table of critical values on a grid of 150
values of qT, then interpolating this lookup table for a given realization of qT. All results
are based on 5000 Monte Carlo draws. To assess the numerical accuracy, rejection rates
were computed under the null and are reported as the values of the power plots at b ¼ 0;
these null rejection rates are within Monte Carlo error of a.

Results were computed for k ¼ 2, 5, 10, and 20; r ¼ 0.95, 0.5, and 0.2; and l=k ¼ 0:5
(very weak instruments), 1, 2, 4, 8, and 16 (strong instruments).
5.2. Results

Representative results are reported in Figs. 1–6. Each figure has four panels,
corresponding to l/k ¼ 0.5, 1, 4, and 16. Each curve represents the power function of
the indicated test for the value of k and r in that figure and of l/k in that panel. The
horizontal axis is scaled to be bl1/2 so that the results are readily comparable across figures
and panels. The scaling bl1/2 has an intuitive interpretation: l is a measure of the amount
of information in the instruments and at a formal level can be thought of as an effective
sample size (Rothenberg, 1984). Thus, bl1/2 can be thought of as a local alternative, except
that the neighborhood of locality is 1/l1/2 rather than 1/n1/2 as is usually the case.
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Fig. 5. Asymptotic power functions of conditional LR and conditional Wald tests: k ¼ 5, r ¼ 0:50.
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Fig. 6. Asymptotic power functions of conditional LR and conditional Wald tests: k ¼ 5, r ¼ 0:20.
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Fig. 1 considers the case k ¼ 2 and r ¼ .95. Generally speaking, conventional strong-
instrument asymptotic approximations tend to break down most severely at high values of
r (cf. Nelson and Startz, 1990a, b), so the case r ¼ 0.95 is a useful benchmark. As Fig. 1
shows, the contrast between the performance of the CLR test and the CW tests is stark.
For all values of l/k in this figure, including the case of relatively strong instruments, all
four CW tests are biased, with rejection rates effectively equal to zero for some values of
the alternative. When instruments are weak (panels (a) and (b)), the CW tests reject with
frequency well under 5% for negative values of b. This is not because there is insufficient
information to perform valid inference: the CLR test has monotonically increasing power
for negative b and indeed performs comparably against positive and negative values of b.
Even against positive values of b, the CW tests do not perform as well as the CLR test

when instruments are weak and/or alternatives are distant. Only in the strong-instrument
case with b40 are the power functions of the five conditional tests comparable. While
there are differences among the power functions of the CW tests, these differences are
relatively small (for k ¼ 2, BTSLS and TSLS are identical, see (21)).
Figs. 2–4 examine the effect of increasing the number of instruments to k ¼ 5, 10, and

20, respectively, while keeping r fixed at 0.95. The conclusions drawn from Fig. 1 continue
to hold for Figs. 2–4: the CW tests are biased, and their power functions are typically
below—sometimes far below—that of the CLR test. In addition, it is evident in some of the
panels that the power functions of the CW tests are not monotonic. For the larger values of
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k, some differences among the CW tests emerge. The test based on TSLS generally has the
least desirable power properties; this is particularly striking in Fig. 4, panel (c), in which
the other three CW tests have power functions coming close to that of the CLR test but the
CW-TSLS test has power of essentially zero against bo0. Among the remaining three CW
tests, the CW-Fuller test seems to work best overall. Still, the performance of the CW-
Fuller test is, in an overall sense, very poor relative to the CLR test.

Figs. 5 and 6 examine the effect of changing r to 0.5 and 0.2, respectively, while holding
the number of instruments constant at k ¼ 5. Again, the same conclusions emerge. These
tests are all asymptotically equivalent under strong instrument asymptotics, and this
equivalence becomes evident in Fig. 6 in the case l=k ¼ 16: in the case that there is very
little endogeneity and strong instruments, all the tests perform comparably. However, if
there are weak instruments and/or significant amounts of endogeneity, then the CW tests
perform worse, often much worse, than the CLR test.

These results are all asymptotic and do not reflect the sampling uncertainty arising from
the estimation of O. In numerical work not tabulated here, we find that the weak-
instrument asymptotic approximation to the finite-sample rejection rates of the feasible
versions of these tests, based on estimated O, is very good for moderate sample sizes
(nX100) as long as there are not too many instruments (kp20). The weak-instrument
asymptotic power comparisons in Figs. 1–6 therefore can be expected to provide reliable
guidance for comparing the powers of feasible CW and CLR tests in sample sizes typically
encountered in econometric applications.

The evident conclusion for applied work is that researchers choosing among these tests
should use the CLR test. The strong asymptotic bias and often-low power of the CW tests
indicate that they can yield misleading inferences and are not useful, even as robustness
checks.
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