
Tests for Cointegration Breakdown
Over a Short Time Period
Donald W. K. ANDREWS

Cowles Foundation for Research in Economics, Yale University, New Haven, CT 06520-8281
(donald.andrews@yale.edu)

Jae-Young KIM
School of Economics, Seoul National University, Seoul, Korea ( jykim017@snu.ac.kr )

This article introduces tests for cointegration breakdown that may occur over a relatively short time period,
such as at the end of the sample. The breakdown may be due to a shift in the cointegrating vector or due to
a shift in the errors from being I(0) to being I(1). Tests are introduced based on the postbreakdown sum of
squared residuals and sum of squared reverse partial sums of residuals. Critical values are provided using
a subsampling method. Asymptotic results take the number of observations in the breakdown period, m,
to be fixed while the total sample size, T + m, goes to infinity.

KEY WORDS: Cointegration; Least squares estimator; Model breakdown; Parameter change test; Struc-
tural change.

1. INTRODUCTION

This article addresses the problem of cointegration break-
down over a short time period. We are interested in breakdown
due to a shift in the cointegrating parameter vector and/or a
shift in the errors from being stationary to being integrated. The
breakdown period may occur at the end of the sample, the be-
ginning of the sample, or somewhere in between. For example,
one might be interested in whether a recent event, such as a
change in the stock market or a possible productivity slowdown,
has caused an end-of-sample breakdown in a cointegrating rela-
tionship. Alternatively, one might be interested in whether some
short policy regime shift or a war caused a middle-of-sample
cointegration breakdown.

Tests in the literature for cointegration breakdown assume
that the postbreakdown period is relatively long. These tests
rely on asymptotics in which its length goes to infinity with
the sample size. Examples include the tests of Hansen (1992),
Quintos and Phillips (1993), Quintos (1997), Hansen and
Johansen (1999), and Kim (1999). For the case of cointegra-
tion with known cointegrating vector, the tests of Kim (2000)
and Kim, Belaire-Franch, and Amador (2002) also apply. These
tests are not appropriate for the case considered here in which
the postbreakdown period is relatively short.

In this article we introduce tests for cointegration breakdown
that are asymptotically valid when the length, m, of the post-
breakdown period is fixed as the total sample size, T + m, goes
to infinity. The tests rely on a subsampling-like method of com-
puting critical values introduced by Andrews (2003) and de-
scribed later. The critical values are easy to compute.

For simplicity, in the remainder of this section and in the bulk
of the article, we discuss tests for end-of-sample cointegration
breakdown. Adjustment of the end-of-sample tests for break-
down occurring at the beginning or in the middle of the sample
is straightforward.

The first test statistic that we consider, P, is the sum of
squared postbreak residuals evaluated at a full-sample estima-
tor, such as the least squares (LS) estimator,

P =
T+m∑

t=T+1

û2
t , (1)

where ût is a residual. This test statistic is motivated by the
F statistic for parameter change over a short period in a re-
gression model with iid normal errors and strictly exogenous
regressors.

Next we consider the locally best invariant (LBI) test for a
shift in the error distribution from being iid normal for all ob-
servations to being iid normal for the first T observations and
then a normal unit root process for the last m observations. The
resulting test statistic, R, is given by the sum of squared reverse
partial sums of the postbreak residuals,

R =
T+m∑

t=T+1

(
T+m∑

s=t

ûs

)2

, (2)

where ûs is a residual. The form of this statistic is similar to tests
considered by Gardner (1969), MacNeill (1978), Nyblom and
Makelainen (1983), King and Hillier (1985), Nyblom (1986,
1989), Nabeya and Tanaka (1988), Leybourne and McCabe
(1989), Perron (1991), Kwiatkowski, Phillips, Schmidt, and
Shin (1992), Tanaka (1993), and Shin (1994).

Critical values for the two test statistics considered are ob-
tained by a subsampling method. One computes the T − m + 1
test statistics that are analogous to the test statistic of interest but
are for testing for cointegration breakdown over the m observa-
tions that start at the jth observation, rather than for breakdown
starting at the (T + 1)th observation, for j = 1, . . . ,T − m + 1.
The 1 − α sample quantile of these statistics is the significance
level-α critical value for the end-of-sample breakdown test sta-
tistic. Computation of the critical value is relatively easy, just
requiring calculation of T − m + 1 versions of the original sta-
tistic. p values are also easily obtained using this method.

The subsampling critical values use subsamples of length m,
the number of postbreakdown observations. There is no arbi-
trary smoothing parameter or block length parameter to select;
no heteroscedasticity and autocorrelation consistent covariance
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matrix estimator is required. (For the use of subsampling in
other contexts, see Politis, Romano, and Wolf 1999.)

Andrews (2003) used subsampling to obtain critical values
for tests of parameter instability over short time periods in
models with stationary observations. Both linear and nonlinear
models are considered. In contrast, this article considers linear
models only, but allows for nonstationary regressors and hence
cointegrating regression models. The test statistics considered
in the two articles also differ.

The tests considered here are not consistent tests, because
m is fixed as T → ∞. Typically, however, they are asymptoti-
cally unbiased. The power of the tests depends on the magni-
tude of the breakdown, such as the magnitude of the parameter
shift and/or the magnitude of the unit root error variance, rel-
ative to the prebreakdown error variance. Power also depends
on m. The larger the m, the greater the power, everything else
being equal. Power may be low if m is small or if the magnitude
of the breakdown is not large. Consequently, failure to reject the
null hypothesis should not be interpreted as strong evidence in
favor of stable cointegration.

The article presents some Monte Carlo simulations designed
to assess the finite-sample size and size-corrected power prop-
erties of the P and R tests. We consider models with a constant,
time trend or no time trend, two or four unit root regressors, and
zero or two stationary regressors. The errors, unit root regressor
differences, and stationary regressors are first-order autoregres-
sive (AR) with the same AR parameter. The AR parameters
considered are ρ = 0, .4, and .8. The AR innovations consid-
ered are normal, chi-squared with 2 df, t3, and uniform. The
unit root regressor differences are correlated with the errors in
some of the cases considered. The prebreakdown sample sizes
are T = 100 and 250, and the postbreakdown sample sizes are
m = 10,5, and 1. We consider power against shifts in the coin-
tegrating regressor vector as well as in shifts in the error from
being I(0) to being I(1). These are referred to as parameter shift
alternatives and unit root alternatives.

The simulation results demonstrate that the null rejection
probabilities of the P and R tests are quite good, especially con-
sidering that the range of cases considered is wide. For example,
for the nominal 5% P test and T = 250, the null rejection rate
varies between .040 and .064 over 72 different model/parameter
combinations. For T = 100, it varies between .028 and .081,
with an average of .052.

The power results indicate that the P and R tests have power
against both unit root alternatives and parameter shift alterna-
tives. In fact, paradoxically, the P test is somewhat better than
the R test for unit root alternatives and vice versa for parame-
ter shift alternatives. The differences between the powers of the
P and R tests typically are not large. The best test in terms of
power is the R test, because it has less variable power across
different distributions than the P test.

Combining the simulation results for size and power, we have
a slight preference for the P test, because its size properties are
somewhat better than those of the R test. The P test has pretty
good size and power properties across the wide range of models
and parameter combinations considered in the simulations.

Use of the P and R tests is illustrated by the results of
Carstensen (2006) (which follows this article in this issue of
JBES) on testing for breakdown of a cointegrating relation in a

conventional money demand equation for the European Mon-
etary Union for the end-of-sample periods 1999Q1–2003Q2
and 2001Q4–2003Q2 based on quarterly data starting in 1980.
The baseline model has dependent variables given by real M3
and regressors given by real GDP and the difference between
a short-term interest rate and the rate on M3. Carstensen found
that the P and R tests strongly reject the null hypothesis of sta-
bility over these periods. On the other hand, the full-sample
fluctuation and Nyblom tests of Hansen and Johansen (1999)
for the period 1980Q1–2003Q2 fail to reject the null of stabil-
ity at conventional significance levels. Hence in this empirical
application, the P and R tests provide useful tools for detecting
model misspecification.

The remainder of the article is organized as follows. All
sections except Section 5 discuss end-of-sample cointegration
breakdown tests. Section 2 introduces the model and hypothe-
ses of interest. Section 3 presents the tests considered. Sec-
tion 4 provides the asymptotic justification for the subsample
critical values for a standard cointegration model estimated by
least squares. Results that apply to more general cointegration
models and estimators other than least squares are given in Ap-
pendix A, and proofs of the asymptotic results are given in
Appendix B. Section 5 discusses tests for cointegration break-
down occurring at the beginning or in the middle of the sample.
Section 6 provides some Monte Carlo results.

2. MODEL AND HYPOTHESES

The model is

yt =
{

x′
tβ0 + ut for t = 1, . . . ,T

x′
tβt + ut for t = T + 1, . . . ,T + m,

(3)

where yt,ut ∈ R and xt, β0, βt ∈ R
k. Under the maintained

hypothesis, the errors for the first T time periods, {ut : t =
1, . . . ,T}, are mean 0, stationary, and ergodic. In addition, un-
der the maintained hypothesis, the regressors for all time pe-
riods, {xt : t = 1, . . . ,T + m}, are linear combinations of unit
root [I(1)] random variables, stationary random variables, and
deterministic variables, such as a constant and a linear time
trend. The regressors are not assumed to be strictly exogenous.
The precise assumptions are given in Section 4 and Appen-
dix A.

The null and alternative hypotheses are

H0 :

{
βt = β0 for all t = T + 1, . . . ,T + m and
{ut : t = 1, . . . ,T + m} are stationary and ergodic,

(4)

H1 :

{
βt �= β0 for some t = T + 1, . . . ,T + m and/or
the distribution of {uT+1, . . . ,uT+m} differs from
the distribution of {u1, . . . ,um}.

Under the null hypothesis, the model is a well-specified coin-
tegrating regression model for all t = 1, . . . ,T + m. Under the
alternative hypothesis, the model is a well-specified cointegrat-
ing regression model for all t = 1, . . . ,T , but for t = T + 1, . . . ,

T + m, the previous cointegrating relationship breaks down.
The breakdown may be due to (a) a shift in the cointegrating

vector from β0 to βt, (b) a shift in the distribution of ut from
being stationary to being a unit root random variable, (c) some
other shift in the distribution of {uT+1, . . . ,uT+m} from that of
{u1, . . . ,um}, or (d) some combination of the previous shifts. In
the next few sections, we introduce tests designed especially for
cases (a) and (b).
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3. COINTEGRATION BREAKDOWN TESTS

3.1 P Test

First, we consider a test statistic that is a quadratic form of the
“postbreakdown” residuals {̂ut : t = T + 1, . . . ,T + m}. The test
rejects the null hypothesis if the test statistic exceeds a critical
value determined using a subsampling method.

For any 1 ≤ r ≤ s ≤ T + m, let

Yr:s = (yr, . . . , ys)
′,

Xr:s = (xr, . . . , xs)
′, and (5)

Ur:s = (ur, . . . ,us)
′.

For j = 1, . . . ,T + 1, let

Pj(β,�) = (
Yj:( j+m−1) − Xj:( j+m−1)β

)′

× �
(
Yj:( j+m−1) − Xj:( j+m−1)β

)
, (6)

where � is some nonsingular m × m matrix. The P and R tests
are both defined using Pj(β,�), but with different choices of �.

Let β̂1:(T+m) denote an estimator of β0 based on the observa-
tions t = 1, . . . ,T + m. For example, for the LS estimator,

β̂1:(T+m) = (
X′

1:(T+m)X1:(T+m)

)−1X′
1:(T+m)Y1:(T+m) (7)

(provided that X′
1:(T+m)X1:(T+m) is nonsingular). Other estima-

tors can also be considered, including the fully modified esti-
mator of Phillips and Hansen (1990); the maximum likelihood
(ML) estimator (see Johansen 1988, 1991; Ahn and Reinsel
1990; Phillips 1991); and the asymptotically efficient estimators
of Phillips and Loretan (1991), Saikonen (1991), Park (1992),
and Stock and Watson (1993).

The first test statistic, P, that we consider is defined by

P = PT+1
(
β̂1:(T+m)

)=
T+m∑

t=T+1

(
yt − x′

tβ̂1:(T+m)

)2
,

where Pj(β) = Pj(β, Im) (8)

and Im denotes the m-dimensional identity matrix. As defined,
P is the postbreakdown sum of squared residuals. The statis-
tic P is often referred to as a predictive statistic. The form of
this statistic is motivated by the F statistic for testing for a one-
time change in the regression parameter occurring at time T +1
when m ≤ k in a linear regression model with known error vari-
ance (see, e.g., Chow 1960). The F test has well-known op-
timal power properties in the (restricted) context in which the
errors are iid normal and the regressors are strictly exogenous
(see, e.g., Scheffé 1959, chap. 2). Predictive statistics have been
used by Dufour, Ghysels, and Hall (1994) and Andrews (2003)
to test for end-of-sample instability in models with stationary
observations.

We note that when m > k, the F statistic is based on the pro-
jection of the postbreakdown residual vector on the postbreak-
down regressor matrix. One can define a test statistic, call it S,
that corresponds to this. Andrews (2003) did this for linear and
nonlinear models with stationary observations. In the present
context, however, the subsampling critical values that we use
for the tests do not deliver an asymptotically valid critical value,

because the regressors are not stationary and the statistic S de-
pends on the regressors. Hence we do not consider the S statistic
any further in this article.

Under the null hypothesis, the distribution of PT+1(β0) is
the same as that of Pj(β0) for all j ≥ 1, because Pj(β0) =∑j+m−1

t=j u2
t and {ut : t ≥ 1} is stationary. The estimator β̂1:(T+m),

which appears in the statistic P, converges in probability to the
true parameter, β0, under the null hypothesis given suitable as-
sumptions. Hence the asymptotic null distribution of P is the
distribution of P1(β0). We establish this rigorously herein.

The random variables {Pj(β0) : j = 1, . . . ,T − m + 1} are sta-
tionary and ergodic under H0 and H1. Consequently, the empir-
ical distribution function (df ) of {Pj(β0) : j = 1, . . . ,T − m + 1}
is a consistent estimator of the df of P1(β0). Hence we can
consistently estimate the df of P1(β0) using the empirical df
of {Pj(β) : j = 1, . . . ,T − m + 1} evaluated at a consistent esti-
mator of β0 (see Thm. 2).

Simulations show that when the subsample statistics are eval-
uated at β̂1:(T+m) (or the analogous estimator that uses only the
observations indexed by t = 1, . . . ,T), the test tends to overre-
ject the null hypothesis somewhat. A simple finite-sample ad-
justment to the subsample statistics to make them more variable
is to evaluate them at the leave-m-out estimators defined as fol-
lows: For j = 1, . . . ,T − m + 1, let

β̂( j) = estimator of β using observations indexed by
t = 1, . . . ,T with t �= j, . . . , j + m − 1.

(9)

But simulations also show when the subsample statistics are
evaluated at β̂( j), the test tends to underreject the null hypothe-
sis somewhat in a broad array of cases (see Andrews and Kim
2003 for details).

Hence we introduce subsample statistics for use with P that
are less variable than {Pj(β̂( j)) : j = 1, . . . ,T − m + 1} but more
variable than {Pj(β̂1:(T+m)) : j = 1, . . . ,T − m + 1}. We define
the “leave-m/2-out” estimator, β̂2( j), as

β̂2( j) = estimator of β using observations indexed by
t = 1, . . . ,T with t �= j, . . . , j + �m/2	 − 1

(10)

for j = 1, . . . ,T − m + 1, where �m/2	 denotes the smallest
integer that is greater than or equal to m/2. For the types of
estimators mentioned earlier, the estimator β̂2( j) is consistent
for β0 (uniformly over j) under suitable assumptions, see below.

We define the Pj subsample statistics as

Pj = Pj
(
β̂2( j)

)
for j = 1, . . . ,T − m + 1. (11)

The empirical df of {Pj : j = 1, . . . ,T − m + 1} is

F̂P,T(x) = 1

T − m + 1

T−m+1∑

j=1

1(Pj ≤ x). (12)

This empirical df converges in probability (and almost surely)
to the df of P1(β0) (under suitable assumptions). Consequently,
to obtain a test with asymptotic significance level α, we take
the critical value for the test statistic P to be the 1 − α sample
quantile, q̂P,1−α , of {Pj : j = 1, . . . ,T − m + 1}. By definition,

q̂P,1−α = inf{x ∈ R : F̂P,T(x) ≥ 1 − α}. (13)
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One rejects H0 if P > q̂P,1−α . Equivalently, one rejects H0

if P exceeds 100(1 − α)% of the values {Pj : j = 1, . . . ,

T − m + 1}, that is, if

(T − m + 1)−1
T−m+1∑

j=1

1(P > Pj) ≥ 1 − α. (14)

The p value for the P test is

pvP = (T − m + 1)−1
T−m+1∑

j=1

1(P ≤ Pj). (15)

3.2 The P Test With Estimated Weight Matrix

The P test is designed for the case in which the errors in the
regression model are uncorrelated—although the tests have cor-
rect size asymptotically whether or not the errors are correlated.
If the errors are correlated, it might be advantageous in terms of
power to include weights in the statistics based on an estimator
of the error covariance matrix. We considered some tests that
do this, but found that they were somewhat inferior to the P test
in terms of closeness of nominal and true sizes and in terms of
size-corrected power across the range of models considered in
Section 6.

3.3 Locally Best Invariant Test for Unit Root Alternatives

The P test is motivated by the F test for a one-time change in
the parameter vector β . We now consider the LBI test statistic
for the presence of unit root errors from t = T + 1 to t = T + m
in a linear regression model with iid normal errors, known error
variance (under the null), and exogenous regressors. We use the
form of this statistic to construct tests that are asymptotically
valid under more general conditions on the errors and regres-
sors. The model and LBI statistic that we consider are similar
to those considered in the articles represented in Section 1.

For the purpose of generating the LBI test statistic, the model
that we consider is

yt = x′
tβ0 + ut for t = 1, . . . ,T + m,

ut = ψt + λ1/2ψ̃t,

ψt ∼ iid N(0,1) for t = 1, . . . ,T + m,
(16)

ψ̃t =
{

0 for t = 1, . . . ,T
ψ̃t−1 + εt for t = T + 1, . . . ,T + m,

εt ∼ iid N(0,1) for t = T + 1, . . . ,T + m,

where εt1 , ψt2 , and xt3 are independent of each other for all t1,
t2, and t3. The null and alternative hypotheses of interest are

H0 :λ = 0 and H1 :λ > 0. (17)

When the regressors are integrated, the null hypothesis con-
sists of cointegration for the whole sample, whereas the alter-
native hypothesis consists of cointegration for the observations
t = 1, . . . ,T and lack of cointegration (i.e., spurious regression)
for the observations t = T + 1, . . . ,T + m.

Conditional on {xt : t = 1, . . . ,T + m}, we have

Y1:(T+m) ∼ N
(
X1:(T+m)β0, IT+m + λV

)
,

where V = diag{0T ,Am},
[Am]k,� = min{k, �} for k, � = 1, . . . ,m, (18)

and 0T is a T ×T matrix of 0’s. That is, V is a (T +m)×(T +m)

matrix consisting of 0’s except in the lower diagonal m × m
block, which is given by the m × m matrix Am.

We consider invariance with respect to the following standard
transformations in a linear model:

Y1:(T+m) → Y1:(T+m) + X1:(T+m)γ,
(19)

β0 → β0 + γ.

The maximal invariant statistic S for these transformations is
defined as follows. Let J be a (T +m)× (T +m− k) matrix that
satisfies J′J = IT+m−k and JJ′ = IT+m − X(X′X)−1X′, where
X = X1:(T+m). We have

S = J′Y1:(T+m) ∼ N(0, IT+m−k + λJ′VJ). (20)

By work of Ferguson (1967, p. 235), the rejection region of
the LBI test is

d

dλ
log fT+m(S|λ)

∣∣∣∣
λ=0

> K, (21)

where fT+m(S|λ) is the density of S evaluated at S and K is a
constant. In the present case,

2
d

dλ
log fT+m(S|λ) = −S′ d

dλ
(IT+m−k + λJ′VJ)−1S

= S′(IT+m−k + λJ′VJ)−1

× J′VJ(IT+m−k + λJ′VJ)−1S,
(22)

2
d

dλ
log fT+m(S|λ)

∣∣∣∣
λ=0

= S′J′VJS

= Û′
1:(T+m)VÛ1:(T+m)

= Û′
(T+1):(T+m)AmÛ(T+1):(T+m),

where

Û1:(T+m) = JS = JJ′Y1:(T+m)

= Y1:(T+m) − X1:(T+m)β̂LS,1:(T+m) (23)

and β̂LS,1:(T+m) is the LS estimator from the regression
of Y1:(T+m) on X1:(T+m). Hence the LBI test statistic is a
quadratic form in the postchange residual vector with weight
matrix Am.

3.4 R Tests

The LBI test statistic of (22) can be written using (6) as

PT+1
(
β̂LS,1:(T+m),Am

)
. (24)

That is, the LBI test statistic is just like the P statistic except
that it uses the weight matrix Am instead of the identity matrix.
In this section we define a test R that is analogous to the P test
defined earlier, but uses the weight matrix Am instead of Im.
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Define

R = PT+1
(
β̂1:(T+m),Am

)
and

(25)
Rj = PT+1

(
β̂2( j),Am

)
.

The estimator β̂2( j) used in the subsample statistic Rj is cho-
sen for the same reasons as cited above for the P tests. Critical
values and p values for the R test are obtained as in (13)–(15),
with (P,Pj) replaced by (R,Rj). The estimator β̂1:(T+m) used
with the R test can be the LS estimator or some other estimator.

It turns out that the R test statistic is a sum of squares of re-
verse partial sums of residuals. To see this, let Q be the m × m
matrix that has 1’s on and above the main diagonal and 0’s be-
low the main diagonal. Then Am = Q′Q, and R can be written
as

R = PT+1
(
β̂1:(T+m),Am

)= (
QÛ

(
β̂1:(T+m)

))′
QÛ

(
β̂1:(T+m)

)

=
T+m∑

t=T+1

(
T+m∑

s=t

(
ys − x′

sβ̂1:(T+m)

)
)2

. (26)

The statistic Rj can be written in the same way with β̂1:(T+m)

replaced by β̂2( j).
As shown next, the R test is asymptotically valid in a much

broader class of models than the model of (16) that generates
the LBI test.

4. ASYMPTOTIC RESULTS

4.1 Assumptions

For simplicity, in this section we consider the leading case
in which the regressor vector xt contains a constant, a lin-
ear time trend, a p1-vector x1,t of integrated variables, and a
p2-vector x2,t of stationary variables for pj ≥ 0 for j = 1,2,

yt = β1,0 + tβ2,0 + x′
1,tβ3,0 + x′

2,tβ4,0 + ut. (27)

(The results also cover the case in which any of these regres-
sors does not appear in the model; for example, there need not
be a time trend or stationary regressors.) We suppose that the
parameters are estimated by LS.

In the Appendix we consider the more general case in which
the elements of xt are arbitrary linear combinations of determin-
istic trends, integrated variables, and stationary variables. In the
Appendix we also allow for estimation methods other than LS.
The asymptotic results given in this section hold for the more
general model and other (consistent) estimation methods.

The following assumption is assumed to hold under the null
hypothesis.

Assumption S. (a) x1,t = x1,t−1 + vt for t = 1,2, . . . , where
x1,0 = Op(1).

(b) {(ut, x2,t, vt) : t ≥ 1} is a stationary strong mixing se-
quence of mean-0 random variables with strong mixing num-
bers that satisfy

∑∞
r=1 α1−2/β(r) < ∞.

(c) Ex2,tut = 0.
(d) supt≥1 E‖(ut, x′

2,t, v′
t)‖β+ε < ∞ for some β > 2 and

ε > 0.
(e) 
2,0 = Ex2,tx′

2,t and �∗ = Ev1v′
1 + ∑∞

k=2 Ev1v′
k +∑∞

k=2 Evkv′
1 are positive definite.

(f ) The distribution function of R1(β0) or P1(β0) is contin-
uous and increasing at its (1 − α)th quantile.

Assumptions S(a) and S(b) imply that the regressors {x1,t :
t ≥ 1} are integrated of order 1 and {(ut, x2,t, vt) : t ≥ 1} is a
stationary asymptotically weakly dependent time series. As-
sumption S(c) specifies that the stationary regressors, x2,t, are
not endogenous. Assumption S(d) is a relatively weak moment
condition. Assumption S(e) guarantees that none of the station-
ary or nonstationary regressors is redundant. Assumption S(f )
holds if the errors have an absolutely continuous component,
which is not very restrictive.

Assumption S(b) assumes that {(x2,t, vt) : t ≥ 1} is a station-
ary sequence. This is not essential for the tests considered
here to have the desired asymptotic null rejection rate. One
could have structural breaks in the {(x2,t, vt) : t ≥ 1} sequence
(or other types of nonstationarity) under the null hypothesis.
(For brevity, we do not prove this here.) Hansen (2000) argued
that it is desirable to allow for structural breaks in the regressor
sequence under the null hypothesis.

4.2 Asymptotic Results

Next we state the asymptotic results that justify the use of the
subsample critical values introduced earlier. Let F̂P,T(x) denote
the empirical df based on {Pj : j = 1, . . . ,T − m + 1}, that is,

F̂P,T(x) = 1

T − m + 1

T−m+1∑

j=1

1(Pj ≤ x). (28)

Let FP(x) denote the df of P1(β0) at x, let qP,1−α denote the
1 − α quantile of P1(β0), and let q̂P,1−α denote the (1 − α)th
sample quantile of {Pj : j = 1, . . . ,T −m+1}, as defined in (13).

Let P∞ be a random variable with the same distribution
as PT+1(β0). Under Assumption S, the distribution of PT+1(β0)

equals that of P1(β0). Also, the distribution of PT+1(β0) does
not depend on T under H0 by stationarity. Define F̂R,T(x),
FR(x), qR,1−α , q̂R,1−α , and R∞ analogously with R in place
of P.

The asymptotic null behavior of the P and R tests is given in
the following theorem.

Theorem 1. Suppose that Assumption S holds. Then, un-
der H0, as T → ∞, we have (a) P →d P∞, (b) F̂P,T(x) →p
FP(x) for all x in a neighborhood of qP,1−α , (c) q̂P,1−α →p
qP,1−α , and (d) Pr(P > q̂P,1−α) → α, and (e) parts (a)–(d) hold
with R in place of P.

Comment. Parts (d) and (e) of Theorem 1 show that the as-
ymptotic null rejection rate of the tests based on P and R is α,
as desired.

Theorem 2, given in the Appendix, establishes the asymptotic
distributions of the P and R test statistics under the alternative
hypothesis H1. Theorem 2 shows that the random critical values
q̂P,1−α and q̂R,1−α have the same asymptotic behavior under H1
as under H0. This is desirable for the power of the tests. The-
orem 2 also shows that P and R do not diverge to infinity as
T → ∞ under H1. Hence P and R do not yield consistent tests.
This is due to the assumption that the number, m, of postbreak-
down observations is fixed and does not go to infinity in the as-
ymptotics. However, if PT+1(β0) is stochastically greater than
P1(β0) under H1, then P is an asymptotically unbiased test, and
likewise for R.
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5. BREAKDOWN AT THE BEGINNING OR IN THE
MIDDLE OF THE SAMPLE

The tests introduced previously for detecting cointegration
breakdown at the end of the sample can be altered to detect
breakdown occurring at the beginning or in the middle of the
sample. For example, one might be interested in determining
the most suitable starting date for a model, or interested in
whether a model behaves differently during a policy regime
shift or during war years than in other years in the sample. Such
periods of potential breakdown are often of relatively short du-
ration, so that asymptotic tests that are based on their length
going to infinity are not appropriate. In such cases, the testing
method introduced earlier is useful because the length, m, of
the time period of potential breakdown is taken to be fixed and
finite in the asymptotics.

We consider testing for cointegration breakdown for the
m observations indexed by t = t0, . . . , t0 + m − 1 when the to-
tal number of observations is T + m. The null and alternative
hypotheses are given by

H0 :

{
yt = x′

tβ0 + ut for all t = 1, . . . ,T + m and
{ut : t ≥ 1} are stationary and ergodic,

H1 :






yt = x′
tβ0 + ut for all t = 1, . . . , t0 − 1, t0 +

m, . . . ,T + m and yt = x′
tβt + ut with βt �= β0

for some t = t0, . . . , t0 + m − 1 and/or the dis-
tribution of {ut0, . . . ,ut0+m−1} differs from that
of error sequences {ut, . . . ,ut+m−s} that do not
overlap with it.

(29)

One can construct tests for these hypotheses by moving the ob-
servations {(yt, xt) : t = t0, . . . , t0 +m−1} to the end of the sam-
ple and moving the observations indexed t = T + 1, . . . ,T + m
up to fill the gap. The observations originally indexed by t =
t0, . . . , t0 +m−1 are subsequently indexed by t = T, . . . ,T +m,
and the tests defined previously can be used to test the hypothe-
ses in (29).

6. MONTE CARLO EXPERIMENT

In this section we describe some Monte Carlo results that
are designed to assess and compare the null rejection rates and
power properties of the P and R tests.

6.1 Experimental Design

We consider linear regression models estimated by LS. For
results under the null hypothesis, the model that we consider is

yt = x′
tβ0 + ut for t = 1, . . . ,T + m, (30)

with β0 = 0. We consider two values of T : 100 and 250. For
the main results, we consider three values of m: 10, 5, and 1. To
show what happens when m is relatively large compared with T ,
we also report some results with m = 25 and 50. In the base
model that we consider, we take

yt = β1,0 + tβ2,0 + x′
1,tβ3,0 + x′

2,tβ4,0 + ut, (31)

where x1,t is a vector of unit root regressors and x2,t is a
vector of stationary mean-0 regressors. (The dimensions of
x1,t and x2,t are two for all cases considered except one; see

later.) The errors, ut; the difference of the unit root regres-
sors, Dx1,t = x1,t − x1,t−1; and the stationary regressors, x2,t,
are all AR(1) processes with the same AR(1) parameter ρ and
the same innovation distribution G. We consider three val-
ues of ρ: 0, .4, and .8. We consider four innovation distribu-
tions: (a) standard normal [N(0,1)], (b) chi-squared with 2 df
(χ2

2 ) recentered and rescaled to have mean 0 and variance 1,
(c) t with 3 df (t3) rescaled to have variance 1, and (d) uniform
(U) on [−√

12/2,
√

12/2], which has mean 0 and variance 1.
The different innovation distributions display standard behavior
[N(0,1)], skewness (χ2

2 ), excess kurtosis (t3), and thin tails (U).
The stationary regressors x2,t are independent of the errors,

the unit root regressors, and each other. The unit root regres-
sors and errors may be correlated with the correlation between
Dx1,t and ut, denoted as ρDx,u. This correlation is achieved by
taking each element of Dxt and ut to have a common compo-
nent.

The errors, the differences of the unit root regressors, and the
stationary regressors are generated as follows. The innovations
to the various AR(1) processes used are

{(ψ∗
t , ξ∗′

t , η∗
t , x∗′

2,t)
′ : t = 1, . . . ,T + m}, (32)

where ψ∗
t , η∗

t ∈ R, ξ∗
t ∈ R

dx1 , x∗
2,t ∈ R

dx2 , and dx1 and dx2 de-
note the dimensions of x1,t and x2,t. The innovations are iid
across the elements of (ψ∗

t , ξ∗′
t , η∗

t , x∗′
2,t)

′ and across t. Each el-
ement of (ψ∗

t , ξ∗′
t , η∗

t , x∗′
2,t)

′ has distribution G for G as before.
The AR(1) processes based on these innovations are

ψt = ρψt−1 + ψ∗
t ,

ξt = ρξt−1 + ξ∗
,t,

(33)
ηt = ρηt−1 + η∗

,t,

x2,t = ρx2,t−1 + x∗
2,t,

for t = 1, . . . ,T + m. The elements of the initial conditions
(ψ0, ξ

′
0, η0, x′

2,0)
′ are iid each with distribution G, but rescaled

to yield a variance stationary AR(1) sequence; for example,
(1 − ρ2)1/2ψ0 has distribution G.

The errors and differences of the unit root regressors are

ut = (1 − ρDx,u)
1/2ψt + ρ

1/2
Dx,uηt,

(34)
Dx1,t = (1 − ρDx,u)

1/2ξt + ρ
1/2
Dx,uηt1dx1

,

where 1dx1
denotes a dx1 -vector of 1’s. As defined, the errors

and regressors have correlation ρDx,u.
The base model that we consider has an intercept, time trend,

two unit root regressors, and two stationary regressors all with
standard normal innovations and no correlation between the
unit root regressors and the error,

Base model:

BC(a) xt = (1, t, x′
1,t, x′

2,t)
′ and x1,t, x2,t ∈ R

2

(35)
BC(b) ρDx,u = 0

BC(c) G = N(0,1).

We consider seven variants of the base model. Models 2–4 dif-
fer from the base model in terms of the distribution of the in-
novations. Models 5 and 6 differ from the base model in that
ρDx,u = .4 and ρDx,u = .8. Model 7 is the same as the base
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model except there are no stationary regressors and there are
four unit root regressors. Model 8 is the same as the base model
except with no time trend. Models 2–7 are summarized as fol-
lows:

Model 2 (χ2
2 distribution):

BC(a) and BC(b) hold and G = χ2
2 ,

Model 3 (t3 distribution):
BC(a) and BC(b) hold and G = t3,

Model 4 (U distribution):
BC(a) and BC(b) hold and G = U,

Model 5 (ρDx,u = .4):
BC(a) and BC(c) hold and ρDx,u = .4,

Model 6 (ρDx,u = .8):
BC(a) and BC(c) hold and ρDx,u = .8,

Model 7 (no stationary regressors):
BC(b) and BC(c) hold, xt = (1, t, x′

1,t)
′ and x1,t ∈ R

4,
Model 8 (no time trend):

BC(b) and BC(c) hold, xt = (1, x′
1,t, x′

2,t)
′, and

x1,t, x2,t ∈ R
2.

(36)

For each of the eight models, the main results are based on
three values of ρ, two values of T , and three values of m (10, 5,
and 1).

For each of the eight models, we report the actual rejection
rates of the nominal 5% P and R tests. In addition, we report the
size-corrected power of the tests for two types of alternatives to
the null hypothesis. The first type of alternative is where cointe-
gration breaks down at time t = T because the errors are a unit
root process for t = T + 1 to t = T + m. These are referred to
as unit root alternatives. In this case the model is the same as
under the null, except that for t = T + 1, . . . ,T + m, the error is
given by

ut = (1 − ρDx,u)
1/2ψt + ρDx,uηt

+ √
2

t−T∑

s=1

[
(1 − ρDx,u)

1/2ψ̃s + ρDx,uη̃s
]
, (37)

where {(ψ̃s, η̃s) : s = 1, . . . ,m} has the same distribution as
{(ψs, ηs) : s = 1, . . . ,m} and is independent of all other random
variables in the model. The multiplicative factor

√
2 is chosen

so that the rejection rates of the tests are in an informative range.
One can increase or decrease power to any desired level by al-
tering the multiplicative factor.

The second type of alternative considered is a parameter shift
alternative. In this case the model is a cointegrating model for
all t = 1, . . . ,T + m, but the cointegrating vector is different
before and after t = T . For this alternative, the true distribu-
tion of the data is the same as under the null, except that for
t = T + 1, . . . ,T + m, the true parameter β0 is proportional to
a vector of 1’s with ‖β0‖ = .25. The value .25 is chosen so that
the rejection rates of the tests are in an informative range. One
can increase or decrease power to any desired level by alter-
ing ‖β0‖.

The power results that we report are for size-corrected tests,
because we do not want to confound power differences with
size distortions. Size correction is not as straightforward with
the tests considered here as it is in some other situations, be-
cause the tests’ critical values are sample quantiles, not con-
stants. We determine by simulation the significance levels that

yield the finite-sample null rejection rates to be as close to the
desired test size, .05, as possible for each innovation distrib-
ution and each T , m, ρ, and ρDx,u value when the observa-
tions are generated under the null. (The rejection rates cannot
be made exactly equal to .05, because the sample quantile func-
tions are not continuous; but the differences are fairly small.)
These significance levels are used when computing the size-
corrected power of the nominal .05 tests. Note that this method
of size correction is equivalent to the standard method of ad-
justing a test’s critical value for any test that has a nonrandom
critical value.

All of the results reported are based on 40,000 simulation
repetitions. This yields simulation standard errors of (approx-
imately) .001 for the simulated null rejection rates of nom-
inal .05 tests and simulated standard errors in the interval
(.0020, .0025) for the simulated alternative hypothesis rejection
rates when these rejection rates are in the interval (.20, .80).

6.2 Monte Carlo Results

6.2.1 Null Rejection Rates. Table 1 presents the null re-
jection rate results for nominal .05 tests with m = 10, 5, and 1.
The first two rows of Table 1 give the average rejection rate
and the range of the rejection rates over all eight models and
nine (m, ρ) values for each of the two tests. The remaining rows
in the table give the average and range of the rejection rates over
the eight models for each (m, ρ) value and each test.

In the discussion paper version of this article (Andrews and
Kim 2003), tables A-I and A-II give the rejection rates for each
of the 72 model/(m, ρ) combinations. Some of the results stated
herein are based on these more detailed tables. When m = 1,
P = R and separate results are not given for P and R.

The main results are as follows:

1. The P test has the best performance under the null overall.
Its average rejection rate is close to .05 when T = 100
or 250. The deviation of the rejection rate from .05 is at
most .014 when T = 250 over the wide range of models
considered. The R test underrejects in many cases. For
example, when ρ = 0 or .4 and m = 10 or 5, its average
rejection rates over the eight models are between .032 and
.038 when T = 100.

2. Not surprisingly, both tests perform noticeably better in
terms of null rejection rate when T = 250 than when
T = 100. In particular, the range of rejection rates for each
test shrinks considerably when T is increased.

3. The null rejection rates of the P and R tests are not very
sensitive to the values of ρ and m.

4. For the P test, the rejection rates are higher for the
χ2

2 and t3 distributions than for the normal and lower for
the uniform. For the R test, there is no clear pattern of
variation of the rejection rates with the type of distribu-
tion.

5. For the P and R tests, the rejection rates for ρDx,u = 0
and .4 are quite similar. The rejection rates tend to be
somewhat higher for ρDx,u = .8, but overall, the sensitiv-
ity to ρDx,u is fairly low.

6. For the P and R tests, sensitivity also is low with respect
to the number of stationary regressors versus the number
of unit root regressors; that is, their rejection rates do not
change much between the base model and the no station-
ary regressors model.
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Table 1. Average and Range of Null Rejection Rates Over Eight Models for Nominal .05 Tests: m = 10, 5, and 1

T = 100 T = 250

m ρ Test Average Range Average Range

Average over all nine P .052 [.028, .081] .051 [.040, .064]
(m, ρ) values R .046 [.020, .077] .047 [.032, .065]

10 0 P .064 [.046, .081] .057 [.049, .064]
R .034 [.020, .045] .041 [.032, .047]

10 .4 P .056 [.041, .075] .051 [.042, .063]
R .038 [.026, .051] .042 [.033, .050]

10 .8 P .054 [.044, .066] .048 [.040, .057]
R .053 [.041, .067] .050 [.044, .059]

5 0 P .045 [.034, .051] .049 [.043, .054]
R .032 [.024, .038] .042 [.036, .047]

5 .4 P .037 [.028, .046] .046 [.040, .052]
R .034 [.026, .042] .044 [.039, .049]

5 .8 P .047 [.039, .057] .052 [.047, .060]
R .051 [.043, .061] .053 [.051, .057]

1 0 P (= R) .044 [.035, .048] .045 [.042, .049]
1 .4 P (= R) .050 [.044, .053] .048 [.047, .049]
1 .8 P (= R) .074 [.072, .077] .062 [.060, .065]

To conclude, we find that the P and R tests have similar
null rejection rate performance. The R test tends to underreject
the null too often compared with the P test. Hence the P test
has the best overall properties under the null. Considering the
very wide range of models and (m, ρ) values considered, which
range from t3 distributions to ρDx,u = .8, the null rejection rate
performance of the P test seems quite good. This is especially
true for T = 250.

6.2.2 Power. Tables 2 and 3 provide the size-corrected
power results for the unit root and parameter shift alternatives.
Averages of rejection rates are reported for the same models
and (m, ρ) values as in Table 1. In the discussion paper ver-
sion of this article (Andrews and Kim 2003), tables A-III–A-VI
give the rejection rates for each of the 72 model/(m, ρ) combi-
nations.

The main findings are as follows:

1. The simulation results indicate that the P test has consid-
erable power against unit root alternatives, even though it

Table 2. Unit Root Alternatives: Average and Range of Nonnull
Rejection Rates Over Eight Models for Size-Corrected

.05 Tests for m = 10, 5, and 1

T = 100 T = 250

m ρ Test Average Range Average Range

Average over all nine P .58 [.17, .95] .61 [.16, .97]
(m, ρ) values R .56 [.17, .84] .59 [.16, .86]

10 0 P .82 [.57, .95] .87 [.58, .97]
R .80 [.75, .84] .85 [.80. .86]

10 .4 P .87 [.66, .94] .91 [.77, .96]
R .78 [.73, .82] .84 [.80, .85]

10 .8 P .85 [.73, .89] .89 [.80, .92]
R .75 [.69, .78] .81 [.76, .83]

5 0 P .62 [.37, .81] .69 [.47, .85]
R .64 [.56, .69] .69 [.62, .72]

5 .4 P .67 [.46, .79] .73 [.55, .82]
R .63 [.56, .66] .67 [.59, .70]

5 .8 P .66 [.54, .73] .68 [.58, .76]
R .62 [.54, .67] .67 [.59, .72]

1 0 P (= R) .23 [.17, .33] .25 [.16, .36]
1 .4 P (= R) .23 [.18, .30] .24 [.18, .32]
1 .8 P (= R) .25 [.19, .29] .24 [.19, .28]

is designed for parameter shift alternatives. Likewise, the
R test has considerable power against parameter shift al-
ternatives even though it is designed for unit root alterna-
tives. In fact, paradoxically, the P test tends to outperform
the R test for unit root alternatives and vice versa with pa-
rameter shift alternatives; but the differences are not large.

2. For both tests, power increases sharply with m. This oc-
curs because m determines the amount of information
available regarding the postbreak time period.

3. For both tests, power increases by a small amount
(roughly .03 on average) as T increases from 100 to 250
for unit root alternatives. Power increases by a substantial
amount (roughly .15 on average) as T increases from 100
to 250 for parameter shift alternatives.

4. The power of the tests is not very sensitive to changes
in ρDx,u or to shifts from the base model to the no time
trend model. The latter result is somewhat surprising. The
P tests have lower power for the no stationary regressors

Table 3. Parameter Shift Alternatives: Average and Range of Nonnull
Rejection Rates Over Eight Models for Size-Corrected

.05 Tests for m = 10, 5, and 1

T = 100 T = 250

m ρ Test Average Range Average Range

Average over all nine P .63 [.34, .84] .80 [.57, .93]
(m, ρ) values R .67 [.43, .84] .82 [.61, .90]

10 0 P .50 [.34, .65] .75 [.57, .86]
R .65 [.55, .72] .84 [.83, .86]

10 .4 P .61 [.47, .74] .83 [.76, .90]
R .68 [.61, .73] .85 [.83, .88]

10 .8 P .74 [.64, .82] .89 [.85, .93]
R .69 [.54, .77] .88 [.86, .90]

5 0 P .54 [.37, .67] .75 [.65, .82]
R .65 [.61, 70] .80 [.79, .84]

5 .4 P .64 [.52, .74] .81 [.76, .87]
R .68 [.63, .73] .83 [.81, .86]

5 .8 P .77 [.73, .82] .88 [.86, .91]
R .76 [.73, .81] .87 [.86, .90]

1 0 P (= R) .46 [.43, .56] .65 [.61, .71]
1 .4 P (= R) .62 [.59, .69] .76 [.74, .80]
1 .8 P (= R) .80 [.78, .84] .87 [.86, .90]
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model compared with the base model for parameter shift
alternatives.

5. The power for the P test is more sensitive to the distribu-
tion compared with the power for the R test. For the P test,
the power is lower for the t3 and χ2

2 distributions than for
the normal and higher for the uniform than for the normal.

Overall, the power of the P and R tests is fairly comparable.
The P test has somewhat higher power than the R test against
unit root alternatives, but this situation is reversed for parameter
shift alternatives. The R test tends to have power that is less
variable across changes in the model, such as changes in the
distribution, than the P tests. Consequently, the R test is deemed
to have the better overall power properties than the P test, but
by only a small margin.

Combining the size and power results, we find that the choice
of the best test is not clear-cut. The P test has somewhat better
size properties because the R test is somewhat under-sized in a
number of cases. On the other hand, the R test has power that
is less variable across different distributions than the P test. On
balance, the P test seems to be preferable because of its size
properties. Consequently, we recommend using the P test.

6.2.3 Null Rejection Rates: Large m. Table 4 presents
null rejection rate results for nominal .05 tests with m = 25
and 50 (with the other parameters as before). The point of Ta-
ble 4 is to show what happens when m is relatively large com-
pared with T . The rows in the table give the average and range
of the null rejection rates over the eight models for each (m, ρ)

value and each test.
The main findings are as follows:

1. The P test tends to overreject the null when m is large
relative to T , whereas the R test tends to underreject.
The extent of overrejection and underrejection increases
with m/T . Thus the worst case is when m = 50 and
T = 100, which yields m/T = .5; the best case is when
m = 25 and T = 250, which yields m/T = .1; and the two
intermediate cases are when m = 25 and T = 100, which
yields m/T = .25, and m = 50 and T = 250, which yields
m/T = .2. In the best case, both the P and R tests perform
reasonably well. In the intermediate cases, the P test can-
not be recommended because the magnitude of its over-
rejection is too large, but the R test can be applied. In the
worst case, neither test can be recommended, because the

Table 4. Average and Range of Null Rejection Rates Over Eight
Models for Nominal .05 Tests: Large m

T = 100 T = 250

m ρ Test Average Range Average Range

25 0 P .110 [.070, .156] .073 [.056, .088]
R .022 [.006, .048] .032 [.020, .045]

25 .4 P .081 [.010, .137] .064 [.053, .082]
R .028 [.009, .057] .035 [.023, .048]

25 .8 P .076 [.056, .097] .052 [.044, .068]
R .046 [.022, .082] .042 [.030, .055]

50 0 P .175 [.115, .254] .112 [.087, .143]
R .012 [.001, .043] .029 [.012, .055]

50 .4 P .139 [.080, .211] .101 [.081, .138]
R .016 [.002, .054] .033 [.015, .060]

50 .8 P .106 [.054, .144] .079 [.062, .107]
R .029 [.004, .076] .044 [.024, .071]

overrejection of the P tests is too large and the underre-
jection of the R test is sufficiently large that the power of
the test is likely to be quite low.

2. The null rejection rates of both tests improve as ρ in-
creases from 0 to .4 to .8. Presumably this occurs because
increased correlation increases the variability of the test
statistics with known true parameter values more than it
increases the variability of the actual test statistics that is
due to parameter estimation.

3. For the P and R tests, the rejection rates are higher for the
χ2

2 and t3 distributions than for the normal and uniform
distributions. Given that the P test overrejects the null for
all distributions, this means that the P test performs bet-
ter for the normal and uniform distributions than for the
χ2

2 and t3 distributions. The opposite is true for the R test.
4. The sensitivity of both tests to ρDx,u is low.
5. Compared with the base model, the P test performs better

in the model with no stationary regressors and worse in
the model with no time trend. The opposite is true for the
R test.

To conclude, it is evident that the null rejection rate perfor-
mance of the P and R tests deteriorates as m/T increases. The
R test performs well for m/T ratios of ≤.1 and adequately for
ratios as high as .2 or .25. The P test works well for values
as high as .1, but less than adequately for ratios of .2 or .25.
Of course, when using these results, one should take into ac-
count the fact that they are based on the specific models used in
the simulation experiment and may not be applicable generally.
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APPENDIX A: GENERAL ASYMPTOTIC RESULTS

Here we provide general results concerning the asymptotic
properties of the P and R tests under H0 and H1. Theorem 1 is
a special case of the results provided here.

A.1 Assumptions

To simplify the theoretical analysis, we consider a transfor-
mation of the regressor vector, xt, that separates the unit root
and deterministic components of xt from its stationary compo-
nents. This transformation need not be known by the user of the
tests. It is used only in the theoretical analysis of the tests. Let

zt = H′xt =
(

z1,t

z2,t

)
,

γ0 = H−1β0 =
(

γ1,0
γ2,0

)
,

(A.1)

γt = H−1βt =
(

γ1,t

γ2,t

)
, and

γ̂2( j) = H−1β̂2( j) =
(

γ̂1,2( j)

γ̂2,2( j)

)
,
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where H is a nonrandom nonsingular k × k matrix; z�,t, γ�,0,

γ�,t, γ̂�,2( j) ∈ R
k� for � = 1,2; and k = k1 + k2. We assume that

H is chosen such that the transformed regressor vector z1,t con-
tains only unit root and/or deterministic variables and the trans-
formed regressor vector z2,t contains only stationary mean-0
random variables.

The model can be rewritten as

yt =
{

z′
tγ0 + ut for t = 1, . . . ,T

z′
tγt + ut for t = T + 1, . . . ,T + m.

(A.2)

Let wt denote the vector of errors and stationary regressors,

wt =
(

ut

z2,t

)
. (A.3)

To determine the behavior of the random critical values defined
earlier under both H0 and H1, it is convenient to consider a
sequence of random variables {w0,t : t ≥ 1} that are stationary
and ergodic under both H0 and H1. Under H0, wt equals w0,t

for t = 1, . . . ,T + m. Under H1, wt = w0,t for t = 1, . . . ,T and
wt = wT,t for t = T + 1, . . . ,T + m, where {wT,t : t = T + 1,

. . . ,T + m} are some random variables whose joint distribution
may differ from that of {w0,t : t = T +1, . . . ,T +m}. We assume
that the distribution under H1 of {wT,t : t = T + 1, . . . ,T + m}
is independent of T . That is, we consider fixed, not local, alter-
natives. Note that the variables {(yt,wt, z1,t) : t = 1, . . . ,T + m}
are from a triangular array under H1, rather than a sequence,
because the breakdown point T changes as T → ∞.

We make the following assumptions.

Assumption 1. {w0,t : t ≥ 1} are mean 0, stationary, and er-
godic random vectors under H0 and H1. The distribution of
{z1,t : t = 1, . . . ,T} is the same under H0 and H1. Under H1, the
distribution of {wT,t : t = T + 1, . . . ,T + m} does not depend
on T .

Assumption 2. E|ut| < ∞, E‖utz2,t‖ < ∞, and E‖z2,t‖2 <

∞ for t ≤ T .

Assumption 3. maxt≤T+m ‖B−1
T z1,t‖ = Op(1) for some non-

random positive-definite diagonal k1 × k1 matrices {BT : T ≥ 1}
under H0 and H1.

Assumption 4. ‖BT(γ̂1,1:(T+m) − γ1,0)‖ →p 0, ‖γ̂2,1:(T+m) −
γ2,0‖ →p 0, maxj=1,...,T−m+1 ‖BT(γ̂1,2( j) − γ1,0)‖ →p 0, and
maxj=1,...,T−m+1 ‖γ̂2,2( j) − γ2,0‖ →p 0 with m fixed, under
H0 and H1, where BT is as in Assumption 3.

Assumption 5. The distribution function of R1(β0) or P1(β0)

is continuous and increasing at its 1 − α quantile.

By the definition of wt given earlier and the second condition
of Assumption 1, the joint distribution of all of the variables for
time periods t = 1, . . . ,T is the same under H0 and H1. This im-
plies that Assumption 5 and the first set of moment conditions
in Assumption 2 hold under both H0 and H1.

Assumption 1 is relatively weak in terms of the restriction
that it puts on the temporal dependence of the errors and station-
ary regressors; for example, ergodicity allows for long memory.
Assumption 2 imposes mild moment conditions on the errors
and stationary regressors; for example, the errors do not need to
have a finite variance.

Assumption 3 requires that the (transformed) unit root and
deterministic regressors, z1,t , be properly normalized. The di-
agonal element of BT that corresponds to a unit root variable
in z1,t with mean 0 and “asymptotically weakly dependent” in-
novations is T1/2. Alternatively, one could take this element
of BT to be (T + m)1/2. The choices T1/2 and (T + m)1/2

are asymptotically equivalent, because m does not depend
on T . We choose T1/2 for notational simplicity. Examples
of “asymptotically weakly dependent” random variables in-
clude strong-mixing random variables, linear processes with
absolutely summable covariances, and near-epoch–dependent
(NED) processes. The diagonal element is T1/2 in this case
because T−1/2 times a partial sum of mean 0 asymptotically
weakly dependent random variables converges weakly to a
scaled Brownian motion by a functional central limit theorem
(FCLT) under suitable moment conditions. There are numerous
results in the literature that provide primitive sufficient condi-
tions for this to hold; see Section A.2. Given weak convergence
of the partial sum of the innovations, the continuous mapping
theorem (CMT) implies that the condition in Assumption 3
holds for a unit root element of z1,t .

The diagonal element of BT that corresponds to a constant
in z1,t is just 1. Thus the condition of Assumption 3 holds triv-
ially for a constant term in z1,t. The diagonal element of BT
that corresponds to a linear time trend, t, in z1,t is T . Because
maxt≤T+m(t/T) = 1+m/T , the condition in Assumption 3 also
holds trivially for a linear time trend.

As an example of a typical BT matrix, suppose that z1,t =
(1, t, r′

t)
′, where rt is a p vector of unit root variables with

mean 0 asymptotically weakly dependent innovations. Then we
have

BT =



1 0 0
0 T 0
0 0 T1/2Ip



 . (A.4)

Assumption 3 also allows for unit root processes with sta-
tionary long-memory or fractional difference innovations. The
diagonal element of BT that corresponds to a unit root process
with stationary innovations that have long-memory or fractional
difference parameter d ∈ (−1/2,1/2) is (1/2)+d. This follows
by results for the weak convergence of the partial sums of such
processes (see, e.g., Sowell 1990, thms. 1 and 2).

Assumption 4 concerns the behavior of the transformed
estimators γ̂1:(T+m) and γ̂2( j). The assumptions are not very
restrictive. For example, the estimator of the parameters on
stationary regressors just needs to be consistent and most
such estimators are actually T1/2-consistent. The estimator
of the parameters on unit root regressors (based on mean-0
asymptotically weakly dependent innovations) just needs to
be T1/2-consistent, and most such estimators are actually
T-consistent. Similarly, the conditions on deterministic regres-
sors are weaker than what most estimators satisfy.

In the following section we provide sufficient conditions for
Assumption 4 when the LS estimator is used. Assumption 5
holds if the errors have an absolutely continuous component,
which is not very restrictive.

A.2 Least Squares Estimation

In this section we give sufficient conditions for Assumption 4
for the case where the estimator used is the LS estimator defined
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in (7). The conditions given are also sufficient for Assumptions
2 and 3.

We consider weak convergence (denoted ⇒) of a stochas-
tic process, νT(·), defined on [0,1] to a limit process that has
bounded continuous sample paths a.s. The precise definition of
“weak convergence” requires specification of a pseudometric
on the space of functions on [0,1]. We use the uniform metric,
as done by Pollard (1984). Let [a] denote the integer part of a.

The following assumption, combined with Assumption 1, is
sufficient for Assumptions 2–4 when the estimator used in the
test statistics is the LS estimator.

Assumption LS. (a) Ez2,tut = 0, E|ut|1+δ < ∞, E‖ut ×
z2,t‖1+δ < ∞, and E‖z2,t‖2+δ < ∞ for some δ > 0 for t ≤ T .

(b) νT(·) ⇒ ν(·) as T → ∞, where νT(r) = B−1
T z1,[Tr] for

r ∈ [0,1], {BT : T ≥ 1} are nonrandom positive-definite diago-
nal k1 × k1 matrices and ν(·) is some stochastic process that
has bounded and continuous sample paths a.s.

(c) T−1 ∑T
t=1 B−1

T z1,t(ut, z′
2,t) = op(1).

(d) maxt=T+1,...,T+m ‖B−1
T z1,t‖ = Op(1) under H0 and H1.

(e)
∫ 1

0 ν(r)ν(r)′ dr and 
2,0 = Ez2,tz′
2,t are positive defi-

nite a.s.

All parts of Assumption LS except (d) involve variables in-
dexed by t ≤ T . These variables have the same distribution un-
der H0 and H1 by the definition of {wt : t ≤ T} given earlier and
Assumption 1. Consequently, the conditions in Assumption LS
hold under both H0 and H1.

The first condition of Assumption LS(a) specifies that the sta-
tionary regressors, z2,t , are not endogenous. This is needed for
the estimators of γ2,0 to be consistent. The remaining condi-
tions of Assumption LS(a) are a slight strengthening of the mo-
ment conditions of Assumption 2, used to obtain uniformity of
γ̂2( j) − γ0 →p 0 over j = 1, . . . ,T + m − 1.

Assumption LS(b) holds under a variety of different condi-
tions stated in the literature. We give two examples here, one
using strong mixing and the other using linear process condi-
tions.

Assumption LS(c) is a weaker condition than is often sat-
isfied under common conditions in the literature. Typically,
the random variable in Assumption LS(c) multiplied by T1/2

converges in distribution to some random variable, and hence
Assumption LS(c) holds with Op(T−1/2) in place of op(1).
Two examples of sufficient conditions for Assumption LS(c)
are given later.

Assumption LS(d) is not very restrictive, because the maxi-
mum is over a finite number, m, of terms. Assumption LS(d) is
automatically satisfied if (a) the unit root and deterministic re-
gressors, z1,t, come from a sequence rather than a triangular
array and (b) B−1

T BT+m = O(1). The reason that conditions
(a) and (b) are sufficient for Assumption LS(d) is that As-
sumption LS(b) and the CMT imply that supr∈[0,1] ‖νT(r)‖ →d

supr∈[0,1] ‖ν(r)‖ < ∞ a.s. The left side equals maxt≤T ‖B−1
T ×

z1,t‖. If z1,t comes from a sequence, then this implies that
maxt≤T+m ‖B−1

T+mz1,t‖ = Op(1). Combined with condition (b),
this yields Assumption LS(d). Condition (a) is innocuous un-
der H0. Under H1, it might be restrictive, because one might
want to allow the behavior of the unit root regressors to change

after the breakdown point. If so, then Assumption LS(d) speci-
fies the extent to which the unit root regressors can exhibit dif-
ferent behavior under H1 after the breakpoint. Condition (b)
on BT is satisfied in all cases of interest.

The following conditions plus Assumption 1 are sufficient
for Assumptions LS(b)–(d). Under H0 and H1:

(a) z1,t contains a vector of polynomials in t with non-
negative exponents and/or a unit root random vec-
tor z∗

1,t that satisfies z∗
1,t = z∗

1,t−1 + vt for t = 1,2, . . . ,

where z∗
1,0 = Op(1).

(b) supt≥1 E‖(w′
0,t, v′

t)‖β+ε < ∞ for some β > 2 and
ε > 0.
(c) {(w′

0,t, v′
t)

′ : t ≥ 1} is a weakly stationary strong
mixing sequence of mean-0 random variables with
strong mixing numbers that satisfy

∑∞
r=1α

1−2/β(r) <

∞.

(A.5)

In this case, any element of ν(r) [defined in Assumption LS(b)]
that corresponds to a polynomial in t, say ta for a ≥ 0, is ra for
r ∈ [0,1]. In addition, the subvector of ν(r) that corresponds
to unit root elements of νT(r) is a vector Brownian motion,
{B(r) : r ∈ [0,1]}, with covariance matrix

�∗ = Ev1v′
1 +

∞∑

k=2

Ev1v′
k +

∞∑

k=2

Evkv′
1 (A.6)

for vt defined in (A.5).
Sufficiency of (A.5) for Assumptions LS(b)–(d) follows from

lemma 2.2 and theorem 2.6 of Phillips (1988b) when z1,t con-
tains just a unit root random vector. (The diagonal elements
of BT are all T1/2 in this case.) When z1,t contains a poly-
nomial, say ta for a ≥ 0, we take the corresponding element
of BT to be Ta, and the polynomial element of νT(r) converges
to the nonrandom polynomial ra uniformly over r ∈ [0,1].
Hence Assumptions LS(b) and (d) hold when polynomials are
present. The elements of T−1 ∑T

t=1 B−1
T z1,t(ut, z′

2,t) that corre-
spond to polynomials in z1,t are op(1) because after normal-
ization by B−1

T , the polynomials are bounded by 1, and hence
a weak law of large numbers for triangular arrays of mean-0
L2-bounded strong mixing random variables gives the desired
result (see Andrews 1988, thm. 2 and remark 4 of sec. 3).

The following conditions plus Assumption 1 are an alter-
native set of sufficient conditions for Assumptions LS(b)–(d).
Under H0 and H1:

(a) condition (a) of (A.5) holds.
(b) (w′

0,t, v′
t)

′ = ∑∞
j=−∞ Cjεt−j and {εt : t ≥ 1} are iid

with mean 0 and variance � > 0.
(c)

∑∞
j=−∞ ‖Cj‖∗ < ∞ and

∑∞
k=1(‖

∑∞
j=k Cj‖∗ +

‖∑∞
j=k C−j‖∗) < ∞, where ‖Cj‖∗ = maxk |∑� Cj,k,�|

and Cj,k,� = [Cj]k,l.

(A.7)

The limit random vector ν(r) that arises in Assumption LS(b)
is the same in this case as that defined in the paragraph contain-
ing (A.5). Sufficiency of the conditions in (A.7) follows from
the theorem and its proof given by Phillips (1988a) when z1,t

contains just a unit root vector. The extension to the case where
z1,t may also contain polynomials is as before.

Assumption LS(e) is standard in the literature. It rules out
the case in which one or more regressors is redundant. This
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assumption is not critical because the test statistics depend on
residuals, which depend on the column space spanned by the
regressors, not on the regressors themselves. We use this condi-
tion because it is not very restrictive, and its elimination would
complicate the results and the proofs.

Lemma A.1. Assumptions 1 and LS imply that Assump-
tions 2–4 hold.

Comment. Analogs of Lemma A.1 could be established for
other estimators, such as fully modified, ML, and various
other asymptotically efficient estimators mentioned earlier. For
brevity, we do not do this here.

A.3 Asymptotic Results

We now state the asymptotic results that justify using the sub-
sample critical values introduced earlier. Define F̂P,T(x), FP(x),
qP,1−α , q̂P,1−α , and P∞ as in Section 4.2 (and analogously
with R in place of P). Under Assumptions 1–5 and H0, the dis-
tribution of PT+1(β0) equals that of P1(β0). Also, the distribu-
tion of PT+1(β0) does not depend on T under either H0 or H1.
Under H0, this holds by stationarity. Under H1, this holds be-
cause the distribution of {wT,t : t = T +1, . . . ,T +m} is assumed
to be independent of T , which is appropriate for fixed alterna-
tives.

The main theoretical result of the article is the following.

Theorem 2. Suppose that Assumptions 1–5 hold. Then, as
T → ∞, (a) P →d P∞ under H0 and H1, (b) F̂P,T(x) →p
FP(x) for all x in a neighborhood of qP,1−α under H0 and H1,
(c) q̂P,1−α →p qP,1−α under H0 and H1, (d) Pr(P > q̂P,1−α) →
α under H0, and (e) parts (a)–(d) hold with R in place of P.

Comments. 1. The asymptotic distribution of P under H0
and H1 is given in part (a) of Theorem 2.

2. Part (c) of Theorem 2 shows that the random critical
value q̂P,1−α has the same asymptotic behavior under H1 as
under H0. This is desirable for the power of the test.

3. Part (d) of Theorem 2 shows that the asymptotic null re-
jection rate of the test is α, as desired.

4. Part (a) shows that P does not diverge to infinity as
T → ∞ under H1. Hence P is not a consistent test. This is due
to the assumption that the number, m, of postbreakdown obser-
vations is fixed and does not go to infinity in the asymptotics.
However, if PT+1(β0) is stochastically greater than P1(β0) un-
der H1, then P is an asymptotically unbiased test.

5. Parts (c) and (d) of Theorem 2 follow easily from part (b).
The idea of the proof of part (b) is to show that (a) the difference
between F̂P,T(x) and a smoothed version of it, say F̂P,T(x,hT),
converges in probability to 0, where hT indexes the amount
of smoothing and hT → 0 as T → ∞; (b) the difference be-
tween F̂P,T(x,hT) and an analogous df with β̂2( j) replaced by
β0 converges in probability to 0; (c) the difference between the
latter and the empirical df of {Pj(β0) : j = 1, . . . ,T − m + 1)}
converges in probability to 0 as T → ∞; and (d) the differ-
ence between the latter and its expectation, FP(x), is asymp-
totically negligible. The reason for considering a smoothed
version of F̂P,T(x) is that it is a smooth function of Pj, and
hence result (b) can be established by taking a mean-value
expansion about Pj(β0). Result (d) holds by the ergodic the-
orem because {Pj(β0) : j = 1, . . . ,T − m + 1)} is a finite sub-

set of stationary and ergodic random variables using Assump-
tion 1.

APPENDIX B: PROOFS

Proof of Theorem 1

Theorem 1 is a special case of Theorem 2 because As-
sumption S implies that Assumption 1, assumptions (a)–(c)
of (A.5), Assumptions LS(a) and LS(e), and Assumption 5
hold with z1,t = (1, t, x′

1,t)
′, z2,t = x2,t, H = Ik, and BT =

diag{1,T,T1/2, . . . ,T1/2}, which in turn implies that Assump-
tions 1–5 hold by Lemma A.1 and (A.5). Assumption 1 is
implied by Assumption S(b). Assumptions (a)–(c) of (A.5)
are implied by Assumptions S(a), S(d), and S(b). Assump-
tion LS(a) is implied by Assumptions S(c) and S(d). Assump-
tion LS(e) is implied by Assumptions S(a), S(b), S(d), and S(e),
with ν(r) being a vector Brownian motion with variance ma-
trix �∗. Assumption 5 is implied by Assumption S(f ).

Proof of Theorem 2

The proof is carried out using the transformed parameter es-
timators γ̂1:T , and so on and transformed regressors zt, rather
than the estimators β̂1:T , and so on and regressors xt using the
fact that z′

tγ̂1:T = x′
tβ̂1:T . Hence for notational simplicity, but

with some abuse of notation, in the proof we let

Pj(γ,�) = (
Yj:( j+m−1) − Zj:( j+m−1)γ

)′

× �
(
Yj:( j+m−1)−Zj:( j+m−1)γ

)
and (B.1)

Pj(γ ) = Pj(γ, Im), where Zr:s = (zr, . . . , zs)
′.

Similarly, in the proof we take F̂P,T(x) and FP(x) to be defined
with Pj(β̂2( j)) and Pj(β0) replaced by Pj(γ̂2( j)) and Pj(γ0).

We start by bounding the difference Pj(γ̂ ) − Pj(γ0), where
γ̂ denotes γ̂1:(T+m) or γ̂2( j). For ε > 0, define the event L1,T(ε)

by

L1,T(ε) = {∥∥BT(γ̂1,1:(T+m) − γ1,0)
∥∥≤ ε,

∥∥γ̂2,1:(T+m) − γ2,0
∥∥≤ ε,

∥∥BT
(
γ̂1,2( j) − γ1,0

)∥∥≤ ε,
∥∥γ̂2,2( j) − γ2,0

∥∥≤ ε,

∀ j = 1, . . . ,T − m + 1
}
. (B.2)

For c > 0, define the event L2,T(c) by

L2,T(c) =
{

max
t≤T+m

‖B−1
T z1,t‖ ≤ c

}
. (B.3)

By Assumption 4, there exists a sequence of positive constants
{εT : T ≥ 1} such that εT → 0 and Pr(L1,T(εT)) → 1 as T → ∞.
Let {cT : T ≥ 1} be any sequence of constants such that cT → ∞
and cTεT → 0 as T → ∞ (e.g., cT = ε

−1/2
T ). By Assumption 3,

Pr(L2,T(cT)) → 1 as T → ∞. Let

LT = L1,T(εT) ∩ L2,T(cT). (B.4)

Then we have

Pr(LT) → 1 and Pr(LT) → 0 as T → ∞, (B.5)

where LT denotes the complement of LT .
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Now, for γ̂ = (γ̂ ′
1, γ̂

′
2)

′ equal to γ̂1:(T+m) or γ̂2( j) and for j =
1, . . . ,T + 1, we have, on the set LT ,

|Pj(γ̂ ) − Pj(γ0)|

=
∣∣∣∣∣−2

j+m−1∑

t=j

utz
′
t(γ̂ − γ0) +

j+m−1∑

t=j

(z′
t(γ̂ − γ0))

2

∣∣∣∣∣

≤ 2
j+m−1∑

t=j

|ut| max
s≤T+m

‖B−1
T z1,s‖ · ‖BT(γ̂1 − γ0)‖

+ 2
j+m−1∑

t=j

‖utz2,t‖ · ‖γ̂2 − γ0‖

+
j+m−1∑

t=j

(
max

s≤T+m
‖B−1

T z1,s‖ · ‖BT(γ̂1 − γ0)‖

+ ‖z2,t‖ · ‖γ̂2 − γ0‖
)2

≤ 2
j+m−1∑

t=j

|ut|cTεT + 2
j+m−1∑

t=j

‖utz2,t‖εT

+
j+m−1∑

t=j

(cTεT + ‖z2,t‖εT)2

= gj(εT , cT), (B.6)

where the last equality defines gj(εT , cT). Note that gj(εT , cT)

is identically distributed for j = 1, . . . ,T − m + 1 under
H0 and H1, because wt = w0,t for t = 1, . . . ,T is stationary.
Also note that gT+1(ε, c) has distribution independent of T
if ε and c do not depend on T , because the distribution of
{wt : t = T + 1, . . . ,T + m} does not depend on T by Assump-
tion 1.

We now prove part (a). Let x ∈ R be a continuity point of the
df of PT+1(γ0). We have

Pr
(
PT+1

(
γ̂1:(T+m)

)≤ x
)

= Pr
({

PT+1
(
γ̂1:(T+m)

)≤ x
}∩ LT

)

+ Pr
({

PT+1
(
γ̂1:(T+m)

)≤ x
}∩ LT

)

≤ Pr
({PT+1(γ0) ≤ x + gj(εT , cT)} ∩ LT

)+ o(1)

= Pr(PT+1(γ0) ≤ x) + o(1)

= Pr(P∞ ≤ x) + o(1), (B.7)

where the inequality holds by (B.5) and (B.6), the second equal-
ity holds because gj(ε, c) → 0 a.s. as (ε, cε) → (0,0), PT+1(γ0)

and gj(ε, c) have distributions that do not depend on T , and x is
a continuity point of PT+1(γ0), and the last equality holds by
the definition of P∞. Equation (B.7) also holds with ≥ in place
of ≤ and −gj(εT , cT) in place of +gj(εT , cT). Hence part (a) is
proved.

Next, we prove part (b). We introduce the following nota-
tion. For some random or nonrandom vectors {γj : j = 1, . . . ,

T − m + 1}, let F̂T(x, {γj}) denote the empirical df based on

{Pj(γj) : j = 1, . . . ,T − m + 1}, that is,

F̂T(x, {γj}) = 1

T − m + 1

T−m+1∑

j=1

1(Pj(γj) ≤ x) (B.8)

for x ∈ R. Note that F̂P,T(x) = F̂T(x, {γ̂( j)}).
We define a smoothed version of the df F̂T(x, {γj}) as follows.

Let k(·) be a monotone-decreasing, everywhere-differentiable
real function on R with bounded derivative such that k(x) = 1
for x ∈ (−∞,0], k(x) ∈ [0,1] for x ∈ (0,1), and k(x) = 0 for
x ∈ [1,∞). For example, we could take k(x) = cos(πx)/2+1/2
for x ∈ (0,1). For {γj} as before, we define the smoothed df,

F̂T(x, {γj},hT) = 1

T − m + 1

T−m+1∑

j=1

k

(
Pj(γj) − x

hT

)
, (B.9)

where {hT : T ≥ 1} is a sequence of positive constants that sat-
isfies hT → 0 and cTεT/hT → 0. For example, if cT = ε

−1/2
T ,

then we can take hT = ε
1/4
T .

We have

|̂FP,T(x) − FP(x)| ≤
4∑

i=1

Di,T , where

D1,T = ∣∣̂FP,T(x) − F̂T
(
x,
{
γ̂( j)

}
,hT

)∣∣,

D2,T = ∣∣̂FT
(
x,
{
γ̂( j)

}
,hT

)− F̂T(x, {γ0},hT)
∣∣,

D3,T = ∣∣̂FT(x, {γ0},hT) − F̂T(x, {γ0})
∣∣, and

D4,T = |̂FT(x, {γ0}) − FP(x)|. (B.10)

We have D4,T →p 0 under H0 and H1 by the ergodic the-
orem. This holds because {P1(γ0), . . . ,PT−m+1(γ0)} depend
only on the errors {u1, . . . ,uT}, which come from the sta-
tionary and ergodic sequence {w0,t : t ≥ 1}, and not on the
postbreakdown errors {uT+1, . . . ,uT+m}. Each random vari-
able Pj(γ0) is the same measurable function of m observations
{w0,j, . . . ,w0,j+m−1} for j = 1, . . . ,T − m + 1, where m is fixed
and finite. Hence {P1(γ0), . . . ,PT−m+1(γ0)} is a finite subse-
quence of a stationary and ergodic sequence of random vari-
ables that depend on {w0,t : t ≥ 1} and the ergodic theorem
applies by Assumption 1.

We have

D1,T ≤ 1

T − m + 1

T−m+1∑

j=1

1
(
Pj
(
γ̂2( j)

)− x ∈ (0,hT)
)
, (B.11)

because F̂P,T(x) and F̂T(x, {γ̂2( j)},hT) differ only when
(Pj(γ̂2( j)) − x)/hT ∈ (0,1).

Now, for all δ > 0,

Pr(D1,T > δ)

≤ Pr({D1,T > δ} ∩ LT) + Pr(LT)

≤ Pr

(
1

T − m + 1

T−m+1∑

j=1

1
(
Pj(γ0) − x

∈ (−gj(εT , cT),hT + gj(εT , cT)
))

> δ

)
+ o(1)
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≤ E1
(
P1(γ0) − x ∈ (−g1(εT , cT), hT + g1(εT , cT)

))
/δ

+ o(1)

= o(1), (B.12)

where the second inequality holds using (B.5), (B.6),
and (B.11), the third inequality uses Markov’s inequality and
the identical distributions of Pj(γ0) for j = 1, . . . ,T − m + 1,
and the equality holds by the bounded convergence theorem
because g1(εT , cT) → 0 a.s. and hT → 0 as T → ∞, and
Pr(P1(β0) �= x) = 1 by Assumption 5. Hence D1,T →p 0.

An analogous, but simpler, argument shows that D3,T →p 0.
For the proof of part (b), it remains to show that D2,T →p 0.

By mean-value expansions about Pj(γ0), we have: in the
set LT ,

D2,T =
∣∣∣∣

1

T − m + 1

T−m+1∑

j=1

k′
(

P̃j − x

hT

)
Pj(γ̂2( j)) − Pj(γ0)

hT

∣∣∣∣∣

≤ B

T − m + 1

T−m+1∑

j=1

gj(εT , cT)

hT
, (B.13)

where k′(·) denotes the derivative of k(·), P̃j lies between
Pj(γ̂2( j)) and Pj(γ0), B < ∞ denotes the bound on the deriv-
ative of k(·), and the inequality holds by (B.6).

By the dominated convergence theorem,

Eg1(εT , cT)

hT
→ 0 as T → ∞, (B.14)

using the moment conditions in Assumption 2 and the fact that
cTεT/hT → 0 and εT/hT → 0 by the definitions of hT , cT ,
and εT .

We now have

Pr(D2,T > δ) ≤ Pr({D2,T > δ} ∩ LT) + Pr(LT)

≤ Pr

(
B

T − m + 1

T−m+1∑

j=1

gj(εT , cT)

hT
> δ

)

+ o(1)

≤ δ−1BE
g1(εT , cT)

hT
+ o(1)

= o(1), (B.15)

where the second inequality holds by (B.5) and (B.13), the third
inequality holds by Markov’s inequality and the identical distri-
butions of {gj(εT , cT) : j = 1, . . . ,T − m + 1}, and the equality
holds by (B.14). This completes the proof of part (b).

Part (c) is implied by part (b) using Assumption 5. This is
a standard result. It follows from the fact that for all small
ε > 0, F̂P,T(qP,1−α − ε) →p FP(qP,1−α − ε) < 1 − α and
F̂P,T(qP,1−α + ε) →p FP(qP,1−α + ε) > 1 − α.

Part (d) is implied by parts (a) and (c) using Assumption 5.
Part (e) holds by altering the proofs of parts (a)–(d) given

earlier. Let C be an m × m such that C′C = Am. Then

Pj(γ,Am) = (
CYj:( j+m−1) − CZj:( j+m−1)γ

)′

× (
CYj:( j+m−1) − CZj:( j+m−1)γ

)
. (B.16)

Define

(̃uj, . . . , ũj+m−1)
′ = Ũj:( j+m−1) = CUj:( j+m−1),

(̃zj, . . . , z̃j+m−1)
′ = Z̃j:( j+m−1) = CZj:( j+m−1), (B.17)

z̃t = (̃z ′
1,t, z̃ ′

2,t)
′,

where z̃1,t ∈ R
k1 . By construction, for t = j, . . . , j + m − 1,

z̃1,t = Z̃′
1,j:( j+m−1)ct−j+1, where C = (c1, . . . , cm)′, (B.18)

cj ∈ R
m for j = 1, . . . ,m, and Z̃1,j:( j+m−1) denotes the first

k1 columns of Z̃j:( j+m−1).
An analog of (B.6) holds with Pj(γ ) replaced by Pj(γ,Am)

by replacing ut, zt, z2,t , and maxs≤T+m ‖B−1
T z1,s‖ by ũt, z̃t, z̃2,t ,

and m2 maxs≤T+m ‖B−1
T z1,s‖, provided that L2T(c) is defined

with c replaced by c/m2 on the right side of (B.3). This holds
because

max
j=1,...,T−m+1

max
t=j,...,j+m−1

‖B−1
T z̃1,t‖

= max
j=1,...,T−m+1

max
t=j,...,j+m−1

‖B−1
T (z1,j, . . . , z1,j+m−1)ct−j+1‖

≤ m2 max
s≤T+m

‖B−1
T z1,s‖, (B.19)

where the inequality uses the fact that the elements of C are all
less than or equal to m in absolute value.

In the present case, gj(εT , cT) is defined as in the last equality
of (B.6) but with ut and z2,t replaced by ũt and z̃2,t . Given this
definition of gj(εT , cT), the rest of the proofs of parts (a)–(d)
hold without change when Pj(γ ) is replaced by Pj(γ,Am). This
completes the proof of part (e).

Proof of Lemma A.1

To establish Assumption 4, we start by showing that
BT(γ̂1,1:T − γ1,0) →p 0, where γ̂�,1:T denotes the LS estima-
tor based on t = 1, . . . ,T for � = 1,2. First, note that

T−1
T∑

t=1

B−1
T z1,tz

′
1,tB

−1
T =

∫ 1

0
ν1,T(r)ν1,T (r)′ dr, (B.20)

by definition of νT(r). Let ν1,2,T = T−1 ∑T
t=1 B−1

T z1,tz′
2,t. By

the partitioned regression formula,

BT(γ̂1,1:T − γ1,0)

=
(∫ 1

0
ν1,T(r)ν1,T (r)′ dr

− ν1,2,T

(
T−1

T∑

t=1

z2,tz
′
2,t

)−1

ν′
1,2,T

)−1

×
(

T−1
T∑

t=1

B−1
T z1,tut

− ν1,2,T

(
T−1

T∑

t=1

z2,tz
′
2,t

)−1

T−1
T∑

t=1

z2,tut

)

= op(1), (B.21)
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where the second equality holds because (a) ν1,2,T →p 0 by
Assumption LS(c); (b) T−1 ∑T

t=1 z2,tz′
2,t →p 
2,0 > 0 by the

ergodic theorem and Assumptions 1, LS(a), and LS(e); (c) the
integral converges in distribution to

∫ 1
0 ν1(r)ν1(r)′ dr [which

is positive definite a.s. by Assumption LS(e)] by Assump-
tion LS(b) and the continuous mapping theorem; (d) T−1 ×∑T

t=1 B−1
T z1,tut →p 0 by Assumption LS(c); and (e) T−1 ×

∑T
t=1 z2,tut →p 0 by the ergodic theorem and Assumptions

1 and LS(a).
Similarly, we have

γ̂2,1:T − γ2,0

=
(

T−1
T∑

t=1

z2,tz
′
2,t

− ν′
1,2,T

(∫ 1

0
ν1,T(r)ν1,T(r)′ dr

)−1

ν1,2,T

)−1

×
(

T−1
T∑

t=1

z2,tut − ν′
1,2,T

(∫ 1

0
ν1,T(r)ν1,T (r)′ dr

)−1

× T−1
T∑

t=1

B−1
T z1,tut

)

= op(1). (B.22)

Now, to establish Assumption 4 for γ̂�,1:(T+m) for � = 1,2, it
suffices to show that

K1,T =
∥∥∥∥∥T−1

T+m∑

t=T+1

B−1
T z1,tz

′
1,tB

−1
T

∥∥∥∥∥= op(1),

K2,T =
∥∥∥∥∥T−1

T+m∑

t=T+1

z2,tz
′
2,t

∥∥∥∥∥= op(1),

K3,T =
∥∥∥∥∥T−1

T+m∑

t=T+1

z2,tut

∥∥∥∥∥= op(1), (B.23)

K4,T =
∥∥∥∥∥T−1

T+m∑

t=T+1

B−1
T z1,tz

′
2,t

∥∥∥∥∥= op(1),

K5,T =
∥∥∥∥∥T−1

T+m∑

t=T+1

B−1
T z1,tut

∥∥∥∥∥= op(1).

These conditions are sufficient because (B.21) and (B.22)
show that the differences between BT(γ̂�,1:T − γ�,0) and
BT(γ̂�,1:(T+m) − γ�,0) are captured by the terms in (B.23).

We have

K1,T ≤ T−1m max
t=T+1,...,T+m

‖B−1
T z1,t‖2 = op(1), (B.24)

where the equality holds by Assumption LS(d). Next, we have,
for all ε > 0,

Pr

(∥∥∥∥∥T−1
m∑

i=1

z2,T+iz
′
2,T+i

∥∥∥∥∥> ε

)

= Pr

(∥∥∥∥∥

m∑

i=1

z2,T+iz
′
2,T+i

∥∥∥∥∥> Tε

)

= o(1), (B.25)

where the equality holds because the distribution of∑m
i=1 ‖z2,T+iz′

2,T+i‖ does not depend on T by Assumption 1.
Hence K2,T = op(1). An analogous argument with z2,tz′

2,t re-
placed by z2,tut gives K3,T = op(1).

Next, we have

K4,T ≤ T−1
T+m∑

t=T+1

‖z2,t‖ · max
r∈[0,1]

‖νT(r)‖ = op(1), (B.26)

where the equality holds by Assumption LS(b) and the argu-
ment in (B.25). An analogous argument with ‖z2,t‖ replaced
by |ut| gives K5,T = op(1). This establishes the result of As-
sumption 4 for γ̂�,1:(T+m).

To obtain the result of Assumption 4 for γ̂�,2( j) for � = 1,2,
it suffices to show that the conditions in (B.23) hold with
the sums being over t = j, . . . , j + M − 1, where M = �m/2	,
rather than t = T + 1, . . . ,T + m, and with the max over
j = 1, . . . ,T + M added. These conditions are sufficient be-
cause (B.21) and (B.22) show that the differences between
BT(γ̂�,1:(T+m) − γ�,0) and BT(γ̂�,2( j) − γ�,0) are captured by
the terms in (B.23) with the adjustments just described. Let
K∗

i,T = op(1) for i = 1, . . . ,5 denote the conditions in (B.23)
with these changes.

We have

K∗
1,T ≤ T−1M sup

r∈[0,1]
‖νT(r)‖2 = T−1Op(1) = op(1), (B.27)

where the first equality holds by Assumption LS(b) and the con-
tinuous mapping theorem.

To establish the conditions of (B.23) for K∗
2,T –K∗

5,T , we use
the following result. Suppose that {ξt : t ≥ 1} is a sequence of
mean-0 random variables and that supt≥1 E‖ξt‖1+δ < ∞ for

some δ > 0. Let τj =∑j+M−1
t=j ξt. Then, for all ε > 0,

Pr
(

T−1 max
j≤T−M+1

‖τj‖ > ε
)

= Pr

(
T−M+1⋃

j=1

{‖τj‖ > Tε}
)

≤
T−M+1∑

j=1

Pr(‖τj‖ > Tε)

≤ (T − M + 1)E‖τj‖1+δT−(1+δ)ε−(1+δ)

= o(1), (B.28)

where the second inequality uses Markov’s inequality. Hence

max
j≤T−M+1

∥∥∥∥∥T−1
j+M−1∑

t=j

ξt

∥∥∥∥∥→p 0. (B.29)

Applying (B.29) with ξt = z2,tz′
2,t −Ez2,tz′

2,t gives K∗
2,T →p 0

using the facts that E‖z2,t‖2+δ < ∞ by Assumption LS(a) and
Ez2,tz′

2,t does not depend on t or T for t ≤ T by Assumption 1.
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Applying (B.29) with ξt = z2,tut gives K∗
3,T →p 0 using the fact

that E‖z2,tut‖1+δ < ∞ by Assumption LS(a).
For K∗

4,T , we have

K∗
4,T ≤ max

j=1,...,T+M−1
T−1

j+M−1∑

t=j

‖z2,t‖ · max
r∈[0,1]

‖νT(r)‖

= op(1), (B.30)

where the equality holds by Assumption LS(b) and by apply-
ing (B.29) with ξt = ‖z2,t‖ using Assumptions 1 and LS(a). An
analogous argument with ut in place of z2,t gives K∗

5,T →p 0
because E|ut|1+δ < ∞ by Assumption LS(a). This establishes
the result of Assumption 4 for γ̂�,2( j) for � = 1,2.

Assumption LS(a) obviously implies Assumption 2.
Finally, Assumption LS(b) and the CMT imply that

max
t≤T

‖B−1
T z1,t‖ = sup

r∈[0,1]
‖νT(r)‖ →d sup

r∈[0,1]
‖ν(r)‖

< ∞ a.s. (B.31)

This result, combined with Assumption LS(d), establishes As-
sumption 3.

[Received January 2004. Revised March 2006.]
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